glsl/mesa: stop duplicating tes layout values
[mesa.git] / src / compiler / glsl / linker.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file linker.cpp
26 * GLSL linker implementation
27 *
28 * Given a set of shaders that are to be linked to generate a final program,
29 * there are three distinct stages.
30 *
31 * In the first stage shaders are partitioned into groups based on the shader
32 * type. All shaders of a particular type (e.g., vertex shaders) are linked
33 * together.
34 *
35 * - Undefined references in each shader are resolve to definitions in
36 * another shader.
37 * - Types and qualifiers of uniforms, outputs, and global variables defined
38 * in multiple shaders with the same name are verified to be the same.
39 * - Initializers for uniforms and global variables defined
40 * in multiple shaders with the same name are verified to be the same.
41 *
42 * The result, in the terminology of the GLSL spec, is a set of shader
43 * executables for each processing unit.
44 *
45 * After the first stage is complete, a series of semantic checks are performed
46 * on each of the shader executables.
47 *
48 * - Each shader executable must define a \c main function.
49 * - Each vertex shader executable must write to \c gl_Position.
50 * - Each fragment shader executable must write to either \c gl_FragData or
51 * \c gl_FragColor.
52 *
53 * In the final stage individual shader executables are linked to create a
54 * complete exectuable.
55 *
56 * - Types of uniforms defined in multiple shader stages with the same name
57 * are verified to be the same.
58 * - Initializers for uniforms defined in multiple shader stages with the
59 * same name are verified to be the same.
60 * - Types and qualifiers of outputs defined in one stage are verified to
61 * be the same as the types and qualifiers of inputs defined with the same
62 * name in a later stage.
63 *
64 * \author Ian Romanick <ian.d.romanick@intel.com>
65 */
66
67 #include <ctype.h>
68 #include "util/strndup.h"
69 #include "main/core.h"
70 #include "glsl_symbol_table.h"
71 #include "glsl_parser_extras.h"
72 #include "ir.h"
73 #include "program.h"
74 #include "program/hash_table.h"
75 #include "program/prog_instruction.h"
76 #include "linker.h"
77 #include "link_varyings.h"
78 #include "ir_optimization.h"
79 #include "ir_rvalue_visitor.h"
80 #include "ir_uniform.h"
81
82 #include "main/shaderobj.h"
83 #include "main/enums.h"
84
85
86 namespace {
87
88 /**
89 * Visitor that determines whether or not a variable is ever written.
90 */
91 class find_assignment_visitor : public ir_hierarchical_visitor {
92 public:
93 find_assignment_visitor(const char *name)
94 : name(name), found(false)
95 {
96 /* empty */
97 }
98
99 virtual ir_visitor_status visit_enter(ir_assignment *ir)
100 {
101 ir_variable *const var = ir->lhs->variable_referenced();
102
103 if (strcmp(name, var->name) == 0) {
104 found = true;
105 return visit_stop;
106 }
107
108 return visit_continue_with_parent;
109 }
110
111 virtual ir_visitor_status visit_enter(ir_call *ir)
112 {
113 foreach_two_lists(formal_node, &ir->callee->parameters,
114 actual_node, &ir->actual_parameters) {
115 ir_rvalue *param_rval = (ir_rvalue *) actual_node;
116 ir_variable *sig_param = (ir_variable *) formal_node;
117
118 if (sig_param->data.mode == ir_var_function_out ||
119 sig_param->data.mode == ir_var_function_inout) {
120 ir_variable *var = param_rval->variable_referenced();
121 if (var && strcmp(name, var->name) == 0) {
122 found = true;
123 return visit_stop;
124 }
125 }
126 }
127
128 if (ir->return_deref != NULL) {
129 ir_variable *const var = ir->return_deref->variable_referenced();
130
131 if (strcmp(name, var->name) == 0) {
132 found = true;
133 return visit_stop;
134 }
135 }
136
137 return visit_continue_with_parent;
138 }
139
140 bool variable_found()
141 {
142 return found;
143 }
144
145 private:
146 const char *name; /**< Find writes to a variable with this name. */
147 bool found; /**< Was a write to the variable found? */
148 };
149
150
151 /**
152 * Visitor that determines whether or not a variable is ever read.
153 */
154 class find_deref_visitor : public ir_hierarchical_visitor {
155 public:
156 find_deref_visitor(const char *name)
157 : name(name), found(false)
158 {
159 /* empty */
160 }
161
162 virtual ir_visitor_status visit(ir_dereference_variable *ir)
163 {
164 if (strcmp(this->name, ir->var->name) == 0) {
165 this->found = true;
166 return visit_stop;
167 }
168
169 return visit_continue;
170 }
171
172 bool variable_found() const
173 {
174 return this->found;
175 }
176
177 private:
178 const char *name; /**< Find writes to a variable with this name. */
179 bool found; /**< Was a write to the variable found? */
180 };
181
182
183 class geom_array_resize_visitor : public ir_hierarchical_visitor {
184 public:
185 unsigned num_vertices;
186 gl_shader_program *prog;
187
188 geom_array_resize_visitor(unsigned num_vertices, gl_shader_program *prog)
189 {
190 this->num_vertices = num_vertices;
191 this->prog = prog;
192 }
193
194 virtual ~geom_array_resize_visitor()
195 {
196 /* empty */
197 }
198
199 virtual ir_visitor_status visit(ir_variable *var)
200 {
201 if (!var->type->is_array() || var->data.mode != ir_var_shader_in)
202 return visit_continue;
203
204 unsigned size = var->type->length;
205
206 /* Generate a link error if the shader has declared this array with an
207 * incorrect size.
208 */
209 if (!var->data.implicit_sized_array &&
210 size && size != this->num_vertices) {
211 linker_error(this->prog, "size of array %s declared as %u, "
212 "but number of input vertices is %u\n",
213 var->name, size, this->num_vertices);
214 return visit_continue;
215 }
216
217 /* Generate a link error if the shader attempts to access an input
218 * array using an index too large for its actual size assigned at link
219 * time.
220 */
221 if (var->data.max_array_access >= (int)this->num_vertices) {
222 linker_error(this->prog, "geometry shader accesses element %i of "
223 "%s, but only %i input vertices\n",
224 var->data.max_array_access, var->name, this->num_vertices);
225 return visit_continue;
226 }
227
228 var->type = glsl_type::get_array_instance(var->type->fields.array,
229 this->num_vertices);
230 var->data.max_array_access = this->num_vertices - 1;
231
232 return visit_continue;
233 }
234
235 /* Dereferences of input variables need to be updated so that their type
236 * matches the newly assigned type of the variable they are accessing. */
237 virtual ir_visitor_status visit(ir_dereference_variable *ir)
238 {
239 ir->type = ir->var->type;
240 return visit_continue;
241 }
242
243 /* Dereferences of 2D input arrays need to be updated so that their type
244 * matches the newly assigned type of the array they are accessing. */
245 virtual ir_visitor_status visit_leave(ir_dereference_array *ir)
246 {
247 const glsl_type *const vt = ir->array->type;
248 if (vt->is_array())
249 ir->type = vt->fields.array;
250 return visit_continue;
251 }
252 };
253
254 class tess_eval_array_resize_visitor : public ir_hierarchical_visitor {
255 public:
256 unsigned num_vertices;
257 gl_shader_program *prog;
258
259 tess_eval_array_resize_visitor(unsigned num_vertices, gl_shader_program *prog)
260 {
261 this->num_vertices = num_vertices;
262 this->prog = prog;
263 }
264
265 virtual ~tess_eval_array_resize_visitor()
266 {
267 /* empty */
268 }
269
270 virtual ir_visitor_status visit(ir_variable *var)
271 {
272 if (!var->type->is_array() || var->data.mode != ir_var_shader_in || var->data.patch)
273 return visit_continue;
274
275 var->type = glsl_type::get_array_instance(var->type->fields.array,
276 this->num_vertices);
277 var->data.max_array_access = this->num_vertices - 1;
278
279 return visit_continue;
280 }
281
282 /* Dereferences of input variables need to be updated so that their type
283 * matches the newly assigned type of the variable they are accessing. */
284 virtual ir_visitor_status visit(ir_dereference_variable *ir)
285 {
286 ir->type = ir->var->type;
287 return visit_continue;
288 }
289
290 /* Dereferences of 2D input arrays need to be updated so that their type
291 * matches the newly assigned type of the array they are accessing. */
292 virtual ir_visitor_status visit_leave(ir_dereference_array *ir)
293 {
294 const glsl_type *const vt = ir->array->type;
295 if (vt->is_array())
296 ir->type = vt->fields.array;
297 return visit_continue;
298 }
299 };
300
301 class barrier_use_visitor : public ir_hierarchical_visitor {
302 public:
303 barrier_use_visitor(gl_shader_program *prog)
304 : prog(prog), in_main(false), after_return(false), control_flow(0)
305 {
306 }
307
308 virtual ~barrier_use_visitor()
309 {
310 /* empty */
311 }
312
313 virtual ir_visitor_status visit_enter(ir_function *ir)
314 {
315 if (strcmp(ir->name, "main") == 0)
316 in_main = true;
317
318 return visit_continue;
319 }
320
321 virtual ir_visitor_status visit_leave(ir_function *)
322 {
323 in_main = false;
324 after_return = false;
325 return visit_continue;
326 }
327
328 virtual ir_visitor_status visit_leave(ir_return *)
329 {
330 after_return = true;
331 return visit_continue;
332 }
333
334 virtual ir_visitor_status visit_enter(ir_if *)
335 {
336 ++control_flow;
337 return visit_continue;
338 }
339
340 virtual ir_visitor_status visit_leave(ir_if *)
341 {
342 --control_flow;
343 return visit_continue;
344 }
345
346 virtual ir_visitor_status visit_enter(ir_loop *)
347 {
348 ++control_flow;
349 return visit_continue;
350 }
351
352 virtual ir_visitor_status visit_leave(ir_loop *)
353 {
354 --control_flow;
355 return visit_continue;
356 }
357
358 /* FINISHME: `switch` is not expressed at the IR level -- it's already
359 * been lowered to a mess of `if`s. We'll correctly disallow any use of
360 * barrier() in a conditional path within the switch, but not in a path
361 * which is always hit.
362 */
363
364 virtual ir_visitor_status visit_enter(ir_call *ir)
365 {
366 if (ir->use_builtin && strcmp(ir->callee_name(), "barrier") == 0) {
367 /* Use of barrier(); determine if it is legal: */
368 if (!in_main) {
369 linker_error(prog, "Builtin barrier() may only be used in main");
370 return visit_stop;
371 }
372
373 if (after_return) {
374 linker_error(prog, "Builtin barrier() may not be used after return");
375 return visit_stop;
376 }
377
378 if (control_flow != 0) {
379 linker_error(prog, "Builtin barrier() may not be used inside control flow");
380 return visit_stop;
381 }
382 }
383 return visit_continue;
384 }
385
386 private:
387 gl_shader_program *prog;
388 bool in_main, after_return;
389 int control_flow;
390 };
391
392 /**
393 * Visitor that determines the highest stream id to which a (geometry) shader
394 * emits vertices. It also checks whether End{Stream}Primitive is ever called.
395 */
396 class find_emit_vertex_visitor : public ir_hierarchical_visitor {
397 public:
398 find_emit_vertex_visitor(int max_allowed)
399 : max_stream_allowed(max_allowed),
400 invalid_stream_id(0),
401 invalid_stream_id_from_emit_vertex(false),
402 end_primitive_found(false),
403 uses_non_zero_stream(false)
404 {
405 /* empty */
406 }
407
408 virtual ir_visitor_status visit_leave(ir_emit_vertex *ir)
409 {
410 int stream_id = ir->stream_id();
411
412 if (stream_id < 0) {
413 invalid_stream_id = stream_id;
414 invalid_stream_id_from_emit_vertex = true;
415 return visit_stop;
416 }
417
418 if (stream_id > max_stream_allowed) {
419 invalid_stream_id = stream_id;
420 invalid_stream_id_from_emit_vertex = true;
421 return visit_stop;
422 }
423
424 if (stream_id != 0)
425 uses_non_zero_stream = true;
426
427 return visit_continue;
428 }
429
430 virtual ir_visitor_status visit_leave(ir_end_primitive *ir)
431 {
432 end_primitive_found = true;
433
434 int stream_id = ir->stream_id();
435
436 if (stream_id < 0) {
437 invalid_stream_id = stream_id;
438 invalid_stream_id_from_emit_vertex = false;
439 return visit_stop;
440 }
441
442 if (stream_id > max_stream_allowed) {
443 invalid_stream_id = stream_id;
444 invalid_stream_id_from_emit_vertex = false;
445 return visit_stop;
446 }
447
448 if (stream_id != 0)
449 uses_non_zero_stream = true;
450
451 return visit_continue;
452 }
453
454 bool error()
455 {
456 return invalid_stream_id != 0;
457 }
458
459 const char *error_func()
460 {
461 return invalid_stream_id_from_emit_vertex ?
462 "EmitStreamVertex" : "EndStreamPrimitive";
463 }
464
465 int error_stream()
466 {
467 return invalid_stream_id;
468 }
469
470 bool uses_streams()
471 {
472 return uses_non_zero_stream;
473 }
474
475 bool uses_end_primitive()
476 {
477 return end_primitive_found;
478 }
479
480 private:
481 int max_stream_allowed;
482 int invalid_stream_id;
483 bool invalid_stream_id_from_emit_vertex;
484 bool end_primitive_found;
485 bool uses_non_zero_stream;
486 };
487
488 /* Class that finds array derefs and check if indexes are dynamic. */
489 class dynamic_sampler_array_indexing_visitor : public ir_hierarchical_visitor
490 {
491 public:
492 dynamic_sampler_array_indexing_visitor() :
493 dynamic_sampler_array_indexing(false)
494 {
495 }
496
497 ir_visitor_status visit_enter(ir_dereference_array *ir)
498 {
499 if (!ir->variable_referenced())
500 return visit_continue;
501
502 if (!ir->variable_referenced()->type->contains_sampler())
503 return visit_continue;
504
505 if (!ir->array_index->constant_expression_value()) {
506 dynamic_sampler_array_indexing = true;
507 return visit_stop;
508 }
509 return visit_continue;
510 }
511
512 bool uses_dynamic_sampler_array_indexing()
513 {
514 return dynamic_sampler_array_indexing;
515 }
516
517 private:
518 bool dynamic_sampler_array_indexing;
519 };
520
521 } /* anonymous namespace */
522
523 void
524 linker_error(gl_shader_program *prog, const char *fmt, ...)
525 {
526 va_list ap;
527
528 ralloc_strcat(&prog->InfoLog, "error: ");
529 va_start(ap, fmt);
530 ralloc_vasprintf_append(&prog->InfoLog, fmt, ap);
531 va_end(ap);
532
533 prog->LinkStatus = false;
534 }
535
536
537 void
538 linker_warning(gl_shader_program *prog, const char *fmt, ...)
539 {
540 va_list ap;
541
542 ralloc_strcat(&prog->InfoLog, "warning: ");
543 va_start(ap, fmt);
544 ralloc_vasprintf_append(&prog->InfoLog, fmt, ap);
545 va_end(ap);
546
547 }
548
549
550 /**
551 * Given a string identifying a program resource, break it into a base name
552 * and an optional array index in square brackets.
553 *
554 * If an array index is present, \c out_base_name_end is set to point to the
555 * "[" that precedes the array index, and the array index itself is returned
556 * as a long.
557 *
558 * If no array index is present (or if the array index is negative or
559 * mal-formed), \c out_base_name_end, is set to point to the null terminator
560 * at the end of the input string, and -1 is returned.
561 *
562 * Only the final array index is parsed; if the string contains other array
563 * indices (or structure field accesses), they are left in the base name.
564 *
565 * No attempt is made to check that the base name is properly formed;
566 * typically the caller will look up the base name in a hash table, so
567 * ill-formed base names simply turn into hash table lookup failures.
568 */
569 long
570 parse_program_resource_name(const GLchar *name,
571 const GLchar **out_base_name_end)
572 {
573 /* Section 7.3.1 ("Program Interfaces") of the OpenGL 4.3 spec says:
574 *
575 * "When an integer array element or block instance number is part of
576 * the name string, it will be specified in decimal form without a "+"
577 * or "-" sign or any extra leading zeroes. Additionally, the name
578 * string will not include white space anywhere in the string."
579 */
580
581 const size_t len = strlen(name);
582 *out_base_name_end = name + len;
583
584 if (len == 0 || name[len-1] != ']')
585 return -1;
586
587 /* Walk backwards over the string looking for a non-digit character. This
588 * had better be the opening bracket for an array index.
589 *
590 * Initially, i specifies the location of the ']'. Since the string may
591 * contain only the ']' charcater, walk backwards very carefully.
592 */
593 unsigned i;
594 for (i = len - 1; (i > 0) && isdigit(name[i-1]); --i)
595 /* empty */ ;
596
597 if ((i == 0) || name[i-1] != '[')
598 return -1;
599
600 long array_index = strtol(&name[i], NULL, 10);
601 if (array_index < 0)
602 return -1;
603
604 /* Check for leading zero */
605 if (name[i] == '0' && name[i+1] != ']')
606 return -1;
607
608 *out_base_name_end = name + (i - 1);
609 return array_index;
610 }
611
612
613 void
614 link_invalidate_variable_locations(exec_list *ir)
615 {
616 foreach_in_list(ir_instruction, node, ir) {
617 ir_variable *const var = node->as_variable();
618
619 if (var == NULL)
620 continue;
621
622 /* Only assign locations for variables that lack an explicit location.
623 * Explicit locations are set for all built-in variables, generic vertex
624 * shader inputs (via layout(location=...)), and generic fragment shader
625 * outputs (also via layout(location=...)).
626 */
627 if (!var->data.explicit_location) {
628 var->data.location = -1;
629 var->data.location_frac = 0;
630 }
631
632 /* ir_variable::is_unmatched_generic_inout is used by the linker while
633 * connecting outputs from one stage to inputs of the next stage.
634 */
635 if (var->data.explicit_location &&
636 var->data.location < VARYING_SLOT_VAR0) {
637 var->data.is_unmatched_generic_inout = 0;
638 } else {
639 var->data.is_unmatched_generic_inout = 1;
640 }
641 }
642 }
643
644
645 /**
646 * Set clip_distance_array_size based and cull_distance_array_size on the given
647 * shader.
648 *
649 * Also check for errors based on incorrect usage of gl_ClipVertex and
650 * gl_ClipDistance and gl_CullDistance.
651 * Additionally test whether the arrays gl_ClipDistance and gl_CullDistance
652 * exceed the maximum size defined by gl_MaxCombinedClipAndCullDistances.
653 *
654 * Return false if an error was reported.
655 */
656 static void
657 analyze_clip_cull_usage(struct gl_shader_program *prog,
658 struct gl_shader *shader,
659 struct gl_context *ctx,
660 GLuint *clip_distance_array_size,
661 GLuint *cull_distance_array_size)
662 {
663 *clip_distance_array_size = 0;
664 *cull_distance_array_size = 0;
665
666 if (prog->Version >= (prog->IsES ? 300 : 130)) {
667 /* From section 7.1 (Vertex Shader Special Variables) of the
668 * GLSL 1.30 spec:
669 *
670 * "It is an error for a shader to statically write both
671 * gl_ClipVertex and gl_ClipDistance."
672 *
673 * This does not apply to GLSL ES shaders, since GLSL ES defines neither
674 * gl_ClipVertex nor gl_ClipDistance. However with
675 * GL_EXT_clip_cull_distance, this functionality is exposed in ES 3.0.
676 */
677 find_assignment_visitor clip_distance("gl_ClipDistance");
678 find_assignment_visitor cull_distance("gl_CullDistance");
679
680 clip_distance.run(shader->ir);
681 cull_distance.run(shader->ir);
682
683 /* From the ARB_cull_distance spec:
684 *
685 * It is a compile-time or link-time error for the set of shaders forming
686 * a program to statically read or write both gl_ClipVertex and either
687 * gl_ClipDistance or gl_CullDistance.
688 *
689 * This does not apply to GLSL ES shaders, since GLSL ES doesn't define
690 * gl_ClipVertex.
691 */
692 if (!prog->IsES) {
693 find_assignment_visitor clip_vertex("gl_ClipVertex");
694
695 clip_vertex.run(shader->ir);
696
697 if (clip_vertex.variable_found() && clip_distance.variable_found()) {
698 linker_error(prog, "%s shader writes to both `gl_ClipVertex' "
699 "and `gl_ClipDistance'\n",
700 _mesa_shader_stage_to_string(shader->Stage));
701 return;
702 }
703 if (clip_vertex.variable_found() && cull_distance.variable_found()) {
704 linker_error(prog, "%s shader writes to both `gl_ClipVertex' "
705 "and `gl_CullDistance'\n",
706 _mesa_shader_stage_to_string(shader->Stage));
707 return;
708 }
709 }
710
711 if (clip_distance.variable_found()) {
712 ir_variable *clip_distance_var =
713 shader->symbols->get_variable("gl_ClipDistance");
714 assert(clip_distance_var);
715 *clip_distance_array_size = clip_distance_var->type->length;
716 }
717 if (cull_distance.variable_found()) {
718 ir_variable *cull_distance_var =
719 shader->symbols->get_variable("gl_CullDistance");
720 assert(cull_distance_var);
721 *cull_distance_array_size = cull_distance_var->type->length;
722 }
723 /* From the ARB_cull_distance spec:
724 *
725 * It is a compile-time or link-time error for the set of shaders forming
726 * a program to have the sum of the sizes of the gl_ClipDistance and
727 * gl_CullDistance arrays to be larger than
728 * gl_MaxCombinedClipAndCullDistances.
729 */
730 if ((*clip_distance_array_size + *cull_distance_array_size) >
731 ctx->Const.MaxClipPlanes) {
732 linker_error(prog, "%s shader: the combined size of "
733 "'gl_ClipDistance' and 'gl_CullDistance' size cannot "
734 "be larger than "
735 "gl_MaxCombinedClipAndCullDistances (%u)",
736 _mesa_shader_stage_to_string(shader->Stage),
737 ctx->Const.MaxClipPlanes);
738 }
739 }
740 }
741
742
743 /**
744 * Verify that a vertex shader executable meets all semantic requirements.
745 *
746 * Also sets prog->Vert.ClipDistanceArraySize and
747 * prog->Vert.CullDistanceArraySize as a side effect.
748 *
749 * \param shader Vertex shader executable to be verified
750 */
751 void
752 validate_vertex_shader_executable(struct gl_shader_program *prog,
753 struct gl_shader *shader,
754 struct gl_context *ctx)
755 {
756 if (shader == NULL)
757 return;
758
759 /* From the GLSL 1.10 spec, page 48:
760 *
761 * "The variable gl_Position is available only in the vertex
762 * language and is intended for writing the homogeneous vertex
763 * position. All executions of a well-formed vertex shader
764 * executable must write a value into this variable. [...] The
765 * variable gl_Position is available only in the vertex
766 * language and is intended for writing the homogeneous vertex
767 * position. All executions of a well-formed vertex shader
768 * executable must write a value into this variable."
769 *
770 * while in GLSL 1.40 this text is changed to:
771 *
772 * "The variable gl_Position is available only in the vertex
773 * language and is intended for writing the homogeneous vertex
774 * position. It can be written at any time during shader
775 * execution. It may also be read back by a vertex shader
776 * after being written. This value will be used by primitive
777 * assembly, clipping, culling, and other fixed functionality
778 * operations, if present, that operate on primitives after
779 * vertex processing has occurred. Its value is undefined if
780 * the vertex shader executable does not write gl_Position."
781 *
782 * All GLSL ES Versions are similar to GLSL 1.40--failing to write to
783 * gl_Position is not an error.
784 */
785 if (prog->Version < (prog->IsES ? 300 : 140)) {
786 find_assignment_visitor find("gl_Position");
787 find.run(shader->ir);
788 if (!find.variable_found()) {
789 if (prog->IsES) {
790 linker_warning(prog,
791 "vertex shader does not write to `gl_Position'."
792 "It's value is undefined. \n");
793 } else {
794 linker_error(prog,
795 "vertex shader does not write to `gl_Position'. \n");
796 }
797 return;
798 }
799 }
800
801 analyze_clip_cull_usage(prog, shader, ctx,
802 &prog->Vert.ClipDistanceArraySize,
803 &prog->Vert.CullDistanceArraySize);
804 }
805
806 void
807 validate_tess_eval_shader_executable(struct gl_shader_program *prog,
808 struct gl_shader *shader,
809 struct gl_context *ctx)
810 {
811 if (shader == NULL)
812 return;
813
814 analyze_clip_cull_usage(prog, shader, ctx,
815 &prog->TessEval.ClipDistanceArraySize,
816 &prog->TessEval.CullDistanceArraySize);
817 }
818
819
820 /**
821 * Verify that a fragment shader executable meets all semantic requirements
822 *
823 * \param shader Fragment shader executable to be verified
824 */
825 void
826 validate_fragment_shader_executable(struct gl_shader_program *prog,
827 struct gl_shader *shader)
828 {
829 if (shader == NULL)
830 return;
831
832 find_assignment_visitor frag_color("gl_FragColor");
833 find_assignment_visitor frag_data("gl_FragData");
834
835 frag_color.run(shader->ir);
836 frag_data.run(shader->ir);
837
838 if (frag_color.variable_found() && frag_data.variable_found()) {
839 linker_error(prog, "fragment shader writes to both "
840 "`gl_FragColor' and `gl_FragData'\n");
841 }
842 }
843
844 /**
845 * Verify that a geometry shader executable meets all semantic requirements
846 *
847 * Also sets prog->Geom.VerticesIn, and prog->Geom.ClipDistanceArraySize and
848 * prog->Geom.CullDistanceArraySize as a side effect.
849 *
850 * \param shader Geometry shader executable to be verified
851 */
852 void
853 validate_geometry_shader_executable(struct gl_shader_program *prog,
854 struct gl_shader *shader,
855 struct gl_context *ctx)
856 {
857 if (shader == NULL)
858 return;
859
860 unsigned num_vertices = vertices_per_prim(prog->Geom.InputType);
861 prog->Geom.VerticesIn = num_vertices;
862
863 analyze_clip_cull_usage(prog, shader, ctx,
864 &prog->Geom.ClipDistanceArraySize,
865 &prog->Geom.CullDistanceArraySize);
866 }
867
868 /**
869 * Check if geometry shaders emit to non-zero streams and do corresponding
870 * validations.
871 */
872 static void
873 validate_geometry_shader_emissions(struct gl_context *ctx,
874 struct gl_shader_program *prog)
875 {
876 if (prog->_LinkedShaders[MESA_SHADER_GEOMETRY] != NULL) {
877 find_emit_vertex_visitor emit_vertex(ctx->Const.MaxVertexStreams - 1);
878 emit_vertex.run(prog->_LinkedShaders[MESA_SHADER_GEOMETRY]->ir);
879 if (emit_vertex.error()) {
880 linker_error(prog, "Invalid call %s(%d). Accepted values for the "
881 "stream parameter are in the range [0, %d].\n",
882 emit_vertex.error_func(),
883 emit_vertex.error_stream(),
884 ctx->Const.MaxVertexStreams - 1);
885 }
886 prog->Geom.UsesStreams = emit_vertex.uses_streams();
887 prog->Geom.UsesEndPrimitive = emit_vertex.uses_end_primitive();
888
889 /* From the ARB_gpu_shader5 spec:
890 *
891 * "Multiple vertex streams are supported only if the output primitive
892 * type is declared to be "points". A program will fail to link if it
893 * contains a geometry shader calling EmitStreamVertex() or
894 * EndStreamPrimitive() if its output primitive type is not "points".
895 *
896 * However, in the same spec:
897 *
898 * "The function EmitVertex() is equivalent to calling EmitStreamVertex()
899 * with <stream> set to zero."
900 *
901 * And:
902 *
903 * "The function EndPrimitive() is equivalent to calling
904 * EndStreamPrimitive() with <stream> set to zero."
905 *
906 * Since we can call EmitVertex() and EndPrimitive() when we output
907 * primitives other than points, calling EmitStreamVertex(0) or
908 * EmitEndPrimitive(0) should not produce errors. This it also what Nvidia
909 * does. Currently we only set prog->Geom.UsesStreams to TRUE when
910 * EmitStreamVertex() or EmitEndPrimitive() are called with a non-zero
911 * stream.
912 */
913 if (prog->Geom.UsesStreams && prog->Geom.OutputType != GL_POINTS) {
914 linker_error(prog, "EmitStreamVertex(n) and EndStreamPrimitive(n) "
915 "with n>0 requires point output\n");
916 }
917 }
918 }
919
920 bool
921 validate_intrastage_arrays(struct gl_shader_program *prog,
922 ir_variable *const var,
923 ir_variable *const existing)
924 {
925 /* Consider the types to be "the same" if both types are arrays
926 * of the same type and one of the arrays is implicitly sized.
927 * In addition, set the type of the linked variable to the
928 * explicitly sized array.
929 */
930 if (var->type->is_array() && existing->type->is_array()) {
931 if ((var->type->fields.array == existing->type->fields.array) &&
932 ((var->type->length == 0)|| (existing->type->length == 0))) {
933 if (var->type->length != 0) {
934 if ((int)var->type->length <= existing->data.max_array_access) {
935 linker_error(prog, "%s `%s' declared as type "
936 "`%s' but outermost dimension has an index"
937 " of `%i'\n",
938 mode_string(var),
939 var->name, var->type->name,
940 existing->data.max_array_access);
941 }
942 existing->type = var->type;
943 return true;
944 } else if (existing->type->length != 0) {
945 if((int)existing->type->length <= var->data.max_array_access &&
946 !existing->data.from_ssbo_unsized_array) {
947 linker_error(prog, "%s `%s' declared as type "
948 "`%s' but outermost dimension has an index"
949 " of `%i'\n",
950 mode_string(var),
951 var->name, existing->type->name,
952 var->data.max_array_access);
953 }
954 return true;
955 }
956 } else {
957 /* The arrays of structs could have different glsl_type pointers but
958 * they are actually the same type. Use record_compare() to check that.
959 */
960 if (existing->type->fields.array->is_record() &&
961 var->type->fields.array->is_record() &&
962 existing->type->fields.array->record_compare(var->type->fields.array))
963 return true;
964 }
965 }
966 return false;
967 }
968
969
970 /**
971 * Perform validation of global variables used across multiple shaders
972 */
973 void
974 cross_validate_globals(struct gl_shader_program *prog,
975 struct gl_shader **shader_list,
976 unsigned num_shaders,
977 bool uniforms_only)
978 {
979 /* Examine all of the uniforms in all of the shaders and cross validate
980 * them.
981 */
982 glsl_symbol_table variables;
983 for (unsigned i = 0; i < num_shaders; i++) {
984 if (shader_list[i] == NULL)
985 continue;
986
987 foreach_in_list(ir_instruction, node, shader_list[i]->ir) {
988 ir_variable *const var = node->as_variable();
989
990 if (var == NULL)
991 continue;
992
993 if (uniforms_only && (var->data.mode != ir_var_uniform && var->data.mode != ir_var_shader_storage))
994 continue;
995
996 /* don't cross validate subroutine uniforms */
997 if (var->type->contains_subroutine())
998 continue;
999
1000 /* Don't cross validate temporaries that are at global scope. These
1001 * will eventually get pulled into the shaders 'main'.
1002 */
1003 if (var->data.mode == ir_var_temporary)
1004 continue;
1005
1006 /* If a global with this name has already been seen, verify that the
1007 * new instance has the same type. In addition, if the globals have
1008 * initializers, the values of the initializers must be the same.
1009 */
1010 ir_variable *const existing = variables.get_variable(var->name);
1011 if (existing != NULL) {
1012 /* Check if types match. Interface blocks have some special
1013 * rules so we handle those elsewhere.
1014 */
1015 if (var->type != existing->type &&
1016 !var->is_interface_instance()) {
1017 if (!validate_intrastage_arrays(prog, var, existing)) {
1018 if (var->type->is_record() && existing->type->is_record()
1019 && existing->type->record_compare(var->type)) {
1020 existing->type = var->type;
1021 } else {
1022 /* If it is an unsized array in a Shader Storage Block,
1023 * two different shaders can access to different elements.
1024 * Because of that, they might be converted to different
1025 * sized arrays, then check that they are compatible but
1026 * ignore the array size.
1027 */
1028 if (!(var->data.mode == ir_var_shader_storage &&
1029 var->data.from_ssbo_unsized_array &&
1030 existing->data.mode == ir_var_shader_storage &&
1031 existing->data.from_ssbo_unsized_array &&
1032 var->type->gl_type == existing->type->gl_type)) {
1033 linker_error(prog, "%s `%s' declared as type "
1034 "`%s' and type `%s'\n",
1035 mode_string(var),
1036 var->name, var->type->name,
1037 existing->type->name);
1038 return;
1039 }
1040 }
1041 }
1042 }
1043
1044 if (var->data.explicit_location) {
1045 if (existing->data.explicit_location
1046 && (var->data.location != existing->data.location)) {
1047 linker_error(prog, "explicit locations for %s "
1048 "`%s' have differing values\n",
1049 mode_string(var), var->name);
1050 return;
1051 }
1052
1053 if (var->data.location_frac != existing->data.location_frac) {
1054 linker_error(prog, "explicit components for %s "
1055 "`%s' have differing values\n",
1056 mode_string(var), var->name);
1057 return;
1058 }
1059
1060 existing->data.location = var->data.location;
1061 existing->data.explicit_location = true;
1062 } else {
1063 /* Check if uniform with implicit location was marked explicit
1064 * by earlier shader stage. If so, mark it explicit in this stage
1065 * too to make sure later processing does not treat it as
1066 * implicit one.
1067 */
1068 if (existing->data.explicit_location) {
1069 var->data.location = existing->data.location;
1070 var->data.explicit_location = true;
1071 }
1072 }
1073
1074 /* From the GLSL 4.20 specification:
1075 * "A link error will result if two compilation units in a program
1076 * specify different integer-constant bindings for the same
1077 * opaque-uniform name. However, it is not an error to specify a
1078 * binding on some but not all declarations for the same name"
1079 */
1080 if (var->data.explicit_binding) {
1081 if (existing->data.explicit_binding &&
1082 var->data.binding != existing->data.binding) {
1083 linker_error(prog, "explicit bindings for %s "
1084 "`%s' have differing values\n",
1085 mode_string(var), var->name);
1086 return;
1087 }
1088
1089 existing->data.binding = var->data.binding;
1090 existing->data.explicit_binding = true;
1091 }
1092
1093 if (var->type->contains_atomic() &&
1094 var->data.offset != existing->data.offset) {
1095 linker_error(prog, "offset specifications for %s "
1096 "`%s' have differing values\n",
1097 mode_string(var), var->name);
1098 return;
1099 }
1100
1101 /* Validate layout qualifiers for gl_FragDepth.
1102 *
1103 * From the AMD/ARB_conservative_depth specs:
1104 *
1105 * "If gl_FragDepth is redeclared in any fragment shader in a
1106 * program, it must be redeclared in all fragment shaders in
1107 * that program that have static assignments to
1108 * gl_FragDepth. All redeclarations of gl_FragDepth in all
1109 * fragment shaders in a single program must have the same set
1110 * of qualifiers."
1111 */
1112 if (strcmp(var->name, "gl_FragDepth") == 0) {
1113 bool layout_declared = var->data.depth_layout != ir_depth_layout_none;
1114 bool layout_differs =
1115 var->data.depth_layout != existing->data.depth_layout;
1116
1117 if (layout_declared && layout_differs) {
1118 linker_error(prog,
1119 "All redeclarations of gl_FragDepth in all "
1120 "fragment shaders in a single program must have "
1121 "the same set of qualifiers.\n");
1122 }
1123
1124 if (var->data.used && layout_differs) {
1125 linker_error(prog,
1126 "If gl_FragDepth is redeclared with a layout "
1127 "qualifier in any fragment shader, it must be "
1128 "redeclared with the same layout qualifier in "
1129 "all fragment shaders that have assignments to "
1130 "gl_FragDepth\n");
1131 }
1132 }
1133
1134 /* Page 35 (page 41 of the PDF) of the GLSL 4.20 spec says:
1135 *
1136 * "If a shared global has multiple initializers, the
1137 * initializers must all be constant expressions, and they
1138 * must all have the same value. Otherwise, a link error will
1139 * result. (A shared global having only one initializer does
1140 * not require that initializer to be a constant expression.)"
1141 *
1142 * Previous to 4.20 the GLSL spec simply said that initializers
1143 * must have the same value. In this case of non-constant
1144 * initializers, this was impossible to determine. As a result,
1145 * no vendor actually implemented that behavior. The 4.20
1146 * behavior matches the implemented behavior of at least one other
1147 * vendor, so we'll implement that for all GLSL versions.
1148 */
1149 if (var->constant_initializer != NULL) {
1150 if (existing->constant_initializer != NULL) {
1151 if (!var->constant_initializer->has_value(existing->constant_initializer)) {
1152 linker_error(prog, "initializers for %s "
1153 "`%s' have differing values\n",
1154 mode_string(var), var->name);
1155 return;
1156 }
1157 } else {
1158 /* If the first-seen instance of a particular uniform did
1159 * not have an initializer but a later instance does,
1160 * replace the former with the later.
1161 */
1162 variables.replace_variable(existing->name, var);
1163 }
1164 }
1165
1166 if (var->data.has_initializer) {
1167 if (existing->data.has_initializer
1168 && (var->constant_initializer == NULL
1169 || existing->constant_initializer == NULL)) {
1170 linker_error(prog,
1171 "shared global variable `%s' has multiple "
1172 "non-constant initializers.\n",
1173 var->name);
1174 return;
1175 }
1176 }
1177
1178 if (existing->data.invariant != var->data.invariant) {
1179 linker_error(prog, "declarations for %s `%s' have "
1180 "mismatching invariant qualifiers\n",
1181 mode_string(var), var->name);
1182 return;
1183 }
1184 if (existing->data.centroid != var->data.centroid) {
1185 linker_error(prog, "declarations for %s `%s' have "
1186 "mismatching centroid qualifiers\n",
1187 mode_string(var), var->name);
1188 return;
1189 }
1190 if (existing->data.sample != var->data.sample) {
1191 linker_error(prog, "declarations for %s `%s` have "
1192 "mismatching sample qualifiers\n",
1193 mode_string(var), var->name);
1194 return;
1195 }
1196 if (existing->data.image_format != var->data.image_format) {
1197 linker_error(prog, "declarations for %s `%s` have "
1198 "mismatching image format qualifiers\n",
1199 mode_string(var), var->name);
1200 return;
1201 }
1202 } else
1203 variables.add_variable(var);
1204 }
1205 }
1206 }
1207
1208
1209 /**
1210 * Perform validation of uniforms used across multiple shader stages
1211 */
1212 void
1213 cross_validate_uniforms(struct gl_shader_program *prog)
1214 {
1215 cross_validate_globals(prog, prog->_LinkedShaders,
1216 MESA_SHADER_STAGES, true);
1217 }
1218
1219 /**
1220 * Accumulates the array of buffer blocks and checks that all definitions of
1221 * blocks agree on their contents.
1222 */
1223 static bool
1224 interstage_cross_validate_uniform_blocks(struct gl_shader_program *prog,
1225 bool validate_ssbo)
1226 {
1227 int *InterfaceBlockStageIndex[MESA_SHADER_STAGES];
1228 struct gl_uniform_block *blks = NULL;
1229 unsigned *num_blks = validate_ssbo ? &prog->NumShaderStorageBlocks :
1230 &prog->NumUniformBlocks;
1231
1232 unsigned max_num_buffer_blocks = 0;
1233 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1234 if (prog->_LinkedShaders[i]) {
1235 if (validate_ssbo) {
1236 max_num_buffer_blocks +=
1237 prog->_LinkedShaders[i]->NumShaderStorageBlocks;
1238 } else {
1239 max_num_buffer_blocks +=
1240 prog->_LinkedShaders[i]->NumUniformBlocks;
1241 }
1242 }
1243 }
1244
1245 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1246 struct gl_shader *sh = prog->_LinkedShaders[i];
1247
1248 InterfaceBlockStageIndex[i] = new int[max_num_buffer_blocks];
1249 for (unsigned int j = 0; j < max_num_buffer_blocks; j++)
1250 InterfaceBlockStageIndex[i][j] = -1;
1251
1252 if (sh == NULL)
1253 continue;
1254
1255 unsigned sh_num_blocks;
1256 struct gl_uniform_block **sh_blks;
1257 if (validate_ssbo) {
1258 sh_num_blocks = prog->_LinkedShaders[i]->NumShaderStorageBlocks;
1259 sh_blks = sh->ShaderStorageBlocks;
1260 } else {
1261 sh_num_blocks = prog->_LinkedShaders[i]->NumUniformBlocks;
1262 sh_blks = sh->UniformBlocks;
1263 }
1264
1265 for (unsigned int j = 0; j < sh_num_blocks; j++) {
1266 int index = link_cross_validate_uniform_block(prog, &blks, num_blks,
1267 sh_blks[j]);
1268
1269 if (index == -1) {
1270 linker_error(prog, "buffer block `%s' has mismatching "
1271 "definitions\n", sh_blks[j]->Name);
1272
1273 for (unsigned k = 0; k <= i; k++) {
1274 delete[] InterfaceBlockStageIndex[k];
1275 }
1276 return false;
1277 }
1278
1279 InterfaceBlockStageIndex[i][index] = j;
1280 }
1281 }
1282
1283 /* Update per stage block pointers to point to the program list.
1284 * FIXME: We should be able to free the per stage blocks here.
1285 */
1286 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1287 for (unsigned j = 0; j < *num_blks; j++) {
1288 int stage_index = InterfaceBlockStageIndex[i][j];
1289
1290 if (stage_index != -1) {
1291 struct gl_shader *sh = prog->_LinkedShaders[i];
1292
1293 blks[j].stageref |= (1 << i);
1294
1295 struct gl_uniform_block **sh_blks = validate_ssbo ?
1296 sh->ShaderStorageBlocks : sh->UniformBlocks;
1297
1298 sh_blks[stage_index] = &blks[j];
1299 }
1300 }
1301 }
1302
1303 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1304 delete[] InterfaceBlockStageIndex[i];
1305 }
1306
1307 if (validate_ssbo)
1308 prog->ShaderStorageBlocks = blks;
1309 else
1310 prog->UniformBlocks = blks;
1311
1312 return true;
1313 }
1314
1315
1316 /**
1317 * Populates a shaders symbol table with all global declarations
1318 */
1319 static void
1320 populate_symbol_table(gl_shader *sh)
1321 {
1322 sh->symbols = new(sh) glsl_symbol_table;
1323
1324 foreach_in_list(ir_instruction, inst, sh->ir) {
1325 ir_variable *var;
1326 ir_function *func;
1327
1328 if ((func = inst->as_function()) != NULL) {
1329 sh->symbols->add_function(func);
1330 } else if ((var = inst->as_variable()) != NULL) {
1331 if (var->data.mode != ir_var_temporary)
1332 sh->symbols->add_variable(var);
1333 }
1334 }
1335 }
1336
1337
1338 /**
1339 * Remap variables referenced in an instruction tree
1340 *
1341 * This is used when instruction trees are cloned from one shader and placed in
1342 * another. These trees will contain references to \c ir_variable nodes that
1343 * do not exist in the target shader. This function finds these \c ir_variable
1344 * references and replaces the references with matching variables in the target
1345 * shader.
1346 *
1347 * If there is no matching variable in the target shader, a clone of the
1348 * \c ir_variable is made and added to the target shader. The new variable is
1349 * added to \b both the instruction stream and the symbol table.
1350 *
1351 * \param inst IR tree that is to be processed.
1352 * \param symbols Symbol table containing global scope symbols in the
1353 * linked shader.
1354 * \param instructions Instruction stream where new variable declarations
1355 * should be added.
1356 */
1357 void
1358 remap_variables(ir_instruction *inst, struct gl_shader *target,
1359 hash_table *temps)
1360 {
1361 class remap_visitor : public ir_hierarchical_visitor {
1362 public:
1363 remap_visitor(struct gl_shader *target,
1364 hash_table *temps)
1365 {
1366 this->target = target;
1367 this->symbols = target->symbols;
1368 this->instructions = target->ir;
1369 this->temps = temps;
1370 }
1371
1372 virtual ir_visitor_status visit(ir_dereference_variable *ir)
1373 {
1374 if (ir->var->data.mode == ir_var_temporary) {
1375 ir_variable *var = (ir_variable *) hash_table_find(temps, ir->var);
1376
1377 assert(var != NULL);
1378 ir->var = var;
1379 return visit_continue;
1380 }
1381
1382 ir_variable *const existing =
1383 this->symbols->get_variable(ir->var->name);
1384 if (existing != NULL)
1385 ir->var = existing;
1386 else {
1387 ir_variable *copy = ir->var->clone(this->target, NULL);
1388
1389 this->symbols->add_variable(copy);
1390 this->instructions->push_head(copy);
1391 ir->var = copy;
1392 }
1393
1394 return visit_continue;
1395 }
1396
1397 private:
1398 struct gl_shader *target;
1399 glsl_symbol_table *symbols;
1400 exec_list *instructions;
1401 hash_table *temps;
1402 };
1403
1404 remap_visitor v(target, temps);
1405
1406 inst->accept(&v);
1407 }
1408
1409
1410 /**
1411 * Move non-declarations from one instruction stream to another
1412 *
1413 * The intended usage pattern of this function is to pass the pointer to the
1414 * head sentinel of a list (i.e., a pointer to the list cast to an \c exec_node
1415 * pointer) for \c last and \c false for \c make_copies on the first
1416 * call. Successive calls pass the return value of the previous call for
1417 * \c last and \c true for \c make_copies.
1418 *
1419 * \param instructions Source instruction stream
1420 * \param last Instruction after which new instructions should be
1421 * inserted in the target instruction stream
1422 * \param make_copies Flag selecting whether instructions in \c instructions
1423 * should be copied (via \c ir_instruction::clone) into the
1424 * target list or moved.
1425 *
1426 * \return
1427 * The new "last" instruction in the target instruction stream. This pointer
1428 * is suitable for use as the \c last parameter of a later call to this
1429 * function.
1430 */
1431 exec_node *
1432 move_non_declarations(exec_list *instructions, exec_node *last,
1433 bool make_copies, gl_shader *target)
1434 {
1435 hash_table *temps = NULL;
1436
1437 if (make_copies)
1438 temps = hash_table_ctor(0, hash_table_pointer_hash,
1439 hash_table_pointer_compare);
1440
1441 foreach_in_list_safe(ir_instruction, inst, instructions) {
1442 if (inst->as_function())
1443 continue;
1444
1445 ir_variable *var = inst->as_variable();
1446 if ((var != NULL) && (var->data.mode != ir_var_temporary))
1447 continue;
1448
1449 assert(inst->as_assignment()
1450 || inst->as_call()
1451 || inst->as_if() /* for initializers with the ?: operator */
1452 || ((var != NULL) && (var->data.mode == ir_var_temporary)));
1453
1454 if (make_copies) {
1455 inst = inst->clone(target, NULL);
1456
1457 if (var != NULL)
1458 hash_table_insert(temps, inst, var);
1459 else
1460 remap_variables(inst, target, temps);
1461 } else {
1462 inst->remove();
1463 }
1464
1465 last->insert_after(inst);
1466 last = inst;
1467 }
1468
1469 if (make_copies)
1470 hash_table_dtor(temps);
1471
1472 return last;
1473 }
1474
1475
1476 /**
1477 * This class is only used in link_intrastage_shaders() below but declaring
1478 * it inside that function leads to compiler warnings with some versions of
1479 * gcc.
1480 */
1481 class array_sizing_visitor : public ir_hierarchical_visitor {
1482 public:
1483 array_sizing_visitor()
1484 : mem_ctx(ralloc_context(NULL)),
1485 unnamed_interfaces(hash_table_ctor(0, hash_table_pointer_hash,
1486 hash_table_pointer_compare))
1487 {
1488 }
1489
1490 ~array_sizing_visitor()
1491 {
1492 hash_table_dtor(this->unnamed_interfaces);
1493 ralloc_free(this->mem_ctx);
1494 }
1495
1496 virtual ir_visitor_status visit(ir_variable *var)
1497 {
1498 const glsl_type *type_without_array;
1499 bool implicit_sized_array = var->data.implicit_sized_array;
1500 fixup_type(&var->type, var->data.max_array_access,
1501 var->data.from_ssbo_unsized_array,
1502 &implicit_sized_array);
1503 var->data.implicit_sized_array = implicit_sized_array;
1504 type_without_array = var->type->without_array();
1505 if (var->type->is_interface()) {
1506 if (interface_contains_unsized_arrays(var->type)) {
1507 const glsl_type *new_type =
1508 resize_interface_members(var->type,
1509 var->get_max_ifc_array_access(),
1510 var->is_in_shader_storage_block());
1511 var->type = new_type;
1512 var->change_interface_type(new_type);
1513 }
1514 } else if (type_without_array->is_interface()) {
1515 if (interface_contains_unsized_arrays(type_without_array)) {
1516 const glsl_type *new_type =
1517 resize_interface_members(type_without_array,
1518 var->get_max_ifc_array_access(),
1519 var->is_in_shader_storage_block());
1520 var->change_interface_type(new_type);
1521 var->type = update_interface_members_array(var->type, new_type);
1522 }
1523 } else if (const glsl_type *ifc_type = var->get_interface_type()) {
1524 /* Store a pointer to the variable in the unnamed_interfaces
1525 * hashtable.
1526 */
1527 ir_variable **interface_vars = (ir_variable **)
1528 hash_table_find(this->unnamed_interfaces, ifc_type);
1529 if (interface_vars == NULL) {
1530 interface_vars = rzalloc_array(mem_ctx, ir_variable *,
1531 ifc_type->length);
1532 hash_table_insert(this->unnamed_interfaces, interface_vars,
1533 ifc_type);
1534 }
1535 unsigned index = ifc_type->field_index(var->name);
1536 assert(index < ifc_type->length);
1537 assert(interface_vars[index] == NULL);
1538 interface_vars[index] = var;
1539 }
1540 return visit_continue;
1541 }
1542
1543 /**
1544 * For each unnamed interface block that was discovered while running the
1545 * visitor, adjust the interface type to reflect the newly assigned array
1546 * sizes, and fix up the ir_variable nodes to point to the new interface
1547 * type.
1548 */
1549 void fixup_unnamed_interface_types()
1550 {
1551 hash_table_call_foreach(this->unnamed_interfaces,
1552 fixup_unnamed_interface_type, NULL);
1553 }
1554
1555 private:
1556 /**
1557 * If the type pointed to by \c type represents an unsized array, replace
1558 * it with a sized array whose size is determined by max_array_access.
1559 */
1560 static void fixup_type(const glsl_type **type, unsigned max_array_access,
1561 bool from_ssbo_unsized_array, bool *implicit_sized)
1562 {
1563 if (!from_ssbo_unsized_array && (*type)->is_unsized_array()) {
1564 *type = glsl_type::get_array_instance((*type)->fields.array,
1565 max_array_access + 1);
1566 *implicit_sized = true;
1567 assert(*type != NULL);
1568 }
1569 }
1570
1571 static const glsl_type *
1572 update_interface_members_array(const glsl_type *type,
1573 const glsl_type *new_interface_type)
1574 {
1575 const glsl_type *element_type = type->fields.array;
1576 if (element_type->is_array()) {
1577 const glsl_type *new_array_type =
1578 update_interface_members_array(element_type, new_interface_type);
1579 return glsl_type::get_array_instance(new_array_type, type->length);
1580 } else {
1581 return glsl_type::get_array_instance(new_interface_type,
1582 type->length);
1583 }
1584 }
1585
1586 /**
1587 * Determine whether the given interface type contains unsized arrays (if
1588 * it doesn't, array_sizing_visitor doesn't need to process it).
1589 */
1590 static bool interface_contains_unsized_arrays(const glsl_type *type)
1591 {
1592 for (unsigned i = 0; i < type->length; i++) {
1593 const glsl_type *elem_type = type->fields.structure[i].type;
1594 if (elem_type->is_unsized_array())
1595 return true;
1596 }
1597 return false;
1598 }
1599
1600 /**
1601 * Create a new interface type based on the given type, with unsized arrays
1602 * replaced by sized arrays whose size is determined by
1603 * max_ifc_array_access.
1604 */
1605 static const glsl_type *
1606 resize_interface_members(const glsl_type *type,
1607 const int *max_ifc_array_access,
1608 bool is_ssbo)
1609 {
1610 unsigned num_fields = type->length;
1611 glsl_struct_field *fields = new glsl_struct_field[num_fields];
1612 memcpy(fields, type->fields.structure,
1613 num_fields * sizeof(*fields));
1614 for (unsigned i = 0; i < num_fields; i++) {
1615 bool implicit_sized_array = fields[i].implicit_sized_array;
1616 /* If SSBO last member is unsized array, we don't replace it by a sized
1617 * array.
1618 */
1619 if (is_ssbo && i == (num_fields - 1))
1620 fixup_type(&fields[i].type, max_ifc_array_access[i],
1621 true, &implicit_sized_array);
1622 else
1623 fixup_type(&fields[i].type, max_ifc_array_access[i],
1624 false, &implicit_sized_array);
1625 fields[i].implicit_sized_array = implicit_sized_array;
1626 }
1627 glsl_interface_packing packing =
1628 (glsl_interface_packing) type->interface_packing;
1629 const glsl_type *new_ifc_type =
1630 glsl_type::get_interface_instance(fields, num_fields,
1631 packing, type->name);
1632 delete [] fields;
1633 return new_ifc_type;
1634 }
1635
1636 static void fixup_unnamed_interface_type(const void *key, void *data,
1637 void *)
1638 {
1639 const glsl_type *ifc_type = (const glsl_type *) key;
1640 ir_variable **interface_vars = (ir_variable **) data;
1641 unsigned num_fields = ifc_type->length;
1642 glsl_struct_field *fields = new glsl_struct_field[num_fields];
1643 memcpy(fields, ifc_type->fields.structure,
1644 num_fields * sizeof(*fields));
1645 bool interface_type_changed = false;
1646 for (unsigned i = 0; i < num_fields; i++) {
1647 if (interface_vars[i] != NULL &&
1648 fields[i].type != interface_vars[i]->type) {
1649 fields[i].type = interface_vars[i]->type;
1650 interface_type_changed = true;
1651 }
1652 }
1653 if (!interface_type_changed) {
1654 delete [] fields;
1655 return;
1656 }
1657 glsl_interface_packing packing =
1658 (glsl_interface_packing) ifc_type->interface_packing;
1659 const glsl_type *new_ifc_type =
1660 glsl_type::get_interface_instance(fields, num_fields, packing,
1661 ifc_type->name);
1662 delete [] fields;
1663 for (unsigned i = 0; i < num_fields; i++) {
1664 if (interface_vars[i] != NULL)
1665 interface_vars[i]->change_interface_type(new_ifc_type);
1666 }
1667 }
1668
1669 /**
1670 * Memory context used to allocate the data in \c unnamed_interfaces.
1671 */
1672 void *mem_ctx;
1673
1674 /**
1675 * Hash table from const glsl_type * to an array of ir_variable *'s
1676 * pointing to the ir_variables constituting each unnamed interface block.
1677 */
1678 hash_table *unnamed_interfaces;
1679 };
1680
1681 /**
1682 * Check for conflicting xfb_stride default qualifiers and store buffer stride
1683 * for later use.
1684 */
1685 static void
1686 link_xfb_stride_layout_qualifiers(struct gl_context *ctx,
1687 struct gl_shader_program *prog,
1688 struct gl_shader *linked_shader,
1689 struct gl_shader **shader_list,
1690 unsigned num_shaders)
1691 {
1692 for (unsigned i = 0; i < MAX_FEEDBACK_BUFFERS; i++) {
1693 linked_shader->TransformFeedback.BufferStride[i] = 0;
1694 }
1695
1696 for (unsigned i = 0; i < num_shaders; i++) {
1697 struct gl_shader *shader = shader_list[i];
1698
1699 for (unsigned j = 0; j < MAX_FEEDBACK_BUFFERS; j++) {
1700 if (shader->TransformFeedback.BufferStride[j]) {
1701 if (linked_shader->TransformFeedback.BufferStride[j] != 0 &&
1702 shader->TransformFeedback.BufferStride[j] != 0 &&
1703 linked_shader->TransformFeedback.BufferStride[j] !=
1704 shader->TransformFeedback.BufferStride[j]) {
1705 linker_error(prog,
1706 "intrastage shaders defined with conflicting "
1707 "xfb_stride for buffer %d (%d and %d)\n", j,
1708 linked_shader->TransformFeedback.BufferStride[j],
1709 shader->TransformFeedback.BufferStride[j]);
1710 return;
1711 }
1712
1713 if (shader->TransformFeedback.BufferStride[j])
1714 linked_shader->TransformFeedback.BufferStride[j] =
1715 shader->TransformFeedback.BufferStride[j];
1716 }
1717 }
1718 }
1719
1720 for (unsigned j = 0; j < MAX_FEEDBACK_BUFFERS; j++) {
1721 if (linked_shader->TransformFeedback.BufferStride[j]) {
1722 prog->TransformFeedback.BufferStride[j] =
1723 linked_shader->TransformFeedback.BufferStride[j];
1724
1725 /* We will validate doubles at a later stage */
1726 if (prog->TransformFeedback.BufferStride[j] % 4) {
1727 linker_error(prog, "invalid qualifier xfb_stride=%d must be a "
1728 "multiple of 4 or if its applied to a type that is "
1729 "or contains a double a multiple of 8.",
1730 prog->TransformFeedback.BufferStride[j]);
1731 return;
1732 }
1733
1734 if (prog->TransformFeedback.BufferStride[j] / 4 >
1735 ctx->Const.MaxTransformFeedbackInterleavedComponents) {
1736 linker_error(prog,
1737 "The MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS "
1738 "limit has been exceeded.");
1739 return;
1740 }
1741 }
1742 }
1743 }
1744
1745 /**
1746 * Performs the cross-validation of tessellation control shader vertices and
1747 * layout qualifiers for the attached tessellation control shaders,
1748 * and propagates them to the linked TCS and linked shader program.
1749 */
1750 static void
1751 link_tcs_out_layout_qualifiers(struct gl_shader_program *prog,
1752 struct gl_shader *linked_shader,
1753 struct gl_shader **shader_list,
1754 unsigned num_shaders)
1755 {
1756 linked_shader->TessCtrl.VerticesOut = 0;
1757
1758 if (linked_shader->Stage != MESA_SHADER_TESS_CTRL)
1759 return;
1760
1761 /* From the GLSL 4.0 spec (chapter 4.3.8.2):
1762 *
1763 * "All tessellation control shader layout declarations in a program
1764 * must specify the same output patch vertex count. There must be at
1765 * least one layout qualifier specifying an output patch vertex count
1766 * in any program containing tessellation control shaders; however,
1767 * such a declaration is not required in all tessellation control
1768 * shaders."
1769 */
1770
1771 for (unsigned i = 0; i < num_shaders; i++) {
1772 struct gl_shader *shader = shader_list[i];
1773
1774 if (shader->TessCtrl.VerticesOut != 0) {
1775 if (linked_shader->TessCtrl.VerticesOut != 0 &&
1776 linked_shader->TessCtrl.VerticesOut != shader->TessCtrl.VerticesOut) {
1777 linker_error(prog, "tessellation control shader defined with "
1778 "conflicting output vertex count (%d and %d)\n",
1779 linked_shader->TessCtrl.VerticesOut,
1780 shader->TessCtrl.VerticesOut);
1781 return;
1782 }
1783 linked_shader->TessCtrl.VerticesOut = shader->TessCtrl.VerticesOut;
1784 }
1785 }
1786
1787 /* Just do the intrastage -> interstage propagation right now,
1788 * since we already know we're in the right type of shader program
1789 * for doing it.
1790 */
1791 if (linked_shader->TessCtrl.VerticesOut == 0) {
1792 linker_error(prog, "tessellation control shader didn't declare "
1793 "vertices out layout qualifier\n");
1794 return;
1795 }
1796 prog->TessCtrl.VerticesOut = linked_shader->TessCtrl.VerticesOut;
1797 }
1798
1799
1800 /**
1801 * Performs the cross-validation of tessellation evaluation shader
1802 * primitive type, vertex spacing, ordering and point_mode layout qualifiers
1803 * for the attached tessellation evaluation shaders, and propagates them
1804 * to the linked TES and linked shader program.
1805 */
1806 static void
1807 link_tes_in_layout_qualifiers(struct gl_shader_program *prog,
1808 struct gl_shader *linked_shader,
1809 struct gl_shader **shader_list,
1810 unsigned num_shaders)
1811 {
1812 linked_shader->TessEval.PrimitiveMode = PRIM_UNKNOWN;
1813 linked_shader->TessEval.Spacing = 0;
1814 linked_shader->TessEval.VertexOrder = 0;
1815 linked_shader->TessEval.PointMode = -1;
1816
1817 if (linked_shader->Stage != MESA_SHADER_TESS_EVAL)
1818 return;
1819
1820 /* From the GLSL 4.0 spec (chapter 4.3.8.1):
1821 *
1822 * "At least one tessellation evaluation shader (compilation unit) in
1823 * a program must declare a primitive mode in its input layout.
1824 * Declaration vertex spacing, ordering, and point mode identifiers is
1825 * optional. It is not required that all tessellation evaluation
1826 * shaders in a program declare a primitive mode. If spacing or
1827 * vertex ordering declarations are omitted, the tessellation
1828 * primitive generator will use equal spacing or counter-clockwise
1829 * vertex ordering, respectively. If a point mode declaration is
1830 * omitted, the tessellation primitive generator will produce lines or
1831 * triangles according to the primitive mode."
1832 */
1833
1834 for (unsigned i = 0; i < num_shaders; i++) {
1835 struct gl_shader *shader = shader_list[i];
1836
1837 if (shader->TessEval.PrimitiveMode != PRIM_UNKNOWN) {
1838 if (linked_shader->TessEval.PrimitiveMode != PRIM_UNKNOWN &&
1839 linked_shader->TessEval.PrimitiveMode != shader->TessEval.PrimitiveMode) {
1840 linker_error(prog, "tessellation evaluation shader defined with "
1841 "conflicting input primitive modes.\n");
1842 return;
1843 }
1844 linked_shader->TessEval.PrimitiveMode = shader->TessEval.PrimitiveMode;
1845 }
1846
1847 if (shader->TessEval.Spacing != 0) {
1848 if (linked_shader->TessEval.Spacing != 0 &&
1849 linked_shader->TessEval.Spacing != shader->TessEval.Spacing) {
1850 linker_error(prog, "tessellation evaluation shader defined with "
1851 "conflicting vertex spacing.\n");
1852 return;
1853 }
1854 linked_shader->TessEval.Spacing = shader->TessEval.Spacing;
1855 }
1856
1857 if (shader->TessEval.VertexOrder != 0) {
1858 if (linked_shader->TessEval.VertexOrder != 0 &&
1859 linked_shader->TessEval.VertexOrder != shader->TessEval.VertexOrder) {
1860 linker_error(prog, "tessellation evaluation shader defined with "
1861 "conflicting ordering.\n");
1862 return;
1863 }
1864 linked_shader->TessEval.VertexOrder = shader->TessEval.VertexOrder;
1865 }
1866
1867 if (shader->TessEval.PointMode != -1) {
1868 if (linked_shader->TessEval.PointMode != -1 &&
1869 linked_shader->TessEval.PointMode != shader->TessEval.PointMode) {
1870 linker_error(prog, "tessellation evaluation shader defined with "
1871 "conflicting point modes.\n");
1872 return;
1873 }
1874 linked_shader->TessEval.PointMode = shader->TessEval.PointMode;
1875 }
1876
1877 }
1878
1879 /* Just do the intrastage -> interstage propagation right now,
1880 * since we already know we're in the right type of shader program
1881 * for doing it.
1882 */
1883 if (linked_shader->TessEval.PrimitiveMode == PRIM_UNKNOWN) {
1884 linker_error(prog,
1885 "tessellation evaluation shader didn't declare input "
1886 "primitive modes.\n");
1887 return;
1888 }
1889
1890 if (linked_shader->TessEval.Spacing == 0)
1891 linked_shader->TessEval.Spacing = GL_EQUAL;
1892
1893 if (linked_shader->TessEval.VertexOrder == 0)
1894 linked_shader->TessEval.VertexOrder = GL_CCW;
1895
1896 if (linked_shader->TessEval.PointMode == -1)
1897 linked_shader->TessEval.PointMode = GL_FALSE;
1898 }
1899
1900
1901 /**
1902 * Performs the cross-validation of layout qualifiers specified in
1903 * redeclaration of gl_FragCoord for the attached fragment shaders,
1904 * and propagates them to the linked FS and linked shader program.
1905 */
1906 static void
1907 link_fs_input_layout_qualifiers(struct gl_shader_program *prog,
1908 struct gl_shader *linked_shader,
1909 struct gl_shader **shader_list,
1910 unsigned num_shaders)
1911 {
1912 linked_shader->redeclares_gl_fragcoord = false;
1913 linked_shader->uses_gl_fragcoord = false;
1914 linked_shader->origin_upper_left = false;
1915 linked_shader->pixel_center_integer = false;
1916
1917 if (linked_shader->Stage != MESA_SHADER_FRAGMENT ||
1918 (prog->Version < 150 && !prog->ARB_fragment_coord_conventions_enable))
1919 return;
1920
1921 for (unsigned i = 0; i < num_shaders; i++) {
1922 struct gl_shader *shader = shader_list[i];
1923 /* From the GLSL 1.50 spec, page 39:
1924 *
1925 * "If gl_FragCoord is redeclared in any fragment shader in a program,
1926 * it must be redeclared in all the fragment shaders in that program
1927 * that have a static use gl_FragCoord."
1928 */
1929 if ((linked_shader->redeclares_gl_fragcoord
1930 && !shader->redeclares_gl_fragcoord
1931 && shader->uses_gl_fragcoord)
1932 || (shader->redeclares_gl_fragcoord
1933 && !linked_shader->redeclares_gl_fragcoord
1934 && linked_shader->uses_gl_fragcoord)) {
1935 linker_error(prog, "fragment shader defined with conflicting "
1936 "layout qualifiers for gl_FragCoord\n");
1937 }
1938
1939 /* From the GLSL 1.50 spec, page 39:
1940 *
1941 * "All redeclarations of gl_FragCoord in all fragment shaders in a
1942 * single program must have the same set of qualifiers."
1943 */
1944 if (linked_shader->redeclares_gl_fragcoord && shader->redeclares_gl_fragcoord
1945 && (shader->origin_upper_left != linked_shader->origin_upper_left
1946 || shader->pixel_center_integer != linked_shader->pixel_center_integer)) {
1947 linker_error(prog, "fragment shader defined with conflicting "
1948 "layout qualifiers for gl_FragCoord\n");
1949 }
1950
1951 /* Update the linked shader state. Note that uses_gl_fragcoord should
1952 * accumulate the results. The other values should replace. If there
1953 * are multiple redeclarations, all the fields except uses_gl_fragcoord
1954 * are already known to be the same.
1955 */
1956 if (shader->redeclares_gl_fragcoord || shader->uses_gl_fragcoord) {
1957 linked_shader->redeclares_gl_fragcoord =
1958 shader->redeclares_gl_fragcoord;
1959 linked_shader->uses_gl_fragcoord = linked_shader->uses_gl_fragcoord
1960 || shader->uses_gl_fragcoord;
1961 linked_shader->origin_upper_left = shader->origin_upper_left;
1962 linked_shader->pixel_center_integer = shader->pixel_center_integer;
1963 }
1964
1965 linked_shader->EarlyFragmentTests |= shader->EarlyFragmentTests;
1966 }
1967 }
1968
1969 /**
1970 * Performs the cross-validation of geometry shader max_vertices and
1971 * primitive type layout qualifiers for the attached geometry shaders,
1972 * and propagates them to the linked GS and linked shader program.
1973 */
1974 static void
1975 link_gs_inout_layout_qualifiers(struct gl_shader_program *prog,
1976 struct gl_shader *linked_shader,
1977 struct gl_shader **shader_list,
1978 unsigned num_shaders)
1979 {
1980 linked_shader->Geom.VerticesOut = -1;
1981 linked_shader->Geom.Invocations = 0;
1982 linked_shader->Geom.InputType = PRIM_UNKNOWN;
1983 linked_shader->Geom.OutputType = PRIM_UNKNOWN;
1984
1985 /* No in/out qualifiers defined for anything but GLSL 1.50+
1986 * geometry shaders so far.
1987 */
1988 if (linked_shader->Stage != MESA_SHADER_GEOMETRY || prog->Version < 150)
1989 return;
1990
1991 /* From the GLSL 1.50 spec, page 46:
1992 *
1993 * "All geometry shader output layout declarations in a program
1994 * must declare the same layout and same value for
1995 * max_vertices. There must be at least one geometry output
1996 * layout declaration somewhere in a program, but not all
1997 * geometry shaders (compilation units) are required to
1998 * declare it."
1999 */
2000
2001 for (unsigned i = 0; i < num_shaders; i++) {
2002 struct gl_shader *shader = shader_list[i];
2003
2004 if (shader->Geom.InputType != PRIM_UNKNOWN) {
2005 if (linked_shader->Geom.InputType != PRIM_UNKNOWN &&
2006 linked_shader->Geom.InputType != shader->Geom.InputType) {
2007 linker_error(prog, "geometry shader defined with conflicting "
2008 "input types\n");
2009 return;
2010 }
2011 linked_shader->Geom.InputType = shader->Geom.InputType;
2012 }
2013
2014 if (shader->Geom.OutputType != PRIM_UNKNOWN) {
2015 if (linked_shader->Geom.OutputType != PRIM_UNKNOWN &&
2016 linked_shader->Geom.OutputType != shader->Geom.OutputType) {
2017 linker_error(prog, "geometry shader defined with conflicting "
2018 "output types\n");
2019 return;
2020 }
2021 linked_shader->Geom.OutputType = shader->Geom.OutputType;
2022 }
2023
2024 if (shader->Geom.VerticesOut != -1) {
2025 if (linked_shader->Geom.VerticesOut != -1 &&
2026 linked_shader->Geom.VerticesOut != shader->Geom.VerticesOut) {
2027 linker_error(prog, "geometry shader defined with conflicting "
2028 "output vertex count (%d and %d)\n",
2029 linked_shader->Geom.VerticesOut,
2030 shader->Geom.VerticesOut);
2031 return;
2032 }
2033 linked_shader->Geom.VerticesOut = shader->Geom.VerticesOut;
2034 }
2035
2036 if (shader->Geom.Invocations != 0) {
2037 if (linked_shader->Geom.Invocations != 0 &&
2038 linked_shader->Geom.Invocations != shader->Geom.Invocations) {
2039 linker_error(prog, "geometry shader defined with conflicting "
2040 "invocation count (%d and %d)\n",
2041 linked_shader->Geom.Invocations,
2042 shader->Geom.Invocations);
2043 return;
2044 }
2045 linked_shader->Geom.Invocations = shader->Geom.Invocations;
2046 }
2047 }
2048
2049 /* Just do the intrastage -> interstage propagation right now,
2050 * since we already know we're in the right type of shader program
2051 * for doing it.
2052 */
2053 if (linked_shader->Geom.InputType == PRIM_UNKNOWN) {
2054 linker_error(prog,
2055 "geometry shader didn't declare primitive input type\n");
2056 return;
2057 }
2058 prog->Geom.InputType = linked_shader->Geom.InputType;
2059
2060 if (linked_shader->Geom.OutputType == PRIM_UNKNOWN) {
2061 linker_error(prog,
2062 "geometry shader didn't declare primitive output type\n");
2063 return;
2064 }
2065 prog->Geom.OutputType = linked_shader->Geom.OutputType;
2066
2067 if (linked_shader->Geom.VerticesOut == -1) {
2068 linker_error(prog,
2069 "geometry shader didn't declare max_vertices\n");
2070 return;
2071 }
2072 prog->Geom.VerticesOut = linked_shader->Geom.VerticesOut;
2073
2074 if (linked_shader->Geom.Invocations == 0)
2075 linked_shader->Geom.Invocations = 1;
2076
2077 prog->Geom.Invocations = linked_shader->Geom.Invocations;
2078 }
2079
2080
2081 /**
2082 * Perform cross-validation of compute shader local_size_{x,y,z} layout
2083 * qualifiers for the attached compute shaders, and propagate them to the
2084 * linked CS and linked shader program.
2085 */
2086 static void
2087 link_cs_input_layout_qualifiers(struct gl_shader_program *prog,
2088 struct gl_shader *linked_shader,
2089 struct gl_shader **shader_list,
2090 unsigned num_shaders)
2091 {
2092 for (int i = 0; i < 3; i++)
2093 linked_shader->Comp.LocalSize[i] = 0;
2094
2095 /* This function is called for all shader stages, but it only has an effect
2096 * for compute shaders.
2097 */
2098 if (linked_shader->Stage != MESA_SHADER_COMPUTE)
2099 return;
2100
2101 /* From the ARB_compute_shader spec, in the section describing local size
2102 * declarations:
2103 *
2104 * If multiple compute shaders attached to a single program object
2105 * declare local work-group size, the declarations must be identical;
2106 * otherwise a link-time error results. Furthermore, if a program
2107 * object contains any compute shaders, at least one must contain an
2108 * input layout qualifier specifying the local work sizes of the
2109 * program, or a link-time error will occur.
2110 */
2111 for (unsigned sh = 0; sh < num_shaders; sh++) {
2112 struct gl_shader *shader = shader_list[sh];
2113
2114 if (shader->Comp.LocalSize[0] != 0) {
2115 if (linked_shader->Comp.LocalSize[0] != 0) {
2116 for (int i = 0; i < 3; i++) {
2117 if (linked_shader->Comp.LocalSize[i] !=
2118 shader->Comp.LocalSize[i]) {
2119 linker_error(prog, "compute shader defined with conflicting "
2120 "local sizes\n");
2121 return;
2122 }
2123 }
2124 }
2125 for (int i = 0; i < 3; i++)
2126 linked_shader->Comp.LocalSize[i] = shader->Comp.LocalSize[i];
2127 }
2128 }
2129
2130 /* Just do the intrastage -> interstage propagation right now,
2131 * since we already know we're in the right type of shader program
2132 * for doing it.
2133 */
2134 if (linked_shader->Comp.LocalSize[0] == 0) {
2135 linker_error(prog, "compute shader didn't declare local size\n");
2136 return;
2137 }
2138 for (int i = 0; i < 3; i++)
2139 prog->Comp.LocalSize[i] = linked_shader->Comp.LocalSize[i];
2140 }
2141
2142
2143 /**
2144 * Combine a group of shaders for a single stage to generate a linked shader
2145 *
2146 * \note
2147 * If this function is supplied a single shader, it is cloned, and the new
2148 * shader is returned.
2149 */
2150 static struct gl_shader *
2151 link_intrastage_shaders(void *mem_ctx,
2152 struct gl_context *ctx,
2153 struct gl_shader_program *prog,
2154 struct gl_shader **shader_list,
2155 unsigned num_shaders)
2156 {
2157 struct gl_uniform_block *ubo_blocks = NULL;
2158 struct gl_uniform_block *ssbo_blocks = NULL;
2159 unsigned num_ubo_blocks = 0;
2160 unsigned num_ssbo_blocks = 0;
2161
2162 /* Check that global variables defined in multiple shaders are consistent.
2163 */
2164 cross_validate_globals(prog, shader_list, num_shaders, false);
2165 if (!prog->LinkStatus)
2166 return NULL;
2167
2168 /* Check that interface blocks defined in multiple shaders are consistent.
2169 */
2170 validate_intrastage_interface_blocks(prog, (const gl_shader **)shader_list,
2171 num_shaders);
2172 if (!prog->LinkStatus)
2173 return NULL;
2174
2175 /* Check that there is only a single definition of each function signature
2176 * across all shaders.
2177 */
2178 for (unsigned i = 0; i < (num_shaders - 1); i++) {
2179 foreach_in_list(ir_instruction, node, shader_list[i]->ir) {
2180 ir_function *const f = node->as_function();
2181
2182 if (f == NULL)
2183 continue;
2184
2185 for (unsigned j = i + 1; j < num_shaders; j++) {
2186 ir_function *const other =
2187 shader_list[j]->symbols->get_function(f->name);
2188
2189 /* If the other shader has no function (and therefore no function
2190 * signatures) with the same name, skip to the next shader.
2191 */
2192 if (other == NULL)
2193 continue;
2194
2195 foreach_in_list(ir_function_signature, sig, &f->signatures) {
2196 if (!sig->is_defined || sig->is_builtin())
2197 continue;
2198
2199 ir_function_signature *other_sig =
2200 other->exact_matching_signature(NULL, &sig->parameters);
2201
2202 if ((other_sig != NULL) && other_sig->is_defined
2203 && !other_sig->is_builtin()) {
2204 linker_error(prog, "function `%s' is multiply defined\n",
2205 f->name);
2206 return NULL;
2207 }
2208 }
2209 }
2210 }
2211 }
2212
2213 /* Find the shader that defines main, and make a clone of it.
2214 *
2215 * Starting with the clone, search for undefined references. If one is
2216 * found, find the shader that defines it. Clone the reference and add
2217 * it to the shader. Repeat until there are no undefined references or
2218 * until a reference cannot be resolved.
2219 */
2220 gl_shader *main = NULL;
2221 for (unsigned i = 0; i < num_shaders; i++) {
2222 if (_mesa_get_main_function_signature(shader_list[i]) != NULL) {
2223 main = shader_list[i];
2224 break;
2225 }
2226 }
2227
2228 if (main == NULL) {
2229 linker_error(prog, "%s shader lacks `main'\n",
2230 _mesa_shader_stage_to_string(shader_list[0]->Stage));
2231 return NULL;
2232 }
2233
2234 gl_shader *linked = ctx->Driver.NewShader(NULL, 0, shader_list[0]->Stage);
2235 linked->ir = new(linked) exec_list;
2236 clone_ir_list(mem_ctx, linked->ir, main->ir);
2237
2238 link_fs_input_layout_qualifiers(prog, linked, shader_list, num_shaders);
2239 link_tcs_out_layout_qualifiers(prog, linked, shader_list, num_shaders);
2240 link_tes_in_layout_qualifiers(prog, linked, shader_list, num_shaders);
2241 link_gs_inout_layout_qualifiers(prog, linked, shader_list, num_shaders);
2242 link_cs_input_layout_qualifiers(prog, linked, shader_list, num_shaders);
2243 link_xfb_stride_layout_qualifiers(ctx, prog, linked, shader_list,
2244 num_shaders);
2245
2246 populate_symbol_table(linked);
2247
2248 /* The pointer to the main function in the final linked shader (i.e., the
2249 * copy of the original shader that contained the main function).
2250 */
2251 ir_function_signature *const main_sig =
2252 _mesa_get_main_function_signature(linked);
2253
2254 /* Move any instructions other than variable declarations or function
2255 * declarations into main.
2256 */
2257 exec_node *insertion_point =
2258 move_non_declarations(linked->ir, (exec_node *) &main_sig->body, false,
2259 linked);
2260
2261 for (unsigned i = 0; i < num_shaders; i++) {
2262 if (shader_list[i] == main)
2263 continue;
2264
2265 insertion_point = move_non_declarations(shader_list[i]->ir,
2266 insertion_point, true, linked);
2267 }
2268
2269 /* Check if any shader needs built-in functions. */
2270 bool need_builtins = false;
2271 for (unsigned i = 0; i < num_shaders; i++) {
2272 if (shader_list[i]->uses_builtin_functions) {
2273 need_builtins = true;
2274 break;
2275 }
2276 }
2277
2278 bool ok;
2279 if (need_builtins) {
2280 /* Make a temporary array one larger than shader_list, which will hold
2281 * the built-in function shader as well.
2282 */
2283 gl_shader **linking_shaders = (gl_shader **)
2284 calloc(num_shaders + 1, sizeof(gl_shader *));
2285
2286 ok = linking_shaders != NULL;
2287
2288 if (ok) {
2289 memcpy(linking_shaders, shader_list, num_shaders * sizeof(gl_shader *));
2290 _mesa_glsl_initialize_builtin_functions();
2291 linking_shaders[num_shaders] = _mesa_glsl_get_builtin_function_shader();
2292
2293 ok = link_function_calls(prog, linked, linking_shaders, num_shaders + 1);
2294
2295 free(linking_shaders);
2296 } else {
2297 _mesa_error_no_memory(__func__);
2298 }
2299 } else {
2300 ok = link_function_calls(prog, linked, shader_list, num_shaders);
2301 }
2302
2303
2304 if (!ok) {
2305 _mesa_delete_shader(ctx, linked);
2306 return NULL;
2307 }
2308
2309 /* Make a pass over all variable declarations to ensure that arrays with
2310 * unspecified sizes have a size specified. The size is inferred from the
2311 * max_array_access field.
2312 */
2313 array_sizing_visitor v;
2314 v.run(linked->ir);
2315 v.fixup_unnamed_interface_types();
2316
2317 /* Link up uniform blocks defined within this stage. */
2318 link_uniform_blocks(mem_ctx, ctx, prog, &linked, 1,
2319 &ubo_blocks, &num_ubo_blocks, &ssbo_blocks,
2320 &num_ssbo_blocks);
2321
2322 if (!prog->LinkStatus) {
2323 _mesa_delete_shader(ctx, linked);
2324 return NULL;
2325 }
2326
2327 /* Copy ubo blocks to linked shader list */
2328 linked->UniformBlocks =
2329 ralloc_array(linked, gl_uniform_block *, num_ubo_blocks);
2330 ralloc_steal(linked, ubo_blocks);
2331 for (unsigned i = 0; i < num_ubo_blocks; i++) {
2332 linked->UniformBlocks[i] = &ubo_blocks[i];
2333 }
2334 linked->NumUniformBlocks = num_ubo_blocks;
2335
2336 /* Copy ssbo blocks to linked shader list */
2337 linked->ShaderStorageBlocks =
2338 ralloc_array(linked, gl_uniform_block *, num_ssbo_blocks);
2339 ralloc_steal(linked, ssbo_blocks);
2340 for (unsigned i = 0; i < num_ssbo_blocks; i++) {
2341 linked->ShaderStorageBlocks[i] = &ssbo_blocks[i];
2342 }
2343 linked->NumShaderStorageBlocks = num_ssbo_blocks;
2344
2345 /* At this point linked should contain all of the linked IR, so
2346 * validate it to make sure nothing went wrong.
2347 */
2348 validate_ir_tree(linked->ir);
2349
2350 /* Set the size of geometry shader input arrays */
2351 if (linked->Stage == MESA_SHADER_GEOMETRY) {
2352 unsigned num_vertices = vertices_per_prim(prog->Geom.InputType);
2353 geom_array_resize_visitor input_resize_visitor(num_vertices, prog);
2354 foreach_in_list(ir_instruction, ir, linked->ir) {
2355 ir->accept(&input_resize_visitor);
2356 }
2357 }
2358
2359 if (ctx->Const.VertexID_is_zero_based)
2360 lower_vertex_id(linked);
2361
2362 /* Validate correct usage of barrier() in the tess control shader */
2363 if (linked->Stage == MESA_SHADER_TESS_CTRL) {
2364 barrier_use_visitor visitor(prog);
2365 foreach_in_list(ir_instruction, ir, linked->ir) {
2366 ir->accept(&visitor);
2367 }
2368 }
2369
2370 return linked;
2371 }
2372
2373 /**
2374 * Update the sizes of linked shader uniform arrays to the maximum
2375 * array index used.
2376 *
2377 * From page 81 (page 95 of the PDF) of the OpenGL 2.1 spec:
2378 *
2379 * If one or more elements of an array are active,
2380 * GetActiveUniform will return the name of the array in name,
2381 * subject to the restrictions listed above. The type of the array
2382 * is returned in type. The size parameter contains the highest
2383 * array element index used, plus one. The compiler or linker
2384 * determines the highest index used. There will be only one
2385 * active uniform reported by the GL per uniform array.
2386
2387 */
2388 static void
2389 update_array_sizes(struct gl_shader_program *prog)
2390 {
2391 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
2392 if (prog->_LinkedShaders[i] == NULL)
2393 continue;
2394
2395 foreach_in_list(ir_instruction, node, prog->_LinkedShaders[i]->ir) {
2396 ir_variable *const var = node->as_variable();
2397
2398 if ((var == NULL) || (var->data.mode != ir_var_uniform) ||
2399 !var->type->is_array())
2400 continue;
2401
2402 /* GL_ARB_uniform_buffer_object says that std140 uniforms
2403 * will not be eliminated. Since we always do std140, just
2404 * don't resize arrays in UBOs.
2405 *
2406 * Atomic counters are supposed to get deterministic
2407 * locations assigned based on the declaration ordering and
2408 * sizes, array compaction would mess that up.
2409 *
2410 * Subroutine uniforms are not removed.
2411 */
2412 if (var->is_in_buffer_block() || var->type->contains_atomic() ||
2413 var->type->contains_subroutine() || var->constant_initializer)
2414 continue;
2415
2416 int size = var->data.max_array_access;
2417 for (unsigned j = 0; j < MESA_SHADER_STAGES; j++) {
2418 if (prog->_LinkedShaders[j] == NULL)
2419 continue;
2420
2421 foreach_in_list(ir_instruction, node2, prog->_LinkedShaders[j]->ir) {
2422 ir_variable *other_var = node2->as_variable();
2423 if (!other_var)
2424 continue;
2425
2426 if (strcmp(var->name, other_var->name) == 0 &&
2427 other_var->data.max_array_access > size) {
2428 size = other_var->data.max_array_access;
2429 }
2430 }
2431 }
2432
2433 if (size + 1 != (int)var->type->length) {
2434 /* If this is a built-in uniform (i.e., it's backed by some
2435 * fixed-function state), adjust the number of state slots to
2436 * match the new array size. The number of slots per array entry
2437 * is not known. It seems safe to assume that the total number of
2438 * slots is an integer multiple of the number of array elements.
2439 * Determine the number of slots per array element by dividing by
2440 * the old (total) size.
2441 */
2442 const unsigned num_slots = var->get_num_state_slots();
2443 if (num_slots > 0) {
2444 var->set_num_state_slots((size + 1)
2445 * (num_slots / var->type->length));
2446 }
2447
2448 var->type = glsl_type::get_array_instance(var->type->fields.array,
2449 size + 1);
2450 /* FINISHME: We should update the types of array
2451 * dereferences of this variable now.
2452 */
2453 }
2454 }
2455 }
2456 }
2457
2458 /**
2459 * Resize tessellation evaluation per-vertex inputs to the size of
2460 * tessellation control per-vertex outputs.
2461 */
2462 static void
2463 resize_tes_inputs(struct gl_context *ctx,
2464 struct gl_shader_program *prog)
2465 {
2466 if (prog->_LinkedShaders[MESA_SHADER_TESS_EVAL] == NULL)
2467 return;
2468
2469 gl_shader *const tcs = prog->_LinkedShaders[MESA_SHADER_TESS_CTRL];
2470 gl_shader *const tes = prog->_LinkedShaders[MESA_SHADER_TESS_EVAL];
2471
2472 /* If no control shader is present, then the TES inputs are statically
2473 * sized to MaxPatchVertices; the actual size of the arrays won't be
2474 * known until draw time.
2475 */
2476 const int num_vertices = tcs
2477 ? tcs->TessCtrl.VerticesOut
2478 : ctx->Const.MaxPatchVertices;
2479
2480 tess_eval_array_resize_visitor input_resize_visitor(num_vertices, prog);
2481 foreach_in_list(ir_instruction, ir, tes->ir) {
2482 ir->accept(&input_resize_visitor);
2483 }
2484
2485 if (tcs || ctx->Const.LowerTESPatchVerticesIn) {
2486 /* Convert the gl_PatchVerticesIn system value into a constant, since
2487 * the value is known at this point.
2488 */
2489 foreach_in_list(ir_instruction, ir, tes->ir) {
2490 ir_variable *var = ir->as_variable();
2491 if (var && var->data.mode == ir_var_system_value &&
2492 var->data.location == SYSTEM_VALUE_VERTICES_IN) {
2493 void *mem_ctx = ralloc_parent(var);
2494 var->data.location = 0;
2495 var->data.explicit_location = false;
2496 if (tcs) {
2497 var->data.mode = ir_var_auto;
2498 var->constant_value = new(mem_ctx) ir_constant(num_vertices);
2499 } else {
2500 var->data.mode = ir_var_uniform;
2501 var->data.how_declared = ir_var_hidden;
2502 var->allocate_state_slots(1);
2503 ir_state_slot *slot0 = &var->get_state_slots()[0];
2504 slot0->swizzle = SWIZZLE_XXXX;
2505 slot0->tokens[0] = STATE_INTERNAL;
2506 slot0->tokens[1] = STATE_TES_PATCH_VERTICES_IN;
2507 for (int i = 2; i < STATE_LENGTH; i++)
2508 slot0->tokens[i] = 0;
2509 }
2510 }
2511 }
2512 }
2513 }
2514
2515 /**
2516 * Find a contiguous set of available bits in a bitmask.
2517 *
2518 * \param used_mask Bits representing used (1) and unused (0) locations
2519 * \param needed_count Number of contiguous bits needed.
2520 *
2521 * \return
2522 * Base location of the available bits on success or -1 on failure.
2523 */
2524 int
2525 find_available_slots(unsigned used_mask, unsigned needed_count)
2526 {
2527 unsigned needed_mask = (1 << needed_count) - 1;
2528 const int max_bit_to_test = (8 * sizeof(used_mask)) - needed_count;
2529
2530 /* The comparison to 32 is redundant, but without it GCC emits "warning:
2531 * cannot optimize possibly infinite loops" for the loop below.
2532 */
2533 if ((needed_count == 0) || (max_bit_to_test < 0) || (max_bit_to_test > 32))
2534 return -1;
2535
2536 for (int i = 0; i <= max_bit_to_test; i++) {
2537 if ((needed_mask & ~used_mask) == needed_mask)
2538 return i;
2539
2540 needed_mask <<= 1;
2541 }
2542
2543 return -1;
2544 }
2545
2546
2547 /**
2548 * Assign locations for either VS inputs or FS outputs
2549 *
2550 * \param prog Shader program whose variables need locations assigned
2551 * \param constants Driver specific constant values for the program.
2552 * \param target_index Selector for the program target to receive location
2553 * assignmnets. Must be either \c MESA_SHADER_VERTEX or
2554 * \c MESA_SHADER_FRAGMENT.
2555 *
2556 * \return
2557 * If locations are successfully assigned, true is returned. Otherwise an
2558 * error is emitted to the shader link log and false is returned.
2559 */
2560 bool
2561 assign_attribute_or_color_locations(gl_shader_program *prog,
2562 struct gl_constants *constants,
2563 unsigned target_index)
2564 {
2565 /* Maximum number of generic locations. This corresponds to either the
2566 * maximum number of draw buffers or the maximum number of generic
2567 * attributes.
2568 */
2569 unsigned max_index = (target_index == MESA_SHADER_VERTEX) ?
2570 constants->Program[target_index].MaxAttribs :
2571 MAX2(constants->MaxDrawBuffers, constants->MaxDualSourceDrawBuffers);
2572
2573 /* Mark invalid locations as being used.
2574 */
2575 unsigned used_locations = (max_index >= 32)
2576 ? ~0 : ~((1 << max_index) - 1);
2577 unsigned double_storage_locations = 0;
2578
2579 assert((target_index == MESA_SHADER_VERTEX)
2580 || (target_index == MESA_SHADER_FRAGMENT));
2581
2582 gl_shader *const sh = prog->_LinkedShaders[target_index];
2583 if (sh == NULL)
2584 return true;
2585
2586 /* Operate in a total of four passes.
2587 *
2588 * 1. Invalidate the location assignments for all vertex shader inputs.
2589 *
2590 * 2. Assign locations for inputs that have user-defined (via
2591 * glBindVertexAttribLocation) locations and outputs that have
2592 * user-defined locations (via glBindFragDataLocation).
2593 *
2594 * 3. Sort the attributes without assigned locations by number of slots
2595 * required in decreasing order. Fragmentation caused by attribute
2596 * locations assigned by the application may prevent large attributes
2597 * from having enough contiguous space.
2598 *
2599 * 4. Assign locations to any inputs without assigned locations.
2600 */
2601
2602 const int generic_base = (target_index == MESA_SHADER_VERTEX)
2603 ? (int) VERT_ATTRIB_GENERIC0 : (int) FRAG_RESULT_DATA0;
2604
2605 const enum ir_variable_mode direction =
2606 (target_index == MESA_SHADER_VERTEX)
2607 ? ir_var_shader_in : ir_var_shader_out;
2608
2609
2610 /* Temporary storage for the set of attributes that need locations assigned.
2611 */
2612 struct temp_attr {
2613 unsigned slots;
2614 ir_variable *var;
2615
2616 /* Used below in the call to qsort. */
2617 static int compare(const void *a, const void *b)
2618 {
2619 const temp_attr *const l = (const temp_attr *) a;
2620 const temp_attr *const r = (const temp_attr *) b;
2621
2622 /* Reversed because we want a descending order sort below. */
2623 return r->slots - l->slots;
2624 }
2625 } to_assign[32];
2626 assert(max_index <= 32);
2627
2628 /* Temporary array for the set of attributes that have locations assigned.
2629 */
2630 ir_variable *assigned[16];
2631
2632 unsigned num_attr = 0;
2633 unsigned assigned_attr = 0;
2634
2635 foreach_in_list(ir_instruction, node, sh->ir) {
2636 ir_variable *const var = node->as_variable();
2637
2638 if ((var == NULL) || (var->data.mode != (unsigned) direction))
2639 continue;
2640
2641 if (var->data.explicit_location) {
2642 var->data.is_unmatched_generic_inout = 0;
2643 if ((var->data.location >= (int)(max_index + generic_base))
2644 || (var->data.location < 0)) {
2645 linker_error(prog,
2646 "invalid explicit location %d specified for `%s'\n",
2647 (var->data.location < 0)
2648 ? var->data.location
2649 : var->data.location - generic_base,
2650 var->name);
2651 return false;
2652 }
2653 } else if (target_index == MESA_SHADER_VERTEX) {
2654 unsigned binding;
2655
2656 if (prog->AttributeBindings->get(binding, var->name)) {
2657 assert(binding >= VERT_ATTRIB_GENERIC0);
2658 var->data.location = binding;
2659 var->data.is_unmatched_generic_inout = 0;
2660 }
2661 } else if (target_index == MESA_SHADER_FRAGMENT) {
2662 unsigned binding;
2663 unsigned index;
2664
2665 if (prog->FragDataBindings->get(binding, var->name)) {
2666 assert(binding >= FRAG_RESULT_DATA0);
2667 var->data.location = binding;
2668 var->data.is_unmatched_generic_inout = 0;
2669
2670 if (prog->FragDataIndexBindings->get(index, var->name)) {
2671 var->data.index = index;
2672 }
2673 }
2674 }
2675
2676 /* From GL4.5 core spec, section 15.2 (Shader Execution):
2677 *
2678 * "Output binding assignments will cause LinkProgram to fail:
2679 * ...
2680 * If the program has an active output assigned to a location greater
2681 * than or equal to the value of MAX_DUAL_SOURCE_DRAW_BUFFERS and has
2682 * an active output assigned an index greater than or equal to one;"
2683 */
2684 if (target_index == MESA_SHADER_FRAGMENT && var->data.index >= 1 &&
2685 var->data.location - generic_base >=
2686 (int) constants->MaxDualSourceDrawBuffers) {
2687 linker_error(prog,
2688 "output location %d >= GL_MAX_DUAL_SOURCE_DRAW_BUFFERS "
2689 "with index %u for %s\n",
2690 var->data.location - generic_base, var->data.index,
2691 var->name);
2692 return false;
2693 }
2694
2695 const unsigned slots = var->type->count_attribute_slots(target_index == MESA_SHADER_VERTEX);
2696
2697 /* If the variable is not a built-in and has a location statically
2698 * assigned in the shader (presumably via a layout qualifier), make sure
2699 * that it doesn't collide with other assigned locations. Otherwise,
2700 * add it to the list of variables that need linker-assigned locations.
2701 */
2702 if (var->data.location != -1) {
2703 if (var->data.location >= generic_base && var->data.index < 1) {
2704 /* From page 61 of the OpenGL 4.0 spec:
2705 *
2706 * "LinkProgram will fail if the attribute bindings assigned
2707 * by BindAttribLocation do not leave not enough space to
2708 * assign a location for an active matrix attribute or an
2709 * active attribute array, both of which require multiple
2710 * contiguous generic attributes."
2711 *
2712 * I think above text prohibits the aliasing of explicit and
2713 * automatic assignments. But, aliasing is allowed in manual
2714 * assignments of attribute locations. See below comments for
2715 * the details.
2716 *
2717 * From OpenGL 4.0 spec, page 61:
2718 *
2719 * "It is possible for an application to bind more than one
2720 * attribute name to the same location. This is referred to as
2721 * aliasing. This will only work if only one of the aliased
2722 * attributes is active in the executable program, or if no
2723 * path through the shader consumes more than one attribute of
2724 * a set of attributes aliased to the same location. A link
2725 * error can occur if the linker determines that every path
2726 * through the shader consumes multiple aliased attributes,
2727 * but implementations are not required to generate an error
2728 * in this case."
2729 *
2730 * From GLSL 4.30 spec, page 54:
2731 *
2732 * "A program will fail to link if any two non-vertex shader
2733 * input variables are assigned to the same location. For
2734 * vertex shaders, multiple input variables may be assigned
2735 * to the same location using either layout qualifiers or via
2736 * the OpenGL API. However, such aliasing is intended only to
2737 * support vertex shaders where each execution path accesses
2738 * at most one input per each location. Implementations are
2739 * permitted, but not required, to generate link-time errors
2740 * if they detect that every path through the vertex shader
2741 * executable accesses multiple inputs assigned to any single
2742 * location. For all shader types, a program will fail to link
2743 * if explicit location assignments leave the linker unable
2744 * to find space for other variables without explicit
2745 * assignments."
2746 *
2747 * From OpenGL ES 3.0 spec, page 56:
2748 *
2749 * "Binding more than one attribute name to the same location
2750 * is referred to as aliasing, and is not permitted in OpenGL
2751 * ES Shading Language 3.00 vertex shaders. LinkProgram will
2752 * fail when this condition exists. However, aliasing is
2753 * possible in OpenGL ES Shading Language 1.00 vertex shaders.
2754 * This will only work if only one of the aliased attributes
2755 * is active in the executable program, or if no path through
2756 * the shader consumes more than one attribute of a set of
2757 * attributes aliased to the same location. A link error can
2758 * occur if the linker determines that every path through the
2759 * shader consumes multiple aliased attributes, but implemen-
2760 * tations are not required to generate an error in this case."
2761 *
2762 * After looking at above references from OpenGL, OpenGL ES and
2763 * GLSL specifications, we allow aliasing of vertex input variables
2764 * in: OpenGL 2.0 (and above) and OpenGL ES 2.0.
2765 *
2766 * NOTE: This is not required by the spec but its worth mentioning
2767 * here that we're not doing anything to make sure that no path
2768 * through the vertex shader executable accesses multiple inputs
2769 * assigned to any single location.
2770 */
2771
2772 /* Mask representing the contiguous slots that will be used by
2773 * this attribute.
2774 */
2775 const unsigned attr = var->data.location - generic_base;
2776 const unsigned use_mask = (1 << slots) - 1;
2777 const char *const string = (target_index == MESA_SHADER_VERTEX)
2778 ? "vertex shader input" : "fragment shader output";
2779
2780 /* Generate a link error if the requested locations for this
2781 * attribute exceed the maximum allowed attribute location.
2782 */
2783 if (attr + slots > max_index) {
2784 linker_error(prog,
2785 "insufficient contiguous locations "
2786 "available for %s `%s' %d %d %d\n", string,
2787 var->name, used_locations, use_mask, attr);
2788 return false;
2789 }
2790
2791 /* Generate a link error if the set of bits requested for this
2792 * attribute overlaps any previously allocated bits.
2793 */
2794 if ((~(use_mask << attr) & used_locations) != used_locations) {
2795 if (target_index == MESA_SHADER_FRAGMENT && !prog->IsES) {
2796 /* From section 4.4.2 (Output Layout Qualifiers) of the GLSL
2797 * 4.40 spec:
2798 *
2799 * "Additionally, for fragment shader outputs, if two
2800 * variables are placed within the same location, they
2801 * must have the same underlying type (floating-point or
2802 * integer). No component aliasing of output variables or
2803 * members is allowed.
2804 */
2805 for (unsigned i = 0; i < assigned_attr; i++) {
2806 unsigned assigned_slots =
2807 assigned[i]->type->count_attribute_slots(false);
2808 unsigned assig_attr =
2809 assigned[i]->data.location - generic_base;
2810 unsigned assigned_use_mask = (1 << assigned_slots) - 1;
2811
2812 if ((assigned_use_mask << assig_attr) &
2813 (use_mask << attr)) {
2814
2815 const glsl_type *assigned_type =
2816 assigned[i]->type->without_array();
2817 const glsl_type *type = var->type->without_array();
2818 if (assigned_type->base_type != type->base_type) {
2819 linker_error(prog, "types do not match for aliased"
2820 " %ss %s and %s\n", string,
2821 assigned[i]->name, var->name);
2822 return false;
2823 }
2824
2825 unsigned assigned_component_mask =
2826 ((1 << assigned_type->vector_elements) - 1) <<
2827 assigned[i]->data.location_frac;
2828 unsigned component_mask =
2829 ((1 << type->vector_elements) - 1) <<
2830 var->data.location_frac;
2831 if (assigned_component_mask & component_mask) {
2832 linker_error(prog, "overlapping component is "
2833 "assigned to %ss %s and %s "
2834 "(component=%d)\n",
2835 string, assigned[i]->name, var->name,
2836 var->data.location_frac);
2837 return false;
2838 }
2839 }
2840 }
2841 } else if (target_index == MESA_SHADER_FRAGMENT ||
2842 (prog->IsES && prog->Version >= 300)) {
2843 linker_error(prog, "overlapping location is assigned "
2844 "to %s `%s' %d %d %d\n", string, var->name,
2845 used_locations, use_mask, attr);
2846 return false;
2847 } else {
2848 linker_warning(prog, "overlapping location is assigned "
2849 "to %s `%s' %d %d %d\n", string, var->name,
2850 used_locations, use_mask, attr);
2851 }
2852 }
2853
2854 used_locations |= (use_mask << attr);
2855
2856 /* From the GL 4.5 core spec, section 11.1.1 (Vertex Attributes):
2857 *
2858 * "A program with more than the value of MAX_VERTEX_ATTRIBS
2859 * active attribute variables may fail to link, unless
2860 * device-dependent optimizations are able to make the program
2861 * fit within available hardware resources. For the purposes
2862 * of this test, attribute variables of the type dvec3, dvec4,
2863 * dmat2x3, dmat2x4, dmat3, dmat3x4, dmat4x3, and dmat4 may
2864 * count as consuming twice as many attributes as equivalent
2865 * single-precision types. While these types use the same number
2866 * of generic attributes as their single-precision equivalents,
2867 * implementations are permitted to consume two single-precision
2868 * vectors of internal storage for each three- or four-component
2869 * double-precision vector."
2870 *
2871 * Mark this attribute slot as taking up twice as much space
2872 * so we can count it properly against limits. According to
2873 * issue (3) of the GL_ARB_vertex_attrib_64bit behavior, this
2874 * is optional behavior, but it seems preferable.
2875 */
2876 if (var->type->without_array()->is_dual_slot())
2877 double_storage_locations |= (use_mask << attr);
2878 }
2879
2880 assigned[assigned_attr] = var;
2881 assigned_attr++;
2882
2883 continue;
2884 }
2885
2886 if (num_attr >= max_index) {
2887 linker_error(prog, "too many %s (max %u)",
2888 target_index == MESA_SHADER_VERTEX ?
2889 "vertex shader inputs" : "fragment shader outputs",
2890 max_index);
2891 return false;
2892 }
2893 to_assign[num_attr].slots = slots;
2894 to_assign[num_attr].var = var;
2895 num_attr++;
2896 }
2897
2898 if (target_index == MESA_SHADER_VERTEX) {
2899 unsigned total_attribs_size =
2900 _mesa_bitcount(used_locations & ((1 << max_index) - 1)) +
2901 _mesa_bitcount(double_storage_locations);
2902 if (total_attribs_size > max_index) {
2903 linker_error(prog,
2904 "attempt to use %d vertex attribute slots only %d available ",
2905 total_attribs_size, max_index);
2906 return false;
2907 }
2908 }
2909
2910 /* If all of the attributes were assigned locations by the application (or
2911 * are built-in attributes with fixed locations), return early. This should
2912 * be the common case.
2913 */
2914 if (num_attr == 0)
2915 return true;
2916
2917 qsort(to_assign, num_attr, sizeof(to_assign[0]), temp_attr::compare);
2918
2919 if (target_index == MESA_SHADER_VERTEX) {
2920 /* VERT_ATTRIB_GENERIC0 is a pseudo-alias for VERT_ATTRIB_POS. It can
2921 * only be explicitly assigned by via glBindAttribLocation. Mark it as
2922 * reserved to prevent it from being automatically allocated below.
2923 */
2924 find_deref_visitor find("gl_Vertex");
2925 find.run(sh->ir);
2926 if (find.variable_found())
2927 used_locations |= (1 << 0);
2928 }
2929
2930 for (unsigned i = 0; i < num_attr; i++) {
2931 /* Mask representing the contiguous slots that will be used by this
2932 * attribute.
2933 */
2934 const unsigned use_mask = (1 << to_assign[i].slots) - 1;
2935
2936 int location = find_available_slots(used_locations, to_assign[i].slots);
2937
2938 if (location < 0) {
2939 const char *const string = (target_index == MESA_SHADER_VERTEX)
2940 ? "vertex shader input" : "fragment shader output";
2941
2942 linker_error(prog,
2943 "insufficient contiguous locations "
2944 "available for %s `%s'\n",
2945 string, to_assign[i].var->name);
2946 return false;
2947 }
2948
2949 to_assign[i].var->data.location = generic_base + location;
2950 to_assign[i].var->data.is_unmatched_generic_inout = 0;
2951 used_locations |= (use_mask << location);
2952
2953 if (to_assign[i].var->type->without_array()->is_dual_slot())
2954 double_storage_locations |= (use_mask << location);
2955 }
2956
2957 /* Now that we have all the locations, from the GL 4.5 core spec, section
2958 * 11.1.1 (Vertex Attributes), dvec3, dvec4, dmat2x3, dmat2x4, dmat3,
2959 * dmat3x4, dmat4x3, and dmat4 count as consuming twice as many attributes
2960 * as equivalent single-precision types.
2961 */
2962 if (target_index == MESA_SHADER_VERTEX) {
2963 unsigned total_attribs_size =
2964 _mesa_bitcount(used_locations & ((1 << max_index) - 1)) +
2965 _mesa_bitcount(double_storage_locations);
2966 if (total_attribs_size > max_index) {
2967 linker_error(prog,
2968 "attempt to use %d vertex attribute slots only %d available ",
2969 total_attribs_size, max_index);
2970 return false;
2971 }
2972 }
2973
2974 return true;
2975 }
2976
2977 /**
2978 * Match explicit locations of outputs to inputs and deactivate the
2979 * unmatch flag if found so we don't optimise them away.
2980 */
2981 static void
2982 match_explicit_outputs_to_inputs(gl_shader *producer,
2983 gl_shader *consumer)
2984 {
2985 glsl_symbol_table parameters;
2986 ir_variable *explicit_locations[MAX_VARYINGS_INCL_PATCH][4] =
2987 { {NULL, NULL} };
2988
2989 /* Find all shader outputs in the "producer" stage.
2990 */
2991 foreach_in_list(ir_instruction, node, producer->ir) {
2992 ir_variable *const var = node->as_variable();
2993
2994 if ((var == NULL) || (var->data.mode != ir_var_shader_out))
2995 continue;
2996
2997 if (var->data.explicit_location &&
2998 var->data.location >= VARYING_SLOT_VAR0) {
2999 const unsigned idx = var->data.location - VARYING_SLOT_VAR0;
3000 if (explicit_locations[idx][var->data.location_frac] == NULL)
3001 explicit_locations[idx][var->data.location_frac] = var;
3002 }
3003 }
3004
3005 /* Match inputs to outputs */
3006 foreach_in_list(ir_instruction, node, consumer->ir) {
3007 ir_variable *const input = node->as_variable();
3008
3009 if ((input == NULL) || (input->data.mode != ir_var_shader_in))
3010 continue;
3011
3012 ir_variable *output = NULL;
3013 if (input->data.explicit_location
3014 && input->data.location >= VARYING_SLOT_VAR0) {
3015 output = explicit_locations[input->data.location - VARYING_SLOT_VAR0]
3016 [input->data.location_frac];
3017
3018 if (output != NULL){
3019 input->data.is_unmatched_generic_inout = 0;
3020 output->data.is_unmatched_generic_inout = 0;
3021 }
3022 }
3023 }
3024 }
3025
3026 /**
3027 * Store the gl_FragDepth layout in the gl_shader_program struct.
3028 */
3029 static void
3030 store_fragdepth_layout(struct gl_shader_program *prog)
3031 {
3032 if (prog->_LinkedShaders[MESA_SHADER_FRAGMENT] == NULL) {
3033 return;
3034 }
3035
3036 struct exec_list *ir = prog->_LinkedShaders[MESA_SHADER_FRAGMENT]->ir;
3037
3038 /* We don't look up the gl_FragDepth symbol directly because if
3039 * gl_FragDepth is not used in the shader, it's removed from the IR.
3040 * However, the symbol won't be removed from the symbol table.
3041 *
3042 * We're only interested in the cases where the variable is NOT removed
3043 * from the IR.
3044 */
3045 foreach_in_list(ir_instruction, node, ir) {
3046 ir_variable *const var = node->as_variable();
3047
3048 if (var == NULL || var->data.mode != ir_var_shader_out) {
3049 continue;
3050 }
3051
3052 if (strcmp(var->name, "gl_FragDepth") == 0) {
3053 switch (var->data.depth_layout) {
3054 case ir_depth_layout_none:
3055 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_NONE;
3056 return;
3057 case ir_depth_layout_any:
3058 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_ANY;
3059 return;
3060 case ir_depth_layout_greater:
3061 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_GREATER;
3062 return;
3063 case ir_depth_layout_less:
3064 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_LESS;
3065 return;
3066 case ir_depth_layout_unchanged:
3067 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_UNCHANGED;
3068 return;
3069 default:
3070 assert(0);
3071 return;
3072 }
3073 }
3074 }
3075 }
3076
3077 /**
3078 * Validate the resources used by a program versus the implementation limits
3079 */
3080 static void
3081 check_resources(struct gl_context *ctx, struct gl_shader_program *prog)
3082 {
3083 unsigned total_uniform_blocks = 0;
3084 unsigned total_shader_storage_blocks = 0;
3085
3086 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3087 struct gl_shader *sh = prog->_LinkedShaders[i];
3088
3089 if (sh == NULL)
3090 continue;
3091
3092 if (sh->num_samplers > ctx->Const.Program[i].MaxTextureImageUnits) {
3093 linker_error(prog, "Too many %s shader texture samplers\n",
3094 _mesa_shader_stage_to_string(i));
3095 }
3096
3097 if (sh->num_uniform_components >
3098 ctx->Const.Program[i].MaxUniformComponents) {
3099 if (ctx->Const.GLSLSkipStrictMaxUniformLimitCheck) {
3100 linker_warning(prog, "Too many %s shader default uniform block "
3101 "components, but the driver will try to optimize "
3102 "them out; this is non-portable out-of-spec "
3103 "behavior\n",
3104 _mesa_shader_stage_to_string(i));
3105 } else {
3106 linker_error(prog, "Too many %s shader default uniform block "
3107 "components\n",
3108 _mesa_shader_stage_to_string(i));
3109 }
3110 }
3111
3112 if (sh->num_combined_uniform_components >
3113 ctx->Const.Program[i].MaxCombinedUniformComponents) {
3114 if (ctx->Const.GLSLSkipStrictMaxUniformLimitCheck) {
3115 linker_warning(prog, "Too many %s shader uniform components, "
3116 "but the driver will try to optimize them out; "
3117 "this is non-portable out-of-spec behavior\n",
3118 _mesa_shader_stage_to_string(i));
3119 } else {
3120 linker_error(prog, "Too many %s shader uniform components\n",
3121 _mesa_shader_stage_to_string(i));
3122 }
3123 }
3124
3125 total_shader_storage_blocks += sh->NumShaderStorageBlocks;
3126 total_uniform_blocks += sh->NumUniformBlocks;
3127
3128 const unsigned max_uniform_blocks =
3129 ctx->Const.Program[i].MaxUniformBlocks;
3130 if (max_uniform_blocks < sh->NumUniformBlocks) {
3131 linker_error(prog, "Too many %s uniform blocks (%d/%d)\n",
3132 _mesa_shader_stage_to_string(i), sh->NumUniformBlocks,
3133 max_uniform_blocks);
3134 }
3135
3136 const unsigned max_shader_storage_blocks =
3137 ctx->Const.Program[i].MaxShaderStorageBlocks;
3138 if (max_shader_storage_blocks < sh->NumShaderStorageBlocks) {
3139 linker_error(prog, "Too many %s shader storage blocks (%d/%d)\n",
3140 _mesa_shader_stage_to_string(i),
3141 sh->NumShaderStorageBlocks, max_shader_storage_blocks);
3142 }
3143 }
3144
3145 if (total_uniform_blocks > ctx->Const.MaxCombinedUniformBlocks) {
3146 linker_error(prog, "Too many combined uniform blocks (%d/%d)\n",
3147 total_uniform_blocks, ctx->Const.MaxCombinedUniformBlocks);
3148 }
3149
3150 if (total_shader_storage_blocks > ctx->Const.MaxCombinedShaderStorageBlocks) {
3151 linker_error(prog, "Too many combined shader storage blocks (%d/%d)\n",
3152 total_shader_storage_blocks,
3153 ctx->Const.MaxCombinedShaderStorageBlocks);
3154 }
3155
3156 for (unsigned i = 0; i < prog->NumUniformBlocks; i++) {
3157 if (prog->UniformBlocks[i].UniformBufferSize >
3158 ctx->Const.MaxUniformBlockSize) {
3159 linker_error(prog, "Uniform block %s too big (%d/%d)\n",
3160 prog->UniformBlocks[i].Name,
3161 prog->UniformBlocks[i].UniformBufferSize,
3162 ctx->Const.MaxUniformBlockSize);
3163 }
3164 }
3165
3166 for (unsigned i = 0; i < prog->NumShaderStorageBlocks; i++) {
3167 if (prog->ShaderStorageBlocks[i].UniformBufferSize >
3168 ctx->Const.MaxShaderStorageBlockSize) {
3169 linker_error(prog, "Shader storage block %s too big (%d/%d)\n",
3170 prog->ShaderStorageBlocks[i].Name,
3171 prog->ShaderStorageBlocks[i].UniformBufferSize,
3172 ctx->Const.MaxShaderStorageBlockSize);
3173 }
3174 }
3175 }
3176
3177 static void
3178 link_calculate_subroutine_compat(struct gl_shader_program *prog)
3179 {
3180 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3181 struct gl_shader *sh = prog->_LinkedShaders[i];
3182 int count;
3183 if (!sh)
3184 continue;
3185
3186 for (unsigned j = 0; j < sh->NumSubroutineUniformRemapTable; j++) {
3187 if (sh->SubroutineUniformRemapTable[j] == INACTIVE_UNIFORM_EXPLICIT_LOCATION)
3188 continue;
3189
3190 struct gl_uniform_storage *uni = sh->SubroutineUniformRemapTable[j];
3191
3192 if (!uni)
3193 continue;
3194
3195 sh->NumSubroutineUniforms++;
3196 count = 0;
3197 if (sh->NumSubroutineFunctions == 0) {
3198 linker_error(prog, "subroutine uniform %s defined but no valid functions found\n", uni->type->name);
3199 continue;
3200 }
3201 for (unsigned f = 0; f < sh->NumSubroutineFunctions; f++) {
3202 struct gl_subroutine_function *fn = &sh->SubroutineFunctions[f];
3203 for (int k = 0; k < fn->num_compat_types; k++) {
3204 if (fn->types[k] == uni->type) {
3205 count++;
3206 break;
3207 }
3208 }
3209 }
3210 uni->num_compatible_subroutines = count;
3211 }
3212 }
3213 }
3214
3215 static void
3216 check_subroutine_resources(struct gl_shader_program *prog)
3217 {
3218 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3219 struct gl_shader *sh = prog->_LinkedShaders[i];
3220
3221 if (sh) {
3222 if (sh->NumSubroutineUniformRemapTable > MAX_SUBROUTINE_UNIFORM_LOCATIONS)
3223 linker_error(prog, "Too many %s shader subroutine uniforms\n",
3224 _mesa_shader_stage_to_string(i));
3225 }
3226 }
3227 }
3228 /**
3229 * Validate shader image resources.
3230 */
3231 static void
3232 check_image_resources(struct gl_context *ctx, struct gl_shader_program *prog)
3233 {
3234 unsigned total_image_units = 0;
3235 unsigned fragment_outputs = 0;
3236 unsigned total_shader_storage_blocks = 0;
3237
3238 if (!ctx->Extensions.ARB_shader_image_load_store)
3239 return;
3240
3241 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3242 struct gl_shader *sh = prog->_LinkedShaders[i];
3243
3244 if (sh) {
3245 if (sh->NumImages > ctx->Const.Program[i].MaxImageUniforms)
3246 linker_error(prog, "Too many %s shader image uniforms (%u > %u)\n",
3247 _mesa_shader_stage_to_string(i), sh->NumImages,
3248 ctx->Const.Program[i].MaxImageUniforms);
3249
3250 total_image_units += sh->NumImages;
3251 total_shader_storage_blocks += sh->NumShaderStorageBlocks;
3252
3253 if (i == MESA_SHADER_FRAGMENT) {
3254 foreach_in_list(ir_instruction, node, sh->ir) {
3255 ir_variable *var = node->as_variable();
3256 if (var && var->data.mode == ir_var_shader_out)
3257 /* since there are no double fs outputs - pass false */
3258 fragment_outputs += var->type->count_attribute_slots(false);
3259 }
3260 }
3261 }
3262 }
3263
3264 if (total_image_units > ctx->Const.MaxCombinedImageUniforms)
3265 linker_error(prog, "Too many combined image uniforms\n");
3266
3267 if (total_image_units + fragment_outputs + total_shader_storage_blocks >
3268 ctx->Const.MaxCombinedShaderOutputResources)
3269 linker_error(prog, "Too many combined image uniforms, shader storage "
3270 " buffers and fragment outputs\n");
3271 }
3272
3273
3274 /**
3275 * Initializes explicit location slots to INACTIVE_UNIFORM_EXPLICIT_LOCATION
3276 * for a variable, checks for overlaps between other uniforms using explicit
3277 * locations.
3278 */
3279 static int
3280 reserve_explicit_locations(struct gl_shader_program *prog,
3281 string_to_uint_map *map, ir_variable *var)
3282 {
3283 unsigned slots = var->type->uniform_locations();
3284 unsigned max_loc = var->data.location + slots - 1;
3285 unsigned return_value = slots;
3286
3287 /* Resize remap table if locations do not fit in the current one. */
3288 if (max_loc + 1 > prog->NumUniformRemapTable) {
3289 prog->UniformRemapTable =
3290 reralloc(prog, prog->UniformRemapTable,
3291 gl_uniform_storage *,
3292 max_loc + 1);
3293
3294 if (!prog->UniformRemapTable) {
3295 linker_error(prog, "Out of memory during linking.\n");
3296 return -1;
3297 }
3298
3299 /* Initialize allocated space. */
3300 for (unsigned i = prog->NumUniformRemapTable; i < max_loc + 1; i++)
3301 prog->UniformRemapTable[i] = NULL;
3302
3303 prog->NumUniformRemapTable = max_loc + 1;
3304 }
3305
3306 for (unsigned i = 0; i < slots; i++) {
3307 unsigned loc = var->data.location + i;
3308
3309 /* Check if location is already used. */
3310 if (prog->UniformRemapTable[loc] == INACTIVE_UNIFORM_EXPLICIT_LOCATION) {
3311
3312 /* Possibly same uniform from a different stage, this is ok. */
3313 unsigned hash_loc;
3314 if (map->get(hash_loc, var->name) && hash_loc == loc - i) {
3315 return_value = 0;
3316 continue;
3317 }
3318
3319 /* ARB_explicit_uniform_location specification states:
3320 *
3321 * "No two default-block uniform variables in the program can have
3322 * the same location, even if they are unused, otherwise a compiler
3323 * or linker error will be generated."
3324 */
3325 linker_error(prog,
3326 "location qualifier for uniform %s overlaps "
3327 "previously used location\n",
3328 var->name);
3329 return -1;
3330 }
3331
3332 /* Initialize location as inactive before optimization
3333 * rounds and location assignment.
3334 */
3335 prog->UniformRemapTable[loc] = INACTIVE_UNIFORM_EXPLICIT_LOCATION;
3336 }
3337
3338 /* Note, base location used for arrays. */
3339 map->put(var->data.location, var->name);
3340
3341 return return_value;
3342 }
3343
3344 static bool
3345 reserve_subroutine_explicit_locations(struct gl_shader_program *prog,
3346 struct gl_shader *sh,
3347 ir_variable *var)
3348 {
3349 unsigned slots = var->type->uniform_locations();
3350 unsigned max_loc = var->data.location + slots - 1;
3351
3352 /* Resize remap table if locations do not fit in the current one. */
3353 if (max_loc + 1 > sh->NumSubroutineUniformRemapTable) {
3354 sh->SubroutineUniformRemapTable =
3355 reralloc(sh, sh->SubroutineUniformRemapTable,
3356 gl_uniform_storage *,
3357 max_loc + 1);
3358
3359 if (!sh->SubroutineUniformRemapTable) {
3360 linker_error(prog, "Out of memory during linking.\n");
3361 return false;
3362 }
3363
3364 /* Initialize allocated space. */
3365 for (unsigned i = sh->NumSubroutineUniformRemapTable; i < max_loc + 1; i++)
3366 sh->SubroutineUniformRemapTable[i] = NULL;
3367
3368 sh->NumSubroutineUniformRemapTable = max_loc + 1;
3369 }
3370
3371 for (unsigned i = 0; i < slots; i++) {
3372 unsigned loc = var->data.location + i;
3373
3374 /* Check if location is already used. */
3375 if (sh->SubroutineUniformRemapTable[loc] == INACTIVE_UNIFORM_EXPLICIT_LOCATION) {
3376
3377 /* ARB_explicit_uniform_location specification states:
3378 * "No two subroutine uniform variables can have the same location
3379 * in the same shader stage, otherwise a compiler or linker error
3380 * will be generated."
3381 */
3382 linker_error(prog,
3383 "location qualifier for uniform %s overlaps "
3384 "previously used location\n",
3385 var->name);
3386 return false;
3387 }
3388
3389 /* Initialize location as inactive before optimization
3390 * rounds and location assignment.
3391 */
3392 sh->SubroutineUniformRemapTable[loc] = INACTIVE_UNIFORM_EXPLICIT_LOCATION;
3393 }
3394
3395 return true;
3396 }
3397 /**
3398 * Check and reserve all explicit uniform locations, called before
3399 * any optimizations happen to handle also inactive uniforms and
3400 * inactive array elements that may get trimmed away.
3401 */
3402 static unsigned
3403 check_explicit_uniform_locations(struct gl_context *ctx,
3404 struct gl_shader_program *prog)
3405 {
3406 if (!ctx->Extensions.ARB_explicit_uniform_location)
3407 return 0;
3408
3409 /* This map is used to detect if overlapping explicit locations
3410 * occur with the same uniform (from different stage) or a different one.
3411 */
3412 string_to_uint_map *uniform_map = new string_to_uint_map;
3413
3414 if (!uniform_map) {
3415 linker_error(prog, "Out of memory during linking.\n");
3416 return 0;
3417 }
3418
3419 unsigned entries_total = 0;
3420 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3421 struct gl_shader *sh = prog->_LinkedShaders[i];
3422
3423 if (!sh)
3424 continue;
3425
3426 foreach_in_list(ir_instruction, node, sh->ir) {
3427 ir_variable *var = node->as_variable();
3428 if (!var || var->data.mode != ir_var_uniform)
3429 continue;
3430
3431 if (var->data.explicit_location) {
3432 bool ret = false;
3433 if (var->type->without_array()->is_subroutine())
3434 ret = reserve_subroutine_explicit_locations(prog, sh, var);
3435 else {
3436 int slots = reserve_explicit_locations(prog, uniform_map,
3437 var);
3438 if (slots != -1) {
3439 ret = true;
3440 entries_total += slots;
3441 }
3442 }
3443 if (!ret) {
3444 delete uniform_map;
3445 return 0;
3446 }
3447 }
3448 }
3449 }
3450
3451 struct empty_uniform_block *current_block = NULL;
3452
3453 for (unsigned i = 0; i < prog->NumUniformRemapTable; i++) {
3454 /* We found empty space in UniformRemapTable. */
3455 if (prog->UniformRemapTable[i] == NULL) {
3456 /* We've found the beginning of a new continous block of empty slots */
3457 if (!current_block || current_block->start + current_block->slots != i) {
3458 current_block = rzalloc(prog, struct empty_uniform_block);
3459 current_block->start = i;
3460 exec_list_push_tail(&prog->EmptyUniformLocations,
3461 &current_block->link);
3462 }
3463
3464 /* The current block continues, so we simply increment its slots */
3465 current_block->slots++;
3466 }
3467 }
3468
3469 delete uniform_map;
3470 return entries_total;
3471 }
3472
3473 static bool
3474 should_add_buffer_variable(struct gl_shader_program *shProg,
3475 GLenum type, const char *name)
3476 {
3477 bool found_interface = false;
3478 unsigned block_name_len = 0;
3479 const char *block_name_dot = strchr(name, '.');
3480
3481 /* These rules only apply to buffer variables. So we return
3482 * true for the rest of types.
3483 */
3484 if (type != GL_BUFFER_VARIABLE)
3485 return true;
3486
3487 for (unsigned i = 0; i < shProg->NumShaderStorageBlocks; i++) {
3488 const char *block_name = shProg->ShaderStorageBlocks[i].Name;
3489 block_name_len = strlen(block_name);
3490
3491 const char *block_square_bracket = strchr(block_name, '[');
3492 if (block_square_bracket) {
3493 /* The block is part of an array of named interfaces,
3494 * for the name comparison we ignore the "[x]" part.
3495 */
3496 block_name_len -= strlen(block_square_bracket);
3497 }
3498
3499 if (block_name_dot) {
3500 /* Check if the variable name starts with the interface
3501 * name. The interface name (if present) should have the
3502 * length than the interface block name we are comparing to.
3503 */
3504 unsigned len = strlen(name) - strlen(block_name_dot);
3505 if (len != block_name_len)
3506 continue;
3507 }
3508
3509 if (strncmp(block_name, name, block_name_len) == 0) {
3510 found_interface = true;
3511 break;
3512 }
3513 }
3514
3515 /* We remove the interface name from the buffer variable name,
3516 * including the dot that follows it.
3517 */
3518 if (found_interface)
3519 name = name + block_name_len + 1;
3520
3521 /* The ARB_program_interface_query spec says:
3522 *
3523 * "For an active shader storage block member declared as an array, an
3524 * entry will be generated only for the first array element, regardless
3525 * of its type. For arrays of aggregate types, the enumeration rules
3526 * are applied recursively for the single enumerated array element."
3527 */
3528 const char *struct_first_dot = strchr(name, '.');
3529 const char *first_square_bracket = strchr(name, '[');
3530
3531 /* The buffer variable is on top level and it is not an array */
3532 if (!first_square_bracket) {
3533 return true;
3534 /* The shader storage block member is a struct, then generate the entry */
3535 } else if (struct_first_dot && struct_first_dot < first_square_bracket) {
3536 return true;
3537 } else {
3538 /* Shader storage block member is an array, only generate an entry for the
3539 * first array element.
3540 */
3541 if (strncmp(first_square_bracket, "[0]", 3) == 0)
3542 return true;
3543 }
3544
3545 return false;
3546 }
3547
3548 static bool
3549 add_program_resource(struct gl_shader_program *prog, GLenum type,
3550 const void *data, uint8_t stages)
3551 {
3552 assert(data);
3553
3554 /* If resource already exists, do not add it again. */
3555 for (unsigned i = 0; i < prog->NumProgramResourceList; i++)
3556 if (prog->ProgramResourceList[i].Data == data)
3557 return true;
3558
3559 prog->ProgramResourceList =
3560 reralloc(prog,
3561 prog->ProgramResourceList,
3562 gl_program_resource,
3563 prog->NumProgramResourceList + 1);
3564
3565 if (!prog->ProgramResourceList) {
3566 linker_error(prog, "Out of memory during linking.\n");
3567 return false;
3568 }
3569
3570 struct gl_program_resource *res =
3571 &prog->ProgramResourceList[prog->NumProgramResourceList];
3572
3573 res->Type = type;
3574 res->Data = data;
3575 res->StageReferences = stages;
3576
3577 prog->NumProgramResourceList++;
3578
3579 return true;
3580 }
3581
3582 /* Function checks if a variable var is a packed varying and
3583 * if given name is part of packed varying's list.
3584 *
3585 * If a variable is a packed varying, it has a name like
3586 * 'packed:a,b,c' where a, b and c are separate variables.
3587 */
3588 static bool
3589 included_in_packed_varying(ir_variable *var, const char *name)
3590 {
3591 if (strncmp(var->name, "packed:", 7) != 0)
3592 return false;
3593
3594 char *list = strdup(var->name + 7);
3595 assert(list);
3596
3597 bool found = false;
3598 char *saveptr;
3599 char *token = strtok_r(list, ",", &saveptr);
3600 while (token) {
3601 if (strcmp(token, name) == 0) {
3602 found = true;
3603 break;
3604 }
3605 token = strtok_r(NULL, ",", &saveptr);
3606 }
3607 free(list);
3608 return found;
3609 }
3610
3611 /**
3612 * Function builds a stage reference bitmask from variable name.
3613 */
3614 static uint8_t
3615 build_stageref(struct gl_shader_program *shProg, const char *name,
3616 unsigned mode)
3617 {
3618 uint8_t stages = 0;
3619
3620 /* Note, that we assume MAX 8 stages, if there will be more stages, type
3621 * used for reference mask in gl_program_resource will need to be changed.
3622 */
3623 assert(MESA_SHADER_STAGES < 8);
3624
3625 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3626 struct gl_shader *sh = shProg->_LinkedShaders[i];
3627 if (!sh)
3628 continue;
3629
3630 /* Shader symbol table may contain variables that have
3631 * been optimized away. Search IR for the variable instead.
3632 */
3633 foreach_in_list(ir_instruction, node, sh->ir) {
3634 ir_variable *var = node->as_variable();
3635 if (var) {
3636 unsigned baselen = strlen(var->name);
3637
3638 if (included_in_packed_varying(var, name)) {
3639 stages |= (1 << i);
3640 break;
3641 }
3642
3643 /* Type needs to match if specified, otherwise we might
3644 * pick a variable with same name but different interface.
3645 */
3646 if (var->data.mode != mode)
3647 continue;
3648
3649 if (strncmp(var->name, name, baselen) == 0) {
3650 /* Check for exact name matches but also check for arrays and
3651 * structs.
3652 */
3653 if (name[baselen] == '\0' ||
3654 name[baselen] == '[' ||
3655 name[baselen] == '.') {
3656 stages |= (1 << i);
3657 break;
3658 }
3659 }
3660 }
3661 }
3662 }
3663 return stages;
3664 }
3665
3666 /**
3667 * Create gl_shader_variable from ir_variable class.
3668 */
3669 static gl_shader_variable *
3670 create_shader_variable(struct gl_shader_program *shProg,
3671 const ir_variable *in,
3672 const char *name, const glsl_type *type,
3673 bool use_implicit_location, int location,
3674 const glsl_type *outermost_struct_type)
3675 {
3676 gl_shader_variable *out = ralloc(shProg, struct gl_shader_variable);
3677 if (!out)
3678 return NULL;
3679
3680 /* Since gl_VertexID may be lowered to gl_VertexIDMESA, but applications
3681 * expect to see gl_VertexID in the program resource list. Pretend.
3682 */
3683 if (in->data.mode == ir_var_system_value &&
3684 in->data.location == SYSTEM_VALUE_VERTEX_ID_ZERO_BASE) {
3685 out->name = ralloc_strdup(shProg, "gl_VertexID");
3686 } else {
3687 out->name = ralloc_strdup(shProg, name);
3688 }
3689
3690 if (!out->name)
3691 return NULL;
3692
3693 /* The ARB_program_interface_query spec says:
3694 *
3695 * "Not all active variables are assigned valid locations; the
3696 * following variables will have an effective location of -1:
3697 *
3698 * * uniforms declared as atomic counters;
3699 *
3700 * * members of a uniform block;
3701 *
3702 * * built-in inputs, outputs, and uniforms (starting with "gl_"); and
3703 *
3704 * * inputs or outputs not declared with a "location" layout
3705 * qualifier, except for vertex shader inputs and fragment shader
3706 * outputs."
3707 */
3708 if (in->type->base_type == GLSL_TYPE_ATOMIC_UINT ||
3709 is_gl_identifier(in->name) ||
3710 !(in->data.explicit_location || use_implicit_location)) {
3711 out->location = -1;
3712 } else {
3713 out->location = location;
3714 }
3715
3716 out->type = type;
3717 out->outermost_struct_type = outermost_struct_type;
3718 out->interface_type = in->get_interface_type();
3719 out->component = in->data.location_frac;
3720 out->index = in->data.index;
3721 out->patch = in->data.patch;
3722 out->mode = in->data.mode;
3723 out->interpolation = in->data.interpolation;
3724 out->explicit_location = in->data.explicit_location;
3725 out->precision = in->data.precision;
3726
3727 return out;
3728 }
3729
3730 static bool
3731 add_shader_variable(struct gl_shader_program *shProg, unsigned stage_mask,
3732 GLenum programInterface, ir_variable *var,
3733 const char *name, const glsl_type *type,
3734 bool use_implicit_location, int location,
3735 const glsl_type *outermost_struct_type = NULL)
3736 {
3737 const bool is_vertex_input =
3738 programInterface == GL_PROGRAM_INPUT &&
3739 stage_mask == MESA_SHADER_VERTEX;
3740
3741 switch (type->base_type) {
3742 case GLSL_TYPE_STRUCT: {
3743 /* The ARB_program_interface_query spec says:
3744 *
3745 * "For an active variable declared as a structure, a separate entry
3746 * will be generated for each active structure member. The name of
3747 * each entry is formed by concatenating the name of the structure,
3748 * the "." character, and the name of the structure member. If a
3749 * structure member to enumerate is itself a structure or array,
3750 * these enumeration rules are applied recursively."
3751 */
3752 if (outermost_struct_type == NULL)
3753 outermost_struct_type = type;
3754
3755 unsigned field_location = location;
3756 for (unsigned i = 0; i < type->length; i++) {
3757 const struct glsl_struct_field *field = &type->fields.structure[i];
3758 char *field_name = ralloc_asprintf(shProg, "%s.%s", name, field->name);
3759 if (!add_shader_variable(shProg, stage_mask, programInterface,
3760 var, field_name, field->type,
3761 use_implicit_location, field_location,
3762 outermost_struct_type))
3763 return false;
3764
3765 field_location +=
3766 field->type->count_attribute_slots(is_vertex_input);
3767 }
3768 return true;
3769 }
3770
3771 default: {
3772 /* Issue #16 of the ARB_program_interface_query spec says:
3773 *
3774 * "* If a variable is a member of an interface block without an
3775 * instance name, it is enumerated using just the variable name.
3776 *
3777 * * If a variable is a member of an interface block with an instance
3778 * name, it is enumerated as "BlockName.Member", where "BlockName" is
3779 * the name of the interface block (not the instance name) and
3780 * "Member" is the name of the variable."
3781 */
3782 const char *prefixed_name = (var->data.from_named_ifc_block &&
3783 !is_gl_identifier(var->name))
3784 ? ralloc_asprintf(shProg, "%s.%s", var->get_interface_type()->name,
3785 name)
3786 : name;
3787
3788 /* The ARB_program_interface_query spec says:
3789 *
3790 * "For an active variable declared as a single instance of a basic
3791 * type, a single entry will be generated, using the variable name
3792 * from the shader source."
3793 */
3794 gl_shader_variable *sha_v =
3795 create_shader_variable(shProg, var, prefixed_name, type,
3796 use_implicit_location, location,
3797 outermost_struct_type);
3798 if (!sha_v)
3799 return false;
3800
3801 return add_program_resource(shProg, programInterface, sha_v, stage_mask);
3802 }
3803 }
3804 }
3805
3806 static bool
3807 add_interface_variables(struct gl_shader_program *shProg,
3808 unsigned stage, GLenum programInterface)
3809 {
3810 exec_list *ir = shProg->_LinkedShaders[stage]->ir;
3811
3812 foreach_in_list(ir_instruction, node, ir) {
3813 ir_variable *var = node->as_variable();
3814
3815 if (!var || var->data.how_declared == ir_var_hidden)
3816 continue;
3817
3818 int loc_bias;
3819
3820 switch (var->data.mode) {
3821 case ir_var_system_value:
3822 case ir_var_shader_in:
3823 if (programInterface != GL_PROGRAM_INPUT)
3824 continue;
3825 loc_bias = (stage == MESA_SHADER_VERTEX) ? int(VERT_ATTRIB_GENERIC0)
3826 : int(VARYING_SLOT_VAR0);
3827 break;
3828 case ir_var_shader_out:
3829 if (programInterface != GL_PROGRAM_OUTPUT)
3830 continue;
3831 loc_bias = (stage == MESA_SHADER_FRAGMENT) ? int(FRAG_RESULT_DATA0)
3832 : int(VARYING_SLOT_VAR0);
3833 break;
3834 default:
3835 continue;
3836 };
3837
3838 /* Skip packed varyings, packed varyings are handled separately
3839 * by add_packed_varyings.
3840 */
3841 if (strncmp(var->name, "packed:", 7) == 0)
3842 continue;
3843
3844 /* Skip fragdata arrays, these are handled separately
3845 * by add_fragdata_arrays.
3846 */
3847 if (strncmp(var->name, "gl_out_FragData", 15) == 0)
3848 continue;
3849
3850 const bool vs_input_or_fs_output =
3851 (stage == MESA_SHADER_VERTEX && var->data.mode == ir_var_shader_in) ||
3852 (stage == MESA_SHADER_FRAGMENT && var->data.mode == ir_var_shader_out);
3853
3854 if (!add_shader_variable(shProg, 1 << stage, programInterface,
3855 var, var->name, var->type, vs_input_or_fs_output,
3856 var->data.location - loc_bias))
3857 return false;
3858 }
3859 return true;
3860 }
3861
3862 static bool
3863 add_packed_varyings(struct gl_shader_program *shProg, int stage, GLenum type)
3864 {
3865 struct gl_shader *sh = shProg->_LinkedShaders[stage];
3866 GLenum iface;
3867
3868 if (!sh || !sh->packed_varyings)
3869 return true;
3870
3871 foreach_in_list(ir_instruction, node, sh->packed_varyings) {
3872 ir_variable *var = node->as_variable();
3873 if (var) {
3874 switch (var->data.mode) {
3875 case ir_var_shader_in:
3876 iface = GL_PROGRAM_INPUT;
3877 break;
3878 case ir_var_shader_out:
3879 iface = GL_PROGRAM_OUTPUT;
3880 break;
3881 default:
3882 unreachable("unexpected type");
3883 }
3884
3885 if (type == iface) {
3886 const int stage_mask =
3887 build_stageref(shProg, var->name, var->data.mode);
3888 if (!add_shader_variable(shProg, stage_mask,
3889 iface, var, var->name, var->type, false,
3890 var->data.location - VARYING_SLOT_VAR0))
3891 return false;
3892 }
3893 }
3894 }
3895 return true;
3896 }
3897
3898 static bool
3899 add_fragdata_arrays(struct gl_shader_program *shProg)
3900 {
3901 struct gl_shader *sh = shProg->_LinkedShaders[MESA_SHADER_FRAGMENT];
3902
3903 if (!sh || !sh->fragdata_arrays)
3904 return true;
3905
3906 foreach_in_list(ir_instruction, node, sh->fragdata_arrays) {
3907 ir_variable *var = node->as_variable();
3908 if (var) {
3909 assert(var->data.mode == ir_var_shader_out);
3910
3911 if (!add_shader_variable(shProg,
3912 1 << MESA_SHADER_FRAGMENT,
3913 GL_PROGRAM_OUTPUT, var, var->name, var->type,
3914 true, var->data.location - FRAG_RESULT_DATA0))
3915 return false;
3916 }
3917 }
3918 return true;
3919 }
3920
3921 static char*
3922 get_top_level_name(const char *name)
3923 {
3924 const char *first_dot = strchr(name, '.');
3925 const char *first_square_bracket = strchr(name, '[');
3926 int name_size = 0;
3927
3928 /* The ARB_program_interface_query spec says:
3929 *
3930 * "For the property TOP_LEVEL_ARRAY_SIZE, a single integer identifying
3931 * the number of active array elements of the top-level shader storage
3932 * block member containing to the active variable is written to
3933 * <params>. If the top-level block member is not declared as an
3934 * array, the value one is written to <params>. If the top-level block
3935 * member is an array with no declared size, the value zero is written
3936 * to <params>."
3937 */
3938
3939 /* The buffer variable is on top level.*/
3940 if (!first_square_bracket && !first_dot)
3941 name_size = strlen(name);
3942 else if ((!first_square_bracket ||
3943 (first_dot && first_dot < first_square_bracket)))
3944 name_size = first_dot - name;
3945 else
3946 name_size = first_square_bracket - name;
3947
3948 return strndup(name, name_size);
3949 }
3950
3951 static char*
3952 get_var_name(const char *name)
3953 {
3954 const char *first_dot = strchr(name, '.');
3955
3956 if (!first_dot)
3957 return strdup(name);
3958
3959 return strndup(first_dot+1, strlen(first_dot) - 1);
3960 }
3961
3962 static bool
3963 is_top_level_shader_storage_block_member(const char* name,
3964 const char* interface_name,
3965 const char* field_name)
3966 {
3967 bool result = false;
3968
3969 /* If the given variable is already a top-level shader storage
3970 * block member, then return array_size = 1.
3971 * We could have two possibilities: if we have an instanced
3972 * shader storage block or not instanced.
3973 *
3974 * For the first, we check create a name as it was in top level and
3975 * compare it with the real name. If they are the same, then
3976 * the variable is already at top-level.
3977 *
3978 * Full instanced name is: interface name + '.' + var name +
3979 * NULL character
3980 */
3981 int name_length = strlen(interface_name) + 1 + strlen(field_name) + 1;
3982 char *full_instanced_name = (char *) calloc(name_length, sizeof(char));
3983 if (!full_instanced_name) {
3984 fprintf(stderr, "%s: Cannot allocate space for name\n", __func__);
3985 return false;
3986 }
3987
3988 snprintf(full_instanced_name, name_length, "%s.%s",
3989 interface_name, field_name);
3990
3991 /* Check if its top-level shader storage block member of an
3992 * instanced interface block, or of a unnamed interface block.
3993 */
3994 if (strcmp(name, full_instanced_name) == 0 ||
3995 strcmp(name, field_name) == 0)
3996 result = true;
3997
3998 free(full_instanced_name);
3999 return result;
4000 }
4001
4002 static int
4003 get_array_size(struct gl_uniform_storage *uni, const glsl_struct_field *field,
4004 char *interface_name, char *var_name)
4005 {
4006 /* The ARB_program_interface_query spec says:
4007 *
4008 * "For the property TOP_LEVEL_ARRAY_SIZE, a single integer identifying
4009 * the number of active array elements of the top-level shader storage
4010 * block member containing to the active variable is written to
4011 * <params>. If the top-level block member is not declared as an
4012 * array, the value one is written to <params>. If the top-level block
4013 * member is an array with no declared size, the value zero is written
4014 * to <params>."
4015 */
4016 if (is_top_level_shader_storage_block_member(uni->name,
4017 interface_name,
4018 var_name))
4019 return 1;
4020 else if (field->type->is_unsized_array())
4021 return 0;
4022 else if (field->type->is_array())
4023 return field->type->length;
4024
4025 return 1;
4026 }
4027
4028 static int
4029 get_array_stride(struct gl_uniform_storage *uni, const glsl_type *interface,
4030 const glsl_struct_field *field, char *interface_name,
4031 char *var_name)
4032 {
4033 /* The ARB_program_interface_query spec says:
4034 *
4035 * "For the property TOP_LEVEL_ARRAY_STRIDE, a single integer
4036 * identifying the stride between array elements of the top-level
4037 * shader storage block member containing the active variable is
4038 * written to <params>. For top-level block members declared as
4039 * arrays, the value written is the difference, in basic machine units,
4040 * between the offsets of the active variable for consecutive elements
4041 * in the top-level array. For top-level block members not declared as
4042 * an array, zero is written to <params>."
4043 */
4044 if (field->type->is_array()) {
4045 const enum glsl_matrix_layout matrix_layout =
4046 glsl_matrix_layout(field->matrix_layout);
4047 bool row_major = matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR;
4048 const glsl_type *array_type = field->type->fields.array;
4049
4050 if (is_top_level_shader_storage_block_member(uni->name,
4051 interface_name,
4052 var_name))
4053 return 0;
4054
4055 if (interface->interface_packing != GLSL_INTERFACE_PACKING_STD430) {
4056 if (array_type->is_record() || array_type->is_array())
4057 return glsl_align(array_type->std140_size(row_major), 16);
4058 else
4059 return MAX2(array_type->std140_base_alignment(row_major), 16);
4060 } else {
4061 return array_type->std430_array_stride(row_major);
4062 }
4063 }
4064 return 0;
4065 }
4066
4067 static void
4068 calculate_array_size_and_stride(struct gl_shader_program *shProg,
4069 struct gl_uniform_storage *uni)
4070 {
4071 int block_index = uni->block_index;
4072 int array_size = -1;
4073 int array_stride = -1;
4074 char *var_name = get_top_level_name(uni->name);
4075 char *interface_name =
4076 get_top_level_name(uni->is_shader_storage ?
4077 shProg->ShaderStorageBlocks[block_index].Name :
4078 shProg->UniformBlocks[block_index].Name);
4079
4080 if (strcmp(var_name, interface_name) == 0) {
4081 /* Deal with instanced array of SSBOs */
4082 char *temp_name = get_var_name(uni->name);
4083 if (!temp_name) {
4084 linker_error(shProg, "Out of memory during linking.\n");
4085 goto write_top_level_array_size_and_stride;
4086 }
4087 free(var_name);
4088 var_name = get_top_level_name(temp_name);
4089 free(temp_name);
4090 if (!var_name) {
4091 linker_error(shProg, "Out of memory during linking.\n");
4092 goto write_top_level_array_size_and_stride;
4093 }
4094 }
4095
4096 for (unsigned i = 0; i < shProg->NumShaders; i++) {
4097 if (shProg->Shaders[i] == NULL)
4098 continue;
4099
4100 const gl_shader *stage = shProg->Shaders[i];
4101 foreach_in_list(ir_instruction, node, stage->ir) {
4102 ir_variable *var = node->as_variable();
4103 if (!var || !var->get_interface_type() ||
4104 var->data.mode != ir_var_shader_storage)
4105 continue;
4106
4107 const glsl_type *interface = var->get_interface_type();
4108
4109 if (strcmp(interface_name, interface->name) != 0)
4110 continue;
4111
4112 for (unsigned i = 0; i < interface->length; i++) {
4113 const glsl_struct_field *field = &interface->fields.structure[i];
4114 if (strcmp(field->name, var_name) != 0)
4115 continue;
4116
4117 array_stride = get_array_stride(uni, interface, field,
4118 interface_name, var_name);
4119 array_size = get_array_size(uni, field, interface_name, var_name);
4120 goto write_top_level_array_size_and_stride;
4121 }
4122 }
4123 }
4124 write_top_level_array_size_and_stride:
4125 free(interface_name);
4126 free(var_name);
4127 uni->top_level_array_stride = array_stride;
4128 uni->top_level_array_size = array_size;
4129 }
4130
4131 /**
4132 * Builds up a list of program resources that point to existing
4133 * resource data.
4134 */
4135 void
4136 build_program_resource_list(struct gl_context *ctx,
4137 struct gl_shader_program *shProg)
4138 {
4139 /* Rebuild resource list. */
4140 if (shProg->ProgramResourceList) {
4141 ralloc_free(shProg->ProgramResourceList);
4142 shProg->ProgramResourceList = NULL;
4143 shProg->NumProgramResourceList = 0;
4144 }
4145
4146 int input_stage = MESA_SHADER_STAGES, output_stage = 0;
4147
4148 /* Determine first input and final output stage. These are used to
4149 * detect which variables should be enumerated in the resource list
4150 * for GL_PROGRAM_INPUT and GL_PROGRAM_OUTPUT.
4151 */
4152 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4153 if (!shProg->_LinkedShaders[i])
4154 continue;
4155 if (input_stage == MESA_SHADER_STAGES)
4156 input_stage = i;
4157 output_stage = i;
4158 }
4159
4160 /* Empty shader, no resources. */
4161 if (input_stage == MESA_SHADER_STAGES && output_stage == 0)
4162 return;
4163
4164 /* Program interface needs to expose varyings in case of SSO. */
4165 if (shProg->SeparateShader) {
4166 if (!add_packed_varyings(shProg, input_stage, GL_PROGRAM_INPUT))
4167 return;
4168
4169 if (!add_packed_varyings(shProg, output_stage, GL_PROGRAM_OUTPUT))
4170 return;
4171 }
4172
4173 if (!add_fragdata_arrays(shProg))
4174 return;
4175
4176 /* Add inputs and outputs to the resource list. */
4177 if (!add_interface_variables(shProg, input_stage, GL_PROGRAM_INPUT))
4178 return;
4179
4180 if (!add_interface_variables(shProg, output_stage, GL_PROGRAM_OUTPUT))
4181 return;
4182
4183 /* Add transform feedback varyings. */
4184 if (shProg->LinkedTransformFeedback.NumVarying > 0) {
4185 for (int i = 0; i < shProg->LinkedTransformFeedback.NumVarying; i++) {
4186 if (!add_program_resource(shProg, GL_TRANSFORM_FEEDBACK_VARYING,
4187 &shProg->LinkedTransformFeedback.Varyings[i],
4188 0))
4189 return;
4190 }
4191 }
4192
4193 /* Add transform feedback buffers. */
4194 for (unsigned i = 0; i < ctx->Const.MaxTransformFeedbackBuffers; i++) {
4195 if ((shProg->LinkedTransformFeedback.ActiveBuffers >> i) & 1) {
4196 shProg->LinkedTransformFeedback.Buffers[i].Binding = i;
4197 if (!add_program_resource(shProg, GL_TRANSFORM_FEEDBACK_BUFFER,
4198 &shProg->LinkedTransformFeedback.Buffers[i],
4199 0))
4200 return;
4201 }
4202 }
4203
4204 /* Add uniforms from uniform storage. */
4205 for (unsigned i = 0; i < shProg->NumUniformStorage; i++) {
4206 /* Do not add uniforms internally used by Mesa. */
4207 if (shProg->UniformStorage[i].hidden)
4208 continue;
4209
4210 uint8_t stageref =
4211 build_stageref(shProg, shProg->UniformStorage[i].name,
4212 ir_var_uniform);
4213
4214 /* Add stagereferences for uniforms in a uniform block. */
4215 bool is_shader_storage = shProg->UniformStorage[i].is_shader_storage;
4216 int block_index = shProg->UniformStorage[i].block_index;
4217 if (block_index != -1) {
4218 stageref |= is_shader_storage ?
4219 shProg->ShaderStorageBlocks[block_index].stageref :
4220 shProg->UniformBlocks[block_index].stageref;
4221 }
4222
4223 GLenum type = is_shader_storage ? GL_BUFFER_VARIABLE : GL_UNIFORM;
4224 if (!should_add_buffer_variable(shProg, type,
4225 shProg->UniformStorage[i].name))
4226 continue;
4227
4228 if (is_shader_storage) {
4229 calculate_array_size_and_stride(shProg, &shProg->UniformStorage[i]);
4230 }
4231
4232 if (!add_program_resource(shProg, type,
4233 &shProg->UniformStorage[i], stageref))
4234 return;
4235 }
4236
4237 /* Add program uniform blocks. */
4238 for (unsigned i = 0; i < shProg->NumUniformBlocks; i++) {
4239 if (!add_program_resource(shProg, GL_UNIFORM_BLOCK,
4240 &shProg->UniformBlocks[i], 0))
4241 return;
4242 }
4243
4244 /* Add program shader storage blocks. */
4245 for (unsigned i = 0; i < shProg->NumShaderStorageBlocks; i++) {
4246 if (!add_program_resource(shProg, GL_SHADER_STORAGE_BLOCK,
4247 &shProg->ShaderStorageBlocks[i], 0))
4248 return;
4249 }
4250
4251 /* Add atomic counter buffers. */
4252 for (unsigned i = 0; i < shProg->NumAtomicBuffers; i++) {
4253 if (!add_program_resource(shProg, GL_ATOMIC_COUNTER_BUFFER,
4254 &shProg->AtomicBuffers[i], 0))
4255 return;
4256 }
4257
4258 for (unsigned i = 0; i < shProg->NumUniformStorage; i++) {
4259 GLenum type;
4260 if (!shProg->UniformStorage[i].hidden)
4261 continue;
4262
4263 for (int j = MESA_SHADER_VERTEX; j < MESA_SHADER_STAGES; j++) {
4264 if (!shProg->UniformStorage[i].opaque[j].active ||
4265 !shProg->UniformStorage[i].type->is_subroutine())
4266 continue;
4267
4268 type = _mesa_shader_stage_to_subroutine_uniform((gl_shader_stage)j);
4269 /* add shader subroutines */
4270 if (!add_program_resource(shProg, type, &shProg->UniformStorage[i], 0))
4271 return;
4272 }
4273 }
4274
4275 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4276 struct gl_shader *sh = shProg->_LinkedShaders[i];
4277 GLuint type;
4278
4279 if (!sh)
4280 continue;
4281
4282 type = _mesa_shader_stage_to_subroutine((gl_shader_stage)i);
4283 for (unsigned j = 0; j < sh->NumSubroutineFunctions; j++) {
4284 if (!add_program_resource(shProg, type, &sh->SubroutineFunctions[j], 0))
4285 return;
4286 }
4287 }
4288 }
4289
4290 /**
4291 * This check is done to make sure we allow only constant expression
4292 * indexing and "constant-index-expression" (indexing with an expression
4293 * that includes loop induction variable).
4294 */
4295 static bool
4296 validate_sampler_array_indexing(struct gl_context *ctx,
4297 struct gl_shader_program *prog)
4298 {
4299 dynamic_sampler_array_indexing_visitor v;
4300 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4301 if (prog->_LinkedShaders[i] == NULL)
4302 continue;
4303
4304 bool no_dynamic_indexing =
4305 ctx->Const.ShaderCompilerOptions[i].EmitNoIndirectSampler;
4306
4307 /* Search for array derefs in shader. */
4308 v.run(prog->_LinkedShaders[i]->ir);
4309 if (v.uses_dynamic_sampler_array_indexing()) {
4310 const char *msg = "sampler arrays indexed with non-constant "
4311 "expressions is forbidden in GLSL %s %u";
4312 /* Backend has indicated that it has no dynamic indexing support. */
4313 if (no_dynamic_indexing) {
4314 linker_error(prog, msg, prog->IsES ? "ES" : "", prog->Version);
4315 return false;
4316 } else {
4317 linker_warning(prog, msg, prog->IsES ? "ES" : "", prog->Version);
4318 }
4319 }
4320 }
4321 return true;
4322 }
4323
4324 static void
4325 link_assign_subroutine_types(struct gl_shader_program *prog)
4326 {
4327 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4328 gl_shader *sh = prog->_LinkedShaders[i];
4329
4330 if (sh == NULL)
4331 continue;
4332
4333 sh->MaxSubroutineFunctionIndex = 0;
4334 foreach_in_list(ir_instruction, node, sh->ir) {
4335 ir_function *fn = node->as_function();
4336 if (!fn)
4337 continue;
4338
4339 if (fn->is_subroutine)
4340 sh->NumSubroutineUniformTypes++;
4341
4342 if (!fn->num_subroutine_types)
4343 continue;
4344
4345 /* these should have been calculated earlier. */
4346 assert(fn->subroutine_index != -1);
4347 if (sh->NumSubroutineFunctions + 1 > MAX_SUBROUTINES) {
4348 linker_error(prog, "Too many subroutine functions declared.\n");
4349 return;
4350 }
4351 sh->SubroutineFunctions = reralloc(sh, sh->SubroutineFunctions,
4352 struct gl_subroutine_function,
4353 sh->NumSubroutineFunctions + 1);
4354 sh->SubroutineFunctions[sh->NumSubroutineFunctions].name = ralloc_strdup(sh, fn->name);
4355 sh->SubroutineFunctions[sh->NumSubroutineFunctions].num_compat_types = fn->num_subroutine_types;
4356 sh->SubroutineFunctions[sh->NumSubroutineFunctions].types =
4357 ralloc_array(sh, const struct glsl_type *,
4358 fn->num_subroutine_types);
4359
4360 /* From Section 4.4.4(Subroutine Function Layout Qualifiers) of the
4361 * GLSL 4.5 spec:
4362 *
4363 * "Each subroutine with an index qualifier in the shader must be
4364 * given a unique index, otherwise a compile or link error will be
4365 * generated."
4366 */
4367 for (unsigned j = 0; j < sh->NumSubroutineFunctions; j++) {
4368 if (sh->SubroutineFunctions[j].index != -1 &&
4369 sh->SubroutineFunctions[j].index == fn->subroutine_index) {
4370 linker_error(prog, "each subroutine index qualifier in the "
4371 "shader must be unique\n");
4372 return;
4373 }
4374 }
4375 sh->SubroutineFunctions[sh->NumSubroutineFunctions].index =
4376 fn->subroutine_index;
4377
4378 if (fn->subroutine_index > (int)sh->MaxSubroutineFunctionIndex)
4379 sh->MaxSubroutineFunctionIndex = fn->subroutine_index;
4380
4381 for (int j = 0; j < fn->num_subroutine_types; j++)
4382 sh->SubroutineFunctions[sh->NumSubroutineFunctions].types[j] = fn->subroutine_types[j];
4383 sh->NumSubroutineFunctions++;
4384 }
4385 }
4386 }
4387
4388 static void
4389 set_always_active_io(exec_list *ir, ir_variable_mode io_mode)
4390 {
4391 assert(io_mode == ir_var_shader_in || io_mode == ir_var_shader_out);
4392
4393 foreach_in_list(ir_instruction, node, ir) {
4394 ir_variable *const var = node->as_variable();
4395
4396 if (var == NULL || var->data.mode != io_mode)
4397 continue;
4398
4399 /* Don't set always active on builtins that haven't been redeclared */
4400 if (var->data.how_declared == ir_var_declared_implicitly)
4401 continue;
4402
4403 var->data.always_active_io = true;
4404 }
4405 }
4406
4407 /**
4408 * When separate shader programs are enabled, only input/outputs between
4409 * the stages of a multi-stage separate program can be safely removed
4410 * from the shader interface. Other inputs/outputs must remain active.
4411 */
4412 static void
4413 disable_varying_optimizations_for_sso(struct gl_shader_program *prog)
4414 {
4415 unsigned first, last;
4416 assert(prog->SeparateShader);
4417
4418 first = MESA_SHADER_STAGES;
4419 last = 0;
4420
4421 /* Determine first and last stage. Excluding the compute stage */
4422 for (unsigned i = 0; i < MESA_SHADER_COMPUTE; i++) {
4423 if (!prog->_LinkedShaders[i])
4424 continue;
4425 if (first == MESA_SHADER_STAGES)
4426 first = i;
4427 last = i;
4428 }
4429
4430 if (first == MESA_SHADER_STAGES)
4431 return;
4432
4433 for (unsigned stage = 0; stage < MESA_SHADER_STAGES; stage++) {
4434 gl_shader *sh = prog->_LinkedShaders[stage];
4435 if (!sh)
4436 continue;
4437
4438 if (first == last) {
4439 /* For a single shader program only allow inputs to the vertex shader
4440 * and outputs from the fragment shader to be removed.
4441 */
4442 if (stage != MESA_SHADER_VERTEX)
4443 set_always_active_io(sh->ir, ir_var_shader_in);
4444 if (stage != MESA_SHADER_FRAGMENT)
4445 set_always_active_io(sh->ir, ir_var_shader_out);
4446 } else {
4447 /* For multi-stage separate shader programs only allow inputs and
4448 * outputs between the shader stages to be removed as well as inputs
4449 * to the vertex shader and outputs from the fragment shader.
4450 */
4451 if (stage == first && stage != MESA_SHADER_VERTEX)
4452 set_always_active_io(sh->ir, ir_var_shader_in);
4453 else if (stage == last && stage != MESA_SHADER_FRAGMENT)
4454 set_always_active_io(sh->ir, ir_var_shader_out);
4455 }
4456 }
4457 }
4458
4459 void
4460 link_shaders(struct gl_context *ctx, struct gl_shader_program *prog)
4461 {
4462 prog->LinkStatus = true; /* All error paths will set this to false */
4463 prog->Validated = false;
4464 prog->_Used = false;
4465
4466 /* Section 7.3 (Program Objects) of the OpenGL 4.5 Core Profile spec says:
4467 *
4468 * "Linking can fail for a variety of reasons as specified in the
4469 * OpenGL Shading Language Specification, as well as any of the
4470 * following reasons:
4471 *
4472 * - No shader objects are attached to program."
4473 *
4474 * The Compatibility Profile specification does not list the error. In
4475 * Compatibility Profile missing shader stages are replaced by
4476 * fixed-function. This applies to the case where all stages are
4477 * missing.
4478 */
4479 if (prog->NumShaders == 0) {
4480 if (ctx->API != API_OPENGL_COMPAT)
4481 linker_error(prog, "no shaders attached to the program\n");
4482 return;
4483 }
4484
4485 unsigned num_tfeedback_decls = 0;
4486 unsigned int num_explicit_uniform_locs = 0;
4487 bool has_xfb_qualifiers = false;
4488 char **varying_names = NULL;
4489 tfeedback_decl *tfeedback_decls = NULL;
4490
4491 void *mem_ctx = ralloc_context(NULL); // temporary linker context
4492
4493 prog->ARB_fragment_coord_conventions_enable = false;
4494
4495 /* Separate the shaders into groups based on their type.
4496 */
4497 struct gl_shader **shader_list[MESA_SHADER_STAGES];
4498 unsigned num_shaders[MESA_SHADER_STAGES];
4499
4500 for (int i = 0; i < MESA_SHADER_STAGES; i++) {
4501 shader_list[i] = (struct gl_shader **)
4502 calloc(prog->NumShaders, sizeof(struct gl_shader *));
4503 num_shaders[i] = 0;
4504 }
4505
4506 unsigned min_version = UINT_MAX;
4507 unsigned max_version = 0;
4508 for (unsigned i = 0; i < prog->NumShaders; i++) {
4509 min_version = MIN2(min_version, prog->Shaders[i]->Version);
4510 max_version = MAX2(max_version, prog->Shaders[i]->Version);
4511
4512 if (prog->Shaders[i]->IsES != prog->Shaders[0]->IsES) {
4513 linker_error(prog, "all shaders must use same shading "
4514 "language version\n");
4515 goto done;
4516 }
4517
4518 if (prog->Shaders[i]->ARB_fragment_coord_conventions_enable) {
4519 prog->ARB_fragment_coord_conventions_enable = true;
4520 }
4521
4522 gl_shader_stage shader_type = prog->Shaders[i]->Stage;
4523 shader_list[shader_type][num_shaders[shader_type]] = prog->Shaders[i];
4524 num_shaders[shader_type]++;
4525 }
4526
4527 /* In desktop GLSL, different shader versions may be linked together. In
4528 * GLSL ES, all shader versions must be the same.
4529 */
4530 if (prog->Shaders[0]->IsES && min_version != max_version) {
4531 linker_error(prog, "all shaders must use same shading "
4532 "language version\n");
4533 goto done;
4534 }
4535
4536 prog->Version = max_version;
4537 prog->IsES = prog->Shaders[0]->IsES;
4538
4539 /* Some shaders have to be linked with some other shaders present.
4540 */
4541 if (!prog->SeparateShader) {
4542 if (num_shaders[MESA_SHADER_GEOMETRY] > 0 &&
4543 num_shaders[MESA_SHADER_VERTEX] == 0) {
4544 linker_error(prog, "Geometry shader must be linked with "
4545 "vertex shader\n");
4546 goto done;
4547 }
4548 if (num_shaders[MESA_SHADER_TESS_EVAL] > 0 &&
4549 num_shaders[MESA_SHADER_VERTEX] == 0) {
4550 linker_error(prog, "Tessellation evaluation shader must be linked "
4551 "with vertex shader\n");
4552 goto done;
4553 }
4554 if (num_shaders[MESA_SHADER_TESS_CTRL] > 0 &&
4555 num_shaders[MESA_SHADER_VERTEX] == 0) {
4556 linker_error(prog, "Tessellation control shader must be linked with "
4557 "vertex shader\n");
4558 goto done;
4559 }
4560
4561 /* The spec is self-contradictory here. It allows linking without a tess
4562 * eval shader, but that can only be used with transform feedback and
4563 * rasterization disabled. However, transform feedback isn't allowed
4564 * with GL_PATCHES, so it can't be used.
4565 *
4566 * More investigation showed that the idea of transform feedback after
4567 * a tess control shader was dropped, because some hw vendors couldn't
4568 * support tessellation without a tess eval shader, but the linker
4569 * section wasn't updated to reflect that.
4570 *
4571 * All specifications (ARB_tessellation_shader, GL 4.0-4.5) have this
4572 * spec bug.
4573 *
4574 * Do what's reasonable and always require a tess eval shader if a tess
4575 * control shader is present.
4576 */
4577 if (num_shaders[MESA_SHADER_TESS_CTRL] > 0 &&
4578 num_shaders[MESA_SHADER_TESS_EVAL] == 0) {
4579 linker_error(prog, "Tessellation control shader must be linked with "
4580 "tessellation evaluation shader\n");
4581 goto done;
4582 }
4583 }
4584
4585 /* Compute shaders have additional restrictions. */
4586 if (num_shaders[MESA_SHADER_COMPUTE] > 0 &&
4587 num_shaders[MESA_SHADER_COMPUTE] != prog->NumShaders) {
4588 linker_error(prog, "Compute shaders may not be linked with any other "
4589 "type of shader\n");
4590 }
4591
4592 for (unsigned int i = 0; i < MESA_SHADER_STAGES; i++) {
4593 if (prog->_LinkedShaders[i] != NULL)
4594 _mesa_delete_shader(ctx, prog->_LinkedShaders[i]);
4595
4596 prog->_LinkedShaders[i] = NULL;
4597 }
4598
4599 /* Link all shaders for a particular stage and validate the result.
4600 */
4601 for (int stage = 0; stage < MESA_SHADER_STAGES; stage++) {
4602 if (num_shaders[stage] > 0) {
4603 gl_shader *const sh =
4604 link_intrastage_shaders(mem_ctx, ctx, prog, shader_list[stage],
4605 num_shaders[stage]);
4606
4607 if (!prog->LinkStatus) {
4608 if (sh)
4609 _mesa_delete_shader(ctx, sh);
4610 goto done;
4611 }
4612
4613 switch (stage) {
4614 case MESA_SHADER_VERTEX:
4615 validate_vertex_shader_executable(prog, sh, ctx);
4616 break;
4617 case MESA_SHADER_TESS_CTRL:
4618 /* nothing to be done */
4619 break;
4620 case MESA_SHADER_TESS_EVAL:
4621 validate_tess_eval_shader_executable(prog, sh, ctx);
4622 break;
4623 case MESA_SHADER_GEOMETRY:
4624 validate_geometry_shader_executable(prog, sh, ctx);
4625 break;
4626 case MESA_SHADER_FRAGMENT:
4627 validate_fragment_shader_executable(prog, sh);
4628 break;
4629 }
4630 if (!prog->LinkStatus) {
4631 if (sh)
4632 _mesa_delete_shader(ctx, sh);
4633 goto done;
4634 }
4635
4636 _mesa_reference_shader(ctx, &prog->_LinkedShaders[stage], sh);
4637 }
4638 }
4639
4640 if (num_shaders[MESA_SHADER_GEOMETRY] > 0) {
4641 prog->LastClipDistanceArraySize = prog->Geom.ClipDistanceArraySize;
4642 prog->LastCullDistanceArraySize = prog->Geom.CullDistanceArraySize;
4643 } else if (num_shaders[MESA_SHADER_TESS_EVAL] > 0) {
4644 prog->LastClipDistanceArraySize = prog->TessEval.ClipDistanceArraySize;
4645 prog->LastCullDistanceArraySize = prog->TessEval.CullDistanceArraySize;
4646 } else if (num_shaders[MESA_SHADER_VERTEX] > 0) {
4647 prog->LastClipDistanceArraySize = prog->Vert.ClipDistanceArraySize;
4648 prog->LastCullDistanceArraySize = prog->Vert.CullDistanceArraySize;
4649 } else {
4650 prog->LastClipDistanceArraySize = 0; /* Not used */
4651 prog->LastCullDistanceArraySize = 0; /* Not used */
4652 }
4653
4654 /* Here begins the inter-stage linking phase. Some initial validation is
4655 * performed, then locations are assigned for uniforms, attributes, and
4656 * varyings.
4657 */
4658 cross_validate_uniforms(prog);
4659 if (!prog->LinkStatus)
4660 goto done;
4661
4662 unsigned first, last, prev;
4663
4664 first = MESA_SHADER_STAGES;
4665 last = 0;
4666
4667 /* Determine first and last stage. */
4668 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4669 if (!prog->_LinkedShaders[i])
4670 continue;
4671 if (first == MESA_SHADER_STAGES)
4672 first = i;
4673 last = i;
4674 }
4675
4676 num_explicit_uniform_locs = check_explicit_uniform_locations(ctx, prog);
4677 link_assign_subroutine_types(prog);
4678
4679 if (!prog->LinkStatus)
4680 goto done;
4681
4682 resize_tes_inputs(ctx, prog);
4683
4684 /* Validate the inputs of each stage with the output of the preceding
4685 * stage.
4686 */
4687 prev = first;
4688 for (unsigned i = prev + 1; i <= MESA_SHADER_FRAGMENT; i++) {
4689 if (prog->_LinkedShaders[i] == NULL)
4690 continue;
4691
4692 validate_interstage_inout_blocks(prog, prog->_LinkedShaders[prev],
4693 prog->_LinkedShaders[i]);
4694 if (!prog->LinkStatus)
4695 goto done;
4696
4697 cross_validate_outputs_to_inputs(prog,
4698 prog->_LinkedShaders[prev],
4699 prog->_LinkedShaders[i]);
4700 if (!prog->LinkStatus)
4701 goto done;
4702
4703 prev = i;
4704 }
4705
4706 /* Cross-validate uniform blocks between shader stages */
4707 validate_interstage_uniform_blocks(prog, prog->_LinkedShaders,
4708 MESA_SHADER_STAGES);
4709 if (!prog->LinkStatus)
4710 goto done;
4711
4712 for (unsigned int i = 0; i < MESA_SHADER_STAGES; i++) {
4713 if (prog->_LinkedShaders[i] != NULL)
4714 lower_named_interface_blocks(mem_ctx, prog->_LinkedShaders[i]);
4715 }
4716
4717 /* Implement the GLSL 1.30+ rule for discard vs infinite loops Do
4718 * it before optimization because we want most of the checks to get
4719 * dropped thanks to constant propagation.
4720 *
4721 * This rule also applies to GLSL ES 3.00.
4722 */
4723 if (max_version >= (prog->IsES ? 300 : 130)) {
4724 struct gl_shader *sh = prog->_LinkedShaders[MESA_SHADER_FRAGMENT];
4725 if (sh) {
4726 lower_discard_flow(sh->ir);
4727 }
4728 }
4729
4730 if (prog->SeparateShader)
4731 disable_varying_optimizations_for_sso(prog);
4732
4733 /* Process UBOs */
4734 if (!interstage_cross_validate_uniform_blocks(prog, false))
4735 goto done;
4736
4737 /* Process SSBOs */
4738 if (!interstage_cross_validate_uniform_blocks(prog, true))
4739 goto done;
4740
4741 /* Do common optimization before assigning storage for attributes,
4742 * uniforms, and varyings. Later optimization could possibly make
4743 * some of that unused.
4744 */
4745 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4746 if (prog->_LinkedShaders[i] == NULL)
4747 continue;
4748
4749 detect_recursion_linked(prog, prog->_LinkedShaders[i]->ir);
4750 if (!prog->LinkStatus)
4751 goto done;
4752
4753 if (ctx->Const.ShaderCompilerOptions[i].LowerCombinedClipCullDistance) {
4754 lower_clip_cull_distance(prog, prog->_LinkedShaders[i]);
4755 }
4756
4757 if (ctx->Const.LowerTessLevel) {
4758 lower_tess_level(prog->_LinkedShaders[i]);
4759 }
4760
4761 while (do_common_optimization(prog->_LinkedShaders[i]->ir, true, false,
4762 &ctx->Const.ShaderCompilerOptions[i],
4763 ctx->Const.NativeIntegers))
4764 ;
4765
4766 lower_const_arrays_to_uniforms(prog->_LinkedShaders[i]->ir);
4767 }
4768
4769 /* Validation for special cases where we allow sampler array indexing
4770 * with loop induction variable. This check emits a warning or error
4771 * depending if backend can handle dynamic indexing.
4772 */
4773 if ((!prog->IsES && prog->Version < 130) ||
4774 (prog->IsES && prog->Version < 300)) {
4775 if (!validate_sampler_array_indexing(ctx, prog))
4776 goto done;
4777 }
4778
4779 /* Check and validate stream emissions in geometry shaders */
4780 validate_geometry_shader_emissions(ctx, prog);
4781
4782 /* Mark all generic shader inputs and outputs as unpaired. */
4783 for (unsigned i = MESA_SHADER_VERTEX; i <= MESA_SHADER_FRAGMENT; i++) {
4784 if (prog->_LinkedShaders[i] != NULL) {
4785 link_invalidate_variable_locations(prog->_LinkedShaders[i]->ir);
4786 }
4787 }
4788
4789 prev = first;
4790 for (unsigned i = prev + 1; i <= MESA_SHADER_FRAGMENT; i++) {
4791 if (prog->_LinkedShaders[i] == NULL)
4792 continue;
4793
4794 match_explicit_outputs_to_inputs(prog->_LinkedShaders[prev],
4795 prog->_LinkedShaders[i]);
4796 prev = i;
4797 }
4798
4799 if (!assign_attribute_or_color_locations(prog, &ctx->Const,
4800 MESA_SHADER_VERTEX)) {
4801 goto done;
4802 }
4803
4804 if (!assign_attribute_or_color_locations(prog, &ctx->Const,
4805 MESA_SHADER_FRAGMENT)) {
4806 goto done;
4807 }
4808
4809 /* From the ARB_enhanced_layouts spec:
4810 *
4811 * "If the shader used to record output variables for transform feedback
4812 * varyings uses the "xfb_buffer", "xfb_offset", or "xfb_stride" layout
4813 * qualifiers, the values specified by TransformFeedbackVaryings are
4814 * ignored, and the set of variables captured for transform feedback is
4815 * instead derived from the specified layout qualifiers."
4816 */
4817 for (int i = MESA_SHADER_FRAGMENT - 1; i >= 0; i--) {
4818 /* Find last stage before fragment shader */
4819 if (prog->_LinkedShaders[i]) {
4820 has_xfb_qualifiers =
4821 process_xfb_layout_qualifiers(mem_ctx, prog->_LinkedShaders[i],
4822 &num_tfeedback_decls,
4823 &varying_names);
4824 break;
4825 }
4826 }
4827
4828 if (!has_xfb_qualifiers) {
4829 num_tfeedback_decls = prog->TransformFeedback.NumVarying;
4830 varying_names = prog->TransformFeedback.VaryingNames;
4831 }
4832
4833 if (num_tfeedback_decls != 0) {
4834 /* From GL_EXT_transform_feedback:
4835 * A program will fail to link if:
4836 *
4837 * * the <count> specified by TransformFeedbackVaryingsEXT is
4838 * non-zero, but the program object has no vertex or geometry
4839 * shader;
4840 */
4841 if (first >= MESA_SHADER_FRAGMENT) {
4842 linker_error(prog, "Transform feedback varyings specified, but "
4843 "no vertex, tessellation, or geometry shader is "
4844 "present.\n");
4845 goto done;
4846 }
4847
4848 tfeedback_decls = ralloc_array(mem_ctx, tfeedback_decl,
4849 num_tfeedback_decls);
4850 if (!parse_tfeedback_decls(ctx, prog, mem_ctx, num_tfeedback_decls,
4851 varying_names, tfeedback_decls))
4852 goto done;
4853 }
4854
4855 /* If there is no fragment shader we need to set transform feedback.
4856 *
4857 * For SSO we also need to assign output locations. We assign them here
4858 * because we need to do it for both single stage programs and multi stage
4859 * programs.
4860 */
4861 if (last < MESA_SHADER_FRAGMENT &&
4862 (num_tfeedback_decls != 0 || prog->SeparateShader)) {
4863 const uint64_t reserved_out_slots =
4864 reserved_varying_slot(prog->_LinkedShaders[last], ir_var_shader_out);
4865 if (!assign_varying_locations(ctx, mem_ctx, prog,
4866 prog->_LinkedShaders[last], NULL,
4867 num_tfeedback_decls, tfeedback_decls,
4868 reserved_out_slots))
4869 goto done;
4870 }
4871
4872 if (last <= MESA_SHADER_FRAGMENT) {
4873 /* Remove unused varyings from the first/last stage unless SSO */
4874 remove_unused_shader_inputs_and_outputs(prog->SeparateShader,
4875 prog->_LinkedShaders[first],
4876 ir_var_shader_in);
4877 remove_unused_shader_inputs_and_outputs(prog->SeparateShader,
4878 prog->_LinkedShaders[last],
4879 ir_var_shader_out);
4880
4881 /* If the program is made up of only a single stage */
4882 if (first == last) {
4883
4884 gl_shader *const sh = prog->_LinkedShaders[last];
4885 if (prog->SeparateShader) {
4886 const uint64_t reserved_slots =
4887 reserved_varying_slot(sh, ir_var_shader_in);
4888
4889 /* Assign input locations for SSO, output locations are already
4890 * assigned.
4891 */
4892 if (!assign_varying_locations(ctx, mem_ctx, prog,
4893 NULL /* producer */,
4894 sh /* consumer */,
4895 0 /* num_tfeedback_decls */,
4896 NULL /* tfeedback_decls */,
4897 reserved_slots))
4898 goto done;
4899 }
4900
4901 do_dead_builtin_varyings(ctx, NULL, sh, 0, NULL);
4902 do_dead_builtin_varyings(ctx, sh, NULL, num_tfeedback_decls,
4903 tfeedback_decls);
4904 } else {
4905 /* Linking the stages in the opposite order (from fragment to vertex)
4906 * ensures that inter-shader outputs written to in an earlier stage
4907 * are eliminated if they are (transitively) not used in a later
4908 * stage.
4909 */
4910 int next = last;
4911 for (int i = next - 1; i >= 0; i--) {
4912 if (prog->_LinkedShaders[i] == NULL && i != 0)
4913 continue;
4914
4915 gl_shader *const sh_i = prog->_LinkedShaders[i];
4916 gl_shader *const sh_next = prog->_LinkedShaders[next];
4917
4918 const uint64_t reserved_out_slots =
4919 reserved_varying_slot(sh_i, ir_var_shader_out);
4920 const uint64_t reserved_in_slots =
4921 reserved_varying_slot(sh_next, ir_var_shader_in);
4922
4923 if (!assign_varying_locations(ctx, mem_ctx, prog, sh_i, sh_next,
4924 next == MESA_SHADER_FRAGMENT ? num_tfeedback_decls : 0,
4925 tfeedback_decls,
4926 reserved_out_slots | reserved_in_slots))
4927 goto done;
4928
4929 do_dead_builtin_varyings(ctx, sh_i, sh_next,
4930 next == MESA_SHADER_FRAGMENT ? num_tfeedback_decls : 0,
4931 tfeedback_decls);
4932
4933 /* This must be done after all dead varyings are eliminated. */
4934 if (sh_i != NULL) {
4935 unsigned slots_used = _mesa_bitcount_64(reserved_out_slots);
4936 if (!check_against_output_limit(ctx, prog, sh_i, slots_used)) {
4937 goto done;
4938 }
4939 }
4940
4941 unsigned slots_used = _mesa_bitcount_64(reserved_in_slots);
4942 if (!check_against_input_limit(ctx, prog, sh_next, slots_used))
4943 goto done;
4944
4945 next = i;
4946 }
4947 }
4948 }
4949
4950 if (!store_tfeedback_info(ctx, prog, num_tfeedback_decls, tfeedback_decls,
4951 has_xfb_qualifiers))
4952 goto done;
4953
4954 update_array_sizes(prog);
4955 link_assign_uniform_locations(prog, ctx->Const.UniformBooleanTrue,
4956 num_explicit_uniform_locs,
4957 ctx->Const.MaxUserAssignableUniformLocations);
4958 link_assign_atomic_counter_resources(ctx, prog);
4959 store_fragdepth_layout(prog);
4960
4961 link_calculate_subroutine_compat(prog);
4962 check_resources(ctx, prog);
4963 check_subroutine_resources(prog);
4964 check_image_resources(ctx, prog);
4965 link_check_atomic_counter_resources(ctx, prog);
4966
4967 if (!prog->LinkStatus)
4968 goto done;
4969
4970 /* OpenGL ES < 3.1 requires that a vertex shader and a fragment shader both
4971 * be present in a linked program. GL_ARB_ES2_compatibility doesn't say
4972 * anything about shader linking when one of the shaders (vertex or
4973 * fragment shader) is absent. So, the extension shouldn't change the
4974 * behavior specified in GLSL specification.
4975 *
4976 * From OpenGL ES 3.1 specification (7.3 Program Objects):
4977 * "Linking can fail for a variety of reasons as specified in the
4978 * OpenGL ES Shading Language Specification, as well as any of the
4979 * following reasons:
4980 *
4981 * ...
4982 *
4983 * * program contains objects to form either a vertex shader or
4984 * fragment shader, and program is not separable, and does not
4985 * contain objects to form both a vertex shader and fragment
4986 * shader."
4987 *
4988 * However, the only scenario in 3.1+ where we don't require them both is
4989 * when we have a compute shader. For example:
4990 *
4991 * - No shaders is a link error.
4992 * - Geom or Tess without a Vertex shader is a link error which means we
4993 * always require a Vertex shader and hence a Fragment shader.
4994 * - Finally a Compute shader linked with any other stage is a link error.
4995 */
4996 if (!prog->SeparateShader && ctx->API == API_OPENGLES2 &&
4997 num_shaders[MESA_SHADER_COMPUTE] == 0) {
4998 if (prog->_LinkedShaders[MESA_SHADER_VERTEX] == NULL) {
4999 linker_error(prog, "program lacks a vertex shader\n");
5000 } else if (prog->_LinkedShaders[MESA_SHADER_FRAGMENT] == NULL) {
5001 linker_error(prog, "program lacks a fragment shader\n");
5002 }
5003 }
5004
5005 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
5006 if (prog->_LinkedShaders[i] == NULL)
5007 continue;
5008
5009 const struct gl_shader_compiler_options *options =
5010 &ctx->Const.ShaderCompilerOptions[i];
5011
5012 if (options->LowerBufferInterfaceBlocks)
5013 lower_ubo_reference(prog->_LinkedShaders[i],
5014 options->ClampBlockIndicesToArrayBounds);
5015
5016 if (options->LowerShaderSharedVariables)
5017 lower_shared_reference(prog->_LinkedShaders[i],
5018 &prog->Comp.SharedSize);
5019
5020 lower_vector_derefs(prog->_LinkedShaders[i]);
5021 do_vec_index_to_swizzle(prog->_LinkedShaders[i]->ir);
5022 }
5023
5024 done:
5025 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
5026 free(shader_list[i]);
5027 if (prog->_LinkedShaders[i] == NULL)
5028 continue;
5029
5030 /* Do a final validation step to make sure that the IR wasn't
5031 * invalidated by any modifications performed after intrastage linking.
5032 */
5033 validate_ir_tree(prog->_LinkedShaders[i]->ir);
5034
5035 /* Retain any live IR, but trash the rest. */
5036 reparent_ir(prog->_LinkedShaders[i]->ir, prog->_LinkedShaders[i]->ir);
5037
5038 /* The symbol table in the linked shaders may contain references to
5039 * variables that were removed (e.g., unused uniforms). Since it may
5040 * contain junk, there is no possible valid use. Delete it and set the
5041 * pointer to NULL.
5042 */
5043 delete prog->_LinkedShaders[i]->symbols;
5044 prog->_LinkedShaders[i]->symbols = NULL;
5045 }
5046
5047 ralloc_free(mem_ctx);
5048 }