glsl: remove tabs from linker.{cpp,h}
[mesa.git] / src / compiler / glsl / linker.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file linker.cpp
26 * GLSL linker implementation
27 *
28 * Given a set of shaders that are to be linked to generate a final program,
29 * there are three distinct stages.
30 *
31 * In the first stage shaders are partitioned into groups based on the shader
32 * type. All shaders of a particular type (e.g., vertex shaders) are linked
33 * together.
34 *
35 * - Undefined references in each shader are resolve to definitions in
36 * another shader.
37 * - Types and qualifiers of uniforms, outputs, and global variables defined
38 * in multiple shaders with the same name are verified to be the same.
39 * - Initializers for uniforms and global variables defined
40 * in multiple shaders with the same name are verified to be the same.
41 *
42 * The result, in the terminology of the GLSL spec, is a set of shader
43 * executables for each processing unit.
44 *
45 * After the first stage is complete, a series of semantic checks are performed
46 * on each of the shader executables.
47 *
48 * - Each shader executable must define a \c main function.
49 * - Each vertex shader executable must write to \c gl_Position.
50 * - Each fragment shader executable must write to either \c gl_FragData or
51 * \c gl_FragColor.
52 *
53 * In the final stage individual shader executables are linked to create a
54 * complete exectuable.
55 *
56 * - Types of uniforms defined in multiple shader stages with the same name
57 * are verified to be the same.
58 * - Initializers for uniforms defined in multiple shader stages with the
59 * same name are verified to be the same.
60 * - Types and qualifiers of outputs defined in one stage are verified to
61 * be the same as the types and qualifiers of inputs defined with the same
62 * name in a later stage.
63 *
64 * \author Ian Romanick <ian.d.romanick@intel.com>
65 */
66
67 #include <ctype.h>
68 #include "util/strndup.h"
69 #include "main/core.h"
70 #include "glsl_symbol_table.h"
71 #include "glsl_parser_extras.h"
72 #include "ir.h"
73 #include "program.h"
74 #include "program/prog_instruction.h"
75 #include "util/set.h"
76 #include "util/string_to_uint_map.h"
77 #include "linker.h"
78 #include "link_varyings.h"
79 #include "ir_optimization.h"
80 #include "ir_rvalue_visitor.h"
81 #include "ir_uniform.h"
82
83 #include "main/shaderobj.h"
84 #include "main/enums.h"
85
86
87 namespace {
88
89 /**
90 * Visitor that determines whether or not a variable is ever written.
91 */
92 class find_assignment_visitor : public ir_hierarchical_visitor {
93 public:
94 find_assignment_visitor(const char *name)
95 : name(name), found(false)
96 {
97 /* empty */
98 }
99
100 virtual ir_visitor_status visit_enter(ir_assignment *ir)
101 {
102 ir_variable *const var = ir->lhs->variable_referenced();
103
104 if (strcmp(name, var->name) == 0) {
105 found = true;
106 return visit_stop;
107 }
108
109 return visit_continue_with_parent;
110 }
111
112 virtual ir_visitor_status visit_enter(ir_call *ir)
113 {
114 foreach_two_lists(formal_node, &ir->callee->parameters,
115 actual_node, &ir->actual_parameters) {
116 ir_rvalue *param_rval = (ir_rvalue *) actual_node;
117 ir_variable *sig_param = (ir_variable *) formal_node;
118
119 if (sig_param->data.mode == ir_var_function_out ||
120 sig_param->data.mode == ir_var_function_inout) {
121 ir_variable *var = param_rval->variable_referenced();
122 if (var && strcmp(name, var->name) == 0) {
123 found = true;
124 return visit_stop;
125 }
126 }
127 }
128
129 if (ir->return_deref != NULL) {
130 ir_variable *const var = ir->return_deref->variable_referenced();
131
132 if (strcmp(name, var->name) == 0) {
133 found = true;
134 return visit_stop;
135 }
136 }
137
138 return visit_continue_with_parent;
139 }
140
141 bool variable_found()
142 {
143 return found;
144 }
145
146 private:
147 const char *name; /**< Find writes to a variable with this name. */
148 bool found; /**< Was a write to the variable found? */
149 };
150
151
152 /**
153 * Visitor that determines whether or not a variable is ever read.
154 */
155 class find_deref_visitor : public ir_hierarchical_visitor {
156 public:
157 find_deref_visitor(const char *name)
158 : name(name), found(false)
159 {
160 /* empty */
161 }
162
163 virtual ir_visitor_status visit(ir_dereference_variable *ir)
164 {
165 if (strcmp(this->name, ir->var->name) == 0) {
166 this->found = true;
167 return visit_stop;
168 }
169
170 return visit_continue;
171 }
172
173 bool variable_found() const
174 {
175 return this->found;
176 }
177
178 private:
179 const char *name; /**< Find writes to a variable with this name. */
180 bool found; /**< Was a write to the variable found? */
181 };
182
183
184 class array_resize_visitor : public ir_hierarchical_visitor {
185 public:
186 unsigned num_vertices;
187 gl_shader_program *prog;
188 gl_shader_stage stage;
189
190 array_resize_visitor(unsigned num_vertices,
191 gl_shader_program *prog,
192 gl_shader_stage stage)
193 {
194 this->num_vertices = num_vertices;
195 this->prog = prog;
196 this->stage = stage;
197 }
198
199 virtual ~array_resize_visitor()
200 {
201 /* empty */
202 }
203
204 virtual ir_visitor_status visit(ir_variable *var)
205 {
206 if (!var->type->is_array() || var->data.mode != ir_var_shader_in ||
207 var->data.patch)
208 return visit_continue;
209
210 unsigned size = var->type->length;
211
212 if (stage == MESA_SHADER_GEOMETRY) {
213 /* Generate a link error if the shader has declared this array with
214 * an incorrect size.
215 */
216 if (!var->data.implicit_sized_array &&
217 size && size != this->num_vertices) {
218 linker_error(this->prog, "size of array %s declared as %u, "
219 "but number of input vertices is %u\n",
220 var->name, size, this->num_vertices);
221 return visit_continue;
222 }
223
224 /* Generate a link error if the shader attempts to access an input
225 * array using an index too large for its actual size assigned at
226 * link time.
227 */
228 if (var->data.max_array_access >= (int)this->num_vertices) {
229 linker_error(this->prog, "%s shader accesses element %i of "
230 "%s, but only %i input vertices\n",
231 _mesa_shader_stage_to_string(this->stage),
232 var->data.max_array_access, var->name, this->num_vertices);
233 return visit_continue;
234 }
235 }
236
237 var->type = glsl_type::get_array_instance(var->type->fields.array,
238 this->num_vertices);
239 var->data.max_array_access = this->num_vertices - 1;
240
241 return visit_continue;
242 }
243
244 /* Dereferences of input variables need to be updated so that their type
245 * matches the newly assigned type of the variable they are accessing. */
246 virtual ir_visitor_status visit(ir_dereference_variable *ir)
247 {
248 ir->type = ir->var->type;
249 return visit_continue;
250 }
251
252 /* Dereferences of 2D input arrays need to be updated so that their type
253 * matches the newly assigned type of the array they are accessing. */
254 virtual ir_visitor_status visit_leave(ir_dereference_array *ir)
255 {
256 const glsl_type *const vt = ir->array->type;
257 if (vt->is_array())
258 ir->type = vt->fields.array;
259 return visit_continue;
260 }
261 };
262
263 /**
264 * Visitor that determines the highest stream id to which a (geometry) shader
265 * emits vertices. It also checks whether End{Stream}Primitive is ever called.
266 */
267 class find_emit_vertex_visitor : public ir_hierarchical_visitor {
268 public:
269 find_emit_vertex_visitor(int max_allowed)
270 : max_stream_allowed(max_allowed),
271 invalid_stream_id(0),
272 invalid_stream_id_from_emit_vertex(false),
273 end_primitive_found(false),
274 uses_non_zero_stream(false)
275 {
276 /* empty */
277 }
278
279 virtual ir_visitor_status visit_leave(ir_emit_vertex *ir)
280 {
281 int stream_id = ir->stream_id();
282
283 if (stream_id < 0) {
284 invalid_stream_id = stream_id;
285 invalid_stream_id_from_emit_vertex = true;
286 return visit_stop;
287 }
288
289 if (stream_id > max_stream_allowed) {
290 invalid_stream_id = stream_id;
291 invalid_stream_id_from_emit_vertex = true;
292 return visit_stop;
293 }
294
295 if (stream_id != 0)
296 uses_non_zero_stream = true;
297
298 return visit_continue;
299 }
300
301 virtual ir_visitor_status visit_leave(ir_end_primitive *ir)
302 {
303 end_primitive_found = true;
304
305 int stream_id = ir->stream_id();
306
307 if (stream_id < 0) {
308 invalid_stream_id = stream_id;
309 invalid_stream_id_from_emit_vertex = false;
310 return visit_stop;
311 }
312
313 if (stream_id > max_stream_allowed) {
314 invalid_stream_id = stream_id;
315 invalid_stream_id_from_emit_vertex = false;
316 return visit_stop;
317 }
318
319 if (stream_id != 0)
320 uses_non_zero_stream = true;
321
322 return visit_continue;
323 }
324
325 bool error()
326 {
327 return invalid_stream_id != 0;
328 }
329
330 const char *error_func()
331 {
332 return invalid_stream_id_from_emit_vertex ?
333 "EmitStreamVertex" : "EndStreamPrimitive";
334 }
335
336 int error_stream()
337 {
338 return invalid_stream_id;
339 }
340
341 bool uses_streams()
342 {
343 return uses_non_zero_stream;
344 }
345
346 bool uses_end_primitive()
347 {
348 return end_primitive_found;
349 }
350
351 private:
352 int max_stream_allowed;
353 int invalid_stream_id;
354 bool invalid_stream_id_from_emit_vertex;
355 bool end_primitive_found;
356 bool uses_non_zero_stream;
357 };
358
359 /* Class that finds array derefs and check if indexes are dynamic. */
360 class dynamic_sampler_array_indexing_visitor : public ir_hierarchical_visitor
361 {
362 public:
363 dynamic_sampler_array_indexing_visitor() :
364 dynamic_sampler_array_indexing(false)
365 {
366 }
367
368 ir_visitor_status visit_enter(ir_dereference_array *ir)
369 {
370 if (!ir->variable_referenced())
371 return visit_continue;
372
373 if (!ir->variable_referenced()->type->contains_sampler())
374 return visit_continue;
375
376 if (!ir->array_index->constant_expression_value()) {
377 dynamic_sampler_array_indexing = true;
378 return visit_stop;
379 }
380 return visit_continue;
381 }
382
383 bool uses_dynamic_sampler_array_indexing()
384 {
385 return dynamic_sampler_array_indexing;
386 }
387
388 private:
389 bool dynamic_sampler_array_indexing;
390 };
391
392 } /* anonymous namespace */
393
394 void
395 linker_error(gl_shader_program *prog, const char *fmt, ...)
396 {
397 va_list ap;
398
399 ralloc_strcat(&prog->InfoLog, "error: ");
400 va_start(ap, fmt);
401 ralloc_vasprintf_append(&prog->InfoLog, fmt, ap);
402 va_end(ap);
403
404 prog->LinkStatus = false;
405 }
406
407
408 void
409 linker_warning(gl_shader_program *prog, const char *fmt, ...)
410 {
411 va_list ap;
412
413 ralloc_strcat(&prog->InfoLog, "warning: ");
414 va_start(ap, fmt);
415 ralloc_vasprintf_append(&prog->InfoLog, fmt, ap);
416 va_end(ap);
417
418 }
419
420
421 /**
422 * Given a string identifying a program resource, break it into a base name
423 * and an optional array index in square brackets.
424 *
425 * If an array index is present, \c out_base_name_end is set to point to the
426 * "[" that precedes the array index, and the array index itself is returned
427 * as a long.
428 *
429 * If no array index is present (or if the array index is negative or
430 * mal-formed), \c out_base_name_end, is set to point to the null terminator
431 * at the end of the input string, and -1 is returned.
432 *
433 * Only the final array index is parsed; if the string contains other array
434 * indices (or structure field accesses), they are left in the base name.
435 *
436 * No attempt is made to check that the base name is properly formed;
437 * typically the caller will look up the base name in a hash table, so
438 * ill-formed base names simply turn into hash table lookup failures.
439 */
440 long
441 parse_program_resource_name(const GLchar *name,
442 const GLchar **out_base_name_end)
443 {
444 /* Section 7.3.1 ("Program Interfaces") of the OpenGL 4.3 spec says:
445 *
446 * "When an integer array element or block instance number is part of
447 * the name string, it will be specified in decimal form without a "+"
448 * or "-" sign or any extra leading zeroes. Additionally, the name
449 * string will not include white space anywhere in the string."
450 */
451
452 const size_t len = strlen(name);
453 *out_base_name_end = name + len;
454
455 if (len == 0 || name[len-1] != ']')
456 return -1;
457
458 /* Walk backwards over the string looking for a non-digit character. This
459 * had better be the opening bracket for an array index.
460 *
461 * Initially, i specifies the location of the ']'. Since the string may
462 * contain only the ']' charcater, walk backwards very carefully.
463 */
464 unsigned i;
465 for (i = len - 1; (i > 0) && isdigit(name[i-1]); --i)
466 /* empty */ ;
467
468 if ((i == 0) || name[i-1] != '[')
469 return -1;
470
471 long array_index = strtol(&name[i], NULL, 10);
472 if (array_index < 0)
473 return -1;
474
475 /* Check for leading zero */
476 if (name[i] == '0' && name[i+1] != ']')
477 return -1;
478
479 *out_base_name_end = name + (i - 1);
480 return array_index;
481 }
482
483
484 void
485 link_invalidate_variable_locations(exec_list *ir)
486 {
487 foreach_in_list(ir_instruction, node, ir) {
488 ir_variable *const var = node->as_variable();
489
490 if (var == NULL)
491 continue;
492
493 /* Only assign locations for variables that lack an explicit location.
494 * Explicit locations are set for all built-in variables, generic vertex
495 * shader inputs (via layout(location=...)), and generic fragment shader
496 * outputs (also via layout(location=...)).
497 */
498 if (!var->data.explicit_location) {
499 var->data.location = -1;
500 var->data.location_frac = 0;
501 }
502
503 /* ir_variable::is_unmatched_generic_inout is used by the linker while
504 * connecting outputs from one stage to inputs of the next stage.
505 */
506 if (var->data.explicit_location &&
507 var->data.location < VARYING_SLOT_VAR0) {
508 var->data.is_unmatched_generic_inout = 0;
509 } else {
510 var->data.is_unmatched_generic_inout = 1;
511 }
512 }
513 }
514
515
516 /**
517 * Set clip_distance_array_size based and cull_distance_array_size on the given
518 * shader.
519 *
520 * Also check for errors based on incorrect usage of gl_ClipVertex and
521 * gl_ClipDistance and gl_CullDistance.
522 * Additionally test whether the arrays gl_ClipDistance and gl_CullDistance
523 * exceed the maximum size defined by gl_MaxCombinedClipAndCullDistances.
524 *
525 * Return false if an error was reported.
526 */
527 static void
528 analyze_clip_cull_usage(struct gl_shader_program *prog,
529 struct gl_linked_shader *shader,
530 struct gl_context *ctx,
531 GLuint *clip_distance_array_size,
532 GLuint *cull_distance_array_size)
533 {
534 *clip_distance_array_size = 0;
535 *cull_distance_array_size = 0;
536
537 if (prog->Version >= (prog->IsES ? 300 : 130)) {
538 /* From section 7.1 (Vertex Shader Special Variables) of the
539 * GLSL 1.30 spec:
540 *
541 * "It is an error for a shader to statically write both
542 * gl_ClipVertex and gl_ClipDistance."
543 *
544 * This does not apply to GLSL ES shaders, since GLSL ES defines neither
545 * gl_ClipVertex nor gl_ClipDistance. However with
546 * GL_EXT_clip_cull_distance, this functionality is exposed in ES 3.0.
547 */
548 find_assignment_visitor clip_distance("gl_ClipDistance");
549 find_assignment_visitor cull_distance("gl_CullDistance");
550
551 clip_distance.run(shader->ir);
552 cull_distance.run(shader->ir);
553
554 /* From the ARB_cull_distance spec:
555 *
556 * It is a compile-time or link-time error for the set of shaders forming
557 * a program to statically read or write both gl_ClipVertex and either
558 * gl_ClipDistance or gl_CullDistance.
559 *
560 * This does not apply to GLSL ES shaders, since GLSL ES doesn't define
561 * gl_ClipVertex.
562 */
563 if (!prog->IsES) {
564 find_assignment_visitor clip_vertex("gl_ClipVertex");
565
566 clip_vertex.run(shader->ir);
567
568 if (clip_vertex.variable_found() && clip_distance.variable_found()) {
569 linker_error(prog, "%s shader writes to both `gl_ClipVertex' "
570 "and `gl_ClipDistance'\n",
571 _mesa_shader_stage_to_string(shader->Stage));
572 return;
573 }
574 if (clip_vertex.variable_found() && cull_distance.variable_found()) {
575 linker_error(prog, "%s shader writes to both `gl_ClipVertex' "
576 "and `gl_CullDistance'\n",
577 _mesa_shader_stage_to_string(shader->Stage));
578 return;
579 }
580 }
581
582 if (clip_distance.variable_found()) {
583 ir_variable *clip_distance_var =
584 shader->symbols->get_variable("gl_ClipDistance");
585 assert(clip_distance_var);
586 *clip_distance_array_size = clip_distance_var->type->length;
587 }
588 if (cull_distance.variable_found()) {
589 ir_variable *cull_distance_var =
590 shader->symbols->get_variable("gl_CullDistance");
591 assert(cull_distance_var);
592 *cull_distance_array_size = cull_distance_var->type->length;
593 }
594 /* From the ARB_cull_distance spec:
595 *
596 * It is a compile-time or link-time error for the set of shaders forming
597 * a program to have the sum of the sizes of the gl_ClipDistance and
598 * gl_CullDistance arrays to be larger than
599 * gl_MaxCombinedClipAndCullDistances.
600 */
601 if ((*clip_distance_array_size + *cull_distance_array_size) >
602 ctx->Const.MaxClipPlanes) {
603 linker_error(prog, "%s shader: the combined size of "
604 "'gl_ClipDistance' and 'gl_CullDistance' size cannot "
605 "be larger than "
606 "gl_MaxCombinedClipAndCullDistances (%u)",
607 _mesa_shader_stage_to_string(shader->Stage),
608 ctx->Const.MaxClipPlanes);
609 }
610 }
611 }
612
613
614 /**
615 * Verify that a vertex shader executable meets all semantic requirements.
616 *
617 * Also sets prog->Vert.ClipDistanceArraySize and
618 * prog->Vert.CullDistanceArraySize as a side effect.
619 *
620 * \param shader Vertex shader executable to be verified
621 */
622 void
623 validate_vertex_shader_executable(struct gl_shader_program *prog,
624 struct gl_linked_shader *shader,
625 struct gl_context *ctx)
626 {
627 if (shader == NULL)
628 return;
629
630 /* From the GLSL 1.10 spec, page 48:
631 *
632 * "The variable gl_Position is available only in the vertex
633 * language and is intended for writing the homogeneous vertex
634 * position. All executions of a well-formed vertex shader
635 * executable must write a value into this variable. [...] The
636 * variable gl_Position is available only in the vertex
637 * language and is intended for writing the homogeneous vertex
638 * position. All executions of a well-formed vertex shader
639 * executable must write a value into this variable."
640 *
641 * while in GLSL 1.40 this text is changed to:
642 *
643 * "The variable gl_Position is available only in the vertex
644 * language and is intended for writing the homogeneous vertex
645 * position. It can be written at any time during shader
646 * execution. It may also be read back by a vertex shader
647 * after being written. This value will be used by primitive
648 * assembly, clipping, culling, and other fixed functionality
649 * operations, if present, that operate on primitives after
650 * vertex processing has occurred. Its value is undefined if
651 * the vertex shader executable does not write gl_Position."
652 *
653 * All GLSL ES Versions are similar to GLSL 1.40--failing to write to
654 * gl_Position is not an error.
655 */
656 if (prog->Version < (prog->IsES ? 300 : 140)) {
657 find_assignment_visitor find("gl_Position");
658 find.run(shader->ir);
659 if (!find.variable_found()) {
660 if (prog->IsES) {
661 linker_warning(prog,
662 "vertex shader does not write to `gl_Position'. "
663 "Its value is undefined. \n");
664 } else {
665 linker_error(prog,
666 "vertex shader does not write to `gl_Position'. \n");
667 }
668 return;
669 }
670 }
671
672 analyze_clip_cull_usage(prog, shader, ctx,
673 &prog->Vert.ClipDistanceArraySize,
674 &prog->Vert.CullDistanceArraySize);
675 }
676
677 void
678 validate_tess_eval_shader_executable(struct gl_shader_program *prog,
679 struct gl_linked_shader *shader,
680 struct gl_context *ctx)
681 {
682 if (shader == NULL)
683 return;
684
685 analyze_clip_cull_usage(prog, shader, ctx,
686 &prog->TessEval.ClipDistanceArraySize,
687 &prog->TessEval.CullDistanceArraySize);
688 }
689
690
691 /**
692 * Verify that a fragment shader executable meets all semantic requirements
693 *
694 * \param shader Fragment shader executable to be verified
695 */
696 void
697 validate_fragment_shader_executable(struct gl_shader_program *prog,
698 struct gl_linked_shader *shader)
699 {
700 if (shader == NULL)
701 return;
702
703 find_assignment_visitor frag_color("gl_FragColor");
704 find_assignment_visitor frag_data("gl_FragData");
705
706 frag_color.run(shader->ir);
707 frag_data.run(shader->ir);
708
709 if (frag_color.variable_found() && frag_data.variable_found()) {
710 linker_error(prog, "fragment shader writes to both "
711 "`gl_FragColor' and `gl_FragData'\n");
712 }
713 }
714
715 /**
716 * Verify that a geometry shader executable meets all semantic requirements
717 *
718 * Also sets prog->Geom.VerticesIn, and prog->Geom.ClipDistanceArraySize and
719 * prog->Geom.CullDistanceArraySize as a side effect.
720 *
721 * \param shader Geometry shader executable to be verified
722 */
723 void
724 validate_geometry_shader_executable(struct gl_shader_program *prog,
725 struct gl_linked_shader *shader,
726 struct gl_context *ctx)
727 {
728 if (shader == NULL)
729 return;
730
731 unsigned num_vertices = vertices_per_prim(shader->info.Geom.InputType);
732 prog->Geom.VerticesIn = num_vertices;
733
734 analyze_clip_cull_usage(prog, shader, ctx,
735 &prog->Geom.ClipDistanceArraySize,
736 &prog->Geom.CullDistanceArraySize);
737 }
738
739 /**
740 * Check if geometry shaders emit to non-zero streams and do corresponding
741 * validations.
742 */
743 static void
744 validate_geometry_shader_emissions(struct gl_context *ctx,
745 struct gl_shader_program *prog)
746 {
747 struct gl_linked_shader *sh = prog->_LinkedShaders[MESA_SHADER_GEOMETRY];
748
749 if (sh != NULL) {
750 find_emit_vertex_visitor emit_vertex(ctx->Const.MaxVertexStreams - 1);
751 emit_vertex.run(sh->ir);
752 if (emit_vertex.error()) {
753 linker_error(prog, "Invalid call %s(%d). Accepted values for the "
754 "stream parameter are in the range [0, %d].\n",
755 emit_vertex.error_func(),
756 emit_vertex.error_stream(),
757 ctx->Const.MaxVertexStreams - 1);
758 }
759 prog->Geom.UsesStreams = emit_vertex.uses_streams();
760 prog->Geom.UsesEndPrimitive = emit_vertex.uses_end_primitive();
761
762 /* From the ARB_gpu_shader5 spec:
763 *
764 * "Multiple vertex streams are supported only if the output primitive
765 * type is declared to be "points". A program will fail to link if it
766 * contains a geometry shader calling EmitStreamVertex() or
767 * EndStreamPrimitive() if its output primitive type is not "points".
768 *
769 * However, in the same spec:
770 *
771 * "The function EmitVertex() is equivalent to calling EmitStreamVertex()
772 * with <stream> set to zero."
773 *
774 * And:
775 *
776 * "The function EndPrimitive() is equivalent to calling
777 * EndStreamPrimitive() with <stream> set to zero."
778 *
779 * Since we can call EmitVertex() and EndPrimitive() when we output
780 * primitives other than points, calling EmitStreamVertex(0) or
781 * EmitEndPrimitive(0) should not produce errors. This it also what Nvidia
782 * does. Currently we only set prog->Geom.UsesStreams to TRUE when
783 * EmitStreamVertex() or EmitEndPrimitive() are called with a non-zero
784 * stream.
785 */
786 if (prog->Geom.UsesStreams && sh->info.Geom.OutputType != GL_POINTS) {
787 linker_error(prog, "EmitStreamVertex(n) and EndStreamPrimitive(n) "
788 "with n>0 requires point output\n");
789 }
790 }
791 }
792
793 bool
794 validate_intrastage_arrays(struct gl_shader_program *prog,
795 ir_variable *const var,
796 ir_variable *const existing)
797 {
798 /* Consider the types to be "the same" if both types are arrays
799 * of the same type and one of the arrays is implicitly sized.
800 * In addition, set the type of the linked variable to the
801 * explicitly sized array.
802 */
803 if (var->type->is_array() && existing->type->is_array()) {
804 if ((var->type->fields.array == existing->type->fields.array) &&
805 ((var->type->length == 0)|| (existing->type->length == 0))) {
806 if (var->type->length != 0) {
807 if ((int)var->type->length <= existing->data.max_array_access) {
808 linker_error(prog, "%s `%s' declared as type "
809 "`%s' but outermost dimension has an index"
810 " of `%i'\n",
811 mode_string(var),
812 var->name, var->type->name,
813 existing->data.max_array_access);
814 }
815 existing->type = var->type;
816 return true;
817 } else if (existing->type->length != 0) {
818 if((int)existing->type->length <= var->data.max_array_access &&
819 !existing->data.from_ssbo_unsized_array) {
820 linker_error(prog, "%s `%s' declared as type "
821 "`%s' but outermost dimension has an index"
822 " of `%i'\n",
823 mode_string(var),
824 var->name, existing->type->name,
825 var->data.max_array_access);
826 }
827 return true;
828 }
829 } else {
830 /* The arrays of structs could have different glsl_type pointers but
831 * they are actually the same type. Use record_compare() to check that.
832 */
833 if (existing->type->fields.array->is_record() &&
834 var->type->fields.array->is_record() &&
835 existing->type->fields.array->record_compare(var->type->fields.array))
836 return true;
837 }
838 }
839 return false;
840 }
841
842
843 /**
844 * Perform validation of global variables used across multiple shaders
845 */
846 void
847 cross_validate_globals(struct gl_shader_program *prog,
848 struct exec_list *ir, glsl_symbol_table *variables,
849 bool uniforms_only)
850 {
851 foreach_in_list(ir_instruction, node, ir) {
852 ir_variable *const var = node->as_variable();
853
854 if (var == NULL)
855 continue;
856
857 if (uniforms_only && (var->data.mode != ir_var_uniform && var->data.mode != ir_var_shader_storage))
858 continue;
859
860 /* don't cross validate subroutine uniforms */
861 if (var->type->contains_subroutine())
862 continue;
863
864 /* Don't cross validate temporaries that are at global scope. These
865 * will eventually get pulled into the shaders 'main'.
866 */
867 if (var->data.mode == ir_var_temporary)
868 continue;
869
870 /* If a global with this name has already been seen, verify that the
871 * new instance has the same type. In addition, if the globals have
872 * initializers, the values of the initializers must be the same.
873 */
874 ir_variable *const existing = variables->get_variable(var->name);
875 if (existing != NULL) {
876 /* Check if types match. Interface blocks have some special
877 * rules so we handle those elsewhere.
878 */
879 if (var->type != existing->type &&
880 !var->is_interface_instance()) {
881 if (!validate_intrastage_arrays(prog, var, existing)) {
882 if (var->type->is_record() && existing->type->is_record()
883 && existing->type->record_compare(var->type)) {
884 existing->type = var->type;
885 } else {
886 /* If it is an unsized array in a Shader Storage Block,
887 * two different shaders can access to different elements.
888 * Because of that, they might be converted to different
889 * sized arrays, then check that they are compatible but
890 * ignore the array size.
891 */
892 if (!(var->data.mode == ir_var_shader_storage &&
893 var->data.from_ssbo_unsized_array &&
894 existing->data.mode == ir_var_shader_storage &&
895 existing->data.from_ssbo_unsized_array &&
896 var->type->gl_type == existing->type->gl_type)) {
897 linker_error(prog, "%s `%s' declared as type "
898 "`%s' and type `%s'\n",
899 mode_string(var),
900 var->name, var->type->name,
901 existing->type->name);
902 return;
903 }
904 }
905 }
906 }
907
908 if (var->data.explicit_location) {
909 if (existing->data.explicit_location
910 && (var->data.location != existing->data.location)) {
911 linker_error(prog, "explicit locations for %s "
912 "`%s' have differing values\n",
913 mode_string(var), var->name);
914 return;
915 }
916
917 if (var->data.location_frac != existing->data.location_frac) {
918 linker_error(prog, "explicit components for %s `%s' have "
919 "differing values\n", mode_string(var), var->name);
920 return;
921 }
922
923 existing->data.location = var->data.location;
924 existing->data.explicit_location = true;
925 } else {
926 /* Check if uniform with implicit location was marked explicit
927 * by earlier shader stage. If so, mark it explicit in this stage
928 * too to make sure later processing does not treat it as
929 * implicit one.
930 */
931 if (existing->data.explicit_location) {
932 var->data.location = existing->data.location;
933 var->data.explicit_location = true;
934 }
935 }
936
937 /* From the GLSL 4.20 specification:
938 * "A link error will result if two compilation units in a program
939 * specify different integer-constant bindings for the same
940 * opaque-uniform name. However, it is not an error to specify a
941 * binding on some but not all declarations for the same name"
942 */
943 if (var->data.explicit_binding) {
944 if (existing->data.explicit_binding &&
945 var->data.binding != existing->data.binding) {
946 linker_error(prog, "explicit bindings for %s "
947 "`%s' have differing values\n",
948 mode_string(var), var->name);
949 return;
950 }
951
952 existing->data.binding = var->data.binding;
953 existing->data.explicit_binding = true;
954 }
955
956 if (var->type->contains_atomic() &&
957 var->data.offset != existing->data.offset) {
958 linker_error(prog, "offset specifications for %s "
959 "`%s' have differing values\n",
960 mode_string(var), var->name);
961 return;
962 }
963
964 /* Validate layout qualifiers for gl_FragDepth.
965 *
966 * From the AMD/ARB_conservative_depth specs:
967 *
968 * "If gl_FragDepth is redeclared in any fragment shader in a
969 * program, it must be redeclared in all fragment shaders in
970 * that program that have static assignments to
971 * gl_FragDepth. All redeclarations of gl_FragDepth in all
972 * fragment shaders in a single program must have the same set
973 * of qualifiers."
974 */
975 if (strcmp(var->name, "gl_FragDepth") == 0) {
976 bool layout_declared = var->data.depth_layout != ir_depth_layout_none;
977 bool layout_differs =
978 var->data.depth_layout != existing->data.depth_layout;
979
980 if (layout_declared && layout_differs) {
981 linker_error(prog,
982 "All redeclarations of gl_FragDepth in all "
983 "fragment shaders in a single program must have "
984 "the same set of qualifiers.\n");
985 }
986
987 if (var->data.used && layout_differs) {
988 linker_error(prog,
989 "If gl_FragDepth is redeclared with a layout "
990 "qualifier in any fragment shader, it must be "
991 "redeclared with the same layout qualifier in "
992 "all fragment shaders that have assignments to "
993 "gl_FragDepth\n");
994 }
995 }
996
997 /* Page 35 (page 41 of the PDF) of the GLSL 4.20 spec says:
998 *
999 * "If a shared global has multiple initializers, the
1000 * initializers must all be constant expressions, and they
1001 * must all have the same value. Otherwise, a link error will
1002 * result. (A shared global having only one initializer does
1003 * not require that initializer to be a constant expression.)"
1004 *
1005 * Previous to 4.20 the GLSL spec simply said that initializers
1006 * must have the same value. In this case of non-constant
1007 * initializers, this was impossible to determine. As a result,
1008 * no vendor actually implemented that behavior. The 4.20
1009 * behavior matches the implemented behavior of at least one other
1010 * vendor, so we'll implement that for all GLSL versions.
1011 */
1012 if (var->constant_initializer != NULL) {
1013 if (existing->constant_initializer != NULL) {
1014 if (!var->constant_initializer->has_value(existing->constant_initializer)) {
1015 linker_error(prog, "initializers for %s "
1016 "`%s' have differing values\n",
1017 mode_string(var), var->name);
1018 return;
1019 }
1020 } else {
1021 /* If the first-seen instance of a particular uniform did
1022 * not have an initializer but a later instance does,
1023 * replace the former with the later.
1024 */
1025 variables->replace_variable(existing->name, var);
1026 }
1027 }
1028
1029 if (var->data.has_initializer) {
1030 if (existing->data.has_initializer
1031 && (var->constant_initializer == NULL
1032 || existing->constant_initializer == NULL)) {
1033 linker_error(prog,
1034 "shared global variable `%s' has multiple "
1035 "non-constant initializers.\n",
1036 var->name);
1037 return;
1038 }
1039 }
1040
1041 if (existing->data.invariant != var->data.invariant) {
1042 linker_error(prog, "declarations for %s `%s' have "
1043 "mismatching invariant qualifiers\n",
1044 mode_string(var), var->name);
1045 return;
1046 }
1047 if (existing->data.centroid != var->data.centroid) {
1048 linker_error(prog, "declarations for %s `%s' have "
1049 "mismatching centroid qualifiers\n",
1050 mode_string(var), var->name);
1051 return;
1052 }
1053 if (existing->data.sample != var->data.sample) {
1054 linker_error(prog, "declarations for %s `%s` have "
1055 "mismatching sample qualifiers\n",
1056 mode_string(var), var->name);
1057 return;
1058 }
1059 if (existing->data.image_format != var->data.image_format) {
1060 linker_error(prog, "declarations for %s `%s` have "
1061 "mismatching image format qualifiers\n",
1062 mode_string(var), var->name);
1063 return;
1064 }
1065
1066 if (prog->IsES && existing->data.precision != var->data.precision) {
1067 linker_error(prog, "declarations for %s `%s` have "
1068 "mismatching precision qualifiers\n",
1069 mode_string(var), var->name);
1070 return;
1071 }
1072 } else
1073 variables->add_variable(var);
1074 }
1075 }
1076
1077
1078 /**
1079 * Perform validation of uniforms used across multiple shader stages
1080 */
1081 void
1082 cross_validate_uniforms(struct gl_shader_program *prog)
1083 {
1084 glsl_symbol_table variables;
1085 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1086 if (prog->_LinkedShaders[i] == NULL)
1087 continue;
1088
1089 cross_validate_globals(prog, prog->_LinkedShaders[i]->ir, &variables,
1090 true);
1091 }
1092 }
1093
1094 /**
1095 * Accumulates the array of buffer blocks and checks that all definitions of
1096 * blocks agree on their contents.
1097 */
1098 static bool
1099 interstage_cross_validate_uniform_blocks(struct gl_shader_program *prog,
1100 bool validate_ssbo)
1101 {
1102 int *InterfaceBlockStageIndex[MESA_SHADER_STAGES];
1103 struct gl_uniform_block *blks = NULL;
1104 unsigned *num_blks = validate_ssbo ? &prog->NumShaderStorageBlocks :
1105 &prog->NumUniformBlocks;
1106
1107 unsigned max_num_buffer_blocks = 0;
1108 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1109 if (prog->_LinkedShaders[i]) {
1110 if (validate_ssbo) {
1111 max_num_buffer_blocks +=
1112 prog->_LinkedShaders[i]->NumShaderStorageBlocks;
1113 } else {
1114 max_num_buffer_blocks +=
1115 prog->_LinkedShaders[i]->NumUniformBlocks;
1116 }
1117 }
1118 }
1119
1120 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1121 struct gl_linked_shader *sh = prog->_LinkedShaders[i];
1122
1123 InterfaceBlockStageIndex[i] = new int[max_num_buffer_blocks];
1124 for (unsigned int j = 0; j < max_num_buffer_blocks; j++)
1125 InterfaceBlockStageIndex[i][j] = -1;
1126
1127 if (sh == NULL)
1128 continue;
1129
1130 unsigned sh_num_blocks;
1131 struct gl_uniform_block **sh_blks;
1132 if (validate_ssbo) {
1133 sh_num_blocks = prog->_LinkedShaders[i]->NumShaderStorageBlocks;
1134 sh_blks = sh->ShaderStorageBlocks;
1135 } else {
1136 sh_num_blocks = prog->_LinkedShaders[i]->NumUniformBlocks;
1137 sh_blks = sh->UniformBlocks;
1138 }
1139
1140 for (unsigned int j = 0; j < sh_num_blocks; j++) {
1141 int index = link_cross_validate_uniform_block(prog, &blks, num_blks,
1142 sh_blks[j]);
1143
1144 if (index == -1) {
1145 linker_error(prog, "buffer block `%s' has mismatching "
1146 "definitions\n", sh_blks[j]->Name);
1147
1148 for (unsigned k = 0; k <= i; k++) {
1149 delete[] InterfaceBlockStageIndex[k];
1150 }
1151 return false;
1152 }
1153
1154 InterfaceBlockStageIndex[i][index] = j;
1155 }
1156 }
1157
1158 /* Update per stage block pointers to point to the program list.
1159 * FIXME: We should be able to free the per stage blocks here.
1160 */
1161 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1162 for (unsigned j = 0; j < *num_blks; j++) {
1163 int stage_index = InterfaceBlockStageIndex[i][j];
1164
1165 if (stage_index != -1) {
1166 struct gl_linked_shader *sh = prog->_LinkedShaders[i];
1167
1168 blks[j].stageref |= (1 << i);
1169
1170 struct gl_uniform_block **sh_blks = validate_ssbo ?
1171 sh->ShaderStorageBlocks : sh->UniformBlocks;
1172
1173 sh_blks[stage_index] = &blks[j];
1174 }
1175 }
1176 }
1177
1178 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1179 delete[] InterfaceBlockStageIndex[i];
1180 }
1181
1182 if (validate_ssbo)
1183 prog->ShaderStorageBlocks = blks;
1184 else
1185 prog->UniformBlocks = blks;
1186
1187 return true;
1188 }
1189
1190
1191 /**
1192 * Populates a shaders symbol table with all global declarations
1193 */
1194 static void
1195 populate_symbol_table(gl_linked_shader *sh)
1196 {
1197 sh->symbols = new(sh) glsl_symbol_table;
1198
1199 foreach_in_list(ir_instruction, inst, sh->ir) {
1200 ir_variable *var;
1201 ir_function *func;
1202
1203 if ((func = inst->as_function()) != NULL) {
1204 sh->symbols->add_function(func);
1205 } else if ((var = inst->as_variable()) != NULL) {
1206 if (var->data.mode != ir_var_temporary)
1207 sh->symbols->add_variable(var);
1208 }
1209 }
1210 }
1211
1212
1213 /**
1214 * Remap variables referenced in an instruction tree
1215 *
1216 * This is used when instruction trees are cloned from one shader and placed in
1217 * another. These trees will contain references to \c ir_variable nodes that
1218 * do not exist in the target shader. This function finds these \c ir_variable
1219 * references and replaces the references with matching variables in the target
1220 * shader.
1221 *
1222 * If there is no matching variable in the target shader, a clone of the
1223 * \c ir_variable is made and added to the target shader. The new variable is
1224 * added to \b both the instruction stream and the symbol table.
1225 *
1226 * \param inst IR tree that is to be processed.
1227 * \param symbols Symbol table containing global scope symbols in the
1228 * linked shader.
1229 * \param instructions Instruction stream where new variable declarations
1230 * should be added.
1231 */
1232 void
1233 remap_variables(ir_instruction *inst, struct gl_linked_shader *target,
1234 hash_table *temps)
1235 {
1236 class remap_visitor : public ir_hierarchical_visitor {
1237 public:
1238 remap_visitor(struct gl_linked_shader *target, hash_table *temps)
1239 {
1240 this->target = target;
1241 this->symbols = target->symbols;
1242 this->instructions = target->ir;
1243 this->temps = temps;
1244 }
1245
1246 virtual ir_visitor_status visit(ir_dereference_variable *ir)
1247 {
1248 if (ir->var->data.mode == ir_var_temporary) {
1249 hash_entry *entry = _mesa_hash_table_search(temps, ir->var);
1250 ir_variable *var = entry ? (ir_variable *) entry->data : NULL;
1251
1252 assert(var != NULL);
1253 ir->var = var;
1254 return visit_continue;
1255 }
1256
1257 ir_variable *const existing =
1258 this->symbols->get_variable(ir->var->name);
1259 if (existing != NULL)
1260 ir->var = existing;
1261 else {
1262 ir_variable *copy = ir->var->clone(this->target, NULL);
1263
1264 this->symbols->add_variable(copy);
1265 this->instructions->push_head(copy);
1266 ir->var = copy;
1267 }
1268
1269 return visit_continue;
1270 }
1271
1272 private:
1273 struct gl_linked_shader *target;
1274 glsl_symbol_table *symbols;
1275 exec_list *instructions;
1276 hash_table *temps;
1277 };
1278
1279 remap_visitor v(target, temps);
1280
1281 inst->accept(&v);
1282 }
1283
1284
1285 /**
1286 * Move non-declarations from one instruction stream to another
1287 *
1288 * The intended usage pattern of this function is to pass the pointer to the
1289 * head sentinel of a list (i.e., a pointer to the list cast to an \c exec_node
1290 * pointer) for \c last and \c false for \c make_copies on the first
1291 * call. Successive calls pass the return value of the previous call for
1292 * \c last and \c true for \c make_copies.
1293 *
1294 * \param instructions Source instruction stream
1295 * \param last Instruction after which new instructions should be
1296 * inserted in the target instruction stream
1297 * \param make_copies Flag selecting whether instructions in \c instructions
1298 * should be copied (via \c ir_instruction::clone) into the
1299 * target list or moved.
1300 *
1301 * \return
1302 * The new "last" instruction in the target instruction stream. This pointer
1303 * is suitable for use as the \c last parameter of a later call to this
1304 * function.
1305 */
1306 exec_node *
1307 move_non_declarations(exec_list *instructions, exec_node *last,
1308 bool make_copies, gl_linked_shader *target)
1309 {
1310 hash_table *temps = NULL;
1311
1312 if (make_copies)
1313 temps = _mesa_hash_table_create(NULL, _mesa_hash_pointer,
1314 _mesa_key_pointer_equal);
1315
1316 foreach_in_list_safe(ir_instruction, inst, instructions) {
1317 if (inst->as_function())
1318 continue;
1319
1320 ir_variable *var = inst->as_variable();
1321 if ((var != NULL) && (var->data.mode != ir_var_temporary))
1322 continue;
1323
1324 assert(inst->as_assignment()
1325 || inst->as_call()
1326 || inst->as_if() /* for initializers with the ?: operator */
1327 || ((var != NULL) && (var->data.mode == ir_var_temporary)));
1328
1329 if (make_copies) {
1330 inst = inst->clone(target, NULL);
1331
1332 if (var != NULL)
1333 _mesa_hash_table_insert(temps, var, inst);
1334 else
1335 remap_variables(inst, target, temps);
1336 } else {
1337 inst->remove();
1338 }
1339
1340 last->insert_after(inst);
1341 last = inst;
1342 }
1343
1344 if (make_copies)
1345 _mesa_hash_table_destroy(temps, NULL);
1346
1347 return last;
1348 }
1349
1350
1351 /**
1352 * This class is only used in link_intrastage_shaders() below but declaring
1353 * it inside that function leads to compiler warnings with some versions of
1354 * gcc.
1355 */
1356 class array_sizing_visitor : public ir_hierarchical_visitor {
1357 public:
1358 array_sizing_visitor()
1359 : mem_ctx(ralloc_context(NULL)),
1360 unnamed_interfaces(_mesa_hash_table_create(NULL, _mesa_hash_pointer,
1361 _mesa_key_pointer_equal))
1362 {
1363 }
1364
1365 ~array_sizing_visitor()
1366 {
1367 _mesa_hash_table_destroy(this->unnamed_interfaces, NULL);
1368 ralloc_free(this->mem_ctx);
1369 }
1370
1371 virtual ir_visitor_status visit(ir_variable *var)
1372 {
1373 const glsl_type *type_without_array;
1374 bool implicit_sized_array = var->data.implicit_sized_array;
1375 fixup_type(&var->type, var->data.max_array_access,
1376 var->data.from_ssbo_unsized_array,
1377 &implicit_sized_array);
1378 var->data.implicit_sized_array = implicit_sized_array;
1379 type_without_array = var->type->without_array();
1380 if (var->type->is_interface()) {
1381 if (interface_contains_unsized_arrays(var->type)) {
1382 const glsl_type *new_type =
1383 resize_interface_members(var->type,
1384 var->get_max_ifc_array_access(),
1385 var->is_in_shader_storage_block());
1386 var->type = new_type;
1387 var->change_interface_type(new_type);
1388 }
1389 } else if (type_without_array->is_interface()) {
1390 if (interface_contains_unsized_arrays(type_without_array)) {
1391 const glsl_type *new_type =
1392 resize_interface_members(type_without_array,
1393 var->get_max_ifc_array_access(),
1394 var->is_in_shader_storage_block());
1395 var->change_interface_type(new_type);
1396 var->type = update_interface_members_array(var->type, new_type);
1397 }
1398 } else if (const glsl_type *ifc_type = var->get_interface_type()) {
1399 /* Store a pointer to the variable in the unnamed_interfaces
1400 * hashtable.
1401 */
1402 hash_entry *entry =
1403 _mesa_hash_table_search(this->unnamed_interfaces,
1404 ifc_type);
1405
1406 ir_variable **interface_vars = entry ? (ir_variable **) entry->data : NULL;
1407
1408 if (interface_vars == NULL) {
1409 interface_vars = rzalloc_array(mem_ctx, ir_variable *,
1410 ifc_type->length);
1411 _mesa_hash_table_insert(this->unnamed_interfaces, ifc_type,
1412 interface_vars);
1413 }
1414 unsigned index = ifc_type->field_index(var->name);
1415 assert(index < ifc_type->length);
1416 assert(interface_vars[index] == NULL);
1417 interface_vars[index] = var;
1418 }
1419 return visit_continue;
1420 }
1421
1422 /**
1423 * For each unnamed interface block that was discovered while running the
1424 * visitor, adjust the interface type to reflect the newly assigned array
1425 * sizes, and fix up the ir_variable nodes to point to the new interface
1426 * type.
1427 */
1428 void fixup_unnamed_interface_types()
1429 {
1430 hash_table_call_foreach(this->unnamed_interfaces,
1431 fixup_unnamed_interface_type, NULL);
1432 }
1433
1434 private:
1435 /**
1436 * If the type pointed to by \c type represents an unsized array, replace
1437 * it with a sized array whose size is determined by max_array_access.
1438 */
1439 static void fixup_type(const glsl_type **type, unsigned max_array_access,
1440 bool from_ssbo_unsized_array, bool *implicit_sized)
1441 {
1442 if (!from_ssbo_unsized_array && (*type)->is_unsized_array()) {
1443 *type = glsl_type::get_array_instance((*type)->fields.array,
1444 max_array_access + 1);
1445 *implicit_sized = true;
1446 assert(*type != NULL);
1447 }
1448 }
1449
1450 static const glsl_type *
1451 update_interface_members_array(const glsl_type *type,
1452 const glsl_type *new_interface_type)
1453 {
1454 const glsl_type *element_type = type->fields.array;
1455 if (element_type->is_array()) {
1456 const glsl_type *new_array_type =
1457 update_interface_members_array(element_type, new_interface_type);
1458 return glsl_type::get_array_instance(new_array_type, type->length);
1459 } else {
1460 return glsl_type::get_array_instance(new_interface_type,
1461 type->length);
1462 }
1463 }
1464
1465 /**
1466 * Determine whether the given interface type contains unsized arrays (if
1467 * it doesn't, array_sizing_visitor doesn't need to process it).
1468 */
1469 static bool interface_contains_unsized_arrays(const glsl_type *type)
1470 {
1471 for (unsigned i = 0; i < type->length; i++) {
1472 const glsl_type *elem_type = type->fields.structure[i].type;
1473 if (elem_type->is_unsized_array())
1474 return true;
1475 }
1476 return false;
1477 }
1478
1479 /**
1480 * Create a new interface type based on the given type, with unsized arrays
1481 * replaced by sized arrays whose size is determined by
1482 * max_ifc_array_access.
1483 */
1484 static const glsl_type *
1485 resize_interface_members(const glsl_type *type,
1486 const int *max_ifc_array_access,
1487 bool is_ssbo)
1488 {
1489 unsigned num_fields = type->length;
1490 glsl_struct_field *fields = new glsl_struct_field[num_fields];
1491 memcpy(fields, type->fields.structure,
1492 num_fields * sizeof(*fields));
1493 for (unsigned i = 0; i < num_fields; i++) {
1494 bool implicit_sized_array = fields[i].implicit_sized_array;
1495 /* If SSBO last member is unsized array, we don't replace it by a sized
1496 * array.
1497 */
1498 if (is_ssbo && i == (num_fields - 1))
1499 fixup_type(&fields[i].type, max_ifc_array_access[i],
1500 true, &implicit_sized_array);
1501 else
1502 fixup_type(&fields[i].type, max_ifc_array_access[i],
1503 false, &implicit_sized_array);
1504 fields[i].implicit_sized_array = implicit_sized_array;
1505 }
1506 glsl_interface_packing packing =
1507 (glsl_interface_packing) type->interface_packing;
1508 const glsl_type *new_ifc_type =
1509 glsl_type::get_interface_instance(fields, num_fields,
1510 packing, type->name);
1511 delete [] fields;
1512 return new_ifc_type;
1513 }
1514
1515 static void fixup_unnamed_interface_type(const void *key, void *data,
1516 void *)
1517 {
1518 const glsl_type *ifc_type = (const glsl_type *) key;
1519 ir_variable **interface_vars = (ir_variable **) data;
1520 unsigned num_fields = ifc_type->length;
1521 glsl_struct_field *fields = new glsl_struct_field[num_fields];
1522 memcpy(fields, ifc_type->fields.structure,
1523 num_fields * sizeof(*fields));
1524 bool interface_type_changed = false;
1525 for (unsigned i = 0; i < num_fields; i++) {
1526 if (interface_vars[i] != NULL &&
1527 fields[i].type != interface_vars[i]->type) {
1528 fields[i].type = interface_vars[i]->type;
1529 interface_type_changed = true;
1530 }
1531 }
1532 if (!interface_type_changed) {
1533 delete [] fields;
1534 return;
1535 }
1536 glsl_interface_packing packing =
1537 (glsl_interface_packing) ifc_type->interface_packing;
1538 const glsl_type *new_ifc_type =
1539 glsl_type::get_interface_instance(fields, num_fields, packing,
1540 ifc_type->name);
1541 delete [] fields;
1542 for (unsigned i = 0; i < num_fields; i++) {
1543 if (interface_vars[i] != NULL)
1544 interface_vars[i]->change_interface_type(new_ifc_type);
1545 }
1546 }
1547
1548 /**
1549 * Memory context used to allocate the data in \c unnamed_interfaces.
1550 */
1551 void *mem_ctx;
1552
1553 /**
1554 * Hash table from const glsl_type * to an array of ir_variable *'s
1555 * pointing to the ir_variables constituting each unnamed interface block.
1556 */
1557 hash_table *unnamed_interfaces;
1558 };
1559
1560 /**
1561 * Check for conflicting xfb_stride default qualifiers and store buffer stride
1562 * for later use.
1563 */
1564 static void
1565 link_xfb_stride_layout_qualifiers(struct gl_context *ctx,
1566 struct gl_shader_program *prog,
1567 struct gl_linked_shader *linked_shader,
1568 struct gl_shader **shader_list,
1569 unsigned num_shaders)
1570 {
1571 for (unsigned i = 0; i < MAX_FEEDBACK_BUFFERS; i++) {
1572 linked_shader->info.TransformFeedback.BufferStride[i] = 0;
1573 }
1574
1575 for (unsigned i = 0; i < num_shaders; i++) {
1576 struct gl_shader *shader = shader_list[i];
1577
1578 for (unsigned j = 0; j < MAX_FEEDBACK_BUFFERS; j++) {
1579 if (shader->info.TransformFeedback.BufferStride[j]) {
1580 if (linked_shader->info.TransformFeedback.BufferStride[j] != 0 &&
1581 shader->info.TransformFeedback.BufferStride[j] != 0 &&
1582 linked_shader->info.TransformFeedback.BufferStride[j] !=
1583 shader->info.TransformFeedback.BufferStride[j]) {
1584 linker_error(prog,
1585 "intrastage shaders defined with conflicting "
1586 "xfb_stride for buffer %d (%d and %d)\n", j,
1587 linked_shader->
1588 info.TransformFeedback.BufferStride[j],
1589 shader->info.TransformFeedback.BufferStride[j]);
1590 return;
1591 }
1592
1593 if (shader->info.TransformFeedback.BufferStride[j])
1594 linked_shader->info.TransformFeedback.BufferStride[j] =
1595 shader->info.TransformFeedback.BufferStride[j];
1596 }
1597 }
1598 }
1599
1600 for (unsigned j = 0; j < MAX_FEEDBACK_BUFFERS; j++) {
1601 if (linked_shader->info.TransformFeedback.BufferStride[j]) {
1602 prog->TransformFeedback.BufferStride[j] =
1603 linked_shader->info.TransformFeedback.BufferStride[j];
1604
1605 /* We will validate doubles at a later stage */
1606 if (prog->TransformFeedback.BufferStride[j] % 4) {
1607 linker_error(prog, "invalid qualifier xfb_stride=%d must be a "
1608 "multiple of 4 or if its applied to a type that is "
1609 "or contains a double a multiple of 8.",
1610 prog->TransformFeedback.BufferStride[j]);
1611 return;
1612 }
1613
1614 if (prog->TransformFeedback.BufferStride[j] / 4 >
1615 ctx->Const.MaxTransformFeedbackInterleavedComponents) {
1616 linker_error(prog,
1617 "The MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS "
1618 "limit has been exceeded.");
1619 return;
1620 }
1621 }
1622 }
1623 }
1624
1625 /**
1626 * Performs the cross-validation of tessellation control shader vertices and
1627 * layout qualifiers for the attached tessellation control shaders,
1628 * and propagates them to the linked TCS and linked shader program.
1629 */
1630 static void
1631 link_tcs_out_layout_qualifiers(struct gl_shader_program *prog,
1632 struct gl_linked_shader *linked_shader,
1633 struct gl_shader **shader_list,
1634 unsigned num_shaders)
1635 {
1636 linked_shader->info.TessCtrl.VerticesOut = 0;
1637
1638 if (linked_shader->Stage != MESA_SHADER_TESS_CTRL)
1639 return;
1640
1641 /* From the GLSL 4.0 spec (chapter 4.3.8.2):
1642 *
1643 * "All tessellation control shader layout declarations in a program
1644 * must specify the same output patch vertex count. There must be at
1645 * least one layout qualifier specifying an output patch vertex count
1646 * in any program containing tessellation control shaders; however,
1647 * such a declaration is not required in all tessellation control
1648 * shaders."
1649 */
1650
1651 for (unsigned i = 0; i < num_shaders; i++) {
1652 struct gl_shader *shader = shader_list[i];
1653
1654 if (shader->info.TessCtrl.VerticesOut != 0) {
1655 if (linked_shader->info.TessCtrl.VerticesOut != 0 &&
1656 linked_shader->info.TessCtrl.VerticesOut !=
1657 shader->info.TessCtrl.VerticesOut) {
1658 linker_error(prog, "tessellation control shader defined with "
1659 "conflicting output vertex count (%d and %d)\n",
1660 linked_shader->info.TessCtrl.VerticesOut,
1661 shader->info.TessCtrl.VerticesOut);
1662 return;
1663 }
1664 linked_shader->info.TessCtrl.VerticesOut =
1665 shader->info.TessCtrl.VerticesOut;
1666 }
1667 }
1668
1669 /* Just do the intrastage -> interstage propagation right now,
1670 * since we already know we're in the right type of shader program
1671 * for doing it.
1672 */
1673 if (linked_shader->info.TessCtrl.VerticesOut == 0) {
1674 linker_error(prog, "tessellation control shader didn't declare "
1675 "vertices out layout qualifier\n");
1676 return;
1677 }
1678 }
1679
1680
1681 /**
1682 * Performs the cross-validation of tessellation evaluation shader
1683 * primitive type, vertex spacing, ordering and point_mode layout qualifiers
1684 * for the attached tessellation evaluation shaders, and propagates them
1685 * to the linked TES and linked shader program.
1686 */
1687 static void
1688 link_tes_in_layout_qualifiers(struct gl_shader_program *prog,
1689 struct gl_linked_shader *linked_shader,
1690 struct gl_shader **shader_list,
1691 unsigned num_shaders)
1692 {
1693 linked_shader->info.TessEval.PrimitiveMode = PRIM_UNKNOWN;
1694 linked_shader->info.TessEval.Spacing = 0;
1695 linked_shader->info.TessEval.VertexOrder = 0;
1696 linked_shader->info.TessEval.PointMode = -1;
1697
1698 if (linked_shader->Stage != MESA_SHADER_TESS_EVAL)
1699 return;
1700
1701 /* From the GLSL 4.0 spec (chapter 4.3.8.1):
1702 *
1703 * "At least one tessellation evaluation shader (compilation unit) in
1704 * a program must declare a primitive mode in its input layout.
1705 * Declaration vertex spacing, ordering, and point mode identifiers is
1706 * optional. It is not required that all tessellation evaluation
1707 * shaders in a program declare a primitive mode. If spacing or
1708 * vertex ordering declarations are omitted, the tessellation
1709 * primitive generator will use equal spacing or counter-clockwise
1710 * vertex ordering, respectively. If a point mode declaration is
1711 * omitted, the tessellation primitive generator will produce lines or
1712 * triangles according to the primitive mode."
1713 */
1714
1715 for (unsigned i = 0; i < num_shaders; i++) {
1716 struct gl_shader *shader = shader_list[i];
1717
1718 if (shader->info.TessEval.PrimitiveMode != PRIM_UNKNOWN) {
1719 if (linked_shader->info.TessEval.PrimitiveMode != PRIM_UNKNOWN &&
1720 linked_shader->info.TessEval.PrimitiveMode !=
1721 shader->info.TessEval.PrimitiveMode) {
1722 linker_error(prog, "tessellation evaluation shader defined with "
1723 "conflicting input primitive modes.\n");
1724 return;
1725 }
1726 linked_shader->info.TessEval.PrimitiveMode = shader->info.TessEval.PrimitiveMode;
1727 }
1728
1729 if (shader->info.TessEval.Spacing != 0) {
1730 if (linked_shader->info.TessEval.Spacing != 0 &&
1731 linked_shader->info.TessEval.Spacing !=
1732 shader->info.TessEval.Spacing) {
1733 linker_error(prog, "tessellation evaluation shader defined with "
1734 "conflicting vertex spacing.\n");
1735 return;
1736 }
1737 linked_shader->info.TessEval.Spacing = shader->info.TessEval.Spacing;
1738 }
1739
1740 if (shader->info.TessEval.VertexOrder != 0) {
1741 if (linked_shader->info.TessEval.VertexOrder != 0 &&
1742 linked_shader->info.TessEval.VertexOrder !=
1743 shader->info.TessEval.VertexOrder) {
1744 linker_error(prog, "tessellation evaluation shader defined with "
1745 "conflicting ordering.\n");
1746 return;
1747 }
1748 linked_shader->info.TessEval.VertexOrder =
1749 shader->info.TessEval.VertexOrder;
1750 }
1751
1752 if (shader->info.TessEval.PointMode != -1) {
1753 if (linked_shader->info.TessEval.PointMode != -1 &&
1754 linked_shader->info.TessEval.PointMode !=
1755 shader->info.TessEval.PointMode) {
1756 linker_error(prog, "tessellation evaluation shader defined with "
1757 "conflicting point modes.\n");
1758 return;
1759 }
1760 linked_shader->info.TessEval.PointMode =
1761 shader->info.TessEval.PointMode;
1762 }
1763
1764 }
1765
1766 /* Just do the intrastage -> interstage propagation right now,
1767 * since we already know we're in the right type of shader program
1768 * for doing it.
1769 */
1770 if (linked_shader->info.TessEval.PrimitiveMode == PRIM_UNKNOWN) {
1771 linker_error(prog,
1772 "tessellation evaluation shader didn't declare input "
1773 "primitive modes.\n");
1774 return;
1775 }
1776
1777 if (linked_shader->info.TessEval.Spacing == 0)
1778 linked_shader->info.TessEval.Spacing = GL_EQUAL;
1779
1780 if (linked_shader->info.TessEval.VertexOrder == 0)
1781 linked_shader->info.TessEval.VertexOrder = GL_CCW;
1782
1783 if (linked_shader->info.TessEval.PointMode == -1)
1784 linked_shader->info.TessEval.PointMode = GL_FALSE;
1785 }
1786
1787
1788 /**
1789 * Performs the cross-validation of layout qualifiers specified in
1790 * redeclaration of gl_FragCoord for the attached fragment shaders,
1791 * and propagates them to the linked FS and linked shader program.
1792 */
1793 static void
1794 link_fs_inout_layout_qualifiers(struct gl_shader_program *prog,
1795 struct gl_linked_shader *linked_shader,
1796 struct gl_shader **shader_list,
1797 unsigned num_shaders)
1798 {
1799 linked_shader->info.redeclares_gl_fragcoord = false;
1800 linked_shader->info.uses_gl_fragcoord = false;
1801 linked_shader->info.origin_upper_left = false;
1802 linked_shader->info.pixel_center_integer = false;
1803 linked_shader->info.BlendSupport = 0;
1804
1805 if (linked_shader->Stage != MESA_SHADER_FRAGMENT ||
1806 (prog->Version < 150 && !prog->ARB_fragment_coord_conventions_enable))
1807 return;
1808
1809 for (unsigned i = 0; i < num_shaders; i++) {
1810 struct gl_shader *shader = shader_list[i];
1811 /* From the GLSL 1.50 spec, page 39:
1812 *
1813 * "If gl_FragCoord is redeclared in any fragment shader in a program,
1814 * it must be redeclared in all the fragment shaders in that program
1815 * that have a static use gl_FragCoord."
1816 */
1817 if ((linked_shader->info.redeclares_gl_fragcoord
1818 && !shader->info.redeclares_gl_fragcoord
1819 && shader->info.uses_gl_fragcoord)
1820 || (shader->info.redeclares_gl_fragcoord
1821 && !linked_shader->info.redeclares_gl_fragcoord
1822 && linked_shader->info.uses_gl_fragcoord)) {
1823 linker_error(prog, "fragment shader defined with conflicting "
1824 "layout qualifiers for gl_FragCoord\n");
1825 }
1826
1827 /* From the GLSL 1.50 spec, page 39:
1828 *
1829 * "All redeclarations of gl_FragCoord in all fragment shaders in a
1830 * single program must have the same set of qualifiers."
1831 */
1832 if (linked_shader->info.redeclares_gl_fragcoord &&
1833 shader->info.redeclares_gl_fragcoord &&
1834 (shader->info.origin_upper_left !=
1835 linked_shader->info.origin_upper_left ||
1836 shader->info.pixel_center_integer !=
1837 linked_shader->info.pixel_center_integer)) {
1838 linker_error(prog, "fragment shader defined with conflicting "
1839 "layout qualifiers for gl_FragCoord\n");
1840 }
1841
1842 /* Update the linked shader state. Note that uses_gl_fragcoord should
1843 * accumulate the results. The other values should replace. If there
1844 * are multiple redeclarations, all the fields except uses_gl_fragcoord
1845 * are already known to be the same.
1846 */
1847 if (shader->info.redeclares_gl_fragcoord ||
1848 shader->info.uses_gl_fragcoord) {
1849 linked_shader->info.redeclares_gl_fragcoord =
1850 shader->info.redeclares_gl_fragcoord;
1851 linked_shader->info.uses_gl_fragcoord =
1852 linked_shader->info.uses_gl_fragcoord ||
1853 shader->info.uses_gl_fragcoord;
1854 linked_shader->info.origin_upper_left =
1855 shader->info.origin_upper_left;
1856 linked_shader->info.pixel_center_integer =
1857 shader->info.pixel_center_integer;
1858 }
1859
1860 linked_shader->info.EarlyFragmentTests |=
1861 shader->info.EarlyFragmentTests;
1862 linked_shader->info.BlendSupport |= shader->info.BlendSupport;
1863 }
1864 }
1865
1866 /**
1867 * Performs the cross-validation of geometry shader max_vertices and
1868 * primitive type layout qualifiers for the attached geometry shaders,
1869 * and propagates them to the linked GS and linked shader program.
1870 */
1871 static void
1872 link_gs_inout_layout_qualifiers(struct gl_shader_program *prog,
1873 struct gl_linked_shader *linked_shader,
1874 struct gl_shader **shader_list,
1875 unsigned num_shaders)
1876 {
1877 linked_shader->info.Geom.VerticesOut = -1;
1878 linked_shader->info.Geom.Invocations = 0;
1879 linked_shader->info.Geom.InputType = PRIM_UNKNOWN;
1880 linked_shader->info.Geom.OutputType = PRIM_UNKNOWN;
1881
1882 /* No in/out qualifiers defined for anything but GLSL 1.50+
1883 * geometry shaders so far.
1884 */
1885 if (linked_shader->Stage != MESA_SHADER_GEOMETRY || prog->Version < 150)
1886 return;
1887
1888 /* From the GLSL 1.50 spec, page 46:
1889 *
1890 * "All geometry shader output layout declarations in a program
1891 * must declare the same layout and same value for
1892 * max_vertices. There must be at least one geometry output
1893 * layout declaration somewhere in a program, but not all
1894 * geometry shaders (compilation units) are required to
1895 * declare it."
1896 */
1897
1898 for (unsigned i = 0; i < num_shaders; i++) {
1899 struct gl_shader *shader = shader_list[i];
1900
1901 if (shader->info.Geom.InputType != PRIM_UNKNOWN) {
1902 if (linked_shader->info.Geom.InputType != PRIM_UNKNOWN &&
1903 linked_shader->info.Geom.InputType !=
1904 shader->info.Geom.InputType) {
1905 linker_error(prog, "geometry shader defined with conflicting "
1906 "input types\n");
1907 return;
1908 }
1909 linked_shader->info.Geom.InputType = shader->info.Geom.InputType;
1910 }
1911
1912 if (shader->info.Geom.OutputType != PRIM_UNKNOWN) {
1913 if (linked_shader->info.Geom.OutputType != PRIM_UNKNOWN &&
1914 linked_shader->info.Geom.OutputType !=
1915 shader->info.Geom.OutputType) {
1916 linker_error(prog, "geometry shader defined with conflicting "
1917 "output types\n");
1918 return;
1919 }
1920 linked_shader->info.Geom.OutputType = shader->info.Geom.OutputType;
1921 }
1922
1923 if (shader->info.Geom.VerticesOut != -1) {
1924 if (linked_shader->info.Geom.VerticesOut != -1 &&
1925 linked_shader->info.Geom.VerticesOut !=
1926 shader->info.Geom.VerticesOut) {
1927 linker_error(prog, "geometry shader defined with conflicting "
1928 "output vertex count (%d and %d)\n",
1929 linked_shader->info.Geom.VerticesOut,
1930 shader->info.Geom.VerticesOut);
1931 return;
1932 }
1933 linked_shader->info.Geom.VerticesOut = shader->info.Geom.VerticesOut;
1934 }
1935
1936 if (shader->info.Geom.Invocations != 0) {
1937 if (linked_shader->info.Geom.Invocations != 0 &&
1938 linked_shader->info.Geom.Invocations !=
1939 shader->info.Geom.Invocations) {
1940 linker_error(prog, "geometry shader defined with conflicting "
1941 "invocation count (%d and %d)\n",
1942 linked_shader->info.Geom.Invocations,
1943 shader->info.Geom.Invocations);
1944 return;
1945 }
1946 linked_shader->info.Geom.Invocations = shader->info.Geom.Invocations;
1947 }
1948 }
1949
1950 /* Just do the intrastage -> interstage propagation right now,
1951 * since we already know we're in the right type of shader program
1952 * for doing it.
1953 */
1954 if (linked_shader->info.Geom.InputType == PRIM_UNKNOWN) {
1955 linker_error(prog,
1956 "geometry shader didn't declare primitive input type\n");
1957 return;
1958 }
1959
1960 if (linked_shader->info.Geom.OutputType == PRIM_UNKNOWN) {
1961 linker_error(prog,
1962 "geometry shader didn't declare primitive output type\n");
1963 return;
1964 }
1965
1966 if (linked_shader->info.Geom.VerticesOut == -1) {
1967 linker_error(prog,
1968 "geometry shader didn't declare max_vertices\n");
1969 return;
1970 }
1971
1972 if (linked_shader->info.Geom.Invocations == 0)
1973 linked_shader->info.Geom.Invocations = 1;
1974 }
1975
1976
1977 /**
1978 * Perform cross-validation of compute shader local_size_{x,y,z} layout
1979 * qualifiers for the attached compute shaders, and propagate them to the
1980 * linked CS and linked shader program.
1981 */
1982 static void
1983 link_cs_input_layout_qualifiers(struct gl_shader_program *prog,
1984 struct gl_linked_shader *linked_shader,
1985 struct gl_shader **shader_list,
1986 unsigned num_shaders)
1987 {
1988 for (int i = 0; i < 3; i++)
1989 linked_shader->info.Comp.LocalSize[i] = 0;
1990
1991 /* This function is called for all shader stages, but it only has an effect
1992 * for compute shaders.
1993 */
1994 if (linked_shader->Stage != MESA_SHADER_COMPUTE)
1995 return;
1996
1997 /* From the ARB_compute_shader spec, in the section describing local size
1998 * declarations:
1999 *
2000 * If multiple compute shaders attached to a single program object
2001 * declare local work-group size, the declarations must be identical;
2002 * otherwise a link-time error results. Furthermore, if a program
2003 * object contains any compute shaders, at least one must contain an
2004 * input layout qualifier specifying the local work sizes of the
2005 * program, or a link-time error will occur.
2006 */
2007 for (unsigned sh = 0; sh < num_shaders; sh++) {
2008 struct gl_shader *shader = shader_list[sh];
2009
2010 if (shader->info.Comp.LocalSize[0] != 0) {
2011 if (linked_shader->info.Comp.LocalSize[0] != 0) {
2012 for (int i = 0; i < 3; i++) {
2013 if (linked_shader->info.Comp.LocalSize[i] !=
2014 shader->info.Comp.LocalSize[i]) {
2015 linker_error(prog, "compute shader defined with conflicting "
2016 "local sizes\n");
2017 return;
2018 }
2019 }
2020 }
2021 for (int i = 0; i < 3; i++) {
2022 linked_shader->info.Comp.LocalSize[i] =
2023 shader->info.Comp.LocalSize[i];
2024 }
2025 }
2026 }
2027
2028 /* Just do the intrastage -> interstage propagation right now,
2029 * since we already know we're in the right type of shader program
2030 * for doing it.
2031 */
2032 if (linked_shader->info.Comp.LocalSize[0] == 0) {
2033 linker_error(prog, "compute shader didn't declare local size\n");
2034 return;
2035 }
2036 for (int i = 0; i < 3; i++)
2037 prog->Comp.LocalSize[i] = linked_shader->info.Comp.LocalSize[i];
2038 }
2039
2040
2041 /**
2042 * Combine a group of shaders for a single stage to generate a linked shader
2043 *
2044 * \note
2045 * If this function is supplied a single shader, it is cloned, and the new
2046 * shader is returned.
2047 */
2048 static struct gl_linked_shader *
2049 link_intrastage_shaders(void *mem_ctx,
2050 struct gl_context *ctx,
2051 struct gl_shader_program *prog,
2052 struct gl_shader **shader_list,
2053 unsigned num_shaders)
2054 {
2055 struct gl_uniform_block *ubo_blocks = NULL;
2056 struct gl_uniform_block *ssbo_blocks = NULL;
2057 unsigned num_ubo_blocks = 0;
2058 unsigned num_ssbo_blocks = 0;
2059
2060 /* Check that global variables defined in multiple shaders are consistent.
2061 */
2062 glsl_symbol_table variables;
2063 for (unsigned i = 0; i < num_shaders; i++) {
2064 if (shader_list[i] == NULL)
2065 continue;
2066 cross_validate_globals(prog, shader_list[i]->ir, &variables, false);
2067 }
2068
2069 if (!prog->LinkStatus)
2070 return NULL;
2071
2072 /* Check that interface blocks defined in multiple shaders are consistent.
2073 */
2074 validate_intrastage_interface_blocks(prog, (const gl_shader **)shader_list,
2075 num_shaders);
2076 if (!prog->LinkStatus)
2077 return NULL;
2078
2079 /* Check that there is only a single definition of each function signature
2080 * across all shaders.
2081 */
2082 for (unsigned i = 0; i < (num_shaders - 1); i++) {
2083 foreach_in_list(ir_instruction, node, shader_list[i]->ir) {
2084 ir_function *const f = node->as_function();
2085
2086 if (f == NULL)
2087 continue;
2088
2089 for (unsigned j = i + 1; j < num_shaders; j++) {
2090 ir_function *const other =
2091 shader_list[j]->symbols->get_function(f->name);
2092
2093 /* If the other shader has no function (and therefore no function
2094 * signatures) with the same name, skip to the next shader.
2095 */
2096 if (other == NULL)
2097 continue;
2098
2099 foreach_in_list(ir_function_signature, sig, &f->signatures) {
2100 if (!sig->is_defined)
2101 continue;
2102
2103 ir_function_signature *other_sig =
2104 other->exact_matching_signature(NULL, &sig->parameters);
2105
2106 if (other_sig != NULL && other_sig->is_defined) {
2107 linker_error(prog, "function `%s' is multiply defined\n",
2108 f->name);
2109 return NULL;
2110 }
2111 }
2112 }
2113 }
2114 }
2115
2116 /* Find the shader that defines main, and make a clone of it.
2117 *
2118 * Starting with the clone, search for undefined references. If one is
2119 * found, find the shader that defines it. Clone the reference and add
2120 * it to the shader. Repeat until there are no undefined references or
2121 * until a reference cannot be resolved.
2122 */
2123 gl_shader *main = NULL;
2124 for (unsigned i = 0; i < num_shaders; i++) {
2125 if (_mesa_get_main_function_signature(shader_list[i]->symbols)) {
2126 main = shader_list[i];
2127 break;
2128 }
2129 }
2130
2131 if (main == NULL) {
2132 linker_error(prog, "%s shader lacks `main'\n",
2133 _mesa_shader_stage_to_string(shader_list[0]->Stage));
2134 return NULL;
2135 }
2136
2137 gl_linked_shader *linked = ctx->Driver.NewShader(shader_list[0]->Stage);
2138 linked->ir = new(linked) exec_list;
2139 clone_ir_list(mem_ctx, linked->ir, main->ir);
2140
2141 link_fs_inout_layout_qualifiers(prog, linked, shader_list, num_shaders);
2142 link_tcs_out_layout_qualifiers(prog, linked, shader_list, num_shaders);
2143 link_tes_in_layout_qualifiers(prog, linked, shader_list, num_shaders);
2144 link_gs_inout_layout_qualifiers(prog, linked, shader_list, num_shaders);
2145 link_cs_input_layout_qualifiers(prog, linked, shader_list, num_shaders);
2146 link_xfb_stride_layout_qualifiers(ctx, prog, linked, shader_list,
2147 num_shaders);
2148
2149 populate_symbol_table(linked);
2150
2151 /* The pointer to the main function in the final linked shader (i.e., the
2152 * copy of the original shader that contained the main function).
2153 */
2154 ir_function_signature *const main_sig =
2155 _mesa_get_main_function_signature(linked->symbols);
2156
2157 /* Move any instructions other than variable declarations or function
2158 * declarations into main.
2159 */
2160 exec_node *insertion_point =
2161 move_non_declarations(linked->ir, (exec_node *) &main_sig->body, false,
2162 linked);
2163
2164 for (unsigned i = 0; i < num_shaders; i++) {
2165 if (shader_list[i] == main)
2166 continue;
2167
2168 insertion_point = move_non_declarations(shader_list[i]->ir,
2169 insertion_point, true, linked);
2170 }
2171
2172 if (!link_function_calls(prog, linked, shader_list, num_shaders)) {
2173 _mesa_delete_linked_shader(ctx, linked);
2174 return NULL;
2175 }
2176
2177 /* Make a pass over all variable declarations to ensure that arrays with
2178 * unspecified sizes have a size specified. The size is inferred from the
2179 * max_array_access field.
2180 */
2181 array_sizing_visitor v;
2182 v.run(linked->ir);
2183 v.fixup_unnamed_interface_types();
2184
2185 /* Link up uniform blocks defined within this stage. */
2186 link_uniform_blocks(mem_ctx, ctx, prog, linked, &ubo_blocks,
2187 &num_ubo_blocks, &ssbo_blocks, &num_ssbo_blocks);
2188
2189 if (!prog->LinkStatus) {
2190 _mesa_delete_linked_shader(ctx, linked);
2191 return NULL;
2192 }
2193
2194 /* Copy ubo blocks to linked shader list */
2195 linked->UniformBlocks =
2196 ralloc_array(linked, gl_uniform_block *, num_ubo_blocks);
2197 ralloc_steal(linked, ubo_blocks);
2198 for (unsigned i = 0; i < num_ubo_blocks; i++) {
2199 linked->UniformBlocks[i] = &ubo_blocks[i];
2200 }
2201 linked->NumUniformBlocks = num_ubo_blocks;
2202
2203 /* Copy ssbo blocks to linked shader list */
2204 linked->ShaderStorageBlocks =
2205 ralloc_array(linked, gl_uniform_block *, num_ssbo_blocks);
2206 ralloc_steal(linked, ssbo_blocks);
2207 for (unsigned i = 0; i < num_ssbo_blocks; i++) {
2208 linked->ShaderStorageBlocks[i] = &ssbo_blocks[i];
2209 }
2210 linked->NumShaderStorageBlocks = num_ssbo_blocks;
2211
2212 /* At this point linked should contain all of the linked IR, so
2213 * validate it to make sure nothing went wrong.
2214 */
2215 validate_ir_tree(linked->ir);
2216
2217 /* Set the size of geometry shader input arrays */
2218 if (linked->Stage == MESA_SHADER_GEOMETRY) {
2219 unsigned num_vertices = vertices_per_prim(linked->info.Geom.InputType);
2220 array_resize_visitor input_resize_visitor(num_vertices, prog,
2221 MESA_SHADER_GEOMETRY);
2222 foreach_in_list(ir_instruction, ir, linked->ir) {
2223 ir->accept(&input_resize_visitor);
2224 }
2225 }
2226
2227 if (ctx->Const.VertexID_is_zero_based)
2228 lower_vertex_id(linked);
2229
2230 return linked;
2231 }
2232
2233 /**
2234 * Update the sizes of linked shader uniform arrays to the maximum
2235 * array index used.
2236 *
2237 * From page 81 (page 95 of the PDF) of the OpenGL 2.1 spec:
2238 *
2239 * If one or more elements of an array are active,
2240 * GetActiveUniform will return the name of the array in name,
2241 * subject to the restrictions listed above. The type of the array
2242 * is returned in type. The size parameter contains the highest
2243 * array element index used, plus one. The compiler or linker
2244 * determines the highest index used. There will be only one
2245 * active uniform reported by the GL per uniform array.
2246
2247 */
2248 static void
2249 update_array_sizes(struct gl_shader_program *prog)
2250 {
2251 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
2252 if (prog->_LinkedShaders[i] == NULL)
2253 continue;
2254
2255 foreach_in_list(ir_instruction, node, prog->_LinkedShaders[i]->ir) {
2256 ir_variable *const var = node->as_variable();
2257
2258 if ((var == NULL) || (var->data.mode != ir_var_uniform) ||
2259 !var->type->is_array())
2260 continue;
2261
2262 /* GL_ARB_uniform_buffer_object says that std140 uniforms
2263 * will not be eliminated. Since we always do std140, just
2264 * don't resize arrays in UBOs.
2265 *
2266 * Atomic counters are supposed to get deterministic
2267 * locations assigned based on the declaration ordering and
2268 * sizes, array compaction would mess that up.
2269 *
2270 * Subroutine uniforms are not removed.
2271 */
2272 if (var->is_in_buffer_block() || var->type->contains_atomic() ||
2273 var->type->contains_subroutine() || var->constant_initializer)
2274 continue;
2275
2276 int size = var->data.max_array_access;
2277 for (unsigned j = 0; j < MESA_SHADER_STAGES; j++) {
2278 if (prog->_LinkedShaders[j] == NULL)
2279 continue;
2280
2281 foreach_in_list(ir_instruction, node2, prog->_LinkedShaders[j]->ir) {
2282 ir_variable *other_var = node2->as_variable();
2283 if (!other_var)
2284 continue;
2285
2286 if (strcmp(var->name, other_var->name) == 0 &&
2287 other_var->data.max_array_access > size) {
2288 size = other_var->data.max_array_access;
2289 }
2290 }
2291 }
2292
2293 if (size + 1 != (int)var->type->length) {
2294 /* If this is a built-in uniform (i.e., it's backed by some
2295 * fixed-function state), adjust the number of state slots to
2296 * match the new array size. The number of slots per array entry
2297 * is not known. It seems safe to assume that the total number of
2298 * slots is an integer multiple of the number of array elements.
2299 * Determine the number of slots per array element by dividing by
2300 * the old (total) size.
2301 */
2302 const unsigned num_slots = var->get_num_state_slots();
2303 if (num_slots > 0) {
2304 var->set_num_state_slots((size + 1)
2305 * (num_slots / var->type->length));
2306 }
2307
2308 var->type = glsl_type::get_array_instance(var->type->fields.array,
2309 size + 1);
2310 /* FINISHME: We should update the types of array
2311 * dereferences of this variable now.
2312 */
2313 }
2314 }
2315 }
2316 }
2317
2318 /**
2319 * Resize tessellation evaluation per-vertex inputs to the size of
2320 * tessellation control per-vertex outputs.
2321 */
2322 static void
2323 resize_tes_inputs(struct gl_context *ctx,
2324 struct gl_shader_program *prog)
2325 {
2326 if (prog->_LinkedShaders[MESA_SHADER_TESS_EVAL] == NULL)
2327 return;
2328
2329 gl_linked_shader *const tcs = prog->_LinkedShaders[MESA_SHADER_TESS_CTRL];
2330 gl_linked_shader *const tes = prog->_LinkedShaders[MESA_SHADER_TESS_EVAL];
2331
2332 /* If no control shader is present, then the TES inputs are statically
2333 * sized to MaxPatchVertices; the actual size of the arrays won't be
2334 * known until draw time.
2335 */
2336 const int num_vertices = tcs
2337 ? tcs->info.TessCtrl.VerticesOut
2338 : ctx->Const.MaxPatchVertices;
2339
2340 array_resize_visitor input_resize_visitor(num_vertices, prog,
2341 MESA_SHADER_TESS_EVAL);
2342 foreach_in_list(ir_instruction, ir, tes->ir) {
2343 ir->accept(&input_resize_visitor);
2344 }
2345
2346 if (tcs || ctx->Const.LowerTESPatchVerticesIn) {
2347 /* Convert the gl_PatchVerticesIn system value into a constant, since
2348 * the value is known at this point.
2349 */
2350 foreach_in_list(ir_instruction, ir, tes->ir) {
2351 ir_variable *var = ir->as_variable();
2352 if (var && var->data.mode == ir_var_system_value &&
2353 var->data.location == SYSTEM_VALUE_VERTICES_IN) {
2354 void *mem_ctx = ralloc_parent(var);
2355 var->data.location = 0;
2356 var->data.explicit_location = false;
2357 if (tcs) {
2358 var->data.mode = ir_var_auto;
2359 var->constant_value = new(mem_ctx) ir_constant(num_vertices);
2360 } else {
2361 var->data.mode = ir_var_uniform;
2362 var->data.how_declared = ir_var_hidden;
2363 var->allocate_state_slots(1);
2364 ir_state_slot *slot0 = &var->get_state_slots()[0];
2365 slot0->swizzle = SWIZZLE_XXXX;
2366 slot0->tokens[0] = STATE_INTERNAL;
2367 slot0->tokens[1] = STATE_TES_PATCH_VERTICES_IN;
2368 for (int i = 2; i < STATE_LENGTH; i++)
2369 slot0->tokens[i] = 0;
2370 }
2371 }
2372 }
2373 }
2374 }
2375
2376 /**
2377 * Find a contiguous set of available bits in a bitmask.
2378 *
2379 * \param used_mask Bits representing used (1) and unused (0) locations
2380 * \param needed_count Number of contiguous bits needed.
2381 *
2382 * \return
2383 * Base location of the available bits on success or -1 on failure.
2384 */
2385 int
2386 find_available_slots(unsigned used_mask, unsigned needed_count)
2387 {
2388 unsigned needed_mask = (1 << needed_count) - 1;
2389 const int max_bit_to_test = (8 * sizeof(used_mask)) - needed_count;
2390
2391 /* The comparison to 32 is redundant, but without it GCC emits "warning:
2392 * cannot optimize possibly infinite loops" for the loop below.
2393 */
2394 if ((needed_count == 0) || (max_bit_to_test < 0) || (max_bit_to_test > 32))
2395 return -1;
2396
2397 for (int i = 0; i <= max_bit_to_test; i++) {
2398 if ((needed_mask & ~used_mask) == needed_mask)
2399 return i;
2400
2401 needed_mask <<= 1;
2402 }
2403
2404 return -1;
2405 }
2406
2407
2408 /**
2409 * Assign locations for either VS inputs or FS outputs
2410 *
2411 * \param mem_ctx Temporary ralloc context used for linking
2412 * \param prog Shader program whose variables need locations assigned
2413 * \param constants Driver specific constant values for the program.
2414 * \param target_index Selector for the program target to receive location
2415 * assignmnets. Must be either \c MESA_SHADER_VERTEX or
2416 * \c MESA_SHADER_FRAGMENT.
2417 *
2418 * \return
2419 * If locations are successfully assigned, true is returned. Otherwise an
2420 * error is emitted to the shader link log and false is returned.
2421 */
2422 bool
2423 assign_attribute_or_color_locations(void *mem_ctx,
2424 gl_shader_program *prog,
2425 struct gl_constants *constants,
2426 unsigned target_index)
2427 {
2428 /* Maximum number of generic locations. This corresponds to either the
2429 * maximum number of draw buffers or the maximum number of generic
2430 * attributes.
2431 */
2432 unsigned max_index = (target_index == MESA_SHADER_VERTEX) ?
2433 constants->Program[target_index].MaxAttribs :
2434 MAX2(constants->MaxDrawBuffers, constants->MaxDualSourceDrawBuffers);
2435
2436 /* Mark invalid locations as being used.
2437 */
2438 unsigned used_locations = (max_index >= 32)
2439 ? ~0 : ~((1 << max_index) - 1);
2440 unsigned double_storage_locations = 0;
2441
2442 assert((target_index == MESA_SHADER_VERTEX)
2443 || (target_index == MESA_SHADER_FRAGMENT));
2444
2445 gl_linked_shader *const sh = prog->_LinkedShaders[target_index];
2446 if (sh == NULL)
2447 return true;
2448
2449 /* Operate in a total of four passes.
2450 *
2451 * 1. Invalidate the location assignments for all vertex shader inputs.
2452 *
2453 * 2. Assign locations for inputs that have user-defined (via
2454 * glBindVertexAttribLocation) locations and outputs that have
2455 * user-defined locations (via glBindFragDataLocation).
2456 *
2457 * 3. Sort the attributes without assigned locations by number of slots
2458 * required in decreasing order. Fragmentation caused by attribute
2459 * locations assigned by the application may prevent large attributes
2460 * from having enough contiguous space.
2461 *
2462 * 4. Assign locations to any inputs without assigned locations.
2463 */
2464
2465 const int generic_base = (target_index == MESA_SHADER_VERTEX)
2466 ? (int) VERT_ATTRIB_GENERIC0 : (int) FRAG_RESULT_DATA0;
2467
2468 const enum ir_variable_mode direction =
2469 (target_index == MESA_SHADER_VERTEX)
2470 ? ir_var_shader_in : ir_var_shader_out;
2471
2472
2473 /* Temporary storage for the set of attributes that need locations assigned.
2474 */
2475 struct temp_attr {
2476 unsigned slots;
2477 ir_variable *var;
2478
2479 /* Used below in the call to qsort. */
2480 static int compare(const void *a, const void *b)
2481 {
2482 const temp_attr *const l = (const temp_attr *) a;
2483 const temp_attr *const r = (const temp_attr *) b;
2484
2485 /* Reversed because we want a descending order sort below. */
2486 return r->slots - l->slots;
2487 }
2488 } to_assign[32];
2489 assert(max_index <= 32);
2490
2491 /* Temporary array for the set of attributes that have locations assigned.
2492 */
2493 ir_variable *assigned[16];
2494
2495 unsigned num_attr = 0;
2496 unsigned assigned_attr = 0;
2497
2498 foreach_in_list(ir_instruction, node, sh->ir) {
2499 ir_variable *const var = node->as_variable();
2500
2501 if ((var == NULL) || (var->data.mode != (unsigned) direction))
2502 continue;
2503
2504 if (var->data.explicit_location) {
2505 var->data.is_unmatched_generic_inout = 0;
2506 if ((var->data.location >= (int)(max_index + generic_base))
2507 || (var->data.location < 0)) {
2508 linker_error(prog,
2509 "invalid explicit location %d specified for `%s'\n",
2510 (var->data.location < 0)
2511 ? var->data.location
2512 : var->data.location - generic_base,
2513 var->name);
2514 return false;
2515 }
2516 } else if (target_index == MESA_SHADER_VERTEX) {
2517 unsigned binding;
2518
2519 if (prog->AttributeBindings->get(binding, var->name)) {
2520 assert(binding >= VERT_ATTRIB_GENERIC0);
2521 var->data.location = binding;
2522 var->data.is_unmatched_generic_inout = 0;
2523 }
2524 } else if (target_index == MESA_SHADER_FRAGMENT) {
2525 unsigned binding;
2526 unsigned index;
2527 const char *name = var->name;
2528 const glsl_type *type = var->type;
2529
2530 while (type) {
2531 /* Check if there's a binding for the variable name */
2532 if (prog->FragDataBindings->get(binding, name)) {
2533 assert(binding >= FRAG_RESULT_DATA0);
2534 var->data.location = binding;
2535 var->data.is_unmatched_generic_inout = 0;
2536
2537 if (prog->FragDataIndexBindings->get(index, name)) {
2538 var->data.index = index;
2539 }
2540 break;
2541 }
2542
2543 /* If not, but it's an array type, look for name[0] */
2544 if (type->is_array()) {
2545 name = ralloc_asprintf(mem_ctx, "%s[0]", name);
2546 type = type->fields.array;
2547 continue;
2548 }
2549
2550 break;
2551 }
2552 }
2553
2554 if (strcmp(var->name, "gl_LastFragData") == 0)
2555 continue;
2556
2557 /* From GL4.5 core spec, section 15.2 (Shader Execution):
2558 *
2559 * "Output binding assignments will cause LinkProgram to fail:
2560 * ...
2561 * If the program has an active output assigned to a location greater
2562 * than or equal to the value of MAX_DUAL_SOURCE_DRAW_BUFFERS and has
2563 * an active output assigned an index greater than or equal to one;"
2564 */
2565 if (target_index == MESA_SHADER_FRAGMENT && var->data.index >= 1 &&
2566 var->data.location - generic_base >=
2567 (int) constants->MaxDualSourceDrawBuffers) {
2568 linker_error(prog,
2569 "output location %d >= GL_MAX_DUAL_SOURCE_DRAW_BUFFERS "
2570 "with index %u for %s\n",
2571 var->data.location - generic_base, var->data.index,
2572 var->name);
2573 return false;
2574 }
2575
2576 const unsigned slots = var->type->count_attribute_slots(target_index == MESA_SHADER_VERTEX);
2577
2578 /* If the variable is not a built-in and has a location statically
2579 * assigned in the shader (presumably via a layout qualifier), make sure
2580 * that it doesn't collide with other assigned locations. Otherwise,
2581 * add it to the list of variables that need linker-assigned locations.
2582 */
2583 if (var->data.location != -1) {
2584 if (var->data.location >= generic_base && var->data.index < 1) {
2585 /* From page 61 of the OpenGL 4.0 spec:
2586 *
2587 * "LinkProgram will fail if the attribute bindings assigned
2588 * by BindAttribLocation do not leave not enough space to
2589 * assign a location for an active matrix attribute or an
2590 * active attribute array, both of which require multiple
2591 * contiguous generic attributes."
2592 *
2593 * I think above text prohibits the aliasing of explicit and
2594 * automatic assignments. But, aliasing is allowed in manual
2595 * assignments of attribute locations. See below comments for
2596 * the details.
2597 *
2598 * From OpenGL 4.0 spec, page 61:
2599 *
2600 * "It is possible for an application to bind more than one
2601 * attribute name to the same location. This is referred to as
2602 * aliasing. This will only work if only one of the aliased
2603 * attributes is active in the executable program, or if no
2604 * path through the shader consumes more than one attribute of
2605 * a set of attributes aliased to the same location. A link
2606 * error can occur if the linker determines that every path
2607 * through the shader consumes multiple aliased attributes,
2608 * but implementations are not required to generate an error
2609 * in this case."
2610 *
2611 * From GLSL 4.30 spec, page 54:
2612 *
2613 * "A program will fail to link if any two non-vertex shader
2614 * input variables are assigned to the same location. For
2615 * vertex shaders, multiple input variables may be assigned
2616 * to the same location using either layout qualifiers or via
2617 * the OpenGL API. However, such aliasing is intended only to
2618 * support vertex shaders where each execution path accesses
2619 * at most one input per each location. Implementations are
2620 * permitted, but not required, to generate link-time errors
2621 * if they detect that every path through the vertex shader
2622 * executable accesses multiple inputs assigned to any single
2623 * location. For all shader types, a program will fail to link
2624 * if explicit location assignments leave the linker unable
2625 * to find space for other variables without explicit
2626 * assignments."
2627 *
2628 * From OpenGL ES 3.0 spec, page 56:
2629 *
2630 * "Binding more than one attribute name to the same location
2631 * is referred to as aliasing, and is not permitted in OpenGL
2632 * ES Shading Language 3.00 vertex shaders. LinkProgram will
2633 * fail when this condition exists. However, aliasing is
2634 * possible in OpenGL ES Shading Language 1.00 vertex shaders.
2635 * This will only work if only one of the aliased attributes
2636 * is active in the executable program, or if no path through
2637 * the shader consumes more than one attribute of a set of
2638 * attributes aliased to the same location. A link error can
2639 * occur if the linker determines that every path through the
2640 * shader consumes multiple aliased attributes, but implemen-
2641 * tations are not required to generate an error in this case."
2642 *
2643 * After looking at above references from OpenGL, OpenGL ES and
2644 * GLSL specifications, we allow aliasing of vertex input variables
2645 * in: OpenGL 2.0 (and above) and OpenGL ES 2.0.
2646 *
2647 * NOTE: This is not required by the spec but its worth mentioning
2648 * here that we're not doing anything to make sure that no path
2649 * through the vertex shader executable accesses multiple inputs
2650 * assigned to any single location.
2651 */
2652
2653 /* Mask representing the contiguous slots that will be used by
2654 * this attribute.
2655 */
2656 const unsigned attr = var->data.location - generic_base;
2657 const unsigned use_mask = (1 << slots) - 1;
2658 const char *const string = (target_index == MESA_SHADER_VERTEX)
2659 ? "vertex shader input" : "fragment shader output";
2660
2661 /* Generate a link error if the requested locations for this
2662 * attribute exceed the maximum allowed attribute location.
2663 */
2664 if (attr + slots > max_index) {
2665 linker_error(prog,
2666 "insufficient contiguous locations "
2667 "available for %s `%s' %d %d %d\n", string,
2668 var->name, used_locations, use_mask, attr);
2669 return false;
2670 }
2671
2672 /* Generate a link error if the set of bits requested for this
2673 * attribute overlaps any previously allocated bits.
2674 */
2675 if ((~(use_mask << attr) & used_locations) != used_locations) {
2676 if (target_index == MESA_SHADER_FRAGMENT && !prog->IsES) {
2677 /* From section 4.4.2 (Output Layout Qualifiers) of the GLSL
2678 * 4.40 spec:
2679 *
2680 * "Additionally, for fragment shader outputs, if two
2681 * variables are placed within the same location, they
2682 * must have the same underlying type (floating-point or
2683 * integer). No component aliasing of output variables or
2684 * members is allowed.
2685 */
2686 for (unsigned i = 0; i < assigned_attr; i++) {
2687 unsigned assigned_slots =
2688 assigned[i]->type->count_attribute_slots(false);
2689 unsigned assig_attr =
2690 assigned[i]->data.location - generic_base;
2691 unsigned assigned_use_mask = (1 << assigned_slots) - 1;
2692
2693 if ((assigned_use_mask << assig_attr) &
2694 (use_mask << attr)) {
2695
2696 const glsl_type *assigned_type =
2697 assigned[i]->type->without_array();
2698 const glsl_type *type = var->type->without_array();
2699 if (assigned_type->base_type != type->base_type) {
2700 linker_error(prog, "types do not match for aliased"
2701 " %ss %s and %s\n", string,
2702 assigned[i]->name, var->name);
2703 return false;
2704 }
2705
2706 unsigned assigned_component_mask =
2707 ((1 << assigned_type->vector_elements) - 1) <<
2708 assigned[i]->data.location_frac;
2709 unsigned component_mask =
2710 ((1 << type->vector_elements) - 1) <<
2711 var->data.location_frac;
2712 if (assigned_component_mask & component_mask) {
2713 linker_error(prog, "overlapping component is "
2714 "assigned to %ss %s and %s "
2715 "(component=%d)\n",
2716 string, assigned[i]->name, var->name,
2717 var->data.location_frac);
2718 return false;
2719 }
2720 }
2721 }
2722 } else if (target_index == MESA_SHADER_FRAGMENT ||
2723 (prog->IsES && prog->Version >= 300)) {
2724 linker_error(prog, "overlapping location is assigned "
2725 "to %s `%s' %d %d %d\n", string, var->name,
2726 used_locations, use_mask, attr);
2727 return false;
2728 } else {
2729 linker_warning(prog, "overlapping location is assigned "
2730 "to %s `%s' %d %d %d\n", string, var->name,
2731 used_locations, use_mask, attr);
2732 }
2733 }
2734
2735 used_locations |= (use_mask << attr);
2736
2737 /* From the GL 4.5 core spec, section 11.1.1 (Vertex Attributes):
2738 *
2739 * "A program with more than the value of MAX_VERTEX_ATTRIBS
2740 * active attribute variables may fail to link, unless
2741 * device-dependent optimizations are able to make the program
2742 * fit within available hardware resources. For the purposes
2743 * of this test, attribute variables of the type dvec3, dvec4,
2744 * dmat2x3, dmat2x4, dmat3, dmat3x4, dmat4x3, and dmat4 may
2745 * count as consuming twice as many attributes as equivalent
2746 * single-precision types. While these types use the same number
2747 * of generic attributes as their single-precision equivalents,
2748 * implementations are permitted to consume two single-precision
2749 * vectors of internal storage for each three- or four-component
2750 * double-precision vector."
2751 *
2752 * Mark this attribute slot as taking up twice as much space
2753 * so we can count it properly against limits. According to
2754 * issue (3) of the GL_ARB_vertex_attrib_64bit behavior, this
2755 * is optional behavior, but it seems preferable.
2756 */
2757 if (var->type->without_array()->is_dual_slot())
2758 double_storage_locations |= (use_mask << attr);
2759 }
2760
2761 assigned[assigned_attr] = var;
2762 assigned_attr++;
2763
2764 continue;
2765 }
2766
2767 if (num_attr >= max_index) {
2768 linker_error(prog, "too many %s (max %u)",
2769 target_index == MESA_SHADER_VERTEX ?
2770 "vertex shader inputs" : "fragment shader outputs",
2771 max_index);
2772 return false;
2773 }
2774 to_assign[num_attr].slots = slots;
2775 to_assign[num_attr].var = var;
2776 num_attr++;
2777 }
2778
2779 if (target_index == MESA_SHADER_VERTEX) {
2780 unsigned total_attribs_size =
2781 _mesa_bitcount(used_locations & ((1 << max_index) - 1)) +
2782 _mesa_bitcount(double_storage_locations);
2783 if (total_attribs_size > max_index) {
2784 linker_error(prog,
2785 "attempt to use %d vertex attribute slots only %d available ",
2786 total_attribs_size, max_index);
2787 return false;
2788 }
2789 }
2790
2791 /* If all of the attributes were assigned locations by the application (or
2792 * are built-in attributes with fixed locations), return early. This should
2793 * be the common case.
2794 */
2795 if (num_attr == 0)
2796 return true;
2797
2798 qsort(to_assign, num_attr, sizeof(to_assign[0]), temp_attr::compare);
2799
2800 if (target_index == MESA_SHADER_VERTEX) {
2801 /* VERT_ATTRIB_GENERIC0 is a pseudo-alias for VERT_ATTRIB_POS. It can
2802 * only be explicitly assigned by via glBindAttribLocation. Mark it as
2803 * reserved to prevent it from being automatically allocated below.
2804 */
2805 find_deref_visitor find("gl_Vertex");
2806 find.run(sh->ir);
2807 if (find.variable_found())
2808 used_locations |= (1 << 0);
2809 }
2810
2811 for (unsigned i = 0; i < num_attr; i++) {
2812 /* Mask representing the contiguous slots that will be used by this
2813 * attribute.
2814 */
2815 const unsigned use_mask = (1 << to_assign[i].slots) - 1;
2816
2817 int location = find_available_slots(used_locations, to_assign[i].slots);
2818
2819 if (location < 0) {
2820 const char *const string = (target_index == MESA_SHADER_VERTEX)
2821 ? "vertex shader input" : "fragment shader output";
2822
2823 linker_error(prog,
2824 "insufficient contiguous locations "
2825 "available for %s `%s'\n",
2826 string, to_assign[i].var->name);
2827 return false;
2828 }
2829
2830 to_assign[i].var->data.location = generic_base + location;
2831 to_assign[i].var->data.is_unmatched_generic_inout = 0;
2832 used_locations |= (use_mask << location);
2833
2834 if (to_assign[i].var->type->without_array()->is_dual_slot())
2835 double_storage_locations |= (use_mask << location);
2836 }
2837
2838 /* Now that we have all the locations, from the GL 4.5 core spec, section
2839 * 11.1.1 (Vertex Attributes), dvec3, dvec4, dmat2x3, dmat2x4, dmat3,
2840 * dmat3x4, dmat4x3, and dmat4 count as consuming twice as many attributes
2841 * as equivalent single-precision types.
2842 */
2843 if (target_index == MESA_SHADER_VERTEX) {
2844 unsigned total_attribs_size =
2845 _mesa_bitcount(used_locations & ((1 << max_index) - 1)) +
2846 _mesa_bitcount(double_storage_locations);
2847 if (total_attribs_size > max_index) {
2848 linker_error(prog,
2849 "attempt to use %d vertex attribute slots only %d available ",
2850 total_attribs_size, max_index);
2851 return false;
2852 }
2853 }
2854
2855 return true;
2856 }
2857
2858 /**
2859 * Match explicit locations of outputs to inputs and deactivate the
2860 * unmatch flag if found so we don't optimise them away.
2861 */
2862 static void
2863 match_explicit_outputs_to_inputs(gl_linked_shader *producer,
2864 gl_linked_shader *consumer)
2865 {
2866 glsl_symbol_table parameters;
2867 ir_variable *explicit_locations[MAX_VARYINGS_INCL_PATCH][4] =
2868 { {NULL, NULL} };
2869
2870 /* Find all shader outputs in the "producer" stage.
2871 */
2872 foreach_in_list(ir_instruction, node, producer->ir) {
2873 ir_variable *const var = node->as_variable();
2874
2875 if ((var == NULL) || (var->data.mode != ir_var_shader_out))
2876 continue;
2877
2878 if (var->data.explicit_location &&
2879 var->data.location >= VARYING_SLOT_VAR0) {
2880 const unsigned idx = var->data.location - VARYING_SLOT_VAR0;
2881 if (explicit_locations[idx][var->data.location_frac] == NULL)
2882 explicit_locations[idx][var->data.location_frac] = var;
2883 }
2884 }
2885
2886 /* Match inputs to outputs */
2887 foreach_in_list(ir_instruction, node, consumer->ir) {
2888 ir_variable *const input = node->as_variable();
2889
2890 if ((input == NULL) || (input->data.mode != ir_var_shader_in))
2891 continue;
2892
2893 ir_variable *output = NULL;
2894 if (input->data.explicit_location
2895 && input->data.location >= VARYING_SLOT_VAR0) {
2896 output = explicit_locations[input->data.location - VARYING_SLOT_VAR0]
2897 [input->data.location_frac];
2898
2899 if (output != NULL){
2900 input->data.is_unmatched_generic_inout = 0;
2901 output->data.is_unmatched_generic_inout = 0;
2902 }
2903 }
2904 }
2905 }
2906
2907 /**
2908 * Store the gl_FragDepth layout in the gl_shader_program struct.
2909 */
2910 static void
2911 store_fragdepth_layout(struct gl_shader_program *prog)
2912 {
2913 if (prog->_LinkedShaders[MESA_SHADER_FRAGMENT] == NULL) {
2914 return;
2915 }
2916
2917 struct exec_list *ir = prog->_LinkedShaders[MESA_SHADER_FRAGMENT]->ir;
2918
2919 /* We don't look up the gl_FragDepth symbol directly because if
2920 * gl_FragDepth is not used in the shader, it's removed from the IR.
2921 * However, the symbol won't be removed from the symbol table.
2922 *
2923 * We're only interested in the cases where the variable is NOT removed
2924 * from the IR.
2925 */
2926 foreach_in_list(ir_instruction, node, ir) {
2927 ir_variable *const var = node->as_variable();
2928
2929 if (var == NULL || var->data.mode != ir_var_shader_out) {
2930 continue;
2931 }
2932
2933 if (strcmp(var->name, "gl_FragDepth") == 0) {
2934 switch (var->data.depth_layout) {
2935 case ir_depth_layout_none:
2936 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_NONE;
2937 return;
2938 case ir_depth_layout_any:
2939 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_ANY;
2940 return;
2941 case ir_depth_layout_greater:
2942 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_GREATER;
2943 return;
2944 case ir_depth_layout_less:
2945 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_LESS;
2946 return;
2947 case ir_depth_layout_unchanged:
2948 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_UNCHANGED;
2949 return;
2950 default:
2951 assert(0);
2952 return;
2953 }
2954 }
2955 }
2956 }
2957
2958 /**
2959 * Validate the resources used by a program versus the implementation limits
2960 */
2961 static void
2962 check_resources(struct gl_context *ctx, struct gl_shader_program *prog)
2963 {
2964 unsigned total_uniform_blocks = 0;
2965 unsigned total_shader_storage_blocks = 0;
2966
2967 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
2968 struct gl_linked_shader *sh = prog->_LinkedShaders[i];
2969
2970 if (sh == NULL)
2971 continue;
2972
2973 if (sh->num_samplers > ctx->Const.Program[i].MaxTextureImageUnits) {
2974 linker_error(prog, "Too many %s shader texture samplers\n",
2975 _mesa_shader_stage_to_string(i));
2976 }
2977
2978 if (sh->num_uniform_components >
2979 ctx->Const.Program[i].MaxUniformComponents) {
2980 if (ctx->Const.GLSLSkipStrictMaxUniformLimitCheck) {
2981 linker_warning(prog, "Too many %s shader default uniform block "
2982 "components, but the driver will try to optimize "
2983 "them out; this is non-portable out-of-spec "
2984 "behavior\n",
2985 _mesa_shader_stage_to_string(i));
2986 } else {
2987 linker_error(prog, "Too many %s shader default uniform block "
2988 "components\n",
2989 _mesa_shader_stage_to_string(i));
2990 }
2991 }
2992
2993 if (sh->num_combined_uniform_components >
2994 ctx->Const.Program[i].MaxCombinedUniformComponents) {
2995 if (ctx->Const.GLSLSkipStrictMaxUniformLimitCheck) {
2996 linker_warning(prog, "Too many %s shader uniform components, "
2997 "but the driver will try to optimize them out; "
2998 "this is non-portable out-of-spec behavior\n",
2999 _mesa_shader_stage_to_string(i));
3000 } else {
3001 linker_error(prog, "Too many %s shader uniform components\n",
3002 _mesa_shader_stage_to_string(i));
3003 }
3004 }
3005
3006 total_shader_storage_blocks += sh->NumShaderStorageBlocks;
3007 total_uniform_blocks += sh->NumUniformBlocks;
3008
3009 const unsigned max_uniform_blocks =
3010 ctx->Const.Program[i].MaxUniformBlocks;
3011 if (max_uniform_blocks < sh->NumUniformBlocks) {
3012 linker_error(prog, "Too many %s uniform blocks (%d/%d)\n",
3013 _mesa_shader_stage_to_string(i), sh->NumUniformBlocks,
3014 max_uniform_blocks);
3015 }
3016
3017 const unsigned max_shader_storage_blocks =
3018 ctx->Const.Program[i].MaxShaderStorageBlocks;
3019 if (max_shader_storage_blocks < sh->NumShaderStorageBlocks) {
3020 linker_error(prog, "Too many %s shader storage blocks (%d/%d)\n",
3021 _mesa_shader_stage_to_string(i),
3022 sh->NumShaderStorageBlocks, max_shader_storage_blocks);
3023 }
3024 }
3025
3026 if (total_uniform_blocks > ctx->Const.MaxCombinedUniformBlocks) {
3027 linker_error(prog, "Too many combined uniform blocks (%d/%d)\n",
3028 total_uniform_blocks, ctx->Const.MaxCombinedUniformBlocks);
3029 }
3030
3031 if (total_shader_storage_blocks > ctx->Const.MaxCombinedShaderStorageBlocks) {
3032 linker_error(prog, "Too many combined shader storage blocks (%d/%d)\n",
3033 total_shader_storage_blocks,
3034 ctx->Const.MaxCombinedShaderStorageBlocks);
3035 }
3036
3037 for (unsigned i = 0; i < prog->NumUniformBlocks; i++) {
3038 if (prog->UniformBlocks[i].UniformBufferSize >
3039 ctx->Const.MaxUniformBlockSize) {
3040 linker_error(prog, "Uniform block %s too big (%d/%d)\n",
3041 prog->UniformBlocks[i].Name,
3042 prog->UniformBlocks[i].UniformBufferSize,
3043 ctx->Const.MaxUniformBlockSize);
3044 }
3045 }
3046
3047 for (unsigned i = 0; i < prog->NumShaderStorageBlocks; i++) {
3048 if (prog->ShaderStorageBlocks[i].UniformBufferSize >
3049 ctx->Const.MaxShaderStorageBlockSize) {
3050 linker_error(prog, "Shader storage block %s too big (%d/%d)\n",
3051 prog->ShaderStorageBlocks[i].Name,
3052 prog->ShaderStorageBlocks[i].UniformBufferSize,
3053 ctx->Const.MaxShaderStorageBlockSize);
3054 }
3055 }
3056 }
3057
3058 static void
3059 link_calculate_subroutine_compat(struct gl_shader_program *prog)
3060 {
3061 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3062 struct gl_linked_shader *sh = prog->_LinkedShaders[i];
3063 int count;
3064 if (!sh)
3065 continue;
3066
3067 for (unsigned j = 0; j < sh->NumSubroutineUniformRemapTable; j++) {
3068 if (sh->SubroutineUniformRemapTable[j] == INACTIVE_UNIFORM_EXPLICIT_LOCATION)
3069 continue;
3070
3071 struct gl_uniform_storage *uni = sh->SubroutineUniformRemapTable[j];
3072
3073 if (!uni)
3074 continue;
3075
3076 sh->NumSubroutineUniforms++;
3077 count = 0;
3078 if (sh->NumSubroutineFunctions == 0) {
3079 linker_error(prog, "subroutine uniform %s defined but no valid functions found\n", uni->type->name);
3080 continue;
3081 }
3082 for (unsigned f = 0; f < sh->NumSubroutineFunctions; f++) {
3083 struct gl_subroutine_function *fn = &sh->SubroutineFunctions[f];
3084 for (int k = 0; k < fn->num_compat_types; k++) {
3085 if (fn->types[k] == uni->type) {
3086 count++;
3087 break;
3088 }
3089 }
3090 }
3091 uni->num_compatible_subroutines = count;
3092 }
3093 }
3094 }
3095
3096 static void
3097 check_subroutine_resources(struct gl_shader_program *prog)
3098 {
3099 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3100 struct gl_linked_shader *sh = prog->_LinkedShaders[i];
3101
3102 if (sh) {
3103 if (sh->NumSubroutineUniformRemapTable > MAX_SUBROUTINE_UNIFORM_LOCATIONS)
3104 linker_error(prog, "Too many %s shader subroutine uniforms\n",
3105 _mesa_shader_stage_to_string(i));
3106 }
3107 }
3108 }
3109 /**
3110 * Validate shader image resources.
3111 */
3112 static void
3113 check_image_resources(struct gl_context *ctx, struct gl_shader_program *prog)
3114 {
3115 unsigned total_image_units = 0;
3116 unsigned fragment_outputs = 0;
3117 unsigned total_shader_storage_blocks = 0;
3118
3119 if (!ctx->Extensions.ARB_shader_image_load_store)
3120 return;
3121
3122 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3123 struct gl_linked_shader *sh = prog->_LinkedShaders[i];
3124
3125 if (sh) {
3126 if (sh->NumImages > ctx->Const.Program[i].MaxImageUniforms)
3127 linker_error(prog, "Too many %s shader image uniforms (%u > %u)\n",
3128 _mesa_shader_stage_to_string(i), sh->NumImages,
3129 ctx->Const.Program[i].MaxImageUniforms);
3130
3131 total_image_units += sh->NumImages;
3132 total_shader_storage_blocks += sh->NumShaderStorageBlocks;
3133
3134 if (i == MESA_SHADER_FRAGMENT) {
3135 foreach_in_list(ir_instruction, node, sh->ir) {
3136 ir_variable *var = node->as_variable();
3137 if (var && var->data.mode == ir_var_shader_out)
3138 /* since there are no double fs outputs - pass false */
3139 fragment_outputs += var->type->count_attribute_slots(false);
3140 }
3141 }
3142 }
3143 }
3144
3145 if (total_image_units > ctx->Const.MaxCombinedImageUniforms)
3146 linker_error(prog, "Too many combined image uniforms\n");
3147
3148 if (total_image_units + fragment_outputs + total_shader_storage_blocks >
3149 ctx->Const.MaxCombinedShaderOutputResources)
3150 linker_error(prog, "Too many combined image uniforms, shader storage "
3151 " buffers and fragment outputs\n");
3152 }
3153
3154
3155 /**
3156 * Initializes explicit location slots to INACTIVE_UNIFORM_EXPLICIT_LOCATION
3157 * for a variable, checks for overlaps between other uniforms using explicit
3158 * locations.
3159 */
3160 static int
3161 reserve_explicit_locations(struct gl_shader_program *prog,
3162 string_to_uint_map *map, ir_variable *var)
3163 {
3164 unsigned slots = var->type->uniform_locations();
3165 unsigned max_loc = var->data.location + slots - 1;
3166 unsigned return_value = slots;
3167
3168 /* Resize remap table if locations do not fit in the current one. */
3169 if (max_loc + 1 > prog->NumUniformRemapTable) {
3170 prog->UniformRemapTable =
3171 reralloc(prog, prog->UniformRemapTable,
3172 gl_uniform_storage *,
3173 max_loc + 1);
3174
3175 if (!prog->UniformRemapTable) {
3176 linker_error(prog, "Out of memory during linking.\n");
3177 return -1;
3178 }
3179
3180 /* Initialize allocated space. */
3181 for (unsigned i = prog->NumUniformRemapTable; i < max_loc + 1; i++)
3182 prog->UniformRemapTable[i] = NULL;
3183
3184 prog->NumUniformRemapTable = max_loc + 1;
3185 }
3186
3187 for (unsigned i = 0; i < slots; i++) {
3188 unsigned loc = var->data.location + i;
3189
3190 /* Check if location is already used. */
3191 if (prog->UniformRemapTable[loc] == INACTIVE_UNIFORM_EXPLICIT_LOCATION) {
3192
3193 /* Possibly same uniform from a different stage, this is ok. */
3194 unsigned hash_loc;
3195 if (map->get(hash_loc, var->name) && hash_loc == loc - i) {
3196 return_value = 0;
3197 continue;
3198 }
3199
3200 /* ARB_explicit_uniform_location specification states:
3201 *
3202 * "No two default-block uniform variables in the program can have
3203 * the same location, even if they are unused, otherwise a compiler
3204 * or linker error will be generated."
3205 */
3206 linker_error(prog,
3207 "location qualifier for uniform %s overlaps "
3208 "previously used location\n",
3209 var->name);
3210 return -1;
3211 }
3212
3213 /* Initialize location as inactive before optimization
3214 * rounds and location assignment.
3215 */
3216 prog->UniformRemapTable[loc] = INACTIVE_UNIFORM_EXPLICIT_LOCATION;
3217 }
3218
3219 /* Note, base location used for arrays. */
3220 map->put(var->data.location, var->name);
3221
3222 return return_value;
3223 }
3224
3225 static bool
3226 reserve_subroutine_explicit_locations(struct gl_shader_program *prog,
3227 struct gl_linked_shader *sh,
3228 ir_variable *var)
3229 {
3230 unsigned slots = var->type->uniform_locations();
3231 unsigned max_loc = var->data.location + slots - 1;
3232
3233 /* Resize remap table if locations do not fit in the current one. */
3234 if (max_loc + 1 > sh->NumSubroutineUniformRemapTable) {
3235 sh->SubroutineUniformRemapTable =
3236 reralloc(sh, sh->SubroutineUniformRemapTable,
3237 gl_uniform_storage *,
3238 max_loc + 1);
3239
3240 if (!sh->SubroutineUniformRemapTable) {
3241 linker_error(prog, "Out of memory during linking.\n");
3242 return false;
3243 }
3244
3245 /* Initialize allocated space. */
3246 for (unsigned i = sh->NumSubroutineUniformRemapTable; i < max_loc + 1; i++)
3247 sh->SubroutineUniformRemapTable[i] = NULL;
3248
3249 sh->NumSubroutineUniformRemapTable = max_loc + 1;
3250 }
3251
3252 for (unsigned i = 0; i < slots; i++) {
3253 unsigned loc = var->data.location + i;
3254
3255 /* Check if location is already used. */
3256 if (sh->SubroutineUniformRemapTable[loc] == INACTIVE_UNIFORM_EXPLICIT_LOCATION) {
3257
3258 /* ARB_explicit_uniform_location specification states:
3259 * "No two subroutine uniform variables can have the same location
3260 * in the same shader stage, otherwise a compiler or linker error
3261 * will be generated."
3262 */
3263 linker_error(prog,
3264 "location qualifier for uniform %s overlaps "
3265 "previously used location\n",
3266 var->name);
3267 return false;
3268 }
3269
3270 /* Initialize location as inactive before optimization
3271 * rounds and location assignment.
3272 */
3273 sh->SubroutineUniformRemapTable[loc] = INACTIVE_UNIFORM_EXPLICIT_LOCATION;
3274 }
3275
3276 return true;
3277 }
3278 /**
3279 * Check and reserve all explicit uniform locations, called before
3280 * any optimizations happen to handle also inactive uniforms and
3281 * inactive array elements that may get trimmed away.
3282 */
3283 static unsigned
3284 check_explicit_uniform_locations(struct gl_context *ctx,
3285 struct gl_shader_program *prog)
3286 {
3287 if (!ctx->Extensions.ARB_explicit_uniform_location)
3288 return 0;
3289
3290 /* This map is used to detect if overlapping explicit locations
3291 * occur with the same uniform (from different stage) or a different one.
3292 */
3293 string_to_uint_map *uniform_map = new string_to_uint_map;
3294
3295 if (!uniform_map) {
3296 linker_error(prog, "Out of memory during linking.\n");
3297 return 0;
3298 }
3299
3300 unsigned entries_total = 0;
3301 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3302 struct gl_linked_shader *sh = prog->_LinkedShaders[i];
3303
3304 if (!sh)
3305 continue;
3306
3307 foreach_in_list(ir_instruction, node, sh->ir) {
3308 ir_variable *var = node->as_variable();
3309 if (!var || var->data.mode != ir_var_uniform)
3310 continue;
3311
3312 if (var->data.explicit_location) {
3313 bool ret = false;
3314 if (var->type->without_array()->is_subroutine())
3315 ret = reserve_subroutine_explicit_locations(prog, sh, var);
3316 else {
3317 int slots = reserve_explicit_locations(prog, uniform_map,
3318 var);
3319 if (slots != -1) {
3320 ret = true;
3321 entries_total += slots;
3322 }
3323 }
3324 if (!ret) {
3325 delete uniform_map;
3326 return 0;
3327 }
3328 }
3329 }
3330 }
3331
3332 struct empty_uniform_block *current_block = NULL;
3333
3334 for (unsigned i = 0; i < prog->NumUniformRemapTable; i++) {
3335 /* We found empty space in UniformRemapTable. */
3336 if (prog->UniformRemapTable[i] == NULL) {
3337 /* We've found the beginning of a new continous block of empty slots */
3338 if (!current_block || current_block->start + current_block->slots != i) {
3339 current_block = rzalloc(prog, struct empty_uniform_block);
3340 current_block->start = i;
3341 exec_list_push_tail(&prog->EmptyUniformLocations,
3342 &current_block->link);
3343 }
3344
3345 /* The current block continues, so we simply increment its slots */
3346 current_block->slots++;
3347 }
3348 }
3349
3350 delete uniform_map;
3351 return entries_total;
3352 }
3353
3354 static bool
3355 should_add_buffer_variable(struct gl_shader_program *shProg,
3356 GLenum type, const char *name)
3357 {
3358 bool found_interface = false;
3359 unsigned block_name_len = 0;
3360 const char *block_name_dot = strchr(name, '.');
3361
3362 /* These rules only apply to buffer variables. So we return
3363 * true for the rest of types.
3364 */
3365 if (type != GL_BUFFER_VARIABLE)
3366 return true;
3367
3368 for (unsigned i = 0; i < shProg->NumShaderStorageBlocks; i++) {
3369 const char *block_name = shProg->ShaderStorageBlocks[i].Name;
3370 block_name_len = strlen(block_name);
3371
3372 const char *block_square_bracket = strchr(block_name, '[');
3373 if (block_square_bracket) {
3374 /* The block is part of an array of named interfaces,
3375 * for the name comparison we ignore the "[x]" part.
3376 */
3377 block_name_len -= strlen(block_square_bracket);
3378 }
3379
3380 if (block_name_dot) {
3381 /* Check if the variable name starts with the interface
3382 * name. The interface name (if present) should have the
3383 * length than the interface block name we are comparing to.
3384 */
3385 unsigned len = strlen(name) - strlen(block_name_dot);
3386 if (len != block_name_len)
3387 continue;
3388 }
3389
3390 if (strncmp(block_name, name, block_name_len) == 0) {
3391 found_interface = true;
3392 break;
3393 }
3394 }
3395
3396 /* We remove the interface name from the buffer variable name,
3397 * including the dot that follows it.
3398 */
3399 if (found_interface)
3400 name = name + block_name_len + 1;
3401
3402 /* The ARB_program_interface_query spec says:
3403 *
3404 * "For an active shader storage block member declared as an array, an
3405 * entry will be generated only for the first array element, regardless
3406 * of its type. For arrays of aggregate types, the enumeration rules
3407 * are applied recursively for the single enumerated array element."
3408 */
3409 const char *struct_first_dot = strchr(name, '.');
3410 const char *first_square_bracket = strchr(name, '[');
3411
3412 /* The buffer variable is on top level and it is not an array */
3413 if (!first_square_bracket) {
3414 return true;
3415 /* The shader storage block member is a struct, then generate the entry */
3416 } else if (struct_first_dot && struct_first_dot < first_square_bracket) {
3417 return true;
3418 } else {
3419 /* Shader storage block member is an array, only generate an entry for the
3420 * first array element.
3421 */
3422 if (strncmp(first_square_bracket, "[0]", 3) == 0)
3423 return true;
3424 }
3425
3426 return false;
3427 }
3428
3429 static bool
3430 add_program_resource(struct gl_shader_program *prog,
3431 struct set *resource_set,
3432 GLenum type, const void *data, uint8_t stages)
3433 {
3434 assert(data);
3435
3436 /* If resource already exists, do not add it again. */
3437 if (_mesa_set_search(resource_set, data))
3438 return true;
3439
3440 prog->ProgramResourceList =
3441 reralloc(prog,
3442 prog->ProgramResourceList,
3443 gl_program_resource,
3444 prog->NumProgramResourceList + 1);
3445
3446 if (!prog->ProgramResourceList) {
3447 linker_error(prog, "Out of memory during linking.\n");
3448 return false;
3449 }
3450
3451 struct gl_program_resource *res =
3452 &prog->ProgramResourceList[prog->NumProgramResourceList];
3453
3454 res->Type = type;
3455 res->Data = data;
3456 res->StageReferences = stages;
3457
3458 prog->NumProgramResourceList++;
3459
3460 _mesa_set_add(resource_set, data);
3461
3462 return true;
3463 }
3464
3465 /* Function checks if a variable var is a packed varying and
3466 * if given name is part of packed varying's list.
3467 *
3468 * If a variable is a packed varying, it has a name like
3469 * 'packed:a,b,c' where a, b and c are separate variables.
3470 */
3471 static bool
3472 included_in_packed_varying(ir_variable *var, const char *name)
3473 {
3474 if (strncmp(var->name, "packed:", 7) != 0)
3475 return false;
3476
3477 char *list = strdup(var->name + 7);
3478 assert(list);
3479
3480 bool found = false;
3481 char *saveptr;
3482 char *token = strtok_r(list, ",", &saveptr);
3483 while (token) {
3484 if (strcmp(token, name) == 0) {
3485 found = true;
3486 break;
3487 }
3488 token = strtok_r(NULL, ",", &saveptr);
3489 }
3490 free(list);
3491 return found;
3492 }
3493
3494 /**
3495 * Function builds a stage reference bitmask from variable name.
3496 */
3497 static uint8_t
3498 build_stageref(struct gl_shader_program *shProg, const char *name,
3499 unsigned mode)
3500 {
3501 uint8_t stages = 0;
3502
3503 /* Note, that we assume MAX 8 stages, if there will be more stages, type
3504 * used for reference mask in gl_program_resource will need to be changed.
3505 */
3506 assert(MESA_SHADER_STAGES < 8);
3507
3508 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3509 struct gl_linked_shader *sh = shProg->_LinkedShaders[i];
3510 if (!sh)
3511 continue;
3512
3513 /* Shader symbol table may contain variables that have
3514 * been optimized away. Search IR for the variable instead.
3515 */
3516 foreach_in_list(ir_instruction, node, sh->ir) {
3517 ir_variable *var = node->as_variable();
3518 if (var) {
3519 unsigned baselen = strlen(var->name);
3520
3521 if (included_in_packed_varying(var, name)) {
3522 stages |= (1 << i);
3523 break;
3524 }
3525
3526 /* Type needs to match if specified, otherwise we might
3527 * pick a variable with same name but different interface.
3528 */
3529 if (var->data.mode != mode)
3530 continue;
3531
3532 if (strncmp(var->name, name, baselen) == 0) {
3533 /* Check for exact name matches but also check for arrays and
3534 * structs.
3535 */
3536 if (name[baselen] == '\0' ||
3537 name[baselen] == '[' ||
3538 name[baselen] == '.') {
3539 stages |= (1 << i);
3540 break;
3541 }
3542 }
3543 }
3544 }
3545 }
3546 return stages;
3547 }
3548
3549 /**
3550 * Create gl_shader_variable from ir_variable class.
3551 */
3552 static gl_shader_variable *
3553 create_shader_variable(struct gl_shader_program *shProg,
3554 const ir_variable *in,
3555 const char *name, const glsl_type *type,
3556 bool use_implicit_location, int location,
3557 const glsl_type *outermost_struct_type)
3558 {
3559 gl_shader_variable *out = ralloc(shProg, struct gl_shader_variable);
3560 if (!out)
3561 return NULL;
3562
3563 /* Since gl_VertexID may be lowered to gl_VertexIDMESA, but applications
3564 * expect to see gl_VertexID in the program resource list. Pretend.
3565 */
3566 if (in->data.mode == ir_var_system_value &&
3567 in->data.location == SYSTEM_VALUE_VERTEX_ID_ZERO_BASE) {
3568 out->name = ralloc_strdup(shProg, "gl_VertexID");
3569 } else if ((in->data.mode == ir_var_shader_out &&
3570 in->data.location == VARYING_SLOT_TESS_LEVEL_OUTER) ||
3571 (in->data.mode == ir_var_system_value &&
3572 in->data.location == SYSTEM_VALUE_TESS_LEVEL_OUTER)) {
3573 out->name = ralloc_strdup(shProg, "gl_TessLevelOuter");
3574 type = glsl_type::get_array_instance(glsl_type::float_type, 4);
3575 } else if ((in->data.mode == ir_var_shader_out &&
3576 in->data.location == VARYING_SLOT_TESS_LEVEL_INNER) ||
3577 (in->data.mode == ir_var_system_value &&
3578 in->data.location == SYSTEM_VALUE_TESS_LEVEL_INNER)) {
3579 out->name = ralloc_strdup(shProg, "gl_TessLevelInner");
3580 type = glsl_type::get_array_instance(glsl_type::float_type, 2);
3581 } else {
3582 out->name = ralloc_strdup(shProg, name);
3583 }
3584
3585 if (!out->name)
3586 return NULL;
3587
3588 /* The ARB_program_interface_query spec says:
3589 *
3590 * "Not all active variables are assigned valid locations; the
3591 * following variables will have an effective location of -1:
3592 *
3593 * * uniforms declared as atomic counters;
3594 *
3595 * * members of a uniform block;
3596 *
3597 * * built-in inputs, outputs, and uniforms (starting with "gl_"); and
3598 *
3599 * * inputs or outputs not declared with a "location" layout
3600 * qualifier, except for vertex shader inputs and fragment shader
3601 * outputs."
3602 */
3603 if (in->type->base_type == GLSL_TYPE_ATOMIC_UINT ||
3604 is_gl_identifier(in->name) ||
3605 !(in->data.explicit_location || use_implicit_location)) {
3606 out->location = -1;
3607 } else {
3608 out->location = location;
3609 }
3610
3611 out->type = type;
3612 out->outermost_struct_type = outermost_struct_type;
3613 out->interface_type = in->get_interface_type();
3614 out->component = in->data.location_frac;
3615 out->index = in->data.index;
3616 out->patch = in->data.patch;
3617 out->mode = in->data.mode;
3618 out->interpolation = in->data.interpolation;
3619 out->explicit_location = in->data.explicit_location;
3620 out->precision = in->data.precision;
3621
3622 return out;
3623 }
3624
3625 static bool
3626 add_shader_variable(struct gl_shader_program *shProg, struct set *resource_set,
3627 unsigned stage_mask,
3628 GLenum programInterface, ir_variable *var,
3629 const char *name, const glsl_type *type,
3630 bool use_implicit_location, int location,
3631 const glsl_type *outermost_struct_type = NULL)
3632 {
3633 const bool is_vertex_input =
3634 programInterface == GL_PROGRAM_INPUT &&
3635 stage_mask == MESA_SHADER_VERTEX;
3636
3637 switch (type->base_type) {
3638 case GLSL_TYPE_STRUCT: {
3639 /* The ARB_program_interface_query spec says:
3640 *
3641 * "For an active variable declared as a structure, a separate entry
3642 * will be generated for each active structure member. The name of
3643 * each entry is formed by concatenating the name of the structure,
3644 * the "." character, and the name of the structure member. If a
3645 * structure member to enumerate is itself a structure or array,
3646 * these enumeration rules are applied recursively."
3647 */
3648 if (outermost_struct_type == NULL)
3649 outermost_struct_type = type;
3650
3651 unsigned field_location = location;
3652 for (unsigned i = 0; i < type->length; i++) {
3653 const struct glsl_struct_field *field = &type->fields.structure[i];
3654 char *field_name = ralloc_asprintf(shProg, "%s.%s", name, field->name);
3655 if (!add_shader_variable(shProg, resource_set,
3656 stage_mask, programInterface,
3657 var, field_name, field->type,
3658 use_implicit_location, field_location,
3659 outermost_struct_type))
3660 return false;
3661
3662 field_location +=
3663 field->type->count_attribute_slots(is_vertex_input);
3664 }
3665 return true;
3666 }
3667
3668 default: {
3669 /* Issue #16 of the ARB_program_interface_query spec says:
3670 *
3671 * "* If a variable is a member of an interface block without an
3672 * instance name, it is enumerated using just the variable name.
3673 *
3674 * * If a variable is a member of an interface block with an instance
3675 * name, it is enumerated as "BlockName.Member", where "BlockName" is
3676 * the name of the interface block (not the instance name) and
3677 * "Member" is the name of the variable."
3678 */
3679 const char *prefixed_name = (var->data.from_named_ifc_block &&
3680 !is_gl_identifier(var->name))
3681 ? ralloc_asprintf(shProg, "%s.%s", var->get_interface_type()->name,
3682 name)
3683 : name;
3684
3685 /* The ARB_program_interface_query spec says:
3686 *
3687 * "For an active variable declared as a single instance of a basic
3688 * type, a single entry will be generated, using the variable name
3689 * from the shader source."
3690 */
3691 gl_shader_variable *sha_v =
3692 create_shader_variable(shProg, var, prefixed_name, type,
3693 use_implicit_location, location,
3694 outermost_struct_type);
3695 if (!sha_v)
3696 return false;
3697
3698 return add_program_resource(shProg, resource_set,
3699 programInterface, sha_v, stage_mask);
3700 }
3701 }
3702 }
3703
3704 static bool
3705 add_interface_variables(struct gl_shader_program *shProg,
3706 struct set *resource_set,
3707 unsigned stage, GLenum programInterface)
3708 {
3709 exec_list *ir = shProg->_LinkedShaders[stage]->ir;
3710
3711 foreach_in_list(ir_instruction, node, ir) {
3712 ir_variable *var = node->as_variable();
3713
3714 if (!var || var->data.how_declared == ir_var_hidden)
3715 continue;
3716
3717 int loc_bias;
3718
3719 switch (var->data.mode) {
3720 case ir_var_system_value:
3721 case ir_var_shader_in:
3722 if (programInterface != GL_PROGRAM_INPUT)
3723 continue;
3724 loc_bias = (stage == MESA_SHADER_VERTEX) ? int(VERT_ATTRIB_GENERIC0)
3725 : int(VARYING_SLOT_VAR0);
3726 break;
3727 case ir_var_shader_out:
3728 if (programInterface != GL_PROGRAM_OUTPUT)
3729 continue;
3730 loc_bias = (stage == MESA_SHADER_FRAGMENT) ? int(FRAG_RESULT_DATA0)
3731 : int(VARYING_SLOT_VAR0);
3732 break;
3733 default:
3734 continue;
3735 };
3736
3737 if (var->data.patch)
3738 loc_bias = int(VARYING_SLOT_PATCH0);
3739
3740 /* Skip packed varyings, packed varyings are handled separately
3741 * by add_packed_varyings.
3742 */
3743 if (strncmp(var->name, "packed:", 7) == 0)
3744 continue;
3745
3746 /* Skip fragdata arrays, these are handled separately
3747 * by add_fragdata_arrays.
3748 */
3749 if (strncmp(var->name, "gl_out_FragData", 15) == 0)
3750 continue;
3751
3752 const bool vs_input_or_fs_output =
3753 (stage == MESA_SHADER_VERTEX && var->data.mode == ir_var_shader_in) ||
3754 (stage == MESA_SHADER_FRAGMENT && var->data.mode == ir_var_shader_out);
3755
3756 if (!add_shader_variable(shProg, resource_set,
3757 1 << stage, programInterface,
3758 var, var->name, var->type, vs_input_or_fs_output,
3759 var->data.location - loc_bias))
3760 return false;
3761 }
3762 return true;
3763 }
3764
3765 static bool
3766 add_packed_varyings(struct gl_shader_program *shProg, struct set *resource_set,
3767 int stage, GLenum type)
3768 {
3769 struct gl_linked_shader *sh = shProg->_LinkedShaders[stage];
3770 GLenum iface;
3771
3772 if (!sh || !sh->packed_varyings)
3773 return true;
3774
3775 foreach_in_list(ir_instruction, node, sh->packed_varyings) {
3776 ir_variable *var = node->as_variable();
3777 if (var) {
3778 switch (var->data.mode) {
3779 case ir_var_shader_in:
3780 iface = GL_PROGRAM_INPUT;
3781 break;
3782 case ir_var_shader_out:
3783 iface = GL_PROGRAM_OUTPUT;
3784 break;
3785 default:
3786 unreachable("unexpected type");
3787 }
3788
3789 if (type == iface) {
3790 const int stage_mask =
3791 build_stageref(shProg, var->name, var->data.mode);
3792 if (!add_shader_variable(shProg, resource_set,
3793 stage_mask,
3794 iface, var, var->name, var->type, false,
3795 var->data.location - VARYING_SLOT_VAR0))
3796 return false;
3797 }
3798 }
3799 }
3800 return true;
3801 }
3802
3803 static bool
3804 add_fragdata_arrays(struct gl_shader_program *shProg, struct set *resource_set)
3805 {
3806 struct gl_linked_shader *sh = shProg->_LinkedShaders[MESA_SHADER_FRAGMENT];
3807
3808 if (!sh || !sh->fragdata_arrays)
3809 return true;
3810
3811 foreach_in_list(ir_instruction, node, sh->fragdata_arrays) {
3812 ir_variable *var = node->as_variable();
3813 if (var) {
3814 assert(var->data.mode == ir_var_shader_out);
3815
3816 if (!add_shader_variable(shProg, resource_set,
3817 1 << MESA_SHADER_FRAGMENT,
3818 GL_PROGRAM_OUTPUT, var, var->name, var->type,
3819 true, var->data.location - FRAG_RESULT_DATA0))
3820 return false;
3821 }
3822 }
3823 return true;
3824 }
3825
3826 static char*
3827 get_top_level_name(const char *name)
3828 {
3829 const char *first_dot = strchr(name, '.');
3830 const char *first_square_bracket = strchr(name, '[');
3831 int name_size = 0;
3832
3833 /* The ARB_program_interface_query spec says:
3834 *
3835 * "For the property TOP_LEVEL_ARRAY_SIZE, a single integer identifying
3836 * the number of active array elements of the top-level shader storage
3837 * block member containing to the active variable is written to
3838 * <params>. If the top-level block member is not declared as an
3839 * array, the value one is written to <params>. If the top-level block
3840 * member is an array with no declared size, the value zero is written
3841 * to <params>."
3842 */
3843
3844 /* The buffer variable is on top level.*/
3845 if (!first_square_bracket && !first_dot)
3846 name_size = strlen(name);
3847 else if ((!first_square_bracket ||
3848 (first_dot && first_dot < first_square_bracket)))
3849 name_size = first_dot - name;
3850 else
3851 name_size = first_square_bracket - name;
3852
3853 return strndup(name, name_size);
3854 }
3855
3856 static char*
3857 get_var_name(const char *name)
3858 {
3859 const char *first_dot = strchr(name, '.');
3860
3861 if (!first_dot)
3862 return strdup(name);
3863
3864 return strndup(first_dot+1, strlen(first_dot) - 1);
3865 }
3866
3867 static bool
3868 is_top_level_shader_storage_block_member(const char* name,
3869 const char* interface_name,
3870 const char* field_name)
3871 {
3872 bool result = false;
3873
3874 /* If the given variable is already a top-level shader storage
3875 * block member, then return array_size = 1.
3876 * We could have two possibilities: if we have an instanced
3877 * shader storage block or not instanced.
3878 *
3879 * For the first, we check create a name as it was in top level and
3880 * compare it with the real name. If they are the same, then
3881 * the variable is already at top-level.
3882 *
3883 * Full instanced name is: interface name + '.' + var name +
3884 * NULL character
3885 */
3886 int name_length = strlen(interface_name) + 1 + strlen(field_name) + 1;
3887 char *full_instanced_name = (char *) calloc(name_length, sizeof(char));
3888 if (!full_instanced_name) {
3889 fprintf(stderr, "%s: Cannot allocate space for name\n", __func__);
3890 return false;
3891 }
3892
3893 snprintf(full_instanced_name, name_length, "%s.%s",
3894 interface_name, field_name);
3895
3896 /* Check if its top-level shader storage block member of an
3897 * instanced interface block, or of a unnamed interface block.
3898 */
3899 if (strcmp(name, full_instanced_name) == 0 ||
3900 strcmp(name, field_name) == 0)
3901 result = true;
3902
3903 free(full_instanced_name);
3904 return result;
3905 }
3906
3907 static int
3908 get_array_size(struct gl_uniform_storage *uni, const glsl_struct_field *field,
3909 char *interface_name, char *var_name)
3910 {
3911 /* The ARB_program_interface_query spec says:
3912 *
3913 * "For the property TOP_LEVEL_ARRAY_SIZE, a single integer identifying
3914 * the number of active array elements of the top-level shader storage
3915 * block member containing to the active variable is written to
3916 * <params>. If the top-level block member is not declared as an
3917 * array, the value one is written to <params>. If the top-level block
3918 * member is an array with no declared size, the value zero is written
3919 * to <params>."
3920 */
3921 if (is_top_level_shader_storage_block_member(uni->name,
3922 interface_name,
3923 var_name))
3924 return 1;
3925 else if (field->type->is_unsized_array())
3926 return 0;
3927 else if (field->type->is_array())
3928 return field->type->length;
3929
3930 return 1;
3931 }
3932
3933 static int
3934 get_array_stride(struct gl_uniform_storage *uni, const glsl_type *interface,
3935 const glsl_struct_field *field, char *interface_name,
3936 char *var_name)
3937 {
3938 /* The ARB_program_interface_query spec says:
3939 *
3940 * "For the property TOP_LEVEL_ARRAY_STRIDE, a single integer
3941 * identifying the stride between array elements of the top-level
3942 * shader storage block member containing the active variable is
3943 * written to <params>. For top-level block members declared as
3944 * arrays, the value written is the difference, in basic machine units,
3945 * between the offsets of the active variable for consecutive elements
3946 * in the top-level array. For top-level block members not declared as
3947 * an array, zero is written to <params>."
3948 */
3949 if (field->type->is_array()) {
3950 const enum glsl_matrix_layout matrix_layout =
3951 glsl_matrix_layout(field->matrix_layout);
3952 bool row_major = matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR;
3953 const glsl_type *array_type = field->type->fields.array;
3954
3955 if (is_top_level_shader_storage_block_member(uni->name,
3956 interface_name,
3957 var_name))
3958 return 0;
3959
3960 if (interface->interface_packing != GLSL_INTERFACE_PACKING_STD430) {
3961 if (array_type->is_record() || array_type->is_array())
3962 return glsl_align(array_type->std140_size(row_major), 16);
3963 else
3964 return MAX2(array_type->std140_base_alignment(row_major), 16);
3965 } else {
3966 return array_type->std430_array_stride(row_major);
3967 }
3968 }
3969 return 0;
3970 }
3971
3972 static void
3973 calculate_array_size_and_stride(struct gl_shader_program *shProg,
3974 struct gl_uniform_storage *uni)
3975 {
3976 int block_index = uni->block_index;
3977 int array_size = -1;
3978 int array_stride = -1;
3979 char *var_name = get_top_level_name(uni->name);
3980 char *interface_name =
3981 get_top_level_name(uni->is_shader_storage ?
3982 shProg->ShaderStorageBlocks[block_index].Name :
3983 shProg->UniformBlocks[block_index].Name);
3984
3985 if (strcmp(var_name, interface_name) == 0) {
3986 /* Deal with instanced array of SSBOs */
3987 char *temp_name = get_var_name(uni->name);
3988 if (!temp_name) {
3989 linker_error(shProg, "Out of memory during linking.\n");
3990 goto write_top_level_array_size_and_stride;
3991 }
3992 free(var_name);
3993 var_name = get_top_level_name(temp_name);
3994 free(temp_name);
3995 if (!var_name) {
3996 linker_error(shProg, "Out of memory during linking.\n");
3997 goto write_top_level_array_size_and_stride;
3998 }
3999 }
4000
4001 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4002 const gl_linked_shader *sh = shProg->_LinkedShaders[i];
4003 if (sh == NULL)
4004 continue;
4005
4006 foreach_in_list(ir_instruction, node, sh->ir) {
4007 ir_variable *var = node->as_variable();
4008 if (!var || !var->get_interface_type() ||
4009 var->data.mode != ir_var_shader_storage)
4010 continue;
4011
4012 const glsl_type *interface = var->get_interface_type();
4013
4014 if (strcmp(interface_name, interface->name) != 0)
4015 continue;
4016
4017 for (unsigned i = 0; i < interface->length; i++) {
4018 const glsl_struct_field *field = &interface->fields.structure[i];
4019 if (strcmp(field->name, var_name) != 0)
4020 continue;
4021
4022 array_stride = get_array_stride(uni, interface, field,
4023 interface_name, var_name);
4024 array_size = get_array_size(uni, field, interface_name, var_name);
4025 goto write_top_level_array_size_and_stride;
4026 }
4027 }
4028 }
4029 write_top_level_array_size_and_stride:
4030 free(interface_name);
4031 free(var_name);
4032 uni->top_level_array_stride = array_stride;
4033 uni->top_level_array_size = array_size;
4034 }
4035
4036 /**
4037 * Builds up a list of program resources that point to existing
4038 * resource data.
4039 */
4040 void
4041 build_program_resource_list(struct gl_context *ctx,
4042 struct gl_shader_program *shProg)
4043 {
4044 /* Rebuild resource list. */
4045 if (shProg->ProgramResourceList) {
4046 ralloc_free(shProg->ProgramResourceList);
4047 shProg->ProgramResourceList = NULL;
4048 shProg->NumProgramResourceList = 0;
4049 }
4050
4051 int input_stage = MESA_SHADER_STAGES, output_stage = 0;
4052
4053 /* Determine first input and final output stage. These are used to
4054 * detect which variables should be enumerated in the resource list
4055 * for GL_PROGRAM_INPUT and GL_PROGRAM_OUTPUT.
4056 */
4057 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4058 if (!shProg->_LinkedShaders[i])
4059 continue;
4060 if (input_stage == MESA_SHADER_STAGES)
4061 input_stage = i;
4062 output_stage = i;
4063 }
4064
4065 /* Empty shader, no resources. */
4066 if (input_stage == MESA_SHADER_STAGES && output_stage == 0)
4067 return;
4068
4069 struct set *resource_set = _mesa_set_create(NULL,
4070 _mesa_hash_pointer,
4071 _mesa_key_pointer_equal);
4072
4073 /* Program interface needs to expose varyings in case of SSO. */
4074 if (shProg->SeparateShader) {
4075 if (!add_packed_varyings(shProg, resource_set,
4076 input_stage, GL_PROGRAM_INPUT))
4077 return;
4078
4079 if (!add_packed_varyings(shProg, resource_set,
4080 output_stage, GL_PROGRAM_OUTPUT))
4081 return;
4082 }
4083
4084 if (!add_fragdata_arrays(shProg, resource_set))
4085 return;
4086
4087 /* Add inputs and outputs to the resource list. */
4088 if (!add_interface_variables(shProg, resource_set,
4089 input_stage, GL_PROGRAM_INPUT))
4090 return;
4091
4092 if (!add_interface_variables(shProg, resource_set,
4093 output_stage, GL_PROGRAM_OUTPUT))
4094 return;
4095
4096 /* Add transform feedback varyings. */
4097 if (shProg->LinkedTransformFeedback.NumVarying > 0) {
4098 for (int i = 0; i < shProg->LinkedTransformFeedback.NumVarying; i++) {
4099 if (!add_program_resource(shProg, resource_set,
4100 GL_TRANSFORM_FEEDBACK_VARYING,
4101 &shProg->LinkedTransformFeedback.Varyings[i],
4102 0))
4103 return;
4104 }
4105 }
4106
4107 /* Add transform feedback buffers. */
4108 for (unsigned i = 0; i < ctx->Const.MaxTransformFeedbackBuffers; i++) {
4109 if ((shProg->LinkedTransformFeedback.ActiveBuffers >> i) & 1) {
4110 shProg->LinkedTransformFeedback.Buffers[i].Binding = i;
4111 if (!add_program_resource(shProg, resource_set,
4112 GL_TRANSFORM_FEEDBACK_BUFFER,
4113 &shProg->LinkedTransformFeedback.Buffers[i],
4114 0))
4115 return;
4116 }
4117 }
4118
4119 /* Add uniforms from uniform storage. */
4120 for (unsigned i = 0; i < shProg->NumUniformStorage; i++) {
4121 /* Do not add uniforms internally used by Mesa. */
4122 if (shProg->UniformStorage[i].hidden)
4123 continue;
4124
4125 uint8_t stageref =
4126 build_stageref(shProg, shProg->UniformStorage[i].name,
4127 ir_var_uniform);
4128
4129 /* Add stagereferences for uniforms in a uniform block. */
4130 bool is_shader_storage = shProg->UniformStorage[i].is_shader_storage;
4131 int block_index = shProg->UniformStorage[i].block_index;
4132 if (block_index != -1) {
4133 stageref |= is_shader_storage ?
4134 shProg->ShaderStorageBlocks[block_index].stageref :
4135 shProg->UniformBlocks[block_index].stageref;
4136 }
4137
4138 GLenum type = is_shader_storage ? GL_BUFFER_VARIABLE : GL_UNIFORM;
4139 if (!should_add_buffer_variable(shProg, type,
4140 shProg->UniformStorage[i].name))
4141 continue;
4142
4143 if (is_shader_storage) {
4144 calculate_array_size_and_stride(shProg, &shProg->UniformStorage[i]);
4145 }
4146
4147 if (!add_program_resource(shProg, resource_set, type,
4148 &shProg->UniformStorage[i], stageref))
4149 return;
4150 }
4151
4152 /* Add program uniform blocks. */
4153 for (unsigned i = 0; i < shProg->NumUniformBlocks; i++) {
4154 if (!add_program_resource(shProg, resource_set, GL_UNIFORM_BLOCK,
4155 &shProg->UniformBlocks[i], 0))
4156 return;
4157 }
4158
4159 /* Add program shader storage blocks. */
4160 for (unsigned i = 0; i < shProg->NumShaderStorageBlocks; i++) {
4161 if (!add_program_resource(shProg, resource_set, GL_SHADER_STORAGE_BLOCK,
4162 &shProg->ShaderStorageBlocks[i], 0))
4163 return;
4164 }
4165
4166 /* Add atomic counter buffers. */
4167 for (unsigned i = 0; i < shProg->NumAtomicBuffers; i++) {
4168 if (!add_program_resource(shProg, resource_set, GL_ATOMIC_COUNTER_BUFFER,
4169 &shProg->AtomicBuffers[i], 0))
4170 return;
4171 }
4172
4173 for (unsigned i = 0; i < shProg->NumUniformStorage; i++) {
4174 GLenum type;
4175 if (!shProg->UniformStorage[i].hidden)
4176 continue;
4177
4178 for (int j = MESA_SHADER_VERTEX; j < MESA_SHADER_STAGES; j++) {
4179 if (!shProg->UniformStorage[i].opaque[j].active ||
4180 !shProg->UniformStorage[i].type->is_subroutine())
4181 continue;
4182
4183 type = _mesa_shader_stage_to_subroutine_uniform((gl_shader_stage)j);
4184 /* add shader subroutines */
4185 if (!add_program_resource(shProg, resource_set,
4186 type, &shProg->UniformStorage[i], 0))
4187 return;
4188 }
4189 }
4190
4191 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4192 struct gl_linked_shader *sh = shProg->_LinkedShaders[i];
4193 GLuint type;
4194
4195 if (!sh)
4196 continue;
4197
4198 type = _mesa_shader_stage_to_subroutine((gl_shader_stage)i);
4199 for (unsigned j = 0; j < sh->NumSubroutineFunctions; j++) {
4200 if (!add_program_resource(shProg, resource_set,
4201 type, &sh->SubroutineFunctions[j], 0))
4202 return;
4203 }
4204 }
4205
4206 _mesa_set_destroy(resource_set, NULL);
4207 }
4208
4209 /**
4210 * This check is done to make sure we allow only constant expression
4211 * indexing and "constant-index-expression" (indexing with an expression
4212 * that includes loop induction variable).
4213 */
4214 static bool
4215 validate_sampler_array_indexing(struct gl_context *ctx,
4216 struct gl_shader_program *prog)
4217 {
4218 dynamic_sampler_array_indexing_visitor v;
4219 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4220 if (prog->_LinkedShaders[i] == NULL)
4221 continue;
4222
4223 bool no_dynamic_indexing =
4224 ctx->Const.ShaderCompilerOptions[i].EmitNoIndirectSampler;
4225
4226 /* Search for array derefs in shader. */
4227 v.run(prog->_LinkedShaders[i]->ir);
4228 if (v.uses_dynamic_sampler_array_indexing()) {
4229 const char *msg = "sampler arrays indexed with non-constant "
4230 "expressions is forbidden in GLSL %s %u";
4231 /* Backend has indicated that it has no dynamic indexing support. */
4232 if (no_dynamic_indexing) {
4233 linker_error(prog, msg, prog->IsES ? "ES" : "", prog->Version);
4234 return false;
4235 } else {
4236 linker_warning(prog, msg, prog->IsES ? "ES" : "", prog->Version);
4237 }
4238 }
4239 }
4240 return true;
4241 }
4242
4243 static void
4244 link_assign_subroutine_types(struct gl_shader_program *prog)
4245 {
4246 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4247 gl_linked_shader *sh = prog->_LinkedShaders[i];
4248
4249 if (sh == NULL)
4250 continue;
4251
4252 sh->MaxSubroutineFunctionIndex = 0;
4253 foreach_in_list(ir_instruction, node, sh->ir) {
4254 ir_function *fn = node->as_function();
4255 if (!fn)
4256 continue;
4257
4258 if (fn->is_subroutine)
4259 sh->NumSubroutineUniformTypes++;
4260
4261 if (!fn->num_subroutine_types)
4262 continue;
4263
4264 /* these should have been calculated earlier. */
4265 assert(fn->subroutine_index != -1);
4266 if (sh->NumSubroutineFunctions + 1 > MAX_SUBROUTINES) {
4267 linker_error(prog, "Too many subroutine functions declared.\n");
4268 return;
4269 }
4270 sh->SubroutineFunctions = reralloc(sh, sh->SubroutineFunctions,
4271 struct gl_subroutine_function,
4272 sh->NumSubroutineFunctions + 1);
4273 sh->SubroutineFunctions[sh->NumSubroutineFunctions].name = ralloc_strdup(sh, fn->name);
4274 sh->SubroutineFunctions[sh->NumSubroutineFunctions].num_compat_types = fn->num_subroutine_types;
4275 sh->SubroutineFunctions[sh->NumSubroutineFunctions].types =
4276 ralloc_array(sh, const struct glsl_type *,
4277 fn->num_subroutine_types);
4278
4279 /* From Section 4.4.4(Subroutine Function Layout Qualifiers) of the
4280 * GLSL 4.5 spec:
4281 *
4282 * "Each subroutine with an index qualifier in the shader must be
4283 * given a unique index, otherwise a compile or link error will be
4284 * generated."
4285 */
4286 for (unsigned j = 0; j < sh->NumSubroutineFunctions; j++) {
4287 if (sh->SubroutineFunctions[j].index != -1 &&
4288 sh->SubroutineFunctions[j].index == fn->subroutine_index) {
4289 linker_error(prog, "each subroutine index qualifier in the "
4290 "shader must be unique\n");
4291 return;
4292 }
4293 }
4294 sh->SubroutineFunctions[sh->NumSubroutineFunctions].index =
4295 fn->subroutine_index;
4296
4297 if (fn->subroutine_index > (int)sh->MaxSubroutineFunctionIndex)
4298 sh->MaxSubroutineFunctionIndex = fn->subroutine_index;
4299
4300 for (int j = 0; j < fn->num_subroutine_types; j++)
4301 sh->SubroutineFunctions[sh->NumSubroutineFunctions].types[j] = fn->subroutine_types[j];
4302 sh->NumSubroutineFunctions++;
4303 }
4304 }
4305 }
4306
4307 static void
4308 set_always_active_io(exec_list *ir, ir_variable_mode io_mode)
4309 {
4310 assert(io_mode == ir_var_shader_in || io_mode == ir_var_shader_out);
4311
4312 foreach_in_list(ir_instruction, node, ir) {
4313 ir_variable *const var = node->as_variable();
4314
4315 if (var == NULL || var->data.mode != io_mode)
4316 continue;
4317
4318 /* Don't set always active on builtins that haven't been redeclared */
4319 if (var->data.how_declared == ir_var_declared_implicitly)
4320 continue;
4321
4322 var->data.always_active_io = true;
4323 }
4324 }
4325
4326 /**
4327 * When separate shader programs are enabled, only input/outputs between
4328 * the stages of a multi-stage separate program can be safely removed
4329 * from the shader interface. Other inputs/outputs must remain active.
4330 */
4331 static void
4332 disable_varying_optimizations_for_sso(struct gl_shader_program *prog)
4333 {
4334 unsigned first, last;
4335 assert(prog->SeparateShader);
4336
4337 first = MESA_SHADER_STAGES;
4338 last = 0;
4339
4340 /* Determine first and last stage. Excluding the compute stage */
4341 for (unsigned i = 0; i < MESA_SHADER_COMPUTE; i++) {
4342 if (!prog->_LinkedShaders[i])
4343 continue;
4344 if (first == MESA_SHADER_STAGES)
4345 first = i;
4346 last = i;
4347 }
4348
4349 if (first == MESA_SHADER_STAGES)
4350 return;
4351
4352 for (unsigned stage = 0; stage < MESA_SHADER_STAGES; stage++) {
4353 gl_linked_shader *sh = prog->_LinkedShaders[stage];
4354 if (!sh)
4355 continue;
4356
4357 if (first == last) {
4358 /* For a single shader program only allow inputs to the vertex shader
4359 * and outputs from the fragment shader to be removed.
4360 */
4361 if (stage != MESA_SHADER_VERTEX)
4362 set_always_active_io(sh->ir, ir_var_shader_in);
4363 if (stage != MESA_SHADER_FRAGMENT)
4364 set_always_active_io(sh->ir, ir_var_shader_out);
4365 } else {
4366 /* For multi-stage separate shader programs only allow inputs and
4367 * outputs between the shader stages to be removed as well as inputs
4368 * to the vertex shader and outputs from the fragment shader.
4369 */
4370 if (stage == first && stage != MESA_SHADER_VERTEX)
4371 set_always_active_io(sh->ir, ir_var_shader_in);
4372 else if (stage == last && stage != MESA_SHADER_FRAGMENT)
4373 set_always_active_io(sh->ir, ir_var_shader_out);
4374 }
4375 }
4376 }
4377
4378 static bool
4379 link_varyings_and_uniforms(unsigned first, unsigned last,
4380 unsigned num_explicit_uniform_locs,
4381 struct gl_context *ctx,
4382 struct gl_shader_program *prog, void *mem_ctx)
4383 {
4384 bool has_xfb_qualifiers = false;
4385 unsigned num_tfeedback_decls = 0;
4386 char **varying_names = NULL;
4387 tfeedback_decl *tfeedback_decls = NULL;
4388
4389 /* Mark all generic shader inputs and outputs as unpaired. */
4390 for (unsigned i = MESA_SHADER_VERTEX; i <= MESA_SHADER_FRAGMENT; i++) {
4391 if (prog->_LinkedShaders[i] != NULL) {
4392 link_invalidate_variable_locations(prog->_LinkedShaders[i]->ir);
4393 }
4394 }
4395
4396 unsigned prev = first;
4397 for (unsigned i = prev + 1; i <= MESA_SHADER_FRAGMENT; i++) {
4398 if (prog->_LinkedShaders[i] == NULL)
4399 continue;
4400
4401 match_explicit_outputs_to_inputs(prog->_LinkedShaders[prev],
4402 prog->_LinkedShaders[i]);
4403 prev = i;
4404 }
4405
4406 if (!assign_attribute_or_color_locations(mem_ctx, prog, &ctx->Const,
4407 MESA_SHADER_VERTEX)) {
4408 return false;
4409 }
4410
4411 if (!assign_attribute_or_color_locations(mem_ctx, prog, &ctx->Const,
4412 MESA_SHADER_FRAGMENT)) {
4413 return false;
4414 }
4415
4416 /* From the ARB_enhanced_layouts spec:
4417 *
4418 * "If the shader used to record output variables for transform feedback
4419 * varyings uses the "xfb_buffer", "xfb_offset", or "xfb_stride" layout
4420 * qualifiers, the values specified by TransformFeedbackVaryings are
4421 * ignored, and the set of variables captured for transform feedback is
4422 * instead derived from the specified layout qualifiers."
4423 */
4424 for (int i = MESA_SHADER_FRAGMENT - 1; i >= 0; i--) {
4425 /* Find last stage before fragment shader */
4426 if (prog->_LinkedShaders[i]) {
4427 has_xfb_qualifiers =
4428 process_xfb_layout_qualifiers(mem_ctx, prog->_LinkedShaders[i],
4429 &num_tfeedback_decls,
4430 &varying_names);
4431 break;
4432 }
4433 }
4434
4435 if (!has_xfb_qualifiers) {
4436 num_tfeedback_decls = prog->TransformFeedback.NumVarying;
4437 varying_names = prog->TransformFeedback.VaryingNames;
4438 }
4439
4440 if (num_tfeedback_decls != 0) {
4441 /* From GL_EXT_transform_feedback:
4442 * A program will fail to link if:
4443 *
4444 * * the <count> specified by TransformFeedbackVaryingsEXT is
4445 * non-zero, but the program object has no vertex or geometry
4446 * shader;
4447 */
4448 if (first >= MESA_SHADER_FRAGMENT) {
4449 linker_error(prog, "Transform feedback varyings specified, but "
4450 "no vertex, tessellation, or geometry shader is "
4451 "present.\n");
4452 return false;
4453 }
4454
4455 tfeedback_decls = ralloc_array(mem_ctx, tfeedback_decl,
4456 num_tfeedback_decls);
4457 if (!parse_tfeedback_decls(ctx, prog, mem_ctx, num_tfeedback_decls,
4458 varying_names, tfeedback_decls))
4459 return false;
4460 }
4461
4462 /* If there is no fragment shader we need to set transform feedback.
4463 *
4464 * For SSO we also need to assign output locations. We assign them here
4465 * because we need to do it for both single stage programs and multi stage
4466 * programs.
4467 */
4468 if (last < MESA_SHADER_FRAGMENT &&
4469 (num_tfeedback_decls != 0 || prog->SeparateShader)) {
4470 const uint64_t reserved_out_slots =
4471 reserved_varying_slot(prog->_LinkedShaders[last], ir_var_shader_out);
4472 if (!assign_varying_locations(ctx, mem_ctx, prog,
4473 prog->_LinkedShaders[last], NULL,
4474 num_tfeedback_decls, tfeedback_decls,
4475 reserved_out_slots))
4476 return false;
4477 }
4478
4479 if (last <= MESA_SHADER_FRAGMENT) {
4480 /* Remove unused varyings from the first/last stage unless SSO */
4481 remove_unused_shader_inputs_and_outputs(prog->SeparateShader,
4482 prog->_LinkedShaders[first],
4483 ir_var_shader_in);
4484 remove_unused_shader_inputs_and_outputs(prog->SeparateShader,
4485 prog->_LinkedShaders[last],
4486 ir_var_shader_out);
4487
4488 /* If the program is made up of only a single stage */
4489 if (first == last) {
4490 gl_linked_shader *const sh = prog->_LinkedShaders[last];
4491
4492 do_dead_builtin_varyings(ctx, NULL, sh, 0, NULL);
4493 do_dead_builtin_varyings(ctx, sh, NULL, num_tfeedback_decls,
4494 tfeedback_decls);
4495
4496 if (prog->SeparateShader) {
4497 const uint64_t reserved_slots =
4498 reserved_varying_slot(sh, ir_var_shader_in);
4499
4500 /* Assign input locations for SSO, output locations are already
4501 * assigned.
4502 */
4503 if (!assign_varying_locations(ctx, mem_ctx, prog,
4504 NULL /* producer */,
4505 sh /* consumer */,
4506 0 /* num_tfeedback_decls */,
4507 NULL /* tfeedback_decls */,
4508 reserved_slots))
4509 return false;
4510 }
4511 } else {
4512 /* Linking the stages in the opposite order (from fragment to vertex)
4513 * ensures that inter-shader outputs written to in an earlier stage
4514 * are eliminated if they are (transitively) not used in a later
4515 * stage.
4516 */
4517 int next = last;
4518 for (int i = next - 1; i >= 0; i--) {
4519 if (prog->_LinkedShaders[i] == NULL && i != 0)
4520 continue;
4521
4522 gl_linked_shader *const sh_i = prog->_LinkedShaders[i];
4523 gl_linked_shader *const sh_next = prog->_LinkedShaders[next];
4524
4525 const uint64_t reserved_out_slots =
4526 reserved_varying_slot(sh_i, ir_var_shader_out);
4527 const uint64_t reserved_in_slots =
4528 reserved_varying_slot(sh_next, ir_var_shader_in);
4529
4530 do_dead_builtin_varyings(ctx, sh_i, sh_next,
4531 next == MESA_SHADER_FRAGMENT ? num_tfeedback_decls : 0,
4532 tfeedback_decls);
4533
4534 if (!assign_varying_locations(ctx, mem_ctx, prog, sh_i, sh_next,
4535 next == MESA_SHADER_FRAGMENT ? num_tfeedback_decls : 0,
4536 tfeedback_decls,
4537 reserved_out_slots | reserved_in_slots))
4538 return false;
4539
4540 /* This must be done after all dead varyings are eliminated. */
4541 if (sh_i != NULL) {
4542 unsigned slots_used = _mesa_bitcount_64(reserved_out_slots);
4543 if (!check_against_output_limit(ctx, prog, sh_i, slots_used)) {
4544 return false;
4545 }
4546 }
4547
4548 unsigned slots_used = _mesa_bitcount_64(reserved_in_slots);
4549 if (!check_against_input_limit(ctx, prog, sh_next, slots_used))
4550 return false;
4551
4552 next = i;
4553 }
4554 }
4555 }
4556
4557 if (!store_tfeedback_info(ctx, prog, num_tfeedback_decls, tfeedback_decls,
4558 has_xfb_qualifiers))
4559 return false;
4560
4561 update_array_sizes(prog);
4562 link_assign_uniform_locations(prog, ctx, num_explicit_uniform_locs);
4563 link_assign_atomic_counter_resources(ctx, prog);
4564
4565 link_calculate_subroutine_compat(prog);
4566 check_resources(ctx, prog);
4567 check_subroutine_resources(prog);
4568 check_image_resources(ctx, prog);
4569 link_check_atomic_counter_resources(ctx, prog);
4570
4571 if (!prog->LinkStatus)
4572 return false;
4573
4574 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4575 if (prog->_LinkedShaders[i] == NULL)
4576 continue;
4577
4578 const struct gl_shader_compiler_options *options =
4579 &ctx->Const.ShaderCompilerOptions[i];
4580
4581 if (options->LowerBufferInterfaceBlocks)
4582 lower_ubo_reference(prog->_LinkedShaders[i],
4583 options->ClampBlockIndicesToArrayBounds);
4584
4585 if (options->LowerShaderSharedVariables)
4586 lower_shared_reference(prog->_LinkedShaders[i],
4587 &prog->Comp.SharedSize);
4588
4589 lower_vector_derefs(prog->_LinkedShaders[i]);
4590 do_vec_index_to_swizzle(prog->_LinkedShaders[i]->ir);
4591 }
4592
4593 return true;
4594 }
4595
4596 void
4597 link_shaders(struct gl_context *ctx, struct gl_shader_program *prog)
4598 {
4599 prog->LinkStatus = true; /* All error paths will set this to false */
4600 prog->Validated = false;
4601 prog->_Used = false;
4602
4603 /* Section 7.3 (Program Objects) of the OpenGL 4.5 Core Profile spec says:
4604 *
4605 * "Linking can fail for a variety of reasons as specified in the
4606 * OpenGL Shading Language Specification, as well as any of the
4607 * following reasons:
4608 *
4609 * - No shader objects are attached to program."
4610 *
4611 * The Compatibility Profile specification does not list the error. In
4612 * Compatibility Profile missing shader stages are replaced by
4613 * fixed-function. This applies to the case where all stages are
4614 * missing.
4615 */
4616 if (prog->NumShaders == 0) {
4617 if (ctx->API != API_OPENGL_COMPAT)
4618 linker_error(prog, "no shaders attached to the program\n");
4619 return;
4620 }
4621
4622 unsigned int num_explicit_uniform_locs = 0;
4623
4624 void *mem_ctx = ralloc_context(NULL); // temporary linker context
4625
4626 prog->ARB_fragment_coord_conventions_enable = false;
4627
4628 /* Separate the shaders into groups based on their type.
4629 */
4630 struct gl_shader **shader_list[MESA_SHADER_STAGES];
4631 unsigned num_shaders[MESA_SHADER_STAGES];
4632
4633 for (int i = 0; i < MESA_SHADER_STAGES; i++) {
4634 shader_list[i] = (struct gl_shader **)
4635 calloc(prog->NumShaders, sizeof(struct gl_shader *));
4636 num_shaders[i] = 0;
4637 }
4638
4639 unsigned min_version = UINT_MAX;
4640 unsigned max_version = 0;
4641 for (unsigned i = 0; i < prog->NumShaders; i++) {
4642 min_version = MIN2(min_version, prog->Shaders[i]->Version);
4643 max_version = MAX2(max_version, prog->Shaders[i]->Version);
4644
4645 if (prog->Shaders[i]->IsES != prog->Shaders[0]->IsES) {
4646 linker_error(prog, "all shaders must use same shading "
4647 "language version\n");
4648 goto done;
4649 }
4650
4651 if (prog->Shaders[i]->info.ARB_fragment_coord_conventions_enable) {
4652 prog->ARB_fragment_coord_conventions_enable = true;
4653 }
4654
4655 gl_shader_stage shader_type = prog->Shaders[i]->Stage;
4656 shader_list[shader_type][num_shaders[shader_type]] = prog->Shaders[i];
4657 num_shaders[shader_type]++;
4658 }
4659
4660 /* In desktop GLSL, different shader versions may be linked together. In
4661 * GLSL ES, all shader versions must be the same.
4662 */
4663 if (prog->Shaders[0]->IsES && min_version != max_version) {
4664 linker_error(prog, "all shaders must use same shading "
4665 "language version\n");
4666 goto done;
4667 }
4668
4669 prog->Version = max_version;
4670 prog->IsES = prog->Shaders[0]->IsES;
4671
4672 /* Some shaders have to be linked with some other shaders present.
4673 */
4674 if (!prog->SeparateShader) {
4675 if (num_shaders[MESA_SHADER_GEOMETRY] > 0 &&
4676 num_shaders[MESA_SHADER_VERTEX] == 0) {
4677 linker_error(prog, "Geometry shader must be linked with "
4678 "vertex shader\n");
4679 goto done;
4680 }
4681 if (num_shaders[MESA_SHADER_TESS_EVAL] > 0 &&
4682 num_shaders[MESA_SHADER_VERTEX] == 0) {
4683 linker_error(prog, "Tessellation evaluation shader must be linked "
4684 "with vertex shader\n");
4685 goto done;
4686 }
4687 if (num_shaders[MESA_SHADER_TESS_CTRL] > 0 &&
4688 num_shaders[MESA_SHADER_VERTEX] == 0) {
4689 linker_error(prog, "Tessellation control shader must be linked with "
4690 "vertex shader\n");
4691 goto done;
4692 }
4693
4694 /* The spec is self-contradictory here. It allows linking without a tess
4695 * eval shader, but that can only be used with transform feedback and
4696 * rasterization disabled. However, transform feedback isn't allowed
4697 * with GL_PATCHES, so it can't be used.
4698 *
4699 * More investigation showed that the idea of transform feedback after
4700 * a tess control shader was dropped, because some hw vendors couldn't
4701 * support tessellation without a tess eval shader, but the linker
4702 * section wasn't updated to reflect that.
4703 *
4704 * All specifications (ARB_tessellation_shader, GL 4.0-4.5) have this
4705 * spec bug.
4706 *
4707 * Do what's reasonable and always require a tess eval shader if a tess
4708 * control shader is present.
4709 */
4710 if (num_shaders[MESA_SHADER_TESS_CTRL] > 0 &&
4711 num_shaders[MESA_SHADER_TESS_EVAL] == 0) {
4712 linker_error(prog, "Tessellation control shader must be linked with "
4713 "tessellation evaluation shader\n");
4714 goto done;
4715 }
4716 }
4717
4718 /* Compute shaders have additional restrictions. */
4719 if (num_shaders[MESA_SHADER_COMPUTE] > 0 &&
4720 num_shaders[MESA_SHADER_COMPUTE] != prog->NumShaders) {
4721 linker_error(prog, "Compute shaders may not be linked with any other "
4722 "type of shader\n");
4723 }
4724
4725 for (unsigned int i = 0; i < MESA_SHADER_STAGES; i++) {
4726 if (prog->_LinkedShaders[i] != NULL) {
4727 _mesa_delete_linked_shader(ctx, prog->_LinkedShaders[i]);
4728 }
4729
4730 prog->_LinkedShaders[i] = NULL;
4731 }
4732
4733 /* Link all shaders for a particular stage and validate the result.
4734 */
4735 for (int stage = 0; stage < MESA_SHADER_STAGES; stage++) {
4736 if (num_shaders[stage] > 0) {
4737 gl_linked_shader *const sh =
4738 link_intrastage_shaders(mem_ctx, ctx, prog, shader_list[stage],
4739 num_shaders[stage]);
4740
4741 if (!prog->LinkStatus) {
4742 if (sh)
4743 _mesa_delete_linked_shader(ctx, sh);
4744 goto done;
4745 }
4746
4747 switch (stage) {
4748 case MESA_SHADER_VERTEX:
4749 validate_vertex_shader_executable(prog, sh, ctx);
4750 break;
4751 case MESA_SHADER_TESS_CTRL:
4752 /* nothing to be done */
4753 break;
4754 case MESA_SHADER_TESS_EVAL:
4755 validate_tess_eval_shader_executable(prog, sh, ctx);
4756 break;
4757 case MESA_SHADER_GEOMETRY:
4758 validate_geometry_shader_executable(prog, sh, ctx);
4759 break;
4760 case MESA_SHADER_FRAGMENT:
4761 validate_fragment_shader_executable(prog, sh);
4762 break;
4763 }
4764 if (!prog->LinkStatus) {
4765 if (sh)
4766 _mesa_delete_linked_shader(ctx, sh);
4767 goto done;
4768 }
4769
4770 prog->_LinkedShaders[stage] = sh;
4771 }
4772 }
4773
4774 if (num_shaders[MESA_SHADER_GEOMETRY] > 0) {
4775 prog->LastClipDistanceArraySize = prog->Geom.ClipDistanceArraySize;
4776 prog->LastCullDistanceArraySize = prog->Geom.CullDistanceArraySize;
4777 } else if (num_shaders[MESA_SHADER_TESS_EVAL] > 0) {
4778 prog->LastClipDistanceArraySize = prog->TessEval.ClipDistanceArraySize;
4779 prog->LastCullDistanceArraySize = prog->TessEval.CullDistanceArraySize;
4780 } else if (num_shaders[MESA_SHADER_VERTEX] > 0) {
4781 prog->LastClipDistanceArraySize = prog->Vert.ClipDistanceArraySize;
4782 prog->LastCullDistanceArraySize = prog->Vert.CullDistanceArraySize;
4783 } else {
4784 prog->LastClipDistanceArraySize = 0; /* Not used */
4785 prog->LastCullDistanceArraySize = 0; /* Not used */
4786 }
4787
4788 /* Here begins the inter-stage linking phase. Some initial validation is
4789 * performed, then locations are assigned for uniforms, attributes, and
4790 * varyings.
4791 */
4792 cross_validate_uniforms(prog);
4793 if (!prog->LinkStatus)
4794 goto done;
4795
4796 unsigned first, last, prev;
4797
4798 first = MESA_SHADER_STAGES;
4799 last = 0;
4800
4801 /* Determine first and last stage. */
4802 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4803 if (!prog->_LinkedShaders[i])
4804 continue;
4805 if (first == MESA_SHADER_STAGES)
4806 first = i;
4807 last = i;
4808 }
4809
4810 num_explicit_uniform_locs = check_explicit_uniform_locations(ctx, prog);
4811 link_assign_subroutine_types(prog);
4812
4813 if (!prog->LinkStatus)
4814 goto done;
4815
4816 resize_tes_inputs(ctx, prog);
4817
4818 /* Validate the inputs of each stage with the output of the preceding
4819 * stage.
4820 */
4821 prev = first;
4822 for (unsigned i = prev + 1; i <= MESA_SHADER_FRAGMENT; i++) {
4823 if (prog->_LinkedShaders[i] == NULL)
4824 continue;
4825
4826 validate_interstage_inout_blocks(prog, prog->_LinkedShaders[prev],
4827 prog->_LinkedShaders[i]);
4828 if (!prog->LinkStatus)
4829 goto done;
4830
4831 cross_validate_outputs_to_inputs(prog,
4832 prog->_LinkedShaders[prev],
4833 prog->_LinkedShaders[i]);
4834 if (!prog->LinkStatus)
4835 goto done;
4836
4837 prev = i;
4838 }
4839
4840 /* Cross-validate uniform blocks between shader stages */
4841 validate_interstage_uniform_blocks(prog, prog->_LinkedShaders);
4842 if (!prog->LinkStatus)
4843 goto done;
4844
4845 for (unsigned int i = 0; i < MESA_SHADER_STAGES; i++) {
4846 if (prog->_LinkedShaders[i] != NULL)
4847 lower_named_interface_blocks(mem_ctx, prog->_LinkedShaders[i]);
4848 }
4849
4850 /* Implement the GLSL 1.30+ rule for discard vs infinite loops Do
4851 * it before optimization because we want most of the checks to get
4852 * dropped thanks to constant propagation.
4853 *
4854 * This rule also applies to GLSL ES 3.00.
4855 */
4856 if (max_version >= (prog->IsES ? 300 : 130)) {
4857 struct gl_linked_shader *sh = prog->_LinkedShaders[MESA_SHADER_FRAGMENT];
4858 if (sh) {
4859 lower_discard_flow(sh->ir);
4860 }
4861 }
4862
4863 if (prog->SeparateShader)
4864 disable_varying_optimizations_for_sso(prog);
4865
4866 /* Process UBOs */
4867 if (!interstage_cross_validate_uniform_blocks(prog, false))
4868 goto done;
4869
4870 /* Process SSBOs */
4871 if (!interstage_cross_validate_uniform_blocks(prog, true))
4872 goto done;
4873
4874 /* Do common optimization before assigning storage for attributes,
4875 * uniforms, and varyings. Later optimization could possibly make
4876 * some of that unused.
4877 */
4878 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4879 if (prog->_LinkedShaders[i] == NULL)
4880 continue;
4881
4882 detect_recursion_linked(prog, prog->_LinkedShaders[i]->ir);
4883 if (!prog->LinkStatus)
4884 goto done;
4885
4886 if (ctx->Const.ShaderCompilerOptions[i].LowerCombinedClipCullDistance) {
4887 lower_clip_cull_distance(prog, prog->_LinkedShaders[i]);
4888 }
4889
4890 if (ctx->Const.LowerTessLevel) {
4891 lower_tess_level(prog->_LinkedShaders[i]);
4892 }
4893
4894 while (do_common_optimization(prog->_LinkedShaders[i]->ir, true, false,
4895 &ctx->Const.ShaderCompilerOptions[i],
4896 ctx->Const.NativeIntegers))
4897 ;
4898
4899 lower_const_arrays_to_uniforms(prog->_LinkedShaders[i]->ir, i);
4900 propagate_invariance(prog->_LinkedShaders[i]->ir);
4901 }
4902
4903 /* Validation for special cases where we allow sampler array indexing
4904 * with loop induction variable. This check emits a warning or error
4905 * depending if backend can handle dynamic indexing.
4906 */
4907 if ((!prog->IsES && prog->Version < 130) ||
4908 (prog->IsES && prog->Version < 300)) {
4909 if (!validate_sampler_array_indexing(ctx, prog))
4910 goto done;
4911 }
4912
4913 /* Check and validate stream emissions in geometry shaders */
4914 validate_geometry_shader_emissions(ctx, prog);
4915
4916 store_fragdepth_layout(prog);
4917
4918 if(!link_varyings_and_uniforms(first, last, num_explicit_uniform_locs, ctx,
4919 prog, mem_ctx))
4920 goto done;
4921
4922 /* OpenGL ES < 3.1 requires that a vertex shader and a fragment shader both
4923 * be present in a linked program. GL_ARB_ES2_compatibility doesn't say
4924 * anything about shader linking when one of the shaders (vertex or
4925 * fragment shader) is absent. So, the extension shouldn't change the
4926 * behavior specified in GLSL specification.
4927 *
4928 * From OpenGL ES 3.1 specification (7.3 Program Objects):
4929 * "Linking can fail for a variety of reasons as specified in the
4930 * OpenGL ES Shading Language Specification, as well as any of the
4931 * following reasons:
4932 *
4933 * ...
4934 *
4935 * * program contains objects to form either a vertex shader or
4936 * fragment shader, and program is not separable, and does not
4937 * contain objects to form both a vertex shader and fragment
4938 * shader."
4939 *
4940 * However, the only scenario in 3.1+ where we don't require them both is
4941 * when we have a compute shader. For example:
4942 *
4943 * - No shaders is a link error.
4944 * - Geom or Tess without a Vertex shader is a link error which means we
4945 * always require a Vertex shader and hence a Fragment shader.
4946 * - Finally a Compute shader linked with any other stage is a link error.
4947 */
4948 if (!prog->SeparateShader && ctx->API == API_OPENGLES2 &&
4949 num_shaders[MESA_SHADER_COMPUTE] == 0) {
4950 if (prog->_LinkedShaders[MESA_SHADER_VERTEX] == NULL) {
4951 linker_error(prog, "program lacks a vertex shader\n");
4952 } else if (prog->_LinkedShaders[MESA_SHADER_FRAGMENT] == NULL) {
4953 linker_error(prog, "program lacks a fragment shader\n");
4954 }
4955 }
4956
4957 done:
4958 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4959 free(shader_list[i]);
4960 if (prog->_LinkedShaders[i] == NULL)
4961 continue;
4962
4963 /* Do a final validation step to make sure that the IR wasn't
4964 * invalidated by any modifications performed after intrastage linking.
4965 */
4966 validate_ir_tree(prog->_LinkedShaders[i]->ir);
4967
4968 /* Retain any live IR, but trash the rest. */
4969 reparent_ir(prog->_LinkedShaders[i]->ir, prog->_LinkedShaders[i]->ir);
4970
4971 /* The symbol table in the linked shaders may contain references to
4972 * variables that were removed (e.g., unused uniforms). Since it may
4973 * contain junk, there is no possible valid use. Delete it and set the
4974 * pointer to NULL.
4975 */
4976 delete prog->_LinkedShaders[i]->symbols;
4977 prog->_LinkedShaders[i]->symbols = NULL;
4978 }
4979
4980 ralloc_free(mem_ctx);
4981 }