glsl: don't reference shader prog data during cache fallback
[mesa.git] / src / compiler / glsl / linker.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file linker.cpp
26 * GLSL linker implementation
27 *
28 * Given a set of shaders that are to be linked to generate a final program,
29 * there are three distinct stages.
30 *
31 * In the first stage shaders are partitioned into groups based on the shader
32 * type. All shaders of a particular type (e.g., vertex shaders) are linked
33 * together.
34 *
35 * - Undefined references in each shader are resolve to definitions in
36 * another shader.
37 * - Types and qualifiers of uniforms, outputs, and global variables defined
38 * in multiple shaders with the same name are verified to be the same.
39 * - Initializers for uniforms and global variables defined
40 * in multiple shaders with the same name are verified to be the same.
41 *
42 * The result, in the terminology of the GLSL spec, is a set of shader
43 * executables for each processing unit.
44 *
45 * After the first stage is complete, a series of semantic checks are performed
46 * on each of the shader executables.
47 *
48 * - Each shader executable must define a \c main function.
49 * - Each vertex shader executable must write to \c gl_Position.
50 * - Each fragment shader executable must write to either \c gl_FragData or
51 * \c gl_FragColor.
52 *
53 * In the final stage individual shader executables are linked to create a
54 * complete exectuable.
55 *
56 * - Types of uniforms defined in multiple shader stages with the same name
57 * are verified to be the same.
58 * - Initializers for uniforms defined in multiple shader stages with the
59 * same name are verified to be the same.
60 * - Types and qualifiers of outputs defined in one stage are verified to
61 * be the same as the types and qualifiers of inputs defined with the same
62 * name in a later stage.
63 *
64 * \author Ian Romanick <ian.d.romanick@intel.com>
65 */
66
67 #include <ctype.h>
68 #include "util/strndup.h"
69 #include "main/core.h"
70 #include "glsl_symbol_table.h"
71 #include "glsl_parser_extras.h"
72 #include "ir.h"
73 #include "program.h"
74 #include "program/prog_instruction.h"
75 #include "program/program.h"
76 #include "util/mesa-sha1.h"
77 #include "util/set.h"
78 #include "util/string_to_uint_map.h"
79 #include "linker.h"
80 #include "link_varyings.h"
81 #include "ir_optimization.h"
82 #include "ir_rvalue_visitor.h"
83 #include "ir_uniform.h"
84 #include "builtin_functions.h"
85 #include "shader_cache.h"
86
87 #include "main/shaderobj.h"
88 #include "main/enums.h"
89
90
91 namespace {
92
93 /**
94 * Visitor that determines whether or not a variable is ever written.
95 */
96 class find_assignment_visitor : public ir_hierarchical_visitor {
97 public:
98 find_assignment_visitor(const char *name)
99 : name(name), found(false)
100 {
101 /* empty */
102 }
103
104 virtual ir_visitor_status visit_enter(ir_assignment *ir)
105 {
106 ir_variable *const var = ir->lhs->variable_referenced();
107
108 if (strcmp(name, var->name) == 0) {
109 found = true;
110 return visit_stop;
111 }
112
113 return visit_continue_with_parent;
114 }
115
116 virtual ir_visitor_status visit_enter(ir_call *ir)
117 {
118 foreach_two_lists(formal_node, &ir->callee->parameters,
119 actual_node, &ir->actual_parameters) {
120 ir_rvalue *param_rval = (ir_rvalue *) actual_node;
121 ir_variable *sig_param = (ir_variable *) formal_node;
122
123 if (sig_param->data.mode == ir_var_function_out ||
124 sig_param->data.mode == ir_var_function_inout) {
125 ir_variable *var = param_rval->variable_referenced();
126 if (var && strcmp(name, var->name) == 0) {
127 found = true;
128 return visit_stop;
129 }
130 }
131 }
132
133 if (ir->return_deref != NULL) {
134 ir_variable *const var = ir->return_deref->variable_referenced();
135
136 if (strcmp(name, var->name) == 0) {
137 found = true;
138 return visit_stop;
139 }
140 }
141
142 return visit_continue_with_parent;
143 }
144
145 bool variable_found()
146 {
147 return found;
148 }
149
150 private:
151 const char *name; /**< Find writes to a variable with this name. */
152 bool found; /**< Was a write to the variable found? */
153 };
154
155
156 /**
157 * Visitor that determines whether or not a variable is ever read.
158 */
159 class find_deref_visitor : public ir_hierarchical_visitor {
160 public:
161 find_deref_visitor(const char *name)
162 : name(name), found(false)
163 {
164 /* empty */
165 }
166
167 virtual ir_visitor_status visit(ir_dereference_variable *ir)
168 {
169 if (strcmp(this->name, ir->var->name) == 0) {
170 this->found = true;
171 return visit_stop;
172 }
173
174 return visit_continue;
175 }
176
177 bool variable_found() const
178 {
179 return this->found;
180 }
181
182 private:
183 const char *name; /**< Find writes to a variable with this name. */
184 bool found; /**< Was a write to the variable found? */
185 };
186
187
188 /**
189 * A visitor helper that provides methods for updating the types of
190 * ir_dereferences. Classes that update variable types (say, updating
191 * array sizes) will want to use this so that dereference types stay in sync.
192 */
193 class deref_type_updater : public ir_hierarchical_visitor {
194 public:
195 virtual ir_visitor_status visit(ir_dereference_variable *ir)
196 {
197 ir->type = ir->var->type;
198 return visit_continue;
199 }
200
201 virtual ir_visitor_status visit_leave(ir_dereference_array *ir)
202 {
203 const glsl_type *const vt = ir->array->type;
204 if (vt->is_array())
205 ir->type = vt->fields.array;
206 return visit_continue;
207 }
208
209 virtual ir_visitor_status visit_leave(ir_dereference_record *ir)
210 {
211 for (unsigned i = 0; i < ir->record->type->length; i++) {
212 const struct glsl_struct_field *field =
213 &ir->record->type->fields.structure[i];
214 if (strcmp(field->name, ir->field) == 0) {
215 ir->type = field->type;
216 break;
217 }
218 }
219 return visit_continue;
220 }
221 };
222
223
224 class array_resize_visitor : public deref_type_updater {
225 public:
226 unsigned num_vertices;
227 gl_shader_program *prog;
228 gl_shader_stage stage;
229
230 array_resize_visitor(unsigned num_vertices,
231 gl_shader_program *prog,
232 gl_shader_stage stage)
233 {
234 this->num_vertices = num_vertices;
235 this->prog = prog;
236 this->stage = stage;
237 }
238
239 virtual ~array_resize_visitor()
240 {
241 /* empty */
242 }
243
244 virtual ir_visitor_status visit(ir_variable *var)
245 {
246 if (!var->type->is_array() || var->data.mode != ir_var_shader_in ||
247 var->data.patch)
248 return visit_continue;
249
250 unsigned size = var->type->length;
251
252 if (stage == MESA_SHADER_GEOMETRY) {
253 /* Generate a link error if the shader has declared this array with
254 * an incorrect size.
255 */
256 if (!var->data.implicit_sized_array &&
257 size && size != this->num_vertices) {
258 linker_error(this->prog, "size of array %s declared as %u, "
259 "but number of input vertices is %u\n",
260 var->name, size, this->num_vertices);
261 return visit_continue;
262 }
263
264 /* Generate a link error if the shader attempts to access an input
265 * array using an index too large for its actual size assigned at
266 * link time.
267 */
268 if (var->data.max_array_access >= (int)this->num_vertices) {
269 linker_error(this->prog, "%s shader accesses element %i of "
270 "%s, but only %i input vertices\n",
271 _mesa_shader_stage_to_string(this->stage),
272 var->data.max_array_access, var->name, this->num_vertices);
273 return visit_continue;
274 }
275 }
276
277 var->type = glsl_type::get_array_instance(var->type->fields.array,
278 this->num_vertices);
279 var->data.max_array_access = this->num_vertices - 1;
280
281 return visit_continue;
282 }
283 };
284
285 /**
286 * Visitor that determines the highest stream id to which a (geometry) shader
287 * emits vertices. It also checks whether End{Stream}Primitive is ever called.
288 */
289 class find_emit_vertex_visitor : public ir_hierarchical_visitor {
290 public:
291 find_emit_vertex_visitor(int max_allowed)
292 : max_stream_allowed(max_allowed),
293 invalid_stream_id(0),
294 invalid_stream_id_from_emit_vertex(false),
295 end_primitive_found(false),
296 uses_non_zero_stream(false)
297 {
298 /* empty */
299 }
300
301 virtual ir_visitor_status visit_leave(ir_emit_vertex *ir)
302 {
303 int stream_id = ir->stream_id();
304
305 if (stream_id < 0) {
306 invalid_stream_id = stream_id;
307 invalid_stream_id_from_emit_vertex = true;
308 return visit_stop;
309 }
310
311 if (stream_id > max_stream_allowed) {
312 invalid_stream_id = stream_id;
313 invalid_stream_id_from_emit_vertex = true;
314 return visit_stop;
315 }
316
317 if (stream_id != 0)
318 uses_non_zero_stream = true;
319
320 return visit_continue;
321 }
322
323 virtual ir_visitor_status visit_leave(ir_end_primitive *ir)
324 {
325 end_primitive_found = true;
326
327 int stream_id = ir->stream_id();
328
329 if (stream_id < 0) {
330 invalid_stream_id = stream_id;
331 invalid_stream_id_from_emit_vertex = false;
332 return visit_stop;
333 }
334
335 if (stream_id > max_stream_allowed) {
336 invalid_stream_id = stream_id;
337 invalid_stream_id_from_emit_vertex = false;
338 return visit_stop;
339 }
340
341 if (stream_id != 0)
342 uses_non_zero_stream = true;
343
344 return visit_continue;
345 }
346
347 bool error()
348 {
349 return invalid_stream_id != 0;
350 }
351
352 const char *error_func()
353 {
354 return invalid_stream_id_from_emit_vertex ?
355 "EmitStreamVertex" : "EndStreamPrimitive";
356 }
357
358 int error_stream()
359 {
360 return invalid_stream_id;
361 }
362
363 bool uses_streams()
364 {
365 return uses_non_zero_stream;
366 }
367
368 bool uses_end_primitive()
369 {
370 return end_primitive_found;
371 }
372
373 private:
374 int max_stream_allowed;
375 int invalid_stream_id;
376 bool invalid_stream_id_from_emit_vertex;
377 bool end_primitive_found;
378 bool uses_non_zero_stream;
379 };
380
381 /* Class that finds array derefs and check if indexes are dynamic. */
382 class dynamic_sampler_array_indexing_visitor : public ir_hierarchical_visitor
383 {
384 public:
385 dynamic_sampler_array_indexing_visitor() :
386 dynamic_sampler_array_indexing(false)
387 {
388 }
389
390 ir_visitor_status visit_enter(ir_dereference_array *ir)
391 {
392 if (!ir->variable_referenced())
393 return visit_continue;
394
395 if (!ir->variable_referenced()->type->contains_sampler())
396 return visit_continue;
397
398 if (!ir->array_index->constant_expression_value()) {
399 dynamic_sampler_array_indexing = true;
400 return visit_stop;
401 }
402 return visit_continue;
403 }
404
405 bool uses_dynamic_sampler_array_indexing()
406 {
407 return dynamic_sampler_array_indexing;
408 }
409
410 private:
411 bool dynamic_sampler_array_indexing;
412 };
413
414 } /* anonymous namespace */
415
416 void
417 linker_error(gl_shader_program *prog, const char *fmt, ...)
418 {
419 va_list ap;
420
421 ralloc_strcat(&prog->data->InfoLog, "error: ");
422 va_start(ap, fmt);
423 ralloc_vasprintf_append(&prog->data->InfoLog, fmt, ap);
424 va_end(ap);
425
426 prog->data->LinkStatus = linking_failure;
427 }
428
429
430 void
431 linker_warning(gl_shader_program *prog, const char *fmt, ...)
432 {
433 va_list ap;
434
435 ralloc_strcat(&prog->data->InfoLog, "warning: ");
436 va_start(ap, fmt);
437 ralloc_vasprintf_append(&prog->data->InfoLog, fmt, ap);
438 va_end(ap);
439
440 }
441
442
443 /**
444 * Given a string identifying a program resource, break it into a base name
445 * and an optional array index in square brackets.
446 *
447 * If an array index is present, \c out_base_name_end is set to point to the
448 * "[" that precedes the array index, and the array index itself is returned
449 * as a long.
450 *
451 * If no array index is present (or if the array index is negative or
452 * mal-formed), \c out_base_name_end, is set to point to the null terminator
453 * at the end of the input string, and -1 is returned.
454 *
455 * Only the final array index is parsed; if the string contains other array
456 * indices (or structure field accesses), they are left in the base name.
457 *
458 * No attempt is made to check that the base name is properly formed;
459 * typically the caller will look up the base name in a hash table, so
460 * ill-formed base names simply turn into hash table lookup failures.
461 */
462 long
463 parse_program_resource_name(const GLchar *name,
464 const GLchar **out_base_name_end)
465 {
466 /* Section 7.3.1 ("Program Interfaces") of the OpenGL 4.3 spec says:
467 *
468 * "When an integer array element or block instance number is part of
469 * the name string, it will be specified in decimal form without a "+"
470 * or "-" sign or any extra leading zeroes. Additionally, the name
471 * string will not include white space anywhere in the string."
472 */
473
474 const size_t len = strlen(name);
475 *out_base_name_end = name + len;
476
477 if (len == 0 || name[len-1] != ']')
478 return -1;
479
480 /* Walk backwards over the string looking for a non-digit character. This
481 * had better be the opening bracket for an array index.
482 *
483 * Initially, i specifies the location of the ']'. Since the string may
484 * contain only the ']' charcater, walk backwards very carefully.
485 */
486 unsigned i;
487 for (i = len - 1; (i > 0) && isdigit(name[i-1]); --i)
488 /* empty */ ;
489
490 if ((i == 0) || name[i-1] != '[')
491 return -1;
492
493 long array_index = strtol(&name[i], NULL, 10);
494 if (array_index < 0)
495 return -1;
496
497 /* Check for leading zero */
498 if (name[i] == '0' && name[i+1] != ']')
499 return -1;
500
501 *out_base_name_end = name + (i - 1);
502 return array_index;
503 }
504
505
506 void
507 link_invalidate_variable_locations(exec_list *ir)
508 {
509 foreach_in_list(ir_instruction, node, ir) {
510 ir_variable *const var = node->as_variable();
511
512 if (var == NULL)
513 continue;
514
515 /* Only assign locations for variables that lack an explicit location.
516 * Explicit locations are set for all built-in variables, generic vertex
517 * shader inputs (via layout(location=...)), and generic fragment shader
518 * outputs (also via layout(location=...)).
519 */
520 if (!var->data.explicit_location) {
521 var->data.location = -1;
522 var->data.location_frac = 0;
523 }
524
525 /* ir_variable::is_unmatched_generic_inout is used by the linker while
526 * connecting outputs from one stage to inputs of the next stage.
527 */
528 if (var->data.explicit_location &&
529 var->data.location < VARYING_SLOT_VAR0) {
530 var->data.is_unmatched_generic_inout = 0;
531 } else {
532 var->data.is_unmatched_generic_inout = 1;
533 }
534 }
535 }
536
537
538 /**
539 * Set clip_distance_array_size based and cull_distance_array_size on the given
540 * shader.
541 *
542 * Also check for errors based on incorrect usage of gl_ClipVertex and
543 * gl_ClipDistance and gl_CullDistance.
544 * Additionally test whether the arrays gl_ClipDistance and gl_CullDistance
545 * exceed the maximum size defined by gl_MaxCombinedClipAndCullDistances.
546 *
547 * Return false if an error was reported.
548 */
549 static void
550 analyze_clip_cull_usage(struct gl_shader_program *prog,
551 struct gl_linked_shader *shader,
552 struct gl_context *ctx,
553 GLuint *clip_distance_array_size,
554 GLuint *cull_distance_array_size)
555 {
556 *clip_distance_array_size = 0;
557 *cull_distance_array_size = 0;
558
559 if (prog->data->Version >= (prog->IsES ? 300 : 130)) {
560 /* From section 7.1 (Vertex Shader Special Variables) of the
561 * GLSL 1.30 spec:
562 *
563 * "It is an error for a shader to statically write both
564 * gl_ClipVertex and gl_ClipDistance."
565 *
566 * This does not apply to GLSL ES shaders, since GLSL ES defines neither
567 * gl_ClipVertex nor gl_ClipDistance. However with
568 * GL_EXT_clip_cull_distance, this functionality is exposed in ES 3.0.
569 */
570 find_assignment_visitor clip_distance("gl_ClipDistance");
571 find_assignment_visitor cull_distance("gl_CullDistance");
572
573 clip_distance.run(shader->ir);
574 cull_distance.run(shader->ir);
575
576 /* From the ARB_cull_distance spec:
577 *
578 * It is a compile-time or link-time error for the set of shaders forming
579 * a program to statically read or write both gl_ClipVertex and either
580 * gl_ClipDistance or gl_CullDistance.
581 *
582 * This does not apply to GLSL ES shaders, since GLSL ES doesn't define
583 * gl_ClipVertex.
584 */
585 if (!prog->IsES) {
586 find_assignment_visitor clip_vertex("gl_ClipVertex");
587
588 clip_vertex.run(shader->ir);
589
590 if (clip_vertex.variable_found() && clip_distance.variable_found()) {
591 linker_error(prog, "%s shader writes to both `gl_ClipVertex' "
592 "and `gl_ClipDistance'\n",
593 _mesa_shader_stage_to_string(shader->Stage));
594 return;
595 }
596 if (clip_vertex.variable_found() && cull_distance.variable_found()) {
597 linker_error(prog, "%s shader writes to both `gl_ClipVertex' "
598 "and `gl_CullDistance'\n",
599 _mesa_shader_stage_to_string(shader->Stage));
600 return;
601 }
602 }
603
604 if (clip_distance.variable_found()) {
605 ir_variable *clip_distance_var =
606 shader->symbols->get_variable("gl_ClipDistance");
607 assert(clip_distance_var);
608 *clip_distance_array_size = clip_distance_var->type->length;
609 }
610 if (cull_distance.variable_found()) {
611 ir_variable *cull_distance_var =
612 shader->symbols->get_variable("gl_CullDistance");
613 assert(cull_distance_var);
614 *cull_distance_array_size = cull_distance_var->type->length;
615 }
616 /* From the ARB_cull_distance spec:
617 *
618 * It is a compile-time or link-time error for the set of shaders forming
619 * a program to have the sum of the sizes of the gl_ClipDistance and
620 * gl_CullDistance arrays to be larger than
621 * gl_MaxCombinedClipAndCullDistances.
622 */
623 if ((*clip_distance_array_size + *cull_distance_array_size) >
624 ctx->Const.MaxClipPlanes) {
625 linker_error(prog, "%s shader: the combined size of "
626 "'gl_ClipDistance' and 'gl_CullDistance' size cannot "
627 "be larger than "
628 "gl_MaxCombinedClipAndCullDistances (%u)",
629 _mesa_shader_stage_to_string(shader->Stage),
630 ctx->Const.MaxClipPlanes);
631 }
632 }
633 }
634
635
636 /**
637 * Verify that a vertex shader executable meets all semantic requirements.
638 *
639 * Also sets info.clip_distance_array_size and
640 * info.cull_distance_array_size as a side effect.
641 *
642 * \param shader Vertex shader executable to be verified
643 */
644 void
645 validate_vertex_shader_executable(struct gl_shader_program *prog,
646 struct gl_linked_shader *shader,
647 struct gl_context *ctx)
648 {
649 if (shader == NULL)
650 return;
651
652 /* From the GLSL 1.10 spec, page 48:
653 *
654 * "The variable gl_Position is available only in the vertex
655 * language and is intended for writing the homogeneous vertex
656 * position. All executions of a well-formed vertex shader
657 * executable must write a value into this variable. [...] The
658 * variable gl_Position is available only in the vertex
659 * language and is intended for writing the homogeneous vertex
660 * position. All executions of a well-formed vertex shader
661 * executable must write a value into this variable."
662 *
663 * while in GLSL 1.40 this text is changed to:
664 *
665 * "The variable gl_Position is available only in the vertex
666 * language and is intended for writing the homogeneous vertex
667 * position. It can be written at any time during shader
668 * execution. It may also be read back by a vertex shader
669 * after being written. This value will be used by primitive
670 * assembly, clipping, culling, and other fixed functionality
671 * operations, if present, that operate on primitives after
672 * vertex processing has occurred. Its value is undefined if
673 * the vertex shader executable does not write gl_Position."
674 *
675 * All GLSL ES Versions are similar to GLSL 1.40--failing to write to
676 * gl_Position is not an error.
677 */
678 if (prog->data->Version < (prog->IsES ? 300 : 140)) {
679 find_assignment_visitor find("gl_Position");
680 find.run(shader->ir);
681 if (!find.variable_found()) {
682 if (prog->IsES) {
683 linker_warning(prog,
684 "vertex shader does not write to `gl_Position'. "
685 "Its value is undefined. \n");
686 } else {
687 linker_error(prog,
688 "vertex shader does not write to `gl_Position'. \n");
689 }
690 return;
691 }
692 }
693
694 analyze_clip_cull_usage(prog, shader, ctx,
695 &shader->Program->info.clip_distance_array_size,
696 &shader->Program->info.cull_distance_array_size);
697 }
698
699 void
700 validate_tess_eval_shader_executable(struct gl_shader_program *prog,
701 struct gl_linked_shader *shader,
702 struct gl_context *ctx)
703 {
704 if (shader == NULL)
705 return;
706
707 analyze_clip_cull_usage(prog, shader, ctx,
708 &shader->Program->info.clip_distance_array_size,
709 &shader->Program->info.cull_distance_array_size);
710 }
711
712
713 /**
714 * Verify that a fragment shader executable meets all semantic requirements
715 *
716 * \param shader Fragment shader executable to be verified
717 */
718 void
719 validate_fragment_shader_executable(struct gl_shader_program *prog,
720 struct gl_linked_shader *shader)
721 {
722 if (shader == NULL)
723 return;
724
725 find_assignment_visitor frag_color("gl_FragColor");
726 find_assignment_visitor frag_data("gl_FragData");
727
728 frag_color.run(shader->ir);
729 frag_data.run(shader->ir);
730
731 if (frag_color.variable_found() && frag_data.variable_found()) {
732 linker_error(prog, "fragment shader writes to both "
733 "`gl_FragColor' and `gl_FragData'\n");
734 }
735 }
736
737 /**
738 * Verify that a geometry shader executable meets all semantic requirements
739 *
740 * Also sets prog->Geom.VerticesIn, and info.clip_distance_array_sizeand
741 * info.cull_distance_array_size as a side effect.
742 *
743 * \param shader Geometry shader executable to be verified
744 */
745 void
746 validate_geometry_shader_executable(struct gl_shader_program *prog,
747 struct gl_linked_shader *shader,
748 struct gl_context *ctx)
749 {
750 if (shader == NULL)
751 return;
752
753 unsigned num_vertices =
754 vertices_per_prim(shader->Program->info.gs.input_primitive);
755 prog->Geom.VerticesIn = num_vertices;
756
757 analyze_clip_cull_usage(prog, shader, ctx,
758 &shader->Program->info.clip_distance_array_size,
759 &shader->Program->info.cull_distance_array_size);
760 }
761
762 /**
763 * Check if geometry shaders emit to non-zero streams and do corresponding
764 * validations.
765 */
766 static void
767 validate_geometry_shader_emissions(struct gl_context *ctx,
768 struct gl_shader_program *prog)
769 {
770 struct gl_linked_shader *sh = prog->_LinkedShaders[MESA_SHADER_GEOMETRY];
771
772 if (sh != NULL) {
773 find_emit_vertex_visitor emit_vertex(ctx->Const.MaxVertexStreams - 1);
774 emit_vertex.run(sh->ir);
775 if (emit_vertex.error()) {
776 linker_error(prog, "Invalid call %s(%d). Accepted values for the "
777 "stream parameter are in the range [0, %d].\n",
778 emit_vertex.error_func(),
779 emit_vertex.error_stream(),
780 ctx->Const.MaxVertexStreams - 1);
781 }
782 prog->Geom.UsesStreams = emit_vertex.uses_streams();
783 prog->Geom.UsesEndPrimitive = emit_vertex.uses_end_primitive();
784
785 /* From the ARB_gpu_shader5 spec:
786 *
787 * "Multiple vertex streams are supported only if the output primitive
788 * type is declared to be "points". A program will fail to link if it
789 * contains a geometry shader calling EmitStreamVertex() or
790 * EndStreamPrimitive() if its output primitive type is not "points".
791 *
792 * However, in the same spec:
793 *
794 * "The function EmitVertex() is equivalent to calling EmitStreamVertex()
795 * with <stream> set to zero."
796 *
797 * And:
798 *
799 * "The function EndPrimitive() is equivalent to calling
800 * EndStreamPrimitive() with <stream> set to zero."
801 *
802 * Since we can call EmitVertex() and EndPrimitive() when we output
803 * primitives other than points, calling EmitStreamVertex(0) or
804 * EmitEndPrimitive(0) should not produce errors. This it also what Nvidia
805 * does. Currently we only set prog->Geom.UsesStreams to TRUE when
806 * EmitStreamVertex() or EmitEndPrimitive() are called with a non-zero
807 * stream.
808 */
809 if (prog->Geom.UsesStreams &&
810 sh->Program->info.gs.output_primitive != GL_POINTS) {
811 linker_error(prog, "EmitStreamVertex(n) and EndStreamPrimitive(n) "
812 "with n>0 requires point output\n");
813 }
814 }
815 }
816
817 bool
818 validate_intrastage_arrays(struct gl_shader_program *prog,
819 ir_variable *const var,
820 ir_variable *const existing)
821 {
822 /* Consider the types to be "the same" if both types are arrays
823 * of the same type and one of the arrays is implicitly sized.
824 * In addition, set the type of the linked variable to the
825 * explicitly sized array.
826 */
827 if (var->type->is_array() && existing->type->is_array()) {
828 if ((var->type->fields.array == existing->type->fields.array) &&
829 ((var->type->length == 0)|| (existing->type->length == 0))) {
830 if (var->type->length != 0) {
831 if ((int)var->type->length <= existing->data.max_array_access) {
832 linker_error(prog, "%s `%s' declared as type "
833 "`%s' but outermost dimension has an index"
834 " of `%i'\n",
835 mode_string(var),
836 var->name, var->type->name,
837 existing->data.max_array_access);
838 }
839 existing->type = var->type;
840 return true;
841 } else if (existing->type->length != 0) {
842 if((int)existing->type->length <= var->data.max_array_access &&
843 !existing->data.from_ssbo_unsized_array) {
844 linker_error(prog, "%s `%s' declared as type "
845 "`%s' but outermost dimension has an index"
846 " of `%i'\n",
847 mode_string(var),
848 var->name, existing->type->name,
849 var->data.max_array_access);
850 }
851 return true;
852 }
853 } else {
854 /* The arrays of structs could have different glsl_type pointers but
855 * they are actually the same type. Use record_compare() to check that.
856 */
857 if (existing->type->fields.array->is_record() &&
858 var->type->fields.array->is_record() &&
859 existing->type->fields.array->record_compare(var->type->fields.array))
860 return true;
861 }
862 }
863 return false;
864 }
865
866
867 /**
868 * Perform validation of global variables used across multiple shaders
869 */
870 void
871 cross_validate_globals(struct gl_shader_program *prog,
872 struct exec_list *ir, glsl_symbol_table *variables,
873 bool uniforms_only)
874 {
875 foreach_in_list(ir_instruction, node, ir) {
876 ir_variable *const var = node->as_variable();
877
878 if (var == NULL)
879 continue;
880
881 if (uniforms_only && (var->data.mode != ir_var_uniform && var->data.mode != ir_var_shader_storage))
882 continue;
883
884 /* don't cross validate subroutine uniforms */
885 if (var->type->contains_subroutine())
886 continue;
887
888 /* Don't cross validate temporaries that are at global scope. These
889 * will eventually get pulled into the shaders 'main'.
890 */
891 if (var->data.mode == ir_var_temporary)
892 continue;
893
894 /* If a global with this name has already been seen, verify that the
895 * new instance has the same type. In addition, if the globals have
896 * initializers, the values of the initializers must be the same.
897 */
898 ir_variable *const existing = variables->get_variable(var->name);
899 if (existing != NULL) {
900 /* Check if types match. Interface blocks have some special
901 * rules so we handle those elsewhere.
902 */
903 if (var->type != existing->type &&
904 !var->is_interface_instance()) {
905 if (!validate_intrastage_arrays(prog, var, existing)) {
906 if (var->type->is_record() && existing->type->is_record()
907 && existing->type->record_compare(var->type)) {
908 existing->type = var->type;
909 } else {
910 /* If it is an unsized array in a Shader Storage Block,
911 * two different shaders can access to different elements.
912 * Because of that, they might be converted to different
913 * sized arrays, then check that they are compatible but
914 * ignore the array size.
915 */
916 if (!(var->data.mode == ir_var_shader_storage &&
917 var->data.from_ssbo_unsized_array &&
918 existing->data.mode == ir_var_shader_storage &&
919 existing->data.from_ssbo_unsized_array &&
920 var->type->gl_type == existing->type->gl_type)) {
921 linker_error(prog, "%s `%s' declared as type "
922 "`%s' and type `%s'\n",
923 mode_string(var),
924 var->name, var->type->name,
925 existing->type->name);
926 return;
927 }
928 }
929 }
930 }
931
932 if (var->data.explicit_location) {
933 if (existing->data.explicit_location
934 && (var->data.location != existing->data.location)) {
935 linker_error(prog, "explicit locations for %s "
936 "`%s' have differing values\n",
937 mode_string(var), var->name);
938 return;
939 }
940
941 if (var->data.location_frac != existing->data.location_frac) {
942 linker_error(prog, "explicit components for %s `%s' have "
943 "differing values\n", mode_string(var), var->name);
944 return;
945 }
946
947 existing->data.location = var->data.location;
948 existing->data.explicit_location = true;
949 } else {
950 /* Check if uniform with implicit location was marked explicit
951 * by earlier shader stage. If so, mark it explicit in this stage
952 * too to make sure later processing does not treat it as
953 * implicit one.
954 */
955 if (existing->data.explicit_location) {
956 var->data.location = existing->data.location;
957 var->data.explicit_location = true;
958 }
959 }
960
961 /* From the GLSL 4.20 specification:
962 * "A link error will result if two compilation units in a program
963 * specify different integer-constant bindings for the same
964 * opaque-uniform name. However, it is not an error to specify a
965 * binding on some but not all declarations for the same name"
966 */
967 if (var->data.explicit_binding) {
968 if (existing->data.explicit_binding &&
969 var->data.binding != existing->data.binding) {
970 linker_error(prog, "explicit bindings for %s "
971 "`%s' have differing values\n",
972 mode_string(var), var->name);
973 return;
974 }
975
976 existing->data.binding = var->data.binding;
977 existing->data.explicit_binding = true;
978 }
979
980 if (var->type->contains_atomic() &&
981 var->data.offset != existing->data.offset) {
982 linker_error(prog, "offset specifications for %s "
983 "`%s' have differing values\n",
984 mode_string(var), var->name);
985 return;
986 }
987
988 /* Validate layout qualifiers for gl_FragDepth.
989 *
990 * From the AMD/ARB_conservative_depth specs:
991 *
992 * "If gl_FragDepth is redeclared in any fragment shader in a
993 * program, it must be redeclared in all fragment shaders in
994 * that program that have static assignments to
995 * gl_FragDepth. All redeclarations of gl_FragDepth in all
996 * fragment shaders in a single program must have the same set
997 * of qualifiers."
998 */
999 if (strcmp(var->name, "gl_FragDepth") == 0) {
1000 bool layout_declared = var->data.depth_layout != ir_depth_layout_none;
1001 bool layout_differs =
1002 var->data.depth_layout != existing->data.depth_layout;
1003
1004 if (layout_declared && layout_differs) {
1005 linker_error(prog,
1006 "All redeclarations of gl_FragDepth in all "
1007 "fragment shaders in a single program must have "
1008 "the same set of qualifiers.\n");
1009 }
1010
1011 if (var->data.used && layout_differs) {
1012 linker_error(prog,
1013 "If gl_FragDepth is redeclared with a layout "
1014 "qualifier in any fragment shader, it must be "
1015 "redeclared with the same layout qualifier in "
1016 "all fragment shaders that have assignments to "
1017 "gl_FragDepth\n");
1018 }
1019 }
1020
1021 /* Page 35 (page 41 of the PDF) of the GLSL 4.20 spec says:
1022 *
1023 * "If a shared global has multiple initializers, the
1024 * initializers must all be constant expressions, and they
1025 * must all have the same value. Otherwise, a link error will
1026 * result. (A shared global having only one initializer does
1027 * not require that initializer to be a constant expression.)"
1028 *
1029 * Previous to 4.20 the GLSL spec simply said that initializers
1030 * must have the same value. In this case of non-constant
1031 * initializers, this was impossible to determine. As a result,
1032 * no vendor actually implemented that behavior. The 4.20
1033 * behavior matches the implemented behavior of at least one other
1034 * vendor, so we'll implement that for all GLSL versions.
1035 */
1036 if (var->constant_initializer != NULL) {
1037 if (existing->constant_initializer != NULL) {
1038 if (!var->constant_initializer->has_value(existing->constant_initializer)) {
1039 linker_error(prog, "initializers for %s "
1040 "`%s' have differing values\n",
1041 mode_string(var), var->name);
1042 return;
1043 }
1044 } else {
1045 /* If the first-seen instance of a particular uniform did
1046 * not have an initializer but a later instance does,
1047 * replace the former with the later.
1048 */
1049 variables->replace_variable(existing->name, var);
1050 }
1051 }
1052
1053 if (var->data.has_initializer) {
1054 if (existing->data.has_initializer
1055 && (var->constant_initializer == NULL
1056 || existing->constant_initializer == NULL)) {
1057 linker_error(prog,
1058 "shared global variable `%s' has multiple "
1059 "non-constant initializers.\n",
1060 var->name);
1061 return;
1062 }
1063 }
1064
1065 if (existing->data.invariant != var->data.invariant) {
1066 linker_error(prog, "declarations for %s `%s' have "
1067 "mismatching invariant qualifiers\n",
1068 mode_string(var), var->name);
1069 return;
1070 }
1071 if (existing->data.centroid != var->data.centroid) {
1072 linker_error(prog, "declarations for %s `%s' have "
1073 "mismatching centroid qualifiers\n",
1074 mode_string(var), var->name);
1075 return;
1076 }
1077 if (existing->data.sample != var->data.sample) {
1078 linker_error(prog, "declarations for %s `%s` have "
1079 "mismatching sample qualifiers\n",
1080 mode_string(var), var->name);
1081 return;
1082 }
1083 if (existing->data.image_format != var->data.image_format) {
1084 linker_error(prog, "declarations for %s `%s` have "
1085 "mismatching image format qualifiers\n",
1086 mode_string(var), var->name);
1087 return;
1088 }
1089
1090 /* Only in GLSL ES 3.10, the precision qualifier should not match
1091 * between block members defined in matched block names within a
1092 * shader interface.
1093 *
1094 * In GLSL ES 3.00 and ES 3.20, precision qualifier for each block
1095 * member should match.
1096 */
1097 if (prog->IsES && (prog->data->Version != 310 ||
1098 !var->get_interface_type()) &&
1099 existing->data.precision != var->data.precision) {
1100 linker_error(prog, "declarations for %s `%s` have "
1101 "mismatching precision qualifiers\n",
1102 mode_string(var), var->name);
1103 return;
1104 }
1105 } else
1106 variables->add_variable(var);
1107 }
1108 }
1109
1110
1111 /**
1112 * Perform validation of uniforms used across multiple shader stages
1113 */
1114 void
1115 cross_validate_uniforms(struct gl_shader_program *prog)
1116 {
1117 glsl_symbol_table variables;
1118 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1119 if (prog->_LinkedShaders[i] == NULL)
1120 continue;
1121
1122 cross_validate_globals(prog, prog->_LinkedShaders[i]->ir, &variables,
1123 true);
1124 }
1125 }
1126
1127 /**
1128 * Accumulates the array of buffer blocks and checks that all definitions of
1129 * blocks agree on their contents.
1130 */
1131 static bool
1132 interstage_cross_validate_uniform_blocks(struct gl_shader_program *prog,
1133 bool validate_ssbo)
1134 {
1135 int *InterfaceBlockStageIndex[MESA_SHADER_STAGES];
1136 struct gl_uniform_block *blks = NULL;
1137 unsigned *num_blks = validate_ssbo ? &prog->data->NumShaderStorageBlocks :
1138 &prog->data->NumUniformBlocks;
1139
1140 unsigned max_num_buffer_blocks = 0;
1141 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1142 if (prog->_LinkedShaders[i]) {
1143 if (validate_ssbo) {
1144 max_num_buffer_blocks +=
1145 prog->_LinkedShaders[i]->Program->info.num_ssbos;
1146 } else {
1147 max_num_buffer_blocks +=
1148 prog->_LinkedShaders[i]->Program->info.num_ubos;
1149 }
1150 }
1151 }
1152
1153 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1154 struct gl_linked_shader *sh = prog->_LinkedShaders[i];
1155
1156 InterfaceBlockStageIndex[i] = new int[max_num_buffer_blocks];
1157 for (unsigned int j = 0; j < max_num_buffer_blocks; j++)
1158 InterfaceBlockStageIndex[i][j] = -1;
1159
1160 if (sh == NULL)
1161 continue;
1162
1163 unsigned sh_num_blocks;
1164 struct gl_uniform_block **sh_blks;
1165 if (validate_ssbo) {
1166 sh_num_blocks = prog->_LinkedShaders[i]->Program->info.num_ssbos;
1167 sh_blks = sh->Program->sh.ShaderStorageBlocks;
1168 } else {
1169 sh_num_blocks = prog->_LinkedShaders[i]->Program->info.num_ubos;
1170 sh_blks = sh->Program->sh.UniformBlocks;
1171 }
1172
1173 for (unsigned int j = 0; j < sh_num_blocks; j++) {
1174 int index = link_cross_validate_uniform_block(prog, &blks, num_blks,
1175 sh_blks[j]);
1176
1177 if (index == -1) {
1178 linker_error(prog, "buffer block `%s' has mismatching "
1179 "definitions\n", sh_blks[j]->Name);
1180
1181 for (unsigned k = 0; k <= i; k++) {
1182 delete[] InterfaceBlockStageIndex[k];
1183 }
1184 return false;
1185 }
1186
1187 InterfaceBlockStageIndex[i][index] = j;
1188 }
1189 }
1190
1191 /* Update per stage block pointers to point to the program list.
1192 * FIXME: We should be able to free the per stage blocks here.
1193 */
1194 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1195 for (unsigned j = 0; j < *num_blks; j++) {
1196 int stage_index = InterfaceBlockStageIndex[i][j];
1197
1198 if (stage_index != -1) {
1199 struct gl_linked_shader *sh = prog->_LinkedShaders[i];
1200
1201 struct gl_uniform_block **sh_blks = validate_ssbo ?
1202 sh->Program->sh.ShaderStorageBlocks :
1203 sh->Program->sh.UniformBlocks;
1204
1205 blks[j].stageref |= sh_blks[stage_index]->stageref;
1206 sh_blks[stage_index] = &blks[j];
1207 }
1208 }
1209 }
1210
1211 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1212 delete[] InterfaceBlockStageIndex[i];
1213 }
1214
1215 if (validate_ssbo)
1216 prog->data->ShaderStorageBlocks = blks;
1217 else
1218 prog->data->UniformBlocks = blks;
1219
1220 return true;
1221 }
1222
1223
1224 /**
1225 * Populates a shaders symbol table with all global declarations
1226 */
1227 static void
1228 populate_symbol_table(gl_linked_shader *sh)
1229 {
1230 sh->symbols = new(sh) glsl_symbol_table;
1231
1232 foreach_in_list(ir_instruction, inst, sh->ir) {
1233 ir_variable *var;
1234 ir_function *func;
1235
1236 if ((func = inst->as_function()) != NULL) {
1237 sh->symbols->add_function(func);
1238 } else if ((var = inst->as_variable()) != NULL) {
1239 if (var->data.mode != ir_var_temporary)
1240 sh->symbols->add_variable(var);
1241 }
1242 }
1243 }
1244
1245
1246 /**
1247 * Remap variables referenced in an instruction tree
1248 *
1249 * This is used when instruction trees are cloned from one shader and placed in
1250 * another. These trees will contain references to \c ir_variable nodes that
1251 * do not exist in the target shader. This function finds these \c ir_variable
1252 * references and replaces the references with matching variables in the target
1253 * shader.
1254 *
1255 * If there is no matching variable in the target shader, a clone of the
1256 * \c ir_variable is made and added to the target shader. The new variable is
1257 * added to \b both the instruction stream and the symbol table.
1258 *
1259 * \param inst IR tree that is to be processed.
1260 * \param symbols Symbol table containing global scope symbols in the
1261 * linked shader.
1262 * \param instructions Instruction stream where new variable declarations
1263 * should be added.
1264 */
1265 void
1266 remap_variables(ir_instruction *inst, struct gl_linked_shader *target,
1267 hash_table *temps)
1268 {
1269 class remap_visitor : public ir_hierarchical_visitor {
1270 public:
1271 remap_visitor(struct gl_linked_shader *target, hash_table *temps)
1272 {
1273 this->target = target;
1274 this->symbols = target->symbols;
1275 this->instructions = target->ir;
1276 this->temps = temps;
1277 }
1278
1279 virtual ir_visitor_status visit(ir_dereference_variable *ir)
1280 {
1281 if (ir->var->data.mode == ir_var_temporary) {
1282 hash_entry *entry = _mesa_hash_table_search(temps, ir->var);
1283 ir_variable *var = entry ? (ir_variable *) entry->data : NULL;
1284
1285 assert(var != NULL);
1286 ir->var = var;
1287 return visit_continue;
1288 }
1289
1290 ir_variable *const existing =
1291 this->symbols->get_variable(ir->var->name);
1292 if (existing != NULL)
1293 ir->var = existing;
1294 else {
1295 ir_variable *copy = ir->var->clone(this->target, NULL);
1296
1297 this->symbols->add_variable(copy);
1298 this->instructions->push_head(copy);
1299 ir->var = copy;
1300 }
1301
1302 return visit_continue;
1303 }
1304
1305 private:
1306 struct gl_linked_shader *target;
1307 glsl_symbol_table *symbols;
1308 exec_list *instructions;
1309 hash_table *temps;
1310 };
1311
1312 remap_visitor v(target, temps);
1313
1314 inst->accept(&v);
1315 }
1316
1317
1318 /**
1319 * Move non-declarations from one instruction stream to another
1320 *
1321 * The intended usage pattern of this function is to pass the pointer to the
1322 * head sentinel of a list (i.e., a pointer to the list cast to an \c exec_node
1323 * pointer) for \c last and \c false for \c make_copies on the first
1324 * call. Successive calls pass the return value of the previous call for
1325 * \c last and \c true for \c make_copies.
1326 *
1327 * \param instructions Source instruction stream
1328 * \param last Instruction after which new instructions should be
1329 * inserted in the target instruction stream
1330 * \param make_copies Flag selecting whether instructions in \c instructions
1331 * should be copied (via \c ir_instruction::clone) into the
1332 * target list or moved.
1333 *
1334 * \return
1335 * The new "last" instruction in the target instruction stream. This pointer
1336 * is suitable for use as the \c last parameter of a later call to this
1337 * function.
1338 */
1339 exec_node *
1340 move_non_declarations(exec_list *instructions, exec_node *last,
1341 bool make_copies, gl_linked_shader *target)
1342 {
1343 hash_table *temps = NULL;
1344
1345 if (make_copies)
1346 temps = _mesa_hash_table_create(NULL, _mesa_hash_pointer,
1347 _mesa_key_pointer_equal);
1348
1349 foreach_in_list_safe(ir_instruction, inst, instructions) {
1350 if (inst->as_function())
1351 continue;
1352
1353 ir_variable *var = inst->as_variable();
1354 if ((var != NULL) && (var->data.mode != ir_var_temporary))
1355 continue;
1356
1357 assert(inst->as_assignment()
1358 || inst->as_call()
1359 || inst->as_if() /* for initializers with the ?: operator */
1360 || ((var != NULL) && (var->data.mode == ir_var_temporary)));
1361
1362 if (make_copies) {
1363 inst = inst->clone(target, NULL);
1364
1365 if (var != NULL)
1366 _mesa_hash_table_insert(temps, var, inst);
1367 else
1368 remap_variables(inst, target, temps);
1369 } else {
1370 inst->remove();
1371 }
1372
1373 last->insert_after(inst);
1374 last = inst;
1375 }
1376
1377 if (make_copies)
1378 _mesa_hash_table_destroy(temps, NULL);
1379
1380 return last;
1381 }
1382
1383
1384 /**
1385 * This class is only used in link_intrastage_shaders() below but declaring
1386 * it inside that function leads to compiler warnings with some versions of
1387 * gcc.
1388 */
1389 class array_sizing_visitor : public deref_type_updater {
1390 public:
1391 array_sizing_visitor()
1392 : mem_ctx(ralloc_context(NULL)),
1393 unnamed_interfaces(_mesa_hash_table_create(NULL, _mesa_hash_pointer,
1394 _mesa_key_pointer_equal))
1395 {
1396 }
1397
1398 ~array_sizing_visitor()
1399 {
1400 _mesa_hash_table_destroy(this->unnamed_interfaces, NULL);
1401 ralloc_free(this->mem_ctx);
1402 }
1403
1404 virtual ir_visitor_status visit(ir_variable *var)
1405 {
1406 const glsl_type *type_without_array;
1407 bool implicit_sized_array = var->data.implicit_sized_array;
1408 fixup_type(&var->type, var->data.max_array_access,
1409 var->data.from_ssbo_unsized_array,
1410 &implicit_sized_array);
1411 var->data.implicit_sized_array = implicit_sized_array;
1412 type_without_array = var->type->without_array();
1413 if (var->type->is_interface()) {
1414 if (interface_contains_unsized_arrays(var->type)) {
1415 const glsl_type *new_type =
1416 resize_interface_members(var->type,
1417 var->get_max_ifc_array_access(),
1418 var->is_in_shader_storage_block());
1419 var->type = new_type;
1420 var->change_interface_type(new_type);
1421 }
1422 } else if (type_without_array->is_interface()) {
1423 if (interface_contains_unsized_arrays(type_without_array)) {
1424 const glsl_type *new_type =
1425 resize_interface_members(type_without_array,
1426 var->get_max_ifc_array_access(),
1427 var->is_in_shader_storage_block());
1428 var->change_interface_type(new_type);
1429 var->type = update_interface_members_array(var->type, new_type);
1430 }
1431 } else if (const glsl_type *ifc_type = var->get_interface_type()) {
1432 /* Store a pointer to the variable in the unnamed_interfaces
1433 * hashtable.
1434 */
1435 hash_entry *entry =
1436 _mesa_hash_table_search(this->unnamed_interfaces,
1437 ifc_type);
1438
1439 ir_variable **interface_vars = entry ? (ir_variable **) entry->data : NULL;
1440
1441 if (interface_vars == NULL) {
1442 interface_vars = rzalloc_array(mem_ctx, ir_variable *,
1443 ifc_type->length);
1444 _mesa_hash_table_insert(this->unnamed_interfaces, ifc_type,
1445 interface_vars);
1446 }
1447 unsigned index = ifc_type->field_index(var->name);
1448 assert(index < ifc_type->length);
1449 assert(interface_vars[index] == NULL);
1450 interface_vars[index] = var;
1451 }
1452 return visit_continue;
1453 }
1454
1455 /**
1456 * For each unnamed interface block that was discovered while running the
1457 * visitor, adjust the interface type to reflect the newly assigned array
1458 * sizes, and fix up the ir_variable nodes to point to the new interface
1459 * type.
1460 */
1461 void fixup_unnamed_interface_types()
1462 {
1463 hash_table_call_foreach(this->unnamed_interfaces,
1464 fixup_unnamed_interface_type, NULL);
1465 }
1466
1467 private:
1468 /**
1469 * If the type pointed to by \c type represents an unsized array, replace
1470 * it with a sized array whose size is determined by max_array_access.
1471 */
1472 static void fixup_type(const glsl_type **type, unsigned max_array_access,
1473 bool from_ssbo_unsized_array, bool *implicit_sized)
1474 {
1475 if (!from_ssbo_unsized_array && (*type)->is_unsized_array()) {
1476 *type = glsl_type::get_array_instance((*type)->fields.array,
1477 max_array_access + 1);
1478 *implicit_sized = true;
1479 assert(*type != NULL);
1480 }
1481 }
1482
1483 static const glsl_type *
1484 update_interface_members_array(const glsl_type *type,
1485 const glsl_type *new_interface_type)
1486 {
1487 const glsl_type *element_type = type->fields.array;
1488 if (element_type->is_array()) {
1489 const glsl_type *new_array_type =
1490 update_interface_members_array(element_type, new_interface_type);
1491 return glsl_type::get_array_instance(new_array_type, type->length);
1492 } else {
1493 return glsl_type::get_array_instance(new_interface_type,
1494 type->length);
1495 }
1496 }
1497
1498 /**
1499 * Determine whether the given interface type contains unsized arrays (if
1500 * it doesn't, array_sizing_visitor doesn't need to process it).
1501 */
1502 static bool interface_contains_unsized_arrays(const glsl_type *type)
1503 {
1504 for (unsigned i = 0; i < type->length; i++) {
1505 const glsl_type *elem_type = type->fields.structure[i].type;
1506 if (elem_type->is_unsized_array())
1507 return true;
1508 }
1509 return false;
1510 }
1511
1512 /**
1513 * Create a new interface type based on the given type, with unsized arrays
1514 * replaced by sized arrays whose size is determined by
1515 * max_ifc_array_access.
1516 */
1517 static const glsl_type *
1518 resize_interface_members(const glsl_type *type,
1519 const int *max_ifc_array_access,
1520 bool is_ssbo)
1521 {
1522 unsigned num_fields = type->length;
1523 glsl_struct_field *fields = new glsl_struct_field[num_fields];
1524 memcpy(fields, type->fields.structure,
1525 num_fields * sizeof(*fields));
1526 for (unsigned i = 0; i < num_fields; i++) {
1527 bool implicit_sized_array = fields[i].implicit_sized_array;
1528 /* If SSBO last member is unsized array, we don't replace it by a sized
1529 * array.
1530 */
1531 if (is_ssbo && i == (num_fields - 1))
1532 fixup_type(&fields[i].type, max_ifc_array_access[i],
1533 true, &implicit_sized_array);
1534 else
1535 fixup_type(&fields[i].type, max_ifc_array_access[i],
1536 false, &implicit_sized_array);
1537 fields[i].implicit_sized_array = implicit_sized_array;
1538 }
1539 glsl_interface_packing packing =
1540 (glsl_interface_packing) type->interface_packing;
1541 bool row_major = (bool) type->interface_row_major;
1542 const glsl_type *new_ifc_type =
1543 glsl_type::get_interface_instance(fields, num_fields,
1544 packing, row_major, type->name);
1545 delete [] fields;
1546 return new_ifc_type;
1547 }
1548
1549 static void fixup_unnamed_interface_type(const void *key, void *data,
1550 void *)
1551 {
1552 const glsl_type *ifc_type = (const glsl_type *) key;
1553 ir_variable **interface_vars = (ir_variable **) data;
1554 unsigned num_fields = ifc_type->length;
1555 glsl_struct_field *fields = new glsl_struct_field[num_fields];
1556 memcpy(fields, ifc_type->fields.structure,
1557 num_fields * sizeof(*fields));
1558 bool interface_type_changed = false;
1559 for (unsigned i = 0; i < num_fields; i++) {
1560 if (interface_vars[i] != NULL &&
1561 fields[i].type != interface_vars[i]->type) {
1562 fields[i].type = interface_vars[i]->type;
1563 interface_type_changed = true;
1564 }
1565 }
1566 if (!interface_type_changed) {
1567 delete [] fields;
1568 return;
1569 }
1570 glsl_interface_packing packing =
1571 (glsl_interface_packing) ifc_type->interface_packing;
1572 bool row_major = (bool) ifc_type->interface_row_major;
1573 const glsl_type *new_ifc_type =
1574 glsl_type::get_interface_instance(fields, num_fields, packing,
1575 row_major, ifc_type->name);
1576 delete [] fields;
1577 for (unsigned i = 0; i < num_fields; i++) {
1578 if (interface_vars[i] != NULL)
1579 interface_vars[i]->change_interface_type(new_ifc_type);
1580 }
1581 }
1582
1583 /**
1584 * Memory context used to allocate the data in \c unnamed_interfaces.
1585 */
1586 void *mem_ctx;
1587
1588 /**
1589 * Hash table from const glsl_type * to an array of ir_variable *'s
1590 * pointing to the ir_variables constituting each unnamed interface block.
1591 */
1592 hash_table *unnamed_interfaces;
1593 };
1594
1595 static bool
1596 validate_xfb_buffer_stride(struct gl_context *ctx, unsigned idx,
1597 struct gl_shader_program *prog)
1598 {
1599 /* We will validate doubles at a later stage */
1600 if (prog->TransformFeedback.BufferStride[idx] % 4) {
1601 linker_error(prog, "invalid qualifier xfb_stride=%d must be a "
1602 "multiple of 4 or if its applied to a type that is "
1603 "or contains a double a multiple of 8.",
1604 prog->TransformFeedback.BufferStride[idx]);
1605 return false;
1606 }
1607
1608 if (prog->TransformFeedback.BufferStride[idx] / 4 >
1609 ctx->Const.MaxTransformFeedbackInterleavedComponents) {
1610 linker_error(prog, "The MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS "
1611 "limit has been exceeded.");
1612 return false;
1613 }
1614
1615 return true;
1616 }
1617
1618 /**
1619 * Check for conflicting xfb_stride default qualifiers and store buffer stride
1620 * for later use.
1621 */
1622 static void
1623 link_xfb_stride_layout_qualifiers(struct gl_context *ctx,
1624 struct gl_shader_program *prog,
1625 struct gl_linked_shader *linked_shader,
1626 struct gl_shader **shader_list,
1627 unsigned num_shaders)
1628 {
1629 for (unsigned i = 0; i < MAX_FEEDBACK_BUFFERS; i++) {
1630 prog->TransformFeedback.BufferStride[i] = 0;
1631 }
1632
1633 for (unsigned i = 0; i < num_shaders; i++) {
1634 struct gl_shader *shader = shader_list[i];
1635
1636 for (unsigned j = 0; j < MAX_FEEDBACK_BUFFERS; j++) {
1637 if (shader->TransformFeedbackBufferStride[j]) {
1638 if (prog->TransformFeedback.BufferStride[j] == 0) {
1639 prog->TransformFeedback.BufferStride[j] =
1640 shader->TransformFeedbackBufferStride[j];
1641 if (!validate_xfb_buffer_stride(ctx, j, prog))
1642 return;
1643 } else if (prog->TransformFeedback.BufferStride[j] !=
1644 shader->TransformFeedbackBufferStride[j]){
1645 linker_error(prog,
1646 "intrastage shaders defined with conflicting "
1647 "xfb_stride for buffer %d (%d and %d)\n", j,
1648 prog->TransformFeedback.BufferStride[j],
1649 shader->TransformFeedbackBufferStride[j]);
1650 return;
1651 }
1652 }
1653 }
1654 }
1655 }
1656
1657 /**
1658 * Performs the cross-validation of tessellation control shader vertices and
1659 * layout qualifiers for the attached tessellation control shaders,
1660 * and propagates them to the linked TCS and linked shader program.
1661 */
1662 static void
1663 link_tcs_out_layout_qualifiers(struct gl_shader_program *prog,
1664 struct gl_program *gl_prog,
1665 struct gl_shader **shader_list,
1666 unsigned num_shaders)
1667 {
1668 if (gl_prog->info.stage != MESA_SHADER_TESS_CTRL)
1669 return;
1670
1671 gl_prog->info.tess.tcs_vertices_out = 0;
1672
1673 /* From the GLSL 4.0 spec (chapter 4.3.8.2):
1674 *
1675 * "All tessellation control shader layout declarations in a program
1676 * must specify the same output patch vertex count. There must be at
1677 * least one layout qualifier specifying an output patch vertex count
1678 * in any program containing tessellation control shaders; however,
1679 * such a declaration is not required in all tessellation control
1680 * shaders."
1681 */
1682
1683 for (unsigned i = 0; i < num_shaders; i++) {
1684 struct gl_shader *shader = shader_list[i];
1685
1686 if (shader->info.TessCtrl.VerticesOut != 0) {
1687 if (gl_prog->info.tess.tcs_vertices_out != 0 &&
1688 gl_prog->info.tess.tcs_vertices_out !=
1689 (unsigned) shader->info.TessCtrl.VerticesOut) {
1690 linker_error(prog, "tessellation control shader defined with "
1691 "conflicting output vertex count (%d and %d)\n",
1692 gl_prog->info.tess.tcs_vertices_out,
1693 shader->info.TessCtrl.VerticesOut);
1694 return;
1695 }
1696 gl_prog->info.tess.tcs_vertices_out =
1697 shader->info.TessCtrl.VerticesOut;
1698 }
1699 }
1700
1701 /* Just do the intrastage -> interstage propagation right now,
1702 * since we already know we're in the right type of shader program
1703 * for doing it.
1704 */
1705 if (gl_prog->info.tess.tcs_vertices_out == 0) {
1706 linker_error(prog, "tessellation control shader didn't declare "
1707 "vertices out layout qualifier\n");
1708 return;
1709 }
1710 }
1711
1712
1713 /**
1714 * Performs the cross-validation of tessellation evaluation shader
1715 * primitive type, vertex spacing, ordering and point_mode layout qualifiers
1716 * for the attached tessellation evaluation shaders, and propagates them
1717 * to the linked TES and linked shader program.
1718 */
1719 static void
1720 link_tes_in_layout_qualifiers(struct gl_shader_program *prog,
1721 struct gl_program *gl_prog,
1722 struct gl_shader **shader_list,
1723 unsigned num_shaders)
1724 {
1725 if (gl_prog->info.stage != MESA_SHADER_TESS_EVAL)
1726 return;
1727
1728 int point_mode = -1;
1729 unsigned vertex_order = 0;
1730
1731 gl_prog->info.tess.primitive_mode = PRIM_UNKNOWN;
1732 gl_prog->info.tess.spacing = TESS_SPACING_UNSPECIFIED;
1733
1734 /* From the GLSL 4.0 spec (chapter 4.3.8.1):
1735 *
1736 * "At least one tessellation evaluation shader (compilation unit) in
1737 * a program must declare a primitive mode in its input layout.
1738 * Declaration vertex spacing, ordering, and point mode identifiers is
1739 * optional. It is not required that all tessellation evaluation
1740 * shaders in a program declare a primitive mode. If spacing or
1741 * vertex ordering declarations are omitted, the tessellation
1742 * primitive generator will use equal spacing or counter-clockwise
1743 * vertex ordering, respectively. If a point mode declaration is
1744 * omitted, the tessellation primitive generator will produce lines or
1745 * triangles according to the primitive mode."
1746 */
1747
1748 for (unsigned i = 0; i < num_shaders; i++) {
1749 struct gl_shader *shader = shader_list[i];
1750
1751 if (shader->info.TessEval.PrimitiveMode != PRIM_UNKNOWN) {
1752 if (gl_prog->info.tess.primitive_mode != PRIM_UNKNOWN &&
1753 gl_prog->info.tess.primitive_mode !=
1754 shader->info.TessEval.PrimitiveMode) {
1755 linker_error(prog, "tessellation evaluation shader defined with "
1756 "conflicting input primitive modes.\n");
1757 return;
1758 }
1759 gl_prog->info.tess.primitive_mode =
1760 shader->info.TessEval.PrimitiveMode;
1761 }
1762
1763 if (shader->info.TessEval.Spacing != 0) {
1764 if (gl_prog->info.tess.spacing != 0 && gl_prog->info.tess.spacing !=
1765 shader->info.TessEval.Spacing) {
1766 linker_error(prog, "tessellation evaluation shader defined with "
1767 "conflicting vertex spacing.\n");
1768 return;
1769 }
1770 gl_prog->info.tess.spacing = shader->info.TessEval.Spacing;
1771 }
1772
1773 if (shader->info.TessEval.VertexOrder != 0) {
1774 if (vertex_order != 0 &&
1775 vertex_order != shader->info.TessEval.VertexOrder) {
1776 linker_error(prog, "tessellation evaluation shader defined with "
1777 "conflicting ordering.\n");
1778 return;
1779 }
1780 vertex_order = shader->info.TessEval.VertexOrder;
1781 }
1782
1783 if (shader->info.TessEval.PointMode != -1) {
1784 if (point_mode != -1 &&
1785 point_mode != shader->info.TessEval.PointMode) {
1786 linker_error(prog, "tessellation evaluation shader defined with "
1787 "conflicting point modes.\n");
1788 return;
1789 }
1790 point_mode = shader->info.TessEval.PointMode;
1791 }
1792
1793 }
1794
1795 /* Just do the intrastage -> interstage propagation right now,
1796 * since we already know we're in the right type of shader program
1797 * for doing it.
1798 */
1799 if (gl_prog->info.tess.primitive_mode == PRIM_UNKNOWN) {
1800 linker_error(prog,
1801 "tessellation evaluation shader didn't declare input "
1802 "primitive modes.\n");
1803 return;
1804 }
1805
1806 if (gl_prog->info.tess.spacing == TESS_SPACING_UNSPECIFIED)
1807 gl_prog->info.tess.spacing = TESS_SPACING_EQUAL;
1808
1809 if (vertex_order == 0 || vertex_order == GL_CCW)
1810 gl_prog->info.tess.ccw = true;
1811 else
1812 gl_prog->info.tess.ccw = false;
1813
1814
1815 if (point_mode == -1 || point_mode == GL_FALSE)
1816 gl_prog->info.tess.point_mode = false;
1817 else
1818 gl_prog->info.tess.point_mode = true;
1819 }
1820
1821
1822 /**
1823 * Performs the cross-validation of layout qualifiers specified in
1824 * redeclaration of gl_FragCoord for the attached fragment shaders,
1825 * and propagates them to the linked FS and linked shader program.
1826 */
1827 static void
1828 link_fs_inout_layout_qualifiers(struct gl_shader_program *prog,
1829 struct gl_linked_shader *linked_shader,
1830 struct gl_shader **shader_list,
1831 unsigned num_shaders)
1832 {
1833 bool redeclares_gl_fragcoord = false;
1834 bool uses_gl_fragcoord = false;
1835 bool origin_upper_left = false;
1836 bool pixel_center_integer = false;
1837
1838 if (linked_shader->Stage != MESA_SHADER_FRAGMENT ||
1839 (prog->data->Version < 150 &&
1840 !prog->ARB_fragment_coord_conventions_enable))
1841 return;
1842
1843 for (unsigned i = 0; i < num_shaders; i++) {
1844 struct gl_shader *shader = shader_list[i];
1845 /* From the GLSL 1.50 spec, page 39:
1846 *
1847 * "If gl_FragCoord is redeclared in any fragment shader in a program,
1848 * it must be redeclared in all the fragment shaders in that program
1849 * that have a static use gl_FragCoord."
1850 */
1851 if ((redeclares_gl_fragcoord && !shader->redeclares_gl_fragcoord &&
1852 shader->uses_gl_fragcoord)
1853 || (shader->redeclares_gl_fragcoord && !redeclares_gl_fragcoord &&
1854 uses_gl_fragcoord)) {
1855 linker_error(prog, "fragment shader defined with conflicting "
1856 "layout qualifiers for gl_FragCoord\n");
1857 }
1858
1859 /* From the GLSL 1.50 spec, page 39:
1860 *
1861 * "All redeclarations of gl_FragCoord in all fragment shaders in a
1862 * single program must have the same set of qualifiers."
1863 */
1864 if (redeclares_gl_fragcoord && shader->redeclares_gl_fragcoord &&
1865 (shader->origin_upper_left != origin_upper_left ||
1866 shader->pixel_center_integer != pixel_center_integer)) {
1867 linker_error(prog, "fragment shader defined with conflicting "
1868 "layout qualifiers for gl_FragCoord\n");
1869 }
1870
1871 /* Update the linked shader state. Note that uses_gl_fragcoord should
1872 * accumulate the results. The other values should replace. If there
1873 * are multiple redeclarations, all the fields except uses_gl_fragcoord
1874 * are already known to be the same.
1875 */
1876 if (shader->redeclares_gl_fragcoord || shader->uses_gl_fragcoord) {
1877 redeclares_gl_fragcoord = shader->redeclares_gl_fragcoord;
1878 uses_gl_fragcoord |= shader->uses_gl_fragcoord;
1879 origin_upper_left = shader->origin_upper_left;
1880 pixel_center_integer = shader->pixel_center_integer;
1881 }
1882
1883 linked_shader->Program->info.fs.early_fragment_tests |=
1884 shader->EarlyFragmentTests;
1885 linked_shader->Program->info.fs.inner_coverage |= shader->InnerCoverage;
1886 linked_shader->Program->info.fs.post_depth_coverage |=
1887 shader->PostDepthCoverage;
1888
1889 linked_shader->Program->sh.fs.BlendSupport |= shader->BlendSupport;
1890 }
1891 }
1892
1893 /**
1894 * Performs the cross-validation of geometry shader max_vertices and
1895 * primitive type layout qualifiers for the attached geometry shaders,
1896 * and propagates them to the linked GS and linked shader program.
1897 */
1898 static void
1899 link_gs_inout_layout_qualifiers(struct gl_shader_program *prog,
1900 struct gl_program *gl_prog,
1901 struct gl_shader **shader_list,
1902 unsigned num_shaders)
1903 {
1904 /* No in/out qualifiers defined for anything but GLSL 1.50+
1905 * geometry shaders so far.
1906 */
1907 if (gl_prog->info.stage != MESA_SHADER_GEOMETRY ||
1908 prog->data->Version < 150)
1909 return;
1910
1911 int vertices_out = -1;
1912
1913 gl_prog->info.gs.invocations = 0;
1914 gl_prog->info.gs.input_primitive = PRIM_UNKNOWN;
1915 gl_prog->info.gs.output_primitive = PRIM_UNKNOWN;
1916
1917 /* From the GLSL 1.50 spec, page 46:
1918 *
1919 * "All geometry shader output layout declarations in a program
1920 * must declare the same layout and same value for
1921 * max_vertices. There must be at least one geometry output
1922 * layout declaration somewhere in a program, but not all
1923 * geometry shaders (compilation units) are required to
1924 * declare it."
1925 */
1926
1927 for (unsigned i = 0; i < num_shaders; i++) {
1928 struct gl_shader *shader = shader_list[i];
1929
1930 if (shader->info.Geom.InputType != PRIM_UNKNOWN) {
1931 if (gl_prog->info.gs.input_primitive != PRIM_UNKNOWN &&
1932 gl_prog->info.gs.input_primitive !=
1933 shader->info.Geom.InputType) {
1934 linker_error(prog, "geometry shader defined with conflicting "
1935 "input types\n");
1936 return;
1937 }
1938 gl_prog->info.gs.input_primitive = shader->info.Geom.InputType;
1939 }
1940
1941 if (shader->info.Geom.OutputType != PRIM_UNKNOWN) {
1942 if (gl_prog->info.gs.output_primitive != PRIM_UNKNOWN &&
1943 gl_prog->info.gs.output_primitive !=
1944 shader->info.Geom.OutputType) {
1945 linker_error(prog, "geometry shader defined with conflicting "
1946 "output types\n");
1947 return;
1948 }
1949 gl_prog->info.gs.output_primitive = shader->info.Geom.OutputType;
1950 }
1951
1952 if (shader->info.Geom.VerticesOut != -1) {
1953 if (vertices_out != -1 &&
1954 vertices_out != shader->info.Geom.VerticesOut) {
1955 linker_error(prog, "geometry shader defined with conflicting "
1956 "output vertex count (%d and %d)\n",
1957 vertices_out, shader->info.Geom.VerticesOut);
1958 return;
1959 }
1960 vertices_out = shader->info.Geom.VerticesOut;
1961 }
1962
1963 if (shader->info.Geom.Invocations != 0) {
1964 if (gl_prog->info.gs.invocations != 0 &&
1965 gl_prog->info.gs.invocations !=
1966 (unsigned) shader->info.Geom.Invocations) {
1967 linker_error(prog, "geometry shader defined with conflicting "
1968 "invocation count (%d and %d)\n",
1969 gl_prog->info.gs.invocations,
1970 shader->info.Geom.Invocations);
1971 return;
1972 }
1973 gl_prog->info.gs.invocations = shader->info.Geom.Invocations;
1974 }
1975 }
1976
1977 /* Just do the intrastage -> interstage propagation right now,
1978 * since we already know we're in the right type of shader program
1979 * for doing it.
1980 */
1981 if (gl_prog->info.gs.input_primitive == PRIM_UNKNOWN) {
1982 linker_error(prog,
1983 "geometry shader didn't declare primitive input type\n");
1984 return;
1985 }
1986
1987 if (gl_prog->info.gs.output_primitive == PRIM_UNKNOWN) {
1988 linker_error(prog,
1989 "geometry shader didn't declare primitive output type\n");
1990 return;
1991 }
1992
1993 if (vertices_out == -1) {
1994 linker_error(prog,
1995 "geometry shader didn't declare max_vertices\n");
1996 return;
1997 } else {
1998 gl_prog->info.gs.vertices_out = vertices_out;
1999 }
2000
2001 if (gl_prog->info.gs.invocations == 0)
2002 gl_prog->info.gs.invocations = 1;
2003 }
2004
2005
2006 /**
2007 * Perform cross-validation of compute shader local_size_{x,y,z} layout
2008 * qualifiers for the attached compute shaders, and propagate them to the
2009 * linked CS and linked shader program.
2010 */
2011 static void
2012 link_cs_input_layout_qualifiers(struct gl_shader_program *prog,
2013 struct gl_program *gl_prog,
2014 struct gl_shader **shader_list,
2015 unsigned num_shaders)
2016 {
2017 /* This function is called for all shader stages, but it only has an effect
2018 * for compute shaders.
2019 */
2020 if (gl_prog->info.stage != MESA_SHADER_COMPUTE)
2021 return;
2022
2023 for (int i = 0; i < 3; i++)
2024 gl_prog->info.cs.local_size[i] = 0;
2025
2026 gl_prog->info.cs.local_size_variable = false;
2027
2028 /* From the ARB_compute_shader spec, in the section describing local size
2029 * declarations:
2030 *
2031 * If multiple compute shaders attached to a single program object
2032 * declare local work-group size, the declarations must be identical;
2033 * otherwise a link-time error results. Furthermore, if a program
2034 * object contains any compute shaders, at least one must contain an
2035 * input layout qualifier specifying the local work sizes of the
2036 * program, or a link-time error will occur.
2037 */
2038 for (unsigned sh = 0; sh < num_shaders; sh++) {
2039 struct gl_shader *shader = shader_list[sh];
2040
2041 if (shader->info.Comp.LocalSize[0] != 0) {
2042 if (gl_prog->info.cs.local_size[0] != 0) {
2043 for (int i = 0; i < 3; i++) {
2044 if (gl_prog->info.cs.local_size[i] !=
2045 shader->info.Comp.LocalSize[i]) {
2046 linker_error(prog, "compute shader defined with conflicting "
2047 "local sizes\n");
2048 return;
2049 }
2050 }
2051 }
2052 for (int i = 0; i < 3; i++) {
2053 gl_prog->info.cs.local_size[i] =
2054 shader->info.Comp.LocalSize[i];
2055 }
2056 } else if (shader->info.Comp.LocalSizeVariable) {
2057 if (gl_prog->info.cs.local_size[0] != 0) {
2058 /* The ARB_compute_variable_group_size spec says:
2059 *
2060 * If one compute shader attached to a program declares a
2061 * variable local group size and a second compute shader
2062 * attached to the same program declares a fixed local group
2063 * size, a link-time error results.
2064 */
2065 linker_error(prog, "compute shader defined with both fixed and "
2066 "variable local group size\n");
2067 return;
2068 }
2069 gl_prog->info.cs.local_size_variable = true;
2070 }
2071 }
2072
2073 /* Just do the intrastage -> interstage propagation right now,
2074 * since we already know we're in the right type of shader program
2075 * for doing it.
2076 */
2077 if (gl_prog->info.cs.local_size[0] == 0 &&
2078 !gl_prog->info.cs.local_size_variable) {
2079 linker_error(prog, "compute shader must contain a fixed or a variable "
2080 "local group size\n");
2081 return;
2082 }
2083 }
2084
2085
2086 /**
2087 * Combine a group of shaders for a single stage to generate a linked shader
2088 *
2089 * \note
2090 * If this function is supplied a single shader, it is cloned, and the new
2091 * shader is returned.
2092 */
2093 struct gl_linked_shader *
2094 link_intrastage_shaders(void *mem_ctx,
2095 struct gl_context *ctx,
2096 struct gl_shader_program *prog,
2097 struct gl_shader **shader_list,
2098 unsigned num_shaders,
2099 bool allow_missing_main)
2100 {
2101 struct gl_uniform_block *ubo_blocks = NULL;
2102 struct gl_uniform_block *ssbo_blocks = NULL;
2103 unsigned num_ubo_blocks = 0;
2104 unsigned num_ssbo_blocks = 0;
2105
2106 /* Check that global variables defined in multiple shaders are consistent.
2107 */
2108 glsl_symbol_table variables;
2109 for (unsigned i = 0; i < num_shaders; i++) {
2110 if (shader_list[i] == NULL)
2111 continue;
2112 cross_validate_globals(prog, shader_list[i]->ir, &variables, false);
2113 }
2114
2115 if (!prog->data->LinkStatus)
2116 return NULL;
2117
2118 /* Check that interface blocks defined in multiple shaders are consistent.
2119 */
2120 validate_intrastage_interface_blocks(prog, (const gl_shader **)shader_list,
2121 num_shaders);
2122 if (!prog->data->LinkStatus)
2123 return NULL;
2124
2125 /* Check that there is only a single definition of each function signature
2126 * across all shaders.
2127 */
2128 for (unsigned i = 0; i < (num_shaders - 1); i++) {
2129 foreach_in_list(ir_instruction, node, shader_list[i]->ir) {
2130 ir_function *const f = node->as_function();
2131
2132 if (f == NULL)
2133 continue;
2134
2135 for (unsigned j = i + 1; j < num_shaders; j++) {
2136 ir_function *const other =
2137 shader_list[j]->symbols->get_function(f->name);
2138
2139 /* If the other shader has no function (and therefore no function
2140 * signatures) with the same name, skip to the next shader.
2141 */
2142 if (other == NULL)
2143 continue;
2144
2145 foreach_in_list(ir_function_signature, sig, &f->signatures) {
2146 if (!sig->is_defined)
2147 continue;
2148
2149 ir_function_signature *other_sig =
2150 other->exact_matching_signature(NULL, &sig->parameters);
2151
2152 if (other_sig != NULL && other_sig->is_defined) {
2153 linker_error(prog, "function `%s' is multiply defined\n",
2154 f->name);
2155 return NULL;
2156 }
2157 }
2158 }
2159 }
2160 }
2161
2162 /* Find the shader that defines main, and make a clone of it.
2163 *
2164 * Starting with the clone, search for undefined references. If one is
2165 * found, find the shader that defines it. Clone the reference and add
2166 * it to the shader. Repeat until there are no undefined references or
2167 * until a reference cannot be resolved.
2168 */
2169 gl_shader *main = NULL;
2170 for (unsigned i = 0; i < num_shaders; i++) {
2171 if (_mesa_get_main_function_signature(shader_list[i]->symbols)) {
2172 main = shader_list[i];
2173 break;
2174 }
2175 }
2176
2177 if (main == NULL && allow_missing_main)
2178 main = shader_list[0];
2179
2180 if (main == NULL) {
2181 linker_error(prog, "%s shader lacks `main'\n",
2182 _mesa_shader_stage_to_string(shader_list[0]->Stage));
2183 return NULL;
2184 }
2185
2186 gl_linked_shader *linked = rzalloc(NULL, struct gl_linked_shader);
2187 linked->Stage = shader_list[0]->Stage;
2188
2189 /* Create program and attach it to the linked shader */
2190 struct gl_program *gl_prog =
2191 ctx->Driver.NewProgram(ctx,
2192 _mesa_shader_stage_to_program(shader_list[0]->Stage),
2193 prog->Name, false);
2194 if (!gl_prog) {
2195 prog->data->LinkStatus = linking_failure;
2196 _mesa_delete_linked_shader(ctx, linked);
2197 return NULL;
2198 }
2199
2200 if (!prog->data->cache_fallback)
2201 _mesa_reference_shader_program_data(ctx, &gl_prog->sh.data, prog->data);
2202
2203 /* Don't use _mesa_reference_program() just take ownership */
2204 linked->Program = gl_prog;
2205
2206 linked->ir = new(linked) exec_list;
2207 clone_ir_list(mem_ctx, linked->ir, main->ir);
2208
2209 link_fs_inout_layout_qualifiers(prog, linked, shader_list, num_shaders);
2210 link_tcs_out_layout_qualifiers(prog, gl_prog, shader_list, num_shaders);
2211 link_tes_in_layout_qualifiers(prog, gl_prog, shader_list, num_shaders);
2212 link_gs_inout_layout_qualifiers(prog, gl_prog, shader_list, num_shaders);
2213 link_cs_input_layout_qualifiers(prog, gl_prog, shader_list, num_shaders);
2214 link_xfb_stride_layout_qualifiers(ctx, prog, linked, shader_list,
2215 num_shaders);
2216
2217 populate_symbol_table(linked);
2218
2219 /* The pointer to the main function in the final linked shader (i.e., the
2220 * copy of the original shader that contained the main function).
2221 */
2222 ir_function_signature *const main_sig =
2223 _mesa_get_main_function_signature(linked->symbols);
2224
2225 /* Move any instructions other than variable declarations or function
2226 * declarations into main.
2227 */
2228 if (main_sig != NULL) {
2229 exec_node *insertion_point =
2230 move_non_declarations(linked->ir, (exec_node *) &main_sig->body, false,
2231 linked);
2232
2233 for (unsigned i = 0; i < num_shaders; i++) {
2234 if (shader_list[i] == main)
2235 continue;
2236
2237 insertion_point = move_non_declarations(shader_list[i]->ir,
2238 insertion_point, true, linked);
2239 }
2240 }
2241
2242 if (!link_function_calls(prog, linked, shader_list, num_shaders)) {
2243 _mesa_delete_linked_shader(ctx, linked);
2244 return NULL;
2245 }
2246
2247 /* Make a pass over all variable declarations to ensure that arrays with
2248 * unspecified sizes have a size specified. The size is inferred from the
2249 * max_array_access field.
2250 */
2251 array_sizing_visitor v;
2252 v.run(linked->ir);
2253 v.fixup_unnamed_interface_types();
2254
2255 /* Link up uniform blocks defined within this stage. */
2256 link_uniform_blocks(mem_ctx, ctx, prog, linked, &ubo_blocks,
2257 &num_ubo_blocks, &ssbo_blocks, &num_ssbo_blocks);
2258
2259 if (!prog->data->LinkStatus) {
2260 _mesa_delete_linked_shader(ctx, linked);
2261 return NULL;
2262 }
2263
2264 /* Copy ubo blocks to linked shader list */
2265 linked->Program->sh.UniformBlocks =
2266 ralloc_array(linked, gl_uniform_block *, num_ubo_blocks);
2267 ralloc_steal(linked, ubo_blocks);
2268 for (unsigned i = 0; i < num_ubo_blocks; i++) {
2269 linked->Program->sh.UniformBlocks[i] = &ubo_blocks[i];
2270 }
2271 linked->Program->info.num_ubos = num_ubo_blocks;
2272
2273 /* Copy ssbo blocks to linked shader list */
2274 linked->Program->sh.ShaderStorageBlocks =
2275 ralloc_array(linked, gl_uniform_block *, num_ssbo_blocks);
2276 ralloc_steal(linked, ssbo_blocks);
2277 for (unsigned i = 0; i < num_ssbo_blocks; i++) {
2278 linked->Program->sh.ShaderStorageBlocks[i] = &ssbo_blocks[i];
2279 }
2280 linked->Program->info.num_ssbos = num_ssbo_blocks;
2281
2282 /* At this point linked should contain all of the linked IR, so
2283 * validate it to make sure nothing went wrong.
2284 */
2285 validate_ir_tree(linked->ir);
2286
2287 /* Set the size of geometry shader input arrays */
2288 if (linked->Stage == MESA_SHADER_GEOMETRY) {
2289 unsigned num_vertices =
2290 vertices_per_prim(gl_prog->info.gs.input_primitive);
2291 array_resize_visitor input_resize_visitor(num_vertices, prog,
2292 MESA_SHADER_GEOMETRY);
2293 foreach_in_list(ir_instruction, ir, linked->ir) {
2294 ir->accept(&input_resize_visitor);
2295 }
2296 }
2297
2298 if (ctx->Const.VertexID_is_zero_based)
2299 lower_vertex_id(linked);
2300
2301 #ifdef DEBUG
2302 /* Compute the source checksum. */
2303 linked->SourceChecksum = 0;
2304 for (unsigned i = 0; i < num_shaders; i++) {
2305 if (shader_list[i] == NULL)
2306 continue;
2307 linked->SourceChecksum ^= shader_list[i]->SourceChecksum;
2308 }
2309 #endif
2310
2311 return linked;
2312 }
2313
2314 /**
2315 * Update the sizes of linked shader uniform arrays to the maximum
2316 * array index used.
2317 *
2318 * From page 81 (page 95 of the PDF) of the OpenGL 2.1 spec:
2319 *
2320 * If one or more elements of an array are active,
2321 * GetActiveUniform will return the name of the array in name,
2322 * subject to the restrictions listed above. The type of the array
2323 * is returned in type. The size parameter contains the highest
2324 * array element index used, plus one. The compiler or linker
2325 * determines the highest index used. There will be only one
2326 * active uniform reported by the GL per uniform array.
2327
2328 */
2329 static void
2330 update_array_sizes(struct gl_shader_program *prog)
2331 {
2332 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
2333 if (prog->_LinkedShaders[i] == NULL)
2334 continue;
2335
2336 bool types_were_updated = false;
2337
2338 foreach_in_list(ir_instruction, node, prog->_LinkedShaders[i]->ir) {
2339 ir_variable *const var = node->as_variable();
2340
2341 if ((var == NULL) || (var->data.mode != ir_var_uniform) ||
2342 !var->type->is_array())
2343 continue;
2344
2345 /* GL_ARB_uniform_buffer_object says that std140 uniforms
2346 * will not be eliminated. Since we always do std140, just
2347 * don't resize arrays in UBOs.
2348 *
2349 * Atomic counters are supposed to get deterministic
2350 * locations assigned based on the declaration ordering and
2351 * sizes, array compaction would mess that up.
2352 *
2353 * Subroutine uniforms are not removed.
2354 */
2355 if (var->is_in_buffer_block() || var->type->contains_atomic() ||
2356 var->type->contains_subroutine() || var->constant_initializer)
2357 continue;
2358
2359 int size = var->data.max_array_access;
2360 for (unsigned j = 0; j < MESA_SHADER_STAGES; j++) {
2361 if (prog->_LinkedShaders[j] == NULL)
2362 continue;
2363
2364 foreach_in_list(ir_instruction, node2, prog->_LinkedShaders[j]->ir) {
2365 ir_variable *other_var = node2->as_variable();
2366 if (!other_var)
2367 continue;
2368
2369 if (strcmp(var->name, other_var->name) == 0 &&
2370 other_var->data.max_array_access > size) {
2371 size = other_var->data.max_array_access;
2372 }
2373 }
2374 }
2375
2376 if (size + 1 != (int)var->type->length) {
2377 /* If this is a built-in uniform (i.e., it's backed by some
2378 * fixed-function state), adjust the number of state slots to
2379 * match the new array size. The number of slots per array entry
2380 * is not known. It seems safe to assume that the total number of
2381 * slots is an integer multiple of the number of array elements.
2382 * Determine the number of slots per array element by dividing by
2383 * the old (total) size.
2384 */
2385 const unsigned num_slots = var->get_num_state_slots();
2386 if (num_slots > 0) {
2387 var->set_num_state_slots((size + 1)
2388 * (num_slots / var->type->length));
2389 }
2390
2391 var->type = glsl_type::get_array_instance(var->type->fields.array,
2392 size + 1);
2393 types_were_updated = true;
2394 }
2395 }
2396
2397 /* Update the types of dereferences in case we changed any. */
2398 if (types_were_updated) {
2399 deref_type_updater v;
2400 v.run(prog->_LinkedShaders[i]->ir);
2401 }
2402 }
2403 }
2404
2405 /**
2406 * Resize tessellation evaluation per-vertex inputs to the size of
2407 * tessellation control per-vertex outputs.
2408 */
2409 static void
2410 resize_tes_inputs(struct gl_context *ctx,
2411 struct gl_shader_program *prog)
2412 {
2413 if (prog->_LinkedShaders[MESA_SHADER_TESS_EVAL] == NULL)
2414 return;
2415
2416 gl_linked_shader *const tcs = prog->_LinkedShaders[MESA_SHADER_TESS_CTRL];
2417 gl_linked_shader *const tes = prog->_LinkedShaders[MESA_SHADER_TESS_EVAL];
2418
2419 /* If no control shader is present, then the TES inputs are statically
2420 * sized to MaxPatchVertices; the actual size of the arrays won't be
2421 * known until draw time.
2422 */
2423 const int num_vertices = tcs
2424 ? tcs->Program->info.tess.tcs_vertices_out
2425 : ctx->Const.MaxPatchVertices;
2426
2427 array_resize_visitor input_resize_visitor(num_vertices, prog,
2428 MESA_SHADER_TESS_EVAL);
2429 foreach_in_list(ir_instruction, ir, tes->ir) {
2430 ir->accept(&input_resize_visitor);
2431 }
2432
2433 if (tcs || ctx->Const.LowerTESPatchVerticesIn) {
2434 /* Convert the gl_PatchVerticesIn system value into a constant, since
2435 * the value is known at this point.
2436 */
2437 foreach_in_list(ir_instruction, ir, tes->ir) {
2438 ir_variable *var = ir->as_variable();
2439 if (var && var->data.mode == ir_var_system_value &&
2440 var->data.location == SYSTEM_VALUE_VERTICES_IN) {
2441 void *mem_ctx = ralloc_parent(var);
2442 var->data.location = 0;
2443 var->data.explicit_location = false;
2444 if (tcs) {
2445 var->data.mode = ir_var_auto;
2446 var->constant_value = new(mem_ctx) ir_constant(num_vertices);
2447 } else {
2448 var->data.mode = ir_var_uniform;
2449 var->data.how_declared = ir_var_hidden;
2450 var->allocate_state_slots(1);
2451 ir_state_slot *slot0 = &var->get_state_slots()[0];
2452 slot0->swizzle = SWIZZLE_XXXX;
2453 slot0->tokens[0] = STATE_INTERNAL;
2454 slot0->tokens[1] = STATE_TES_PATCH_VERTICES_IN;
2455 for (int i = 2; i < STATE_LENGTH; i++)
2456 slot0->tokens[i] = 0;
2457 }
2458 }
2459 }
2460 }
2461 }
2462
2463 /**
2464 * Find a contiguous set of available bits in a bitmask.
2465 *
2466 * \param used_mask Bits representing used (1) and unused (0) locations
2467 * \param needed_count Number of contiguous bits needed.
2468 *
2469 * \return
2470 * Base location of the available bits on success or -1 on failure.
2471 */
2472 int
2473 find_available_slots(unsigned used_mask, unsigned needed_count)
2474 {
2475 unsigned needed_mask = (1 << needed_count) - 1;
2476 const int max_bit_to_test = (8 * sizeof(used_mask)) - needed_count;
2477
2478 /* The comparison to 32 is redundant, but without it GCC emits "warning:
2479 * cannot optimize possibly infinite loops" for the loop below.
2480 */
2481 if ((needed_count == 0) || (max_bit_to_test < 0) || (max_bit_to_test > 32))
2482 return -1;
2483
2484 for (int i = 0; i <= max_bit_to_test; i++) {
2485 if ((needed_mask & ~used_mask) == needed_mask)
2486 return i;
2487
2488 needed_mask <<= 1;
2489 }
2490
2491 return -1;
2492 }
2493
2494
2495 /**
2496 * Assign locations for either VS inputs or FS outputs
2497 *
2498 * \param mem_ctx Temporary ralloc context used for linking
2499 * \param prog Shader program whose variables need locations assigned
2500 * \param constants Driver specific constant values for the program.
2501 * \param target_index Selector for the program target to receive location
2502 * assignmnets. Must be either \c MESA_SHADER_VERTEX or
2503 * \c MESA_SHADER_FRAGMENT.
2504 *
2505 * \return
2506 * If locations are successfully assigned, true is returned. Otherwise an
2507 * error is emitted to the shader link log and false is returned.
2508 */
2509 bool
2510 assign_attribute_or_color_locations(void *mem_ctx,
2511 gl_shader_program *prog,
2512 struct gl_constants *constants,
2513 unsigned target_index)
2514 {
2515 /* Maximum number of generic locations. This corresponds to either the
2516 * maximum number of draw buffers or the maximum number of generic
2517 * attributes.
2518 */
2519 unsigned max_index = (target_index == MESA_SHADER_VERTEX) ?
2520 constants->Program[target_index].MaxAttribs :
2521 MAX2(constants->MaxDrawBuffers, constants->MaxDualSourceDrawBuffers);
2522
2523 /* Mark invalid locations as being used.
2524 */
2525 unsigned used_locations = (max_index >= 32)
2526 ? ~0 : ~((1 << max_index) - 1);
2527 unsigned double_storage_locations = 0;
2528
2529 assert((target_index == MESA_SHADER_VERTEX)
2530 || (target_index == MESA_SHADER_FRAGMENT));
2531
2532 gl_linked_shader *const sh = prog->_LinkedShaders[target_index];
2533 if (sh == NULL)
2534 return true;
2535
2536 /* Operate in a total of four passes.
2537 *
2538 * 1. Invalidate the location assignments for all vertex shader inputs.
2539 *
2540 * 2. Assign locations for inputs that have user-defined (via
2541 * glBindVertexAttribLocation) locations and outputs that have
2542 * user-defined locations (via glBindFragDataLocation).
2543 *
2544 * 3. Sort the attributes without assigned locations by number of slots
2545 * required in decreasing order. Fragmentation caused by attribute
2546 * locations assigned by the application may prevent large attributes
2547 * from having enough contiguous space.
2548 *
2549 * 4. Assign locations to any inputs without assigned locations.
2550 */
2551
2552 const int generic_base = (target_index == MESA_SHADER_VERTEX)
2553 ? (int) VERT_ATTRIB_GENERIC0 : (int) FRAG_RESULT_DATA0;
2554
2555 const enum ir_variable_mode direction =
2556 (target_index == MESA_SHADER_VERTEX)
2557 ? ir_var_shader_in : ir_var_shader_out;
2558
2559
2560 /* Temporary storage for the set of attributes that need locations assigned.
2561 */
2562 struct temp_attr {
2563 unsigned slots;
2564 ir_variable *var;
2565
2566 /* Used below in the call to qsort. */
2567 static int compare(const void *a, const void *b)
2568 {
2569 const temp_attr *const l = (const temp_attr *) a;
2570 const temp_attr *const r = (const temp_attr *) b;
2571
2572 /* Reversed because we want a descending order sort below. */
2573 return r->slots - l->slots;
2574 }
2575 } to_assign[32];
2576 assert(max_index <= 32);
2577
2578 /* Temporary array for the set of attributes that have locations assigned.
2579 */
2580 ir_variable *assigned[16];
2581
2582 unsigned num_attr = 0;
2583 unsigned assigned_attr = 0;
2584
2585 foreach_in_list(ir_instruction, node, sh->ir) {
2586 ir_variable *const var = node->as_variable();
2587
2588 if ((var == NULL) || (var->data.mode != (unsigned) direction))
2589 continue;
2590
2591 if (var->data.explicit_location) {
2592 var->data.is_unmatched_generic_inout = 0;
2593 if ((var->data.location >= (int)(max_index + generic_base))
2594 || (var->data.location < 0)) {
2595 linker_error(prog,
2596 "invalid explicit location %d specified for `%s'\n",
2597 (var->data.location < 0)
2598 ? var->data.location
2599 : var->data.location - generic_base,
2600 var->name);
2601 return false;
2602 }
2603 } else if (target_index == MESA_SHADER_VERTEX) {
2604 unsigned binding;
2605
2606 if (prog->AttributeBindings->get(binding, var->name)) {
2607 assert(binding >= VERT_ATTRIB_GENERIC0);
2608 var->data.location = binding;
2609 var->data.is_unmatched_generic_inout = 0;
2610 }
2611 } else if (target_index == MESA_SHADER_FRAGMENT) {
2612 unsigned binding;
2613 unsigned index;
2614 const char *name = var->name;
2615 const glsl_type *type = var->type;
2616
2617 while (type) {
2618 /* Check if there's a binding for the variable name */
2619 if (prog->FragDataBindings->get(binding, name)) {
2620 assert(binding >= FRAG_RESULT_DATA0);
2621 var->data.location = binding;
2622 var->data.is_unmatched_generic_inout = 0;
2623
2624 if (prog->FragDataIndexBindings->get(index, name)) {
2625 var->data.index = index;
2626 }
2627 break;
2628 }
2629
2630 /* If not, but it's an array type, look for name[0] */
2631 if (type->is_array()) {
2632 name = ralloc_asprintf(mem_ctx, "%s[0]", name);
2633 type = type->fields.array;
2634 continue;
2635 }
2636
2637 break;
2638 }
2639 }
2640
2641 if (strcmp(var->name, "gl_LastFragData") == 0)
2642 continue;
2643
2644 /* From GL4.5 core spec, section 15.2 (Shader Execution):
2645 *
2646 * "Output binding assignments will cause LinkProgram to fail:
2647 * ...
2648 * If the program has an active output assigned to a location greater
2649 * than or equal to the value of MAX_DUAL_SOURCE_DRAW_BUFFERS and has
2650 * an active output assigned an index greater than or equal to one;"
2651 */
2652 if (target_index == MESA_SHADER_FRAGMENT && var->data.index >= 1 &&
2653 var->data.location - generic_base >=
2654 (int) constants->MaxDualSourceDrawBuffers) {
2655 linker_error(prog,
2656 "output location %d >= GL_MAX_DUAL_SOURCE_DRAW_BUFFERS "
2657 "with index %u for %s\n",
2658 var->data.location - generic_base, var->data.index,
2659 var->name);
2660 return false;
2661 }
2662
2663 const unsigned slots = var->type->count_attribute_slots(target_index == MESA_SHADER_VERTEX);
2664
2665 /* If the variable is not a built-in and has a location statically
2666 * assigned in the shader (presumably via a layout qualifier), make sure
2667 * that it doesn't collide with other assigned locations. Otherwise,
2668 * add it to the list of variables that need linker-assigned locations.
2669 */
2670 if (var->data.location != -1) {
2671 if (var->data.location >= generic_base && var->data.index < 1) {
2672 /* From page 61 of the OpenGL 4.0 spec:
2673 *
2674 * "LinkProgram will fail if the attribute bindings assigned
2675 * by BindAttribLocation do not leave not enough space to
2676 * assign a location for an active matrix attribute or an
2677 * active attribute array, both of which require multiple
2678 * contiguous generic attributes."
2679 *
2680 * I think above text prohibits the aliasing of explicit and
2681 * automatic assignments. But, aliasing is allowed in manual
2682 * assignments of attribute locations. See below comments for
2683 * the details.
2684 *
2685 * From OpenGL 4.0 spec, page 61:
2686 *
2687 * "It is possible for an application to bind more than one
2688 * attribute name to the same location. This is referred to as
2689 * aliasing. This will only work if only one of the aliased
2690 * attributes is active in the executable program, or if no
2691 * path through the shader consumes more than one attribute of
2692 * a set of attributes aliased to the same location. A link
2693 * error can occur if the linker determines that every path
2694 * through the shader consumes multiple aliased attributes,
2695 * but implementations are not required to generate an error
2696 * in this case."
2697 *
2698 * From GLSL 4.30 spec, page 54:
2699 *
2700 * "A program will fail to link if any two non-vertex shader
2701 * input variables are assigned to the same location. For
2702 * vertex shaders, multiple input variables may be assigned
2703 * to the same location using either layout qualifiers or via
2704 * the OpenGL API. However, such aliasing is intended only to
2705 * support vertex shaders where each execution path accesses
2706 * at most one input per each location. Implementations are
2707 * permitted, but not required, to generate link-time errors
2708 * if they detect that every path through the vertex shader
2709 * executable accesses multiple inputs assigned to any single
2710 * location. For all shader types, a program will fail to link
2711 * if explicit location assignments leave the linker unable
2712 * to find space for other variables without explicit
2713 * assignments."
2714 *
2715 * From OpenGL ES 3.0 spec, page 56:
2716 *
2717 * "Binding more than one attribute name to the same location
2718 * is referred to as aliasing, and is not permitted in OpenGL
2719 * ES Shading Language 3.00 vertex shaders. LinkProgram will
2720 * fail when this condition exists. However, aliasing is
2721 * possible in OpenGL ES Shading Language 1.00 vertex shaders.
2722 * This will only work if only one of the aliased attributes
2723 * is active in the executable program, or if no path through
2724 * the shader consumes more than one attribute of a set of
2725 * attributes aliased to the same location. A link error can
2726 * occur if the linker determines that every path through the
2727 * shader consumes multiple aliased attributes, but implemen-
2728 * tations are not required to generate an error in this case."
2729 *
2730 * After looking at above references from OpenGL, OpenGL ES and
2731 * GLSL specifications, we allow aliasing of vertex input variables
2732 * in: OpenGL 2.0 (and above) and OpenGL ES 2.0.
2733 *
2734 * NOTE: This is not required by the spec but its worth mentioning
2735 * here that we're not doing anything to make sure that no path
2736 * through the vertex shader executable accesses multiple inputs
2737 * assigned to any single location.
2738 */
2739
2740 /* Mask representing the contiguous slots that will be used by
2741 * this attribute.
2742 */
2743 const unsigned attr = var->data.location - generic_base;
2744 const unsigned use_mask = (1 << slots) - 1;
2745 const char *const string = (target_index == MESA_SHADER_VERTEX)
2746 ? "vertex shader input" : "fragment shader output";
2747
2748 /* Generate a link error if the requested locations for this
2749 * attribute exceed the maximum allowed attribute location.
2750 */
2751 if (attr + slots > max_index) {
2752 linker_error(prog,
2753 "insufficient contiguous locations "
2754 "available for %s `%s' %d %d %d\n", string,
2755 var->name, used_locations, use_mask, attr);
2756 return false;
2757 }
2758
2759 /* Generate a link error if the set of bits requested for this
2760 * attribute overlaps any previously allocated bits.
2761 */
2762 if ((~(use_mask << attr) & used_locations) != used_locations) {
2763 if (target_index == MESA_SHADER_FRAGMENT && !prog->IsES) {
2764 /* From section 4.4.2 (Output Layout Qualifiers) of the GLSL
2765 * 4.40 spec:
2766 *
2767 * "Additionally, for fragment shader outputs, if two
2768 * variables are placed within the same location, they
2769 * must have the same underlying type (floating-point or
2770 * integer). No component aliasing of output variables or
2771 * members is allowed.
2772 */
2773 for (unsigned i = 0; i < assigned_attr; i++) {
2774 unsigned assigned_slots =
2775 assigned[i]->type->count_attribute_slots(false);
2776 unsigned assig_attr =
2777 assigned[i]->data.location - generic_base;
2778 unsigned assigned_use_mask = (1 << assigned_slots) - 1;
2779
2780 if ((assigned_use_mask << assig_attr) &
2781 (use_mask << attr)) {
2782
2783 const glsl_type *assigned_type =
2784 assigned[i]->type->without_array();
2785 const glsl_type *type = var->type->without_array();
2786 if (assigned_type->base_type != type->base_type) {
2787 linker_error(prog, "types do not match for aliased"
2788 " %ss %s and %s\n", string,
2789 assigned[i]->name, var->name);
2790 return false;
2791 }
2792
2793 unsigned assigned_component_mask =
2794 ((1 << assigned_type->vector_elements) - 1) <<
2795 assigned[i]->data.location_frac;
2796 unsigned component_mask =
2797 ((1 << type->vector_elements) - 1) <<
2798 var->data.location_frac;
2799 if (assigned_component_mask & component_mask) {
2800 linker_error(prog, "overlapping component is "
2801 "assigned to %ss %s and %s "
2802 "(component=%d)\n",
2803 string, assigned[i]->name, var->name,
2804 var->data.location_frac);
2805 return false;
2806 }
2807 }
2808 }
2809 } else if (target_index == MESA_SHADER_FRAGMENT ||
2810 (prog->IsES && prog->data->Version >= 300)) {
2811 linker_error(prog, "overlapping location is assigned "
2812 "to %s `%s' %d %d %d\n", string, var->name,
2813 used_locations, use_mask, attr);
2814 return false;
2815 } else {
2816 linker_warning(prog, "overlapping location is assigned "
2817 "to %s `%s' %d %d %d\n", string, var->name,
2818 used_locations, use_mask, attr);
2819 }
2820 }
2821
2822 used_locations |= (use_mask << attr);
2823
2824 /* From the GL 4.5 core spec, section 11.1.1 (Vertex Attributes):
2825 *
2826 * "A program with more than the value of MAX_VERTEX_ATTRIBS
2827 * active attribute variables may fail to link, unless
2828 * device-dependent optimizations are able to make the program
2829 * fit within available hardware resources. For the purposes
2830 * of this test, attribute variables of the type dvec3, dvec4,
2831 * dmat2x3, dmat2x4, dmat3, dmat3x4, dmat4x3, and dmat4 may
2832 * count as consuming twice as many attributes as equivalent
2833 * single-precision types. While these types use the same number
2834 * of generic attributes as their single-precision equivalents,
2835 * implementations are permitted to consume two single-precision
2836 * vectors of internal storage for each three- or four-component
2837 * double-precision vector."
2838 *
2839 * Mark this attribute slot as taking up twice as much space
2840 * so we can count it properly against limits. According to
2841 * issue (3) of the GL_ARB_vertex_attrib_64bit behavior, this
2842 * is optional behavior, but it seems preferable.
2843 */
2844 if (var->type->without_array()->is_dual_slot())
2845 double_storage_locations |= (use_mask << attr);
2846 }
2847
2848 assigned[assigned_attr] = var;
2849 assigned_attr++;
2850
2851 continue;
2852 }
2853
2854 if (num_attr >= max_index) {
2855 linker_error(prog, "too many %s (max %u)",
2856 target_index == MESA_SHADER_VERTEX ?
2857 "vertex shader inputs" : "fragment shader outputs",
2858 max_index);
2859 return false;
2860 }
2861 to_assign[num_attr].slots = slots;
2862 to_assign[num_attr].var = var;
2863 num_attr++;
2864 }
2865
2866 if (target_index == MESA_SHADER_VERTEX) {
2867 unsigned total_attribs_size =
2868 _mesa_bitcount(used_locations & ((1 << max_index) - 1)) +
2869 _mesa_bitcount(double_storage_locations);
2870 if (total_attribs_size > max_index) {
2871 linker_error(prog,
2872 "attempt to use %d vertex attribute slots only %d available ",
2873 total_attribs_size, max_index);
2874 return false;
2875 }
2876 }
2877
2878 /* If all of the attributes were assigned locations by the application (or
2879 * are built-in attributes with fixed locations), return early. This should
2880 * be the common case.
2881 */
2882 if (num_attr == 0)
2883 return true;
2884
2885 qsort(to_assign, num_attr, sizeof(to_assign[0]), temp_attr::compare);
2886
2887 if (target_index == MESA_SHADER_VERTEX) {
2888 /* VERT_ATTRIB_GENERIC0 is a pseudo-alias for VERT_ATTRIB_POS. It can
2889 * only be explicitly assigned by via glBindAttribLocation. Mark it as
2890 * reserved to prevent it from being automatically allocated below.
2891 */
2892 find_deref_visitor find("gl_Vertex");
2893 find.run(sh->ir);
2894 if (find.variable_found())
2895 used_locations |= (1 << 0);
2896 }
2897
2898 for (unsigned i = 0; i < num_attr; i++) {
2899 /* Mask representing the contiguous slots that will be used by this
2900 * attribute.
2901 */
2902 const unsigned use_mask = (1 << to_assign[i].slots) - 1;
2903
2904 int location = find_available_slots(used_locations, to_assign[i].slots);
2905
2906 if (location < 0) {
2907 const char *const string = (target_index == MESA_SHADER_VERTEX)
2908 ? "vertex shader input" : "fragment shader output";
2909
2910 linker_error(prog,
2911 "insufficient contiguous locations "
2912 "available for %s `%s'\n",
2913 string, to_assign[i].var->name);
2914 return false;
2915 }
2916
2917 to_assign[i].var->data.location = generic_base + location;
2918 to_assign[i].var->data.is_unmatched_generic_inout = 0;
2919 used_locations |= (use_mask << location);
2920
2921 if (to_assign[i].var->type->without_array()->is_dual_slot())
2922 double_storage_locations |= (use_mask << location);
2923 }
2924
2925 /* Now that we have all the locations, from the GL 4.5 core spec, section
2926 * 11.1.1 (Vertex Attributes), dvec3, dvec4, dmat2x3, dmat2x4, dmat3,
2927 * dmat3x4, dmat4x3, and dmat4 count as consuming twice as many attributes
2928 * as equivalent single-precision types.
2929 */
2930 if (target_index == MESA_SHADER_VERTEX) {
2931 unsigned total_attribs_size =
2932 _mesa_bitcount(used_locations & ((1 << max_index) - 1)) +
2933 _mesa_bitcount(double_storage_locations);
2934 if (total_attribs_size > max_index) {
2935 linker_error(prog,
2936 "attempt to use %d vertex attribute slots only %d available ",
2937 total_attribs_size, max_index);
2938 return false;
2939 }
2940 }
2941
2942 return true;
2943 }
2944
2945 /**
2946 * Match explicit locations of outputs to inputs and deactivate the
2947 * unmatch flag if found so we don't optimise them away.
2948 */
2949 static void
2950 match_explicit_outputs_to_inputs(gl_linked_shader *producer,
2951 gl_linked_shader *consumer)
2952 {
2953 glsl_symbol_table parameters;
2954 ir_variable *explicit_locations[MAX_VARYINGS_INCL_PATCH][4] =
2955 { {NULL, NULL} };
2956
2957 /* Find all shader outputs in the "producer" stage.
2958 */
2959 foreach_in_list(ir_instruction, node, producer->ir) {
2960 ir_variable *const var = node->as_variable();
2961
2962 if ((var == NULL) || (var->data.mode != ir_var_shader_out))
2963 continue;
2964
2965 if (var->data.explicit_location &&
2966 var->data.location >= VARYING_SLOT_VAR0) {
2967 const unsigned idx = var->data.location - VARYING_SLOT_VAR0;
2968 if (explicit_locations[idx][var->data.location_frac] == NULL)
2969 explicit_locations[idx][var->data.location_frac] = var;
2970 }
2971 }
2972
2973 /* Match inputs to outputs */
2974 foreach_in_list(ir_instruction, node, consumer->ir) {
2975 ir_variable *const input = node->as_variable();
2976
2977 if ((input == NULL) || (input->data.mode != ir_var_shader_in))
2978 continue;
2979
2980 ir_variable *output = NULL;
2981 if (input->data.explicit_location
2982 && input->data.location >= VARYING_SLOT_VAR0) {
2983 output = explicit_locations[input->data.location - VARYING_SLOT_VAR0]
2984 [input->data.location_frac];
2985
2986 if (output != NULL){
2987 input->data.is_unmatched_generic_inout = 0;
2988 output->data.is_unmatched_generic_inout = 0;
2989 }
2990 }
2991 }
2992 }
2993
2994 /**
2995 * Store the gl_FragDepth layout in the gl_shader_program struct.
2996 */
2997 static void
2998 store_fragdepth_layout(struct gl_shader_program *prog)
2999 {
3000 if (prog->_LinkedShaders[MESA_SHADER_FRAGMENT] == NULL) {
3001 return;
3002 }
3003
3004 struct exec_list *ir = prog->_LinkedShaders[MESA_SHADER_FRAGMENT]->ir;
3005
3006 /* We don't look up the gl_FragDepth symbol directly because if
3007 * gl_FragDepth is not used in the shader, it's removed from the IR.
3008 * However, the symbol won't be removed from the symbol table.
3009 *
3010 * We're only interested in the cases where the variable is NOT removed
3011 * from the IR.
3012 */
3013 foreach_in_list(ir_instruction, node, ir) {
3014 ir_variable *const var = node->as_variable();
3015
3016 if (var == NULL || var->data.mode != ir_var_shader_out) {
3017 continue;
3018 }
3019
3020 if (strcmp(var->name, "gl_FragDepth") == 0) {
3021 switch (var->data.depth_layout) {
3022 case ir_depth_layout_none:
3023 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_NONE;
3024 return;
3025 case ir_depth_layout_any:
3026 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_ANY;
3027 return;
3028 case ir_depth_layout_greater:
3029 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_GREATER;
3030 return;
3031 case ir_depth_layout_less:
3032 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_LESS;
3033 return;
3034 case ir_depth_layout_unchanged:
3035 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_UNCHANGED;
3036 return;
3037 default:
3038 assert(0);
3039 return;
3040 }
3041 }
3042 }
3043 }
3044
3045 /**
3046 * Validate the resources used by a program versus the implementation limits
3047 */
3048 static void
3049 check_resources(struct gl_context *ctx, struct gl_shader_program *prog)
3050 {
3051 unsigned total_uniform_blocks = 0;
3052 unsigned total_shader_storage_blocks = 0;
3053
3054 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3055 struct gl_linked_shader *sh = prog->_LinkedShaders[i];
3056
3057 if (sh == NULL)
3058 continue;
3059
3060 if (sh->Program->info.num_textures >
3061 ctx->Const.Program[i].MaxTextureImageUnits) {
3062 linker_error(prog, "Too many %s shader texture samplers\n",
3063 _mesa_shader_stage_to_string(i));
3064 }
3065
3066 if (sh->num_uniform_components >
3067 ctx->Const.Program[i].MaxUniformComponents) {
3068 if (ctx->Const.GLSLSkipStrictMaxUniformLimitCheck) {
3069 linker_warning(prog, "Too many %s shader default uniform block "
3070 "components, but the driver will try to optimize "
3071 "them out; this is non-portable out-of-spec "
3072 "behavior\n",
3073 _mesa_shader_stage_to_string(i));
3074 } else {
3075 linker_error(prog, "Too many %s shader default uniform block "
3076 "components\n",
3077 _mesa_shader_stage_to_string(i));
3078 }
3079 }
3080
3081 if (sh->num_combined_uniform_components >
3082 ctx->Const.Program[i].MaxCombinedUniformComponents) {
3083 if (ctx->Const.GLSLSkipStrictMaxUniformLimitCheck) {
3084 linker_warning(prog, "Too many %s shader uniform components, "
3085 "but the driver will try to optimize them out; "
3086 "this is non-portable out-of-spec behavior\n",
3087 _mesa_shader_stage_to_string(i));
3088 } else {
3089 linker_error(prog, "Too many %s shader uniform components\n",
3090 _mesa_shader_stage_to_string(i));
3091 }
3092 }
3093
3094 total_shader_storage_blocks += sh->Program->info.num_ssbos;
3095 total_uniform_blocks += sh->Program->info.num_ubos;
3096
3097 const unsigned max_uniform_blocks =
3098 ctx->Const.Program[i].MaxUniformBlocks;
3099 if (max_uniform_blocks < sh->Program->info.num_ubos) {
3100 linker_error(prog, "Too many %s uniform blocks (%d/%d)\n",
3101 _mesa_shader_stage_to_string(i),
3102 sh->Program->info.num_ubos, max_uniform_blocks);
3103 }
3104
3105 const unsigned max_shader_storage_blocks =
3106 ctx->Const.Program[i].MaxShaderStorageBlocks;
3107 if (max_shader_storage_blocks < sh->Program->info.num_ssbos) {
3108 linker_error(prog, "Too many %s shader storage blocks (%d/%d)\n",
3109 _mesa_shader_stage_to_string(i),
3110 sh->Program->info.num_ssbos, max_shader_storage_blocks);
3111 }
3112 }
3113
3114 if (total_uniform_blocks > ctx->Const.MaxCombinedUniformBlocks) {
3115 linker_error(prog, "Too many combined uniform blocks (%d/%d)\n",
3116 total_uniform_blocks, ctx->Const.MaxCombinedUniformBlocks);
3117 }
3118
3119 if (total_shader_storage_blocks > ctx->Const.MaxCombinedShaderStorageBlocks) {
3120 linker_error(prog, "Too many combined shader storage blocks (%d/%d)\n",
3121 total_shader_storage_blocks,
3122 ctx->Const.MaxCombinedShaderStorageBlocks);
3123 }
3124
3125 for (unsigned i = 0; i < prog->data->NumUniformBlocks; i++) {
3126 if (prog->data->UniformBlocks[i].UniformBufferSize >
3127 ctx->Const.MaxUniformBlockSize) {
3128 linker_error(prog, "Uniform block %s too big (%d/%d)\n",
3129 prog->data->UniformBlocks[i].Name,
3130 prog->data->UniformBlocks[i].UniformBufferSize,
3131 ctx->Const.MaxUniformBlockSize);
3132 }
3133 }
3134
3135 for (unsigned i = 0; i < prog->data->NumShaderStorageBlocks; i++) {
3136 if (prog->data->ShaderStorageBlocks[i].UniformBufferSize >
3137 ctx->Const.MaxShaderStorageBlockSize) {
3138 linker_error(prog, "Shader storage block %s too big (%d/%d)\n",
3139 prog->data->ShaderStorageBlocks[i].Name,
3140 prog->data->ShaderStorageBlocks[i].UniformBufferSize,
3141 ctx->Const.MaxShaderStorageBlockSize);
3142 }
3143 }
3144 }
3145
3146 static void
3147 link_calculate_subroutine_compat(struct gl_shader_program *prog)
3148 {
3149 unsigned mask = prog->data->linked_stages;
3150 while (mask) {
3151 const int i = u_bit_scan(&mask);
3152 struct gl_program *p = prog->_LinkedShaders[i]->Program;
3153
3154 for (unsigned j = 0; j < p->sh.NumSubroutineUniformRemapTable; j++) {
3155 if (p->sh.SubroutineUniformRemapTable[j] == INACTIVE_UNIFORM_EXPLICIT_LOCATION)
3156 continue;
3157
3158 struct gl_uniform_storage *uni = p->sh.SubroutineUniformRemapTable[j];
3159
3160 if (!uni)
3161 continue;
3162
3163 int count = 0;
3164 if (p->sh.NumSubroutineFunctions == 0) {
3165 linker_error(prog, "subroutine uniform %s defined but no valid functions found\n", uni->type->name);
3166 continue;
3167 }
3168 for (unsigned f = 0; f < p->sh.NumSubroutineFunctions; f++) {
3169 struct gl_subroutine_function *fn = &p->sh.SubroutineFunctions[f];
3170 for (int k = 0; k < fn->num_compat_types; k++) {
3171 if (fn->types[k] == uni->type) {
3172 count++;
3173 break;
3174 }
3175 }
3176 }
3177 uni->num_compatible_subroutines = count;
3178 }
3179 }
3180 }
3181
3182 static void
3183 check_subroutine_resources(struct gl_shader_program *prog)
3184 {
3185 unsigned mask = prog->data->linked_stages;
3186 while (mask) {
3187 const int i = u_bit_scan(&mask);
3188 struct gl_program *p = prog->_LinkedShaders[i]->Program;
3189
3190 if (p->sh.NumSubroutineUniformRemapTable > MAX_SUBROUTINE_UNIFORM_LOCATIONS) {
3191 linker_error(prog, "Too many %s shader subroutine uniforms\n",
3192 _mesa_shader_stage_to_string(i));
3193 }
3194 }
3195 }
3196 /**
3197 * Validate shader image resources.
3198 */
3199 static void
3200 check_image_resources(struct gl_context *ctx, struct gl_shader_program *prog)
3201 {
3202 unsigned total_image_units = 0;
3203 unsigned fragment_outputs = 0;
3204 unsigned total_shader_storage_blocks = 0;
3205
3206 if (!ctx->Extensions.ARB_shader_image_load_store)
3207 return;
3208
3209 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3210 struct gl_linked_shader *sh = prog->_LinkedShaders[i];
3211
3212 if (sh) {
3213 if (sh->Program->info.num_images > ctx->Const.Program[i].MaxImageUniforms)
3214 linker_error(prog, "Too many %s shader image uniforms (%u > %u)\n",
3215 _mesa_shader_stage_to_string(i),
3216 sh->Program->info.num_images,
3217 ctx->Const.Program[i].MaxImageUniforms);
3218
3219 total_image_units += sh->Program->info.num_images;
3220 total_shader_storage_blocks += sh->Program->info.num_ssbos;
3221
3222 if (i == MESA_SHADER_FRAGMENT) {
3223 foreach_in_list(ir_instruction, node, sh->ir) {
3224 ir_variable *var = node->as_variable();
3225 if (var && var->data.mode == ir_var_shader_out)
3226 /* since there are no double fs outputs - pass false */
3227 fragment_outputs += var->type->count_attribute_slots(false);
3228 }
3229 }
3230 }
3231 }
3232
3233 if (total_image_units > ctx->Const.MaxCombinedImageUniforms)
3234 linker_error(prog, "Too many combined image uniforms\n");
3235
3236 if (total_image_units + fragment_outputs + total_shader_storage_blocks >
3237 ctx->Const.MaxCombinedShaderOutputResources)
3238 linker_error(prog, "Too many combined image uniforms, shader storage "
3239 " buffers and fragment outputs\n");
3240 }
3241
3242
3243 /**
3244 * Initializes explicit location slots to INACTIVE_UNIFORM_EXPLICIT_LOCATION
3245 * for a variable, checks for overlaps between other uniforms using explicit
3246 * locations.
3247 */
3248 static int
3249 reserve_explicit_locations(struct gl_shader_program *prog,
3250 string_to_uint_map *map, ir_variable *var)
3251 {
3252 unsigned slots = var->type->uniform_locations();
3253 unsigned max_loc = var->data.location + slots - 1;
3254 unsigned return_value = slots;
3255
3256 /* Resize remap table if locations do not fit in the current one. */
3257 if (max_loc + 1 > prog->NumUniformRemapTable) {
3258 prog->UniformRemapTable =
3259 reralloc(prog, prog->UniformRemapTable,
3260 gl_uniform_storage *,
3261 max_loc + 1);
3262
3263 if (!prog->UniformRemapTable) {
3264 linker_error(prog, "Out of memory during linking.\n");
3265 return -1;
3266 }
3267
3268 /* Initialize allocated space. */
3269 for (unsigned i = prog->NumUniformRemapTable; i < max_loc + 1; i++)
3270 prog->UniformRemapTable[i] = NULL;
3271
3272 prog->NumUniformRemapTable = max_loc + 1;
3273 }
3274
3275 for (unsigned i = 0; i < slots; i++) {
3276 unsigned loc = var->data.location + i;
3277
3278 /* Check if location is already used. */
3279 if (prog->UniformRemapTable[loc] == INACTIVE_UNIFORM_EXPLICIT_LOCATION) {
3280
3281 /* Possibly same uniform from a different stage, this is ok. */
3282 unsigned hash_loc;
3283 if (map->get(hash_loc, var->name) && hash_loc == loc - i) {
3284 return_value = 0;
3285 continue;
3286 }
3287
3288 /* ARB_explicit_uniform_location specification states:
3289 *
3290 * "No two default-block uniform variables in the program can have
3291 * the same location, even if they are unused, otherwise a compiler
3292 * or linker error will be generated."
3293 */
3294 linker_error(prog,
3295 "location qualifier for uniform %s overlaps "
3296 "previously used location\n",
3297 var->name);
3298 return -1;
3299 }
3300
3301 /* Initialize location as inactive before optimization
3302 * rounds and location assignment.
3303 */
3304 prog->UniformRemapTable[loc] = INACTIVE_UNIFORM_EXPLICIT_LOCATION;
3305 }
3306
3307 /* Note, base location used for arrays. */
3308 map->put(var->data.location, var->name);
3309
3310 return return_value;
3311 }
3312
3313 static bool
3314 reserve_subroutine_explicit_locations(struct gl_shader_program *prog,
3315 struct gl_program *p,
3316 ir_variable *var)
3317 {
3318 unsigned slots = var->type->uniform_locations();
3319 unsigned max_loc = var->data.location + slots - 1;
3320
3321 /* Resize remap table if locations do not fit in the current one. */
3322 if (max_loc + 1 > p->sh.NumSubroutineUniformRemapTable) {
3323 p->sh.SubroutineUniformRemapTable =
3324 reralloc(p, p->sh.SubroutineUniformRemapTable,
3325 gl_uniform_storage *,
3326 max_loc + 1);
3327
3328 if (!p->sh.SubroutineUniformRemapTable) {
3329 linker_error(prog, "Out of memory during linking.\n");
3330 return false;
3331 }
3332
3333 /* Initialize allocated space. */
3334 for (unsigned i = p->sh.NumSubroutineUniformRemapTable; i < max_loc + 1; i++)
3335 p->sh.SubroutineUniformRemapTable[i] = NULL;
3336
3337 p->sh.NumSubroutineUniformRemapTable = max_loc + 1;
3338 }
3339
3340 for (unsigned i = 0; i < slots; i++) {
3341 unsigned loc = var->data.location + i;
3342
3343 /* Check if location is already used. */
3344 if (p->sh.SubroutineUniformRemapTable[loc] == INACTIVE_UNIFORM_EXPLICIT_LOCATION) {
3345
3346 /* ARB_explicit_uniform_location specification states:
3347 * "No two subroutine uniform variables can have the same location
3348 * in the same shader stage, otherwise a compiler or linker error
3349 * will be generated."
3350 */
3351 linker_error(prog,
3352 "location qualifier for uniform %s overlaps "
3353 "previously used location\n",
3354 var->name);
3355 return false;
3356 }
3357
3358 /* Initialize location as inactive before optimization
3359 * rounds and location assignment.
3360 */
3361 p->sh.SubroutineUniformRemapTable[loc] = INACTIVE_UNIFORM_EXPLICIT_LOCATION;
3362 }
3363
3364 return true;
3365 }
3366 /**
3367 * Check and reserve all explicit uniform locations, called before
3368 * any optimizations happen to handle also inactive uniforms and
3369 * inactive array elements that may get trimmed away.
3370 */
3371 static void
3372 check_explicit_uniform_locations(struct gl_context *ctx,
3373 struct gl_shader_program *prog)
3374 {
3375 prog->NumExplicitUniformLocations = 0;
3376
3377 if (!ctx->Extensions.ARB_explicit_uniform_location)
3378 return;
3379
3380 /* This map is used to detect if overlapping explicit locations
3381 * occur with the same uniform (from different stage) or a different one.
3382 */
3383 string_to_uint_map *uniform_map = new string_to_uint_map;
3384
3385 if (!uniform_map) {
3386 linker_error(prog, "Out of memory during linking.\n");
3387 return;
3388 }
3389
3390 unsigned entries_total = 0;
3391 unsigned mask = prog->data->linked_stages;
3392 while (mask) {
3393 const int i = u_bit_scan(&mask);
3394 struct gl_program *p = prog->_LinkedShaders[i]->Program;
3395
3396 foreach_in_list(ir_instruction, node, prog->_LinkedShaders[i]->ir) {
3397 ir_variable *var = node->as_variable();
3398 if (!var || var->data.mode != ir_var_uniform)
3399 continue;
3400
3401 if (var->data.explicit_location) {
3402 bool ret = false;
3403 if (var->type->without_array()->is_subroutine())
3404 ret = reserve_subroutine_explicit_locations(prog, p, var);
3405 else {
3406 int slots = reserve_explicit_locations(prog, uniform_map,
3407 var);
3408 if (slots != -1) {
3409 ret = true;
3410 entries_total += slots;
3411 }
3412 }
3413 if (!ret) {
3414 delete uniform_map;
3415 return;
3416 }
3417 }
3418 }
3419 }
3420
3421 struct empty_uniform_block *current_block = NULL;
3422
3423 for (unsigned i = 0; i < prog->NumUniformRemapTable; i++) {
3424 /* We found empty space in UniformRemapTable. */
3425 if (prog->UniformRemapTable[i] == NULL) {
3426 /* We've found the beginning of a new continous block of empty slots */
3427 if (!current_block || current_block->start + current_block->slots != i) {
3428 current_block = rzalloc(prog, struct empty_uniform_block);
3429 current_block->start = i;
3430 exec_list_push_tail(&prog->EmptyUniformLocations,
3431 &current_block->link);
3432 }
3433
3434 /* The current block continues, so we simply increment its slots */
3435 current_block->slots++;
3436 }
3437 }
3438
3439 delete uniform_map;
3440 prog->NumExplicitUniformLocations = entries_total;
3441 }
3442
3443 static bool
3444 should_add_buffer_variable(struct gl_shader_program *shProg,
3445 GLenum type, const char *name)
3446 {
3447 bool found_interface = false;
3448 unsigned block_name_len = 0;
3449 const char *block_name_dot = strchr(name, '.');
3450
3451 /* These rules only apply to buffer variables. So we return
3452 * true for the rest of types.
3453 */
3454 if (type != GL_BUFFER_VARIABLE)
3455 return true;
3456
3457 for (unsigned i = 0; i < shProg->data->NumShaderStorageBlocks; i++) {
3458 const char *block_name = shProg->data->ShaderStorageBlocks[i].Name;
3459 block_name_len = strlen(block_name);
3460
3461 const char *block_square_bracket = strchr(block_name, '[');
3462 if (block_square_bracket) {
3463 /* The block is part of an array of named interfaces,
3464 * for the name comparison we ignore the "[x]" part.
3465 */
3466 block_name_len -= strlen(block_square_bracket);
3467 }
3468
3469 if (block_name_dot) {
3470 /* Check if the variable name starts with the interface
3471 * name. The interface name (if present) should have the
3472 * length than the interface block name we are comparing to.
3473 */
3474 unsigned len = strlen(name) - strlen(block_name_dot);
3475 if (len != block_name_len)
3476 continue;
3477 }
3478
3479 if (strncmp(block_name, name, block_name_len) == 0) {
3480 found_interface = true;
3481 break;
3482 }
3483 }
3484
3485 /* We remove the interface name from the buffer variable name,
3486 * including the dot that follows it.
3487 */
3488 if (found_interface)
3489 name = name + block_name_len + 1;
3490
3491 /* The ARB_program_interface_query spec says:
3492 *
3493 * "For an active shader storage block member declared as an array, an
3494 * entry will be generated only for the first array element, regardless
3495 * of its type. For arrays of aggregate types, the enumeration rules
3496 * are applied recursively for the single enumerated array element."
3497 */
3498 const char *struct_first_dot = strchr(name, '.');
3499 const char *first_square_bracket = strchr(name, '[');
3500
3501 /* The buffer variable is on top level and it is not an array */
3502 if (!first_square_bracket) {
3503 return true;
3504 /* The shader storage block member is a struct, then generate the entry */
3505 } else if (struct_first_dot && struct_first_dot < first_square_bracket) {
3506 return true;
3507 } else {
3508 /* Shader storage block member is an array, only generate an entry for the
3509 * first array element.
3510 */
3511 if (strncmp(first_square_bracket, "[0]", 3) == 0)
3512 return true;
3513 }
3514
3515 return false;
3516 }
3517
3518 static bool
3519 add_program_resource(struct gl_shader_program *prog,
3520 struct set *resource_set,
3521 GLenum type, const void *data, uint8_t stages)
3522 {
3523 assert(data);
3524
3525 /* If resource already exists, do not add it again. */
3526 if (_mesa_set_search(resource_set, data))
3527 return true;
3528
3529 prog->data->ProgramResourceList =
3530 reralloc(prog,
3531 prog->data->ProgramResourceList,
3532 gl_program_resource,
3533 prog->data->NumProgramResourceList + 1);
3534
3535 if (!prog->data->ProgramResourceList) {
3536 linker_error(prog, "Out of memory during linking.\n");
3537 return false;
3538 }
3539
3540 struct gl_program_resource *res =
3541 &prog->data->ProgramResourceList[prog->data->NumProgramResourceList];
3542
3543 res->Type = type;
3544 res->Data = data;
3545 res->StageReferences = stages;
3546
3547 prog->data->NumProgramResourceList++;
3548
3549 _mesa_set_add(resource_set, data);
3550
3551 return true;
3552 }
3553
3554 /* Function checks if a variable var is a packed varying and
3555 * if given name is part of packed varying's list.
3556 *
3557 * If a variable is a packed varying, it has a name like
3558 * 'packed:a,b,c' where a, b and c are separate variables.
3559 */
3560 static bool
3561 included_in_packed_varying(ir_variable *var, const char *name)
3562 {
3563 if (strncmp(var->name, "packed:", 7) != 0)
3564 return false;
3565
3566 char *list = strdup(var->name + 7);
3567 assert(list);
3568
3569 bool found = false;
3570 char *saveptr;
3571 char *token = strtok_r(list, ",", &saveptr);
3572 while (token) {
3573 if (strcmp(token, name) == 0) {
3574 found = true;
3575 break;
3576 }
3577 token = strtok_r(NULL, ",", &saveptr);
3578 }
3579 free(list);
3580 return found;
3581 }
3582
3583 /**
3584 * Function builds a stage reference bitmask from variable name.
3585 */
3586 static uint8_t
3587 build_stageref(struct gl_shader_program *shProg, const char *name,
3588 unsigned mode)
3589 {
3590 uint8_t stages = 0;
3591
3592 /* Note, that we assume MAX 8 stages, if there will be more stages, type
3593 * used for reference mask in gl_program_resource will need to be changed.
3594 */
3595 assert(MESA_SHADER_STAGES < 8);
3596
3597 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3598 struct gl_linked_shader *sh = shProg->_LinkedShaders[i];
3599 if (!sh)
3600 continue;
3601
3602 /* Shader symbol table may contain variables that have
3603 * been optimized away. Search IR for the variable instead.
3604 */
3605 foreach_in_list(ir_instruction, node, sh->ir) {
3606 ir_variable *var = node->as_variable();
3607 if (var) {
3608 unsigned baselen = strlen(var->name);
3609
3610 if (included_in_packed_varying(var, name)) {
3611 stages |= (1 << i);
3612 break;
3613 }
3614
3615 /* Type needs to match if specified, otherwise we might
3616 * pick a variable with same name but different interface.
3617 */
3618 if (var->data.mode != mode)
3619 continue;
3620
3621 if (strncmp(var->name, name, baselen) == 0) {
3622 /* Check for exact name matches but also check for arrays and
3623 * structs.
3624 */
3625 if (name[baselen] == '\0' ||
3626 name[baselen] == '[' ||
3627 name[baselen] == '.') {
3628 stages |= (1 << i);
3629 break;
3630 }
3631 }
3632 }
3633 }
3634 }
3635 return stages;
3636 }
3637
3638 /**
3639 * Create gl_shader_variable from ir_variable class.
3640 */
3641 static gl_shader_variable *
3642 create_shader_variable(struct gl_shader_program *shProg,
3643 const ir_variable *in,
3644 const char *name, const glsl_type *type,
3645 const glsl_type *interface_type,
3646 bool use_implicit_location, int location,
3647 const glsl_type *outermost_struct_type)
3648 {
3649 gl_shader_variable *out = ralloc(shProg, struct gl_shader_variable);
3650 if (!out)
3651 return NULL;
3652
3653 /* Since gl_VertexID may be lowered to gl_VertexIDMESA, but applications
3654 * expect to see gl_VertexID in the program resource list. Pretend.
3655 */
3656 if (in->data.mode == ir_var_system_value &&
3657 in->data.location == SYSTEM_VALUE_VERTEX_ID_ZERO_BASE) {
3658 out->name = ralloc_strdup(shProg, "gl_VertexID");
3659 } else if ((in->data.mode == ir_var_shader_out &&
3660 in->data.location == VARYING_SLOT_TESS_LEVEL_OUTER) ||
3661 (in->data.mode == ir_var_system_value &&
3662 in->data.location == SYSTEM_VALUE_TESS_LEVEL_OUTER)) {
3663 out->name = ralloc_strdup(shProg, "gl_TessLevelOuter");
3664 type = glsl_type::get_array_instance(glsl_type::float_type, 4);
3665 } else if ((in->data.mode == ir_var_shader_out &&
3666 in->data.location == VARYING_SLOT_TESS_LEVEL_INNER) ||
3667 (in->data.mode == ir_var_system_value &&
3668 in->data.location == SYSTEM_VALUE_TESS_LEVEL_INNER)) {
3669 out->name = ralloc_strdup(shProg, "gl_TessLevelInner");
3670 type = glsl_type::get_array_instance(glsl_type::float_type, 2);
3671 } else {
3672 out->name = ralloc_strdup(shProg, name);
3673 }
3674
3675 if (!out->name)
3676 return NULL;
3677
3678 /* The ARB_program_interface_query spec says:
3679 *
3680 * "Not all active variables are assigned valid locations; the
3681 * following variables will have an effective location of -1:
3682 *
3683 * * uniforms declared as atomic counters;
3684 *
3685 * * members of a uniform block;
3686 *
3687 * * built-in inputs, outputs, and uniforms (starting with "gl_"); and
3688 *
3689 * * inputs or outputs not declared with a "location" layout
3690 * qualifier, except for vertex shader inputs and fragment shader
3691 * outputs."
3692 */
3693 if (in->type->base_type == GLSL_TYPE_ATOMIC_UINT ||
3694 is_gl_identifier(in->name) ||
3695 !(in->data.explicit_location || use_implicit_location)) {
3696 out->location = -1;
3697 } else {
3698 out->location = location;
3699 }
3700
3701 out->type = type;
3702 out->outermost_struct_type = outermost_struct_type;
3703 out->interface_type = interface_type;
3704 out->component = in->data.location_frac;
3705 out->index = in->data.index;
3706 out->patch = in->data.patch;
3707 out->mode = in->data.mode;
3708 out->interpolation = in->data.interpolation;
3709 out->explicit_location = in->data.explicit_location;
3710 out->precision = in->data.precision;
3711
3712 return out;
3713 }
3714
3715 static bool
3716 add_shader_variable(const struct gl_context *ctx,
3717 struct gl_shader_program *shProg,
3718 struct set *resource_set,
3719 unsigned stage_mask,
3720 GLenum programInterface, ir_variable *var,
3721 const char *name, const glsl_type *type,
3722 bool use_implicit_location, int location,
3723 const glsl_type *outermost_struct_type = NULL)
3724 {
3725 const glsl_type *interface_type = var->get_interface_type();
3726
3727 if (outermost_struct_type == NULL) {
3728 if (var->data.from_named_ifc_block) {
3729 const char *interface_name = interface_type->name;
3730
3731 if (interface_type->is_array()) {
3732 /* Issue #16 of the ARB_program_interface_query spec says:
3733 *
3734 * "* If a variable is a member of an interface block without an
3735 * instance name, it is enumerated using just the variable name.
3736 *
3737 * * If a variable is a member of an interface block with an
3738 * instance name, it is enumerated as "BlockName.Member", where
3739 * "BlockName" is the name of the interface block (not the
3740 * instance name) and "Member" is the name of the variable."
3741 *
3742 * In particular, it indicates that it should be "BlockName",
3743 * not "BlockName[array length]". The conformance suite and
3744 * dEQP both require this behavior.
3745 *
3746 * Here, we unwrap the extra array level added by named interface
3747 * block array lowering so we have the correct variable type. We
3748 * also unwrap the interface type when constructing the name.
3749 *
3750 * We leave interface_type the same so that ES 3.x SSO pipeline
3751 * validation can enforce the rules requiring array length to
3752 * match on interface blocks.
3753 */
3754 type = type->fields.array;
3755
3756 interface_name = interface_type->fields.array->name;
3757 }
3758
3759 name = ralloc_asprintf(shProg, "%s.%s", interface_name, name);
3760 }
3761 }
3762
3763 switch (type->base_type) {
3764 case GLSL_TYPE_STRUCT: {
3765 /* The ARB_program_interface_query spec says:
3766 *
3767 * "For an active variable declared as a structure, a separate entry
3768 * will be generated for each active structure member. The name of
3769 * each entry is formed by concatenating the name of the structure,
3770 * the "." character, and the name of the structure member. If a
3771 * structure member to enumerate is itself a structure or array,
3772 * these enumeration rules are applied recursively."
3773 */
3774 if (outermost_struct_type == NULL)
3775 outermost_struct_type = type;
3776
3777 unsigned field_location = location;
3778 for (unsigned i = 0; i < type->length; i++) {
3779 const struct glsl_struct_field *field = &type->fields.structure[i];
3780 char *field_name = ralloc_asprintf(shProg, "%s.%s", name, field->name);
3781 if (!add_shader_variable(ctx, shProg, resource_set,
3782 stage_mask, programInterface,
3783 var, field_name, field->type,
3784 use_implicit_location, field_location,
3785 outermost_struct_type))
3786 return false;
3787
3788 field_location += field->type->count_attribute_slots(false);
3789 }
3790 return true;
3791 }
3792
3793 default: {
3794 /* The ARB_program_interface_query spec says:
3795 *
3796 * "For an active variable declared as a single instance of a basic
3797 * type, a single entry will be generated, using the variable name
3798 * from the shader source."
3799 */
3800 gl_shader_variable *sha_v =
3801 create_shader_variable(shProg, var, name, type, interface_type,
3802 use_implicit_location, location,
3803 outermost_struct_type);
3804 if (!sha_v)
3805 return false;
3806
3807 return add_program_resource(shProg, resource_set,
3808 programInterface, sha_v, stage_mask);
3809 }
3810 }
3811 }
3812
3813 static bool
3814 add_interface_variables(const struct gl_context *ctx,
3815 struct gl_shader_program *shProg,
3816 struct set *resource_set,
3817 unsigned stage, GLenum programInterface)
3818 {
3819 exec_list *ir = shProg->_LinkedShaders[stage]->ir;
3820
3821 foreach_in_list(ir_instruction, node, ir) {
3822 ir_variable *var = node->as_variable();
3823
3824 if (!var || var->data.how_declared == ir_var_hidden)
3825 continue;
3826
3827 int loc_bias;
3828
3829 switch (var->data.mode) {
3830 case ir_var_system_value:
3831 case ir_var_shader_in:
3832 if (programInterface != GL_PROGRAM_INPUT)
3833 continue;
3834 loc_bias = (stage == MESA_SHADER_VERTEX) ? int(VERT_ATTRIB_GENERIC0)
3835 : int(VARYING_SLOT_VAR0);
3836 break;
3837 case ir_var_shader_out:
3838 if (programInterface != GL_PROGRAM_OUTPUT)
3839 continue;
3840 loc_bias = (stage == MESA_SHADER_FRAGMENT) ? int(FRAG_RESULT_DATA0)
3841 : int(VARYING_SLOT_VAR0);
3842 break;
3843 default:
3844 continue;
3845 };
3846
3847 if (var->data.patch)
3848 loc_bias = int(VARYING_SLOT_PATCH0);
3849
3850 /* Skip packed varyings, packed varyings are handled separately
3851 * by add_packed_varyings.
3852 */
3853 if (strncmp(var->name, "packed:", 7) == 0)
3854 continue;
3855
3856 /* Skip fragdata arrays, these are handled separately
3857 * by add_fragdata_arrays.
3858 */
3859 if (strncmp(var->name, "gl_out_FragData", 15) == 0)
3860 continue;
3861
3862 const bool vs_input_or_fs_output =
3863 (stage == MESA_SHADER_VERTEX && var->data.mode == ir_var_shader_in) ||
3864 (stage == MESA_SHADER_FRAGMENT && var->data.mode == ir_var_shader_out);
3865
3866 if (!add_shader_variable(ctx, shProg, resource_set,
3867 1 << stage, programInterface,
3868 var, var->name, var->type, vs_input_or_fs_output,
3869 var->data.location - loc_bias))
3870 return false;
3871 }
3872 return true;
3873 }
3874
3875 static bool
3876 add_packed_varyings(const struct gl_context *ctx,
3877 struct gl_shader_program *shProg,
3878 struct set *resource_set,
3879 int stage, GLenum type)
3880 {
3881 struct gl_linked_shader *sh = shProg->_LinkedShaders[stage];
3882 GLenum iface;
3883
3884 if (!sh || !sh->packed_varyings)
3885 return true;
3886
3887 foreach_in_list(ir_instruction, node, sh->packed_varyings) {
3888 ir_variable *var = node->as_variable();
3889 if (var) {
3890 switch (var->data.mode) {
3891 case ir_var_shader_in:
3892 iface = GL_PROGRAM_INPUT;
3893 break;
3894 case ir_var_shader_out:
3895 iface = GL_PROGRAM_OUTPUT;
3896 break;
3897 default:
3898 unreachable("unexpected type");
3899 }
3900
3901 if (type == iface) {
3902 const int stage_mask =
3903 build_stageref(shProg, var->name, var->data.mode);
3904 if (!add_shader_variable(ctx, shProg, resource_set,
3905 stage_mask,
3906 iface, var, var->name, var->type, false,
3907 var->data.location - VARYING_SLOT_VAR0))
3908 return false;
3909 }
3910 }
3911 }
3912 return true;
3913 }
3914
3915 static bool
3916 add_fragdata_arrays(const struct gl_context *ctx,
3917 struct gl_shader_program *shProg,
3918 struct set *resource_set)
3919 {
3920 struct gl_linked_shader *sh = shProg->_LinkedShaders[MESA_SHADER_FRAGMENT];
3921
3922 if (!sh || !sh->fragdata_arrays)
3923 return true;
3924
3925 foreach_in_list(ir_instruction, node, sh->fragdata_arrays) {
3926 ir_variable *var = node->as_variable();
3927 if (var) {
3928 assert(var->data.mode == ir_var_shader_out);
3929
3930 if (!add_shader_variable(ctx, shProg, resource_set,
3931 1 << MESA_SHADER_FRAGMENT,
3932 GL_PROGRAM_OUTPUT, var, var->name, var->type,
3933 true, var->data.location - FRAG_RESULT_DATA0))
3934 return false;
3935 }
3936 }
3937 return true;
3938 }
3939
3940 static char*
3941 get_top_level_name(const char *name)
3942 {
3943 const char *first_dot = strchr(name, '.');
3944 const char *first_square_bracket = strchr(name, '[');
3945 int name_size = 0;
3946
3947 /* The ARB_program_interface_query spec says:
3948 *
3949 * "For the property TOP_LEVEL_ARRAY_SIZE, a single integer identifying
3950 * the number of active array elements of the top-level shader storage
3951 * block member containing to the active variable is written to
3952 * <params>. If the top-level block member is not declared as an
3953 * array, the value one is written to <params>. If the top-level block
3954 * member is an array with no declared size, the value zero is written
3955 * to <params>."
3956 */
3957
3958 /* The buffer variable is on top level.*/
3959 if (!first_square_bracket && !first_dot)
3960 name_size = strlen(name);
3961 else if ((!first_square_bracket ||
3962 (first_dot && first_dot < first_square_bracket)))
3963 name_size = first_dot - name;
3964 else
3965 name_size = first_square_bracket - name;
3966
3967 return strndup(name, name_size);
3968 }
3969
3970 static char*
3971 get_var_name(const char *name)
3972 {
3973 const char *first_dot = strchr(name, '.');
3974
3975 if (!first_dot)
3976 return strdup(name);
3977
3978 return strndup(first_dot+1, strlen(first_dot) - 1);
3979 }
3980
3981 static bool
3982 is_top_level_shader_storage_block_member(const char* name,
3983 const char* interface_name,
3984 const char* field_name)
3985 {
3986 bool result = false;
3987
3988 /* If the given variable is already a top-level shader storage
3989 * block member, then return array_size = 1.
3990 * We could have two possibilities: if we have an instanced
3991 * shader storage block or not instanced.
3992 *
3993 * For the first, we check create a name as it was in top level and
3994 * compare it with the real name. If they are the same, then
3995 * the variable is already at top-level.
3996 *
3997 * Full instanced name is: interface name + '.' + var name +
3998 * NULL character
3999 */
4000 int name_length = strlen(interface_name) + 1 + strlen(field_name) + 1;
4001 char *full_instanced_name = (char *) calloc(name_length, sizeof(char));
4002 if (!full_instanced_name) {
4003 fprintf(stderr, "%s: Cannot allocate space for name\n", __func__);
4004 return false;
4005 }
4006
4007 snprintf(full_instanced_name, name_length, "%s.%s",
4008 interface_name, field_name);
4009
4010 /* Check if its top-level shader storage block member of an
4011 * instanced interface block, or of a unnamed interface block.
4012 */
4013 if (strcmp(name, full_instanced_name) == 0 ||
4014 strcmp(name, field_name) == 0)
4015 result = true;
4016
4017 free(full_instanced_name);
4018 return result;
4019 }
4020
4021 static int
4022 get_array_size(struct gl_uniform_storage *uni, const glsl_struct_field *field,
4023 char *interface_name, char *var_name)
4024 {
4025 /* The ARB_program_interface_query spec says:
4026 *
4027 * "For the property TOP_LEVEL_ARRAY_SIZE, a single integer identifying
4028 * the number of active array elements of the top-level shader storage
4029 * block member containing to the active variable is written to
4030 * <params>. If the top-level block member is not declared as an
4031 * array, the value one is written to <params>. If the top-level block
4032 * member is an array with no declared size, the value zero is written
4033 * to <params>."
4034 */
4035 if (is_top_level_shader_storage_block_member(uni->name,
4036 interface_name,
4037 var_name))
4038 return 1;
4039 else if (field->type->is_unsized_array())
4040 return 0;
4041 else if (field->type->is_array())
4042 return field->type->length;
4043
4044 return 1;
4045 }
4046
4047 static int
4048 get_array_stride(struct gl_uniform_storage *uni, const glsl_type *interface,
4049 const glsl_struct_field *field, char *interface_name,
4050 char *var_name)
4051 {
4052 /* The ARB_program_interface_query spec says:
4053 *
4054 * "For the property TOP_LEVEL_ARRAY_STRIDE, a single integer
4055 * identifying the stride between array elements of the top-level
4056 * shader storage block member containing the active variable is
4057 * written to <params>. For top-level block members declared as
4058 * arrays, the value written is the difference, in basic machine units,
4059 * between the offsets of the active variable for consecutive elements
4060 * in the top-level array. For top-level block members not declared as
4061 * an array, zero is written to <params>."
4062 */
4063 if (field->type->is_array()) {
4064 const enum glsl_matrix_layout matrix_layout =
4065 glsl_matrix_layout(field->matrix_layout);
4066 bool row_major = matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR;
4067 const glsl_type *array_type = field->type->fields.array;
4068
4069 if (is_top_level_shader_storage_block_member(uni->name,
4070 interface_name,
4071 var_name))
4072 return 0;
4073
4074 if (interface->interface_packing != GLSL_INTERFACE_PACKING_STD430) {
4075 if (array_type->is_record() || array_type->is_array())
4076 return glsl_align(array_type->std140_size(row_major), 16);
4077 else
4078 return MAX2(array_type->std140_base_alignment(row_major), 16);
4079 } else {
4080 return array_type->std430_array_stride(row_major);
4081 }
4082 }
4083 return 0;
4084 }
4085
4086 static void
4087 calculate_array_size_and_stride(struct gl_shader_program *shProg,
4088 struct gl_uniform_storage *uni)
4089 {
4090 int block_index = uni->block_index;
4091 int array_size = -1;
4092 int array_stride = -1;
4093 char *var_name = get_top_level_name(uni->name);
4094 char *interface_name =
4095 get_top_level_name(uni->is_shader_storage ?
4096 shProg->data->ShaderStorageBlocks[block_index].Name :
4097 shProg->data->UniformBlocks[block_index].Name);
4098
4099 if (strcmp(var_name, interface_name) == 0) {
4100 /* Deal with instanced array of SSBOs */
4101 char *temp_name = get_var_name(uni->name);
4102 if (!temp_name) {
4103 linker_error(shProg, "Out of memory during linking.\n");
4104 goto write_top_level_array_size_and_stride;
4105 }
4106 free(var_name);
4107 var_name = get_top_level_name(temp_name);
4108 free(temp_name);
4109 if (!var_name) {
4110 linker_error(shProg, "Out of memory during linking.\n");
4111 goto write_top_level_array_size_and_stride;
4112 }
4113 }
4114
4115 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4116 const gl_linked_shader *sh = shProg->_LinkedShaders[i];
4117 if (sh == NULL)
4118 continue;
4119
4120 foreach_in_list(ir_instruction, node, sh->ir) {
4121 ir_variable *var = node->as_variable();
4122 if (!var || !var->get_interface_type() ||
4123 var->data.mode != ir_var_shader_storage)
4124 continue;
4125
4126 const glsl_type *interface = var->get_interface_type();
4127
4128 if (strcmp(interface_name, interface->name) != 0)
4129 continue;
4130
4131 for (unsigned i = 0; i < interface->length; i++) {
4132 const glsl_struct_field *field = &interface->fields.structure[i];
4133 if (strcmp(field->name, var_name) != 0)
4134 continue;
4135
4136 array_stride = get_array_stride(uni, interface, field,
4137 interface_name, var_name);
4138 array_size = get_array_size(uni, field, interface_name, var_name);
4139 goto write_top_level_array_size_and_stride;
4140 }
4141 }
4142 }
4143 write_top_level_array_size_and_stride:
4144 free(interface_name);
4145 free(var_name);
4146 uni->top_level_array_stride = array_stride;
4147 uni->top_level_array_size = array_size;
4148 }
4149
4150 /**
4151 * Builds up a list of program resources that point to existing
4152 * resource data.
4153 */
4154 void
4155 build_program_resource_list(struct gl_context *ctx,
4156 struct gl_shader_program *shProg)
4157 {
4158 /* Rebuild resource list. */
4159 if (shProg->data->ProgramResourceList) {
4160 ralloc_free(shProg->data->ProgramResourceList);
4161 shProg->data->ProgramResourceList = NULL;
4162 shProg->data->NumProgramResourceList = 0;
4163 }
4164
4165 int input_stage = MESA_SHADER_STAGES, output_stage = 0;
4166
4167 /* Determine first input and final output stage. These are used to
4168 * detect which variables should be enumerated in the resource list
4169 * for GL_PROGRAM_INPUT and GL_PROGRAM_OUTPUT.
4170 */
4171 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4172 if (!shProg->_LinkedShaders[i])
4173 continue;
4174 if (input_stage == MESA_SHADER_STAGES)
4175 input_stage = i;
4176 output_stage = i;
4177 }
4178
4179 /* Empty shader, no resources. */
4180 if (input_stage == MESA_SHADER_STAGES && output_stage == 0)
4181 return;
4182
4183 struct set *resource_set = _mesa_set_create(NULL,
4184 _mesa_hash_pointer,
4185 _mesa_key_pointer_equal);
4186
4187 /* Program interface needs to expose varyings in case of SSO. */
4188 if (shProg->SeparateShader) {
4189 if (!add_packed_varyings(ctx, shProg, resource_set,
4190 input_stage, GL_PROGRAM_INPUT))
4191 return;
4192
4193 if (!add_packed_varyings(ctx, shProg, resource_set,
4194 output_stage, GL_PROGRAM_OUTPUT))
4195 return;
4196 }
4197
4198 if (!add_fragdata_arrays(ctx, shProg, resource_set))
4199 return;
4200
4201 /* Add inputs and outputs to the resource list. */
4202 if (!add_interface_variables(ctx, shProg, resource_set,
4203 input_stage, GL_PROGRAM_INPUT))
4204 return;
4205
4206 if (!add_interface_variables(ctx, shProg, resource_set,
4207 output_stage, GL_PROGRAM_OUTPUT))
4208 return;
4209
4210 if (shProg->last_vert_prog) {
4211 struct gl_transform_feedback_info *linked_xfb =
4212 shProg->last_vert_prog->sh.LinkedTransformFeedback;
4213
4214 /* Add transform feedback varyings. */
4215 if (linked_xfb->NumVarying > 0) {
4216 for (int i = 0; i < linked_xfb->NumVarying; i++) {
4217 if (!add_program_resource(shProg, resource_set,
4218 GL_TRANSFORM_FEEDBACK_VARYING,
4219 &linked_xfb->Varyings[i], 0))
4220 return;
4221 }
4222 }
4223
4224 /* Add transform feedback buffers. */
4225 for (unsigned i = 0; i < ctx->Const.MaxTransformFeedbackBuffers; i++) {
4226 if ((linked_xfb->ActiveBuffers >> i) & 1) {
4227 linked_xfb->Buffers[i].Binding = i;
4228 if (!add_program_resource(shProg, resource_set,
4229 GL_TRANSFORM_FEEDBACK_BUFFER,
4230 &linked_xfb->Buffers[i], 0))
4231 return;
4232 }
4233 }
4234 }
4235
4236 /* Add uniforms from uniform storage. */
4237 for (unsigned i = 0; i < shProg->data->NumUniformStorage; i++) {
4238 /* Do not add uniforms internally used by Mesa. */
4239 if (shProg->data->UniformStorage[i].hidden)
4240 continue;
4241
4242 uint8_t stageref =
4243 build_stageref(shProg, shProg->data->UniformStorage[i].name,
4244 ir_var_uniform);
4245
4246 /* Add stagereferences for uniforms in a uniform block. */
4247 bool is_shader_storage =
4248 shProg->data->UniformStorage[i].is_shader_storage;
4249 int block_index = shProg->data->UniformStorage[i].block_index;
4250 if (block_index != -1) {
4251 stageref |= is_shader_storage ?
4252 shProg->data->ShaderStorageBlocks[block_index].stageref :
4253 shProg->data->UniformBlocks[block_index].stageref;
4254 }
4255
4256 GLenum type = is_shader_storage ? GL_BUFFER_VARIABLE : GL_UNIFORM;
4257 if (!should_add_buffer_variable(shProg, type,
4258 shProg->data->UniformStorage[i].name))
4259 continue;
4260
4261 if (is_shader_storage) {
4262 calculate_array_size_and_stride(shProg,
4263 &shProg->data->UniformStorage[i]);
4264 }
4265
4266 if (!add_program_resource(shProg, resource_set, type,
4267 &shProg->data->UniformStorage[i], stageref))
4268 return;
4269 }
4270
4271 /* Add program uniform blocks. */
4272 for (unsigned i = 0; i < shProg->data->NumUniformBlocks; i++) {
4273 if (!add_program_resource(shProg, resource_set, GL_UNIFORM_BLOCK,
4274 &shProg->data->UniformBlocks[i], 0))
4275 return;
4276 }
4277
4278 /* Add program shader storage blocks. */
4279 for (unsigned i = 0; i < shProg->data->NumShaderStorageBlocks; i++) {
4280 if (!add_program_resource(shProg, resource_set, GL_SHADER_STORAGE_BLOCK,
4281 &shProg->data->ShaderStorageBlocks[i], 0))
4282 return;
4283 }
4284
4285 /* Add atomic counter buffers. */
4286 for (unsigned i = 0; i < shProg->data->NumAtomicBuffers; i++) {
4287 if (!add_program_resource(shProg, resource_set, GL_ATOMIC_COUNTER_BUFFER,
4288 &shProg->data->AtomicBuffers[i], 0))
4289 return;
4290 }
4291
4292 for (unsigned i = 0; i < shProg->data->NumUniformStorage; i++) {
4293 GLenum type;
4294 if (!shProg->data->UniformStorage[i].hidden)
4295 continue;
4296
4297 for (int j = MESA_SHADER_VERTEX; j < MESA_SHADER_STAGES; j++) {
4298 if (!shProg->data->UniformStorage[i].opaque[j].active ||
4299 !shProg->data->UniformStorage[i].type->is_subroutine())
4300 continue;
4301
4302 type = _mesa_shader_stage_to_subroutine_uniform((gl_shader_stage)j);
4303 /* add shader subroutines */
4304 if (!add_program_resource(shProg, resource_set,
4305 type, &shProg->data->UniformStorage[i], 0))
4306 return;
4307 }
4308 }
4309
4310 unsigned mask = shProg->data->linked_stages;
4311 while (mask) {
4312 const int i = u_bit_scan(&mask);
4313 struct gl_program *p = shProg->_LinkedShaders[i]->Program;
4314
4315 GLuint type = _mesa_shader_stage_to_subroutine((gl_shader_stage)i);
4316 for (unsigned j = 0; j < p->sh.NumSubroutineFunctions; j++) {
4317 if (!add_program_resource(shProg, resource_set,
4318 type, &p->sh.SubroutineFunctions[j], 0))
4319 return;
4320 }
4321 }
4322
4323 _mesa_set_destroy(resource_set, NULL);
4324 }
4325
4326 /**
4327 * This check is done to make sure we allow only constant expression
4328 * indexing and "constant-index-expression" (indexing with an expression
4329 * that includes loop induction variable).
4330 */
4331 static bool
4332 validate_sampler_array_indexing(struct gl_context *ctx,
4333 struct gl_shader_program *prog)
4334 {
4335 dynamic_sampler_array_indexing_visitor v;
4336 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4337 if (prog->_LinkedShaders[i] == NULL)
4338 continue;
4339
4340 bool no_dynamic_indexing =
4341 ctx->Const.ShaderCompilerOptions[i].EmitNoIndirectSampler;
4342
4343 /* Search for array derefs in shader. */
4344 v.run(prog->_LinkedShaders[i]->ir);
4345 if (v.uses_dynamic_sampler_array_indexing()) {
4346 const char *msg = "sampler arrays indexed with non-constant "
4347 "expressions is forbidden in GLSL %s %u";
4348 /* Backend has indicated that it has no dynamic indexing support. */
4349 if (no_dynamic_indexing) {
4350 linker_error(prog, msg, prog->IsES ? "ES" : "",
4351 prog->data->Version);
4352 return false;
4353 } else {
4354 linker_warning(prog, msg, prog->IsES ? "ES" : "",
4355 prog->data->Version);
4356 }
4357 }
4358 }
4359 return true;
4360 }
4361
4362 static void
4363 link_assign_subroutine_types(struct gl_shader_program *prog)
4364 {
4365 unsigned mask = prog->data->linked_stages;
4366 while (mask) {
4367 const int i = u_bit_scan(&mask);
4368 gl_program *p = prog->_LinkedShaders[i]->Program;
4369
4370 p->sh.MaxSubroutineFunctionIndex = 0;
4371 foreach_in_list(ir_instruction, node, prog->_LinkedShaders[i]->ir) {
4372 ir_function *fn = node->as_function();
4373 if (!fn)
4374 continue;
4375
4376 if (fn->is_subroutine)
4377 p->sh.NumSubroutineUniformTypes++;
4378
4379 if (!fn->num_subroutine_types)
4380 continue;
4381
4382 /* these should have been calculated earlier. */
4383 assert(fn->subroutine_index != -1);
4384 if (p->sh.NumSubroutineFunctions + 1 > MAX_SUBROUTINES) {
4385 linker_error(prog, "Too many subroutine functions declared.\n");
4386 return;
4387 }
4388 p->sh.SubroutineFunctions = reralloc(p, p->sh.SubroutineFunctions,
4389 struct gl_subroutine_function,
4390 p->sh.NumSubroutineFunctions + 1);
4391 p->sh.SubroutineFunctions[p->sh.NumSubroutineFunctions].name = ralloc_strdup(p, fn->name);
4392 p->sh.SubroutineFunctions[p->sh.NumSubroutineFunctions].num_compat_types = fn->num_subroutine_types;
4393 p->sh.SubroutineFunctions[p->sh.NumSubroutineFunctions].types =
4394 ralloc_array(p, const struct glsl_type *,
4395 fn->num_subroutine_types);
4396
4397 /* From Section 4.4.4(Subroutine Function Layout Qualifiers) of the
4398 * GLSL 4.5 spec:
4399 *
4400 * "Each subroutine with an index qualifier in the shader must be
4401 * given a unique index, otherwise a compile or link error will be
4402 * generated."
4403 */
4404 for (unsigned j = 0; j < p->sh.NumSubroutineFunctions; j++) {
4405 if (p->sh.SubroutineFunctions[j].index != -1 &&
4406 p->sh.SubroutineFunctions[j].index == fn->subroutine_index) {
4407 linker_error(prog, "each subroutine index qualifier in the "
4408 "shader must be unique\n");
4409 return;
4410 }
4411 }
4412 p->sh.SubroutineFunctions[p->sh.NumSubroutineFunctions].index =
4413 fn->subroutine_index;
4414
4415 if (fn->subroutine_index > (int)p->sh.MaxSubroutineFunctionIndex)
4416 p->sh.MaxSubroutineFunctionIndex = fn->subroutine_index;
4417
4418 for (int j = 0; j < fn->num_subroutine_types; j++)
4419 p->sh.SubroutineFunctions[p->sh.NumSubroutineFunctions].types[j] = fn->subroutine_types[j];
4420 p->sh.NumSubroutineFunctions++;
4421 }
4422 }
4423 }
4424
4425 static void
4426 set_always_active_io(exec_list *ir, ir_variable_mode io_mode)
4427 {
4428 assert(io_mode == ir_var_shader_in || io_mode == ir_var_shader_out);
4429
4430 foreach_in_list(ir_instruction, node, ir) {
4431 ir_variable *const var = node->as_variable();
4432
4433 if (var == NULL || var->data.mode != io_mode)
4434 continue;
4435
4436 /* Don't set always active on builtins that haven't been redeclared */
4437 if (var->data.how_declared == ir_var_declared_implicitly)
4438 continue;
4439
4440 var->data.always_active_io = true;
4441 }
4442 }
4443
4444 /**
4445 * When separate shader programs are enabled, only input/outputs between
4446 * the stages of a multi-stage separate program can be safely removed
4447 * from the shader interface. Other inputs/outputs must remain active.
4448 */
4449 static void
4450 disable_varying_optimizations_for_sso(struct gl_shader_program *prog)
4451 {
4452 unsigned first, last;
4453 assert(prog->SeparateShader);
4454
4455 first = MESA_SHADER_STAGES;
4456 last = 0;
4457
4458 /* Determine first and last stage. Excluding the compute stage */
4459 for (unsigned i = 0; i < MESA_SHADER_COMPUTE; i++) {
4460 if (!prog->_LinkedShaders[i])
4461 continue;
4462 if (first == MESA_SHADER_STAGES)
4463 first = i;
4464 last = i;
4465 }
4466
4467 if (first == MESA_SHADER_STAGES)
4468 return;
4469
4470 for (unsigned stage = 0; stage < MESA_SHADER_STAGES; stage++) {
4471 gl_linked_shader *sh = prog->_LinkedShaders[stage];
4472 if (!sh)
4473 continue;
4474
4475 if (first == last) {
4476 /* For a single shader program only allow inputs to the vertex shader
4477 * and outputs from the fragment shader to be removed.
4478 */
4479 if (stage != MESA_SHADER_VERTEX)
4480 set_always_active_io(sh->ir, ir_var_shader_in);
4481 if (stage != MESA_SHADER_FRAGMENT)
4482 set_always_active_io(sh->ir, ir_var_shader_out);
4483 } else {
4484 /* For multi-stage separate shader programs only allow inputs and
4485 * outputs between the shader stages to be removed as well as inputs
4486 * to the vertex shader and outputs from the fragment shader.
4487 */
4488 if (stage == first && stage != MESA_SHADER_VERTEX)
4489 set_always_active_io(sh->ir, ir_var_shader_in);
4490 else if (stage == last && stage != MESA_SHADER_FRAGMENT)
4491 set_always_active_io(sh->ir, ir_var_shader_out);
4492 }
4493 }
4494 }
4495
4496 static void
4497 link_and_validate_uniforms(struct gl_context *ctx,
4498 struct gl_shader_program *prog)
4499 {
4500 update_array_sizes(prog);
4501 link_assign_uniform_locations(prog, ctx);
4502
4503 link_assign_atomic_counter_resources(ctx, prog);
4504 link_calculate_subroutine_compat(prog);
4505 check_resources(ctx, prog);
4506 check_subroutine_resources(prog);
4507 check_image_resources(ctx, prog);
4508 link_check_atomic_counter_resources(ctx, prog);
4509 }
4510
4511 static bool
4512 link_varyings_and_uniforms(unsigned first, unsigned last,
4513 struct gl_context *ctx,
4514 struct gl_shader_program *prog, void *mem_ctx)
4515 {
4516 /* Mark all generic shader inputs and outputs as unpaired. */
4517 for (unsigned i = MESA_SHADER_VERTEX; i <= MESA_SHADER_FRAGMENT; i++) {
4518 if (prog->_LinkedShaders[i] != NULL) {
4519 link_invalidate_variable_locations(prog->_LinkedShaders[i]->ir);
4520 }
4521 }
4522
4523 unsigned prev = first;
4524 for (unsigned i = prev + 1; i <= MESA_SHADER_FRAGMENT; i++) {
4525 if (prog->_LinkedShaders[i] == NULL)
4526 continue;
4527
4528 match_explicit_outputs_to_inputs(prog->_LinkedShaders[prev],
4529 prog->_LinkedShaders[i]);
4530 prev = i;
4531 }
4532
4533 if (!assign_attribute_or_color_locations(mem_ctx, prog, &ctx->Const,
4534 MESA_SHADER_VERTEX)) {
4535 return false;
4536 }
4537
4538 if (!assign_attribute_or_color_locations(mem_ctx, prog, &ctx->Const,
4539 MESA_SHADER_FRAGMENT)) {
4540 return false;
4541 }
4542
4543 prog->last_vert_prog = NULL;
4544 for (int i = MESA_SHADER_GEOMETRY; i >= MESA_SHADER_VERTEX; i--) {
4545 if (prog->_LinkedShaders[i] == NULL)
4546 continue;
4547
4548 prog->last_vert_prog = prog->_LinkedShaders[i]->Program;
4549 break;
4550 }
4551
4552 if (!link_varyings(prog, first, last, ctx, mem_ctx))
4553 return false;
4554
4555 link_and_validate_uniforms(ctx, prog);
4556
4557 if (!prog->data->LinkStatus)
4558 return false;
4559
4560 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4561 if (prog->_LinkedShaders[i] == NULL)
4562 continue;
4563
4564 const struct gl_shader_compiler_options *options =
4565 &ctx->Const.ShaderCompilerOptions[i];
4566
4567 if (options->LowerBufferInterfaceBlocks)
4568 lower_ubo_reference(prog->_LinkedShaders[i],
4569 options->ClampBlockIndicesToArrayBounds);
4570
4571 if (i == MESA_SHADER_COMPUTE)
4572 lower_shared_reference(prog->_LinkedShaders[i],
4573 &prog->Comp.SharedSize);
4574
4575 lower_vector_derefs(prog->_LinkedShaders[i]);
4576 do_vec_index_to_swizzle(prog->_LinkedShaders[i]->ir);
4577 }
4578
4579 return true;
4580 }
4581
4582 static void
4583 linker_optimisation_loop(struct gl_context *ctx, exec_list *ir,
4584 unsigned stage)
4585 {
4586 if (ctx->Const.GLSLOptimizeConservatively) {
4587 /* Run it just once. */
4588 do_common_optimization(ir, true, false,
4589 &ctx->Const.ShaderCompilerOptions[stage],
4590 ctx->Const.NativeIntegers);
4591 } else {
4592 /* Repeat it until it stops making changes. */
4593 while (do_common_optimization(ir, true, false,
4594 &ctx->Const.ShaderCompilerOptions[stage],
4595 ctx->Const.NativeIntegers))
4596 ;
4597 }
4598 }
4599
4600 void
4601 link_shaders(struct gl_context *ctx, struct gl_shader_program *prog)
4602 {
4603 prog->data->LinkStatus = linking_success; /* All error paths will set this to false */
4604 prog->data->Validated = false;
4605
4606 /* Section 7.3 (Program Objects) of the OpenGL 4.5 Core Profile spec says:
4607 *
4608 * "Linking can fail for a variety of reasons as specified in the
4609 * OpenGL Shading Language Specification, as well as any of the
4610 * following reasons:
4611 *
4612 * - No shader objects are attached to program."
4613 *
4614 * The Compatibility Profile specification does not list the error. In
4615 * Compatibility Profile missing shader stages are replaced by
4616 * fixed-function. This applies to the case where all stages are
4617 * missing.
4618 */
4619 if (prog->NumShaders == 0) {
4620 if (ctx->API != API_OPENGL_COMPAT)
4621 linker_error(prog, "no shaders attached to the program\n");
4622 return;
4623 }
4624
4625 /* If transform feedback used on the program then compile all shaders. */
4626 bool skip_cache = false;
4627 if (prog->TransformFeedback.NumVarying > 0) {
4628 for (unsigned i = 0; i < prog->NumShaders; i++) {
4629 if (prog->Shaders[i]->ir) {
4630 continue;
4631 }
4632 _mesa_glsl_compile_shader(ctx, prog->Shaders[i], false, false, true);
4633 }
4634 skip_cache = true;
4635 }
4636
4637 if (!skip_cache && shader_cache_read_program_metadata(ctx, prog))
4638 return;
4639
4640 void *mem_ctx = ralloc_context(NULL); // temporary linker context
4641
4642 prog->ARB_fragment_coord_conventions_enable = false;
4643
4644 /* Separate the shaders into groups based on their type.
4645 */
4646 struct gl_shader **shader_list[MESA_SHADER_STAGES];
4647 unsigned num_shaders[MESA_SHADER_STAGES];
4648
4649 for (int i = 0; i < MESA_SHADER_STAGES; i++) {
4650 shader_list[i] = (struct gl_shader **)
4651 calloc(prog->NumShaders, sizeof(struct gl_shader *));
4652 num_shaders[i] = 0;
4653 }
4654
4655 unsigned min_version = UINT_MAX;
4656 unsigned max_version = 0;
4657 for (unsigned i = 0; i < prog->NumShaders; i++) {
4658 min_version = MIN2(min_version, prog->Shaders[i]->Version);
4659 max_version = MAX2(max_version, prog->Shaders[i]->Version);
4660
4661 if (prog->Shaders[i]->IsES != prog->Shaders[0]->IsES) {
4662 linker_error(prog, "all shaders must use same shading "
4663 "language version\n");
4664 goto done;
4665 }
4666
4667 if (prog->Shaders[i]->ARB_fragment_coord_conventions_enable) {
4668 prog->ARB_fragment_coord_conventions_enable = true;
4669 }
4670
4671 gl_shader_stage shader_type = prog->Shaders[i]->Stage;
4672 shader_list[shader_type][num_shaders[shader_type]] = prog->Shaders[i];
4673 num_shaders[shader_type]++;
4674 }
4675
4676 /* In desktop GLSL, different shader versions may be linked together. In
4677 * GLSL ES, all shader versions must be the same.
4678 */
4679 if (prog->Shaders[0]->IsES && min_version != max_version) {
4680 linker_error(prog, "all shaders must use same shading "
4681 "language version\n");
4682 goto done;
4683 }
4684
4685 prog->data->Version = max_version;
4686 prog->IsES = prog->Shaders[0]->IsES;
4687
4688 /* Some shaders have to be linked with some other shaders present.
4689 */
4690 if (!prog->SeparateShader) {
4691 if (num_shaders[MESA_SHADER_GEOMETRY] > 0 &&
4692 num_shaders[MESA_SHADER_VERTEX] == 0) {
4693 linker_error(prog, "Geometry shader must be linked with "
4694 "vertex shader\n");
4695 goto done;
4696 }
4697 if (num_shaders[MESA_SHADER_TESS_EVAL] > 0 &&
4698 num_shaders[MESA_SHADER_VERTEX] == 0) {
4699 linker_error(prog, "Tessellation evaluation shader must be linked "
4700 "with vertex shader\n");
4701 goto done;
4702 }
4703 if (num_shaders[MESA_SHADER_TESS_CTRL] > 0 &&
4704 num_shaders[MESA_SHADER_VERTEX] == 0) {
4705 linker_error(prog, "Tessellation control shader must be linked with "
4706 "vertex shader\n");
4707 goto done;
4708 }
4709
4710 /* Section 7.3 of the OpenGL ES 3.2 specification says:
4711 *
4712 * "Linking can fail for [...] any of the following reasons:
4713 *
4714 * * program contains an object to form a tessellation control
4715 * shader [...] and [...] the program is not separable and
4716 * contains no object to form a tessellation evaluation shader"
4717 *
4718 * The OpenGL spec is contradictory. It allows linking without a tess
4719 * eval shader, but that can only be used with transform feedback and
4720 * rasterization disabled. However, transform feedback isn't allowed
4721 * with GL_PATCHES, so it can't be used.
4722 *
4723 * More investigation showed that the idea of transform feedback after
4724 * a tess control shader was dropped, because some hw vendors couldn't
4725 * support tessellation without a tess eval shader, but the linker
4726 * section wasn't updated to reflect that.
4727 *
4728 * All specifications (ARB_tessellation_shader, GL 4.0-4.5) have this
4729 * spec bug.
4730 *
4731 * Do what's reasonable and always require a tess eval shader if a tess
4732 * control shader is present.
4733 */
4734 if (num_shaders[MESA_SHADER_TESS_CTRL] > 0 &&
4735 num_shaders[MESA_SHADER_TESS_EVAL] == 0) {
4736 linker_error(prog, "Tessellation control shader must be linked with "
4737 "tessellation evaluation shader\n");
4738 goto done;
4739 }
4740 }
4741
4742 /* Compute shaders have additional restrictions. */
4743 if (num_shaders[MESA_SHADER_COMPUTE] > 0 &&
4744 num_shaders[MESA_SHADER_COMPUTE] != prog->NumShaders) {
4745 linker_error(prog, "Compute shaders may not be linked with any other "
4746 "type of shader\n");
4747 }
4748
4749 /* Link all shaders for a particular stage and validate the result.
4750 */
4751 for (int stage = 0; stage < MESA_SHADER_STAGES; stage++) {
4752 if (num_shaders[stage] > 0) {
4753 gl_linked_shader *const sh =
4754 link_intrastage_shaders(mem_ctx, ctx, prog, shader_list[stage],
4755 num_shaders[stage], false);
4756
4757 if (!prog->data->LinkStatus) {
4758 if (sh)
4759 _mesa_delete_linked_shader(ctx, sh);
4760 goto done;
4761 }
4762
4763 switch (stage) {
4764 case MESA_SHADER_VERTEX:
4765 validate_vertex_shader_executable(prog, sh, ctx);
4766 break;
4767 case MESA_SHADER_TESS_CTRL:
4768 /* nothing to be done */
4769 break;
4770 case MESA_SHADER_TESS_EVAL:
4771 validate_tess_eval_shader_executable(prog, sh, ctx);
4772 break;
4773 case MESA_SHADER_GEOMETRY:
4774 validate_geometry_shader_executable(prog, sh, ctx);
4775 break;
4776 case MESA_SHADER_FRAGMENT:
4777 validate_fragment_shader_executable(prog, sh);
4778 break;
4779 }
4780 if (!prog->data->LinkStatus) {
4781 if (sh)
4782 _mesa_delete_linked_shader(ctx, sh);
4783 goto done;
4784 }
4785
4786 prog->_LinkedShaders[stage] = sh;
4787 prog->data->linked_stages |= 1 << stage;
4788 }
4789 }
4790
4791 /* Here begins the inter-stage linking phase. Some initial validation is
4792 * performed, then locations are assigned for uniforms, attributes, and
4793 * varyings.
4794 */
4795 cross_validate_uniforms(prog);
4796 if (!prog->data->LinkStatus)
4797 goto done;
4798
4799 unsigned first, last, prev;
4800
4801 first = MESA_SHADER_STAGES;
4802 last = 0;
4803
4804 /* Determine first and last stage. */
4805 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4806 if (!prog->_LinkedShaders[i])
4807 continue;
4808 if (first == MESA_SHADER_STAGES)
4809 first = i;
4810 last = i;
4811 }
4812
4813 check_explicit_uniform_locations(ctx, prog);
4814 link_assign_subroutine_types(prog);
4815
4816 if (!prog->data->LinkStatus)
4817 goto done;
4818
4819 resize_tes_inputs(ctx, prog);
4820
4821 /* Validate the inputs of each stage with the output of the preceding
4822 * stage.
4823 */
4824 prev = first;
4825 for (unsigned i = prev + 1; i <= MESA_SHADER_FRAGMENT; i++) {
4826 if (prog->_LinkedShaders[i] == NULL)
4827 continue;
4828
4829 validate_interstage_inout_blocks(prog, prog->_LinkedShaders[prev],
4830 prog->_LinkedShaders[i]);
4831 if (!prog->data->LinkStatus)
4832 goto done;
4833
4834 cross_validate_outputs_to_inputs(prog,
4835 prog->_LinkedShaders[prev],
4836 prog->_LinkedShaders[i]);
4837 if (!prog->data->LinkStatus)
4838 goto done;
4839
4840 prev = i;
4841 }
4842
4843 /* Cross-validate uniform blocks between shader stages */
4844 validate_interstage_uniform_blocks(prog, prog->_LinkedShaders);
4845 if (!prog->data->LinkStatus)
4846 goto done;
4847
4848 for (unsigned int i = 0; i < MESA_SHADER_STAGES; i++) {
4849 if (prog->_LinkedShaders[i] != NULL)
4850 lower_named_interface_blocks(mem_ctx, prog->_LinkedShaders[i]);
4851 }
4852
4853 /* Implement the GLSL 1.30+ rule for discard vs infinite loops Do
4854 * it before optimization because we want most of the checks to get
4855 * dropped thanks to constant propagation.
4856 *
4857 * This rule also applies to GLSL ES 3.00.
4858 */
4859 if (max_version >= (prog->IsES ? 300 : 130)) {
4860 struct gl_linked_shader *sh = prog->_LinkedShaders[MESA_SHADER_FRAGMENT];
4861 if (sh) {
4862 lower_discard_flow(sh->ir);
4863 }
4864 }
4865
4866 if (prog->SeparateShader)
4867 disable_varying_optimizations_for_sso(prog);
4868
4869 /* Process UBOs */
4870 if (!interstage_cross_validate_uniform_blocks(prog, false))
4871 goto done;
4872
4873 /* Process SSBOs */
4874 if (!interstage_cross_validate_uniform_blocks(prog, true))
4875 goto done;
4876
4877 /* Do common optimization before assigning storage for attributes,
4878 * uniforms, and varyings. Later optimization could possibly make
4879 * some of that unused.
4880 */
4881 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4882 if (prog->_LinkedShaders[i] == NULL)
4883 continue;
4884
4885 detect_recursion_linked(prog, prog->_LinkedShaders[i]->ir);
4886 if (!prog->data->LinkStatus)
4887 goto done;
4888
4889 if (ctx->Const.ShaderCompilerOptions[i].LowerCombinedClipCullDistance) {
4890 lower_clip_cull_distance(prog, prog->_LinkedShaders[i]);
4891 }
4892
4893 if (ctx->Const.LowerTessLevel) {
4894 lower_tess_level(prog->_LinkedShaders[i]);
4895 }
4896
4897 /* Call opts before lowering const arrays to uniforms so we can const
4898 * propagate any elements accessed directly.
4899 */
4900 linker_optimisation_loop(ctx, prog->_LinkedShaders[i]->ir, i);
4901
4902 /* Call opts after lowering const arrays to copy propagate things. */
4903 if (lower_const_arrays_to_uniforms(prog->_LinkedShaders[i]->ir, i))
4904 linker_optimisation_loop(ctx, prog->_LinkedShaders[i]->ir, i);
4905
4906 propagate_invariance(prog->_LinkedShaders[i]->ir);
4907 }
4908
4909 /* Validation for special cases where we allow sampler array indexing
4910 * with loop induction variable. This check emits a warning or error
4911 * depending if backend can handle dynamic indexing.
4912 */
4913 if ((!prog->IsES && prog->data->Version < 130) ||
4914 (prog->IsES && prog->data->Version < 300)) {
4915 if (!validate_sampler_array_indexing(ctx, prog))
4916 goto done;
4917 }
4918
4919 /* Check and validate stream emissions in geometry shaders */
4920 validate_geometry_shader_emissions(ctx, prog);
4921
4922 store_fragdepth_layout(prog);
4923
4924 if(!link_varyings_and_uniforms(first, last, ctx, prog, mem_ctx))
4925 goto done;
4926
4927 /* OpenGL ES < 3.1 requires that a vertex shader and a fragment shader both
4928 * be present in a linked program. GL_ARB_ES2_compatibility doesn't say
4929 * anything about shader linking when one of the shaders (vertex or
4930 * fragment shader) is absent. So, the extension shouldn't change the
4931 * behavior specified in GLSL specification.
4932 *
4933 * From OpenGL ES 3.1 specification (7.3 Program Objects):
4934 * "Linking can fail for a variety of reasons as specified in the
4935 * OpenGL ES Shading Language Specification, as well as any of the
4936 * following reasons:
4937 *
4938 * ...
4939 *
4940 * * program contains objects to form either a vertex shader or
4941 * fragment shader, and program is not separable, and does not
4942 * contain objects to form both a vertex shader and fragment
4943 * shader."
4944 *
4945 * However, the only scenario in 3.1+ where we don't require them both is
4946 * when we have a compute shader. For example:
4947 *
4948 * - No shaders is a link error.
4949 * - Geom or Tess without a Vertex shader is a link error which means we
4950 * always require a Vertex shader and hence a Fragment shader.
4951 * - Finally a Compute shader linked with any other stage is a link error.
4952 */
4953 if (!prog->SeparateShader && ctx->API == API_OPENGLES2 &&
4954 num_shaders[MESA_SHADER_COMPUTE] == 0) {
4955 if (prog->_LinkedShaders[MESA_SHADER_VERTEX] == NULL) {
4956 linker_error(prog, "program lacks a vertex shader\n");
4957 } else if (prog->_LinkedShaders[MESA_SHADER_FRAGMENT] == NULL) {
4958 linker_error(prog, "program lacks a fragment shader\n");
4959 }
4960 }
4961
4962 done:
4963 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4964 free(shader_list[i]);
4965 if (prog->_LinkedShaders[i] == NULL)
4966 continue;
4967
4968 /* Do a final validation step to make sure that the IR wasn't
4969 * invalidated by any modifications performed after intrastage linking.
4970 */
4971 validate_ir_tree(prog->_LinkedShaders[i]->ir);
4972
4973 /* Retain any live IR, but trash the rest. */
4974 reparent_ir(prog->_LinkedShaders[i]->ir, prog->_LinkedShaders[i]->ir);
4975
4976 /* The symbol table in the linked shaders may contain references to
4977 * variables that were removed (e.g., unused uniforms). Since it may
4978 * contain junk, there is no possible valid use. Delete it and set the
4979 * pointer to NULL.
4980 */
4981 delete prog->_LinkedShaders[i]->symbols;
4982 prog->_LinkedShaders[i]->symbols = NULL;
4983 }
4984
4985 ralloc_free(mem_ctx);
4986 }