glsl: explicitly zero out padding to gl_shader_variable bitfield
[mesa.git] / src / compiler / glsl / linker.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file linker.cpp
26 * GLSL linker implementation
27 *
28 * Given a set of shaders that are to be linked to generate a final program,
29 * there are three distinct stages.
30 *
31 * In the first stage shaders are partitioned into groups based on the shader
32 * type. All shaders of a particular type (e.g., vertex shaders) are linked
33 * together.
34 *
35 * - Undefined references in each shader are resolve to definitions in
36 * another shader.
37 * - Types and qualifiers of uniforms, outputs, and global variables defined
38 * in multiple shaders with the same name are verified to be the same.
39 * - Initializers for uniforms and global variables defined
40 * in multiple shaders with the same name are verified to be the same.
41 *
42 * The result, in the terminology of the GLSL spec, is a set of shader
43 * executables for each processing unit.
44 *
45 * After the first stage is complete, a series of semantic checks are performed
46 * on each of the shader executables.
47 *
48 * - Each shader executable must define a \c main function.
49 * - Each vertex shader executable must write to \c gl_Position.
50 * - Each fragment shader executable must write to either \c gl_FragData or
51 * \c gl_FragColor.
52 *
53 * In the final stage individual shader executables are linked to create a
54 * complete exectuable.
55 *
56 * - Types of uniforms defined in multiple shader stages with the same name
57 * are verified to be the same.
58 * - Initializers for uniforms defined in multiple shader stages with the
59 * same name are verified to be the same.
60 * - Types and qualifiers of outputs defined in one stage are verified to
61 * be the same as the types and qualifiers of inputs defined with the same
62 * name in a later stage.
63 *
64 * \author Ian Romanick <ian.d.romanick@intel.com>
65 */
66
67 #include <ctype.h>
68 #include "util/strndup.h"
69 #include "main/core.h"
70 #include "glsl_symbol_table.h"
71 #include "glsl_parser_extras.h"
72 #include "ir.h"
73 #include "program.h"
74 #include "program/prog_instruction.h"
75 #include "program/program.h"
76 #include "util/mesa-sha1.h"
77 #include "util/set.h"
78 #include "util/string_to_uint_map.h"
79 #include "linker.h"
80 #include "link_varyings.h"
81 #include "ir_optimization.h"
82 #include "ir_rvalue_visitor.h"
83 #include "ir_uniform.h"
84 #include "builtin_functions.h"
85 #include "shader_cache.h"
86
87 #include "main/shaderobj.h"
88 #include "main/enums.h"
89
90
91 namespace {
92
93 struct find_variable {
94 const char *name;
95 bool found;
96
97 find_variable(const char *name) : name(name), found(false) {}
98 };
99
100 /**
101 * Visitor that determines whether or not a variable is ever written.
102 *
103 * Use \ref find_assignments for convenience.
104 */
105 class find_assignment_visitor : public ir_hierarchical_visitor {
106 public:
107 find_assignment_visitor(unsigned num_vars,
108 find_variable * const *vars)
109 : num_variables(num_vars), num_found(0), variables(vars)
110 {
111 }
112
113 virtual ir_visitor_status visit_enter(ir_assignment *ir)
114 {
115 ir_variable *const var = ir->lhs->variable_referenced();
116
117 return check_variable_name(var->name);
118 }
119
120 virtual ir_visitor_status visit_enter(ir_call *ir)
121 {
122 foreach_two_lists(formal_node, &ir->callee->parameters,
123 actual_node, &ir->actual_parameters) {
124 ir_rvalue *param_rval = (ir_rvalue *) actual_node;
125 ir_variable *sig_param = (ir_variable *) formal_node;
126
127 if (sig_param->data.mode == ir_var_function_out ||
128 sig_param->data.mode == ir_var_function_inout) {
129 ir_variable *var = param_rval->variable_referenced();
130 if (var && check_variable_name(var->name) == visit_stop)
131 return visit_stop;
132 }
133 }
134
135 if (ir->return_deref != NULL) {
136 ir_variable *const var = ir->return_deref->variable_referenced();
137
138 if (check_variable_name(var->name) == visit_stop)
139 return visit_stop;
140 }
141
142 return visit_continue_with_parent;
143 }
144
145 private:
146 ir_visitor_status check_variable_name(const char *name)
147 {
148 for (unsigned i = 0; i < num_variables; ++i) {
149 if (strcmp(variables[i]->name, name) == 0) {
150 if (!variables[i]->found) {
151 variables[i]->found = true;
152
153 assert(num_found < num_variables);
154 if (++num_found == num_variables)
155 return visit_stop;
156 }
157 break;
158 }
159 }
160
161 return visit_continue_with_parent;
162 }
163
164 private:
165 unsigned num_variables; /**< Number of variables to find */
166 unsigned num_found; /**< Number of variables already found */
167 find_variable * const *variables; /**< Variables to find */
168 };
169
170 /**
171 * Determine whether or not any of NULL-terminated list of variables is ever
172 * written to.
173 */
174 static void
175 find_assignments(exec_list *ir, find_variable * const *vars)
176 {
177 unsigned num_variables = 0;
178
179 for (find_variable * const *v = vars; *v; ++v)
180 num_variables++;
181
182 find_assignment_visitor visitor(num_variables, vars);
183 visitor.run(ir);
184 }
185
186 /**
187 * Determine whether or not the given variable is ever written to.
188 */
189 static void
190 find_assignments(exec_list *ir, find_variable *var)
191 {
192 find_assignment_visitor visitor(1, &var);
193 visitor.run(ir);
194 }
195
196 /**
197 * Visitor that determines whether or not a variable is ever read.
198 */
199 class find_deref_visitor : public ir_hierarchical_visitor {
200 public:
201 find_deref_visitor(const char *name)
202 : name(name), found(false)
203 {
204 /* empty */
205 }
206
207 virtual ir_visitor_status visit(ir_dereference_variable *ir)
208 {
209 if (strcmp(this->name, ir->var->name) == 0) {
210 this->found = true;
211 return visit_stop;
212 }
213
214 return visit_continue;
215 }
216
217 bool variable_found() const
218 {
219 return this->found;
220 }
221
222 private:
223 const char *name; /**< Find writes to a variable with this name. */
224 bool found; /**< Was a write to the variable found? */
225 };
226
227
228 /**
229 * A visitor helper that provides methods for updating the types of
230 * ir_dereferences. Classes that update variable types (say, updating
231 * array sizes) will want to use this so that dereference types stay in sync.
232 */
233 class deref_type_updater : public ir_hierarchical_visitor {
234 public:
235 virtual ir_visitor_status visit(ir_dereference_variable *ir)
236 {
237 ir->type = ir->var->type;
238 return visit_continue;
239 }
240
241 virtual ir_visitor_status visit_leave(ir_dereference_array *ir)
242 {
243 const glsl_type *const vt = ir->array->type;
244 if (vt->is_array())
245 ir->type = vt->fields.array;
246 return visit_continue;
247 }
248
249 virtual ir_visitor_status visit_leave(ir_dereference_record *ir)
250 {
251 for (unsigned i = 0; i < ir->record->type->length; i++) {
252 const struct glsl_struct_field *field =
253 &ir->record->type->fields.structure[i];
254 if (strcmp(field->name, ir->field) == 0) {
255 ir->type = field->type;
256 break;
257 }
258 }
259 return visit_continue;
260 }
261 };
262
263
264 class array_resize_visitor : public deref_type_updater {
265 public:
266 unsigned num_vertices;
267 gl_shader_program *prog;
268 gl_shader_stage stage;
269
270 array_resize_visitor(unsigned num_vertices,
271 gl_shader_program *prog,
272 gl_shader_stage stage)
273 {
274 this->num_vertices = num_vertices;
275 this->prog = prog;
276 this->stage = stage;
277 }
278
279 virtual ~array_resize_visitor()
280 {
281 /* empty */
282 }
283
284 virtual ir_visitor_status visit(ir_variable *var)
285 {
286 if (!var->type->is_array() || var->data.mode != ir_var_shader_in ||
287 var->data.patch)
288 return visit_continue;
289
290 unsigned size = var->type->length;
291
292 if (stage == MESA_SHADER_GEOMETRY) {
293 /* Generate a link error if the shader has declared this array with
294 * an incorrect size.
295 */
296 if (!var->data.implicit_sized_array &&
297 size && size != this->num_vertices) {
298 linker_error(this->prog, "size of array %s declared as %u, "
299 "but number of input vertices is %u\n",
300 var->name, size, this->num_vertices);
301 return visit_continue;
302 }
303
304 /* Generate a link error if the shader attempts to access an input
305 * array using an index too large for its actual size assigned at
306 * link time.
307 */
308 if (var->data.max_array_access >= (int)this->num_vertices) {
309 linker_error(this->prog, "%s shader accesses element %i of "
310 "%s, but only %i input vertices\n",
311 _mesa_shader_stage_to_string(this->stage),
312 var->data.max_array_access, var->name, this->num_vertices);
313 return visit_continue;
314 }
315 }
316
317 var->type = glsl_type::get_array_instance(var->type->fields.array,
318 this->num_vertices);
319 var->data.max_array_access = this->num_vertices - 1;
320
321 return visit_continue;
322 }
323 };
324
325 /**
326 * Visitor that determines the highest stream id to which a (geometry) shader
327 * emits vertices. It also checks whether End{Stream}Primitive is ever called.
328 */
329 class find_emit_vertex_visitor : public ir_hierarchical_visitor {
330 public:
331 find_emit_vertex_visitor(int max_allowed)
332 : max_stream_allowed(max_allowed),
333 invalid_stream_id(0),
334 invalid_stream_id_from_emit_vertex(false),
335 end_primitive_found(false),
336 uses_non_zero_stream(false)
337 {
338 /* empty */
339 }
340
341 virtual ir_visitor_status visit_leave(ir_emit_vertex *ir)
342 {
343 int stream_id = ir->stream_id();
344
345 if (stream_id < 0) {
346 invalid_stream_id = stream_id;
347 invalid_stream_id_from_emit_vertex = true;
348 return visit_stop;
349 }
350
351 if (stream_id > max_stream_allowed) {
352 invalid_stream_id = stream_id;
353 invalid_stream_id_from_emit_vertex = true;
354 return visit_stop;
355 }
356
357 if (stream_id != 0)
358 uses_non_zero_stream = true;
359
360 return visit_continue;
361 }
362
363 virtual ir_visitor_status visit_leave(ir_end_primitive *ir)
364 {
365 end_primitive_found = true;
366
367 int stream_id = ir->stream_id();
368
369 if (stream_id < 0) {
370 invalid_stream_id = stream_id;
371 invalid_stream_id_from_emit_vertex = false;
372 return visit_stop;
373 }
374
375 if (stream_id > max_stream_allowed) {
376 invalid_stream_id = stream_id;
377 invalid_stream_id_from_emit_vertex = false;
378 return visit_stop;
379 }
380
381 if (stream_id != 0)
382 uses_non_zero_stream = true;
383
384 return visit_continue;
385 }
386
387 bool error()
388 {
389 return invalid_stream_id != 0;
390 }
391
392 const char *error_func()
393 {
394 return invalid_stream_id_from_emit_vertex ?
395 "EmitStreamVertex" : "EndStreamPrimitive";
396 }
397
398 int error_stream()
399 {
400 return invalid_stream_id;
401 }
402
403 bool uses_streams()
404 {
405 return uses_non_zero_stream;
406 }
407
408 bool uses_end_primitive()
409 {
410 return end_primitive_found;
411 }
412
413 private:
414 int max_stream_allowed;
415 int invalid_stream_id;
416 bool invalid_stream_id_from_emit_vertex;
417 bool end_primitive_found;
418 bool uses_non_zero_stream;
419 };
420
421 /* Class that finds array derefs and check if indexes are dynamic. */
422 class dynamic_sampler_array_indexing_visitor : public ir_hierarchical_visitor
423 {
424 public:
425 dynamic_sampler_array_indexing_visitor() :
426 dynamic_sampler_array_indexing(false)
427 {
428 }
429
430 ir_visitor_status visit_enter(ir_dereference_array *ir)
431 {
432 if (!ir->variable_referenced())
433 return visit_continue;
434
435 if (!ir->variable_referenced()->type->contains_sampler())
436 return visit_continue;
437
438 if (!ir->array_index->constant_expression_value()) {
439 dynamic_sampler_array_indexing = true;
440 return visit_stop;
441 }
442 return visit_continue;
443 }
444
445 bool uses_dynamic_sampler_array_indexing()
446 {
447 return dynamic_sampler_array_indexing;
448 }
449
450 private:
451 bool dynamic_sampler_array_indexing;
452 };
453
454 } /* anonymous namespace */
455
456 void
457 linker_error(gl_shader_program *prog, const char *fmt, ...)
458 {
459 va_list ap;
460
461 ralloc_strcat(&prog->data->InfoLog, "error: ");
462 va_start(ap, fmt);
463 ralloc_vasprintf_append(&prog->data->InfoLog, fmt, ap);
464 va_end(ap);
465
466 prog->data->LinkStatus = linking_failure;
467 }
468
469
470 void
471 linker_warning(gl_shader_program *prog, const char *fmt, ...)
472 {
473 va_list ap;
474
475 ralloc_strcat(&prog->data->InfoLog, "warning: ");
476 va_start(ap, fmt);
477 ralloc_vasprintf_append(&prog->data->InfoLog, fmt, ap);
478 va_end(ap);
479
480 }
481
482
483 /**
484 * Given a string identifying a program resource, break it into a base name
485 * and an optional array index in square brackets.
486 *
487 * If an array index is present, \c out_base_name_end is set to point to the
488 * "[" that precedes the array index, and the array index itself is returned
489 * as a long.
490 *
491 * If no array index is present (or if the array index is negative or
492 * mal-formed), \c out_base_name_end, is set to point to the null terminator
493 * at the end of the input string, and -1 is returned.
494 *
495 * Only the final array index is parsed; if the string contains other array
496 * indices (or structure field accesses), they are left in the base name.
497 *
498 * No attempt is made to check that the base name is properly formed;
499 * typically the caller will look up the base name in a hash table, so
500 * ill-formed base names simply turn into hash table lookup failures.
501 */
502 long
503 parse_program_resource_name(const GLchar *name,
504 const GLchar **out_base_name_end)
505 {
506 /* Section 7.3.1 ("Program Interfaces") of the OpenGL 4.3 spec says:
507 *
508 * "When an integer array element or block instance number is part of
509 * the name string, it will be specified in decimal form without a "+"
510 * or "-" sign or any extra leading zeroes. Additionally, the name
511 * string will not include white space anywhere in the string."
512 */
513
514 const size_t len = strlen(name);
515 *out_base_name_end = name + len;
516
517 if (len == 0 || name[len-1] != ']')
518 return -1;
519
520 /* Walk backwards over the string looking for a non-digit character. This
521 * had better be the opening bracket for an array index.
522 *
523 * Initially, i specifies the location of the ']'. Since the string may
524 * contain only the ']' charcater, walk backwards very carefully.
525 */
526 unsigned i;
527 for (i = len - 1; (i > 0) && isdigit(name[i-1]); --i)
528 /* empty */ ;
529
530 if ((i == 0) || name[i-1] != '[')
531 return -1;
532
533 long array_index = strtol(&name[i], NULL, 10);
534 if (array_index < 0)
535 return -1;
536
537 /* Check for leading zero */
538 if (name[i] == '0' && name[i+1] != ']')
539 return -1;
540
541 *out_base_name_end = name + (i - 1);
542 return array_index;
543 }
544
545
546 void
547 link_invalidate_variable_locations(exec_list *ir)
548 {
549 foreach_in_list(ir_instruction, node, ir) {
550 ir_variable *const var = node->as_variable();
551
552 if (var == NULL)
553 continue;
554
555 /* Only assign locations for variables that lack an explicit location.
556 * Explicit locations are set for all built-in variables, generic vertex
557 * shader inputs (via layout(location=...)), and generic fragment shader
558 * outputs (also via layout(location=...)).
559 */
560 if (!var->data.explicit_location) {
561 var->data.location = -1;
562 var->data.location_frac = 0;
563 }
564
565 /* ir_variable::is_unmatched_generic_inout is used by the linker while
566 * connecting outputs from one stage to inputs of the next stage.
567 */
568 if (var->data.explicit_location &&
569 var->data.location < VARYING_SLOT_VAR0) {
570 var->data.is_unmatched_generic_inout = 0;
571 } else {
572 var->data.is_unmatched_generic_inout = 1;
573 }
574 }
575 }
576
577
578 /**
579 * Set clip_distance_array_size based and cull_distance_array_size on the given
580 * shader.
581 *
582 * Also check for errors based on incorrect usage of gl_ClipVertex and
583 * gl_ClipDistance and gl_CullDistance.
584 * Additionally test whether the arrays gl_ClipDistance and gl_CullDistance
585 * exceed the maximum size defined by gl_MaxCombinedClipAndCullDistances.
586 *
587 * Return false if an error was reported.
588 */
589 static void
590 analyze_clip_cull_usage(struct gl_shader_program *prog,
591 struct gl_linked_shader *shader,
592 struct gl_context *ctx,
593 GLuint *clip_distance_array_size,
594 GLuint *cull_distance_array_size)
595 {
596 *clip_distance_array_size = 0;
597 *cull_distance_array_size = 0;
598
599 if (prog->data->Version >= (prog->IsES ? 300 : 130)) {
600 /* From section 7.1 (Vertex Shader Special Variables) of the
601 * GLSL 1.30 spec:
602 *
603 * "It is an error for a shader to statically write both
604 * gl_ClipVertex and gl_ClipDistance."
605 *
606 * This does not apply to GLSL ES shaders, since GLSL ES defines neither
607 * gl_ClipVertex nor gl_ClipDistance. However with
608 * GL_EXT_clip_cull_distance, this functionality is exposed in ES 3.0.
609 */
610 find_variable gl_ClipDistance("gl_ClipDistance");
611 find_variable gl_CullDistance("gl_CullDistance");
612 find_variable gl_ClipVertex("gl_ClipVertex");
613 find_variable * const variables[] = {
614 &gl_ClipDistance,
615 &gl_CullDistance,
616 !prog->IsES ? &gl_ClipVertex : NULL,
617 NULL
618 };
619 find_assignments(shader->ir, variables);
620
621 /* From the ARB_cull_distance spec:
622 *
623 * It is a compile-time or link-time error for the set of shaders forming
624 * a program to statically read or write both gl_ClipVertex and either
625 * gl_ClipDistance or gl_CullDistance.
626 *
627 * This does not apply to GLSL ES shaders, since GLSL ES doesn't define
628 * gl_ClipVertex.
629 */
630 if (!prog->IsES) {
631 if (gl_ClipVertex.found && gl_ClipDistance.found) {
632 linker_error(prog, "%s shader writes to both `gl_ClipVertex' "
633 "and `gl_ClipDistance'\n",
634 _mesa_shader_stage_to_string(shader->Stage));
635 return;
636 }
637 if (gl_ClipVertex.found && gl_CullDistance.found) {
638 linker_error(prog, "%s shader writes to both `gl_ClipVertex' "
639 "and `gl_CullDistance'\n",
640 _mesa_shader_stage_to_string(shader->Stage));
641 return;
642 }
643 }
644
645 if (gl_ClipDistance.found) {
646 ir_variable *clip_distance_var =
647 shader->symbols->get_variable("gl_ClipDistance");
648 assert(clip_distance_var);
649 *clip_distance_array_size = clip_distance_var->type->length;
650 }
651 if (gl_CullDistance.found) {
652 ir_variable *cull_distance_var =
653 shader->symbols->get_variable("gl_CullDistance");
654 assert(cull_distance_var);
655 *cull_distance_array_size = cull_distance_var->type->length;
656 }
657 /* From the ARB_cull_distance spec:
658 *
659 * It is a compile-time or link-time error for the set of shaders forming
660 * a program to have the sum of the sizes of the gl_ClipDistance and
661 * gl_CullDistance arrays to be larger than
662 * gl_MaxCombinedClipAndCullDistances.
663 */
664 if ((*clip_distance_array_size + *cull_distance_array_size) >
665 ctx->Const.MaxClipPlanes) {
666 linker_error(prog, "%s shader: the combined size of "
667 "'gl_ClipDistance' and 'gl_CullDistance' size cannot "
668 "be larger than "
669 "gl_MaxCombinedClipAndCullDistances (%u)",
670 _mesa_shader_stage_to_string(shader->Stage),
671 ctx->Const.MaxClipPlanes);
672 }
673 }
674 }
675
676
677 /**
678 * Verify that a vertex shader executable meets all semantic requirements.
679 *
680 * Also sets info.clip_distance_array_size and
681 * info.cull_distance_array_size as a side effect.
682 *
683 * \param shader Vertex shader executable to be verified
684 */
685 void
686 validate_vertex_shader_executable(struct gl_shader_program *prog,
687 struct gl_linked_shader *shader,
688 struct gl_context *ctx)
689 {
690 if (shader == NULL)
691 return;
692
693 /* From the GLSL 1.10 spec, page 48:
694 *
695 * "The variable gl_Position is available only in the vertex
696 * language and is intended for writing the homogeneous vertex
697 * position. All executions of a well-formed vertex shader
698 * executable must write a value into this variable. [...] The
699 * variable gl_Position is available only in the vertex
700 * language and is intended for writing the homogeneous vertex
701 * position. All executions of a well-formed vertex shader
702 * executable must write a value into this variable."
703 *
704 * while in GLSL 1.40 this text is changed to:
705 *
706 * "The variable gl_Position is available only in the vertex
707 * language and is intended for writing the homogeneous vertex
708 * position. It can be written at any time during shader
709 * execution. It may also be read back by a vertex shader
710 * after being written. This value will be used by primitive
711 * assembly, clipping, culling, and other fixed functionality
712 * operations, if present, that operate on primitives after
713 * vertex processing has occurred. Its value is undefined if
714 * the vertex shader executable does not write gl_Position."
715 *
716 * All GLSL ES Versions are similar to GLSL 1.40--failing to write to
717 * gl_Position is not an error.
718 */
719 if (prog->data->Version < (prog->IsES ? 300 : 140)) {
720 find_variable gl_Position("gl_Position");
721 find_assignments(shader->ir, &gl_Position);
722 if (!gl_Position.found) {
723 if (prog->IsES) {
724 linker_warning(prog,
725 "vertex shader does not write to `gl_Position'. "
726 "Its value is undefined. \n");
727 } else {
728 linker_error(prog,
729 "vertex shader does not write to `gl_Position'. \n");
730 }
731 return;
732 }
733 }
734
735 analyze_clip_cull_usage(prog, shader, ctx,
736 &shader->Program->info.clip_distance_array_size,
737 &shader->Program->info.cull_distance_array_size);
738 }
739
740 void
741 validate_tess_eval_shader_executable(struct gl_shader_program *prog,
742 struct gl_linked_shader *shader,
743 struct gl_context *ctx)
744 {
745 if (shader == NULL)
746 return;
747
748 analyze_clip_cull_usage(prog, shader, ctx,
749 &shader->Program->info.clip_distance_array_size,
750 &shader->Program->info.cull_distance_array_size);
751 }
752
753
754 /**
755 * Verify that a fragment shader executable meets all semantic requirements
756 *
757 * \param shader Fragment shader executable to be verified
758 */
759 void
760 validate_fragment_shader_executable(struct gl_shader_program *prog,
761 struct gl_linked_shader *shader)
762 {
763 if (shader == NULL)
764 return;
765
766 find_variable gl_FragColor("gl_FragColor");
767 find_variable gl_FragData("gl_FragData");
768 find_variable * const variables[] = { &gl_FragColor, &gl_FragData, NULL };
769 find_assignments(shader->ir, variables);
770
771 if (gl_FragColor.found && gl_FragData.found) {
772 linker_error(prog, "fragment shader writes to both "
773 "`gl_FragColor' and `gl_FragData'\n");
774 }
775 }
776
777 /**
778 * Verify that a geometry shader executable meets all semantic requirements
779 *
780 * Also sets prog->Geom.VerticesIn, and info.clip_distance_array_sizeand
781 * info.cull_distance_array_size as a side effect.
782 *
783 * \param shader Geometry shader executable to be verified
784 */
785 void
786 validate_geometry_shader_executable(struct gl_shader_program *prog,
787 struct gl_linked_shader *shader,
788 struct gl_context *ctx)
789 {
790 if (shader == NULL)
791 return;
792
793 unsigned num_vertices =
794 vertices_per_prim(shader->Program->info.gs.input_primitive);
795 prog->Geom.VerticesIn = num_vertices;
796
797 analyze_clip_cull_usage(prog, shader, ctx,
798 &shader->Program->info.clip_distance_array_size,
799 &shader->Program->info.cull_distance_array_size);
800 }
801
802 /**
803 * Check if geometry shaders emit to non-zero streams and do corresponding
804 * validations.
805 */
806 static void
807 validate_geometry_shader_emissions(struct gl_context *ctx,
808 struct gl_shader_program *prog)
809 {
810 struct gl_linked_shader *sh = prog->_LinkedShaders[MESA_SHADER_GEOMETRY];
811
812 if (sh != NULL) {
813 find_emit_vertex_visitor emit_vertex(ctx->Const.MaxVertexStreams - 1);
814 emit_vertex.run(sh->ir);
815 if (emit_vertex.error()) {
816 linker_error(prog, "Invalid call %s(%d). Accepted values for the "
817 "stream parameter are in the range [0, %d].\n",
818 emit_vertex.error_func(),
819 emit_vertex.error_stream(),
820 ctx->Const.MaxVertexStreams - 1);
821 }
822 prog->Geom.UsesStreams = emit_vertex.uses_streams();
823 prog->Geom.UsesEndPrimitive = emit_vertex.uses_end_primitive();
824
825 /* From the ARB_gpu_shader5 spec:
826 *
827 * "Multiple vertex streams are supported only if the output primitive
828 * type is declared to be "points". A program will fail to link if it
829 * contains a geometry shader calling EmitStreamVertex() or
830 * EndStreamPrimitive() if its output primitive type is not "points".
831 *
832 * However, in the same spec:
833 *
834 * "The function EmitVertex() is equivalent to calling EmitStreamVertex()
835 * with <stream> set to zero."
836 *
837 * And:
838 *
839 * "The function EndPrimitive() is equivalent to calling
840 * EndStreamPrimitive() with <stream> set to zero."
841 *
842 * Since we can call EmitVertex() and EndPrimitive() when we output
843 * primitives other than points, calling EmitStreamVertex(0) or
844 * EmitEndPrimitive(0) should not produce errors. This it also what Nvidia
845 * does. Currently we only set prog->Geom.UsesStreams to TRUE when
846 * EmitStreamVertex() or EmitEndPrimitive() are called with a non-zero
847 * stream.
848 */
849 if (prog->Geom.UsesStreams &&
850 sh->Program->info.gs.output_primitive != GL_POINTS) {
851 linker_error(prog, "EmitStreamVertex(n) and EndStreamPrimitive(n) "
852 "with n>0 requires point output\n");
853 }
854 }
855 }
856
857 bool
858 validate_intrastage_arrays(struct gl_shader_program *prog,
859 ir_variable *const var,
860 ir_variable *const existing)
861 {
862 /* Consider the types to be "the same" if both types are arrays
863 * of the same type and one of the arrays is implicitly sized.
864 * In addition, set the type of the linked variable to the
865 * explicitly sized array.
866 */
867 if (var->type->is_array() && existing->type->is_array()) {
868 if ((var->type->fields.array == existing->type->fields.array) &&
869 ((var->type->length == 0)|| (existing->type->length == 0))) {
870 if (var->type->length != 0) {
871 if ((int)var->type->length <= existing->data.max_array_access) {
872 linker_error(prog, "%s `%s' declared as type "
873 "`%s' but outermost dimension has an index"
874 " of `%i'\n",
875 mode_string(var),
876 var->name, var->type->name,
877 existing->data.max_array_access);
878 }
879 existing->type = var->type;
880 return true;
881 } else if (existing->type->length != 0) {
882 if((int)existing->type->length <= var->data.max_array_access &&
883 !existing->data.from_ssbo_unsized_array) {
884 linker_error(prog, "%s `%s' declared as type "
885 "`%s' but outermost dimension has an index"
886 " of `%i'\n",
887 mode_string(var),
888 var->name, existing->type->name,
889 var->data.max_array_access);
890 }
891 return true;
892 }
893 }
894 }
895 return false;
896 }
897
898
899 /**
900 * Perform validation of global variables used across multiple shaders
901 */
902 void
903 cross_validate_globals(struct gl_shader_program *prog,
904 struct exec_list *ir, glsl_symbol_table *variables,
905 bool uniforms_only)
906 {
907 foreach_in_list(ir_instruction, node, ir) {
908 ir_variable *const var = node->as_variable();
909
910 if (var == NULL)
911 continue;
912
913 if (uniforms_only && (var->data.mode != ir_var_uniform && var->data.mode != ir_var_shader_storage))
914 continue;
915
916 /* don't cross validate subroutine uniforms */
917 if (var->type->contains_subroutine())
918 continue;
919
920 /* Don't cross validate interface instances. These are only relevant
921 * inside a shader. The cross validation is done at the Interface Block
922 * name level.
923 */
924 if (var->is_interface_instance())
925 continue;
926
927 /* Don't cross validate temporaries that are at global scope. These
928 * will eventually get pulled into the shaders 'main'.
929 */
930 if (var->data.mode == ir_var_temporary)
931 continue;
932
933 /* If a global with this name has already been seen, verify that the
934 * new instance has the same type. In addition, if the globals have
935 * initializers, the values of the initializers must be the same.
936 */
937 ir_variable *const existing = variables->get_variable(var->name);
938 if (existing != NULL) {
939 /* Check if types match. */
940 if (var->type != existing->type) {
941 if (!validate_intrastage_arrays(prog, var, existing)) {
942 /* If it is an unsized array in a Shader Storage Block,
943 * two different shaders can access to different elements.
944 * Because of that, they might be converted to different
945 * sized arrays, then check that they are compatible but
946 * ignore the array size.
947 */
948 if (!(var->data.mode == ir_var_shader_storage &&
949 var->data.from_ssbo_unsized_array &&
950 existing->data.mode == ir_var_shader_storage &&
951 existing->data.from_ssbo_unsized_array &&
952 var->type->gl_type == existing->type->gl_type)) {
953 linker_error(prog, "%s `%s' declared as type "
954 "`%s' and type `%s'\n",
955 mode_string(var),
956 var->name, var->type->name,
957 existing->type->name);
958 return;
959 }
960 }
961 }
962
963 if (var->data.explicit_location) {
964 if (existing->data.explicit_location
965 && (var->data.location != existing->data.location)) {
966 linker_error(prog, "explicit locations for %s "
967 "`%s' have differing values\n",
968 mode_string(var), var->name);
969 return;
970 }
971
972 if (var->data.location_frac != existing->data.location_frac) {
973 linker_error(prog, "explicit components for %s `%s' have "
974 "differing values\n", mode_string(var), var->name);
975 return;
976 }
977
978 existing->data.location = var->data.location;
979 existing->data.explicit_location = true;
980 } else {
981 /* Check if uniform with implicit location was marked explicit
982 * by earlier shader stage. If so, mark it explicit in this stage
983 * too to make sure later processing does not treat it as
984 * implicit one.
985 */
986 if (existing->data.explicit_location) {
987 var->data.location = existing->data.location;
988 var->data.explicit_location = true;
989 }
990 }
991
992 /* From the GLSL 4.20 specification:
993 * "A link error will result if two compilation units in a program
994 * specify different integer-constant bindings for the same
995 * opaque-uniform name. However, it is not an error to specify a
996 * binding on some but not all declarations for the same name"
997 */
998 if (var->data.explicit_binding) {
999 if (existing->data.explicit_binding &&
1000 var->data.binding != existing->data.binding) {
1001 linker_error(prog, "explicit bindings for %s "
1002 "`%s' have differing values\n",
1003 mode_string(var), var->name);
1004 return;
1005 }
1006
1007 existing->data.binding = var->data.binding;
1008 existing->data.explicit_binding = true;
1009 }
1010
1011 if (var->type->contains_atomic() &&
1012 var->data.offset != existing->data.offset) {
1013 linker_error(prog, "offset specifications for %s "
1014 "`%s' have differing values\n",
1015 mode_string(var), var->name);
1016 return;
1017 }
1018
1019 /* Validate layout qualifiers for gl_FragDepth.
1020 *
1021 * From the AMD/ARB_conservative_depth specs:
1022 *
1023 * "If gl_FragDepth is redeclared in any fragment shader in a
1024 * program, it must be redeclared in all fragment shaders in
1025 * that program that have static assignments to
1026 * gl_FragDepth. All redeclarations of gl_FragDepth in all
1027 * fragment shaders in a single program must have the same set
1028 * of qualifiers."
1029 */
1030 if (strcmp(var->name, "gl_FragDepth") == 0) {
1031 bool layout_declared = var->data.depth_layout != ir_depth_layout_none;
1032 bool layout_differs =
1033 var->data.depth_layout != existing->data.depth_layout;
1034
1035 if (layout_declared && layout_differs) {
1036 linker_error(prog,
1037 "All redeclarations of gl_FragDepth in all "
1038 "fragment shaders in a single program must have "
1039 "the same set of qualifiers.\n");
1040 }
1041
1042 if (var->data.used && layout_differs) {
1043 linker_error(prog,
1044 "If gl_FragDepth is redeclared with a layout "
1045 "qualifier in any fragment shader, it must be "
1046 "redeclared with the same layout qualifier in "
1047 "all fragment shaders that have assignments to "
1048 "gl_FragDepth\n");
1049 }
1050 }
1051
1052 /* Page 35 (page 41 of the PDF) of the GLSL 4.20 spec says:
1053 *
1054 * "If a shared global has multiple initializers, the
1055 * initializers must all be constant expressions, and they
1056 * must all have the same value. Otherwise, a link error will
1057 * result. (A shared global having only one initializer does
1058 * not require that initializer to be a constant expression.)"
1059 *
1060 * Previous to 4.20 the GLSL spec simply said that initializers
1061 * must have the same value. In this case of non-constant
1062 * initializers, this was impossible to determine. As a result,
1063 * no vendor actually implemented that behavior. The 4.20
1064 * behavior matches the implemented behavior of at least one other
1065 * vendor, so we'll implement that for all GLSL versions.
1066 */
1067 if (var->constant_initializer != NULL) {
1068 if (existing->constant_initializer != NULL) {
1069 if (!var->constant_initializer->has_value(existing->constant_initializer)) {
1070 linker_error(prog, "initializers for %s "
1071 "`%s' have differing values\n",
1072 mode_string(var), var->name);
1073 return;
1074 }
1075 } else {
1076 /* If the first-seen instance of a particular uniform did
1077 * not have an initializer but a later instance does,
1078 * replace the former with the later.
1079 */
1080 variables->replace_variable(existing->name, var);
1081 }
1082 }
1083
1084 if (var->data.has_initializer) {
1085 if (existing->data.has_initializer
1086 && (var->constant_initializer == NULL
1087 || existing->constant_initializer == NULL)) {
1088 linker_error(prog,
1089 "shared global variable `%s' has multiple "
1090 "non-constant initializers.\n",
1091 var->name);
1092 return;
1093 }
1094 }
1095
1096 if (existing->data.invariant != var->data.invariant) {
1097 linker_error(prog, "declarations for %s `%s' have "
1098 "mismatching invariant qualifiers\n",
1099 mode_string(var), var->name);
1100 return;
1101 }
1102 if (existing->data.centroid != var->data.centroid) {
1103 linker_error(prog, "declarations for %s `%s' have "
1104 "mismatching centroid qualifiers\n",
1105 mode_string(var), var->name);
1106 return;
1107 }
1108 if (existing->data.sample != var->data.sample) {
1109 linker_error(prog, "declarations for %s `%s` have "
1110 "mismatching sample qualifiers\n",
1111 mode_string(var), var->name);
1112 return;
1113 }
1114 if (existing->data.image_format != var->data.image_format) {
1115 linker_error(prog, "declarations for %s `%s` have "
1116 "mismatching image format qualifiers\n",
1117 mode_string(var), var->name);
1118 return;
1119 }
1120
1121 /* Only in GLSL ES 3.10, the precision qualifier should not match
1122 * between block members defined in matched block names within a
1123 * shader interface.
1124 *
1125 * In GLSL ES 3.00 and ES 3.20, precision qualifier for each block
1126 * member should match.
1127 */
1128 if (prog->IsES && (prog->data->Version != 310 ||
1129 !var->get_interface_type()) &&
1130 existing->data.precision != var->data.precision) {
1131 linker_error(prog, "declarations for %s `%s` have "
1132 "mismatching precision qualifiers\n",
1133 mode_string(var), var->name);
1134 return;
1135 }
1136 } else
1137 variables->add_variable(var);
1138 }
1139 }
1140
1141
1142 /**
1143 * Perform validation of uniforms used across multiple shader stages
1144 */
1145 void
1146 cross_validate_uniforms(struct gl_shader_program *prog)
1147 {
1148 glsl_symbol_table variables;
1149 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1150 if (prog->_LinkedShaders[i] == NULL)
1151 continue;
1152
1153 cross_validate_globals(prog, prog->_LinkedShaders[i]->ir, &variables,
1154 true);
1155 }
1156 }
1157
1158 /**
1159 * Accumulates the array of buffer blocks and checks that all definitions of
1160 * blocks agree on their contents.
1161 */
1162 static bool
1163 interstage_cross_validate_uniform_blocks(struct gl_shader_program *prog,
1164 bool validate_ssbo)
1165 {
1166 int *InterfaceBlockStageIndex[MESA_SHADER_STAGES];
1167 struct gl_uniform_block *blks = NULL;
1168 unsigned *num_blks = validate_ssbo ? &prog->data->NumShaderStorageBlocks :
1169 &prog->data->NumUniformBlocks;
1170
1171 unsigned max_num_buffer_blocks = 0;
1172 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1173 if (prog->_LinkedShaders[i]) {
1174 if (validate_ssbo) {
1175 max_num_buffer_blocks +=
1176 prog->_LinkedShaders[i]->Program->info.num_ssbos;
1177 } else {
1178 max_num_buffer_blocks +=
1179 prog->_LinkedShaders[i]->Program->info.num_ubos;
1180 }
1181 }
1182 }
1183
1184 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1185 struct gl_linked_shader *sh = prog->_LinkedShaders[i];
1186
1187 InterfaceBlockStageIndex[i] = new int[max_num_buffer_blocks];
1188 for (unsigned int j = 0; j < max_num_buffer_blocks; j++)
1189 InterfaceBlockStageIndex[i][j] = -1;
1190
1191 if (sh == NULL)
1192 continue;
1193
1194 unsigned sh_num_blocks;
1195 struct gl_uniform_block **sh_blks;
1196 if (validate_ssbo) {
1197 sh_num_blocks = prog->_LinkedShaders[i]->Program->info.num_ssbos;
1198 sh_blks = sh->Program->sh.ShaderStorageBlocks;
1199 } else {
1200 sh_num_blocks = prog->_LinkedShaders[i]->Program->info.num_ubos;
1201 sh_blks = sh->Program->sh.UniformBlocks;
1202 }
1203
1204 for (unsigned int j = 0; j < sh_num_blocks; j++) {
1205 int index = link_cross_validate_uniform_block(prog, &blks, num_blks,
1206 sh_blks[j]);
1207
1208 if (index == -1) {
1209 linker_error(prog, "buffer block `%s' has mismatching "
1210 "definitions\n", sh_blks[j]->Name);
1211
1212 for (unsigned k = 0; k <= i; k++) {
1213 delete[] InterfaceBlockStageIndex[k];
1214 }
1215
1216 /* Reset the block count. This will help avoid various segfaults
1217 * from api calls that assume the array exists due to the count
1218 * being non-zero.
1219 */
1220 *num_blks = 0;
1221 return false;
1222 }
1223
1224 InterfaceBlockStageIndex[i][index] = j;
1225 }
1226 }
1227
1228 /* Update per stage block pointers to point to the program list.
1229 * FIXME: We should be able to free the per stage blocks here.
1230 */
1231 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1232 for (unsigned j = 0; j < *num_blks; j++) {
1233 int stage_index = InterfaceBlockStageIndex[i][j];
1234
1235 if (stage_index != -1) {
1236 struct gl_linked_shader *sh = prog->_LinkedShaders[i];
1237
1238 struct gl_uniform_block **sh_blks = validate_ssbo ?
1239 sh->Program->sh.ShaderStorageBlocks :
1240 sh->Program->sh.UniformBlocks;
1241
1242 blks[j].stageref |= sh_blks[stage_index]->stageref;
1243 sh_blks[stage_index] = &blks[j];
1244 }
1245 }
1246 }
1247
1248 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1249 delete[] InterfaceBlockStageIndex[i];
1250 }
1251
1252 if (validate_ssbo)
1253 prog->data->ShaderStorageBlocks = blks;
1254 else
1255 prog->data->UniformBlocks = blks;
1256
1257 return true;
1258 }
1259
1260
1261 /**
1262 * Populates a shaders symbol table with all global declarations
1263 */
1264 static void
1265 populate_symbol_table(gl_linked_shader *sh)
1266 {
1267 sh->symbols = new(sh) glsl_symbol_table;
1268
1269 foreach_in_list(ir_instruction, inst, sh->ir) {
1270 ir_variable *var;
1271 ir_function *func;
1272
1273 if ((func = inst->as_function()) != NULL) {
1274 sh->symbols->add_function(func);
1275 } else if ((var = inst->as_variable()) != NULL) {
1276 if (var->data.mode != ir_var_temporary)
1277 sh->symbols->add_variable(var);
1278 }
1279 }
1280 }
1281
1282
1283 /**
1284 * Remap variables referenced in an instruction tree
1285 *
1286 * This is used when instruction trees are cloned from one shader and placed in
1287 * another. These trees will contain references to \c ir_variable nodes that
1288 * do not exist in the target shader. This function finds these \c ir_variable
1289 * references and replaces the references with matching variables in the target
1290 * shader.
1291 *
1292 * If there is no matching variable in the target shader, a clone of the
1293 * \c ir_variable is made and added to the target shader. The new variable is
1294 * added to \b both the instruction stream and the symbol table.
1295 *
1296 * \param inst IR tree that is to be processed.
1297 * \param symbols Symbol table containing global scope symbols in the
1298 * linked shader.
1299 * \param instructions Instruction stream where new variable declarations
1300 * should be added.
1301 */
1302 void
1303 remap_variables(ir_instruction *inst, struct gl_linked_shader *target,
1304 hash_table *temps)
1305 {
1306 class remap_visitor : public ir_hierarchical_visitor {
1307 public:
1308 remap_visitor(struct gl_linked_shader *target, hash_table *temps)
1309 {
1310 this->target = target;
1311 this->symbols = target->symbols;
1312 this->instructions = target->ir;
1313 this->temps = temps;
1314 }
1315
1316 virtual ir_visitor_status visit(ir_dereference_variable *ir)
1317 {
1318 if (ir->var->data.mode == ir_var_temporary) {
1319 hash_entry *entry = _mesa_hash_table_search(temps, ir->var);
1320 ir_variable *var = entry ? (ir_variable *) entry->data : NULL;
1321
1322 assert(var != NULL);
1323 ir->var = var;
1324 return visit_continue;
1325 }
1326
1327 ir_variable *const existing =
1328 this->symbols->get_variable(ir->var->name);
1329 if (existing != NULL)
1330 ir->var = existing;
1331 else {
1332 ir_variable *copy = ir->var->clone(this->target, NULL);
1333
1334 this->symbols->add_variable(copy);
1335 this->instructions->push_head(copy);
1336 ir->var = copy;
1337 }
1338
1339 return visit_continue;
1340 }
1341
1342 private:
1343 struct gl_linked_shader *target;
1344 glsl_symbol_table *symbols;
1345 exec_list *instructions;
1346 hash_table *temps;
1347 };
1348
1349 remap_visitor v(target, temps);
1350
1351 inst->accept(&v);
1352 }
1353
1354
1355 /**
1356 * Move non-declarations from one instruction stream to another
1357 *
1358 * The intended usage pattern of this function is to pass the pointer to the
1359 * head sentinel of a list (i.e., a pointer to the list cast to an \c exec_node
1360 * pointer) for \c last and \c false for \c make_copies on the first
1361 * call. Successive calls pass the return value of the previous call for
1362 * \c last and \c true for \c make_copies.
1363 *
1364 * \param instructions Source instruction stream
1365 * \param last Instruction after which new instructions should be
1366 * inserted in the target instruction stream
1367 * \param make_copies Flag selecting whether instructions in \c instructions
1368 * should be copied (via \c ir_instruction::clone) into the
1369 * target list or moved.
1370 *
1371 * \return
1372 * The new "last" instruction in the target instruction stream. This pointer
1373 * is suitable for use as the \c last parameter of a later call to this
1374 * function.
1375 */
1376 exec_node *
1377 move_non_declarations(exec_list *instructions, exec_node *last,
1378 bool make_copies, gl_linked_shader *target)
1379 {
1380 hash_table *temps = NULL;
1381
1382 if (make_copies)
1383 temps = _mesa_hash_table_create(NULL, _mesa_hash_pointer,
1384 _mesa_key_pointer_equal);
1385
1386 foreach_in_list_safe(ir_instruction, inst, instructions) {
1387 if (inst->as_function())
1388 continue;
1389
1390 ir_variable *var = inst->as_variable();
1391 if ((var != NULL) && (var->data.mode != ir_var_temporary))
1392 continue;
1393
1394 assert(inst->as_assignment()
1395 || inst->as_call()
1396 || inst->as_if() /* for initializers with the ?: operator */
1397 || ((var != NULL) && (var->data.mode == ir_var_temporary)));
1398
1399 if (make_copies) {
1400 inst = inst->clone(target, NULL);
1401
1402 if (var != NULL)
1403 _mesa_hash_table_insert(temps, var, inst);
1404 else
1405 remap_variables(inst, target, temps);
1406 } else {
1407 inst->remove();
1408 }
1409
1410 last->insert_after(inst);
1411 last = inst;
1412 }
1413
1414 if (make_copies)
1415 _mesa_hash_table_destroy(temps, NULL);
1416
1417 return last;
1418 }
1419
1420
1421 /**
1422 * This class is only used in link_intrastage_shaders() below but declaring
1423 * it inside that function leads to compiler warnings with some versions of
1424 * gcc.
1425 */
1426 class array_sizing_visitor : public deref_type_updater {
1427 public:
1428 array_sizing_visitor()
1429 : mem_ctx(ralloc_context(NULL)),
1430 unnamed_interfaces(_mesa_hash_table_create(NULL, _mesa_hash_pointer,
1431 _mesa_key_pointer_equal))
1432 {
1433 }
1434
1435 ~array_sizing_visitor()
1436 {
1437 _mesa_hash_table_destroy(this->unnamed_interfaces, NULL);
1438 ralloc_free(this->mem_ctx);
1439 }
1440
1441 virtual ir_visitor_status visit(ir_variable *var)
1442 {
1443 const glsl_type *type_without_array;
1444 bool implicit_sized_array = var->data.implicit_sized_array;
1445 fixup_type(&var->type, var->data.max_array_access,
1446 var->data.from_ssbo_unsized_array,
1447 &implicit_sized_array);
1448 var->data.implicit_sized_array = implicit_sized_array;
1449 type_without_array = var->type->without_array();
1450 if (var->type->is_interface()) {
1451 if (interface_contains_unsized_arrays(var->type)) {
1452 const glsl_type *new_type =
1453 resize_interface_members(var->type,
1454 var->get_max_ifc_array_access(),
1455 var->is_in_shader_storage_block());
1456 var->type = new_type;
1457 var->change_interface_type(new_type);
1458 }
1459 } else if (type_without_array->is_interface()) {
1460 if (interface_contains_unsized_arrays(type_without_array)) {
1461 const glsl_type *new_type =
1462 resize_interface_members(type_without_array,
1463 var->get_max_ifc_array_access(),
1464 var->is_in_shader_storage_block());
1465 var->change_interface_type(new_type);
1466 var->type = update_interface_members_array(var->type, new_type);
1467 }
1468 } else if (const glsl_type *ifc_type = var->get_interface_type()) {
1469 /* Store a pointer to the variable in the unnamed_interfaces
1470 * hashtable.
1471 */
1472 hash_entry *entry =
1473 _mesa_hash_table_search(this->unnamed_interfaces,
1474 ifc_type);
1475
1476 ir_variable **interface_vars = entry ? (ir_variable **) entry->data : NULL;
1477
1478 if (interface_vars == NULL) {
1479 interface_vars = rzalloc_array(mem_ctx, ir_variable *,
1480 ifc_type->length);
1481 _mesa_hash_table_insert(this->unnamed_interfaces, ifc_type,
1482 interface_vars);
1483 }
1484 unsigned index = ifc_type->field_index(var->name);
1485 assert(index < ifc_type->length);
1486 assert(interface_vars[index] == NULL);
1487 interface_vars[index] = var;
1488 }
1489 return visit_continue;
1490 }
1491
1492 /**
1493 * For each unnamed interface block that was discovered while running the
1494 * visitor, adjust the interface type to reflect the newly assigned array
1495 * sizes, and fix up the ir_variable nodes to point to the new interface
1496 * type.
1497 */
1498 void fixup_unnamed_interface_types()
1499 {
1500 hash_table_call_foreach(this->unnamed_interfaces,
1501 fixup_unnamed_interface_type, NULL);
1502 }
1503
1504 private:
1505 /**
1506 * If the type pointed to by \c type represents an unsized array, replace
1507 * it with a sized array whose size is determined by max_array_access.
1508 */
1509 static void fixup_type(const glsl_type **type, unsigned max_array_access,
1510 bool from_ssbo_unsized_array, bool *implicit_sized)
1511 {
1512 if (!from_ssbo_unsized_array && (*type)->is_unsized_array()) {
1513 *type = glsl_type::get_array_instance((*type)->fields.array,
1514 max_array_access + 1);
1515 *implicit_sized = true;
1516 assert(*type != NULL);
1517 }
1518 }
1519
1520 static const glsl_type *
1521 update_interface_members_array(const glsl_type *type,
1522 const glsl_type *new_interface_type)
1523 {
1524 const glsl_type *element_type = type->fields.array;
1525 if (element_type->is_array()) {
1526 const glsl_type *new_array_type =
1527 update_interface_members_array(element_type, new_interface_type);
1528 return glsl_type::get_array_instance(new_array_type, type->length);
1529 } else {
1530 return glsl_type::get_array_instance(new_interface_type,
1531 type->length);
1532 }
1533 }
1534
1535 /**
1536 * Determine whether the given interface type contains unsized arrays (if
1537 * it doesn't, array_sizing_visitor doesn't need to process it).
1538 */
1539 static bool interface_contains_unsized_arrays(const glsl_type *type)
1540 {
1541 for (unsigned i = 0; i < type->length; i++) {
1542 const glsl_type *elem_type = type->fields.structure[i].type;
1543 if (elem_type->is_unsized_array())
1544 return true;
1545 }
1546 return false;
1547 }
1548
1549 /**
1550 * Create a new interface type based on the given type, with unsized arrays
1551 * replaced by sized arrays whose size is determined by
1552 * max_ifc_array_access.
1553 */
1554 static const glsl_type *
1555 resize_interface_members(const glsl_type *type,
1556 const int *max_ifc_array_access,
1557 bool is_ssbo)
1558 {
1559 unsigned num_fields = type->length;
1560 glsl_struct_field *fields = new glsl_struct_field[num_fields];
1561 memcpy(fields, type->fields.structure,
1562 num_fields * sizeof(*fields));
1563 for (unsigned i = 0; i < num_fields; i++) {
1564 bool implicit_sized_array = fields[i].implicit_sized_array;
1565 /* If SSBO last member is unsized array, we don't replace it by a sized
1566 * array.
1567 */
1568 if (is_ssbo && i == (num_fields - 1))
1569 fixup_type(&fields[i].type, max_ifc_array_access[i],
1570 true, &implicit_sized_array);
1571 else
1572 fixup_type(&fields[i].type, max_ifc_array_access[i],
1573 false, &implicit_sized_array);
1574 fields[i].implicit_sized_array = implicit_sized_array;
1575 }
1576 glsl_interface_packing packing =
1577 (glsl_interface_packing) type->interface_packing;
1578 bool row_major = (bool) type->interface_row_major;
1579 const glsl_type *new_ifc_type =
1580 glsl_type::get_interface_instance(fields, num_fields,
1581 packing, row_major, type->name);
1582 delete [] fields;
1583 return new_ifc_type;
1584 }
1585
1586 static void fixup_unnamed_interface_type(const void *key, void *data,
1587 void *)
1588 {
1589 const glsl_type *ifc_type = (const glsl_type *) key;
1590 ir_variable **interface_vars = (ir_variable **) data;
1591 unsigned num_fields = ifc_type->length;
1592 glsl_struct_field *fields = new glsl_struct_field[num_fields];
1593 memcpy(fields, ifc_type->fields.structure,
1594 num_fields * sizeof(*fields));
1595 bool interface_type_changed = false;
1596 for (unsigned i = 0; i < num_fields; i++) {
1597 if (interface_vars[i] != NULL &&
1598 fields[i].type != interface_vars[i]->type) {
1599 fields[i].type = interface_vars[i]->type;
1600 interface_type_changed = true;
1601 }
1602 }
1603 if (!interface_type_changed) {
1604 delete [] fields;
1605 return;
1606 }
1607 glsl_interface_packing packing =
1608 (glsl_interface_packing) ifc_type->interface_packing;
1609 bool row_major = (bool) ifc_type->interface_row_major;
1610 const glsl_type *new_ifc_type =
1611 glsl_type::get_interface_instance(fields, num_fields, packing,
1612 row_major, ifc_type->name);
1613 delete [] fields;
1614 for (unsigned i = 0; i < num_fields; i++) {
1615 if (interface_vars[i] != NULL)
1616 interface_vars[i]->change_interface_type(new_ifc_type);
1617 }
1618 }
1619
1620 /**
1621 * Memory context used to allocate the data in \c unnamed_interfaces.
1622 */
1623 void *mem_ctx;
1624
1625 /**
1626 * Hash table from const glsl_type * to an array of ir_variable *'s
1627 * pointing to the ir_variables constituting each unnamed interface block.
1628 */
1629 hash_table *unnamed_interfaces;
1630 };
1631
1632 static bool
1633 validate_xfb_buffer_stride(struct gl_context *ctx, unsigned idx,
1634 struct gl_shader_program *prog)
1635 {
1636 /* We will validate doubles at a later stage */
1637 if (prog->TransformFeedback.BufferStride[idx] % 4) {
1638 linker_error(prog, "invalid qualifier xfb_stride=%d must be a "
1639 "multiple of 4 or if its applied to a type that is "
1640 "or contains a double a multiple of 8.",
1641 prog->TransformFeedback.BufferStride[idx]);
1642 return false;
1643 }
1644
1645 if (prog->TransformFeedback.BufferStride[idx] / 4 >
1646 ctx->Const.MaxTransformFeedbackInterleavedComponents) {
1647 linker_error(prog, "The MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS "
1648 "limit has been exceeded.");
1649 return false;
1650 }
1651
1652 return true;
1653 }
1654
1655 /**
1656 * Check for conflicting xfb_stride default qualifiers and store buffer stride
1657 * for later use.
1658 */
1659 static void
1660 link_xfb_stride_layout_qualifiers(struct gl_context *ctx,
1661 struct gl_shader_program *prog,
1662 struct gl_linked_shader *linked_shader,
1663 struct gl_shader **shader_list,
1664 unsigned num_shaders)
1665 {
1666 for (unsigned i = 0; i < MAX_FEEDBACK_BUFFERS; i++) {
1667 prog->TransformFeedback.BufferStride[i] = 0;
1668 }
1669
1670 for (unsigned i = 0; i < num_shaders; i++) {
1671 struct gl_shader *shader = shader_list[i];
1672
1673 for (unsigned j = 0; j < MAX_FEEDBACK_BUFFERS; j++) {
1674 if (shader->TransformFeedbackBufferStride[j]) {
1675 if (prog->TransformFeedback.BufferStride[j] == 0) {
1676 prog->TransformFeedback.BufferStride[j] =
1677 shader->TransformFeedbackBufferStride[j];
1678 if (!validate_xfb_buffer_stride(ctx, j, prog))
1679 return;
1680 } else if (prog->TransformFeedback.BufferStride[j] !=
1681 shader->TransformFeedbackBufferStride[j]){
1682 linker_error(prog,
1683 "intrastage shaders defined with conflicting "
1684 "xfb_stride for buffer %d (%d and %d)\n", j,
1685 prog->TransformFeedback.BufferStride[j],
1686 shader->TransformFeedbackBufferStride[j]);
1687 return;
1688 }
1689 }
1690 }
1691 }
1692 }
1693
1694 /**
1695 * Check for conflicting bindless/bound sampler/image layout qualifiers at
1696 * global scope.
1697 */
1698 static void
1699 link_bindless_layout_qualifiers(struct gl_shader_program *prog,
1700 struct gl_program *gl_prog,
1701 struct gl_shader **shader_list,
1702 unsigned num_shaders)
1703 {
1704 bool bindless_sampler, bindless_image;
1705 bool bound_sampler, bound_image;
1706
1707 bindless_sampler = bindless_image = false;
1708 bound_sampler = bound_image = false;
1709
1710 for (unsigned i = 0; i < num_shaders; i++) {
1711 struct gl_shader *shader = shader_list[i];
1712
1713 if (shader->bindless_sampler)
1714 bindless_sampler = true;
1715 if (shader->bindless_image)
1716 bindless_image = true;
1717 if (shader->bound_sampler)
1718 bound_sampler = true;
1719 if (shader->bound_image)
1720 bound_image = true;
1721
1722 if ((bindless_sampler && bound_sampler) ||
1723 (bindless_image && bound_image)) {
1724 /* From section 4.4.6 of the ARB_bindless_texture spec:
1725 *
1726 * "If both bindless_sampler and bound_sampler, or bindless_image
1727 * and bound_image, are declared at global scope in any
1728 * compilation unit, a link- time error will be generated."
1729 */
1730 linker_error(prog, "both bindless_sampler and bound_sampler, or "
1731 "bindless_image and bound_image, can't be declared at "
1732 "global scope");
1733 }
1734 }
1735 }
1736
1737 /**
1738 * Performs the cross-validation of tessellation control shader vertices and
1739 * layout qualifiers for the attached tessellation control shaders,
1740 * and propagates them to the linked TCS and linked shader program.
1741 */
1742 static void
1743 link_tcs_out_layout_qualifiers(struct gl_shader_program *prog,
1744 struct gl_program *gl_prog,
1745 struct gl_shader **shader_list,
1746 unsigned num_shaders)
1747 {
1748 if (gl_prog->info.stage != MESA_SHADER_TESS_CTRL)
1749 return;
1750
1751 gl_prog->info.tess.tcs_vertices_out = 0;
1752
1753 /* From the GLSL 4.0 spec (chapter 4.3.8.2):
1754 *
1755 * "All tessellation control shader layout declarations in a program
1756 * must specify the same output patch vertex count. There must be at
1757 * least one layout qualifier specifying an output patch vertex count
1758 * in any program containing tessellation control shaders; however,
1759 * such a declaration is not required in all tessellation control
1760 * shaders."
1761 */
1762
1763 for (unsigned i = 0; i < num_shaders; i++) {
1764 struct gl_shader *shader = shader_list[i];
1765
1766 if (shader->info.TessCtrl.VerticesOut != 0) {
1767 if (gl_prog->info.tess.tcs_vertices_out != 0 &&
1768 gl_prog->info.tess.tcs_vertices_out !=
1769 (unsigned) shader->info.TessCtrl.VerticesOut) {
1770 linker_error(prog, "tessellation control shader defined with "
1771 "conflicting output vertex count (%d and %d)\n",
1772 gl_prog->info.tess.tcs_vertices_out,
1773 shader->info.TessCtrl.VerticesOut);
1774 return;
1775 }
1776 gl_prog->info.tess.tcs_vertices_out =
1777 shader->info.TessCtrl.VerticesOut;
1778 }
1779 }
1780
1781 /* Just do the intrastage -> interstage propagation right now,
1782 * since we already know we're in the right type of shader program
1783 * for doing it.
1784 */
1785 if (gl_prog->info.tess.tcs_vertices_out == 0) {
1786 linker_error(prog, "tessellation control shader didn't declare "
1787 "vertices out layout qualifier\n");
1788 return;
1789 }
1790 }
1791
1792
1793 /**
1794 * Performs the cross-validation of tessellation evaluation shader
1795 * primitive type, vertex spacing, ordering and point_mode layout qualifiers
1796 * for the attached tessellation evaluation shaders, and propagates them
1797 * to the linked TES and linked shader program.
1798 */
1799 static void
1800 link_tes_in_layout_qualifiers(struct gl_shader_program *prog,
1801 struct gl_program *gl_prog,
1802 struct gl_shader **shader_list,
1803 unsigned num_shaders)
1804 {
1805 if (gl_prog->info.stage != MESA_SHADER_TESS_EVAL)
1806 return;
1807
1808 int point_mode = -1;
1809 unsigned vertex_order = 0;
1810
1811 gl_prog->info.tess.primitive_mode = PRIM_UNKNOWN;
1812 gl_prog->info.tess.spacing = TESS_SPACING_UNSPECIFIED;
1813
1814 /* From the GLSL 4.0 spec (chapter 4.3.8.1):
1815 *
1816 * "At least one tessellation evaluation shader (compilation unit) in
1817 * a program must declare a primitive mode in its input layout.
1818 * Declaration vertex spacing, ordering, and point mode identifiers is
1819 * optional. It is not required that all tessellation evaluation
1820 * shaders in a program declare a primitive mode. If spacing or
1821 * vertex ordering declarations are omitted, the tessellation
1822 * primitive generator will use equal spacing or counter-clockwise
1823 * vertex ordering, respectively. If a point mode declaration is
1824 * omitted, the tessellation primitive generator will produce lines or
1825 * triangles according to the primitive mode."
1826 */
1827
1828 for (unsigned i = 0; i < num_shaders; i++) {
1829 struct gl_shader *shader = shader_list[i];
1830
1831 if (shader->info.TessEval.PrimitiveMode != PRIM_UNKNOWN) {
1832 if (gl_prog->info.tess.primitive_mode != PRIM_UNKNOWN &&
1833 gl_prog->info.tess.primitive_mode !=
1834 shader->info.TessEval.PrimitiveMode) {
1835 linker_error(prog, "tessellation evaluation shader defined with "
1836 "conflicting input primitive modes.\n");
1837 return;
1838 }
1839 gl_prog->info.tess.primitive_mode =
1840 shader->info.TessEval.PrimitiveMode;
1841 }
1842
1843 if (shader->info.TessEval.Spacing != 0) {
1844 if (gl_prog->info.tess.spacing != 0 && gl_prog->info.tess.spacing !=
1845 shader->info.TessEval.Spacing) {
1846 linker_error(prog, "tessellation evaluation shader defined with "
1847 "conflicting vertex spacing.\n");
1848 return;
1849 }
1850 gl_prog->info.tess.spacing = shader->info.TessEval.Spacing;
1851 }
1852
1853 if (shader->info.TessEval.VertexOrder != 0) {
1854 if (vertex_order != 0 &&
1855 vertex_order != shader->info.TessEval.VertexOrder) {
1856 linker_error(prog, "tessellation evaluation shader defined with "
1857 "conflicting ordering.\n");
1858 return;
1859 }
1860 vertex_order = shader->info.TessEval.VertexOrder;
1861 }
1862
1863 if (shader->info.TessEval.PointMode != -1) {
1864 if (point_mode != -1 &&
1865 point_mode != shader->info.TessEval.PointMode) {
1866 linker_error(prog, "tessellation evaluation shader defined with "
1867 "conflicting point modes.\n");
1868 return;
1869 }
1870 point_mode = shader->info.TessEval.PointMode;
1871 }
1872
1873 }
1874
1875 /* Just do the intrastage -> interstage propagation right now,
1876 * since we already know we're in the right type of shader program
1877 * for doing it.
1878 */
1879 if (gl_prog->info.tess.primitive_mode == PRIM_UNKNOWN) {
1880 linker_error(prog,
1881 "tessellation evaluation shader didn't declare input "
1882 "primitive modes.\n");
1883 return;
1884 }
1885
1886 if (gl_prog->info.tess.spacing == TESS_SPACING_UNSPECIFIED)
1887 gl_prog->info.tess.spacing = TESS_SPACING_EQUAL;
1888
1889 if (vertex_order == 0 || vertex_order == GL_CCW)
1890 gl_prog->info.tess.ccw = true;
1891 else
1892 gl_prog->info.tess.ccw = false;
1893
1894
1895 if (point_mode == -1 || point_mode == GL_FALSE)
1896 gl_prog->info.tess.point_mode = false;
1897 else
1898 gl_prog->info.tess.point_mode = true;
1899 }
1900
1901
1902 /**
1903 * Performs the cross-validation of layout qualifiers specified in
1904 * redeclaration of gl_FragCoord for the attached fragment shaders,
1905 * and propagates them to the linked FS and linked shader program.
1906 */
1907 static void
1908 link_fs_inout_layout_qualifiers(struct gl_shader_program *prog,
1909 struct gl_linked_shader *linked_shader,
1910 struct gl_shader **shader_list,
1911 unsigned num_shaders)
1912 {
1913 bool redeclares_gl_fragcoord = false;
1914 bool uses_gl_fragcoord = false;
1915 bool origin_upper_left = false;
1916 bool pixel_center_integer = false;
1917
1918 if (linked_shader->Stage != MESA_SHADER_FRAGMENT ||
1919 (prog->data->Version < 150 &&
1920 !prog->ARB_fragment_coord_conventions_enable))
1921 return;
1922
1923 for (unsigned i = 0; i < num_shaders; i++) {
1924 struct gl_shader *shader = shader_list[i];
1925 /* From the GLSL 1.50 spec, page 39:
1926 *
1927 * "If gl_FragCoord is redeclared in any fragment shader in a program,
1928 * it must be redeclared in all the fragment shaders in that program
1929 * that have a static use gl_FragCoord."
1930 */
1931 if ((redeclares_gl_fragcoord && !shader->redeclares_gl_fragcoord &&
1932 shader->uses_gl_fragcoord)
1933 || (shader->redeclares_gl_fragcoord && !redeclares_gl_fragcoord &&
1934 uses_gl_fragcoord)) {
1935 linker_error(prog, "fragment shader defined with conflicting "
1936 "layout qualifiers for gl_FragCoord\n");
1937 }
1938
1939 /* From the GLSL 1.50 spec, page 39:
1940 *
1941 * "All redeclarations of gl_FragCoord in all fragment shaders in a
1942 * single program must have the same set of qualifiers."
1943 */
1944 if (redeclares_gl_fragcoord && shader->redeclares_gl_fragcoord &&
1945 (shader->origin_upper_left != origin_upper_left ||
1946 shader->pixel_center_integer != pixel_center_integer)) {
1947 linker_error(prog, "fragment shader defined with conflicting "
1948 "layout qualifiers for gl_FragCoord\n");
1949 }
1950
1951 /* Update the linked shader state. Note that uses_gl_fragcoord should
1952 * accumulate the results. The other values should replace. If there
1953 * are multiple redeclarations, all the fields except uses_gl_fragcoord
1954 * are already known to be the same.
1955 */
1956 if (shader->redeclares_gl_fragcoord || shader->uses_gl_fragcoord) {
1957 redeclares_gl_fragcoord = shader->redeclares_gl_fragcoord;
1958 uses_gl_fragcoord |= shader->uses_gl_fragcoord;
1959 origin_upper_left = shader->origin_upper_left;
1960 pixel_center_integer = shader->pixel_center_integer;
1961 }
1962
1963 linked_shader->Program->info.fs.early_fragment_tests |=
1964 shader->EarlyFragmentTests || shader->PostDepthCoverage;
1965 linked_shader->Program->info.fs.inner_coverage |= shader->InnerCoverage;
1966 linked_shader->Program->info.fs.post_depth_coverage |=
1967 shader->PostDepthCoverage;
1968
1969 linked_shader->Program->sh.fs.BlendSupport |= shader->BlendSupport;
1970 }
1971 }
1972
1973 /**
1974 * Performs the cross-validation of geometry shader max_vertices and
1975 * primitive type layout qualifiers for the attached geometry shaders,
1976 * and propagates them to the linked GS and linked shader program.
1977 */
1978 static void
1979 link_gs_inout_layout_qualifiers(struct gl_shader_program *prog,
1980 struct gl_program *gl_prog,
1981 struct gl_shader **shader_list,
1982 unsigned num_shaders)
1983 {
1984 /* No in/out qualifiers defined for anything but GLSL 1.50+
1985 * geometry shaders so far.
1986 */
1987 if (gl_prog->info.stage != MESA_SHADER_GEOMETRY ||
1988 prog->data->Version < 150)
1989 return;
1990
1991 int vertices_out = -1;
1992
1993 gl_prog->info.gs.invocations = 0;
1994 gl_prog->info.gs.input_primitive = PRIM_UNKNOWN;
1995 gl_prog->info.gs.output_primitive = PRIM_UNKNOWN;
1996
1997 /* From the GLSL 1.50 spec, page 46:
1998 *
1999 * "All geometry shader output layout declarations in a program
2000 * must declare the same layout and same value for
2001 * max_vertices. There must be at least one geometry output
2002 * layout declaration somewhere in a program, but not all
2003 * geometry shaders (compilation units) are required to
2004 * declare it."
2005 */
2006
2007 for (unsigned i = 0; i < num_shaders; i++) {
2008 struct gl_shader *shader = shader_list[i];
2009
2010 if (shader->info.Geom.InputType != PRIM_UNKNOWN) {
2011 if (gl_prog->info.gs.input_primitive != PRIM_UNKNOWN &&
2012 gl_prog->info.gs.input_primitive !=
2013 shader->info.Geom.InputType) {
2014 linker_error(prog, "geometry shader defined with conflicting "
2015 "input types\n");
2016 return;
2017 }
2018 gl_prog->info.gs.input_primitive = shader->info.Geom.InputType;
2019 }
2020
2021 if (shader->info.Geom.OutputType != PRIM_UNKNOWN) {
2022 if (gl_prog->info.gs.output_primitive != PRIM_UNKNOWN &&
2023 gl_prog->info.gs.output_primitive !=
2024 shader->info.Geom.OutputType) {
2025 linker_error(prog, "geometry shader defined with conflicting "
2026 "output types\n");
2027 return;
2028 }
2029 gl_prog->info.gs.output_primitive = shader->info.Geom.OutputType;
2030 }
2031
2032 if (shader->info.Geom.VerticesOut != -1) {
2033 if (vertices_out != -1 &&
2034 vertices_out != shader->info.Geom.VerticesOut) {
2035 linker_error(prog, "geometry shader defined with conflicting "
2036 "output vertex count (%d and %d)\n",
2037 vertices_out, shader->info.Geom.VerticesOut);
2038 return;
2039 }
2040 vertices_out = shader->info.Geom.VerticesOut;
2041 }
2042
2043 if (shader->info.Geom.Invocations != 0) {
2044 if (gl_prog->info.gs.invocations != 0 &&
2045 gl_prog->info.gs.invocations !=
2046 (unsigned) shader->info.Geom.Invocations) {
2047 linker_error(prog, "geometry shader defined with conflicting "
2048 "invocation count (%d and %d)\n",
2049 gl_prog->info.gs.invocations,
2050 shader->info.Geom.Invocations);
2051 return;
2052 }
2053 gl_prog->info.gs.invocations = shader->info.Geom.Invocations;
2054 }
2055 }
2056
2057 /* Just do the intrastage -> interstage propagation right now,
2058 * since we already know we're in the right type of shader program
2059 * for doing it.
2060 */
2061 if (gl_prog->info.gs.input_primitive == PRIM_UNKNOWN) {
2062 linker_error(prog,
2063 "geometry shader didn't declare primitive input type\n");
2064 return;
2065 }
2066
2067 if (gl_prog->info.gs.output_primitive == PRIM_UNKNOWN) {
2068 linker_error(prog,
2069 "geometry shader didn't declare primitive output type\n");
2070 return;
2071 }
2072
2073 if (vertices_out == -1) {
2074 linker_error(prog,
2075 "geometry shader didn't declare max_vertices\n");
2076 return;
2077 } else {
2078 gl_prog->info.gs.vertices_out = vertices_out;
2079 }
2080
2081 if (gl_prog->info.gs.invocations == 0)
2082 gl_prog->info.gs.invocations = 1;
2083 }
2084
2085
2086 /**
2087 * Perform cross-validation of compute shader local_size_{x,y,z} layout
2088 * qualifiers for the attached compute shaders, and propagate them to the
2089 * linked CS and linked shader program.
2090 */
2091 static void
2092 link_cs_input_layout_qualifiers(struct gl_shader_program *prog,
2093 struct gl_program *gl_prog,
2094 struct gl_shader **shader_list,
2095 unsigned num_shaders)
2096 {
2097 /* This function is called for all shader stages, but it only has an effect
2098 * for compute shaders.
2099 */
2100 if (gl_prog->info.stage != MESA_SHADER_COMPUTE)
2101 return;
2102
2103 for (int i = 0; i < 3; i++)
2104 gl_prog->info.cs.local_size[i] = 0;
2105
2106 gl_prog->info.cs.local_size_variable = false;
2107
2108 /* From the ARB_compute_shader spec, in the section describing local size
2109 * declarations:
2110 *
2111 * If multiple compute shaders attached to a single program object
2112 * declare local work-group size, the declarations must be identical;
2113 * otherwise a link-time error results. Furthermore, if a program
2114 * object contains any compute shaders, at least one must contain an
2115 * input layout qualifier specifying the local work sizes of the
2116 * program, or a link-time error will occur.
2117 */
2118 for (unsigned sh = 0; sh < num_shaders; sh++) {
2119 struct gl_shader *shader = shader_list[sh];
2120
2121 if (shader->info.Comp.LocalSize[0] != 0) {
2122 if (gl_prog->info.cs.local_size[0] != 0) {
2123 for (int i = 0; i < 3; i++) {
2124 if (gl_prog->info.cs.local_size[i] !=
2125 shader->info.Comp.LocalSize[i]) {
2126 linker_error(prog, "compute shader defined with conflicting "
2127 "local sizes\n");
2128 return;
2129 }
2130 }
2131 }
2132 for (int i = 0; i < 3; i++) {
2133 gl_prog->info.cs.local_size[i] =
2134 shader->info.Comp.LocalSize[i];
2135 }
2136 } else if (shader->info.Comp.LocalSizeVariable) {
2137 if (gl_prog->info.cs.local_size[0] != 0) {
2138 /* The ARB_compute_variable_group_size spec says:
2139 *
2140 * If one compute shader attached to a program declares a
2141 * variable local group size and a second compute shader
2142 * attached to the same program declares a fixed local group
2143 * size, a link-time error results.
2144 */
2145 linker_error(prog, "compute shader defined with both fixed and "
2146 "variable local group size\n");
2147 return;
2148 }
2149 gl_prog->info.cs.local_size_variable = true;
2150 }
2151 }
2152
2153 /* Just do the intrastage -> interstage propagation right now,
2154 * since we already know we're in the right type of shader program
2155 * for doing it.
2156 */
2157 if (gl_prog->info.cs.local_size[0] == 0 &&
2158 !gl_prog->info.cs.local_size_variable) {
2159 linker_error(prog, "compute shader must contain a fixed or a variable "
2160 "local group size\n");
2161 return;
2162 }
2163 }
2164
2165
2166 /**
2167 * Combine a group of shaders for a single stage to generate a linked shader
2168 *
2169 * \note
2170 * If this function is supplied a single shader, it is cloned, and the new
2171 * shader is returned.
2172 */
2173 struct gl_linked_shader *
2174 link_intrastage_shaders(void *mem_ctx,
2175 struct gl_context *ctx,
2176 struct gl_shader_program *prog,
2177 struct gl_shader **shader_list,
2178 unsigned num_shaders,
2179 bool allow_missing_main)
2180 {
2181 struct gl_uniform_block *ubo_blocks = NULL;
2182 struct gl_uniform_block *ssbo_blocks = NULL;
2183 unsigned num_ubo_blocks = 0;
2184 unsigned num_ssbo_blocks = 0;
2185
2186 /* Check that global variables defined in multiple shaders are consistent.
2187 */
2188 glsl_symbol_table variables;
2189 for (unsigned i = 0; i < num_shaders; i++) {
2190 if (shader_list[i] == NULL)
2191 continue;
2192 cross_validate_globals(prog, shader_list[i]->ir, &variables, false);
2193 }
2194
2195 if (!prog->data->LinkStatus)
2196 return NULL;
2197
2198 /* Check that interface blocks defined in multiple shaders are consistent.
2199 */
2200 validate_intrastage_interface_blocks(prog, (const gl_shader **)shader_list,
2201 num_shaders);
2202 if (!prog->data->LinkStatus)
2203 return NULL;
2204
2205 /* Check that there is only a single definition of each function signature
2206 * across all shaders.
2207 */
2208 for (unsigned i = 0; i < (num_shaders - 1); i++) {
2209 foreach_in_list(ir_instruction, node, shader_list[i]->ir) {
2210 ir_function *const f = node->as_function();
2211
2212 if (f == NULL)
2213 continue;
2214
2215 for (unsigned j = i + 1; j < num_shaders; j++) {
2216 ir_function *const other =
2217 shader_list[j]->symbols->get_function(f->name);
2218
2219 /* If the other shader has no function (and therefore no function
2220 * signatures) with the same name, skip to the next shader.
2221 */
2222 if (other == NULL)
2223 continue;
2224
2225 foreach_in_list(ir_function_signature, sig, &f->signatures) {
2226 if (!sig->is_defined)
2227 continue;
2228
2229 ir_function_signature *other_sig =
2230 other->exact_matching_signature(NULL, &sig->parameters);
2231
2232 if (other_sig != NULL && other_sig->is_defined) {
2233 linker_error(prog, "function `%s' is multiply defined\n",
2234 f->name);
2235 return NULL;
2236 }
2237 }
2238 }
2239 }
2240 }
2241
2242 /* Find the shader that defines main, and make a clone of it.
2243 *
2244 * Starting with the clone, search for undefined references. If one is
2245 * found, find the shader that defines it. Clone the reference and add
2246 * it to the shader. Repeat until there are no undefined references or
2247 * until a reference cannot be resolved.
2248 */
2249 gl_shader *main = NULL;
2250 for (unsigned i = 0; i < num_shaders; i++) {
2251 if (_mesa_get_main_function_signature(shader_list[i]->symbols)) {
2252 main = shader_list[i];
2253 break;
2254 }
2255 }
2256
2257 if (main == NULL && allow_missing_main)
2258 main = shader_list[0];
2259
2260 if (main == NULL) {
2261 linker_error(prog, "%s shader lacks `main'\n",
2262 _mesa_shader_stage_to_string(shader_list[0]->Stage));
2263 return NULL;
2264 }
2265
2266 gl_linked_shader *linked = rzalloc(NULL, struct gl_linked_shader);
2267 linked->Stage = shader_list[0]->Stage;
2268
2269 /* Create program and attach it to the linked shader */
2270 struct gl_program *gl_prog =
2271 ctx->Driver.NewProgram(ctx,
2272 _mesa_shader_stage_to_program(shader_list[0]->Stage),
2273 prog->Name, false);
2274 if (!gl_prog) {
2275 prog->data->LinkStatus = linking_failure;
2276 _mesa_delete_linked_shader(ctx, linked);
2277 return NULL;
2278 }
2279
2280 if (!prog->data->cache_fallback)
2281 _mesa_reference_shader_program_data(ctx, &gl_prog->sh.data, prog->data);
2282
2283 /* Don't use _mesa_reference_program() just take ownership */
2284 linked->Program = gl_prog;
2285
2286 linked->ir = new(linked) exec_list;
2287 clone_ir_list(mem_ctx, linked->ir, main->ir);
2288
2289 link_fs_inout_layout_qualifiers(prog, linked, shader_list, num_shaders);
2290 link_tcs_out_layout_qualifiers(prog, gl_prog, shader_list, num_shaders);
2291 link_tes_in_layout_qualifiers(prog, gl_prog, shader_list, num_shaders);
2292 link_gs_inout_layout_qualifiers(prog, gl_prog, shader_list, num_shaders);
2293 link_cs_input_layout_qualifiers(prog, gl_prog, shader_list, num_shaders);
2294
2295 if (linked->Stage != MESA_SHADER_FRAGMENT)
2296 link_xfb_stride_layout_qualifiers(ctx, prog, linked, shader_list,
2297 num_shaders);
2298
2299 link_bindless_layout_qualifiers(prog, gl_prog, shader_list, num_shaders);
2300
2301 populate_symbol_table(linked);
2302
2303 /* The pointer to the main function in the final linked shader (i.e., the
2304 * copy of the original shader that contained the main function).
2305 */
2306 ir_function_signature *const main_sig =
2307 _mesa_get_main_function_signature(linked->symbols);
2308
2309 /* Move any instructions other than variable declarations or function
2310 * declarations into main.
2311 */
2312 if (main_sig != NULL) {
2313 exec_node *insertion_point =
2314 move_non_declarations(linked->ir, (exec_node *) &main_sig->body, false,
2315 linked);
2316
2317 for (unsigned i = 0; i < num_shaders; i++) {
2318 if (shader_list[i] == main)
2319 continue;
2320
2321 insertion_point = move_non_declarations(shader_list[i]->ir,
2322 insertion_point, true, linked);
2323 }
2324 }
2325
2326 if (!link_function_calls(prog, linked, shader_list, num_shaders)) {
2327 _mesa_delete_linked_shader(ctx, linked);
2328 return NULL;
2329 }
2330
2331 /* Make a pass over all variable declarations to ensure that arrays with
2332 * unspecified sizes have a size specified. The size is inferred from the
2333 * max_array_access field.
2334 */
2335 array_sizing_visitor v;
2336 v.run(linked->ir);
2337 v.fixup_unnamed_interface_types();
2338
2339 if (!prog->data->cache_fallback) {
2340 /* Link up uniform blocks defined within this stage. */
2341 link_uniform_blocks(mem_ctx, ctx, prog, linked, &ubo_blocks,
2342 &num_ubo_blocks, &ssbo_blocks, &num_ssbo_blocks);
2343
2344 if (!prog->data->LinkStatus) {
2345 _mesa_delete_linked_shader(ctx, linked);
2346 return NULL;
2347 }
2348
2349 /* Copy ubo blocks to linked shader list */
2350 linked->Program->sh.UniformBlocks =
2351 ralloc_array(linked, gl_uniform_block *, num_ubo_blocks);
2352 ralloc_steal(linked, ubo_blocks);
2353 for (unsigned i = 0; i < num_ubo_blocks; i++) {
2354 linked->Program->sh.UniformBlocks[i] = &ubo_blocks[i];
2355 }
2356 linked->Program->info.num_ubos = num_ubo_blocks;
2357
2358 /* Copy ssbo blocks to linked shader list */
2359 linked->Program->sh.ShaderStorageBlocks =
2360 ralloc_array(linked, gl_uniform_block *, num_ssbo_blocks);
2361 ralloc_steal(linked, ssbo_blocks);
2362 for (unsigned i = 0; i < num_ssbo_blocks; i++) {
2363 linked->Program->sh.ShaderStorageBlocks[i] = &ssbo_blocks[i];
2364 }
2365 linked->Program->info.num_ssbos = num_ssbo_blocks;
2366 }
2367
2368 /* At this point linked should contain all of the linked IR, so
2369 * validate it to make sure nothing went wrong.
2370 */
2371 validate_ir_tree(linked->ir);
2372
2373 /* Set the size of geometry shader input arrays */
2374 if (linked->Stage == MESA_SHADER_GEOMETRY) {
2375 unsigned num_vertices =
2376 vertices_per_prim(gl_prog->info.gs.input_primitive);
2377 array_resize_visitor input_resize_visitor(num_vertices, prog,
2378 MESA_SHADER_GEOMETRY);
2379 foreach_in_list(ir_instruction, ir, linked->ir) {
2380 ir->accept(&input_resize_visitor);
2381 }
2382 }
2383
2384 if (ctx->Const.VertexID_is_zero_based)
2385 lower_vertex_id(linked);
2386
2387 #ifdef DEBUG
2388 /* Compute the source checksum. */
2389 linked->SourceChecksum = 0;
2390 for (unsigned i = 0; i < num_shaders; i++) {
2391 if (shader_list[i] == NULL)
2392 continue;
2393 linked->SourceChecksum ^= shader_list[i]->SourceChecksum;
2394 }
2395 #endif
2396
2397 return linked;
2398 }
2399
2400 /**
2401 * Update the sizes of linked shader uniform arrays to the maximum
2402 * array index used.
2403 *
2404 * From page 81 (page 95 of the PDF) of the OpenGL 2.1 spec:
2405 *
2406 * If one or more elements of an array are active,
2407 * GetActiveUniform will return the name of the array in name,
2408 * subject to the restrictions listed above. The type of the array
2409 * is returned in type. The size parameter contains the highest
2410 * array element index used, plus one. The compiler or linker
2411 * determines the highest index used. There will be only one
2412 * active uniform reported by the GL per uniform array.
2413
2414 */
2415 static void
2416 update_array_sizes(struct gl_shader_program *prog)
2417 {
2418 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
2419 if (prog->_LinkedShaders[i] == NULL)
2420 continue;
2421
2422 bool types_were_updated = false;
2423
2424 foreach_in_list(ir_instruction, node, prog->_LinkedShaders[i]->ir) {
2425 ir_variable *const var = node->as_variable();
2426
2427 if ((var == NULL) || (var->data.mode != ir_var_uniform) ||
2428 !var->type->is_array())
2429 continue;
2430
2431 /* GL_ARB_uniform_buffer_object says that std140 uniforms
2432 * will not be eliminated. Since we always do std140, just
2433 * don't resize arrays in UBOs.
2434 *
2435 * Atomic counters are supposed to get deterministic
2436 * locations assigned based on the declaration ordering and
2437 * sizes, array compaction would mess that up.
2438 *
2439 * Subroutine uniforms are not removed.
2440 */
2441 if (var->is_in_buffer_block() || var->type->contains_atomic() ||
2442 var->type->contains_subroutine() || var->constant_initializer)
2443 continue;
2444
2445 int size = var->data.max_array_access;
2446 for (unsigned j = 0; j < MESA_SHADER_STAGES; j++) {
2447 if (prog->_LinkedShaders[j] == NULL)
2448 continue;
2449
2450 foreach_in_list(ir_instruction, node2, prog->_LinkedShaders[j]->ir) {
2451 ir_variable *other_var = node2->as_variable();
2452 if (!other_var)
2453 continue;
2454
2455 if (strcmp(var->name, other_var->name) == 0 &&
2456 other_var->data.max_array_access > size) {
2457 size = other_var->data.max_array_access;
2458 }
2459 }
2460 }
2461
2462 if (size + 1 != (int)var->type->length) {
2463 /* If this is a built-in uniform (i.e., it's backed by some
2464 * fixed-function state), adjust the number of state slots to
2465 * match the new array size. The number of slots per array entry
2466 * is not known. It seems safe to assume that the total number of
2467 * slots is an integer multiple of the number of array elements.
2468 * Determine the number of slots per array element by dividing by
2469 * the old (total) size.
2470 */
2471 const unsigned num_slots = var->get_num_state_slots();
2472 if (num_slots > 0) {
2473 var->set_num_state_slots((size + 1)
2474 * (num_slots / var->type->length));
2475 }
2476
2477 var->type = glsl_type::get_array_instance(var->type->fields.array,
2478 size + 1);
2479 types_were_updated = true;
2480 }
2481 }
2482
2483 /* Update the types of dereferences in case we changed any. */
2484 if (types_were_updated) {
2485 deref_type_updater v;
2486 v.run(prog->_LinkedShaders[i]->ir);
2487 }
2488 }
2489 }
2490
2491 /**
2492 * Resize tessellation evaluation per-vertex inputs to the size of
2493 * tessellation control per-vertex outputs.
2494 */
2495 static void
2496 resize_tes_inputs(struct gl_context *ctx,
2497 struct gl_shader_program *prog)
2498 {
2499 if (prog->_LinkedShaders[MESA_SHADER_TESS_EVAL] == NULL)
2500 return;
2501
2502 gl_linked_shader *const tcs = prog->_LinkedShaders[MESA_SHADER_TESS_CTRL];
2503 gl_linked_shader *const tes = prog->_LinkedShaders[MESA_SHADER_TESS_EVAL];
2504
2505 /* If no control shader is present, then the TES inputs are statically
2506 * sized to MaxPatchVertices; the actual size of the arrays won't be
2507 * known until draw time.
2508 */
2509 const int num_vertices = tcs
2510 ? tcs->Program->info.tess.tcs_vertices_out
2511 : ctx->Const.MaxPatchVertices;
2512
2513 array_resize_visitor input_resize_visitor(num_vertices, prog,
2514 MESA_SHADER_TESS_EVAL);
2515 foreach_in_list(ir_instruction, ir, tes->ir) {
2516 ir->accept(&input_resize_visitor);
2517 }
2518
2519 if (tcs || ctx->Const.LowerTESPatchVerticesIn) {
2520 /* Convert the gl_PatchVerticesIn system value into a constant, since
2521 * the value is known at this point.
2522 */
2523 foreach_in_list(ir_instruction, ir, tes->ir) {
2524 ir_variable *var = ir->as_variable();
2525 if (var && var->data.mode == ir_var_system_value &&
2526 var->data.location == SYSTEM_VALUE_VERTICES_IN) {
2527 void *mem_ctx = ralloc_parent(var);
2528 var->data.location = 0;
2529 var->data.explicit_location = false;
2530 if (tcs) {
2531 var->data.mode = ir_var_auto;
2532 var->constant_value = new(mem_ctx) ir_constant(num_vertices);
2533 } else {
2534 var->data.mode = ir_var_uniform;
2535 var->data.how_declared = ir_var_hidden;
2536 var->allocate_state_slots(1);
2537 ir_state_slot *slot0 = &var->get_state_slots()[0];
2538 slot0->swizzle = SWIZZLE_XXXX;
2539 slot0->tokens[0] = STATE_INTERNAL;
2540 slot0->tokens[1] = STATE_TES_PATCH_VERTICES_IN;
2541 for (int i = 2; i < STATE_LENGTH; i++)
2542 slot0->tokens[i] = 0;
2543 }
2544 }
2545 }
2546 }
2547 }
2548
2549 /**
2550 * Find a contiguous set of available bits in a bitmask.
2551 *
2552 * \param used_mask Bits representing used (1) and unused (0) locations
2553 * \param needed_count Number of contiguous bits needed.
2554 *
2555 * \return
2556 * Base location of the available bits on success or -1 on failure.
2557 */
2558 int
2559 find_available_slots(unsigned used_mask, unsigned needed_count)
2560 {
2561 unsigned needed_mask = (1 << needed_count) - 1;
2562 const int max_bit_to_test = (8 * sizeof(used_mask)) - needed_count;
2563
2564 /* The comparison to 32 is redundant, but without it GCC emits "warning:
2565 * cannot optimize possibly infinite loops" for the loop below.
2566 */
2567 if ((needed_count == 0) || (max_bit_to_test < 0) || (max_bit_to_test > 32))
2568 return -1;
2569
2570 for (int i = 0; i <= max_bit_to_test; i++) {
2571 if ((needed_mask & ~used_mask) == needed_mask)
2572 return i;
2573
2574 needed_mask <<= 1;
2575 }
2576
2577 return -1;
2578 }
2579
2580
2581 /**
2582 * Assign locations for either VS inputs or FS outputs
2583 *
2584 * \param mem_ctx Temporary ralloc context used for linking
2585 * \param prog Shader program whose variables need locations assigned
2586 * \param constants Driver specific constant values for the program.
2587 * \param target_index Selector for the program target to receive location
2588 * assignmnets. Must be either \c MESA_SHADER_VERTEX or
2589 * \c MESA_SHADER_FRAGMENT.
2590 *
2591 * \return
2592 * If locations are successfully assigned, true is returned. Otherwise an
2593 * error is emitted to the shader link log and false is returned.
2594 */
2595 bool
2596 assign_attribute_or_color_locations(void *mem_ctx,
2597 gl_shader_program *prog,
2598 struct gl_constants *constants,
2599 unsigned target_index)
2600 {
2601 /* Maximum number of generic locations. This corresponds to either the
2602 * maximum number of draw buffers or the maximum number of generic
2603 * attributes.
2604 */
2605 unsigned max_index = (target_index == MESA_SHADER_VERTEX) ?
2606 constants->Program[target_index].MaxAttribs :
2607 MAX2(constants->MaxDrawBuffers, constants->MaxDualSourceDrawBuffers);
2608
2609 /* Mark invalid locations as being used.
2610 */
2611 unsigned used_locations = (max_index >= 32)
2612 ? ~0 : ~((1 << max_index) - 1);
2613 unsigned double_storage_locations = 0;
2614
2615 assert((target_index == MESA_SHADER_VERTEX)
2616 || (target_index == MESA_SHADER_FRAGMENT));
2617
2618 gl_linked_shader *const sh = prog->_LinkedShaders[target_index];
2619 if (sh == NULL)
2620 return true;
2621
2622 /* Operate in a total of four passes.
2623 *
2624 * 1. Invalidate the location assignments for all vertex shader inputs.
2625 *
2626 * 2. Assign locations for inputs that have user-defined (via
2627 * glBindVertexAttribLocation) locations and outputs that have
2628 * user-defined locations (via glBindFragDataLocation).
2629 *
2630 * 3. Sort the attributes without assigned locations by number of slots
2631 * required in decreasing order. Fragmentation caused by attribute
2632 * locations assigned by the application may prevent large attributes
2633 * from having enough contiguous space.
2634 *
2635 * 4. Assign locations to any inputs without assigned locations.
2636 */
2637
2638 const int generic_base = (target_index == MESA_SHADER_VERTEX)
2639 ? (int) VERT_ATTRIB_GENERIC0 : (int) FRAG_RESULT_DATA0;
2640
2641 const enum ir_variable_mode direction =
2642 (target_index == MESA_SHADER_VERTEX)
2643 ? ir_var_shader_in : ir_var_shader_out;
2644
2645
2646 /* Temporary storage for the set of attributes that need locations assigned.
2647 */
2648 struct temp_attr {
2649 unsigned slots;
2650 ir_variable *var;
2651
2652 /* Used below in the call to qsort. */
2653 static int compare(const void *a, const void *b)
2654 {
2655 const temp_attr *const l = (const temp_attr *) a;
2656 const temp_attr *const r = (const temp_attr *) b;
2657
2658 /* Reversed because we want a descending order sort below. */
2659 return r->slots - l->slots;
2660 }
2661 } to_assign[32];
2662 assert(max_index <= 32);
2663
2664 /* Temporary array for the set of attributes that have locations assigned.
2665 */
2666 ir_variable *assigned[16];
2667
2668 unsigned num_attr = 0;
2669 unsigned assigned_attr = 0;
2670
2671 foreach_in_list(ir_instruction, node, sh->ir) {
2672 ir_variable *const var = node->as_variable();
2673
2674 if ((var == NULL) || (var->data.mode != (unsigned) direction))
2675 continue;
2676
2677 if (var->data.explicit_location) {
2678 var->data.is_unmatched_generic_inout = 0;
2679 if ((var->data.location >= (int)(max_index + generic_base))
2680 || (var->data.location < 0)) {
2681 linker_error(prog,
2682 "invalid explicit location %d specified for `%s'\n",
2683 (var->data.location < 0)
2684 ? var->data.location
2685 : var->data.location - generic_base,
2686 var->name);
2687 return false;
2688 }
2689 } else if (target_index == MESA_SHADER_VERTEX) {
2690 unsigned binding;
2691
2692 if (prog->AttributeBindings->get(binding, var->name)) {
2693 assert(binding >= VERT_ATTRIB_GENERIC0);
2694 var->data.location = binding;
2695 var->data.is_unmatched_generic_inout = 0;
2696 }
2697 } else if (target_index == MESA_SHADER_FRAGMENT) {
2698 unsigned binding;
2699 unsigned index;
2700 const char *name = var->name;
2701 const glsl_type *type = var->type;
2702
2703 while (type) {
2704 /* Check if there's a binding for the variable name */
2705 if (prog->FragDataBindings->get(binding, name)) {
2706 assert(binding >= FRAG_RESULT_DATA0);
2707 var->data.location = binding;
2708 var->data.is_unmatched_generic_inout = 0;
2709
2710 if (prog->FragDataIndexBindings->get(index, name)) {
2711 var->data.index = index;
2712 }
2713 break;
2714 }
2715
2716 /* If not, but it's an array type, look for name[0] */
2717 if (type->is_array()) {
2718 name = ralloc_asprintf(mem_ctx, "%s[0]", name);
2719 type = type->fields.array;
2720 continue;
2721 }
2722
2723 break;
2724 }
2725 }
2726
2727 if (strcmp(var->name, "gl_LastFragData") == 0)
2728 continue;
2729
2730 /* From GL4.5 core spec, section 15.2 (Shader Execution):
2731 *
2732 * "Output binding assignments will cause LinkProgram to fail:
2733 * ...
2734 * If the program has an active output assigned to a location greater
2735 * than or equal to the value of MAX_DUAL_SOURCE_DRAW_BUFFERS and has
2736 * an active output assigned an index greater than or equal to one;"
2737 */
2738 if (target_index == MESA_SHADER_FRAGMENT && var->data.index >= 1 &&
2739 var->data.location - generic_base >=
2740 (int) constants->MaxDualSourceDrawBuffers) {
2741 linker_error(prog,
2742 "output location %d >= GL_MAX_DUAL_SOURCE_DRAW_BUFFERS "
2743 "with index %u for %s\n",
2744 var->data.location - generic_base, var->data.index,
2745 var->name);
2746 return false;
2747 }
2748
2749 const unsigned slots = var->type->count_attribute_slots(target_index == MESA_SHADER_VERTEX);
2750
2751 /* If the variable is not a built-in and has a location statically
2752 * assigned in the shader (presumably via a layout qualifier), make sure
2753 * that it doesn't collide with other assigned locations. Otherwise,
2754 * add it to the list of variables that need linker-assigned locations.
2755 */
2756 if (var->data.location != -1) {
2757 if (var->data.location >= generic_base && var->data.index < 1) {
2758 /* From page 61 of the OpenGL 4.0 spec:
2759 *
2760 * "LinkProgram will fail if the attribute bindings assigned
2761 * by BindAttribLocation do not leave not enough space to
2762 * assign a location for an active matrix attribute or an
2763 * active attribute array, both of which require multiple
2764 * contiguous generic attributes."
2765 *
2766 * I think above text prohibits the aliasing of explicit and
2767 * automatic assignments. But, aliasing is allowed in manual
2768 * assignments of attribute locations. See below comments for
2769 * the details.
2770 *
2771 * From OpenGL 4.0 spec, page 61:
2772 *
2773 * "It is possible for an application to bind more than one
2774 * attribute name to the same location. This is referred to as
2775 * aliasing. This will only work if only one of the aliased
2776 * attributes is active in the executable program, or if no
2777 * path through the shader consumes more than one attribute of
2778 * a set of attributes aliased to the same location. A link
2779 * error can occur if the linker determines that every path
2780 * through the shader consumes multiple aliased attributes,
2781 * but implementations are not required to generate an error
2782 * in this case."
2783 *
2784 * From GLSL 4.30 spec, page 54:
2785 *
2786 * "A program will fail to link if any two non-vertex shader
2787 * input variables are assigned to the same location. For
2788 * vertex shaders, multiple input variables may be assigned
2789 * to the same location using either layout qualifiers or via
2790 * the OpenGL API. However, such aliasing is intended only to
2791 * support vertex shaders where each execution path accesses
2792 * at most one input per each location. Implementations are
2793 * permitted, but not required, to generate link-time errors
2794 * if they detect that every path through the vertex shader
2795 * executable accesses multiple inputs assigned to any single
2796 * location. For all shader types, a program will fail to link
2797 * if explicit location assignments leave the linker unable
2798 * to find space for other variables without explicit
2799 * assignments."
2800 *
2801 * From OpenGL ES 3.0 spec, page 56:
2802 *
2803 * "Binding more than one attribute name to the same location
2804 * is referred to as aliasing, and is not permitted in OpenGL
2805 * ES Shading Language 3.00 vertex shaders. LinkProgram will
2806 * fail when this condition exists. However, aliasing is
2807 * possible in OpenGL ES Shading Language 1.00 vertex shaders.
2808 * This will only work if only one of the aliased attributes
2809 * is active in the executable program, or if no path through
2810 * the shader consumes more than one attribute of a set of
2811 * attributes aliased to the same location. A link error can
2812 * occur if the linker determines that every path through the
2813 * shader consumes multiple aliased attributes, but implemen-
2814 * tations are not required to generate an error in this case."
2815 *
2816 * After looking at above references from OpenGL, OpenGL ES and
2817 * GLSL specifications, we allow aliasing of vertex input variables
2818 * in: OpenGL 2.0 (and above) and OpenGL ES 2.0.
2819 *
2820 * NOTE: This is not required by the spec but its worth mentioning
2821 * here that we're not doing anything to make sure that no path
2822 * through the vertex shader executable accesses multiple inputs
2823 * assigned to any single location.
2824 */
2825
2826 /* Mask representing the contiguous slots that will be used by
2827 * this attribute.
2828 */
2829 const unsigned attr = var->data.location - generic_base;
2830 const unsigned use_mask = (1 << slots) - 1;
2831 const char *const string = (target_index == MESA_SHADER_VERTEX)
2832 ? "vertex shader input" : "fragment shader output";
2833
2834 /* Generate a link error if the requested locations for this
2835 * attribute exceed the maximum allowed attribute location.
2836 */
2837 if (attr + slots > max_index) {
2838 linker_error(prog,
2839 "insufficient contiguous locations "
2840 "available for %s `%s' %d %d %d\n", string,
2841 var->name, used_locations, use_mask, attr);
2842 return false;
2843 }
2844
2845 /* Generate a link error if the set of bits requested for this
2846 * attribute overlaps any previously allocated bits.
2847 */
2848 if ((~(use_mask << attr) & used_locations) != used_locations) {
2849 if (target_index == MESA_SHADER_FRAGMENT && !prog->IsES) {
2850 /* From section 4.4.2 (Output Layout Qualifiers) of the GLSL
2851 * 4.40 spec:
2852 *
2853 * "Additionally, for fragment shader outputs, if two
2854 * variables are placed within the same location, they
2855 * must have the same underlying type (floating-point or
2856 * integer). No component aliasing of output variables or
2857 * members is allowed.
2858 */
2859 for (unsigned i = 0; i < assigned_attr; i++) {
2860 unsigned assigned_slots =
2861 assigned[i]->type->count_attribute_slots(false);
2862 unsigned assig_attr =
2863 assigned[i]->data.location - generic_base;
2864 unsigned assigned_use_mask = (1 << assigned_slots) - 1;
2865
2866 if ((assigned_use_mask << assig_attr) &
2867 (use_mask << attr)) {
2868
2869 const glsl_type *assigned_type =
2870 assigned[i]->type->without_array();
2871 const glsl_type *type = var->type->without_array();
2872 if (assigned_type->base_type != type->base_type) {
2873 linker_error(prog, "types do not match for aliased"
2874 " %ss %s and %s\n", string,
2875 assigned[i]->name, var->name);
2876 return false;
2877 }
2878
2879 unsigned assigned_component_mask =
2880 ((1 << assigned_type->vector_elements) - 1) <<
2881 assigned[i]->data.location_frac;
2882 unsigned component_mask =
2883 ((1 << type->vector_elements) - 1) <<
2884 var->data.location_frac;
2885 if (assigned_component_mask & component_mask) {
2886 linker_error(prog, "overlapping component is "
2887 "assigned to %ss %s and %s "
2888 "(component=%d)\n",
2889 string, assigned[i]->name, var->name,
2890 var->data.location_frac);
2891 return false;
2892 }
2893 }
2894 }
2895 } else if (target_index == MESA_SHADER_FRAGMENT ||
2896 (prog->IsES && prog->data->Version >= 300)) {
2897 linker_error(prog, "overlapping location is assigned "
2898 "to %s `%s' %d %d %d\n", string, var->name,
2899 used_locations, use_mask, attr);
2900 return false;
2901 } else {
2902 linker_warning(prog, "overlapping location is assigned "
2903 "to %s `%s' %d %d %d\n", string, var->name,
2904 used_locations, use_mask, attr);
2905 }
2906 }
2907
2908 used_locations |= (use_mask << attr);
2909
2910 /* From the GL 4.5 core spec, section 11.1.1 (Vertex Attributes):
2911 *
2912 * "A program with more than the value of MAX_VERTEX_ATTRIBS
2913 * active attribute variables may fail to link, unless
2914 * device-dependent optimizations are able to make the program
2915 * fit within available hardware resources. For the purposes
2916 * of this test, attribute variables of the type dvec3, dvec4,
2917 * dmat2x3, dmat2x4, dmat3, dmat3x4, dmat4x3, and dmat4 may
2918 * count as consuming twice as many attributes as equivalent
2919 * single-precision types. While these types use the same number
2920 * of generic attributes as their single-precision equivalents,
2921 * implementations are permitted to consume two single-precision
2922 * vectors of internal storage for each three- or four-component
2923 * double-precision vector."
2924 *
2925 * Mark this attribute slot as taking up twice as much space
2926 * so we can count it properly against limits. According to
2927 * issue (3) of the GL_ARB_vertex_attrib_64bit behavior, this
2928 * is optional behavior, but it seems preferable.
2929 */
2930 if (var->type->without_array()->is_dual_slot())
2931 double_storage_locations |= (use_mask << attr);
2932 }
2933
2934 assigned[assigned_attr] = var;
2935 assigned_attr++;
2936
2937 continue;
2938 }
2939
2940 if (num_attr >= max_index) {
2941 linker_error(prog, "too many %s (max %u)",
2942 target_index == MESA_SHADER_VERTEX ?
2943 "vertex shader inputs" : "fragment shader outputs",
2944 max_index);
2945 return false;
2946 }
2947 to_assign[num_attr].slots = slots;
2948 to_assign[num_attr].var = var;
2949 num_attr++;
2950 }
2951
2952 if (target_index == MESA_SHADER_VERTEX) {
2953 unsigned total_attribs_size =
2954 _mesa_bitcount(used_locations & ((1 << max_index) - 1)) +
2955 _mesa_bitcount(double_storage_locations);
2956 if (total_attribs_size > max_index) {
2957 linker_error(prog,
2958 "attempt to use %d vertex attribute slots only %d available ",
2959 total_attribs_size, max_index);
2960 return false;
2961 }
2962 }
2963
2964 /* If all of the attributes were assigned locations by the application (or
2965 * are built-in attributes with fixed locations), return early. This should
2966 * be the common case.
2967 */
2968 if (num_attr == 0)
2969 return true;
2970
2971 qsort(to_assign, num_attr, sizeof(to_assign[0]), temp_attr::compare);
2972
2973 if (target_index == MESA_SHADER_VERTEX) {
2974 /* VERT_ATTRIB_GENERIC0 is a pseudo-alias for VERT_ATTRIB_POS. It can
2975 * only be explicitly assigned by via glBindAttribLocation. Mark it as
2976 * reserved to prevent it from being automatically allocated below.
2977 */
2978 find_deref_visitor find("gl_Vertex");
2979 find.run(sh->ir);
2980 if (find.variable_found())
2981 used_locations |= (1 << 0);
2982 }
2983
2984 for (unsigned i = 0; i < num_attr; i++) {
2985 /* Mask representing the contiguous slots that will be used by this
2986 * attribute.
2987 */
2988 const unsigned use_mask = (1 << to_assign[i].slots) - 1;
2989
2990 int location = find_available_slots(used_locations, to_assign[i].slots);
2991
2992 if (location < 0) {
2993 const char *const string = (target_index == MESA_SHADER_VERTEX)
2994 ? "vertex shader input" : "fragment shader output";
2995
2996 linker_error(prog,
2997 "insufficient contiguous locations "
2998 "available for %s `%s'\n",
2999 string, to_assign[i].var->name);
3000 return false;
3001 }
3002
3003 to_assign[i].var->data.location = generic_base + location;
3004 to_assign[i].var->data.is_unmatched_generic_inout = 0;
3005 used_locations |= (use_mask << location);
3006
3007 if (to_assign[i].var->type->without_array()->is_dual_slot())
3008 double_storage_locations |= (use_mask << location);
3009 }
3010
3011 /* Now that we have all the locations, from the GL 4.5 core spec, section
3012 * 11.1.1 (Vertex Attributes), dvec3, dvec4, dmat2x3, dmat2x4, dmat3,
3013 * dmat3x4, dmat4x3, and dmat4 count as consuming twice as many attributes
3014 * as equivalent single-precision types.
3015 */
3016 if (target_index == MESA_SHADER_VERTEX) {
3017 unsigned total_attribs_size =
3018 _mesa_bitcount(used_locations & ((1 << max_index) - 1)) +
3019 _mesa_bitcount(double_storage_locations);
3020 if (total_attribs_size > max_index) {
3021 linker_error(prog,
3022 "attempt to use %d vertex attribute slots only %d available ",
3023 total_attribs_size, max_index);
3024 return false;
3025 }
3026 }
3027
3028 return true;
3029 }
3030
3031 /**
3032 * Match explicit locations of outputs to inputs and deactivate the
3033 * unmatch flag if found so we don't optimise them away.
3034 */
3035 static void
3036 match_explicit_outputs_to_inputs(gl_linked_shader *producer,
3037 gl_linked_shader *consumer)
3038 {
3039 glsl_symbol_table parameters;
3040 ir_variable *explicit_locations[MAX_VARYINGS_INCL_PATCH][4] =
3041 { {NULL, NULL} };
3042
3043 /* Find all shader outputs in the "producer" stage.
3044 */
3045 foreach_in_list(ir_instruction, node, producer->ir) {
3046 ir_variable *const var = node->as_variable();
3047
3048 if ((var == NULL) || (var->data.mode != ir_var_shader_out))
3049 continue;
3050
3051 if (var->data.explicit_location &&
3052 var->data.location >= VARYING_SLOT_VAR0) {
3053 const unsigned idx = var->data.location - VARYING_SLOT_VAR0;
3054 if (explicit_locations[idx][var->data.location_frac] == NULL)
3055 explicit_locations[idx][var->data.location_frac] = var;
3056 }
3057 }
3058
3059 /* Match inputs to outputs */
3060 foreach_in_list(ir_instruction, node, consumer->ir) {
3061 ir_variable *const input = node->as_variable();
3062
3063 if ((input == NULL) || (input->data.mode != ir_var_shader_in))
3064 continue;
3065
3066 ir_variable *output = NULL;
3067 if (input->data.explicit_location
3068 && input->data.location >= VARYING_SLOT_VAR0) {
3069 output = explicit_locations[input->data.location - VARYING_SLOT_VAR0]
3070 [input->data.location_frac];
3071
3072 if (output != NULL){
3073 input->data.is_unmatched_generic_inout = 0;
3074 output->data.is_unmatched_generic_inout = 0;
3075 }
3076 }
3077 }
3078 }
3079
3080 /**
3081 * Store the gl_FragDepth layout in the gl_shader_program struct.
3082 */
3083 static void
3084 store_fragdepth_layout(struct gl_shader_program *prog)
3085 {
3086 if (prog->_LinkedShaders[MESA_SHADER_FRAGMENT] == NULL) {
3087 return;
3088 }
3089
3090 struct exec_list *ir = prog->_LinkedShaders[MESA_SHADER_FRAGMENT]->ir;
3091
3092 /* We don't look up the gl_FragDepth symbol directly because if
3093 * gl_FragDepth is not used in the shader, it's removed from the IR.
3094 * However, the symbol won't be removed from the symbol table.
3095 *
3096 * We're only interested in the cases where the variable is NOT removed
3097 * from the IR.
3098 */
3099 foreach_in_list(ir_instruction, node, ir) {
3100 ir_variable *const var = node->as_variable();
3101
3102 if (var == NULL || var->data.mode != ir_var_shader_out) {
3103 continue;
3104 }
3105
3106 if (strcmp(var->name, "gl_FragDepth") == 0) {
3107 switch (var->data.depth_layout) {
3108 case ir_depth_layout_none:
3109 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_NONE;
3110 return;
3111 case ir_depth_layout_any:
3112 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_ANY;
3113 return;
3114 case ir_depth_layout_greater:
3115 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_GREATER;
3116 return;
3117 case ir_depth_layout_less:
3118 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_LESS;
3119 return;
3120 case ir_depth_layout_unchanged:
3121 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_UNCHANGED;
3122 return;
3123 default:
3124 assert(0);
3125 return;
3126 }
3127 }
3128 }
3129 }
3130
3131 /**
3132 * Validate the resources used by a program versus the implementation limits
3133 */
3134 static void
3135 check_resources(struct gl_context *ctx, struct gl_shader_program *prog)
3136 {
3137 unsigned total_uniform_blocks = 0;
3138 unsigned total_shader_storage_blocks = 0;
3139
3140 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3141 struct gl_linked_shader *sh = prog->_LinkedShaders[i];
3142
3143 if (sh == NULL)
3144 continue;
3145
3146 if (sh->Program->info.num_textures >
3147 ctx->Const.Program[i].MaxTextureImageUnits) {
3148 linker_error(prog, "Too many %s shader texture samplers\n",
3149 _mesa_shader_stage_to_string(i));
3150 }
3151
3152 if (sh->num_uniform_components >
3153 ctx->Const.Program[i].MaxUniformComponents) {
3154 if (ctx->Const.GLSLSkipStrictMaxUniformLimitCheck) {
3155 linker_warning(prog, "Too many %s shader default uniform block "
3156 "components, but the driver will try to optimize "
3157 "them out; this is non-portable out-of-spec "
3158 "behavior\n",
3159 _mesa_shader_stage_to_string(i));
3160 } else {
3161 linker_error(prog, "Too many %s shader default uniform block "
3162 "components\n",
3163 _mesa_shader_stage_to_string(i));
3164 }
3165 }
3166
3167 if (sh->num_combined_uniform_components >
3168 ctx->Const.Program[i].MaxCombinedUniformComponents) {
3169 if (ctx->Const.GLSLSkipStrictMaxUniformLimitCheck) {
3170 linker_warning(prog, "Too many %s shader uniform components, "
3171 "but the driver will try to optimize them out; "
3172 "this is non-portable out-of-spec behavior\n",
3173 _mesa_shader_stage_to_string(i));
3174 } else {
3175 linker_error(prog, "Too many %s shader uniform components\n",
3176 _mesa_shader_stage_to_string(i));
3177 }
3178 }
3179
3180 total_shader_storage_blocks += sh->Program->info.num_ssbos;
3181 total_uniform_blocks += sh->Program->info.num_ubos;
3182
3183 const unsigned max_uniform_blocks =
3184 ctx->Const.Program[i].MaxUniformBlocks;
3185 if (max_uniform_blocks < sh->Program->info.num_ubos) {
3186 linker_error(prog, "Too many %s uniform blocks (%d/%d)\n",
3187 _mesa_shader_stage_to_string(i),
3188 sh->Program->info.num_ubos, max_uniform_blocks);
3189 }
3190
3191 const unsigned max_shader_storage_blocks =
3192 ctx->Const.Program[i].MaxShaderStorageBlocks;
3193 if (max_shader_storage_blocks < sh->Program->info.num_ssbos) {
3194 linker_error(prog, "Too many %s shader storage blocks (%d/%d)\n",
3195 _mesa_shader_stage_to_string(i),
3196 sh->Program->info.num_ssbos, max_shader_storage_blocks);
3197 }
3198 }
3199
3200 if (total_uniform_blocks > ctx->Const.MaxCombinedUniformBlocks) {
3201 linker_error(prog, "Too many combined uniform blocks (%d/%d)\n",
3202 total_uniform_blocks, ctx->Const.MaxCombinedUniformBlocks);
3203 }
3204
3205 if (total_shader_storage_blocks > ctx->Const.MaxCombinedShaderStorageBlocks) {
3206 linker_error(prog, "Too many combined shader storage blocks (%d/%d)\n",
3207 total_shader_storage_blocks,
3208 ctx->Const.MaxCombinedShaderStorageBlocks);
3209 }
3210
3211 for (unsigned i = 0; i < prog->data->NumUniformBlocks; i++) {
3212 if (prog->data->UniformBlocks[i].UniformBufferSize >
3213 ctx->Const.MaxUniformBlockSize) {
3214 linker_error(prog, "Uniform block %s too big (%d/%d)\n",
3215 prog->data->UniformBlocks[i].Name,
3216 prog->data->UniformBlocks[i].UniformBufferSize,
3217 ctx->Const.MaxUniformBlockSize);
3218 }
3219 }
3220
3221 for (unsigned i = 0; i < prog->data->NumShaderStorageBlocks; i++) {
3222 if (prog->data->ShaderStorageBlocks[i].UniformBufferSize >
3223 ctx->Const.MaxShaderStorageBlockSize) {
3224 linker_error(prog, "Shader storage block %s too big (%d/%d)\n",
3225 prog->data->ShaderStorageBlocks[i].Name,
3226 prog->data->ShaderStorageBlocks[i].UniformBufferSize,
3227 ctx->Const.MaxShaderStorageBlockSize);
3228 }
3229 }
3230 }
3231
3232 static void
3233 link_calculate_subroutine_compat(struct gl_shader_program *prog)
3234 {
3235 unsigned mask = prog->data->linked_stages;
3236 while (mask) {
3237 const int i = u_bit_scan(&mask);
3238 struct gl_program *p = prog->_LinkedShaders[i]->Program;
3239
3240 for (unsigned j = 0; j < p->sh.NumSubroutineUniformRemapTable; j++) {
3241 if (p->sh.SubroutineUniformRemapTable[j] == INACTIVE_UNIFORM_EXPLICIT_LOCATION)
3242 continue;
3243
3244 struct gl_uniform_storage *uni = p->sh.SubroutineUniformRemapTable[j];
3245
3246 if (!uni)
3247 continue;
3248
3249 int count = 0;
3250 if (p->sh.NumSubroutineFunctions == 0) {
3251 linker_error(prog, "subroutine uniform %s defined but no valid functions found\n", uni->type->name);
3252 continue;
3253 }
3254 for (unsigned f = 0; f < p->sh.NumSubroutineFunctions; f++) {
3255 struct gl_subroutine_function *fn = &p->sh.SubroutineFunctions[f];
3256 for (int k = 0; k < fn->num_compat_types; k++) {
3257 if (fn->types[k] == uni->type) {
3258 count++;
3259 break;
3260 }
3261 }
3262 }
3263 uni->num_compatible_subroutines = count;
3264 }
3265 }
3266 }
3267
3268 static void
3269 check_subroutine_resources(struct gl_shader_program *prog)
3270 {
3271 unsigned mask = prog->data->linked_stages;
3272 while (mask) {
3273 const int i = u_bit_scan(&mask);
3274 struct gl_program *p = prog->_LinkedShaders[i]->Program;
3275
3276 if (p->sh.NumSubroutineUniformRemapTable > MAX_SUBROUTINE_UNIFORM_LOCATIONS) {
3277 linker_error(prog, "Too many %s shader subroutine uniforms\n",
3278 _mesa_shader_stage_to_string(i));
3279 }
3280 }
3281 }
3282 /**
3283 * Validate shader image resources.
3284 */
3285 static void
3286 check_image_resources(struct gl_context *ctx, struct gl_shader_program *prog)
3287 {
3288 unsigned total_image_units = 0;
3289 unsigned fragment_outputs = 0;
3290 unsigned total_shader_storage_blocks = 0;
3291
3292 if (!ctx->Extensions.ARB_shader_image_load_store)
3293 return;
3294
3295 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3296 struct gl_linked_shader *sh = prog->_LinkedShaders[i];
3297
3298 if (sh) {
3299 if (sh->Program->info.num_images > ctx->Const.Program[i].MaxImageUniforms)
3300 linker_error(prog, "Too many %s shader image uniforms (%u > %u)\n",
3301 _mesa_shader_stage_to_string(i),
3302 sh->Program->info.num_images,
3303 ctx->Const.Program[i].MaxImageUniforms);
3304
3305 total_image_units += sh->Program->info.num_images;
3306 total_shader_storage_blocks += sh->Program->info.num_ssbos;
3307
3308 if (i == MESA_SHADER_FRAGMENT) {
3309 foreach_in_list(ir_instruction, node, sh->ir) {
3310 ir_variable *var = node->as_variable();
3311 if (var && var->data.mode == ir_var_shader_out)
3312 /* since there are no double fs outputs - pass false */
3313 fragment_outputs += var->type->count_attribute_slots(false);
3314 }
3315 }
3316 }
3317 }
3318
3319 if (total_image_units > ctx->Const.MaxCombinedImageUniforms)
3320 linker_error(prog, "Too many combined image uniforms\n");
3321
3322 if (total_image_units + fragment_outputs + total_shader_storage_blocks >
3323 ctx->Const.MaxCombinedShaderOutputResources)
3324 linker_error(prog, "Too many combined image uniforms, shader storage "
3325 " buffers and fragment outputs\n");
3326 }
3327
3328
3329 /**
3330 * Initializes explicit location slots to INACTIVE_UNIFORM_EXPLICIT_LOCATION
3331 * for a variable, checks for overlaps between other uniforms using explicit
3332 * locations.
3333 */
3334 static int
3335 reserve_explicit_locations(struct gl_shader_program *prog,
3336 string_to_uint_map *map, ir_variable *var)
3337 {
3338 unsigned slots = var->type->uniform_locations();
3339 unsigned max_loc = var->data.location + slots - 1;
3340 unsigned return_value = slots;
3341
3342 /* Resize remap table if locations do not fit in the current one. */
3343 if (max_loc + 1 > prog->NumUniformRemapTable) {
3344 prog->UniformRemapTable =
3345 reralloc(prog, prog->UniformRemapTable,
3346 gl_uniform_storage *,
3347 max_loc + 1);
3348
3349 if (!prog->UniformRemapTable) {
3350 linker_error(prog, "Out of memory during linking.\n");
3351 return -1;
3352 }
3353
3354 /* Initialize allocated space. */
3355 for (unsigned i = prog->NumUniformRemapTable; i < max_loc + 1; i++)
3356 prog->UniformRemapTable[i] = NULL;
3357
3358 prog->NumUniformRemapTable = max_loc + 1;
3359 }
3360
3361 for (unsigned i = 0; i < slots; i++) {
3362 unsigned loc = var->data.location + i;
3363
3364 /* Check if location is already used. */
3365 if (prog->UniformRemapTable[loc] == INACTIVE_UNIFORM_EXPLICIT_LOCATION) {
3366
3367 /* Possibly same uniform from a different stage, this is ok. */
3368 unsigned hash_loc;
3369 if (map->get(hash_loc, var->name) && hash_loc == loc - i) {
3370 return_value = 0;
3371 continue;
3372 }
3373
3374 /* ARB_explicit_uniform_location specification states:
3375 *
3376 * "No two default-block uniform variables in the program can have
3377 * the same location, even if they are unused, otherwise a compiler
3378 * or linker error will be generated."
3379 */
3380 linker_error(prog,
3381 "location qualifier for uniform %s overlaps "
3382 "previously used location\n",
3383 var->name);
3384 return -1;
3385 }
3386
3387 /* Initialize location as inactive before optimization
3388 * rounds and location assignment.
3389 */
3390 prog->UniformRemapTable[loc] = INACTIVE_UNIFORM_EXPLICIT_LOCATION;
3391 }
3392
3393 /* Note, base location used for arrays. */
3394 map->put(var->data.location, var->name);
3395
3396 return return_value;
3397 }
3398
3399 static bool
3400 reserve_subroutine_explicit_locations(struct gl_shader_program *prog,
3401 struct gl_program *p,
3402 ir_variable *var)
3403 {
3404 unsigned slots = var->type->uniform_locations();
3405 unsigned max_loc = var->data.location + slots - 1;
3406
3407 /* Resize remap table if locations do not fit in the current one. */
3408 if (max_loc + 1 > p->sh.NumSubroutineUniformRemapTable) {
3409 p->sh.SubroutineUniformRemapTable =
3410 reralloc(p, p->sh.SubroutineUniformRemapTable,
3411 gl_uniform_storage *,
3412 max_loc + 1);
3413
3414 if (!p->sh.SubroutineUniformRemapTable) {
3415 linker_error(prog, "Out of memory during linking.\n");
3416 return false;
3417 }
3418
3419 /* Initialize allocated space. */
3420 for (unsigned i = p->sh.NumSubroutineUniformRemapTable; i < max_loc + 1; i++)
3421 p->sh.SubroutineUniformRemapTable[i] = NULL;
3422
3423 p->sh.NumSubroutineUniformRemapTable = max_loc + 1;
3424 }
3425
3426 for (unsigned i = 0; i < slots; i++) {
3427 unsigned loc = var->data.location + i;
3428
3429 /* Check if location is already used. */
3430 if (p->sh.SubroutineUniformRemapTable[loc] == INACTIVE_UNIFORM_EXPLICIT_LOCATION) {
3431
3432 /* ARB_explicit_uniform_location specification states:
3433 * "No two subroutine uniform variables can have the same location
3434 * in the same shader stage, otherwise a compiler or linker error
3435 * will be generated."
3436 */
3437 linker_error(prog,
3438 "location qualifier for uniform %s overlaps "
3439 "previously used location\n",
3440 var->name);
3441 return false;
3442 }
3443
3444 /* Initialize location as inactive before optimization
3445 * rounds and location assignment.
3446 */
3447 p->sh.SubroutineUniformRemapTable[loc] = INACTIVE_UNIFORM_EXPLICIT_LOCATION;
3448 }
3449
3450 return true;
3451 }
3452 /**
3453 * Check and reserve all explicit uniform locations, called before
3454 * any optimizations happen to handle also inactive uniforms and
3455 * inactive array elements that may get trimmed away.
3456 */
3457 static void
3458 check_explicit_uniform_locations(struct gl_context *ctx,
3459 struct gl_shader_program *prog)
3460 {
3461 prog->NumExplicitUniformLocations = 0;
3462
3463 if (!ctx->Extensions.ARB_explicit_uniform_location)
3464 return;
3465
3466 /* This map is used to detect if overlapping explicit locations
3467 * occur with the same uniform (from different stage) or a different one.
3468 */
3469 string_to_uint_map *uniform_map = new string_to_uint_map;
3470
3471 if (!uniform_map) {
3472 linker_error(prog, "Out of memory during linking.\n");
3473 return;
3474 }
3475
3476 unsigned entries_total = 0;
3477 unsigned mask = prog->data->linked_stages;
3478 while (mask) {
3479 const int i = u_bit_scan(&mask);
3480 struct gl_program *p = prog->_LinkedShaders[i]->Program;
3481
3482 foreach_in_list(ir_instruction, node, prog->_LinkedShaders[i]->ir) {
3483 ir_variable *var = node->as_variable();
3484 if (!var || var->data.mode != ir_var_uniform)
3485 continue;
3486
3487 if (var->data.explicit_location) {
3488 bool ret = false;
3489 if (var->type->without_array()->is_subroutine())
3490 ret = reserve_subroutine_explicit_locations(prog, p, var);
3491 else {
3492 int slots = reserve_explicit_locations(prog, uniform_map,
3493 var);
3494 if (slots != -1) {
3495 ret = true;
3496 entries_total += slots;
3497 }
3498 }
3499 if (!ret) {
3500 delete uniform_map;
3501 return;
3502 }
3503 }
3504 }
3505 }
3506
3507 struct empty_uniform_block *current_block = NULL;
3508
3509 for (unsigned i = 0; i < prog->NumUniformRemapTable; i++) {
3510 /* We found empty space in UniformRemapTable. */
3511 if (prog->UniformRemapTable[i] == NULL) {
3512 /* We've found the beginning of a new continous block of empty slots */
3513 if (!current_block || current_block->start + current_block->slots != i) {
3514 current_block = rzalloc(prog, struct empty_uniform_block);
3515 current_block->start = i;
3516 exec_list_push_tail(&prog->EmptyUniformLocations,
3517 &current_block->link);
3518 }
3519
3520 /* The current block continues, so we simply increment its slots */
3521 current_block->slots++;
3522 }
3523 }
3524
3525 delete uniform_map;
3526 prog->NumExplicitUniformLocations = entries_total;
3527 }
3528
3529 static bool
3530 should_add_buffer_variable(struct gl_shader_program *shProg,
3531 GLenum type, const char *name)
3532 {
3533 bool found_interface = false;
3534 unsigned block_name_len = 0;
3535 const char *block_name_dot = strchr(name, '.');
3536
3537 /* These rules only apply to buffer variables. So we return
3538 * true for the rest of types.
3539 */
3540 if (type != GL_BUFFER_VARIABLE)
3541 return true;
3542
3543 for (unsigned i = 0; i < shProg->data->NumShaderStorageBlocks; i++) {
3544 const char *block_name = shProg->data->ShaderStorageBlocks[i].Name;
3545 block_name_len = strlen(block_name);
3546
3547 const char *block_square_bracket = strchr(block_name, '[');
3548 if (block_square_bracket) {
3549 /* The block is part of an array of named interfaces,
3550 * for the name comparison we ignore the "[x]" part.
3551 */
3552 block_name_len -= strlen(block_square_bracket);
3553 }
3554
3555 if (block_name_dot) {
3556 /* Check if the variable name starts with the interface
3557 * name. The interface name (if present) should have the
3558 * length than the interface block name we are comparing to.
3559 */
3560 unsigned len = strlen(name) - strlen(block_name_dot);
3561 if (len != block_name_len)
3562 continue;
3563 }
3564
3565 if (strncmp(block_name, name, block_name_len) == 0) {
3566 found_interface = true;
3567 break;
3568 }
3569 }
3570
3571 /* We remove the interface name from the buffer variable name,
3572 * including the dot that follows it.
3573 */
3574 if (found_interface)
3575 name = name + block_name_len + 1;
3576
3577 /* The ARB_program_interface_query spec says:
3578 *
3579 * "For an active shader storage block member declared as an array, an
3580 * entry will be generated only for the first array element, regardless
3581 * of its type. For arrays of aggregate types, the enumeration rules
3582 * are applied recursively for the single enumerated array element."
3583 */
3584 const char *struct_first_dot = strchr(name, '.');
3585 const char *first_square_bracket = strchr(name, '[');
3586
3587 /* The buffer variable is on top level and it is not an array */
3588 if (!first_square_bracket) {
3589 return true;
3590 /* The shader storage block member is a struct, then generate the entry */
3591 } else if (struct_first_dot && struct_first_dot < first_square_bracket) {
3592 return true;
3593 } else {
3594 /* Shader storage block member is an array, only generate an entry for the
3595 * first array element.
3596 */
3597 if (strncmp(first_square_bracket, "[0]", 3) == 0)
3598 return true;
3599 }
3600
3601 return false;
3602 }
3603
3604 static bool
3605 add_program_resource(struct gl_shader_program *prog,
3606 struct set *resource_set,
3607 GLenum type, const void *data, uint8_t stages)
3608 {
3609 assert(data);
3610
3611 /* If resource already exists, do not add it again. */
3612 if (_mesa_set_search(resource_set, data))
3613 return true;
3614
3615 prog->data->ProgramResourceList =
3616 reralloc(prog,
3617 prog->data->ProgramResourceList,
3618 gl_program_resource,
3619 prog->data->NumProgramResourceList + 1);
3620
3621 if (!prog->data->ProgramResourceList) {
3622 linker_error(prog, "Out of memory during linking.\n");
3623 return false;
3624 }
3625
3626 struct gl_program_resource *res =
3627 &prog->data->ProgramResourceList[prog->data->NumProgramResourceList];
3628
3629 res->Type = type;
3630 res->Data = data;
3631 res->StageReferences = stages;
3632
3633 prog->data->NumProgramResourceList++;
3634
3635 _mesa_set_add(resource_set, data);
3636
3637 return true;
3638 }
3639
3640 /* Function checks if a variable var is a packed varying and
3641 * if given name is part of packed varying's list.
3642 *
3643 * If a variable is a packed varying, it has a name like
3644 * 'packed:a,b,c' where a, b and c are separate variables.
3645 */
3646 static bool
3647 included_in_packed_varying(ir_variable *var, const char *name)
3648 {
3649 if (strncmp(var->name, "packed:", 7) != 0)
3650 return false;
3651
3652 char *list = strdup(var->name + 7);
3653 assert(list);
3654
3655 bool found = false;
3656 char *saveptr;
3657 char *token = strtok_r(list, ",", &saveptr);
3658 while (token) {
3659 if (strcmp(token, name) == 0) {
3660 found = true;
3661 break;
3662 }
3663 token = strtok_r(NULL, ",", &saveptr);
3664 }
3665 free(list);
3666 return found;
3667 }
3668
3669 /**
3670 * Function builds a stage reference bitmask from variable name.
3671 */
3672 static uint8_t
3673 build_stageref(struct gl_shader_program *shProg, const char *name,
3674 unsigned mode)
3675 {
3676 uint8_t stages = 0;
3677
3678 /* Note, that we assume MAX 8 stages, if there will be more stages, type
3679 * used for reference mask in gl_program_resource will need to be changed.
3680 */
3681 assert(MESA_SHADER_STAGES < 8);
3682
3683 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3684 struct gl_linked_shader *sh = shProg->_LinkedShaders[i];
3685 if (!sh)
3686 continue;
3687
3688 /* Shader symbol table may contain variables that have
3689 * been optimized away. Search IR for the variable instead.
3690 */
3691 foreach_in_list(ir_instruction, node, sh->ir) {
3692 ir_variable *var = node->as_variable();
3693 if (var) {
3694 unsigned baselen = strlen(var->name);
3695
3696 if (included_in_packed_varying(var, name)) {
3697 stages |= (1 << i);
3698 break;
3699 }
3700
3701 /* Type needs to match if specified, otherwise we might
3702 * pick a variable with same name but different interface.
3703 */
3704 if (var->data.mode != mode)
3705 continue;
3706
3707 if (strncmp(var->name, name, baselen) == 0) {
3708 /* Check for exact name matches but also check for arrays and
3709 * structs.
3710 */
3711 if (name[baselen] == '\0' ||
3712 name[baselen] == '[' ||
3713 name[baselen] == '.') {
3714 stages |= (1 << i);
3715 break;
3716 }
3717 }
3718 }
3719 }
3720 }
3721 return stages;
3722 }
3723
3724 /**
3725 * Create gl_shader_variable from ir_variable class.
3726 */
3727 static gl_shader_variable *
3728 create_shader_variable(struct gl_shader_program *shProg,
3729 const ir_variable *in,
3730 const char *name, const glsl_type *type,
3731 const glsl_type *interface_type,
3732 bool use_implicit_location, int location,
3733 const glsl_type *outermost_struct_type)
3734 {
3735 /* Allocate zero-initialized memory to ensure that bitfield padding
3736 * is zero.
3737 */
3738 gl_shader_variable *out = rzalloc(shProg, struct gl_shader_variable);
3739 if (!out)
3740 return NULL;
3741
3742 /* Since gl_VertexID may be lowered to gl_VertexIDMESA, but applications
3743 * expect to see gl_VertexID in the program resource list. Pretend.
3744 */
3745 if (in->data.mode == ir_var_system_value &&
3746 in->data.location == SYSTEM_VALUE_VERTEX_ID_ZERO_BASE) {
3747 out->name = ralloc_strdup(shProg, "gl_VertexID");
3748 } else if ((in->data.mode == ir_var_shader_out &&
3749 in->data.location == VARYING_SLOT_TESS_LEVEL_OUTER) ||
3750 (in->data.mode == ir_var_system_value &&
3751 in->data.location == SYSTEM_VALUE_TESS_LEVEL_OUTER)) {
3752 out->name = ralloc_strdup(shProg, "gl_TessLevelOuter");
3753 type = glsl_type::get_array_instance(glsl_type::float_type, 4);
3754 } else if ((in->data.mode == ir_var_shader_out &&
3755 in->data.location == VARYING_SLOT_TESS_LEVEL_INNER) ||
3756 (in->data.mode == ir_var_system_value &&
3757 in->data.location == SYSTEM_VALUE_TESS_LEVEL_INNER)) {
3758 out->name = ralloc_strdup(shProg, "gl_TessLevelInner");
3759 type = glsl_type::get_array_instance(glsl_type::float_type, 2);
3760 } else {
3761 out->name = ralloc_strdup(shProg, name);
3762 }
3763
3764 if (!out->name)
3765 return NULL;
3766
3767 /* The ARB_program_interface_query spec says:
3768 *
3769 * "Not all active variables are assigned valid locations; the
3770 * following variables will have an effective location of -1:
3771 *
3772 * * uniforms declared as atomic counters;
3773 *
3774 * * members of a uniform block;
3775 *
3776 * * built-in inputs, outputs, and uniforms (starting with "gl_"); and
3777 *
3778 * * inputs or outputs not declared with a "location" layout
3779 * qualifier, except for vertex shader inputs and fragment shader
3780 * outputs."
3781 */
3782 if (in->type->is_atomic_uint() || is_gl_identifier(in->name) ||
3783 !(in->data.explicit_location || use_implicit_location)) {
3784 out->location = -1;
3785 } else {
3786 out->location = location;
3787 }
3788
3789 out->type = type;
3790 out->outermost_struct_type = outermost_struct_type;
3791 out->interface_type = interface_type;
3792 out->component = in->data.location_frac;
3793 out->index = in->data.index;
3794 out->patch = in->data.patch;
3795 out->mode = in->data.mode;
3796 out->interpolation = in->data.interpolation;
3797 out->explicit_location = in->data.explicit_location;
3798 out->precision = in->data.precision;
3799
3800 return out;
3801 }
3802
3803 static bool
3804 add_shader_variable(const struct gl_context *ctx,
3805 struct gl_shader_program *shProg,
3806 struct set *resource_set,
3807 unsigned stage_mask,
3808 GLenum programInterface, ir_variable *var,
3809 const char *name, const glsl_type *type,
3810 bool use_implicit_location, int location,
3811 const glsl_type *outermost_struct_type = NULL)
3812 {
3813 const glsl_type *interface_type = var->get_interface_type();
3814
3815 if (outermost_struct_type == NULL) {
3816 if (var->data.from_named_ifc_block) {
3817 const char *interface_name = interface_type->name;
3818
3819 if (interface_type->is_array()) {
3820 /* Issue #16 of the ARB_program_interface_query spec says:
3821 *
3822 * "* If a variable is a member of an interface block without an
3823 * instance name, it is enumerated using just the variable name.
3824 *
3825 * * If a variable is a member of an interface block with an
3826 * instance name, it is enumerated as "BlockName.Member", where
3827 * "BlockName" is the name of the interface block (not the
3828 * instance name) and "Member" is the name of the variable."
3829 *
3830 * In particular, it indicates that it should be "BlockName",
3831 * not "BlockName[array length]". The conformance suite and
3832 * dEQP both require this behavior.
3833 *
3834 * Here, we unwrap the extra array level added by named interface
3835 * block array lowering so we have the correct variable type. We
3836 * also unwrap the interface type when constructing the name.
3837 *
3838 * We leave interface_type the same so that ES 3.x SSO pipeline
3839 * validation can enforce the rules requiring array length to
3840 * match on interface blocks.
3841 */
3842 type = type->fields.array;
3843
3844 interface_name = interface_type->fields.array->name;
3845 }
3846
3847 name = ralloc_asprintf(shProg, "%s.%s", interface_name, name);
3848 }
3849 }
3850
3851 switch (type->base_type) {
3852 case GLSL_TYPE_STRUCT: {
3853 /* The ARB_program_interface_query spec says:
3854 *
3855 * "For an active variable declared as a structure, a separate entry
3856 * will be generated for each active structure member. The name of
3857 * each entry is formed by concatenating the name of the structure,
3858 * the "." character, and the name of the structure member. If a
3859 * structure member to enumerate is itself a structure or array,
3860 * these enumeration rules are applied recursively."
3861 */
3862 if (outermost_struct_type == NULL)
3863 outermost_struct_type = type;
3864
3865 unsigned field_location = location;
3866 for (unsigned i = 0; i < type->length; i++) {
3867 const struct glsl_struct_field *field = &type->fields.structure[i];
3868 char *field_name = ralloc_asprintf(shProg, "%s.%s", name, field->name);
3869 if (!add_shader_variable(ctx, shProg, resource_set,
3870 stage_mask, programInterface,
3871 var, field_name, field->type,
3872 use_implicit_location, field_location,
3873 outermost_struct_type))
3874 return false;
3875
3876 field_location += field->type->count_attribute_slots(false);
3877 }
3878 return true;
3879 }
3880
3881 default: {
3882 /* The ARB_program_interface_query spec says:
3883 *
3884 * "For an active variable declared as a single instance of a basic
3885 * type, a single entry will be generated, using the variable name
3886 * from the shader source."
3887 */
3888 gl_shader_variable *sha_v =
3889 create_shader_variable(shProg, var, name, type, interface_type,
3890 use_implicit_location, location,
3891 outermost_struct_type);
3892 if (!sha_v)
3893 return false;
3894
3895 return add_program_resource(shProg, resource_set,
3896 programInterface, sha_v, stage_mask);
3897 }
3898 }
3899 }
3900
3901 static bool
3902 add_interface_variables(const struct gl_context *ctx,
3903 struct gl_shader_program *shProg,
3904 struct set *resource_set,
3905 unsigned stage, GLenum programInterface)
3906 {
3907 exec_list *ir = shProg->_LinkedShaders[stage]->ir;
3908
3909 foreach_in_list(ir_instruction, node, ir) {
3910 ir_variable *var = node->as_variable();
3911
3912 if (!var || var->data.how_declared == ir_var_hidden)
3913 continue;
3914
3915 int loc_bias;
3916
3917 switch (var->data.mode) {
3918 case ir_var_system_value:
3919 case ir_var_shader_in:
3920 if (programInterface != GL_PROGRAM_INPUT)
3921 continue;
3922 loc_bias = (stage == MESA_SHADER_VERTEX) ? int(VERT_ATTRIB_GENERIC0)
3923 : int(VARYING_SLOT_VAR0);
3924 break;
3925 case ir_var_shader_out:
3926 if (programInterface != GL_PROGRAM_OUTPUT)
3927 continue;
3928 loc_bias = (stage == MESA_SHADER_FRAGMENT) ? int(FRAG_RESULT_DATA0)
3929 : int(VARYING_SLOT_VAR0);
3930 break;
3931 default:
3932 continue;
3933 };
3934
3935 if (var->data.patch)
3936 loc_bias = int(VARYING_SLOT_PATCH0);
3937
3938 /* Skip packed varyings, packed varyings are handled separately
3939 * by add_packed_varyings.
3940 */
3941 if (strncmp(var->name, "packed:", 7) == 0)
3942 continue;
3943
3944 /* Skip fragdata arrays, these are handled separately
3945 * by add_fragdata_arrays.
3946 */
3947 if (strncmp(var->name, "gl_out_FragData", 15) == 0)
3948 continue;
3949
3950 const bool vs_input_or_fs_output =
3951 (stage == MESA_SHADER_VERTEX && var->data.mode == ir_var_shader_in) ||
3952 (stage == MESA_SHADER_FRAGMENT && var->data.mode == ir_var_shader_out);
3953
3954 if (!add_shader_variable(ctx, shProg, resource_set,
3955 1 << stage, programInterface,
3956 var, var->name, var->type, vs_input_or_fs_output,
3957 var->data.location - loc_bias))
3958 return false;
3959 }
3960 return true;
3961 }
3962
3963 static bool
3964 add_packed_varyings(const struct gl_context *ctx,
3965 struct gl_shader_program *shProg,
3966 struct set *resource_set,
3967 int stage, GLenum type)
3968 {
3969 struct gl_linked_shader *sh = shProg->_LinkedShaders[stage];
3970 GLenum iface;
3971
3972 if (!sh || !sh->packed_varyings)
3973 return true;
3974
3975 foreach_in_list(ir_instruction, node, sh->packed_varyings) {
3976 ir_variable *var = node->as_variable();
3977 if (var) {
3978 switch (var->data.mode) {
3979 case ir_var_shader_in:
3980 iface = GL_PROGRAM_INPUT;
3981 break;
3982 case ir_var_shader_out:
3983 iface = GL_PROGRAM_OUTPUT;
3984 break;
3985 default:
3986 unreachable("unexpected type");
3987 }
3988
3989 if (type == iface) {
3990 const int stage_mask =
3991 build_stageref(shProg, var->name, var->data.mode);
3992 if (!add_shader_variable(ctx, shProg, resource_set,
3993 stage_mask,
3994 iface, var, var->name, var->type, false,
3995 var->data.location - VARYING_SLOT_VAR0))
3996 return false;
3997 }
3998 }
3999 }
4000 return true;
4001 }
4002
4003 static bool
4004 add_fragdata_arrays(const struct gl_context *ctx,
4005 struct gl_shader_program *shProg,
4006 struct set *resource_set)
4007 {
4008 struct gl_linked_shader *sh = shProg->_LinkedShaders[MESA_SHADER_FRAGMENT];
4009
4010 if (!sh || !sh->fragdata_arrays)
4011 return true;
4012
4013 foreach_in_list(ir_instruction, node, sh->fragdata_arrays) {
4014 ir_variable *var = node->as_variable();
4015 if (var) {
4016 assert(var->data.mode == ir_var_shader_out);
4017
4018 if (!add_shader_variable(ctx, shProg, resource_set,
4019 1 << MESA_SHADER_FRAGMENT,
4020 GL_PROGRAM_OUTPUT, var, var->name, var->type,
4021 true, var->data.location - FRAG_RESULT_DATA0))
4022 return false;
4023 }
4024 }
4025 return true;
4026 }
4027
4028 static char*
4029 get_top_level_name(const char *name)
4030 {
4031 const char *first_dot = strchr(name, '.');
4032 const char *first_square_bracket = strchr(name, '[');
4033 int name_size = 0;
4034
4035 /* The ARB_program_interface_query spec says:
4036 *
4037 * "For the property TOP_LEVEL_ARRAY_SIZE, a single integer identifying
4038 * the number of active array elements of the top-level shader storage
4039 * block member containing to the active variable is written to
4040 * <params>. If the top-level block member is not declared as an
4041 * array, the value one is written to <params>. If the top-level block
4042 * member is an array with no declared size, the value zero is written
4043 * to <params>."
4044 */
4045
4046 /* The buffer variable is on top level.*/
4047 if (!first_square_bracket && !first_dot)
4048 name_size = strlen(name);
4049 else if ((!first_square_bracket ||
4050 (first_dot && first_dot < first_square_bracket)))
4051 name_size = first_dot - name;
4052 else
4053 name_size = first_square_bracket - name;
4054
4055 return strndup(name, name_size);
4056 }
4057
4058 static char*
4059 get_var_name(const char *name)
4060 {
4061 const char *first_dot = strchr(name, '.');
4062
4063 if (!first_dot)
4064 return strdup(name);
4065
4066 return strndup(first_dot+1, strlen(first_dot) - 1);
4067 }
4068
4069 static bool
4070 is_top_level_shader_storage_block_member(const char* name,
4071 const char* interface_name,
4072 const char* field_name)
4073 {
4074 bool result = false;
4075
4076 /* If the given variable is already a top-level shader storage
4077 * block member, then return array_size = 1.
4078 * We could have two possibilities: if we have an instanced
4079 * shader storage block or not instanced.
4080 *
4081 * For the first, we check create a name as it was in top level and
4082 * compare it with the real name. If they are the same, then
4083 * the variable is already at top-level.
4084 *
4085 * Full instanced name is: interface name + '.' + var name +
4086 * NULL character
4087 */
4088 int name_length = strlen(interface_name) + 1 + strlen(field_name) + 1;
4089 char *full_instanced_name = (char *) calloc(name_length, sizeof(char));
4090 if (!full_instanced_name) {
4091 fprintf(stderr, "%s: Cannot allocate space for name\n", __func__);
4092 return false;
4093 }
4094
4095 snprintf(full_instanced_name, name_length, "%s.%s",
4096 interface_name, field_name);
4097
4098 /* Check if its top-level shader storage block member of an
4099 * instanced interface block, or of a unnamed interface block.
4100 */
4101 if (strcmp(name, full_instanced_name) == 0 ||
4102 strcmp(name, field_name) == 0)
4103 result = true;
4104
4105 free(full_instanced_name);
4106 return result;
4107 }
4108
4109 static int
4110 get_array_size(struct gl_uniform_storage *uni, const glsl_struct_field *field,
4111 char *interface_name, char *var_name)
4112 {
4113 /* The ARB_program_interface_query spec says:
4114 *
4115 * "For the property TOP_LEVEL_ARRAY_SIZE, a single integer identifying
4116 * the number of active array elements of the top-level shader storage
4117 * block member containing to the active variable is written to
4118 * <params>. If the top-level block member is not declared as an
4119 * array, the value one is written to <params>. If the top-level block
4120 * member is an array with no declared size, the value zero is written
4121 * to <params>."
4122 */
4123 if (is_top_level_shader_storage_block_member(uni->name,
4124 interface_name,
4125 var_name))
4126 return 1;
4127 else if (field->type->is_unsized_array())
4128 return 0;
4129 else if (field->type->is_array())
4130 return field->type->length;
4131
4132 return 1;
4133 }
4134
4135 static int
4136 get_array_stride(struct gl_uniform_storage *uni, const glsl_type *interface,
4137 const glsl_struct_field *field, char *interface_name,
4138 char *var_name)
4139 {
4140 /* The ARB_program_interface_query spec says:
4141 *
4142 * "For the property TOP_LEVEL_ARRAY_STRIDE, a single integer
4143 * identifying the stride between array elements of the top-level
4144 * shader storage block member containing the active variable is
4145 * written to <params>. For top-level block members declared as
4146 * arrays, the value written is the difference, in basic machine units,
4147 * between the offsets of the active variable for consecutive elements
4148 * in the top-level array. For top-level block members not declared as
4149 * an array, zero is written to <params>."
4150 */
4151 if (field->type->is_array()) {
4152 const enum glsl_matrix_layout matrix_layout =
4153 glsl_matrix_layout(field->matrix_layout);
4154 bool row_major = matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR;
4155 const glsl_type *array_type = field->type->fields.array;
4156
4157 if (is_top_level_shader_storage_block_member(uni->name,
4158 interface_name,
4159 var_name))
4160 return 0;
4161
4162 if (interface->interface_packing != GLSL_INTERFACE_PACKING_STD430) {
4163 if (array_type->is_record() || array_type->is_array())
4164 return glsl_align(array_type->std140_size(row_major), 16);
4165 else
4166 return MAX2(array_type->std140_base_alignment(row_major), 16);
4167 } else {
4168 return array_type->std430_array_stride(row_major);
4169 }
4170 }
4171 return 0;
4172 }
4173
4174 static void
4175 calculate_array_size_and_stride(struct gl_shader_program *shProg,
4176 struct gl_uniform_storage *uni)
4177 {
4178 int block_index = uni->block_index;
4179 int array_size = -1;
4180 int array_stride = -1;
4181 char *var_name = get_top_level_name(uni->name);
4182 char *interface_name =
4183 get_top_level_name(uni->is_shader_storage ?
4184 shProg->data->ShaderStorageBlocks[block_index].Name :
4185 shProg->data->UniformBlocks[block_index].Name);
4186
4187 if (strcmp(var_name, interface_name) == 0) {
4188 /* Deal with instanced array of SSBOs */
4189 char *temp_name = get_var_name(uni->name);
4190 if (!temp_name) {
4191 linker_error(shProg, "Out of memory during linking.\n");
4192 goto write_top_level_array_size_and_stride;
4193 }
4194 free(var_name);
4195 var_name = get_top_level_name(temp_name);
4196 free(temp_name);
4197 if (!var_name) {
4198 linker_error(shProg, "Out of memory during linking.\n");
4199 goto write_top_level_array_size_and_stride;
4200 }
4201 }
4202
4203 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4204 const gl_linked_shader *sh = shProg->_LinkedShaders[i];
4205 if (sh == NULL)
4206 continue;
4207
4208 foreach_in_list(ir_instruction, node, sh->ir) {
4209 ir_variable *var = node->as_variable();
4210 if (!var || !var->get_interface_type() ||
4211 var->data.mode != ir_var_shader_storage)
4212 continue;
4213
4214 const glsl_type *interface = var->get_interface_type();
4215
4216 if (strcmp(interface_name, interface->name) != 0)
4217 continue;
4218
4219 for (unsigned i = 0; i < interface->length; i++) {
4220 const glsl_struct_field *field = &interface->fields.structure[i];
4221 if (strcmp(field->name, var_name) != 0)
4222 continue;
4223
4224 array_stride = get_array_stride(uni, interface, field,
4225 interface_name, var_name);
4226 array_size = get_array_size(uni, field, interface_name, var_name);
4227 goto write_top_level_array_size_and_stride;
4228 }
4229 }
4230 }
4231 write_top_level_array_size_and_stride:
4232 free(interface_name);
4233 free(var_name);
4234 uni->top_level_array_stride = array_stride;
4235 uni->top_level_array_size = array_size;
4236 }
4237
4238 /**
4239 * Builds up a list of program resources that point to existing
4240 * resource data.
4241 */
4242 void
4243 build_program_resource_list(struct gl_context *ctx,
4244 struct gl_shader_program *shProg)
4245 {
4246 /* Rebuild resource list. */
4247 if (shProg->data->ProgramResourceList) {
4248 ralloc_free(shProg->data->ProgramResourceList);
4249 shProg->data->ProgramResourceList = NULL;
4250 shProg->data->NumProgramResourceList = 0;
4251 }
4252
4253 int input_stage = MESA_SHADER_STAGES, output_stage = 0;
4254
4255 /* Determine first input and final output stage. These are used to
4256 * detect which variables should be enumerated in the resource list
4257 * for GL_PROGRAM_INPUT and GL_PROGRAM_OUTPUT.
4258 */
4259 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4260 if (!shProg->_LinkedShaders[i])
4261 continue;
4262 if (input_stage == MESA_SHADER_STAGES)
4263 input_stage = i;
4264 output_stage = i;
4265 }
4266
4267 /* Empty shader, no resources. */
4268 if (input_stage == MESA_SHADER_STAGES && output_stage == 0)
4269 return;
4270
4271 struct set *resource_set = _mesa_set_create(NULL,
4272 _mesa_hash_pointer,
4273 _mesa_key_pointer_equal);
4274
4275 /* Program interface needs to expose varyings in case of SSO. */
4276 if (shProg->SeparateShader) {
4277 if (!add_packed_varyings(ctx, shProg, resource_set,
4278 input_stage, GL_PROGRAM_INPUT))
4279 return;
4280
4281 if (!add_packed_varyings(ctx, shProg, resource_set,
4282 output_stage, GL_PROGRAM_OUTPUT))
4283 return;
4284 }
4285
4286 if (!add_fragdata_arrays(ctx, shProg, resource_set))
4287 return;
4288
4289 /* Add inputs and outputs to the resource list. */
4290 if (!add_interface_variables(ctx, shProg, resource_set,
4291 input_stage, GL_PROGRAM_INPUT))
4292 return;
4293
4294 if (!add_interface_variables(ctx, shProg, resource_set,
4295 output_stage, GL_PROGRAM_OUTPUT))
4296 return;
4297
4298 if (shProg->last_vert_prog) {
4299 struct gl_transform_feedback_info *linked_xfb =
4300 shProg->last_vert_prog->sh.LinkedTransformFeedback;
4301
4302 /* Add transform feedback varyings. */
4303 if (linked_xfb->NumVarying > 0) {
4304 for (int i = 0; i < linked_xfb->NumVarying; i++) {
4305 if (!add_program_resource(shProg, resource_set,
4306 GL_TRANSFORM_FEEDBACK_VARYING,
4307 &linked_xfb->Varyings[i], 0))
4308 return;
4309 }
4310 }
4311
4312 /* Add transform feedback buffers. */
4313 for (unsigned i = 0; i < ctx->Const.MaxTransformFeedbackBuffers; i++) {
4314 if ((linked_xfb->ActiveBuffers >> i) & 1) {
4315 linked_xfb->Buffers[i].Binding = i;
4316 if (!add_program_resource(shProg, resource_set,
4317 GL_TRANSFORM_FEEDBACK_BUFFER,
4318 &linked_xfb->Buffers[i], 0))
4319 return;
4320 }
4321 }
4322 }
4323
4324 /* Add uniforms from uniform storage. */
4325 for (unsigned i = 0; i < shProg->data->NumUniformStorage; i++) {
4326 /* Do not add uniforms internally used by Mesa. */
4327 if (shProg->data->UniformStorage[i].hidden)
4328 continue;
4329
4330 uint8_t stageref =
4331 build_stageref(shProg, shProg->data->UniformStorage[i].name,
4332 ir_var_uniform);
4333
4334 /* Add stagereferences for uniforms in a uniform block. */
4335 bool is_shader_storage =
4336 shProg->data->UniformStorage[i].is_shader_storage;
4337 int block_index = shProg->data->UniformStorage[i].block_index;
4338 if (block_index != -1) {
4339 stageref |= is_shader_storage ?
4340 shProg->data->ShaderStorageBlocks[block_index].stageref :
4341 shProg->data->UniformBlocks[block_index].stageref;
4342 }
4343
4344 GLenum type = is_shader_storage ? GL_BUFFER_VARIABLE : GL_UNIFORM;
4345 if (!should_add_buffer_variable(shProg, type,
4346 shProg->data->UniformStorage[i].name))
4347 continue;
4348
4349 if (is_shader_storage) {
4350 calculate_array_size_and_stride(shProg,
4351 &shProg->data->UniformStorage[i]);
4352 }
4353
4354 if (!add_program_resource(shProg, resource_set, type,
4355 &shProg->data->UniformStorage[i], stageref))
4356 return;
4357 }
4358
4359 /* Add program uniform blocks. */
4360 for (unsigned i = 0; i < shProg->data->NumUniformBlocks; i++) {
4361 if (!add_program_resource(shProg, resource_set, GL_UNIFORM_BLOCK,
4362 &shProg->data->UniformBlocks[i], 0))
4363 return;
4364 }
4365
4366 /* Add program shader storage blocks. */
4367 for (unsigned i = 0; i < shProg->data->NumShaderStorageBlocks; i++) {
4368 if (!add_program_resource(shProg, resource_set, GL_SHADER_STORAGE_BLOCK,
4369 &shProg->data->ShaderStorageBlocks[i], 0))
4370 return;
4371 }
4372
4373 /* Add atomic counter buffers. */
4374 for (unsigned i = 0; i < shProg->data->NumAtomicBuffers; i++) {
4375 if (!add_program_resource(shProg, resource_set, GL_ATOMIC_COUNTER_BUFFER,
4376 &shProg->data->AtomicBuffers[i], 0))
4377 return;
4378 }
4379
4380 for (unsigned i = 0; i < shProg->data->NumUniformStorage; i++) {
4381 GLenum type;
4382 if (!shProg->data->UniformStorage[i].hidden)
4383 continue;
4384
4385 for (int j = MESA_SHADER_VERTEX; j < MESA_SHADER_STAGES; j++) {
4386 if (!shProg->data->UniformStorage[i].opaque[j].active ||
4387 !shProg->data->UniformStorage[i].type->is_subroutine())
4388 continue;
4389
4390 type = _mesa_shader_stage_to_subroutine_uniform((gl_shader_stage)j);
4391 /* add shader subroutines */
4392 if (!add_program_resource(shProg, resource_set,
4393 type, &shProg->data->UniformStorage[i], 0))
4394 return;
4395 }
4396 }
4397
4398 unsigned mask = shProg->data->linked_stages;
4399 while (mask) {
4400 const int i = u_bit_scan(&mask);
4401 struct gl_program *p = shProg->_LinkedShaders[i]->Program;
4402
4403 GLuint type = _mesa_shader_stage_to_subroutine((gl_shader_stage)i);
4404 for (unsigned j = 0; j < p->sh.NumSubroutineFunctions; j++) {
4405 if (!add_program_resource(shProg, resource_set,
4406 type, &p->sh.SubroutineFunctions[j], 0))
4407 return;
4408 }
4409 }
4410
4411 _mesa_set_destroy(resource_set, NULL);
4412 }
4413
4414 /**
4415 * This check is done to make sure we allow only constant expression
4416 * indexing and "constant-index-expression" (indexing with an expression
4417 * that includes loop induction variable).
4418 */
4419 static bool
4420 validate_sampler_array_indexing(struct gl_context *ctx,
4421 struct gl_shader_program *prog)
4422 {
4423 dynamic_sampler_array_indexing_visitor v;
4424 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4425 if (prog->_LinkedShaders[i] == NULL)
4426 continue;
4427
4428 bool no_dynamic_indexing =
4429 ctx->Const.ShaderCompilerOptions[i].EmitNoIndirectSampler;
4430
4431 /* Search for array derefs in shader. */
4432 v.run(prog->_LinkedShaders[i]->ir);
4433 if (v.uses_dynamic_sampler_array_indexing()) {
4434 const char *msg = "sampler arrays indexed with non-constant "
4435 "expressions is forbidden in GLSL %s %u";
4436 /* Backend has indicated that it has no dynamic indexing support. */
4437 if (no_dynamic_indexing) {
4438 linker_error(prog, msg, prog->IsES ? "ES" : "",
4439 prog->data->Version);
4440 return false;
4441 } else {
4442 linker_warning(prog, msg, prog->IsES ? "ES" : "",
4443 prog->data->Version);
4444 }
4445 }
4446 }
4447 return true;
4448 }
4449
4450 static void
4451 link_assign_subroutine_types(struct gl_shader_program *prog)
4452 {
4453 unsigned mask = prog->data->linked_stages;
4454 while (mask) {
4455 const int i = u_bit_scan(&mask);
4456 gl_program *p = prog->_LinkedShaders[i]->Program;
4457
4458 p->sh.MaxSubroutineFunctionIndex = 0;
4459 foreach_in_list(ir_instruction, node, prog->_LinkedShaders[i]->ir) {
4460 ir_function *fn = node->as_function();
4461 if (!fn)
4462 continue;
4463
4464 if (fn->is_subroutine)
4465 p->sh.NumSubroutineUniformTypes++;
4466
4467 if (!fn->num_subroutine_types)
4468 continue;
4469
4470 /* these should have been calculated earlier. */
4471 assert(fn->subroutine_index != -1);
4472 if (p->sh.NumSubroutineFunctions + 1 > MAX_SUBROUTINES) {
4473 linker_error(prog, "Too many subroutine functions declared.\n");
4474 return;
4475 }
4476 p->sh.SubroutineFunctions = reralloc(p, p->sh.SubroutineFunctions,
4477 struct gl_subroutine_function,
4478 p->sh.NumSubroutineFunctions + 1);
4479 p->sh.SubroutineFunctions[p->sh.NumSubroutineFunctions].name = ralloc_strdup(p, fn->name);
4480 p->sh.SubroutineFunctions[p->sh.NumSubroutineFunctions].num_compat_types = fn->num_subroutine_types;
4481 p->sh.SubroutineFunctions[p->sh.NumSubroutineFunctions].types =
4482 ralloc_array(p, const struct glsl_type *,
4483 fn->num_subroutine_types);
4484
4485 /* From Section 4.4.4(Subroutine Function Layout Qualifiers) of the
4486 * GLSL 4.5 spec:
4487 *
4488 * "Each subroutine with an index qualifier in the shader must be
4489 * given a unique index, otherwise a compile or link error will be
4490 * generated."
4491 */
4492 for (unsigned j = 0; j < p->sh.NumSubroutineFunctions; j++) {
4493 if (p->sh.SubroutineFunctions[j].index != -1 &&
4494 p->sh.SubroutineFunctions[j].index == fn->subroutine_index) {
4495 linker_error(prog, "each subroutine index qualifier in the "
4496 "shader must be unique\n");
4497 return;
4498 }
4499 }
4500 p->sh.SubroutineFunctions[p->sh.NumSubroutineFunctions].index =
4501 fn->subroutine_index;
4502
4503 if (fn->subroutine_index > (int)p->sh.MaxSubroutineFunctionIndex)
4504 p->sh.MaxSubroutineFunctionIndex = fn->subroutine_index;
4505
4506 for (int j = 0; j < fn->num_subroutine_types; j++)
4507 p->sh.SubroutineFunctions[p->sh.NumSubroutineFunctions].types[j] = fn->subroutine_types[j];
4508 p->sh.NumSubroutineFunctions++;
4509 }
4510 }
4511 }
4512
4513 static void
4514 set_always_active_io(exec_list *ir, ir_variable_mode io_mode)
4515 {
4516 assert(io_mode == ir_var_shader_in || io_mode == ir_var_shader_out);
4517
4518 foreach_in_list(ir_instruction, node, ir) {
4519 ir_variable *const var = node->as_variable();
4520
4521 if (var == NULL || var->data.mode != io_mode)
4522 continue;
4523
4524 /* Don't set always active on builtins that haven't been redeclared */
4525 if (var->data.how_declared == ir_var_declared_implicitly)
4526 continue;
4527
4528 var->data.always_active_io = true;
4529 }
4530 }
4531
4532 /**
4533 * When separate shader programs are enabled, only input/outputs between
4534 * the stages of a multi-stage separate program can be safely removed
4535 * from the shader interface. Other inputs/outputs must remain active.
4536 */
4537 static void
4538 disable_varying_optimizations_for_sso(struct gl_shader_program *prog)
4539 {
4540 unsigned first, last;
4541 assert(prog->SeparateShader);
4542
4543 first = MESA_SHADER_STAGES;
4544 last = 0;
4545
4546 /* Determine first and last stage. Excluding the compute stage */
4547 for (unsigned i = 0; i < MESA_SHADER_COMPUTE; i++) {
4548 if (!prog->_LinkedShaders[i])
4549 continue;
4550 if (first == MESA_SHADER_STAGES)
4551 first = i;
4552 last = i;
4553 }
4554
4555 if (first == MESA_SHADER_STAGES)
4556 return;
4557
4558 for (unsigned stage = 0; stage < MESA_SHADER_STAGES; stage++) {
4559 gl_linked_shader *sh = prog->_LinkedShaders[stage];
4560 if (!sh)
4561 continue;
4562
4563 /* Prevent the removal of inputs to the first and outputs from the last
4564 * stage, unless they are the initial pipeline inputs or final pipeline
4565 * outputs, respectively.
4566 *
4567 * The removal of IO between shaders in the same program is always
4568 * allowed.
4569 */
4570 if (stage == first && stage != MESA_SHADER_VERTEX)
4571 set_always_active_io(sh->ir, ir_var_shader_in);
4572 if (stage == last && stage != MESA_SHADER_FRAGMENT)
4573 set_always_active_io(sh->ir, ir_var_shader_out);
4574 }
4575 }
4576
4577 static void
4578 link_and_validate_uniforms(struct gl_context *ctx,
4579 struct gl_shader_program *prog)
4580 {
4581 update_array_sizes(prog);
4582 link_assign_uniform_locations(prog, ctx);
4583
4584 if (!prog->data->cache_fallback) {
4585 link_assign_atomic_counter_resources(ctx, prog);
4586 link_calculate_subroutine_compat(prog);
4587 check_resources(ctx, prog);
4588 check_subroutine_resources(prog);
4589 check_image_resources(ctx, prog);
4590 link_check_atomic_counter_resources(ctx, prog);
4591 }
4592 }
4593
4594 static bool
4595 link_varyings_and_uniforms(unsigned first, unsigned last,
4596 struct gl_context *ctx,
4597 struct gl_shader_program *prog, void *mem_ctx)
4598 {
4599 /* Mark all generic shader inputs and outputs as unpaired. */
4600 for (unsigned i = MESA_SHADER_VERTEX; i <= MESA_SHADER_FRAGMENT; i++) {
4601 if (prog->_LinkedShaders[i] != NULL) {
4602 link_invalidate_variable_locations(prog->_LinkedShaders[i]->ir);
4603 }
4604 }
4605
4606 unsigned prev = first;
4607 for (unsigned i = prev + 1; i <= MESA_SHADER_FRAGMENT; i++) {
4608 if (prog->_LinkedShaders[i] == NULL)
4609 continue;
4610
4611 match_explicit_outputs_to_inputs(prog->_LinkedShaders[prev],
4612 prog->_LinkedShaders[i]);
4613 prev = i;
4614 }
4615
4616 if (!assign_attribute_or_color_locations(mem_ctx, prog, &ctx->Const,
4617 MESA_SHADER_VERTEX)) {
4618 return false;
4619 }
4620
4621 if (!assign_attribute_or_color_locations(mem_ctx, prog, &ctx->Const,
4622 MESA_SHADER_FRAGMENT)) {
4623 return false;
4624 }
4625
4626 prog->last_vert_prog = NULL;
4627 for (int i = MESA_SHADER_GEOMETRY; i >= MESA_SHADER_VERTEX; i--) {
4628 if (prog->_LinkedShaders[i] == NULL)
4629 continue;
4630
4631 prog->last_vert_prog = prog->_LinkedShaders[i]->Program;
4632 break;
4633 }
4634
4635 if (!link_varyings(prog, first, last, ctx, mem_ctx))
4636 return false;
4637
4638 link_and_validate_uniforms(ctx, prog);
4639
4640 if (!prog->data->LinkStatus)
4641 return false;
4642
4643 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4644 if (prog->_LinkedShaders[i] == NULL)
4645 continue;
4646
4647 const struct gl_shader_compiler_options *options =
4648 &ctx->Const.ShaderCompilerOptions[i];
4649
4650 if (options->LowerBufferInterfaceBlocks)
4651 lower_ubo_reference(prog->_LinkedShaders[i],
4652 options->ClampBlockIndicesToArrayBounds);
4653
4654 if (i == MESA_SHADER_COMPUTE)
4655 lower_shared_reference(prog->_LinkedShaders[i],
4656 &prog->Comp.SharedSize);
4657
4658 lower_vector_derefs(prog->_LinkedShaders[i]);
4659 do_vec_index_to_swizzle(prog->_LinkedShaders[i]->ir);
4660 }
4661
4662 return true;
4663 }
4664
4665 static void
4666 linker_optimisation_loop(struct gl_context *ctx, exec_list *ir,
4667 unsigned stage)
4668 {
4669 if (ctx->Const.GLSLOptimizeConservatively) {
4670 /* Run it just once. */
4671 do_common_optimization(ir, true, false,
4672 &ctx->Const.ShaderCompilerOptions[stage],
4673 ctx->Const.NativeIntegers);
4674 } else {
4675 /* Repeat it until it stops making changes. */
4676 while (do_common_optimization(ir, true, false,
4677 &ctx->Const.ShaderCompilerOptions[stage],
4678 ctx->Const.NativeIntegers))
4679 ;
4680 }
4681 }
4682
4683 void
4684 link_shaders(struct gl_context *ctx, struct gl_shader_program *prog)
4685 {
4686 prog->data->LinkStatus = linking_success; /* All error paths will set this to false */
4687 prog->data->Validated = false;
4688
4689 /* Section 7.3 (Program Objects) of the OpenGL 4.5 Core Profile spec says:
4690 *
4691 * "Linking can fail for a variety of reasons as specified in the
4692 * OpenGL Shading Language Specification, as well as any of the
4693 * following reasons:
4694 *
4695 * - No shader objects are attached to program."
4696 *
4697 * The Compatibility Profile specification does not list the error. In
4698 * Compatibility Profile missing shader stages are replaced by
4699 * fixed-function. This applies to the case where all stages are
4700 * missing.
4701 */
4702 if (prog->NumShaders == 0) {
4703 if (ctx->API != API_OPENGL_COMPAT)
4704 linker_error(prog, "no shaders attached to the program\n");
4705 return;
4706 }
4707
4708 #ifdef ENABLE_SHADER_CACHE
4709 /* If transform feedback used on the program then compile all shaders. */
4710 bool skip_cache = false;
4711 if (prog->TransformFeedback.NumVarying > 0) {
4712 for (unsigned i = 0; i < prog->NumShaders; i++) {
4713 _mesa_glsl_compile_shader(ctx, prog->Shaders[i], false, false, true);
4714 }
4715 skip_cache = true;
4716 }
4717
4718 if (!skip_cache && shader_cache_read_program_metadata(ctx, prog))
4719 return;
4720 #endif
4721
4722 void *mem_ctx = ralloc_context(NULL); // temporary linker context
4723
4724 prog->ARB_fragment_coord_conventions_enable = false;
4725
4726 /* Separate the shaders into groups based on their type.
4727 */
4728 struct gl_shader **shader_list[MESA_SHADER_STAGES];
4729 unsigned num_shaders[MESA_SHADER_STAGES];
4730
4731 for (int i = 0; i < MESA_SHADER_STAGES; i++) {
4732 shader_list[i] = (struct gl_shader **)
4733 calloc(prog->NumShaders, sizeof(struct gl_shader *));
4734 num_shaders[i] = 0;
4735 }
4736
4737 unsigned min_version = UINT_MAX;
4738 unsigned max_version = 0;
4739 for (unsigned i = 0; i < prog->NumShaders; i++) {
4740 min_version = MIN2(min_version, prog->Shaders[i]->Version);
4741 max_version = MAX2(max_version, prog->Shaders[i]->Version);
4742
4743 if (prog->Shaders[i]->IsES != prog->Shaders[0]->IsES) {
4744 linker_error(prog, "all shaders must use same shading "
4745 "language version\n");
4746 goto done;
4747 }
4748
4749 if (prog->Shaders[i]->ARB_fragment_coord_conventions_enable) {
4750 prog->ARB_fragment_coord_conventions_enable = true;
4751 }
4752
4753 gl_shader_stage shader_type = prog->Shaders[i]->Stage;
4754 shader_list[shader_type][num_shaders[shader_type]] = prog->Shaders[i];
4755 num_shaders[shader_type]++;
4756 }
4757
4758 /* In desktop GLSL, different shader versions may be linked together. In
4759 * GLSL ES, all shader versions must be the same.
4760 */
4761 if (prog->Shaders[0]->IsES && min_version != max_version) {
4762 linker_error(prog, "all shaders must use same shading "
4763 "language version\n");
4764 goto done;
4765 }
4766
4767 prog->data->Version = max_version;
4768 prog->IsES = prog->Shaders[0]->IsES;
4769
4770 /* Some shaders have to be linked with some other shaders present.
4771 */
4772 if (!prog->SeparateShader) {
4773 if (num_shaders[MESA_SHADER_GEOMETRY] > 0 &&
4774 num_shaders[MESA_SHADER_VERTEX] == 0) {
4775 linker_error(prog, "Geometry shader must be linked with "
4776 "vertex shader\n");
4777 goto done;
4778 }
4779 if (num_shaders[MESA_SHADER_TESS_EVAL] > 0 &&
4780 num_shaders[MESA_SHADER_VERTEX] == 0) {
4781 linker_error(prog, "Tessellation evaluation shader must be linked "
4782 "with vertex shader\n");
4783 goto done;
4784 }
4785 if (num_shaders[MESA_SHADER_TESS_CTRL] > 0 &&
4786 num_shaders[MESA_SHADER_VERTEX] == 0) {
4787 linker_error(prog, "Tessellation control shader must be linked with "
4788 "vertex shader\n");
4789 goto done;
4790 }
4791
4792 /* Section 7.3 of the OpenGL ES 3.2 specification says:
4793 *
4794 * "Linking can fail for [...] any of the following reasons:
4795 *
4796 * * program contains an object to form a tessellation control
4797 * shader [...] and [...] the program is not separable and
4798 * contains no object to form a tessellation evaluation shader"
4799 *
4800 * The OpenGL spec is contradictory. It allows linking without a tess
4801 * eval shader, but that can only be used with transform feedback and
4802 * rasterization disabled. However, transform feedback isn't allowed
4803 * with GL_PATCHES, so it can't be used.
4804 *
4805 * More investigation showed that the idea of transform feedback after
4806 * a tess control shader was dropped, because some hw vendors couldn't
4807 * support tessellation without a tess eval shader, but the linker
4808 * section wasn't updated to reflect that.
4809 *
4810 * All specifications (ARB_tessellation_shader, GL 4.0-4.5) have this
4811 * spec bug.
4812 *
4813 * Do what's reasonable and always require a tess eval shader if a tess
4814 * control shader is present.
4815 */
4816 if (num_shaders[MESA_SHADER_TESS_CTRL] > 0 &&
4817 num_shaders[MESA_SHADER_TESS_EVAL] == 0) {
4818 linker_error(prog, "Tessellation control shader must be linked with "
4819 "tessellation evaluation shader\n");
4820 goto done;
4821 }
4822
4823 if (prog->IsES) {
4824 if (num_shaders[MESA_SHADER_TESS_EVAL] > 0 &&
4825 num_shaders[MESA_SHADER_TESS_CTRL] == 0) {
4826 linker_error(prog, "GLSL ES requires non-separable programs "
4827 "containing a tessellation evaluation shader to also "
4828 "be linked with a tessellation control shader\n");
4829 goto done;
4830 }
4831 }
4832 }
4833
4834 /* Compute shaders have additional restrictions. */
4835 if (num_shaders[MESA_SHADER_COMPUTE] > 0 &&
4836 num_shaders[MESA_SHADER_COMPUTE] != prog->NumShaders) {
4837 linker_error(prog, "Compute shaders may not be linked with any other "
4838 "type of shader\n");
4839 }
4840
4841 /* Link all shaders for a particular stage and validate the result.
4842 */
4843 for (int stage = 0; stage < MESA_SHADER_STAGES; stage++) {
4844 if (num_shaders[stage] > 0) {
4845 gl_linked_shader *const sh =
4846 link_intrastage_shaders(mem_ctx, ctx, prog, shader_list[stage],
4847 num_shaders[stage], false);
4848
4849 if (!prog->data->LinkStatus) {
4850 if (sh)
4851 _mesa_delete_linked_shader(ctx, sh);
4852 goto done;
4853 }
4854
4855 switch (stage) {
4856 case MESA_SHADER_VERTEX:
4857 validate_vertex_shader_executable(prog, sh, ctx);
4858 break;
4859 case MESA_SHADER_TESS_CTRL:
4860 /* nothing to be done */
4861 break;
4862 case MESA_SHADER_TESS_EVAL:
4863 validate_tess_eval_shader_executable(prog, sh, ctx);
4864 break;
4865 case MESA_SHADER_GEOMETRY:
4866 validate_geometry_shader_executable(prog, sh, ctx);
4867 break;
4868 case MESA_SHADER_FRAGMENT:
4869 validate_fragment_shader_executable(prog, sh);
4870 break;
4871 }
4872 if (!prog->data->LinkStatus) {
4873 if (sh)
4874 _mesa_delete_linked_shader(ctx, sh);
4875 goto done;
4876 }
4877
4878 prog->_LinkedShaders[stage] = sh;
4879 prog->data->linked_stages |= 1 << stage;
4880 }
4881 }
4882
4883 /* Here begins the inter-stage linking phase. Some initial validation is
4884 * performed, then locations are assigned for uniforms, attributes, and
4885 * varyings.
4886 */
4887 cross_validate_uniforms(prog);
4888 if (!prog->data->LinkStatus)
4889 goto done;
4890
4891 unsigned first, last, prev;
4892
4893 first = MESA_SHADER_STAGES;
4894 last = 0;
4895
4896 /* Determine first and last stage. */
4897 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4898 if (!prog->_LinkedShaders[i])
4899 continue;
4900 if (first == MESA_SHADER_STAGES)
4901 first = i;
4902 last = i;
4903 }
4904
4905 if (!prog->data->cache_fallback) {
4906 check_explicit_uniform_locations(ctx, prog);
4907 link_assign_subroutine_types(prog);
4908 }
4909
4910 if (!prog->data->LinkStatus)
4911 goto done;
4912
4913 resize_tes_inputs(ctx, prog);
4914
4915 /* Validate the inputs of each stage with the output of the preceding
4916 * stage.
4917 */
4918 prev = first;
4919 for (unsigned i = prev + 1; i <= MESA_SHADER_FRAGMENT; i++) {
4920 if (prog->_LinkedShaders[i] == NULL)
4921 continue;
4922
4923 validate_interstage_inout_blocks(prog, prog->_LinkedShaders[prev],
4924 prog->_LinkedShaders[i]);
4925 if (!prog->data->LinkStatus)
4926 goto done;
4927
4928 cross_validate_outputs_to_inputs(prog,
4929 prog->_LinkedShaders[prev],
4930 prog->_LinkedShaders[i]);
4931 if (!prog->data->LinkStatus)
4932 goto done;
4933
4934 prev = i;
4935 }
4936
4937 /* Cross-validate uniform blocks between shader stages */
4938 validate_interstage_uniform_blocks(prog, prog->_LinkedShaders);
4939 if (!prog->data->LinkStatus)
4940 goto done;
4941
4942 for (unsigned int i = 0; i < MESA_SHADER_STAGES; i++) {
4943 if (prog->_LinkedShaders[i] != NULL)
4944 lower_named_interface_blocks(mem_ctx, prog->_LinkedShaders[i]);
4945 }
4946
4947 /* Implement the GLSL 1.30+ rule for discard vs infinite loops Do
4948 * it before optimization because we want most of the checks to get
4949 * dropped thanks to constant propagation.
4950 *
4951 * This rule also applies to GLSL ES 3.00.
4952 */
4953 if (max_version >= (prog->IsES ? 300 : 130)) {
4954 struct gl_linked_shader *sh = prog->_LinkedShaders[MESA_SHADER_FRAGMENT];
4955 if (sh) {
4956 lower_discard_flow(sh->ir);
4957 }
4958 }
4959
4960 if (prog->SeparateShader)
4961 disable_varying_optimizations_for_sso(prog);
4962
4963 if (!prog->data->cache_fallback) {
4964 /* Process UBOs */
4965 if (!interstage_cross_validate_uniform_blocks(prog, false))
4966 goto done;
4967
4968 /* Process SSBOs */
4969 if (!interstage_cross_validate_uniform_blocks(prog, true))
4970 goto done;
4971 }
4972
4973 /* Do common optimization before assigning storage for attributes,
4974 * uniforms, and varyings. Later optimization could possibly make
4975 * some of that unused.
4976 */
4977 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4978 if (prog->_LinkedShaders[i] == NULL)
4979 continue;
4980
4981 detect_recursion_linked(prog, prog->_LinkedShaders[i]->ir);
4982 if (!prog->data->LinkStatus)
4983 goto done;
4984
4985 if (ctx->Const.ShaderCompilerOptions[i].LowerCombinedClipCullDistance) {
4986 lower_clip_cull_distance(prog, prog->_LinkedShaders[i]);
4987 }
4988
4989 if (ctx->Const.LowerTessLevel) {
4990 lower_tess_level(prog->_LinkedShaders[i]);
4991 }
4992
4993 /* Call opts before lowering const arrays to uniforms so we can const
4994 * propagate any elements accessed directly.
4995 */
4996 linker_optimisation_loop(ctx, prog->_LinkedShaders[i]->ir, i);
4997
4998 /* Call opts after lowering const arrays to copy propagate things. */
4999 if (lower_const_arrays_to_uniforms(prog->_LinkedShaders[i]->ir, i))
5000 linker_optimisation_loop(ctx, prog->_LinkedShaders[i]->ir, i);
5001
5002 propagate_invariance(prog->_LinkedShaders[i]->ir);
5003 }
5004
5005 /* Validation for special cases where we allow sampler array indexing
5006 * with loop induction variable. This check emits a warning or error
5007 * depending if backend can handle dynamic indexing.
5008 */
5009 if ((!prog->IsES && prog->data->Version < 130) ||
5010 (prog->IsES && prog->data->Version < 300)) {
5011 if (!validate_sampler_array_indexing(ctx, prog))
5012 goto done;
5013 }
5014
5015 /* Check and validate stream emissions in geometry shaders */
5016 validate_geometry_shader_emissions(ctx, prog);
5017
5018 store_fragdepth_layout(prog);
5019
5020 if(!link_varyings_and_uniforms(first, last, ctx, prog, mem_ctx))
5021 goto done;
5022
5023 /* OpenGL ES < 3.1 requires that a vertex shader and a fragment shader both
5024 * be present in a linked program. GL_ARB_ES2_compatibility doesn't say
5025 * anything about shader linking when one of the shaders (vertex or
5026 * fragment shader) is absent. So, the extension shouldn't change the
5027 * behavior specified in GLSL specification.
5028 *
5029 * From OpenGL ES 3.1 specification (7.3 Program Objects):
5030 * "Linking can fail for a variety of reasons as specified in the
5031 * OpenGL ES Shading Language Specification, as well as any of the
5032 * following reasons:
5033 *
5034 * ...
5035 *
5036 * * program contains objects to form either a vertex shader or
5037 * fragment shader, and program is not separable, and does not
5038 * contain objects to form both a vertex shader and fragment
5039 * shader."
5040 *
5041 * However, the only scenario in 3.1+ where we don't require them both is
5042 * when we have a compute shader. For example:
5043 *
5044 * - No shaders is a link error.
5045 * - Geom or Tess without a Vertex shader is a link error which means we
5046 * always require a Vertex shader and hence a Fragment shader.
5047 * - Finally a Compute shader linked with any other stage is a link error.
5048 */
5049 if (!prog->SeparateShader && ctx->API == API_OPENGLES2 &&
5050 num_shaders[MESA_SHADER_COMPUTE] == 0) {
5051 if (prog->_LinkedShaders[MESA_SHADER_VERTEX] == NULL) {
5052 linker_error(prog, "program lacks a vertex shader\n");
5053 } else if (prog->_LinkedShaders[MESA_SHADER_FRAGMENT] == NULL) {
5054 linker_error(prog, "program lacks a fragment shader\n");
5055 }
5056 }
5057
5058 done:
5059 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
5060 free(shader_list[i]);
5061 if (prog->_LinkedShaders[i] == NULL)
5062 continue;
5063
5064 /* Do a final validation step to make sure that the IR wasn't
5065 * invalidated by any modifications performed after intrastage linking.
5066 */
5067 validate_ir_tree(prog->_LinkedShaders[i]->ir);
5068
5069 /* Retain any live IR, but trash the rest. */
5070 reparent_ir(prog->_LinkedShaders[i]->ir, prog->_LinkedShaders[i]->ir);
5071
5072 /* The symbol table in the linked shaders may contain references to
5073 * variables that were removed (e.g., unused uniforms). Since it may
5074 * contain junk, there is no possible valid use. Delete it and set the
5075 * pointer to NULL.
5076 */
5077 delete prog->_LinkedShaders[i]->symbols;
5078 prog->_LinkedShaders[i]->symbols = NULL;
5079 }
5080
5081 ralloc_free(mem_ctx);
5082 }