glsl/linker: check same name is not used in block and outside
[mesa.git] / src / compiler / glsl / linker.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file linker.cpp
26 * GLSL linker implementation
27 *
28 * Given a set of shaders that are to be linked to generate a final program,
29 * there are three distinct stages.
30 *
31 * In the first stage shaders are partitioned into groups based on the shader
32 * type. All shaders of a particular type (e.g., vertex shaders) are linked
33 * together.
34 *
35 * - Undefined references in each shader are resolve to definitions in
36 * another shader.
37 * - Types and qualifiers of uniforms, outputs, and global variables defined
38 * in multiple shaders with the same name are verified to be the same.
39 * - Initializers for uniforms and global variables defined
40 * in multiple shaders with the same name are verified to be the same.
41 *
42 * The result, in the terminology of the GLSL spec, is a set of shader
43 * executables for each processing unit.
44 *
45 * After the first stage is complete, a series of semantic checks are performed
46 * on each of the shader executables.
47 *
48 * - Each shader executable must define a \c main function.
49 * - Each vertex shader executable must write to \c gl_Position.
50 * - Each fragment shader executable must write to either \c gl_FragData or
51 * \c gl_FragColor.
52 *
53 * In the final stage individual shader executables are linked to create a
54 * complete exectuable.
55 *
56 * - Types of uniforms defined in multiple shader stages with the same name
57 * are verified to be the same.
58 * - Initializers for uniforms defined in multiple shader stages with the
59 * same name are verified to be the same.
60 * - Types and qualifiers of outputs defined in one stage are verified to
61 * be the same as the types and qualifiers of inputs defined with the same
62 * name in a later stage.
63 *
64 * \author Ian Romanick <ian.d.romanick@intel.com>
65 */
66
67 #include <ctype.h>
68 #include "util/strndup.h"
69 #include "main/core.h"
70 #include "glsl_symbol_table.h"
71 #include "glsl_parser_extras.h"
72 #include "ir.h"
73 #include "program.h"
74 #include "program/prog_instruction.h"
75 #include "program/program.h"
76 #include "util/mesa-sha1.h"
77 #include "util/set.h"
78 #include "string_to_uint_map.h"
79 #include "linker.h"
80 #include "link_varyings.h"
81 #include "ir_optimization.h"
82 #include "ir_rvalue_visitor.h"
83 #include "ir_uniform.h"
84 #include "builtin_functions.h"
85 #include "shader_cache.h"
86
87 #include "main/shaderobj.h"
88 #include "main/enums.h"
89
90
91 namespace {
92
93 struct find_variable {
94 const char *name;
95 bool found;
96
97 find_variable(const char *name) : name(name), found(false) {}
98 };
99
100 /**
101 * Visitor that determines whether or not a variable is ever written.
102 *
103 * Use \ref find_assignments for convenience.
104 */
105 class find_assignment_visitor : public ir_hierarchical_visitor {
106 public:
107 find_assignment_visitor(unsigned num_vars,
108 find_variable * const *vars)
109 : num_variables(num_vars), num_found(0), variables(vars)
110 {
111 }
112
113 virtual ir_visitor_status visit_enter(ir_assignment *ir)
114 {
115 ir_variable *const var = ir->lhs->variable_referenced();
116
117 return check_variable_name(var->name);
118 }
119
120 virtual ir_visitor_status visit_enter(ir_call *ir)
121 {
122 foreach_two_lists(formal_node, &ir->callee->parameters,
123 actual_node, &ir->actual_parameters) {
124 ir_rvalue *param_rval = (ir_rvalue *) actual_node;
125 ir_variable *sig_param = (ir_variable *) formal_node;
126
127 if (sig_param->data.mode == ir_var_function_out ||
128 sig_param->data.mode == ir_var_function_inout) {
129 ir_variable *var = param_rval->variable_referenced();
130 if (var && check_variable_name(var->name) == visit_stop)
131 return visit_stop;
132 }
133 }
134
135 if (ir->return_deref != NULL) {
136 ir_variable *const var = ir->return_deref->variable_referenced();
137
138 if (check_variable_name(var->name) == visit_stop)
139 return visit_stop;
140 }
141
142 return visit_continue_with_parent;
143 }
144
145 private:
146 ir_visitor_status check_variable_name(const char *name)
147 {
148 for (unsigned i = 0; i < num_variables; ++i) {
149 if (strcmp(variables[i]->name, name) == 0) {
150 if (!variables[i]->found) {
151 variables[i]->found = true;
152
153 assert(num_found < num_variables);
154 if (++num_found == num_variables)
155 return visit_stop;
156 }
157 break;
158 }
159 }
160
161 return visit_continue_with_parent;
162 }
163
164 private:
165 unsigned num_variables; /**< Number of variables to find */
166 unsigned num_found; /**< Number of variables already found */
167 find_variable * const *variables; /**< Variables to find */
168 };
169
170 /**
171 * Determine whether or not any of NULL-terminated list of variables is ever
172 * written to.
173 */
174 static void
175 find_assignments(exec_list *ir, find_variable * const *vars)
176 {
177 unsigned num_variables = 0;
178
179 for (find_variable * const *v = vars; *v; ++v)
180 num_variables++;
181
182 find_assignment_visitor visitor(num_variables, vars);
183 visitor.run(ir);
184 }
185
186 /**
187 * Determine whether or not the given variable is ever written to.
188 */
189 static void
190 find_assignments(exec_list *ir, find_variable *var)
191 {
192 find_assignment_visitor visitor(1, &var);
193 visitor.run(ir);
194 }
195
196 /**
197 * Visitor that determines whether or not a variable is ever read.
198 */
199 class find_deref_visitor : public ir_hierarchical_visitor {
200 public:
201 find_deref_visitor(const char *name)
202 : name(name), found(false)
203 {
204 /* empty */
205 }
206
207 virtual ir_visitor_status visit(ir_dereference_variable *ir)
208 {
209 if (strcmp(this->name, ir->var->name) == 0) {
210 this->found = true;
211 return visit_stop;
212 }
213
214 return visit_continue;
215 }
216
217 bool variable_found() const
218 {
219 return this->found;
220 }
221
222 private:
223 const char *name; /**< Find writes to a variable with this name. */
224 bool found; /**< Was a write to the variable found? */
225 };
226
227
228 /**
229 * A visitor helper that provides methods for updating the types of
230 * ir_dereferences. Classes that update variable types (say, updating
231 * array sizes) will want to use this so that dereference types stay in sync.
232 */
233 class deref_type_updater : public ir_hierarchical_visitor {
234 public:
235 virtual ir_visitor_status visit(ir_dereference_variable *ir)
236 {
237 ir->type = ir->var->type;
238 return visit_continue;
239 }
240
241 virtual ir_visitor_status visit_leave(ir_dereference_array *ir)
242 {
243 const glsl_type *const vt = ir->array->type;
244 if (vt->is_array())
245 ir->type = vt->fields.array;
246 return visit_continue;
247 }
248
249 virtual ir_visitor_status visit_leave(ir_dereference_record *ir)
250 {
251 ir->type = ir->record->type->fields.structure[ir->field_idx].type;
252 return visit_continue;
253 }
254 };
255
256
257 class array_resize_visitor : public deref_type_updater {
258 public:
259 unsigned num_vertices;
260 gl_shader_program *prog;
261 gl_shader_stage stage;
262
263 array_resize_visitor(unsigned num_vertices,
264 gl_shader_program *prog,
265 gl_shader_stage stage)
266 {
267 this->num_vertices = num_vertices;
268 this->prog = prog;
269 this->stage = stage;
270 }
271
272 virtual ~array_resize_visitor()
273 {
274 /* empty */
275 }
276
277 virtual ir_visitor_status visit(ir_variable *var)
278 {
279 if (!var->type->is_array() || var->data.mode != ir_var_shader_in ||
280 var->data.patch)
281 return visit_continue;
282
283 unsigned size = var->type->length;
284
285 if (stage == MESA_SHADER_GEOMETRY) {
286 /* Generate a link error if the shader has declared this array with
287 * an incorrect size.
288 */
289 if (!var->data.implicit_sized_array &&
290 size && size != this->num_vertices) {
291 linker_error(this->prog, "size of array %s declared as %u, "
292 "but number of input vertices is %u\n",
293 var->name, size, this->num_vertices);
294 return visit_continue;
295 }
296
297 /* Generate a link error if the shader attempts to access an input
298 * array using an index too large for its actual size assigned at
299 * link time.
300 */
301 if (var->data.max_array_access >= (int)this->num_vertices) {
302 linker_error(this->prog, "%s shader accesses element %i of "
303 "%s, but only %i input vertices\n",
304 _mesa_shader_stage_to_string(this->stage),
305 var->data.max_array_access, var->name, this->num_vertices);
306 return visit_continue;
307 }
308 }
309
310 var->type = glsl_type::get_array_instance(var->type->fields.array,
311 this->num_vertices);
312 var->data.max_array_access = this->num_vertices - 1;
313
314 return visit_continue;
315 }
316 };
317
318 /**
319 * Visitor that determines the highest stream id to which a (geometry) shader
320 * emits vertices. It also checks whether End{Stream}Primitive is ever called.
321 */
322 class find_emit_vertex_visitor : public ir_hierarchical_visitor {
323 public:
324 find_emit_vertex_visitor(int max_allowed)
325 : max_stream_allowed(max_allowed),
326 invalid_stream_id(0),
327 invalid_stream_id_from_emit_vertex(false),
328 end_primitive_found(false),
329 uses_non_zero_stream(false)
330 {
331 /* empty */
332 }
333
334 virtual ir_visitor_status visit_leave(ir_emit_vertex *ir)
335 {
336 int stream_id = ir->stream_id();
337
338 if (stream_id < 0) {
339 invalid_stream_id = stream_id;
340 invalid_stream_id_from_emit_vertex = true;
341 return visit_stop;
342 }
343
344 if (stream_id > max_stream_allowed) {
345 invalid_stream_id = stream_id;
346 invalid_stream_id_from_emit_vertex = true;
347 return visit_stop;
348 }
349
350 if (stream_id != 0)
351 uses_non_zero_stream = true;
352
353 return visit_continue;
354 }
355
356 virtual ir_visitor_status visit_leave(ir_end_primitive *ir)
357 {
358 end_primitive_found = true;
359
360 int stream_id = ir->stream_id();
361
362 if (stream_id < 0) {
363 invalid_stream_id = stream_id;
364 invalid_stream_id_from_emit_vertex = false;
365 return visit_stop;
366 }
367
368 if (stream_id > max_stream_allowed) {
369 invalid_stream_id = stream_id;
370 invalid_stream_id_from_emit_vertex = false;
371 return visit_stop;
372 }
373
374 if (stream_id != 0)
375 uses_non_zero_stream = true;
376
377 return visit_continue;
378 }
379
380 bool error()
381 {
382 return invalid_stream_id != 0;
383 }
384
385 const char *error_func()
386 {
387 return invalid_stream_id_from_emit_vertex ?
388 "EmitStreamVertex" : "EndStreamPrimitive";
389 }
390
391 int error_stream()
392 {
393 return invalid_stream_id;
394 }
395
396 bool uses_streams()
397 {
398 return uses_non_zero_stream;
399 }
400
401 bool uses_end_primitive()
402 {
403 return end_primitive_found;
404 }
405
406 private:
407 int max_stream_allowed;
408 int invalid_stream_id;
409 bool invalid_stream_id_from_emit_vertex;
410 bool end_primitive_found;
411 bool uses_non_zero_stream;
412 };
413
414 /* Class that finds array derefs and check if indexes are dynamic. */
415 class dynamic_sampler_array_indexing_visitor : public ir_hierarchical_visitor
416 {
417 public:
418 dynamic_sampler_array_indexing_visitor() :
419 dynamic_sampler_array_indexing(false)
420 {
421 }
422
423 ir_visitor_status visit_enter(ir_dereference_array *ir)
424 {
425 if (!ir->variable_referenced())
426 return visit_continue;
427
428 if (!ir->variable_referenced()->type->contains_sampler())
429 return visit_continue;
430
431 if (!ir->array_index->constant_expression_value(ralloc_parent(ir))) {
432 dynamic_sampler_array_indexing = true;
433 return visit_stop;
434 }
435 return visit_continue;
436 }
437
438 bool uses_dynamic_sampler_array_indexing()
439 {
440 return dynamic_sampler_array_indexing;
441 }
442
443 private:
444 bool dynamic_sampler_array_indexing;
445 };
446
447 } /* anonymous namespace */
448
449 void
450 linker_error(gl_shader_program *prog, const char *fmt, ...)
451 {
452 va_list ap;
453
454 ralloc_strcat(&prog->data->InfoLog, "error: ");
455 va_start(ap, fmt);
456 ralloc_vasprintf_append(&prog->data->InfoLog, fmt, ap);
457 va_end(ap);
458
459 prog->data->LinkStatus = LINKING_FAILURE;
460 }
461
462
463 void
464 linker_warning(gl_shader_program *prog, const char *fmt, ...)
465 {
466 va_list ap;
467
468 ralloc_strcat(&prog->data->InfoLog, "warning: ");
469 va_start(ap, fmt);
470 ralloc_vasprintf_append(&prog->data->InfoLog, fmt, ap);
471 va_end(ap);
472
473 }
474
475
476 /**
477 * Given a string identifying a program resource, break it into a base name
478 * and an optional array index in square brackets.
479 *
480 * If an array index is present, \c out_base_name_end is set to point to the
481 * "[" that precedes the array index, and the array index itself is returned
482 * as a long.
483 *
484 * If no array index is present (or if the array index is negative or
485 * mal-formed), \c out_base_name_end, is set to point to the null terminator
486 * at the end of the input string, and -1 is returned.
487 *
488 * Only the final array index is parsed; if the string contains other array
489 * indices (or structure field accesses), they are left in the base name.
490 *
491 * No attempt is made to check that the base name is properly formed;
492 * typically the caller will look up the base name in a hash table, so
493 * ill-formed base names simply turn into hash table lookup failures.
494 */
495 long
496 parse_program_resource_name(const GLchar *name,
497 const GLchar **out_base_name_end)
498 {
499 /* Section 7.3.1 ("Program Interfaces") of the OpenGL 4.3 spec says:
500 *
501 * "When an integer array element or block instance number is part of
502 * the name string, it will be specified in decimal form without a "+"
503 * or "-" sign or any extra leading zeroes. Additionally, the name
504 * string will not include white space anywhere in the string."
505 */
506
507 const size_t len = strlen(name);
508 *out_base_name_end = name + len;
509
510 if (len == 0 || name[len-1] != ']')
511 return -1;
512
513 /* Walk backwards over the string looking for a non-digit character. This
514 * had better be the opening bracket for an array index.
515 *
516 * Initially, i specifies the location of the ']'. Since the string may
517 * contain only the ']' charcater, walk backwards very carefully.
518 */
519 unsigned i;
520 for (i = len - 1; (i > 0) && isdigit(name[i-1]); --i)
521 /* empty */ ;
522
523 if ((i == 0) || name[i-1] != '[')
524 return -1;
525
526 long array_index = strtol(&name[i], NULL, 10);
527 if (array_index < 0)
528 return -1;
529
530 /* Check for leading zero */
531 if (name[i] == '0' && name[i+1] != ']')
532 return -1;
533
534 *out_base_name_end = name + (i - 1);
535 return array_index;
536 }
537
538
539 void
540 link_invalidate_variable_locations(exec_list *ir)
541 {
542 foreach_in_list(ir_instruction, node, ir) {
543 ir_variable *const var = node->as_variable();
544
545 if (var == NULL)
546 continue;
547
548 /* Only assign locations for variables that lack an explicit location.
549 * Explicit locations are set for all built-in variables, generic vertex
550 * shader inputs (via layout(location=...)), and generic fragment shader
551 * outputs (also via layout(location=...)).
552 */
553 if (!var->data.explicit_location) {
554 var->data.location = -1;
555 var->data.location_frac = 0;
556 }
557
558 /* ir_variable::is_unmatched_generic_inout is used by the linker while
559 * connecting outputs from one stage to inputs of the next stage.
560 */
561 if (var->data.explicit_location &&
562 var->data.location < VARYING_SLOT_VAR0) {
563 var->data.is_unmatched_generic_inout = 0;
564 } else {
565 var->data.is_unmatched_generic_inout = 1;
566 }
567 }
568 }
569
570
571 /**
572 * Set clip_distance_array_size based and cull_distance_array_size on the given
573 * shader.
574 *
575 * Also check for errors based on incorrect usage of gl_ClipVertex and
576 * gl_ClipDistance and gl_CullDistance.
577 * Additionally test whether the arrays gl_ClipDistance and gl_CullDistance
578 * exceed the maximum size defined by gl_MaxCombinedClipAndCullDistances.
579 *
580 * Return false if an error was reported.
581 */
582 static void
583 analyze_clip_cull_usage(struct gl_shader_program *prog,
584 struct gl_linked_shader *shader,
585 struct gl_context *ctx,
586 GLuint *clip_distance_array_size,
587 GLuint *cull_distance_array_size)
588 {
589 *clip_distance_array_size = 0;
590 *cull_distance_array_size = 0;
591
592 if (prog->data->Version >= (prog->IsES ? 300 : 130)) {
593 /* From section 7.1 (Vertex Shader Special Variables) of the
594 * GLSL 1.30 spec:
595 *
596 * "It is an error for a shader to statically write both
597 * gl_ClipVertex and gl_ClipDistance."
598 *
599 * This does not apply to GLSL ES shaders, since GLSL ES defines neither
600 * gl_ClipVertex nor gl_ClipDistance. However with
601 * GL_EXT_clip_cull_distance, this functionality is exposed in ES 3.0.
602 */
603 find_variable gl_ClipDistance("gl_ClipDistance");
604 find_variable gl_CullDistance("gl_CullDistance");
605 find_variable gl_ClipVertex("gl_ClipVertex");
606 find_variable * const variables[] = {
607 &gl_ClipDistance,
608 &gl_CullDistance,
609 !prog->IsES ? &gl_ClipVertex : NULL,
610 NULL
611 };
612 find_assignments(shader->ir, variables);
613
614 /* From the ARB_cull_distance spec:
615 *
616 * It is a compile-time or link-time error for the set of shaders forming
617 * a program to statically read or write both gl_ClipVertex and either
618 * gl_ClipDistance or gl_CullDistance.
619 *
620 * This does not apply to GLSL ES shaders, since GLSL ES doesn't define
621 * gl_ClipVertex.
622 */
623 if (!prog->IsES) {
624 if (gl_ClipVertex.found && gl_ClipDistance.found) {
625 linker_error(prog, "%s shader writes to both `gl_ClipVertex' "
626 "and `gl_ClipDistance'\n",
627 _mesa_shader_stage_to_string(shader->Stage));
628 return;
629 }
630 if (gl_ClipVertex.found && gl_CullDistance.found) {
631 linker_error(prog, "%s shader writes to both `gl_ClipVertex' "
632 "and `gl_CullDistance'\n",
633 _mesa_shader_stage_to_string(shader->Stage));
634 return;
635 }
636 }
637
638 if (gl_ClipDistance.found) {
639 ir_variable *clip_distance_var =
640 shader->symbols->get_variable("gl_ClipDistance");
641 assert(clip_distance_var);
642 *clip_distance_array_size = clip_distance_var->type->length;
643 }
644 if (gl_CullDistance.found) {
645 ir_variable *cull_distance_var =
646 shader->symbols->get_variable("gl_CullDistance");
647 assert(cull_distance_var);
648 *cull_distance_array_size = cull_distance_var->type->length;
649 }
650 /* From the ARB_cull_distance spec:
651 *
652 * It is a compile-time or link-time error for the set of shaders forming
653 * a program to have the sum of the sizes of the gl_ClipDistance and
654 * gl_CullDistance arrays to be larger than
655 * gl_MaxCombinedClipAndCullDistances.
656 */
657 if ((*clip_distance_array_size + *cull_distance_array_size) >
658 ctx->Const.MaxClipPlanes) {
659 linker_error(prog, "%s shader: the combined size of "
660 "'gl_ClipDistance' and 'gl_CullDistance' size cannot "
661 "be larger than "
662 "gl_MaxCombinedClipAndCullDistances (%u)",
663 _mesa_shader_stage_to_string(shader->Stage),
664 ctx->Const.MaxClipPlanes);
665 }
666 }
667 }
668
669
670 /**
671 * Verify that a vertex shader executable meets all semantic requirements.
672 *
673 * Also sets info.clip_distance_array_size and
674 * info.cull_distance_array_size as a side effect.
675 *
676 * \param shader Vertex shader executable to be verified
677 */
678 static void
679 validate_vertex_shader_executable(struct gl_shader_program *prog,
680 struct gl_linked_shader *shader,
681 struct gl_context *ctx)
682 {
683 if (shader == NULL)
684 return;
685
686 /* From the GLSL 1.10 spec, page 48:
687 *
688 * "The variable gl_Position is available only in the vertex
689 * language and is intended for writing the homogeneous vertex
690 * position. All executions of a well-formed vertex shader
691 * executable must write a value into this variable. [...] The
692 * variable gl_Position is available only in the vertex
693 * language and is intended for writing the homogeneous vertex
694 * position. All executions of a well-formed vertex shader
695 * executable must write a value into this variable."
696 *
697 * while in GLSL 1.40 this text is changed to:
698 *
699 * "The variable gl_Position is available only in the vertex
700 * language and is intended for writing the homogeneous vertex
701 * position. It can be written at any time during shader
702 * execution. It may also be read back by a vertex shader
703 * after being written. This value will be used by primitive
704 * assembly, clipping, culling, and other fixed functionality
705 * operations, if present, that operate on primitives after
706 * vertex processing has occurred. Its value is undefined if
707 * the vertex shader executable does not write gl_Position."
708 *
709 * All GLSL ES Versions are similar to GLSL 1.40--failing to write to
710 * gl_Position is not an error.
711 */
712 if (prog->data->Version < (prog->IsES ? 300 : 140)) {
713 find_variable gl_Position("gl_Position");
714 find_assignments(shader->ir, &gl_Position);
715 if (!gl_Position.found) {
716 if (prog->IsES) {
717 linker_warning(prog,
718 "vertex shader does not write to `gl_Position'. "
719 "Its value is undefined. \n");
720 } else {
721 linker_error(prog,
722 "vertex shader does not write to `gl_Position'. \n");
723 }
724 return;
725 }
726 }
727
728 analyze_clip_cull_usage(prog, shader, ctx,
729 &shader->Program->info.clip_distance_array_size,
730 &shader->Program->info.cull_distance_array_size);
731 }
732
733 static void
734 validate_tess_eval_shader_executable(struct gl_shader_program *prog,
735 struct gl_linked_shader *shader,
736 struct gl_context *ctx)
737 {
738 if (shader == NULL)
739 return;
740
741 analyze_clip_cull_usage(prog, shader, ctx,
742 &shader->Program->info.clip_distance_array_size,
743 &shader->Program->info.cull_distance_array_size);
744 }
745
746
747 /**
748 * Verify that a fragment shader executable meets all semantic requirements
749 *
750 * \param shader Fragment shader executable to be verified
751 */
752 static void
753 validate_fragment_shader_executable(struct gl_shader_program *prog,
754 struct gl_linked_shader *shader)
755 {
756 if (shader == NULL)
757 return;
758
759 find_variable gl_FragColor("gl_FragColor");
760 find_variable gl_FragData("gl_FragData");
761 find_variable * const variables[] = { &gl_FragColor, &gl_FragData, NULL };
762 find_assignments(shader->ir, variables);
763
764 if (gl_FragColor.found && gl_FragData.found) {
765 linker_error(prog, "fragment shader writes to both "
766 "`gl_FragColor' and `gl_FragData'\n");
767 }
768 }
769
770 /**
771 * Verify that a geometry shader executable meets all semantic requirements
772 *
773 * Also sets prog->Geom.VerticesIn, and info.clip_distance_array_sizeand
774 * info.cull_distance_array_size as a side effect.
775 *
776 * \param shader Geometry shader executable to be verified
777 */
778 static void
779 validate_geometry_shader_executable(struct gl_shader_program *prog,
780 struct gl_linked_shader *shader,
781 struct gl_context *ctx)
782 {
783 if (shader == NULL)
784 return;
785
786 unsigned num_vertices =
787 vertices_per_prim(shader->Program->info.gs.input_primitive);
788 prog->Geom.VerticesIn = num_vertices;
789
790 analyze_clip_cull_usage(prog, shader, ctx,
791 &shader->Program->info.clip_distance_array_size,
792 &shader->Program->info.cull_distance_array_size);
793 }
794
795 /**
796 * Check if geometry shaders emit to non-zero streams and do corresponding
797 * validations.
798 */
799 static void
800 validate_geometry_shader_emissions(struct gl_context *ctx,
801 struct gl_shader_program *prog)
802 {
803 struct gl_linked_shader *sh = prog->_LinkedShaders[MESA_SHADER_GEOMETRY];
804
805 if (sh != NULL) {
806 find_emit_vertex_visitor emit_vertex(ctx->Const.MaxVertexStreams - 1);
807 emit_vertex.run(sh->ir);
808 if (emit_vertex.error()) {
809 linker_error(prog, "Invalid call %s(%d). Accepted values for the "
810 "stream parameter are in the range [0, %d].\n",
811 emit_vertex.error_func(),
812 emit_vertex.error_stream(),
813 ctx->Const.MaxVertexStreams - 1);
814 }
815 prog->Geom.UsesStreams = emit_vertex.uses_streams();
816 prog->Geom.UsesEndPrimitive = emit_vertex.uses_end_primitive();
817
818 /* From the ARB_gpu_shader5 spec:
819 *
820 * "Multiple vertex streams are supported only if the output primitive
821 * type is declared to be "points". A program will fail to link if it
822 * contains a geometry shader calling EmitStreamVertex() or
823 * EndStreamPrimitive() if its output primitive type is not "points".
824 *
825 * However, in the same spec:
826 *
827 * "The function EmitVertex() is equivalent to calling EmitStreamVertex()
828 * with <stream> set to zero."
829 *
830 * And:
831 *
832 * "The function EndPrimitive() is equivalent to calling
833 * EndStreamPrimitive() with <stream> set to zero."
834 *
835 * Since we can call EmitVertex() and EndPrimitive() when we output
836 * primitives other than points, calling EmitStreamVertex(0) or
837 * EmitEndPrimitive(0) should not produce errors. This it also what Nvidia
838 * does. Currently we only set prog->Geom.UsesStreams to TRUE when
839 * EmitStreamVertex() or EmitEndPrimitive() are called with a non-zero
840 * stream.
841 */
842 if (prog->Geom.UsesStreams &&
843 sh->Program->info.gs.output_primitive != GL_POINTS) {
844 linker_error(prog, "EmitStreamVertex(n) and EndStreamPrimitive(n) "
845 "with n>0 requires point output\n");
846 }
847 }
848 }
849
850 bool
851 validate_intrastage_arrays(struct gl_shader_program *prog,
852 ir_variable *const var,
853 ir_variable *const existing)
854 {
855 /* Consider the types to be "the same" if both types are arrays
856 * of the same type and one of the arrays is implicitly sized.
857 * In addition, set the type of the linked variable to the
858 * explicitly sized array.
859 */
860 if (var->type->is_array() && existing->type->is_array()) {
861 if ((var->type->fields.array == existing->type->fields.array) &&
862 ((var->type->length == 0)|| (existing->type->length == 0))) {
863 if (var->type->length != 0) {
864 if ((int)var->type->length <= existing->data.max_array_access) {
865 linker_error(prog, "%s `%s' declared as type "
866 "`%s' but outermost dimension has an index"
867 " of `%i'\n",
868 mode_string(var),
869 var->name, var->type->name,
870 existing->data.max_array_access);
871 }
872 existing->type = var->type;
873 return true;
874 } else if (existing->type->length != 0) {
875 if((int)existing->type->length <= var->data.max_array_access &&
876 !existing->data.from_ssbo_unsized_array) {
877 linker_error(prog, "%s `%s' declared as type "
878 "`%s' but outermost dimension has an index"
879 " of `%i'\n",
880 mode_string(var),
881 var->name, existing->type->name,
882 var->data.max_array_access);
883 }
884 return true;
885 }
886 }
887 }
888 return false;
889 }
890
891
892 /**
893 * Perform validation of global variables used across multiple shaders
894 */
895 static void
896 cross_validate_globals(struct gl_shader_program *prog,
897 struct exec_list *ir, glsl_symbol_table *variables,
898 bool uniforms_only)
899 {
900 foreach_in_list(ir_instruction, node, ir) {
901 ir_variable *const var = node->as_variable();
902
903 if (var == NULL)
904 continue;
905
906 if (uniforms_only && (var->data.mode != ir_var_uniform && var->data.mode != ir_var_shader_storage))
907 continue;
908
909 /* don't cross validate subroutine uniforms */
910 if (var->type->contains_subroutine())
911 continue;
912
913 /* Don't cross validate interface instances. These are only relevant
914 * inside a shader. The cross validation is done at the Interface Block
915 * name level.
916 */
917 if (var->is_interface_instance())
918 continue;
919
920 /* Don't cross validate temporaries that are at global scope. These
921 * will eventually get pulled into the shaders 'main'.
922 */
923 if (var->data.mode == ir_var_temporary)
924 continue;
925
926 /* If a global with this name has already been seen, verify that the
927 * new instance has the same type. In addition, if the globals have
928 * initializers, the values of the initializers must be the same.
929 */
930 ir_variable *const existing = variables->get_variable(var->name);
931 if (existing != NULL) {
932 /* Check if types match. */
933 if (var->type != existing->type) {
934 if (!validate_intrastage_arrays(prog, var, existing)) {
935 /* If it is an unsized array in a Shader Storage Block,
936 * two different shaders can access to different elements.
937 * Because of that, they might be converted to different
938 * sized arrays, then check that they are compatible but
939 * ignore the array size.
940 */
941 if (!(var->data.mode == ir_var_shader_storage &&
942 var->data.from_ssbo_unsized_array &&
943 existing->data.mode == ir_var_shader_storage &&
944 existing->data.from_ssbo_unsized_array &&
945 var->type->gl_type == existing->type->gl_type)) {
946 linker_error(prog, "%s `%s' declared as type "
947 "`%s' and type `%s'\n",
948 mode_string(var),
949 var->name, var->type->name,
950 existing->type->name);
951 return;
952 }
953 }
954 }
955
956 if (var->data.explicit_location) {
957 if (existing->data.explicit_location
958 && (var->data.location != existing->data.location)) {
959 linker_error(prog, "explicit locations for %s "
960 "`%s' have differing values\n",
961 mode_string(var), var->name);
962 return;
963 }
964
965 if (var->data.location_frac != existing->data.location_frac) {
966 linker_error(prog, "explicit components for %s `%s' have "
967 "differing values\n", mode_string(var), var->name);
968 return;
969 }
970
971 existing->data.location = var->data.location;
972 existing->data.explicit_location = true;
973 } else {
974 /* Check if uniform with implicit location was marked explicit
975 * by earlier shader stage. If so, mark it explicit in this stage
976 * too to make sure later processing does not treat it as
977 * implicit one.
978 */
979 if (existing->data.explicit_location) {
980 var->data.location = existing->data.location;
981 var->data.explicit_location = true;
982 }
983 }
984
985 /* From the GLSL 4.20 specification:
986 * "A link error will result if two compilation units in a program
987 * specify different integer-constant bindings for the same
988 * opaque-uniform name. However, it is not an error to specify a
989 * binding on some but not all declarations for the same name"
990 */
991 if (var->data.explicit_binding) {
992 if (existing->data.explicit_binding &&
993 var->data.binding != existing->data.binding) {
994 linker_error(prog, "explicit bindings for %s "
995 "`%s' have differing values\n",
996 mode_string(var), var->name);
997 return;
998 }
999
1000 existing->data.binding = var->data.binding;
1001 existing->data.explicit_binding = true;
1002 }
1003
1004 if (var->type->contains_atomic() &&
1005 var->data.offset != existing->data.offset) {
1006 linker_error(prog, "offset specifications for %s "
1007 "`%s' have differing values\n",
1008 mode_string(var), var->name);
1009 return;
1010 }
1011
1012 /* Validate layout qualifiers for gl_FragDepth.
1013 *
1014 * From the AMD/ARB_conservative_depth specs:
1015 *
1016 * "If gl_FragDepth is redeclared in any fragment shader in a
1017 * program, it must be redeclared in all fragment shaders in
1018 * that program that have static assignments to
1019 * gl_FragDepth. All redeclarations of gl_FragDepth in all
1020 * fragment shaders in a single program must have the same set
1021 * of qualifiers."
1022 */
1023 if (strcmp(var->name, "gl_FragDepth") == 0) {
1024 bool layout_declared = var->data.depth_layout != ir_depth_layout_none;
1025 bool layout_differs =
1026 var->data.depth_layout != existing->data.depth_layout;
1027
1028 if (layout_declared && layout_differs) {
1029 linker_error(prog,
1030 "All redeclarations of gl_FragDepth in all "
1031 "fragment shaders in a single program must have "
1032 "the same set of qualifiers.\n");
1033 }
1034
1035 if (var->data.used && layout_differs) {
1036 linker_error(prog,
1037 "If gl_FragDepth is redeclared with a layout "
1038 "qualifier in any fragment shader, it must be "
1039 "redeclared with the same layout qualifier in "
1040 "all fragment shaders that have assignments to "
1041 "gl_FragDepth\n");
1042 }
1043 }
1044
1045 /* Page 35 (page 41 of the PDF) of the GLSL 4.20 spec says:
1046 *
1047 * "If a shared global has multiple initializers, the
1048 * initializers must all be constant expressions, and they
1049 * must all have the same value. Otherwise, a link error will
1050 * result. (A shared global having only one initializer does
1051 * not require that initializer to be a constant expression.)"
1052 *
1053 * Previous to 4.20 the GLSL spec simply said that initializers
1054 * must have the same value. In this case of non-constant
1055 * initializers, this was impossible to determine. As a result,
1056 * no vendor actually implemented that behavior. The 4.20
1057 * behavior matches the implemented behavior of at least one other
1058 * vendor, so we'll implement that for all GLSL versions.
1059 */
1060 if (var->constant_initializer != NULL) {
1061 if (existing->constant_initializer != NULL) {
1062 if (!var->constant_initializer->has_value(existing->constant_initializer)) {
1063 linker_error(prog, "initializers for %s "
1064 "`%s' have differing values\n",
1065 mode_string(var), var->name);
1066 return;
1067 }
1068 } else {
1069 /* If the first-seen instance of a particular uniform did
1070 * not have an initializer but a later instance does,
1071 * replace the former with the later.
1072 */
1073 variables->replace_variable(existing->name, var);
1074 }
1075 }
1076
1077 if (var->data.has_initializer) {
1078 if (existing->data.has_initializer
1079 && (var->constant_initializer == NULL
1080 || existing->constant_initializer == NULL)) {
1081 linker_error(prog,
1082 "shared global variable `%s' has multiple "
1083 "non-constant initializers.\n",
1084 var->name);
1085 return;
1086 }
1087 }
1088
1089 if (existing->data.invariant != var->data.invariant) {
1090 linker_error(prog, "declarations for %s `%s' have "
1091 "mismatching invariant qualifiers\n",
1092 mode_string(var), var->name);
1093 return;
1094 }
1095 if (existing->data.centroid != var->data.centroid) {
1096 linker_error(prog, "declarations for %s `%s' have "
1097 "mismatching centroid qualifiers\n",
1098 mode_string(var), var->name);
1099 return;
1100 }
1101 if (existing->data.sample != var->data.sample) {
1102 linker_error(prog, "declarations for %s `%s` have "
1103 "mismatching sample qualifiers\n",
1104 mode_string(var), var->name);
1105 return;
1106 }
1107 if (existing->data.image_format != var->data.image_format) {
1108 linker_error(prog, "declarations for %s `%s` have "
1109 "mismatching image format qualifiers\n",
1110 mode_string(var), var->name);
1111 return;
1112 }
1113
1114 /* Only in GLSL ES 3.10, the precision qualifier should not match
1115 * between block members defined in matched block names within a
1116 * shader interface.
1117 *
1118 * In GLSL ES 3.00 and ES 3.20, precision qualifier for each block
1119 * member should match.
1120 */
1121 if (prog->IsES && (prog->data->Version != 310 ||
1122 !var->get_interface_type()) &&
1123 existing->data.precision != var->data.precision) {
1124 if ((existing->data.used && var->data.used) || prog->data->Version >= 300) {
1125 linker_error(prog, "declarations for %s `%s` have "
1126 "mismatching precision qualifiers\n",
1127 mode_string(var), var->name);
1128 return;
1129 } else {
1130 linker_warning(prog, "declarations for %s `%s` have "
1131 "mismatching precision qualifiers\n",
1132 mode_string(var), var->name);
1133 }
1134 }
1135
1136 /* In OpenGL GLSL 3.20 spec, section 4.3.9:
1137 *
1138 * "It is a link-time error if any particular shader interface
1139 * contains:
1140 *
1141 * - two different blocks, each having no instance name, and each
1142 * having a member of the same name, or
1143 *
1144 * - a variable outside a block, and a block with no instance name,
1145 * where the variable has the same name as a member in the block."
1146 */
1147 const glsl_type *var_itype = var->get_interface_type();
1148 const glsl_type *existing_itype = existing->get_interface_type();
1149 if (var_itype != existing_itype) {
1150 if (!var_itype || !existing_itype) {
1151 linker_error(prog, "declarations for %s `%s` are inside block "
1152 "`%s` and outside a block",
1153 mode_string(var), var->name,
1154 var_itype ? var_itype->name : existing_itype->name);
1155 return;
1156 } else if (strcmp(var_itype->name, existing_itype->name) != 0) {
1157 linker_error(prog, "declarations for %s `%s` are inside blocks "
1158 "`%s` and `%s`",
1159 mode_string(var), var->name,
1160 existing_itype->name,
1161 var_itype->name);
1162 return;
1163 }
1164 }
1165 } else
1166 variables->add_variable(var);
1167 }
1168 }
1169
1170
1171 /**
1172 * Perform validation of uniforms used across multiple shader stages
1173 */
1174 static void
1175 cross_validate_uniforms(struct gl_shader_program *prog)
1176 {
1177 glsl_symbol_table variables;
1178 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1179 if (prog->_LinkedShaders[i] == NULL)
1180 continue;
1181
1182 cross_validate_globals(prog, prog->_LinkedShaders[i]->ir, &variables,
1183 true);
1184 }
1185 }
1186
1187 /**
1188 * Accumulates the array of buffer blocks and checks that all definitions of
1189 * blocks agree on their contents.
1190 */
1191 static bool
1192 interstage_cross_validate_uniform_blocks(struct gl_shader_program *prog,
1193 bool validate_ssbo)
1194 {
1195 int *InterfaceBlockStageIndex[MESA_SHADER_STAGES];
1196 struct gl_uniform_block *blks = NULL;
1197 unsigned *num_blks = validate_ssbo ? &prog->data->NumShaderStorageBlocks :
1198 &prog->data->NumUniformBlocks;
1199
1200 unsigned max_num_buffer_blocks = 0;
1201 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1202 if (prog->_LinkedShaders[i]) {
1203 if (validate_ssbo) {
1204 max_num_buffer_blocks +=
1205 prog->_LinkedShaders[i]->Program->info.num_ssbos;
1206 } else {
1207 max_num_buffer_blocks +=
1208 prog->_LinkedShaders[i]->Program->info.num_ubos;
1209 }
1210 }
1211 }
1212
1213 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1214 struct gl_linked_shader *sh = prog->_LinkedShaders[i];
1215
1216 InterfaceBlockStageIndex[i] = new int[max_num_buffer_blocks];
1217 for (unsigned int j = 0; j < max_num_buffer_blocks; j++)
1218 InterfaceBlockStageIndex[i][j] = -1;
1219
1220 if (sh == NULL)
1221 continue;
1222
1223 unsigned sh_num_blocks;
1224 struct gl_uniform_block **sh_blks;
1225 if (validate_ssbo) {
1226 sh_num_blocks = prog->_LinkedShaders[i]->Program->info.num_ssbos;
1227 sh_blks = sh->Program->sh.ShaderStorageBlocks;
1228 } else {
1229 sh_num_blocks = prog->_LinkedShaders[i]->Program->info.num_ubos;
1230 sh_blks = sh->Program->sh.UniformBlocks;
1231 }
1232
1233 for (unsigned int j = 0; j < sh_num_blocks; j++) {
1234 int index = link_cross_validate_uniform_block(prog->data, &blks,
1235 num_blks, sh_blks[j]);
1236
1237 if (index == -1) {
1238 linker_error(prog, "buffer block `%s' has mismatching "
1239 "definitions\n", sh_blks[j]->Name);
1240
1241 for (unsigned k = 0; k <= i; k++) {
1242 delete[] InterfaceBlockStageIndex[k];
1243 }
1244
1245 /* Reset the block count. This will help avoid various segfaults
1246 * from api calls that assume the array exists due to the count
1247 * being non-zero.
1248 */
1249 *num_blks = 0;
1250 return false;
1251 }
1252
1253 InterfaceBlockStageIndex[i][index] = j;
1254 }
1255 }
1256
1257 /* Update per stage block pointers to point to the program list.
1258 * FIXME: We should be able to free the per stage blocks here.
1259 */
1260 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1261 for (unsigned j = 0; j < *num_blks; j++) {
1262 int stage_index = InterfaceBlockStageIndex[i][j];
1263
1264 if (stage_index != -1) {
1265 struct gl_linked_shader *sh = prog->_LinkedShaders[i];
1266
1267 struct gl_uniform_block **sh_blks = validate_ssbo ?
1268 sh->Program->sh.ShaderStorageBlocks :
1269 sh->Program->sh.UniformBlocks;
1270
1271 blks[j].stageref |= sh_blks[stage_index]->stageref;
1272 sh_blks[stage_index] = &blks[j];
1273 }
1274 }
1275 }
1276
1277 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1278 delete[] InterfaceBlockStageIndex[i];
1279 }
1280
1281 if (validate_ssbo)
1282 prog->data->ShaderStorageBlocks = blks;
1283 else
1284 prog->data->UniformBlocks = blks;
1285
1286 return true;
1287 }
1288
1289
1290 /**
1291 * Populates a shaders symbol table with all global declarations
1292 */
1293 static void
1294 populate_symbol_table(gl_linked_shader *sh, glsl_symbol_table *symbols)
1295 {
1296 sh->symbols = new(sh) glsl_symbol_table;
1297
1298 _mesa_glsl_copy_symbols_from_table(sh->ir, symbols, sh->symbols);
1299 }
1300
1301
1302 /**
1303 * Remap variables referenced in an instruction tree
1304 *
1305 * This is used when instruction trees are cloned from one shader and placed in
1306 * another. These trees will contain references to \c ir_variable nodes that
1307 * do not exist in the target shader. This function finds these \c ir_variable
1308 * references and replaces the references with matching variables in the target
1309 * shader.
1310 *
1311 * If there is no matching variable in the target shader, a clone of the
1312 * \c ir_variable is made and added to the target shader. The new variable is
1313 * added to \b both the instruction stream and the symbol table.
1314 *
1315 * \param inst IR tree that is to be processed.
1316 * \param symbols Symbol table containing global scope symbols in the
1317 * linked shader.
1318 * \param instructions Instruction stream where new variable declarations
1319 * should be added.
1320 */
1321 static void
1322 remap_variables(ir_instruction *inst, struct gl_linked_shader *target,
1323 hash_table *temps)
1324 {
1325 class remap_visitor : public ir_hierarchical_visitor {
1326 public:
1327 remap_visitor(struct gl_linked_shader *target, hash_table *temps)
1328 {
1329 this->target = target;
1330 this->symbols = target->symbols;
1331 this->instructions = target->ir;
1332 this->temps = temps;
1333 }
1334
1335 virtual ir_visitor_status visit(ir_dereference_variable *ir)
1336 {
1337 if (ir->var->data.mode == ir_var_temporary) {
1338 hash_entry *entry = _mesa_hash_table_search(temps, ir->var);
1339 ir_variable *var = entry ? (ir_variable *) entry->data : NULL;
1340
1341 assert(var != NULL);
1342 ir->var = var;
1343 return visit_continue;
1344 }
1345
1346 ir_variable *const existing =
1347 this->symbols->get_variable(ir->var->name);
1348 if (existing != NULL)
1349 ir->var = existing;
1350 else {
1351 ir_variable *copy = ir->var->clone(this->target, NULL);
1352
1353 this->symbols->add_variable(copy);
1354 this->instructions->push_head(copy);
1355 ir->var = copy;
1356 }
1357
1358 return visit_continue;
1359 }
1360
1361 private:
1362 struct gl_linked_shader *target;
1363 glsl_symbol_table *symbols;
1364 exec_list *instructions;
1365 hash_table *temps;
1366 };
1367
1368 remap_visitor v(target, temps);
1369
1370 inst->accept(&v);
1371 }
1372
1373
1374 /**
1375 * Move non-declarations from one instruction stream to another
1376 *
1377 * The intended usage pattern of this function is to pass the pointer to the
1378 * head sentinel of a list (i.e., a pointer to the list cast to an \c exec_node
1379 * pointer) for \c last and \c false for \c make_copies on the first
1380 * call. Successive calls pass the return value of the previous call for
1381 * \c last and \c true for \c make_copies.
1382 *
1383 * \param instructions Source instruction stream
1384 * \param last Instruction after which new instructions should be
1385 * inserted in the target instruction stream
1386 * \param make_copies Flag selecting whether instructions in \c instructions
1387 * should be copied (via \c ir_instruction::clone) into the
1388 * target list or moved.
1389 *
1390 * \return
1391 * The new "last" instruction in the target instruction stream. This pointer
1392 * is suitable for use as the \c last parameter of a later call to this
1393 * function.
1394 */
1395 static exec_node *
1396 move_non_declarations(exec_list *instructions, exec_node *last,
1397 bool make_copies, gl_linked_shader *target)
1398 {
1399 hash_table *temps = NULL;
1400
1401 if (make_copies)
1402 temps = _mesa_hash_table_create(NULL, _mesa_hash_pointer,
1403 _mesa_key_pointer_equal);
1404
1405 foreach_in_list_safe(ir_instruction, inst, instructions) {
1406 if (inst->as_function())
1407 continue;
1408
1409 ir_variable *var = inst->as_variable();
1410 if ((var != NULL) && (var->data.mode != ir_var_temporary))
1411 continue;
1412
1413 assert(inst->as_assignment()
1414 || inst->as_call()
1415 || inst->as_if() /* for initializers with the ?: operator */
1416 || ((var != NULL) && (var->data.mode == ir_var_temporary)));
1417
1418 if (make_copies) {
1419 inst = inst->clone(target, NULL);
1420
1421 if (var != NULL)
1422 _mesa_hash_table_insert(temps, var, inst);
1423 else
1424 remap_variables(inst, target, temps);
1425 } else {
1426 inst->remove();
1427 }
1428
1429 last->insert_after(inst);
1430 last = inst;
1431 }
1432
1433 if (make_copies)
1434 _mesa_hash_table_destroy(temps, NULL);
1435
1436 return last;
1437 }
1438
1439
1440 /**
1441 * This class is only used in link_intrastage_shaders() below but declaring
1442 * it inside that function leads to compiler warnings with some versions of
1443 * gcc.
1444 */
1445 class array_sizing_visitor : public deref_type_updater {
1446 public:
1447 array_sizing_visitor()
1448 : mem_ctx(ralloc_context(NULL)),
1449 unnamed_interfaces(_mesa_hash_table_create(NULL, _mesa_hash_pointer,
1450 _mesa_key_pointer_equal))
1451 {
1452 }
1453
1454 ~array_sizing_visitor()
1455 {
1456 _mesa_hash_table_destroy(this->unnamed_interfaces, NULL);
1457 ralloc_free(this->mem_ctx);
1458 }
1459
1460 virtual ir_visitor_status visit(ir_variable *var)
1461 {
1462 const glsl_type *type_without_array;
1463 bool implicit_sized_array = var->data.implicit_sized_array;
1464 fixup_type(&var->type, var->data.max_array_access,
1465 var->data.from_ssbo_unsized_array,
1466 &implicit_sized_array);
1467 var->data.implicit_sized_array = implicit_sized_array;
1468 type_without_array = var->type->without_array();
1469 if (var->type->is_interface()) {
1470 if (interface_contains_unsized_arrays(var->type)) {
1471 const glsl_type *new_type =
1472 resize_interface_members(var->type,
1473 var->get_max_ifc_array_access(),
1474 var->is_in_shader_storage_block());
1475 var->type = new_type;
1476 var->change_interface_type(new_type);
1477 }
1478 } else if (type_without_array->is_interface()) {
1479 if (interface_contains_unsized_arrays(type_without_array)) {
1480 const glsl_type *new_type =
1481 resize_interface_members(type_without_array,
1482 var->get_max_ifc_array_access(),
1483 var->is_in_shader_storage_block());
1484 var->change_interface_type(new_type);
1485 var->type = update_interface_members_array(var->type, new_type);
1486 }
1487 } else if (const glsl_type *ifc_type = var->get_interface_type()) {
1488 /* Store a pointer to the variable in the unnamed_interfaces
1489 * hashtable.
1490 */
1491 hash_entry *entry =
1492 _mesa_hash_table_search(this->unnamed_interfaces,
1493 ifc_type);
1494
1495 ir_variable **interface_vars = entry ? (ir_variable **) entry->data : NULL;
1496
1497 if (interface_vars == NULL) {
1498 interface_vars = rzalloc_array(mem_ctx, ir_variable *,
1499 ifc_type->length);
1500 _mesa_hash_table_insert(this->unnamed_interfaces, ifc_type,
1501 interface_vars);
1502 }
1503 unsigned index = ifc_type->field_index(var->name);
1504 assert(index < ifc_type->length);
1505 assert(interface_vars[index] == NULL);
1506 interface_vars[index] = var;
1507 }
1508 return visit_continue;
1509 }
1510
1511 /**
1512 * For each unnamed interface block that was discovered while running the
1513 * visitor, adjust the interface type to reflect the newly assigned array
1514 * sizes, and fix up the ir_variable nodes to point to the new interface
1515 * type.
1516 */
1517 void fixup_unnamed_interface_types()
1518 {
1519 hash_table_call_foreach(this->unnamed_interfaces,
1520 fixup_unnamed_interface_type, NULL);
1521 }
1522
1523 private:
1524 /**
1525 * If the type pointed to by \c type represents an unsized array, replace
1526 * it with a sized array whose size is determined by max_array_access.
1527 */
1528 static void fixup_type(const glsl_type **type, unsigned max_array_access,
1529 bool from_ssbo_unsized_array, bool *implicit_sized)
1530 {
1531 if (!from_ssbo_unsized_array && (*type)->is_unsized_array()) {
1532 *type = glsl_type::get_array_instance((*type)->fields.array,
1533 max_array_access + 1);
1534 *implicit_sized = true;
1535 assert(*type != NULL);
1536 }
1537 }
1538
1539 static const glsl_type *
1540 update_interface_members_array(const glsl_type *type,
1541 const glsl_type *new_interface_type)
1542 {
1543 const glsl_type *element_type = type->fields.array;
1544 if (element_type->is_array()) {
1545 const glsl_type *new_array_type =
1546 update_interface_members_array(element_type, new_interface_type);
1547 return glsl_type::get_array_instance(new_array_type, type->length);
1548 } else {
1549 return glsl_type::get_array_instance(new_interface_type,
1550 type->length);
1551 }
1552 }
1553
1554 /**
1555 * Determine whether the given interface type contains unsized arrays (if
1556 * it doesn't, array_sizing_visitor doesn't need to process it).
1557 */
1558 static bool interface_contains_unsized_arrays(const glsl_type *type)
1559 {
1560 for (unsigned i = 0; i < type->length; i++) {
1561 const glsl_type *elem_type = type->fields.structure[i].type;
1562 if (elem_type->is_unsized_array())
1563 return true;
1564 }
1565 return false;
1566 }
1567
1568 /**
1569 * Create a new interface type based on the given type, with unsized arrays
1570 * replaced by sized arrays whose size is determined by
1571 * max_ifc_array_access.
1572 */
1573 static const glsl_type *
1574 resize_interface_members(const glsl_type *type,
1575 const int *max_ifc_array_access,
1576 bool is_ssbo)
1577 {
1578 unsigned num_fields = type->length;
1579 glsl_struct_field *fields = new glsl_struct_field[num_fields];
1580 memcpy(fields, type->fields.structure,
1581 num_fields * sizeof(*fields));
1582 for (unsigned i = 0; i < num_fields; i++) {
1583 bool implicit_sized_array = fields[i].implicit_sized_array;
1584 /* If SSBO last member is unsized array, we don't replace it by a sized
1585 * array.
1586 */
1587 if (is_ssbo && i == (num_fields - 1))
1588 fixup_type(&fields[i].type, max_ifc_array_access[i],
1589 true, &implicit_sized_array);
1590 else
1591 fixup_type(&fields[i].type, max_ifc_array_access[i],
1592 false, &implicit_sized_array);
1593 fields[i].implicit_sized_array = implicit_sized_array;
1594 }
1595 glsl_interface_packing packing =
1596 (glsl_interface_packing) type->interface_packing;
1597 bool row_major = (bool) type->interface_row_major;
1598 const glsl_type *new_ifc_type =
1599 glsl_type::get_interface_instance(fields, num_fields,
1600 packing, row_major, type->name);
1601 delete [] fields;
1602 return new_ifc_type;
1603 }
1604
1605 static void fixup_unnamed_interface_type(const void *key, void *data,
1606 void *)
1607 {
1608 const glsl_type *ifc_type = (const glsl_type *) key;
1609 ir_variable **interface_vars = (ir_variable **) data;
1610 unsigned num_fields = ifc_type->length;
1611 glsl_struct_field *fields = new glsl_struct_field[num_fields];
1612 memcpy(fields, ifc_type->fields.structure,
1613 num_fields * sizeof(*fields));
1614 bool interface_type_changed = false;
1615 for (unsigned i = 0; i < num_fields; i++) {
1616 if (interface_vars[i] != NULL &&
1617 fields[i].type != interface_vars[i]->type) {
1618 fields[i].type = interface_vars[i]->type;
1619 interface_type_changed = true;
1620 }
1621 }
1622 if (!interface_type_changed) {
1623 delete [] fields;
1624 return;
1625 }
1626 glsl_interface_packing packing =
1627 (glsl_interface_packing) ifc_type->interface_packing;
1628 bool row_major = (bool) ifc_type->interface_row_major;
1629 const glsl_type *new_ifc_type =
1630 glsl_type::get_interface_instance(fields, num_fields, packing,
1631 row_major, ifc_type->name);
1632 delete [] fields;
1633 for (unsigned i = 0; i < num_fields; i++) {
1634 if (interface_vars[i] != NULL)
1635 interface_vars[i]->change_interface_type(new_ifc_type);
1636 }
1637 }
1638
1639 /**
1640 * Memory context used to allocate the data in \c unnamed_interfaces.
1641 */
1642 void *mem_ctx;
1643
1644 /**
1645 * Hash table from const glsl_type * to an array of ir_variable *'s
1646 * pointing to the ir_variables constituting each unnamed interface block.
1647 */
1648 hash_table *unnamed_interfaces;
1649 };
1650
1651 static bool
1652 validate_xfb_buffer_stride(struct gl_context *ctx, unsigned idx,
1653 struct gl_shader_program *prog)
1654 {
1655 /* We will validate doubles at a later stage */
1656 if (prog->TransformFeedback.BufferStride[idx] % 4) {
1657 linker_error(prog, "invalid qualifier xfb_stride=%d must be a "
1658 "multiple of 4 or if its applied to a type that is "
1659 "or contains a double a multiple of 8.",
1660 prog->TransformFeedback.BufferStride[idx]);
1661 return false;
1662 }
1663
1664 if (prog->TransformFeedback.BufferStride[idx] / 4 >
1665 ctx->Const.MaxTransformFeedbackInterleavedComponents) {
1666 linker_error(prog, "The MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS "
1667 "limit has been exceeded.");
1668 return false;
1669 }
1670
1671 return true;
1672 }
1673
1674 /**
1675 * Check for conflicting xfb_stride default qualifiers and store buffer stride
1676 * for later use.
1677 */
1678 static void
1679 link_xfb_stride_layout_qualifiers(struct gl_context *ctx,
1680 struct gl_shader_program *prog,
1681 struct gl_shader **shader_list,
1682 unsigned num_shaders)
1683 {
1684 for (unsigned i = 0; i < MAX_FEEDBACK_BUFFERS; i++) {
1685 prog->TransformFeedback.BufferStride[i] = 0;
1686 }
1687
1688 for (unsigned i = 0; i < num_shaders; i++) {
1689 struct gl_shader *shader = shader_list[i];
1690
1691 for (unsigned j = 0; j < MAX_FEEDBACK_BUFFERS; j++) {
1692 if (shader->TransformFeedbackBufferStride[j]) {
1693 if (prog->TransformFeedback.BufferStride[j] == 0) {
1694 prog->TransformFeedback.BufferStride[j] =
1695 shader->TransformFeedbackBufferStride[j];
1696 if (!validate_xfb_buffer_stride(ctx, j, prog))
1697 return;
1698 } else if (prog->TransformFeedback.BufferStride[j] !=
1699 shader->TransformFeedbackBufferStride[j]){
1700 linker_error(prog,
1701 "intrastage shaders defined with conflicting "
1702 "xfb_stride for buffer %d (%d and %d)\n", j,
1703 prog->TransformFeedback.BufferStride[j],
1704 shader->TransformFeedbackBufferStride[j]);
1705 return;
1706 }
1707 }
1708 }
1709 }
1710 }
1711
1712 /**
1713 * Check for conflicting bindless/bound sampler/image layout qualifiers at
1714 * global scope.
1715 */
1716 static void
1717 link_bindless_layout_qualifiers(struct gl_shader_program *prog,
1718 struct gl_shader **shader_list,
1719 unsigned num_shaders)
1720 {
1721 bool bindless_sampler, bindless_image;
1722 bool bound_sampler, bound_image;
1723
1724 bindless_sampler = bindless_image = false;
1725 bound_sampler = bound_image = false;
1726
1727 for (unsigned i = 0; i < num_shaders; i++) {
1728 struct gl_shader *shader = shader_list[i];
1729
1730 if (shader->bindless_sampler)
1731 bindless_sampler = true;
1732 if (shader->bindless_image)
1733 bindless_image = true;
1734 if (shader->bound_sampler)
1735 bound_sampler = true;
1736 if (shader->bound_image)
1737 bound_image = true;
1738
1739 if ((bindless_sampler && bound_sampler) ||
1740 (bindless_image && bound_image)) {
1741 /* From section 4.4.6 of the ARB_bindless_texture spec:
1742 *
1743 * "If both bindless_sampler and bound_sampler, or bindless_image
1744 * and bound_image, are declared at global scope in any
1745 * compilation unit, a link- time error will be generated."
1746 */
1747 linker_error(prog, "both bindless_sampler and bound_sampler, or "
1748 "bindless_image and bound_image, can't be declared at "
1749 "global scope");
1750 }
1751 }
1752 }
1753
1754 /**
1755 * Performs the cross-validation of tessellation control shader vertices and
1756 * layout qualifiers for the attached tessellation control shaders,
1757 * and propagates them to the linked TCS and linked shader program.
1758 */
1759 static void
1760 link_tcs_out_layout_qualifiers(struct gl_shader_program *prog,
1761 struct gl_program *gl_prog,
1762 struct gl_shader **shader_list,
1763 unsigned num_shaders)
1764 {
1765 if (gl_prog->info.stage != MESA_SHADER_TESS_CTRL)
1766 return;
1767
1768 gl_prog->info.tess.tcs_vertices_out = 0;
1769
1770 /* From the GLSL 4.0 spec (chapter 4.3.8.2):
1771 *
1772 * "All tessellation control shader layout declarations in a program
1773 * must specify the same output patch vertex count. There must be at
1774 * least one layout qualifier specifying an output patch vertex count
1775 * in any program containing tessellation control shaders; however,
1776 * such a declaration is not required in all tessellation control
1777 * shaders."
1778 */
1779
1780 for (unsigned i = 0; i < num_shaders; i++) {
1781 struct gl_shader *shader = shader_list[i];
1782
1783 if (shader->info.TessCtrl.VerticesOut != 0) {
1784 if (gl_prog->info.tess.tcs_vertices_out != 0 &&
1785 gl_prog->info.tess.tcs_vertices_out !=
1786 (unsigned) shader->info.TessCtrl.VerticesOut) {
1787 linker_error(prog, "tessellation control shader defined with "
1788 "conflicting output vertex count (%d and %d)\n",
1789 gl_prog->info.tess.tcs_vertices_out,
1790 shader->info.TessCtrl.VerticesOut);
1791 return;
1792 }
1793 gl_prog->info.tess.tcs_vertices_out =
1794 shader->info.TessCtrl.VerticesOut;
1795 }
1796 }
1797
1798 /* Just do the intrastage -> interstage propagation right now,
1799 * since we already know we're in the right type of shader program
1800 * for doing it.
1801 */
1802 if (gl_prog->info.tess.tcs_vertices_out == 0) {
1803 linker_error(prog, "tessellation control shader didn't declare "
1804 "vertices out layout qualifier\n");
1805 return;
1806 }
1807 }
1808
1809
1810 /**
1811 * Performs the cross-validation of tessellation evaluation shader
1812 * primitive type, vertex spacing, ordering and point_mode layout qualifiers
1813 * for the attached tessellation evaluation shaders, and propagates them
1814 * to the linked TES and linked shader program.
1815 */
1816 static void
1817 link_tes_in_layout_qualifiers(struct gl_shader_program *prog,
1818 struct gl_program *gl_prog,
1819 struct gl_shader **shader_list,
1820 unsigned num_shaders)
1821 {
1822 if (gl_prog->info.stage != MESA_SHADER_TESS_EVAL)
1823 return;
1824
1825 int point_mode = -1;
1826 unsigned vertex_order = 0;
1827
1828 gl_prog->info.tess.primitive_mode = PRIM_UNKNOWN;
1829 gl_prog->info.tess.spacing = TESS_SPACING_UNSPECIFIED;
1830
1831 /* From the GLSL 4.0 spec (chapter 4.3.8.1):
1832 *
1833 * "At least one tessellation evaluation shader (compilation unit) in
1834 * a program must declare a primitive mode in its input layout.
1835 * Declaration vertex spacing, ordering, and point mode identifiers is
1836 * optional. It is not required that all tessellation evaluation
1837 * shaders in a program declare a primitive mode. If spacing or
1838 * vertex ordering declarations are omitted, the tessellation
1839 * primitive generator will use equal spacing or counter-clockwise
1840 * vertex ordering, respectively. If a point mode declaration is
1841 * omitted, the tessellation primitive generator will produce lines or
1842 * triangles according to the primitive mode."
1843 */
1844
1845 for (unsigned i = 0; i < num_shaders; i++) {
1846 struct gl_shader *shader = shader_list[i];
1847
1848 if (shader->info.TessEval.PrimitiveMode != PRIM_UNKNOWN) {
1849 if (gl_prog->info.tess.primitive_mode != PRIM_UNKNOWN &&
1850 gl_prog->info.tess.primitive_mode !=
1851 shader->info.TessEval.PrimitiveMode) {
1852 linker_error(prog, "tessellation evaluation shader defined with "
1853 "conflicting input primitive modes.\n");
1854 return;
1855 }
1856 gl_prog->info.tess.primitive_mode =
1857 shader->info.TessEval.PrimitiveMode;
1858 }
1859
1860 if (shader->info.TessEval.Spacing != 0) {
1861 if (gl_prog->info.tess.spacing != 0 && gl_prog->info.tess.spacing !=
1862 shader->info.TessEval.Spacing) {
1863 linker_error(prog, "tessellation evaluation shader defined with "
1864 "conflicting vertex spacing.\n");
1865 return;
1866 }
1867 gl_prog->info.tess.spacing = shader->info.TessEval.Spacing;
1868 }
1869
1870 if (shader->info.TessEval.VertexOrder != 0) {
1871 if (vertex_order != 0 &&
1872 vertex_order != shader->info.TessEval.VertexOrder) {
1873 linker_error(prog, "tessellation evaluation shader defined with "
1874 "conflicting ordering.\n");
1875 return;
1876 }
1877 vertex_order = shader->info.TessEval.VertexOrder;
1878 }
1879
1880 if (shader->info.TessEval.PointMode != -1) {
1881 if (point_mode != -1 &&
1882 point_mode != shader->info.TessEval.PointMode) {
1883 linker_error(prog, "tessellation evaluation shader defined with "
1884 "conflicting point modes.\n");
1885 return;
1886 }
1887 point_mode = shader->info.TessEval.PointMode;
1888 }
1889
1890 }
1891
1892 /* Just do the intrastage -> interstage propagation right now,
1893 * since we already know we're in the right type of shader program
1894 * for doing it.
1895 */
1896 if (gl_prog->info.tess.primitive_mode == PRIM_UNKNOWN) {
1897 linker_error(prog,
1898 "tessellation evaluation shader didn't declare input "
1899 "primitive modes.\n");
1900 return;
1901 }
1902
1903 if (gl_prog->info.tess.spacing == TESS_SPACING_UNSPECIFIED)
1904 gl_prog->info.tess.spacing = TESS_SPACING_EQUAL;
1905
1906 if (vertex_order == 0 || vertex_order == GL_CCW)
1907 gl_prog->info.tess.ccw = true;
1908 else
1909 gl_prog->info.tess.ccw = false;
1910
1911
1912 if (point_mode == -1 || point_mode == GL_FALSE)
1913 gl_prog->info.tess.point_mode = false;
1914 else
1915 gl_prog->info.tess.point_mode = true;
1916 }
1917
1918
1919 /**
1920 * Performs the cross-validation of layout qualifiers specified in
1921 * redeclaration of gl_FragCoord for the attached fragment shaders,
1922 * and propagates them to the linked FS and linked shader program.
1923 */
1924 static void
1925 link_fs_inout_layout_qualifiers(struct gl_shader_program *prog,
1926 struct gl_linked_shader *linked_shader,
1927 struct gl_shader **shader_list,
1928 unsigned num_shaders)
1929 {
1930 bool redeclares_gl_fragcoord = false;
1931 bool uses_gl_fragcoord = false;
1932 bool origin_upper_left = false;
1933 bool pixel_center_integer = false;
1934
1935 if (linked_shader->Stage != MESA_SHADER_FRAGMENT ||
1936 (prog->data->Version < 150 &&
1937 !prog->ARB_fragment_coord_conventions_enable))
1938 return;
1939
1940 for (unsigned i = 0; i < num_shaders; i++) {
1941 struct gl_shader *shader = shader_list[i];
1942 /* From the GLSL 1.50 spec, page 39:
1943 *
1944 * "If gl_FragCoord is redeclared in any fragment shader in a program,
1945 * it must be redeclared in all the fragment shaders in that program
1946 * that have a static use gl_FragCoord."
1947 */
1948 if ((redeclares_gl_fragcoord && !shader->redeclares_gl_fragcoord &&
1949 shader->uses_gl_fragcoord)
1950 || (shader->redeclares_gl_fragcoord && !redeclares_gl_fragcoord &&
1951 uses_gl_fragcoord)) {
1952 linker_error(prog, "fragment shader defined with conflicting "
1953 "layout qualifiers for gl_FragCoord\n");
1954 }
1955
1956 /* From the GLSL 1.50 spec, page 39:
1957 *
1958 * "All redeclarations of gl_FragCoord in all fragment shaders in a
1959 * single program must have the same set of qualifiers."
1960 */
1961 if (redeclares_gl_fragcoord && shader->redeclares_gl_fragcoord &&
1962 (shader->origin_upper_left != origin_upper_left ||
1963 shader->pixel_center_integer != pixel_center_integer)) {
1964 linker_error(prog, "fragment shader defined with conflicting "
1965 "layout qualifiers for gl_FragCoord\n");
1966 }
1967
1968 /* Update the linked shader state. Note that uses_gl_fragcoord should
1969 * accumulate the results. The other values should replace. If there
1970 * are multiple redeclarations, all the fields except uses_gl_fragcoord
1971 * are already known to be the same.
1972 */
1973 if (shader->redeclares_gl_fragcoord || shader->uses_gl_fragcoord) {
1974 redeclares_gl_fragcoord = shader->redeclares_gl_fragcoord;
1975 uses_gl_fragcoord |= shader->uses_gl_fragcoord;
1976 origin_upper_left = shader->origin_upper_left;
1977 pixel_center_integer = shader->pixel_center_integer;
1978 }
1979
1980 linked_shader->Program->info.fs.early_fragment_tests |=
1981 shader->EarlyFragmentTests || shader->PostDepthCoverage;
1982 linked_shader->Program->info.fs.inner_coverage |= shader->InnerCoverage;
1983 linked_shader->Program->info.fs.post_depth_coverage |=
1984 shader->PostDepthCoverage;
1985
1986 linked_shader->Program->sh.fs.BlendSupport |= shader->BlendSupport;
1987 }
1988 }
1989
1990 /**
1991 * Performs the cross-validation of geometry shader max_vertices and
1992 * primitive type layout qualifiers for the attached geometry shaders,
1993 * and propagates them to the linked GS and linked shader program.
1994 */
1995 static void
1996 link_gs_inout_layout_qualifiers(struct gl_shader_program *prog,
1997 struct gl_program *gl_prog,
1998 struct gl_shader **shader_list,
1999 unsigned num_shaders)
2000 {
2001 /* No in/out qualifiers defined for anything but GLSL 1.50+
2002 * geometry shaders so far.
2003 */
2004 if (gl_prog->info.stage != MESA_SHADER_GEOMETRY ||
2005 prog->data->Version < 150)
2006 return;
2007
2008 int vertices_out = -1;
2009
2010 gl_prog->info.gs.invocations = 0;
2011 gl_prog->info.gs.input_primitive = PRIM_UNKNOWN;
2012 gl_prog->info.gs.output_primitive = PRIM_UNKNOWN;
2013
2014 /* From the GLSL 1.50 spec, page 46:
2015 *
2016 * "All geometry shader output layout declarations in a program
2017 * must declare the same layout and same value for
2018 * max_vertices. There must be at least one geometry output
2019 * layout declaration somewhere in a program, but not all
2020 * geometry shaders (compilation units) are required to
2021 * declare it."
2022 */
2023
2024 for (unsigned i = 0; i < num_shaders; i++) {
2025 struct gl_shader *shader = shader_list[i];
2026
2027 if (shader->info.Geom.InputType != PRIM_UNKNOWN) {
2028 if (gl_prog->info.gs.input_primitive != PRIM_UNKNOWN &&
2029 gl_prog->info.gs.input_primitive !=
2030 shader->info.Geom.InputType) {
2031 linker_error(prog, "geometry shader defined with conflicting "
2032 "input types\n");
2033 return;
2034 }
2035 gl_prog->info.gs.input_primitive = shader->info.Geom.InputType;
2036 }
2037
2038 if (shader->info.Geom.OutputType != PRIM_UNKNOWN) {
2039 if (gl_prog->info.gs.output_primitive != PRIM_UNKNOWN &&
2040 gl_prog->info.gs.output_primitive !=
2041 shader->info.Geom.OutputType) {
2042 linker_error(prog, "geometry shader defined with conflicting "
2043 "output types\n");
2044 return;
2045 }
2046 gl_prog->info.gs.output_primitive = shader->info.Geom.OutputType;
2047 }
2048
2049 if (shader->info.Geom.VerticesOut != -1) {
2050 if (vertices_out != -1 &&
2051 vertices_out != shader->info.Geom.VerticesOut) {
2052 linker_error(prog, "geometry shader defined with conflicting "
2053 "output vertex count (%d and %d)\n",
2054 vertices_out, shader->info.Geom.VerticesOut);
2055 return;
2056 }
2057 vertices_out = shader->info.Geom.VerticesOut;
2058 }
2059
2060 if (shader->info.Geom.Invocations != 0) {
2061 if (gl_prog->info.gs.invocations != 0 &&
2062 gl_prog->info.gs.invocations !=
2063 (unsigned) shader->info.Geom.Invocations) {
2064 linker_error(prog, "geometry shader defined with conflicting "
2065 "invocation count (%d and %d)\n",
2066 gl_prog->info.gs.invocations,
2067 shader->info.Geom.Invocations);
2068 return;
2069 }
2070 gl_prog->info.gs.invocations = shader->info.Geom.Invocations;
2071 }
2072 }
2073
2074 /* Just do the intrastage -> interstage propagation right now,
2075 * since we already know we're in the right type of shader program
2076 * for doing it.
2077 */
2078 if (gl_prog->info.gs.input_primitive == PRIM_UNKNOWN) {
2079 linker_error(prog,
2080 "geometry shader didn't declare primitive input type\n");
2081 return;
2082 }
2083
2084 if (gl_prog->info.gs.output_primitive == PRIM_UNKNOWN) {
2085 linker_error(prog,
2086 "geometry shader didn't declare primitive output type\n");
2087 return;
2088 }
2089
2090 if (vertices_out == -1) {
2091 linker_error(prog,
2092 "geometry shader didn't declare max_vertices\n");
2093 return;
2094 } else {
2095 gl_prog->info.gs.vertices_out = vertices_out;
2096 }
2097
2098 if (gl_prog->info.gs.invocations == 0)
2099 gl_prog->info.gs.invocations = 1;
2100 }
2101
2102
2103 /**
2104 * Perform cross-validation of compute shader local_size_{x,y,z} layout
2105 * qualifiers for the attached compute shaders, and propagate them to the
2106 * linked CS and linked shader program.
2107 */
2108 static void
2109 link_cs_input_layout_qualifiers(struct gl_shader_program *prog,
2110 struct gl_program *gl_prog,
2111 struct gl_shader **shader_list,
2112 unsigned num_shaders)
2113 {
2114 /* This function is called for all shader stages, but it only has an effect
2115 * for compute shaders.
2116 */
2117 if (gl_prog->info.stage != MESA_SHADER_COMPUTE)
2118 return;
2119
2120 for (int i = 0; i < 3; i++)
2121 gl_prog->info.cs.local_size[i] = 0;
2122
2123 gl_prog->info.cs.local_size_variable = false;
2124
2125 /* From the ARB_compute_shader spec, in the section describing local size
2126 * declarations:
2127 *
2128 * If multiple compute shaders attached to a single program object
2129 * declare local work-group size, the declarations must be identical;
2130 * otherwise a link-time error results. Furthermore, if a program
2131 * object contains any compute shaders, at least one must contain an
2132 * input layout qualifier specifying the local work sizes of the
2133 * program, or a link-time error will occur.
2134 */
2135 for (unsigned sh = 0; sh < num_shaders; sh++) {
2136 struct gl_shader *shader = shader_list[sh];
2137
2138 if (shader->info.Comp.LocalSize[0] != 0) {
2139 if (gl_prog->info.cs.local_size[0] != 0) {
2140 for (int i = 0; i < 3; i++) {
2141 if (gl_prog->info.cs.local_size[i] !=
2142 shader->info.Comp.LocalSize[i]) {
2143 linker_error(prog, "compute shader defined with conflicting "
2144 "local sizes\n");
2145 return;
2146 }
2147 }
2148 }
2149 for (int i = 0; i < 3; i++) {
2150 gl_prog->info.cs.local_size[i] =
2151 shader->info.Comp.LocalSize[i];
2152 }
2153 } else if (shader->info.Comp.LocalSizeVariable) {
2154 if (gl_prog->info.cs.local_size[0] != 0) {
2155 /* The ARB_compute_variable_group_size spec says:
2156 *
2157 * If one compute shader attached to a program declares a
2158 * variable local group size and a second compute shader
2159 * attached to the same program declares a fixed local group
2160 * size, a link-time error results.
2161 */
2162 linker_error(prog, "compute shader defined with both fixed and "
2163 "variable local group size\n");
2164 return;
2165 }
2166 gl_prog->info.cs.local_size_variable = true;
2167 }
2168 }
2169
2170 /* Just do the intrastage -> interstage propagation right now,
2171 * since we already know we're in the right type of shader program
2172 * for doing it.
2173 */
2174 if (gl_prog->info.cs.local_size[0] == 0 &&
2175 !gl_prog->info.cs.local_size_variable) {
2176 linker_error(prog, "compute shader must contain a fixed or a variable "
2177 "local group size\n");
2178 return;
2179 }
2180 }
2181
2182
2183 /**
2184 * Combine a group of shaders for a single stage to generate a linked shader
2185 *
2186 * \note
2187 * If this function is supplied a single shader, it is cloned, and the new
2188 * shader is returned.
2189 */
2190 struct gl_linked_shader *
2191 link_intrastage_shaders(void *mem_ctx,
2192 struct gl_context *ctx,
2193 struct gl_shader_program *prog,
2194 struct gl_shader **shader_list,
2195 unsigned num_shaders,
2196 bool allow_missing_main)
2197 {
2198 struct gl_uniform_block *ubo_blocks = NULL;
2199 struct gl_uniform_block *ssbo_blocks = NULL;
2200 unsigned num_ubo_blocks = 0;
2201 unsigned num_ssbo_blocks = 0;
2202
2203 /* Check that global variables defined in multiple shaders are consistent.
2204 */
2205 glsl_symbol_table variables;
2206 for (unsigned i = 0; i < num_shaders; i++) {
2207 if (shader_list[i] == NULL)
2208 continue;
2209 cross_validate_globals(prog, shader_list[i]->ir, &variables, false);
2210 }
2211
2212 if (!prog->data->LinkStatus)
2213 return NULL;
2214
2215 /* Check that interface blocks defined in multiple shaders are consistent.
2216 */
2217 validate_intrastage_interface_blocks(prog, (const gl_shader **)shader_list,
2218 num_shaders);
2219 if (!prog->data->LinkStatus)
2220 return NULL;
2221
2222 /* Check that there is only a single definition of each function signature
2223 * across all shaders.
2224 */
2225 for (unsigned i = 0; i < (num_shaders - 1); i++) {
2226 foreach_in_list(ir_instruction, node, shader_list[i]->ir) {
2227 ir_function *const f = node->as_function();
2228
2229 if (f == NULL)
2230 continue;
2231
2232 for (unsigned j = i + 1; j < num_shaders; j++) {
2233 ir_function *const other =
2234 shader_list[j]->symbols->get_function(f->name);
2235
2236 /* If the other shader has no function (and therefore no function
2237 * signatures) with the same name, skip to the next shader.
2238 */
2239 if (other == NULL)
2240 continue;
2241
2242 foreach_in_list(ir_function_signature, sig, &f->signatures) {
2243 if (!sig->is_defined)
2244 continue;
2245
2246 ir_function_signature *other_sig =
2247 other->exact_matching_signature(NULL, &sig->parameters);
2248
2249 if (other_sig != NULL && other_sig->is_defined) {
2250 linker_error(prog, "function `%s' is multiply defined\n",
2251 f->name);
2252 return NULL;
2253 }
2254 }
2255 }
2256 }
2257 }
2258
2259 /* Find the shader that defines main, and make a clone of it.
2260 *
2261 * Starting with the clone, search for undefined references. If one is
2262 * found, find the shader that defines it. Clone the reference and add
2263 * it to the shader. Repeat until there are no undefined references or
2264 * until a reference cannot be resolved.
2265 */
2266 gl_shader *main = NULL;
2267 for (unsigned i = 0; i < num_shaders; i++) {
2268 if (_mesa_get_main_function_signature(shader_list[i]->symbols)) {
2269 main = shader_list[i];
2270 break;
2271 }
2272 }
2273
2274 if (main == NULL && allow_missing_main)
2275 main = shader_list[0];
2276
2277 if (main == NULL) {
2278 linker_error(prog, "%s shader lacks `main'\n",
2279 _mesa_shader_stage_to_string(shader_list[0]->Stage));
2280 return NULL;
2281 }
2282
2283 gl_linked_shader *linked = rzalloc(NULL, struct gl_linked_shader);
2284 linked->Stage = shader_list[0]->Stage;
2285
2286 /* Create program and attach it to the linked shader */
2287 struct gl_program *gl_prog =
2288 ctx->Driver.NewProgram(ctx,
2289 _mesa_shader_stage_to_program(shader_list[0]->Stage),
2290 prog->Name, false);
2291 if (!gl_prog) {
2292 prog->data->LinkStatus = LINKING_FAILURE;
2293 _mesa_delete_linked_shader(ctx, linked);
2294 return NULL;
2295 }
2296
2297 _mesa_reference_shader_program_data(ctx, &gl_prog->sh.data, prog->data);
2298
2299 /* Don't use _mesa_reference_program() just take ownership */
2300 linked->Program = gl_prog;
2301
2302 linked->ir = new(linked) exec_list;
2303 clone_ir_list(mem_ctx, linked->ir, main->ir);
2304
2305 link_fs_inout_layout_qualifiers(prog, linked, shader_list, num_shaders);
2306 link_tcs_out_layout_qualifiers(prog, gl_prog, shader_list, num_shaders);
2307 link_tes_in_layout_qualifiers(prog, gl_prog, shader_list, num_shaders);
2308 link_gs_inout_layout_qualifiers(prog, gl_prog, shader_list, num_shaders);
2309 link_cs_input_layout_qualifiers(prog, gl_prog, shader_list, num_shaders);
2310
2311 if (linked->Stage != MESA_SHADER_FRAGMENT)
2312 link_xfb_stride_layout_qualifiers(ctx, prog, shader_list, num_shaders);
2313
2314 link_bindless_layout_qualifiers(prog, shader_list, num_shaders);
2315
2316 populate_symbol_table(linked, shader_list[0]->symbols);
2317
2318 /* The pointer to the main function in the final linked shader (i.e., the
2319 * copy of the original shader that contained the main function).
2320 */
2321 ir_function_signature *const main_sig =
2322 _mesa_get_main_function_signature(linked->symbols);
2323
2324 /* Move any instructions other than variable declarations or function
2325 * declarations into main.
2326 */
2327 if (main_sig != NULL) {
2328 exec_node *insertion_point =
2329 move_non_declarations(linked->ir, (exec_node *) &main_sig->body, false,
2330 linked);
2331
2332 for (unsigned i = 0; i < num_shaders; i++) {
2333 if (shader_list[i] == main)
2334 continue;
2335
2336 insertion_point = move_non_declarations(shader_list[i]->ir,
2337 insertion_point, true, linked);
2338 }
2339 }
2340
2341 if (!link_function_calls(prog, linked, shader_list, num_shaders)) {
2342 _mesa_delete_linked_shader(ctx, linked);
2343 return NULL;
2344 }
2345
2346 /* Make a pass over all variable declarations to ensure that arrays with
2347 * unspecified sizes have a size specified. The size is inferred from the
2348 * max_array_access field.
2349 */
2350 array_sizing_visitor v;
2351 v.run(linked->ir);
2352 v.fixup_unnamed_interface_types();
2353
2354 /* Link up uniform blocks defined within this stage. */
2355 link_uniform_blocks(mem_ctx, ctx, prog, linked, &ubo_blocks,
2356 &num_ubo_blocks, &ssbo_blocks, &num_ssbo_blocks);
2357
2358 if (!prog->data->LinkStatus) {
2359 _mesa_delete_linked_shader(ctx, linked);
2360 return NULL;
2361 }
2362
2363 /* Copy ubo blocks to linked shader list */
2364 linked->Program->sh.UniformBlocks =
2365 ralloc_array(linked, gl_uniform_block *, num_ubo_blocks);
2366 ralloc_steal(linked, ubo_blocks);
2367 for (unsigned i = 0; i < num_ubo_blocks; i++) {
2368 linked->Program->sh.UniformBlocks[i] = &ubo_blocks[i];
2369 }
2370 linked->Program->info.num_ubos = num_ubo_blocks;
2371
2372 /* Copy ssbo blocks to linked shader list */
2373 linked->Program->sh.ShaderStorageBlocks =
2374 ralloc_array(linked, gl_uniform_block *, num_ssbo_blocks);
2375 ralloc_steal(linked, ssbo_blocks);
2376 for (unsigned i = 0; i < num_ssbo_blocks; i++) {
2377 linked->Program->sh.ShaderStorageBlocks[i] = &ssbo_blocks[i];
2378 }
2379 linked->Program->info.num_ssbos = num_ssbo_blocks;
2380
2381 /* At this point linked should contain all of the linked IR, so
2382 * validate it to make sure nothing went wrong.
2383 */
2384 validate_ir_tree(linked->ir);
2385
2386 /* Set the size of geometry shader input arrays */
2387 if (linked->Stage == MESA_SHADER_GEOMETRY) {
2388 unsigned num_vertices =
2389 vertices_per_prim(gl_prog->info.gs.input_primitive);
2390 array_resize_visitor input_resize_visitor(num_vertices, prog,
2391 MESA_SHADER_GEOMETRY);
2392 foreach_in_list(ir_instruction, ir, linked->ir) {
2393 ir->accept(&input_resize_visitor);
2394 }
2395 }
2396
2397 if (ctx->Const.VertexID_is_zero_based)
2398 lower_vertex_id(linked);
2399
2400 if (ctx->Const.LowerCsDerivedVariables)
2401 lower_cs_derived(linked);
2402
2403 #ifdef DEBUG
2404 /* Compute the source checksum. */
2405 linked->SourceChecksum = 0;
2406 for (unsigned i = 0; i < num_shaders; i++) {
2407 if (shader_list[i] == NULL)
2408 continue;
2409 linked->SourceChecksum ^= shader_list[i]->SourceChecksum;
2410 }
2411 #endif
2412
2413 return linked;
2414 }
2415
2416 /**
2417 * Update the sizes of linked shader uniform arrays to the maximum
2418 * array index used.
2419 *
2420 * From page 81 (page 95 of the PDF) of the OpenGL 2.1 spec:
2421 *
2422 * If one or more elements of an array are active,
2423 * GetActiveUniform will return the name of the array in name,
2424 * subject to the restrictions listed above. The type of the array
2425 * is returned in type. The size parameter contains the highest
2426 * array element index used, plus one. The compiler or linker
2427 * determines the highest index used. There will be only one
2428 * active uniform reported by the GL per uniform array.
2429
2430 */
2431 static void
2432 update_array_sizes(struct gl_shader_program *prog)
2433 {
2434 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
2435 if (prog->_LinkedShaders[i] == NULL)
2436 continue;
2437
2438 bool types_were_updated = false;
2439
2440 foreach_in_list(ir_instruction, node, prog->_LinkedShaders[i]->ir) {
2441 ir_variable *const var = node->as_variable();
2442
2443 if ((var == NULL) || (var->data.mode != ir_var_uniform) ||
2444 !var->type->is_array())
2445 continue;
2446
2447 /* GL_ARB_uniform_buffer_object says that std140 uniforms
2448 * will not be eliminated. Since we always do std140, just
2449 * don't resize arrays in UBOs.
2450 *
2451 * Atomic counters are supposed to get deterministic
2452 * locations assigned based on the declaration ordering and
2453 * sizes, array compaction would mess that up.
2454 *
2455 * Subroutine uniforms are not removed.
2456 */
2457 if (var->is_in_buffer_block() || var->type->contains_atomic() ||
2458 var->type->contains_subroutine() || var->constant_initializer)
2459 continue;
2460
2461 int size = var->data.max_array_access;
2462 for (unsigned j = 0; j < MESA_SHADER_STAGES; j++) {
2463 if (prog->_LinkedShaders[j] == NULL)
2464 continue;
2465
2466 foreach_in_list(ir_instruction, node2, prog->_LinkedShaders[j]->ir) {
2467 ir_variable *other_var = node2->as_variable();
2468 if (!other_var)
2469 continue;
2470
2471 if (strcmp(var->name, other_var->name) == 0 &&
2472 other_var->data.max_array_access > size) {
2473 size = other_var->data.max_array_access;
2474 }
2475 }
2476 }
2477
2478 if (size + 1 != (int)var->type->length) {
2479 /* If this is a built-in uniform (i.e., it's backed by some
2480 * fixed-function state), adjust the number of state slots to
2481 * match the new array size. The number of slots per array entry
2482 * is not known. It seems safe to assume that the total number of
2483 * slots is an integer multiple of the number of array elements.
2484 * Determine the number of slots per array element by dividing by
2485 * the old (total) size.
2486 */
2487 const unsigned num_slots = var->get_num_state_slots();
2488 if (num_slots > 0) {
2489 var->set_num_state_slots((size + 1)
2490 * (num_slots / var->type->length));
2491 }
2492
2493 var->type = glsl_type::get_array_instance(var->type->fields.array,
2494 size + 1);
2495 types_were_updated = true;
2496 }
2497 }
2498
2499 /* Update the types of dereferences in case we changed any. */
2500 if (types_were_updated) {
2501 deref_type_updater v;
2502 v.run(prog->_LinkedShaders[i]->ir);
2503 }
2504 }
2505 }
2506
2507 /**
2508 * Resize tessellation evaluation per-vertex inputs to the size of
2509 * tessellation control per-vertex outputs.
2510 */
2511 static void
2512 resize_tes_inputs(struct gl_context *ctx,
2513 struct gl_shader_program *prog)
2514 {
2515 if (prog->_LinkedShaders[MESA_SHADER_TESS_EVAL] == NULL)
2516 return;
2517
2518 gl_linked_shader *const tcs = prog->_LinkedShaders[MESA_SHADER_TESS_CTRL];
2519 gl_linked_shader *const tes = prog->_LinkedShaders[MESA_SHADER_TESS_EVAL];
2520
2521 /* If no control shader is present, then the TES inputs are statically
2522 * sized to MaxPatchVertices; the actual size of the arrays won't be
2523 * known until draw time.
2524 */
2525 const int num_vertices = tcs
2526 ? tcs->Program->info.tess.tcs_vertices_out
2527 : ctx->Const.MaxPatchVertices;
2528
2529 array_resize_visitor input_resize_visitor(num_vertices, prog,
2530 MESA_SHADER_TESS_EVAL);
2531 foreach_in_list(ir_instruction, ir, tes->ir) {
2532 ir->accept(&input_resize_visitor);
2533 }
2534
2535 if (tcs) {
2536 /* Convert the gl_PatchVerticesIn system value into a constant, since
2537 * the value is known at this point.
2538 */
2539 foreach_in_list(ir_instruction, ir, tes->ir) {
2540 ir_variable *var = ir->as_variable();
2541 if (var && var->data.mode == ir_var_system_value &&
2542 var->data.location == SYSTEM_VALUE_VERTICES_IN) {
2543 void *mem_ctx = ralloc_parent(var);
2544 var->data.location = 0;
2545 var->data.explicit_location = false;
2546 var->data.mode = ir_var_auto;
2547 var->constant_value = new(mem_ctx) ir_constant(num_vertices);
2548 }
2549 }
2550 }
2551 }
2552
2553 /**
2554 * Find a contiguous set of available bits in a bitmask.
2555 *
2556 * \param used_mask Bits representing used (1) and unused (0) locations
2557 * \param needed_count Number of contiguous bits needed.
2558 *
2559 * \return
2560 * Base location of the available bits on success or -1 on failure.
2561 */
2562 static int
2563 find_available_slots(unsigned used_mask, unsigned needed_count)
2564 {
2565 unsigned needed_mask = (1 << needed_count) - 1;
2566 const int max_bit_to_test = (8 * sizeof(used_mask)) - needed_count;
2567
2568 /* The comparison to 32 is redundant, but without it GCC emits "warning:
2569 * cannot optimize possibly infinite loops" for the loop below.
2570 */
2571 if ((needed_count == 0) || (max_bit_to_test < 0) || (max_bit_to_test > 32))
2572 return -1;
2573
2574 for (int i = 0; i <= max_bit_to_test; i++) {
2575 if ((needed_mask & ~used_mask) == needed_mask)
2576 return i;
2577
2578 needed_mask <<= 1;
2579 }
2580
2581 return -1;
2582 }
2583
2584
2585 #define SAFE_MASK_FROM_INDEX(i) (((i) >= 32) ? ~0 : ((1 << (i)) - 1))
2586
2587 /**
2588 * Assign locations for either VS inputs or FS outputs
2589 *
2590 * \param mem_ctx Temporary ralloc context used for linking
2591 * \param prog Shader program whose variables need locations assigned
2592 * \param constants Driver specific constant values for the program.
2593 * \param target_index Selector for the program target to receive location
2594 * assignmnets. Must be either \c MESA_SHADER_VERTEX or
2595 * \c MESA_SHADER_FRAGMENT.
2596 *
2597 * \return
2598 * If locations are successfully assigned, true is returned. Otherwise an
2599 * error is emitted to the shader link log and false is returned.
2600 */
2601 static bool
2602 assign_attribute_or_color_locations(void *mem_ctx,
2603 gl_shader_program *prog,
2604 struct gl_constants *constants,
2605 unsigned target_index)
2606 {
2607 /* Maximum number of generic locations. This corresponds to either the
2608 * maximum number of draw buffers or the maximum number of generic
2609 * attributes.
2610 */
2611 unsigned max_index = (target_index == MESA_SHADER_VERTEX) ?
2612 constants->Program[target_index].MaxAttribs :
2613 MAX2(constants->MaxDrawBuffers, constants->MaxDualSourceDrawBuffers);
2614
2615 /* Mark invalid locations as being used.
2616 */
2617 unsigned used_locations = ~SAFE_MASK_FROM_INDEX(max_index);
2618 unsigned double_storage_locations = 0;
2619
2620 assert((target_index == MESA_SHADER_VERTEX)
2621 || (target_index == MESA_SHADER_FRAGMENT));
2622
2623 gl_linked_shader *const sh = prog->_LinkedShaders[target_index];
2624 if (sh == NULL)
2625 return true;
2626
2627 /* Operate in a total of four passes.
2628 *
2629 * 1. Invalidate the location assignments for all vertex shader inputs.
2630 *
2631 * 2. Assign locations for inputs that have user-defined (via
2632 * glBindVertexAttribLocation) locations and outputs that have
2633 * user-defined locations (via glBindFragDataLocation).
2634 *
2635 * 3. Sort the attributes without assigned locations by number of slots
2636 * required in decreasing order. Fragmentation caused by attribute
2637 * locations assigned by the application may prevent large attributes
2638 * from having enough contiguous space.
2639 *
2640 * 4. Assign locations to any inputs without assigned locations.
2641 */
2642
2643 const int generic_base = (target_index == MESA_SHADER_VERTEX)
2644 ? (int) VERT_ATTRIB_GENERIC0 : (int) FRAG_RESULT_DATA0;
2645
2646 const enum ir_variable_mode direction =
2647 (target_index == MESA_SHADER_VERTEX)
2648 ? ir_var_shader_in : ir_var_shader_out;
2649
2650
2651 /* Temporary storage for the set of attributes that need locations assigned.
2652 */
2653 struct temp_attr {
2654 unsigned slots;
2655 ir_variable *var;
2656
2657 /* Used below in the call to qsort. */
2658 static int compare(const void *a, const void *b)
2659 {
2660 const temp_attr *const l = (const temp_attr *) a;
2661 const temp_attr *const r = (const temp_attr *) b;
2662
2663 /* Reversed because we want a descending order sort below. */
2664 return r->slots - l->slots;
2665 }
2666 } to_assign[32];
2667 assert(max_index <= 32);
2668
2669 /* Temporary array for the set of attributes that have locations assigned,
2670 * for the purpose of checking overlapping slots/components of (non-ES)
2671 * fragment shader outputs.
2672 */
2673 ir_variable *assigned[12 * 4]; /* (max # of FS outputs) * # components */
2674 unsigned assigned_attr = 0;
2675
2676 unsigned num_attr = 0;
2677
2678 foreach_in_list(ir_instruction, node, sh->ir) {
2679 ir_variable *const var = node->as_variable();
2680
2681 if ((var == NULL) || (var->data.mode != (unsigned) direction))
2682 continue;
2683
2684 if (var->data.explicit_location) {
2685 var->data.is_unmatched_generic_inout = 0;
2686 if ((var->data.location >= (int)(max_index + generic_base))
2687 || (var->data.location < 0)) {
2688 linker_error(prog,
2689 "invalid explicit location %d specified for `%s'\n",
2690 (var->data.location < 0)
2691 ? var->data.location
2692 : var->data.location - generic_base,
2693 var->name);
2694 return false;
2695 }
2696 } else if (target_index == MESA_SHADER_VERTEX) {
2697 unsigned binding;
2698
2699 if (prog->AttributeBindings->get(binding, var->name)) {
2700 assert(binding >= VERT_ATTRIB_GENERIC0);
2701 var->data.location = binding;
2702 var->data.is_unmatched_generic_inout = 0;
2703 }
2704 } else if (target_index == MESA_SHADER_FRAGMENT) {
2705 unsigned binding;
2706 unsigned index;
2707 const char *name = var->name;
2708 const glsl_type *type = var->type;
2709
2710 while (type) {
2711 /* Check if there's a binding for the variable name */
2712 if (prog->FragDataBindings->get(binding, name)) {
2713 assert(binding >= FRAG_RESULT_DATA0);
2714 var->data.location = binding;
2715 var->data.is_unmatched_generic_inout = 0;
2716
2717 if (prog->FragDataIndexBindings->get(index, name)) {
2718 var->data.index = index;
2719 }
2720 break;
2721 }
2722
2723 /* If not, but it's an array type, look for name[0] */
2724 if (type->is_array()) {
2725 name = ralloc_asprintf(mem_ctx, "%s[0]", name);
2726 type = type->fields.array;
2727 continue;
2728 }
2729
2730 break;
2731 }
2732 }
2733
2734 if (strcmp(var->name, "gl_LastFragData") == 0)
2735 continue;
2736
2737 /* From GL4.5 core spec, section 15.2 (Shader Execution):
2738 *
2739 * "Output binding assignments will cause LinkProgram to fail:
2740 * ...
2741 * If the program has an active output assigned to a location greater
2742 * than or equal to the value of MAX_DUAL_SOURCE_DRAW_BUFFERS and has
2743 * an active output assigned an index greater than or equal to one;"
2744 */
2745 if (target_index == MESA_SHADER_FRAGMENT && var->data.index >= 1 &&
2746 var->data.location - generic_base >=
2747 (int) constants->MaxDualSourceDrawBuffers) {
2748 linker_error(prog,
2749 "output location %d >= GL_MAX_DUAL_SOURCE_DRAW_BUFFERS "
2750 "with index %u for %s\n",
2751 var->data.location - generic_base, var->data.index,
2752 var->name);
2753 return false;
2754 }
2755
2756 const unsigned slots = var->type->count_attribute_slots(target_index == MESA_SHADER_VERTEX);
2757
2758 /* If the variable is not a built-in and has a location statically
2759 * assigned in the shader (presumably via a layout qualifier), make sure
2760 * that it doesn't collide with other assigned locations. Otherwise,
2761 * add it to the list of variables that need linker-assigned locations.
2762 */
2763 if (var->data.location != -1) {
2764 if (var->data.location >= generic_base && var->data.index < 1) {
2765 /* From page 61 of the OpenGL 4.0 spec:
2766 *
2767 * "LinkProgram will fail if the attribute bindings assigned
2768 * by BindAttribLocation do not leave not enough space to
2769 * assign a location for an active matrix attribute or an
2770 * active attribute array, both of which require multiple
2771 * contiguous generic attributes."
2772 *
2773 * I think above text prohibits the aliasing of explicit and
2774 * automatic assignments. But, aliasing is allowed in manual
2775 * assignments of attribute locations. See below comments for
2776 * the details.
2777 *
2778 * From OpenGL 4.0 spec, page 61:
2779 *
2780 * "It is possible for an application to bind more than one
2781 * attribute name to the same location. This is referred to as
2782 * aliasing. This will only work if only one of the aliased
2783 * attributes is active in the executable program, or if no
2784 * path through the shader consumes more than one attribute of
2785 * a set of attributes aliased to the same location. A link
2786 * error can occur if the linker determines that every path
2787 * through the shader consumes multiple aliased attributes,
2788 * but implementations are not required to generate an error
2789 * in this case."
2790 *
2791 * From GLSL 4.30 spec, page 54:
2792 *
2793 * "A program will fail to link if any two non-vertex shader
2794 * input variables are assigned to the same location. For
2795 * vertex shaders, multiple input variables may be assigned
2796 * to the same location using either layout qualifiers or via
2797 * the OpenGL API. However, such aliasing is intended only to
2798 * support vertex shaders where each execution path accesses
2799 * at most one input per each location. Implementations are
2800 * permitted, but not required, to generate link-time errors
2801 * if they detect that every path through the vertex shader
2802 * executable accesses multiple inputs assigned to any single
2803 * location. For all shader types, a program will fail to link
2804 * if explicit location assignments leave the linker unable
2805 * to find space for other variables without explicit
2806 * assignments."
2807 *
2808 * From OpenGL ES 3.0 spec, page 56:
2809 *
2810 * "Binding more than one attribute name to the same location
2811 * is referred to as aliasing, and is not permitted in OpenGL
2812 * ES Shading Language 3.00 vertex shaders. LinkProgram will
2813 * fail when this condition exists. However, aliasing is
2814 * possible in OpenGL ES Shading Language 1.00 vertex shaders.
2815 * This will only work if only one of the aliased attributes
2816 * is active in the executable program, or if no path through
2817 * the shader consumes more than one attribute of a set of
2818 * attributes aliased to the same location. A link error can
2819 * occur if the linker determines that every path through the
2820 * shader consumes multiple aliased attributes, but implemen-
2821 * tations are not required to generate an error in this case."
2822 *
2823 * After looking at above references from OpenGL, OpenGL ES and
2824 * GLSL specifications, we allow aliasing of vertex input variables
2825 * in: OpenGL 2.0 (and above) and OpenGL ES 2.0.
2826 *
2827 * NOTE: This is not required by the spec but its worth mentioning
2828 * here that we're not doing anything to make sure that no path
2829 * through the vertex shader executable accesses multiple inputs
2830 * assigned to any single location.
2831 */
2832
2833 /* Mask representing the contiguous slots that will be used by
2834 * this attribute.
2835 */
2836 const unsigned attr = var->data.location - generic_base;
2837 const unsigned use_mask = (1 << slots) - 1;
2838 const char *const string = (target_index == MESA_SHADER_VERTEX)
2839 ? "vertex shader input" : "fragment shader output";
2840
2841 /* Generate a link error if the requested locations for this
2842 * attribute exceed the maximum allowed attribute location.
2843 */
2844 if (attr + slots > max_index) {
2845 linker_error(prog,
2846 "insufficient contiguous locations "
2847 "available for %s `%s' %d %d %d\n", string,
2848 var->name, used_locations, use_mask, attr);
2849 return false;
2850 }
2851
2852 /* Generate a link error if the set of bits requested for this
2853 * attribute overlaps any previously allocated bits.
2854 */
2855 if ((~(use_mask << attr) & used_locations) != used_locations) {
2856 if (target_index == MESA_SHADER_FRAGMENT && !prog->IsES) {
2857 /* From section 4.4.2 (Output Layout Qualifiers) of the GLSL
2858 * 4.40 spec:
2859 *
2860 * "Additionally, for fragment shader outputs, if two
2861 * variables are placed within the same location, they
2862 * must have the same underlying type (floating-point or
2863 * integer). No component aliasing of output variables or
2864 * members is allowed.
2865 */
2866 for (unsigned i = 0; i < assigned_attr; i++) {
2867 unsigned assigned_slots =
2868 assigned[i]->type->count_attribute_slots(false);
2869 unsigned assig_attr =
2870 assigned[i]->data.location - generic_base;
2871 unsigned assigned_use_mask = (1 << assigned_slots) - 1;
2872
2873 if ((assigned_use_mask << assig_attr) &
2874 (use_mask << attr)) {
2875
2876 const glsl_type *assigned_type =
2877 assigned[i]->type->without_array();
2878 const glsl_type *type = var->type->without_array();
2879 if (assigned_type->base_type != type->base_type) {
2880 linker_error(prog, "types do not match for aliased"
2881 " %ss %s and %s\n", string,
2882 assigned[i]->name, var->name);
2883 return false;
2884 }
2885
2886 unsigned assigned_component_mask =
2887 ((1 << assigned_type->vector_elements) - 1) <<
2888 assigned[i]->data.location_frac;
2889 unsigned component_mask =
2890 ((1 << type->vector_elements) - 1) <<
2891 var->data.location_frac;
2892 if (assigned_component_mask & component_mask) {
2893 linker_error(prog, "overlapping component is "
2894 "assigned to %ss %s and %s "
2895 "(component=%d)\n",
2896 string, assigned[i]->name, var->name,
2897 var->data.location_frac);
2898 return false;
2899 }
2900 }
2901 }
2902 } else if (target_index == MESA_SHADER_FRAGMENT ||
2903 (prog->IsES && prog->data->Version >= 300)) {
2904 linker_error(prog, "overlapping location is assigned "
2905 "to %s `%s' %d %d %d\n", string, var->name,
2906 used_locations, use_mask, attr);
2907 return false;
2908 } else {
2909 linker_warning(prog, "overlapping location is assigned "
2910 "to %s `%s' %d %d %d\n", string, var->name,
2911 used_locations, use_mask, attr);
2912 }
2913 }
2914
2915 if (target_index == MESA_SHADER_FRAGMENT && !prog->IsES) {
2916 /* Only track assigned variables for non-ES fragment shaders
2917 * to avoid overflowing the array.
2918 *
2919 * At most one variable per fragment output component should
2920 * reach this.
2921 */
2922 assert(assigned_attr < ARRAY_SIZE(assigned));
2923 assigned[assigned_attr] = var;
2924 assigned_attr++;
2925 }
2926
2927 used_locations |= (use_mask << attr);
2928
2929 /* From the GL 4.5 core spec, section 11.1.1 (Vertex Attributes):
2930 *
2931 * "A program with more than the value of MAX_VERTEX_ATTRIBS
2932 * active attribute variables may fail to link, unless
2933 * device-dependent optimizations are able to make the program
2934 * fit within available hardware resources. For the purposes
2935 * of this test, attribute variables of the type dvec3, dvec4,
2936 * dmat2x3, dmat2x4, dmat3, dmat3x4, dmat4x3, and dmat4 may
2937 * count as consuming twice as many attributes as equivalent
2938 * single-precision types. While these types use the same number
2939 * of generic attributes as their single-precision equivalents,
2940 * implementations are permitted to consume two single-precision
2941 * vectors of internal storage for each three- or four-component
2942 * double-precision vector."
2943 *
2944 * Mark this attribute slot as taking up twice as much space
2945 * so we can count it properly against limits. According to
2946 * issue (3) of the GL_ARB_vertex_attrib_64bit behavior, this
2947 * is optional behavior, but it seems preferable.
2948 */
2949 if (var->type->without_array()->is_dual_slot())
2950 double_storage_locations |= (use_mask << attr);
2951 }
2952
2953 continue;
2954 }
2955
2956 if (num_attr >= max_index) {
2957 linker_error(prog, "too many %s (max %u)",
2958 target_index == MESA_SHADER_VERTEX ?
2959 "vertex shader inputs" : "fragment shader outputs",
2960 max_index);
2961 return false;
2962 }
2963 to_assign[num_attr].slots = slots;
2964 to_assign[num_attr].var = var;
2965 num_attr++;
2966 }
2967
2968 if (target_index == MESA_SHADER_VERTEX) {
2969 unsigned total_attribs_size =
2970 _mesa_bitcount(used_locations & SAFE_MASK_FROM_INDEX(max_index)) +
2971 _mesa_bitcount(double_storage_locations);
2972 if (total_attribs_size > max_index) {
2973 linker_error(prog,
2974 "attempt to use %d vertex attribute slots only %d available ",
2975 total_attribs_size, max_index);
2976 return false;
2977 }
2978 }
2979
2980 /* If all of the attributes were assigned locations by the application (or
2981 * are built-in attributes with fixed locations), return early. This should
2982 * be the common case.
2983 */
2984 if (num_attr == 0)
2985 return true;
2986
2987 qsort(to_assign, num_attr, sizeof(to_assign[0]), temp_attr::compare);
2988
2989 if (target_index == MESA_SHADER_VERTEX) {
2990 /* VERT_ATTRIB_GENERIC0 is a pseudo-alias for VERT_ATTRIB_POS. It can
2991 * only be explicitly assigned by via glBindAttribLocation. Mark it as
2992 * reserved to prevent it from being automatically allocated below.
2993 */
2994 find_deref_visitor find("gl_Vertex");
2995 find.run(sh->ir);
2996 if (find.variable_found())
2997 used_locations |= (1 << 0);
2998 }
2999
3000 for (unsigned i = 0; i < num_attr; i++) {
3001 /* Mask representing the contiguous slots that will be used by this
3002 * attribute.
3003 */
3004 const unsigned use_mask = (1 << to_assign[i].slots) - 1;
3005
3006 int location = find_available_slots(used_locations, to_assign[i].slots);
3007
3008 if (location < 0) {
3009 const char *const string = (target_index == MESA_SHADER_VERTEX)
3010 ? "vertex shader input" : "fragment shader output";
3011
3012 linker_error(prog,
3013 "insufficient contiguous locations "
3014 "available for %s `%s'\n",
3015 string, to_assign[i].var->name);
3016 return false;
3017 }
3018
3019 to_assign[i].var->data.location = generic_base + location;
3020 to_assign[i].var->data.is_unmatched_generic_inout = 0;
3021 used_locations |= (use_mask << location);
3022
3023 if (to_assign[i].var->type->without_array()->is_dual_slot())
3024 double_storage_locations |= (use_mask << location);
3025 }
3026
3027 /* Now that we have all the locations, from the GL 4.5 core spec, section
3028 * 11.1.1 (Vertex Attributes), dvec3, dvec4, dmat2x3, dmat2x4, dmat3,
3029 * dmat3x4, dmat4x3, and dmat4 count as consuming twice as many attributes
3030 * as equivalent single-precision types.
3031 */
3032 if (target_index == MESA_SHADER_VERTEX) {
3033 unsigned total_attribs_size =
3034 _mesa_bitcount(used_locations & SAFE_MASK_FROM_INDEX(max_index)) +
3035 _mesa_bitcount(double_storage_locations);
3036 if (total_attribs_size > max_index) {
3037 linker_error(prog,
3038 "attempt to use %d vertex attribute slots only %d available ",
3039 total_attribs_size, max_index);
3040 return false;
3041 }
3042 }
3043
3044 return true;
3045 }
3046
3047 /**
3048 * Match explicit locations of outputs to inputs and deactivate the
3049 * unmatch flag if found so we don't optimise them away.
3050 */
3051 static void
3052 match_explicit_outputs_to_inputs(gl_linked_shader *producer,
3053 gl_linked_shader *consumer)
3054 {
3055 glsl_symbol_table parameters;
3056 ir_variable *explicit_locations[MAX_VARYINGS_INCL_PATCH][4] =
3057 { {NULL, NULL} };
3058
3059 /* Find all shader outputs in the "producer" stage.
3060 */
3061 foreach_in_list(ir_instruction, node, producer->ir) {
3062 ir_variable *const var = node->as_variable();
3063
3064 if ((var == NULL) || (var->data.mode != ir_var_shader_out))
3065 continue;
3066
3067 if (var->data.explicit_location &&
3068 var->data.location >= VARYING_SLOT_VAR0) {
3069 const unsigned idx = var->data.location - VARYING_SLOT_VAR0;
3070 if (explicit_locations[idx][var->data.location_frac] == NULL)
3071 explicit_locations[idx][var->data.location_frac] = var;
3072 }
3073 }
3074
3075 /* Match inputs to outputs */
3076 foreach_in_list(ir_instruction, node, consumer->ir) {
3077 ir_variable *const input = node->as_variable();
3078
3079 if ((input == NULL) || (input->data.mode != ir_var_shader_in))
3080 continue;
3081
3082 ir_variable *output = NULL;
3083 if (input->data.explicit_location
3084 && input->data.location >= VARYING_SLOT_VAR0) {
3085 output = explicit_locations[input->data.location - VARYING_SLOT_VAR0]
3086 [input->data.location_frac];
3087
3088 if (output != NULL){
3089 input->data.is_unmatched_generic_inout = 0;
3090 output->data.is_unmatched_generic_inout = 0;
3091 }
3092 }
3093 }
3094 }
3095
3096 /**
3097 * Store the gl_FragDepth layout in the gl_shader_program struct.
3098 */
3099 static void
3100 store_fragdepth_layout(struct gl_shader_program *prog)
3101 {
3102 if (prog->_LinkedShaders[MESA_SHADER_FRAGMENT] == NULL) {
3103 return;
3104 }
3105
3106 struct exec_list *ir = prog->_LinkedShaders[MESA_SHADER_FRAGMENT]->ir;
3107
3108 /* We don't look up the gl_FragDepth symbol directly because if
3109 * gl_FragDepth is not used in the shader, it's removed from the IR.
3110 * However, the symbol won't be removed from the symbol table.
3111 *
3112 * We're only interested in the cases where the variable is NOT removed
3113 * from the IR.
3114 */
3115 foreach_in_list(ir_instruction, node, ir) {
3116 ir_variable *const var = node->as_variable();
3117
3118 if (var == NULL || var->data.mode != ir_var_shader_out) {
3119 continue;
3120 }
3121
3122 if (strcmp(var->name, "gl_FragDepth") == 0) {
3123 switch (var->data.depth_layout) {
3124 case ir_depth_layout_none:
3125 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_NONE;
3126 return;
3127 case ir_depth_layout_any:
3128 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_ANY;
3129 return;
3130 case ir_depth_layout_greater:
3131 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_GREATER;
3132 return;
3133 case ir_depth_layout_less:
3134 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_LESS;
3135 return;
3136 case ir_depth_layout_unchanged:
3137 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_UNCHANGED;
3138 return;
3139 default:
3140 assert(0);
3141 return;
3142 }
3143 }
3144 }
3145 }
3146
3147 /**
3148 * Validate the resources used by a program versus the implementation limits
3149 */
3150 static void
3151 check_resources(struct gl_context *ctx, struct gl_shader_program *prog)
3152 {
3153 unsigned total_uniform_blocks = 0;
3154 unsigned total_shader_storage_blocks = 0;
3155
3156 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3157 struct gl_linked_shader *sh = prog->_LinkedShaders[i];
3158
3159 if (sh == NULL)
3160 continue;
3161
3162 if (sh->Program->info.num_textures >
3163 ctx->Const.Program[i].MaxTextureImageUnits) {
3164 linker_error(prog, "Too many %s shader texture samplers\n",
3165 _mesa_shader_stage_to_string(i));
3166 }
3167
3168 if (sh->num_uniform_components >
3169 ctx->Const.Program[i].MaxUniformComponents) {
3170 if (ctx->Const.GLSLSkipStrictMaxUniformLimitCheck) {
3171 linker_warning(prog, "Too many %s shader default uniform block "
3172 "components, but the driver will try to optimize "
3173 "them out; this is non-portable out-of-spec "
3174 "behavior\n",
3175 _mesa_shader_stage_to_string(i));
3176 } else {
3177 linker_error(prog, "Too many %s shader default uniform block "
3178 "components\n",
3179 _mesa_shader_stage_to_string(i));
3180 }
3181 }
3182
3183 if (sh->num_combined_uniform_components >
3184 ctx->Const.Program[i].MaxCombinedUniformComponents) {
3185 if (ctx->Const.GLSLSkipStrictMaxUniformLimitCheck) {
3186 linker_warning(prog, "Too many %s shader uniform components, "
3187 "but the driver will try to optimize them out; "
3188 "this is non-portable out-of-spec behavior\n",
3189 _mesa_shader_stage_to_string(i));
3190 } else {
3191 linker_error(prog, "Too many %s shader uniform components\n",
3192 _mesa_shader_stage_to_string(i));
3193 }
3194 }
3195
3196 total_shader_storage_blocks += sh->Program->info.num_ssbos;
3197 total_uniform_blocks += sh->Program->info.num_ubos;
3198
3199 const unsigned max_uniform_blocks =
3200 ctx->Const.Program[i].MaxUniformBlocks;
3201 if (max_uniform_blocks < sh->Program->info.num_ubos) {
3202 linker_error(prog, "Too many %s uniform blocks (%d/%d)\n",
3203 _mesa_shader_stage_to_string(i),
3204 sh->Program->info.num_ubos, max_uniform_blocks);
3205 }
3206
3207 const unsigned max_shader_storage_blocks =
3208 ctx->Const.Program[i].MaxShaderStorageBlocks;
3209 if (max_shader_storage_blocks < sh->Program->info.num_ssbos) {
3210 linker_error(prog, "Too many %s shader storage blocks (%d/%d)\n",
3211 _mesa_shader_stage_to_string(i),
3212 sh->Program->info.num_ssbos, max_shader_storage_blocks);
3213 }
3214 }
3215
3216 if (total_uniform_blocks > ctx->Const.MaxCombinedUniformBlocks) {
3217 linker_error(prog, "Too many combined uniform blocks (%d/%d)\n",
3218 total_uniform_blocks, ctx->Const.MaxCombinedUniformBlocks);
3219 }
3220
3221 if (total_shader_storage_blocks > ctx->Const.MaxCombinedShaderStorageBlocks) {
3222 linker_error(prog, "Too many combined shader storage blocks (%d/%d)\n",
3223 total_shader_storage_blocks,
3224 ctx->Const.MaxCombinedShaderStorageBlocks);
3225 }
3226
3227 for (unsigned i = 0; i < prog->data->NumUniformBlocks; i++) {
3228 if (prog->data->UniformBlocks[i].UniformBufferSize >
3229 ctx->Const.MaxUniformBlockSize) {
3230 linker_error(prog, "Uniform block %s too big (%d/%d)\n",
3231 prog->data->UniformBlocks[i].Name,
3232 prog->data->UniformBlocks[i].UniformBufferSize,
3233 ctx->Const.MaxUniformBlockSize);
3234 }
3235 }
3236
3237 for (unsigned i = 0; i < prog->data->NumShaderStorageBlocks; i++) {
3238 if (prog->data->ShaderStorageBlocks[i].UniformBufferSize >
3239 ctx->Const.MaxShaderStorageBlockSize) {
3240 linker_error(prog, "Shader storage block %s too big (%d/%d)\n",
3241 prog->data->ShaderStorageBlocks[i].Name,
3242 prog->data->ShaderStorageBlocks[i].UniformBufferSize,
3243 ctx->Const.MaxShaderStorageBlockSize);
3244 }
3245 }
3246 }
3247
3248 static void
3249 link_calculate_subroutine_compat(struct gl_shader_program *prog)
3250 {
3251 unsigned mask = prog->data->linked_stages;
3252 while (mask) {
3253 const int i = u_bit_scan(&mask);
3254 struct gl_program *p = prog->_LinkedShaders[i]->Program;
3255
3256 for (unsigned j = 0; j < p->sh.NumSubroutineUniformRemapTable; j++) {
3257 if (p->sh.SubroutineUniformRemapTable[j] == INACTIVE_UNIFORM_EXPLICIT_LOCATION)
3258 continue;
3259
3260 struct gl_uniform_storage *uni = p->sh.SubroutineUniformRemapTable[j];
3261
3262 if (!uni)
3263 continue;
3264
3265 int count = 0;
3266 if (p->sh.NumSubroutineFunctions == 0) {
3267 linker_error(prog, "subroutine uniform %s defined but no valid functions found\n", uni->type->name);
3268 continue;
3269 }
3270 for (unsigned f = 0; f < p->sh.NumSubroutineFunctions; f++) {
3271 struct gl_subroutine_function *fn = &p->sh.SubroutineFunctions[f];
3272 for (int k = 0; k < fn->num_compat_types; k++) {
3273 if (fn->types[k] == uni->type) {
3274 count++;
3275 break;
3276 }
3277 }
3278 }
3279 uni->num_compatible_subroutines = count;
3280 }
3281 }
3282 }
3283
3284 static void
3285 check_subroutine_resources(struct gl_shader_program *prog)
3286 {
3287 unsigned mask = prog->data->linked_stages;
3288 while (mask) {
3289 const int i = u_bit_scan(&mask);
3290 struct gl_program *p = prog->_LinkedShaders[i]->Program;
3291
3292 if (p->sh.NumSubroutineUniformRemapTable > MAX_SUBROUTINE_UNIFORM_LOCATIONS) {
3293 linker_error(prog, "Too many %s shader subroutine uniforms\n",
3294 _mesa_shader_stage_to_string(i));
3295 }
3296 }
3297 }
3298 /**
3299 * Validate shader image resources.
3300 */
3301 static void
3302 check_image_resources(struct gl_context *ctx, struct gl_shader_program *prog)
3303 {
3304 unsigned total_image_units = 0;
3305 unsigned fragment_outputs = 0;
3306 unsigned total_shader_storage_blocks = 0;
3307
3308 if (!ctx->Extensions.ARB_shader_image_load_store)
3309 return;
3310
3311 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3312 struct gl_linked_shader *sh = prog->_LinkedShaders[i];
3313
3314 if (sh) {
3315 if (sh->Program->info.num_images > ctx->Const.Program[i].MaxImageUniforms)
3316 linker_error(prog, "Too many %s shader image uniforms (%u > %u)\n",
3317 _mesa_shader_stage_to_string(i),
3318 sh->Program->info.num_images,
3319 ctx->Const.Program[i].MaxImageUniforms);
3320
3321 total_image_units += sh->Program->info.num_images;
3322 total_shader_storage_blocks += sh->Program->info.num_ssbos;
3323
3324 if (i == MESA_SHADER_FRAGMENT) {
3325 foreach_in_list(ir_instruction, node, sh->ir) {
3326 ir_variable *var = node->as_variable();
3327 if (var && var->data.mode == ir_var_shader_out)
3328 /* since there are no double fs outputs - pass false */
3329 fragment_outputs += var->type->count_attribute_slots(false);
3330 }
3331 }
3332 }
3333 }
3334
3335 if (total_image_units > ctx->Const.MaxCombinedImageUniforms)
3336 linker_error(prog, "Too many combined image uniforms\n");
3337
3338 if (total_image_units + fragment_outputs + total_shader_storage_blocks >
3339 ctx->Const.MaxCombinedShaderOutputResources)
3340 linker_error(prog, "Too many combined image uniforms, shader storage "
3341 " buffers and fragment outputs\n");
3342 }
3343
3344
3345 /**
3346 * Initializes explicit location slots to INACTIVE_UNIFORM_EXPLICIT_LOCATION
3347 * for a variable, checks for overlaps between other uniforms using explicit
3348 * locations.
3349 */
3350 static int
3351 reserve_explicit_locations(struct gl_shader_program *prog,
3352 string_to_uint_map *map, ir_variable *var)
3353 {
3354 unsigned slots = var->type->uniform_locations();
3355 unsigned max_loc = var->data.location + slots - 1;
3356 unsigned return_value = slots;
3357
3358 /* Resize remap table if locations do not fit in the current one. */
3359 if (max_loc + 1 > prog->NumUniformRemapTable) {
3360 prog->UniformRemapTable =
3361 reralloc(prog, prog->UniformRemapTable,
3362 gl_uniform_storage *,
3363 max_loc + 1);
3364
3365 if (!prog->UniformRemapTable) {
3366 linker_error(prog, "Out of memory during linking.\n");
3367 return -1;
3368 }
3369
3370 /* Initialize allocated space. */
3371 for (unsigned i = prog->NumUniformRemapTable; i < max_loc + 1; i++)
3372 prog->UniformRemapTable[i] = NULL;
3373
3374 prog->NumUniformRemapTable = max_loc + 1;
3375 }
3376
3377 for (unsigned i = 0; i < slots; i++) {
3378 unsigned loc = var->data.location + i;
3379
3380 /* Check if location is already used. */
3381 if (prog->UniformRemapTable[loc] == INACTIVE_UNIFORM_EXPLICIT_LOCATION) {
3382
3383 /* Possibly same uniform from a different stage, this is ok. */
3384 unsigned hash_loc;
3385 if (map->get(hash_loc, var->name) && hash_loc == loc - i) {
3386 return_value = 0;
3387 continue;
3388 }
3389
3390 /* ARB_explicit_uniform_location specification states:
3391 *
3392 * "No two default-block uniform variables in the program can have
3393 * the same location, even if they are unused, otherwise a compiler
3394 * or linker error will be generated."
3395 */
3396 linker_error(prog,
3397 "location qualifier for uniform %s overlaps "
3398 "previously used location\n",
3399 var->name);
3400 return -1;
3401 }
3402
3403 /* Initialize location as inactive before optimization
3404 * rounds and location assignment.
3405 */
3406 prog->UniformRemapTable[loc] = INACTIVE_UNIFORM_EXPLICIT_LOCATION;
3407 }
3408
3409 /* Note, base location used for arrays. */
3410 map->put(var->data.location, var->name);
3411
3412 return return_value;
3413 }
3414
3415 static bool
3416 reserve_subroutine_explicit_locations(struct gl_shader_program *prog,
3417 struct gl_program *p,
3418 ir_variable *var)
3419 {
3420 unsigned slots = var->type->uniform_locations();
3421 unsigned max_loc = var->data.location + slots - 1;
3422
3423 /* Resize remap table if locations do not fit in the current one. */
3424 if (max_loc + 1 > p->sh.NumSubroutineUniformRemapTable) {
3425 p->sh.SubroutineUniformRemapTable =
3426 reralloc(p, p->sh.SubroutineUniformRemapTable,
3427 gl_uniform_storage *,
3428 max_loc + 1);
3429
3430 if (!p->sh.SubroutineUniformRemapTable) {
3431 linker_error(prog, "Out of memory during linking.\n");
3432 return false;
3433 }
3434
3435 /* Initialize allocated space. */
3436 for (unsigned i = p->sh.NumSubroutineUniformRemapTable; i < max_loc + 1; i++)
3437 p->sh.SubroutineUniformRemapTable[i] = NULL;
3438
3439 p->sh.NumSubroutineUniformRemapTable = max_loc + 1;
3440 }
3441
3442 for (unsigned i = 0; i < slots; i++) {
3443 unsigned loc = var->data.location + i;
3444
3445 /* Check if location is already used. */
3446 if (p->sh.SubroutineUniformRemapTable[loc] == INACTIVE_UNIFORM_EXPLICIT_LOCATION) {
3447
3448 /* ARB_explicit_uniform_location specification states:
3449 * "No two subroutine uniform variables can have the same location
3450 * in the same shader stage, otherwise a compiler or linker error
3451 * will be generated."
3452 */
3453 linker_error(prog,
3454 "location qualifier for uniform %s overlaps "
3455 "previously used location\n",
3456 var->name);
3457 return false;
3458 }
3459
3460 /* Initialize location as inactive before optimization
3461 * rounds and location assignment.
3462 */
3463 p->sh.SubroutineUniformRemapTable[loc] = INACTIVE_UNIFORM_EXPLICIT_LOCATION;
3464 }
3465
3466 return true;
3467 }
3468 /**
3469 * Check and reserve all explicit uniform locations, called before
3470 * any optimizations happen to handle also inactive uniforms and
3471 * inactive array elements that may get trimmed away.
3472 */
3473 static void
3474 check_explicit_uniform_locations(struct gl_context *ctx,
3475 struct gl_shader_program *prog)
3476 {
3477 prog->NumExplicitUniformLocations = 0;
3478
3479 if (!ctx->Extensions.ARB_explicit_uniform_location)
3480 return;
3481
3482 /* This map is used to detect if overlapping explicit locations
3483 * occur with the same uniform (from different stage) or a different one.
3484 */
3485 string_to_uint_map *uniform_map = new string_to_uint_map;
3486
3487 if (!uniform_map) {
3488 linker_error(prog, "Out of memory during linking.\n");
3489 return;
3490 }
3491
3492 unsigned entries_total = 0;
3493 unsigned mask = prog->data->linked_stages;
3494 while (mask) {
3495 const int i = u_bit_scan(&mask);
3496 struct gl_program *p = prog->_LinkedShaders[i]->Program;
3497
3498 foreach_in_list(ir_instruction, node, prog->_LinkedShaders[i]->ir) {
3499 ir_variable *var = node->as_variable();
3500 if (!var || var->data.mode != ir_var_uniform)
3501 continue;
3502
3503 if (var->data.explicit_location) {
3504 bool ret = false;
3505 if (var->type->without_array()->is_subroutine())
3506 ret = reserve_subroutine_explicit_locations(prog, p, var);
3507 else {
3508 int slots = reserve_explicit_locations(prog, uniform_map,
3509 var);
3510 if (slots != -1) {
3511 ret = true;
3512 entries_total += slots;
3513 }
3514 }
3515 if (!ret) {
3516 delete uniform_map;
3517 return;
3518 }
3519 }
3520 }
3521 }
3522
3523 struct empty_uniform_block *current_block = NULL;
3524
3525 for (unsigned i = 0; i < prog->NumUniformRemapTable; i++) {
3526 /* We found empty space in UniformRemapTable. */
3527 if (prog->UniformRemapTable[i] == NULL) {
3528 /* We've found the beginning of a new continous block of empty slots */
3529 if (!current_block || current_block->start + current_block->slots != i) {
3530 current_block = rzalloc(prog, struct empty_uniform_block);
3531 current_block->start = i;
3532 exec_list_push_tail(&prog->EmptyUniformLocations,
3533 &current_block->link);
3534 }
3535
3536 /* The current block continues, so we simply increment its slots */
3537 current_block->slots++;
3538 }
3539 }
3540
3541 delete uniform_map;
3542 prog->NumExplicitUniformLocations = entries_total;
3543 }
3544
3545 static bool
3546 should_add_buffer_variable(struct gl_shader_program *shProg,
3547 GLenum type, const char *name)
3548 {
3549 bool found_interface = false;
3550 unsigned block_name_len = 0;
3551 const char *block_name_dot = strchr(name, '.');
3552
3553 /* These rules only apply to buffer variables. So we return
3554 * true for the rest of types.
3555 */
3556 if (type != GL_BUFFER_VARIABLE)
3557 return true;
3558
3559 for (unsigned i = 0; i < shProg->data->NumShaderStorageBlocks; i++) {
3560 const char *block_name = shProg->data->ShaderStorageBlocks[i].Name;
3561 block_name_len = strlen(block_name);
3562
3563 const char *block_square_bracket = strchr(block_name, '[');
3564 if (block_square_bracket) {
3565 /* The block is part of an array of named interfaces,
3566 * for the name comparison we ignore the "[x]" part.
3567 */
3568 block_name_len -= strlen(block_square_bracket);
3569 }
3570
3571 if (block_name_dot) {
3572 /* Check if the variable name starts with the interface
3573 * name. The interface name (if present) should have the
3574 * length than the interface block name we are comparing to.
3575 */
3576 unsigned len = strlen(name) - strlen(block_name_dot);
3577 if (len != block_name_len)
3578 continue;
3579 }
3580
3581 if (strncmp(block_name, name, block_name_len) == 0) {
3582 found_interface = true;
3583 break;
3584 }
3585 }
3586
3587 /* We remove the interface name from the buffer variable name,
3588 * including the dot that follows it.
3589 */
3590 if (found_interface)
3591 name = name + block_name_len + 1;
3592
3593 /* The ARB_program_interface_query spec says:
3594 *
3595 * "For an active shader storage block member declared as an array, an
3596 * entry will be generated only for the first array element, regardless
3597 * of its type. For arrays of aggregate types, the enumeration rules
3598 * are applied recursively for the single enumerated array element."
3599 */
3600 const char *struct_first_dot = strchr(name, '.');
3601 const char *first_square_bracket = strchr(name, '[');
3602
3603 /* The buffer variable is on top level and it is not an array */
3604 if (!first_square_bracket) {
3605 return true;
3606 /* The shader storage block member is a struct, then generate the entry */
3607 } else if (struct_first_dot && struct_first_dot < first_square_bracket) {
3608 return true;
3609 } else {
3610 /* Shader storage block member is an array, only generate an entry for the
3611 * first array element.
3612 */
3613 if (strncmp(first_square_bracket, "[0]", 3) == 0)
3614 return true;
3615 }
3616
3617 return false;
3618 }
3619
3620 static bool
3621 add_program_resource(struct gl_shader_program *prog,
3622 struct set *resource_set,
3623 GLenum type, const void *data, uint8_t stages)
3624 {
3625 assert(data);
3626
3627 /* If resource already exists, do not add it again. */
3628 if (_mesa_set_search(resource_set, data))
3629 return true;
3630
3631 prog->data->ProgramResourceList =
3632 reralloc(prog->data,
3633 prog->data->ProgramResourceList,
3634 gl_program_resource,
3635 prog->data->NumProgramResourceList + 1);
3636
3637 if (!prog->data->ProgramResourceList) {
3638 linker_error(prog, "Out of memory during linking.\n");
3639 return false;
3640 }
3641
3642 struct gl_program_resource *res =
3643 &prog->data->ProgramResourceList[prog->data->NumProgramResourceList];
3644
3645 res->Type = type;
3646 res->Data = data;
3647 res->StageReferences = stages;
3648
3649 prog->data->NumProgramResourceList++;
3650
3651 _mesa_set_add(resource_set, data);
3652
3653 return true;
3654 }
3655
3656 /* Function checks if a variable var is a packed varying and
3657 * if given name is part of packed varying's list.
3658 *
3659 * If a variable is a packed varying, it has a name like
3660 * 'packed:a,b,c' where a, b and c are separate variables.
3661 */
3662 static bool
3663 included_in_packed_varying(ir_variable *var, const char *name)
3664 {
3665 if (strncmp(var->name, "packed:", 7) != 0)
3666 return false;
3667
3668 char *list = strdup(var->name + 7);
3669 assert(list);
3670
3671 bool found = false;
3672 char *saveptr;
3673 char *token = strtok_r(list, ",", &saveptr);
3674 while (token) {
3675 if (strcmp(token, name) == 0) {
3676 found = true;
3677 break;
3678 }
3679 token = strtok_r(NULL, ",", &saveptr);
3680 }
3681 free(list);
3682 return found;
3683 }
3684
3685 /**
3686 * Function builds a stage reference bitmask from variable name.
3687 */
3688 static uint8_t
3689 build_stageref(struct gl_shader_program *shProg, const char *name,
3690 unsigned mode)
3691 {
3692 uint8_t stages = 0;
3693
3694 /* Note, that we assume MAX 8 stages, if there will be more stages, type
3695 * used for reference mask in gl_program_resource will need to be changed.
3696 */
3697 assert(MESA_SHADER_STAGES < 8);
3698
3699 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3700 struct gl_linked_shader *sh = shProg->_LinkedShaders[i];
3701 if (!sh)
3702 continue;
3703
3704 /* Shader symbol table may contain variables that have
3705 * been optimized away. Search IR for the variable instead.
3706 */
3707 foreach_in_list(ir_instruction, node, sh->ir) {
3708 ir_variable *var = node->as_variable();
3709 if (var) {
3710 unsigned baselen = strlen(var->name);
3711
3712 if (included_in_packed_varying(var, name)) {
3713 stages |= (1 << i);
3714 break;
3715 }
3716
3717 /* Type needs to match if specified, otherwise we might
3718 * pick a variable with same name but different interface.
3719 */
3720 if (var->data.mode != mode)
3721 continue;
3722
3723 if (strncmp(var->name, name, baselen) == 0) {
3724 /* Check for exact name matches but also check for arrays and
3725 * structs.
3726 */
3727 if (name[baselen] == '\0' ||
3728 name[baselen] == '[' ||
3729 name[baselen] == '.') {
3730 stages |= (1 << i);
3731 break;
3732 }
3733 }
3734 }
3735 }
3736 }
3737 return stages;
3738 }
3739
3740 /**
3741 * Create gl_shader_variable from ir_variable class.
3742 */
3743 static gl_shader_variable *
3744 create_shader_variable(struct gl_shader_program *shProg,
3745 const ir_variable *in,
3746 const char *name, const glsl_type *type,
3747 const glsl_type *interface_type,
3748 bool use_implicit_location, int location,
3749 const glsl_type *outermost_struct_type)
3750 {
3751 /* Allocate zero-initialized memory to ensure that bitfield padding
3752 * is zero.
3753 */
3754 gl_shader_variable *out = rzalloc(shProg, struct gl_shader_variable);
3755 if (!out)
3756 return NULL;
3757
3758 /* Since gl_VertexID may be lowered to gl_VertexIDMESA, but applications
3759 * expect to see gl_VertexID in the program resource list. Pretend.
3760 */
3761 if (in->data.mode == ir_var_system_value &&
3762 in->data.location == SYSTEM_VALUE_VERTEX_ID_ZERO_BASE) {
3763 out->name = ralloc_strdup(shProg, "gl_VertexID");
3764 } else if ((in->data.mode == ir_var_shader_out &&
3765 in->data.location == VARYING_SLOT_TESS_LEVEL_OUTER) ||
3766 (in->data.mode == ir_var_system_value &&
3767 in->data.location == SYSTEM_VALUE_TESS_LEVEL_OUTER)) {
3768 out->name = ralloc_strdup(shProg, "gl_TessLevelOuter");
3769 type = glsl_type::get_array_instance(glsl_type::float_type, 4);
3770 } else if ((in->data.mode == ir_var_shader_out &&
3771 in->data.location == VARYING_SLOT_TESS_LEVEL_INNER) ||
3772 (in->data.mode == ir_var_system_value &&
3773 in->data.location == SYSTEM_VALUE_TESS_LEVEL_INNER)) {
3774 out->name = ralloc_strdup(shProg, "gl_TessLevelInner");
3775 type = glsl_type::get_array_instance(glsl_type::float_type, 2);
3776 } else {
3777 out->name = ralloc_strdup(shProg, name);
3778 }
3779
3780 if (!out->name)
3781 return NULL;
3782
3783 /* The ARB_program_interface_query spec says:
3784 *
3785 * "Not all active variables are assigned valid locations; the
3786 * following variables will have an effective location of -1:
3787 *
3788 * * uniforms declared as atomic counters;
3789 *
3790 * * members of a uniform block;
3791 *
3792 * * built-in inputs, outputs, and uniforms (starting with "gl_"); and
3793 *
3794 * * inputs or outputs not declared with a "location" layout
3795 * qualifier, except for vertex shader inputs and fragment shader
3796 * outputs."
3797 */
3798 if (in->type->is_atomic_uint() || is_gl_identifier(in->name) ||
3799 !(in->data.explicit_location || use_implicit_location)) {
3800 out->location = -1;
3801 } else {
3802 out->location = location;
3803 }
3804
3805 out->type = type;
3806 out->outermost_struct_type = outermost_struct_type;
3807 out->interface_type = interface_type;
3808 out->component = in->data.location_frac;
3809 out->index = in->data.index;
3810 out->patch = in->data.patch;
3811 out->mode = in->data.mode;
3812 out->interpolation = in->data.interpolation;
3813 out->explicit_location = in->data.explicit_location;
3814 out->precision = in->data.precision;
3815
3816 return out;
3817 }
3818
3819 static bool
3820 add_shader_variable(const struct gl_context *ctx,
3821 struct gl_shader_program *shProg,
3822 struct set *resource_set,
3823 unsigned stage_mask,
3824 GLenum programInterface, ir_variable *var,
3825 const char *name, const glsl_type *type,
3826 bool use_implicit_location, int location,
3827 bool inouts_share_location,
3828 const glsl_type *outermost_struct_type = NULL)
3829 {
3830 const glsl_type *interface_type = var->get_interface_type();
3831
3832 if (outermost_struct_type == NULL) {
3833 if (var->data.from_named_ifc_block) {
3834 const char *interface_name = interface_type->name;
3835
3836 if (interface_type->is_array()) {
3837 /* Issue #16 of the ARB_program_interface_query spec says:
3838 *
3839 * "* If a variable is a member of an interface block without an
3840 * instance name, it is enumerated using just the variable name.
3841 *
3842 * * If a variable is a member of an interface block with an
3843 * instance name, it is enumerated as "BlockName.Member", where
3844 * "BlockName" is the name of the interface block (not the
3845 * instance name) and "Member" is the name of the variable."
3846 *
3847 * In particular, it indicates that it should be "BlockName",
3848 * not "BlockName[array length]". The conformance suite and
3849 * dEQP both require this behavior.
3850 *
3851 * Here, we unwrap the extra array level added by named interface
3852 * block array lowering so we have the correct variable type. We
3853 * also unwrap the interface type when constructing the name.
3854 *
3855 * We leave interface_type the same so that ES 3.x SSO pipeline
3856 * validation can enforce the rules requiring array length to
3857 * match on interface blocks.
3858 */
3859 type = type->fields.array;
3860
3861 interface_name = interface_type->fields.array->name;
3862 }
3863
3864 name = ralloc_asprintf(shProg, "%s.%s", interface_name, name);
3865 }
3866 }
3867
3868 switch (type->base_type) {
3869 case GLSL_TYPE_STRUCT: {
3870 /* The ARB_program_interface_query spec says:
3871 *
3872 * "For an active variable declared as a structure, a separate entry
3873 * will be generated for each active structure member. The name of
3874 * each entry is formed by concatenating the name of the structure,
3875 * the "." character, and the name of the structure member. If a
3876 * structure member to enumerate is itself a structure or array,
3877 * these enumeration rules are applied recursively."
3878 */
3879 if (outermost_struct_type == NULL)
3880 outermost_struct_type = type;
3881
3882 unsigned field_location = location;
3883 for (unsigned i = 0; i < type->length; i++) {
3884 const struct glsl_struct_field *field = &type->fields.structure[i];
3885 char *field_name = ralloc_asprintf(shProg, "%s.%s", name, field->name);
3886 if (!add_shader_variable(ctx, shProg, resource_set,
3887 stage_mask, programInterface,
3888 var, field_name, field->type,
3889 use_implicit_location, field_location,
3890 false, outermost_struct_type))
3891 return false;
3892
3893 field_location += field->type->count_attribute_slots(false);
3894 }
3895 return true;
3896 }
3897
3898 case GLSL_TYPE_ARRAY: {
3899 /* The ARB_program_interface_query spec says:
3900 *
3901 * "For an active variable declared as an array of basic types, a
3902 * single entry will be generated, with its name string formed by
3903 * concatenating the name of the array and the string "[0]"."
3904 *
3905 * "For an active variable declared as an array of an aggregate data
3906 * type (structures or arrays), a separate entry will be generated
3907 * for each active array element, unless noted immediately below.
3908 * The name of each entry is formed by concatenating the name of
3909 * the array, the "[" character, an integer identifying the element
3910 * number, and the "]" character. These enumeration rules are
3911 * applied recursively, treating each enumerated array element as a
3912 * separate active variable."
3913 */
3914 const struct glsl_type *array_type = type->fields.array;
3915 if (array_type->base_type == GLSL_TYPE_STRUCT ||
3916 array_type->base_type == GLSL_TYPE_ARRAY) {
3917 unsigned elem_location = location;
3918 unsigned stride = inouts_share_location ? 0 :
3919 array_type->count_attribute_slots(false);
3920 for (unsigned i = 0; i < type->length; i++) {
3921 char *elem = ralloc_asprintf(shProg, "%s[%d]", name, i);
3922 if (!add_shader_variable(ctx, shProg, resource_set,
3923 stage_mask, programInterface,
3924 var, elem, array_type,
3925 use_implicit_location, elem_location,
3926 false, outermost_struct_type))
3927 return false;
3928 elem_location += stride;
3929 }
3930 return true;
3931 }
3932 /* fallthrough */
3933 }
3934
3935 default: {
3936 /* The ARB_program_interface_query spec says:
3937 *
3938 * "For an active variable declared as a single instance of a basic
3939 * type, a single entry will be generated, using the variable name
3940 * from the shader source."
3941 */
3942 gl_shader_variable *sha_v =
3943 create_shader_variable(shProg, var, name, type, interface_type,
3944 use_implicit_location, location,
3945 outermost_struct_type);
3946 if (!sha_v)
3947 return false;
3948
3949 return add_program_resource(shProg, resource_set,
3950 programInterface, sha_v, stage_mask);
3951 }
3952 }
3953 }
3954
3955 static bool
3956 inout_has_same_location(const ir_variable *var, unsigned stage)
3957 {
3958 if (!var->data.patch &&
3959 ((var->data.mode == ir_var_shader_out &&
3960 stage == MESA_SHADER_TESS_CTRL) ||
3961 (var->data.mode == ir_var_shader_in &&
3962 (stage == MESA_SHADER_TESS_CTRL || stage == MESA_SHADER_TESS_EVAL ||
3963 stage == MESA_SHADER_GEOMETRY))))
3964 return true;
3965 else
3966 return false;
3967 }
3968
3969 static bool
3970 add_interface_variables(const struct gl_context *ctx,
3971 struct gl_shader_program *shProg,
3972 struct set *resource_set,
3973 unsigned stage, GLenum programInterface)
3974 {
3975 exec_list *ir = shProg->_LinkedShaders[stage]->ir;
3976
3977 foreach_in_list(ir_instruction, node, ir) {
3978 ir_variable *var = node->as_variable();
3979
3980 if (!var || var->data.how_declared == ir_var_hidden)
3981 continue;
3982
3983 int loc_bias;
3984
3985 switch (var->data.mode) {
3986 case ir_var_system_value:
3987 case ir_var_shader_in:
3988 if (programInterface != GL_PROGRAM_INPUT)
3989 continue;
3990 loc_bias = (stage == MESA_SHADER_VERTEX) ? int(VERT_ATTRIB_GENERIC0)
3991 : int(VARYING_SLOT_VAR0);
3992 break;
3993 case ir_var_shader_out:
3994 if (programInterface != GL_PROGRAM_OUTPUT)
3995 continue;
3996 loc_bias = (stage == MESA_SHADER_FRAGMENT) ? int(FRAG_RESULT_DATA0)
3997 : int(VARYING_SLOT_VAR0);
3998 break;
3999 default:
4000 continue;
4001 };
4002
4003 if (var->data.patch)
4004 loc_bias = int(VARYING_SLOT_PATCH0);
4005
4006 /* Skip packed varyings, packed varyings are handled separately
4007 * by add_packed_varyings.
4008 */
4009 if (strncmp(var->name, "packed:", 7) == 0)
4010 continue;
4011
4012 /* Skip fragdata arrays, these are handled separately
4013 * by add_fragdata_arrays.
4014 */
4015 if (strncmp(var->name, "gl_out_FragData", 15) == 0)
4016 continue;
4017
4018 const bool vs_input_or_fs_output =
4019 (stage == MESA_SHADER_VERTEX && var->data.mode == ir_var_shader_in) ||
4020 (stage == MESA_SHADER_FRAGMENT && var->data.mode == ir_var_shader_out);
4021
4022 if (!add_shader_variable(ctx, shProg, resource_set,
4023 1 << stage, programInterface,
4024 var, var->name, var->type, vs_input_or_fs_output,
4025 var->data.location - loc_bias,
4026 inout_has_same_location(var, stage)))
4027 return false;
4028 }
4029 return true;
4030 }
4031
4032 static bool
4033 add_packed_varyings(const struct gl_context *ctx,
4034 struct gl_shader_program *shProg,
4035 struct set *resource_set,
4036 int stage, GLenum type)
4037 {
4038 struct gl_linked_shader *sh = shProg->_LinkedShaders[stage];
4039 GLenum iface;
4040
4041 if (!sh || !sh->packed_varyings)
4042 return true;
4043
4044 foreach_in_list(ir_instruction, node, sh->packed_varyings) {
4045 ir_variable *var = node->as_variable();
4046 if (var) {
4047 switch (var->data.mode) {
4048 case ir_var_shader_in:
4049 iface = GL_PROGRAM_INPUT;
4050 break;
4051 case ir_var_shader_out:
4052 iface = GL_PROGRAM_OUTPUT;
4053 break;
4054 default:
4055 unreachable("unexpected type");
4056 }
4057
4058 if (type == iface) {
4059 const int stage_mask =
4060 build_stageref(shProg, var->name, var->data.mode);
4061 if (!add_shader_variable(ctx, shProg, resource_set,
4062 stage_mask,
4063 iface, var, var->name, var->type, false,
4064 var->data.location - VARYING_SLOT_VAR0,
4065 inout_has_same_location(var, stage)))
4066 return false;
4067 }
4068 }
4069 }
4070 return true;
4071 }
4072
4073 static bool
4074 add_fragdata_arrays(const struct gl_context *ctx,
4075 struct gl_shader_program *shProg,
4076 struct set *resource_set)
4077 {
4078 struct gl_linked_shader *sh = shProg->_LinkedShaders[MESA_SHADER_FRAGMENT];
4079
4080 if (!sh || !sh->fragdata_arrays)
4081 return true;
4082
4083 foreach_in_list(ir_instruction, node, sh->fragdata_arrays) {
4084 ir_variable *var = node->as_variable();
4085 if (var) {
4086 assert(var->data.mode == ir_var_shader_out);
4087
4088 if (!add_shader_variable(ctx, shProg, resource_set,
4089 1 << MESA_SHADER_FRAGMENT,
4090 GL_PROGRAM_OUTPUT, var, var->name, var->type,
4091 true, var->data.location - FRAG_RESULT_DATA0,
4092 false))
4093 return false;
4094 }
4095 }
4096 return true;
4097 }
4098
4099 static char*
4100 get_top_level_name(const char *name)
4101 {
4102 const char *first_dot = strchr(name, '.');
4103 const char *first_square_bracket = strchr(name, '[');
4104 int name_size = 0;
4105
4106 /* The ARB_program_interface_query spec says:
4107 *
4108 * "For the property TOP_LEVEL_ARRAY_SIZE, a single integer identifying
4109 * the number of active array elements of the top-level shader storage
4110 * block member containing to the active variable is written to
4111 * <params>. If the top-level block member is not declared as an
4112 * array, the value one is written to <params>. If the top-level block
4113 * member is an array with no declared size, the value zero is written
4114 * to <params>."
4115 */
4116
4117 /* The buffer variable is on top level.*/
4118 if (!first_square_bracket && !first_dot)
4119 name_size = strlen(name);
4120 else if ((!first_square_bracket ||
4121 (first_dot && first_dot < first_square_bracket)))
4122 name_size = first_dot - name;
4123 else
4124 name_size = first_square_bracket - name;
4125
4126 return strndup(name, name_size);
4127 }
4128
4129 static char*
4130 get_var_name(const char *name)
4131 {
4132 const char *first_dot = strchr(name, '.');
4133
4134 if (!first_dot)
4135 return strdup(name);
4136
4137 return strndup(first_dot+1, strlen(first_dot) - 1);
4138 }
4139
4140 static bool
4141 is_top_level_shader_storage_block_member(const char* name,
4142 const char* interface_name,
4143 const char* field_name)
4144 {
4145 bool result = false;
4146
4147 /* If the given variable is already a top-level shader storage
4148 * block member, then return array_size = 1.
4149 * We could have two possibilities: if we have an instanced
4150 * shader storage block or not instanced.
4151 *
4152 * For the first, we check create a name as it was in top level and
4153 * compare it with the real name. If they are the same, then
4154 * the variable is already at top-level.
4155 *
4156 * Full instanced name is: interface name + '.' + var name +
4157 * NULL character
4158 */
4159 int name_length = strlen(interface_name) + 1 + strlen(field_name) + 1;
4160 char *full_instanced_name = (char *) calloc(name_length, sizeof(char));
4161 if (!full_instanced_name) {
4162 fprintf(stderr, "%s: Cannot allocate space for name\n", __func__);
4163 return false;
4164 }
4165
4166 snprintf(full_instanced_name, name_length, "%s.%s",
4167 interface_name, field_name);
4168
4169 /* Check if its top-level shader storage block member of an
4170 * instanced interface block, or of a unnamed interface block.
4171 */
4172 if (strcmp(name, full_instanced_name) == 0 ||
4173 strcmp(name, field_name) == 0)
4174 result = true;
4175
4176 free(full_instanced_name);
4177 return result;
4178 }
4179
4180 static int
4181 get_array_size(struct gl_uniform_storage *uni, const glsl_struct_field *field,
4182 char *interface_name, char *var_name)
4183 {
4184 /* The ARB_program_interface_query spec says:
4185 *
4186 * "For the property TOP_LEVEL_ARRAY_SIZE, a single integer identifying
4187 * the number of active array elements of the top-level shader storage
4188 * block member containing to the active variable is written to
4189 * <params>. If the top-level block member is not declared as an
4190 * array, the value one is written to <params>. If the top-level block
4191 * member is an array with no declared size, the value zero is written
4192 * to <params>."
4193 */
4194 if (is_top_level_shader_storage_block_member(uni->name,
4195 interface_name,
4196 var_name))
4197 return 1;
4198 else if (field->type->is_unsized_array())
4199 return 0;
4200 else if (field->type->is_array())
4201 return field->type->length;
4202
4203 return 1;
4204 }
4205
4206 static int
4207 get_array_stride(struct gl_context *ctx, struct gl_uniform_storage *uni,
4208 const glsl_type *interface, const glsl_struct_field *field,
4209 char *interface_name, char *var_name)
4210 {
4211 /* The ARB_program_interface_query spec says:
4212 *
4213 * "For the property TOP_LEVEL_ARRAY_STRIDE, a single integer
4214 * identifying the stride between array elements of the top-level
4215 * shader storage block member containing the active variable is
4216 * written to <params>. For top-level block members declared as
4217 * arrays, the value written is the difference, in basic machine units,
4218 * between the offsets of the active variable for consecutive elements
4219 * in the top-level array. For top-level block members not declared as
4220 * an array, zero is written to <params>."
4221 */
4222 if (field->type->is_array()) {
4223 const enum glsl_matrix_layout matrix_layout =
4224 glsl_matrix_layout(field->matrix_layout);
4225 bool row_major = matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR;
4226 const glsl_type *array_type = field->type->fields.array;
4227
4228 if (is_top_level_shader_storage_block_member(uni->name,
4229 interface_name,
4230 var_name))
4231 return 0;
4232
4233 if (GLSL_INTERFACE_PACKING_STD140 ==
4234 interface->
4235 get_internal_ifc_packing(ctx->Const.UseSTD430AsDefaultPacking)) {
4236 if (array_type->is_record() || array_type->is_array())
4237 return glsl_align(array_type->std140_size(row_major), 16);
4238 else
4239 return MAX2(array_type->std140_base_alignment(row_major), 16);
4240 } else {
4241 return array_type->std430_array_stride(row_major);
4242 }
4243 }
4244 return 0;
4245 }
4246
4247 static void
4248 calculate_array_size_and_stride(struct gl_context *ctx,
4249 struct gl_shader_program *shProg,
4250 struct gl_uniform_storage *uni)
4251 {
4252 int block_index = uni->block_index;
4253 int array_size = -1;
4254 int array_stride = -1;
4255 char *var_name = get_top_level_name(uni->name);
4256 char *interface_name =
4257 get_top_level_name(uni->is_shader_storage ?
4258 shProg->data->ShaderStorageBlocks[block_index].Name :
4259 shProg->data->UniformBlocks[block_index].Name);
4260
4261 if (strcmp(var_name, interface_name) == 0) {
4262 /* Deal with instanced array of SSBOs */
4263 char *temp_name = get_var_name(uni->name);
4264 if (!temp_name) {
4265 linker_error(shProg, "Out of memory during linking.\n");
4266 goto write_top_level_array_size_and_stride;
4267 }
4268 free(var_name);
4269 var_name = get_top_level_name(temp_name);
4270 free(temp_name);
4271 if (!var_name) {
4272 linker_error(shProg, "Out of memory during linking.\n");
4273 goto write_top_level_array_size_and_stride;
4274 }
4275 }
4276
4277 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4278 const gl_linked_shader *sh = shProg->_LinkedShaders[i];
4279 if (sh == NULL)
4280 continue;
4281
4282 foreach_in_list(ir_instruction, node, sh->ir) {
4283 ir_variable *var = node->as_variable();
4284 if (!var || !var->get_interface_type() ||
4285 var->data.mode != ir_var_shader_storage)
4286 continue;
4287
4288 const glsl_type *interface = var->get_interface_type();
4289
4290 if (strcmp(interface_name, interface->name) != 0)
4291 continue;
4292
4293 for (unsigned i = 0; i < interface->length; i++) {
4294 const glsl_struct_field *field = &interface->fields.structure[i];
4295 if (strcmp(field->name, var_name) != 0)
4296 continue;
4297
4298 array_stride = get_array_stride(ctx, uni, interface, field,
4299 interface_name, var_name);
4300 array_size = get_array_size(uni, field, interface_name, var_name);
4301 goto write_top_level_array_size_and_stride;
4302 }
4303 }
4304 }
4305 write_top_level_array_size_and_stride:
4306 free(interface_name);
4307 free(var_name);
4308 uni->top_level_array_stride = array_stride;
4309 uni->top_level_array_size = array_size;
4310 }
4311
4312 /**
4313 * Builds up a list of program resources that point to existing
4314 * resource data.
4315 */
4316 void
4317 build_program_resource_list(struct gl_context *ctx,
4318 struct gl_shader_program *shProg)
4319 {
4320 /* Rebuild resource list. */
4321 if (shProg->data->ProgramResourceList) {
4322 ralloc_free(shProg->data->ProgramResourceList);
4323 shProg->data->ProgramResourceList = NULL;
4324 shProg->data->NumProgramResourceList = 0;
4325 }
4326
4327 int input_stage = MESA_SHADER_STAGES, output_stage = 0;
4328
4329 /* Determine first input and final output stage. These are used to
4330 * detect which variables should be enumerated in the resource list
4331 * for GL_PROGRAM_INPUT and GL_PROGRAM_OUTPUT.
4332 */
4333 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4334 if (!shProg->_LinkedShaders[i])
4335 continue;
4336 if (input_stage == MESA_SHADER_STAGES)
4337 input_stage = i;
4338 output_stage = i;
4339 }
4340
4341 /* Empty shader, no resources. */
4342 if (input_stage == MESA_SHADER_STAGES && output_stage == 0)
4343 return;
4344
4345 struct set *resource_set = _mesa_set_create(NULL,
4346 _mesa_hash_pointer,
4347 _mesa_key_pointer_equal);
4348
4349 /* Program interface needs to expose varyings in case of SSO. */
4350 if (shProg->SeparateShader) {
4351 if (!add_packed_varyings(ctx, shProg, resource_set,
4352 input_stage, GL_PROGRAM_INPUT))
4353 return;
4354
4355 if (!add_packed_varyings(ctx, shProg, resource_set,
4356 output_stage, GL_PROGRAM_OUTPUT))
4357 return;
4358 }
4359
4360 if (!add_fragdata_arrays(ctx, shProg, resource_set))
4361 return;
4362
4363 /* Add inputs and outputs to the resource list. */
4364 if (!add_interface_variables(ctx, shProg, resource_set,
4365 input_stage, GL_PROGRAM_INPUT))
4366 return;
4367
4368 if (!add_interface_variables(ctx, shProg, resource_set,
4369 output_stage, GL_PROGRAM_OUTPUT))
4370 return;
4371
4372 if (shProg->last_vert_prog) {
4373 struct gl_transform_feedback_info *linked_xfb =
4374 shProg->last_vert_prog->sh.LinkedTransformFeedback;
4375
4376 /* Add transform feedback varyings. */
4377 if (linked_xfb->NumVarying > 0) {
4378 for (int i = 0; i < linked_xfb->NumVarying; i++) {
4379 if (!add_program_resource(shProg, resource_set,
4380 GL_TRANSFORM_FEEDBACK_VARYING,
4381 &linked_xfb->Varyings[i], 0))
4382 return;
4383 }
4384 }
4385
4386 /* Add transform feedback buffers. */
4387 for (unsigned i = 0; i < ctx->Const.MaxTransformFeedbackBuffers; i++) {
4388 if ((linked_xfb->ActiveBuffers >> i) & 1) {
4389 linked_xfb->Buffers[i].Binding = i;
4390 if (!add_program_resource(shProg, resource_set,
4391 GL_TRANSFORM_FEEDBACK_BUFFER,
4392 &linked_xfb->Buffers[i], 0))
4393 return;
4394 }
4395 }
4396 }
4397
4398 /* Add uniforms from uniform storage. */
4399 for (unsigned i = 0; i < shProg->data->NumUniformStorage; i++) {
4400 /* Do not add uniforms internally used by Mesa. */
4401 if (shProg->data->UniformStorage[i].hidden)
4402 continue;
4403
4404 uint8_t stageref =
4405 build_stageref(shProg, shProg->data->UniformStorage[i].name,
4406 ir_var_uniform);
4407
4408 /* Add stagereferences for uniforms in a uniform block. */
4409 bool is_shader_storage =
4410 shProg->data->UniformStorage[i].is_shader_storage;
4411 int block_index = shProg->data->UniformStorage[i].block_index;
4412 if (block_index != -1) {
4413 stageref |= is_shader_storage ?
4414 shProg->data->ShaderStorageBlocks[block_index].stageref :
4415 shProg->data->UniformBlocks[block_index].stageref;
4416 }
4417
4418 GLenum type = is_shader_storage ? GL_BUFFER_VARIABLE : GL_UNIFORM;
4419 if (!should_add_buffer_variable(shProg, type,
4420 shProg->data->UniformStorage[i].name))
4421 continue;
4422
4423 if (is_shader_storage) {
4424 calculate_array_size_and_stride(ctx, shProg,
4425 &shProg->data->UniformStorage[i]);
4426 }
4427
4428 if (!add_program_resource(shProg, resource_set, type,
4429 &shProg->data->UniformStorage[i], stageref))
4430 return;
4431 }
4432
4433 /* Add program uniform blocks. */
4434 for (unsigned i = 0; i < shProg->data->NumUniformBlocks; i++) {
4435 if (!add_program_resource(shProg, resource_set, GL_UNIFORM_BLOCK,
4436 &shProg->data->UniformBlocks[i], 0))
4437 return;
4438 }
4439
4440 /* Add program shader storage blocks. */
4441 for (unsigned i = 0; i < shProg->data->NumShaderStorageBlocks; i++) {
4442 if (!add_program_resource(shProg, resource_set, GL_SHADER_STORAGE_BLOCK,
4443 &shProg->data->ShaderStorageBlocks[i], 0))
4444 return;
4445 }
4446
4447 /* Add atomic counter buffers. */
4448 for (unsigned i = 0; i < shProg->data->NumAtomicBuffers; i++) {
4449 if (!add_program_resource(shProg, resource_set, GL_ATOMIC_COUNTER_BUFFER,
4450 &shProg->data->AtomicBuffers[i], 0))
4451 return;
4452 }
4453
4454 for (unsigned i = 0; i < shProg->data->NumUniformStorage; i++) {
4455 GLenum type;
4456 if (!shProg->data->UniformStorage[i].hidden)
4457 continue;
4458
4459 for (int j = MESA_SHADER_VERTEX; j < MESA_SHADER_STAGES; j++) {
4460 if (!shProg->data->UniformStorage[i].opaque[j].active ||
4461 !shProg->data->UniformStorage[i].type->is_subroutine())
4462 continue;
4463
4464 type = _mesa_shader_stage_to_subroutine_uniform((gl_shader_stage)j);
4465 /* add shader subroutines */
4466 if (!add_program_resource(shProg, resource_set,
4467 type, &shProg->data->UniformStorage[i], 0))
4468 return;
4469 }
4470 }
4471
4472 unsigned mask = shProg->data->linked_stages;
4473 while (mask) {
4474 const int i = u_bit_scan(&mask);
4475 struct gl_program *p = shProg->_LinkedShaders[i]->Program;
4476
4477 GLuint type = _mesa_shader_stage_to_subroutine((gl_shader_stage)i);
4478 for (unsigned j = 0; j < p->sh.NumSubroutineFunctions; j++) {
4479 if (!add_program_resource(shProg, resource_set,
4480 type, &p->sh.SubroutineFunctions[j], 0))
4481 return;
4482 }
4483 }
4484
4485 _mesa_set_destroy(resource_set, NULL);
4486 }
4487
4488 /**
4489 * This check is done to make sure we allow only constant expression
4490 * indexing and "constant-index-expression" (indexing with an expression
4491 * that includes loop induction variable).
4492 */
4493 static bool
4494 validate_sampler_array_indexing(struct gl_context *ctx,
4495 struct gl_shader_program *prog)
4496 {
4497 dynamic_sampler_array_indexing_visitor v;
4498 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4499 if (prog->_LinkedShaders[i] == NULL)
4500 continue;
4501
4502 bool no_dynamic_indexing =
4503 ctx->Const.ShaderCompilerOptions[i].EmitNoIndirectSampler;
4504
4505 /* Search for array derefs in shader. */
4506 v.run(prog->_LinkedShaders[i]->ir);
4507 if (v.uses_dynamic_sampler_array_indexing()) {
4508 const char *msg = "sampler arrays indexed with non-constant "
4509 "expressions is forbidden in GLSL %s %u";
4510 /* Backend has indicated that it has no dynamic indexing support. */
4511 if (no_dynamic_indexing) {
4512 linker_error(prog, msg, prog->IsES ? "ES" : "",
4513 prog->data->Version);
4514 return false;
4515 } else {
4516 linker_warning(prog, msg, prog->IsES ? "ES" : "",
4517 prog->data->Version);
4518 }
4519 }
4520 }
4521 return true;
4522 }
4523
4524 static void
4525 link_assign_subroutine_types(struct gl_shader_program *prog)
4526 {
4527 unsigned mask = prog->data->linked_stages;
4528 while (mask) {
4529 const int i = u_bit_scan(&mask);
4530 gl_program *p = prog->_LinkedShaders[i]->Program;
4531
4532 p->sh.MaxSubroutineFunctionIndex = 0;
4533 foreach_in_list(ir_instruction, node, prog->_LinkedShaders[i]->ir) {
4534 ir_function *fn = node->as_function();
4535 if (!fn)
4536 continue;
4537
4538 if (fn->is_subroutine)
4539 p->sh.NumSubroutineUniformTypes++;
4540
4541 if (!fn->num_subroutine_types)
4542 continue;
4543
4544 /* these should have been calculated earlier. */
4545 assert(fn->subroutine_index != -1);
4546 if (p->sh.NumSubroutineFunctions + 1 > MAX_SUBROUTINES) {
4547 linker_error(prog, "Too many subroutine functions declared.\n");
4548 return;
4549 }
4550 p->sh.SubroutineFunctions = reralloc(p, p->sh.SubroutineFunctions,
4551 struct gl_subroutine_function,
4552 p->sh.NumSubroutineFunctions + 1);
4553 p->sh.SubroutineFunctions[p->sh.NumSubroutineFunctions].name = ralloc_strdup(p, fn->name);
4554 p->sh.SubroutineFunctions[p->sh.NumSubroutineFunctions].num_compat_types = fn->num_subroutine_types;
4555 p->sh.SubroutineFunctions[p->sh.NumSubroutineFunctions].types =
4556 ralloc_array(p, const struct glsl_type *,
4557 fn->num_subroutine_types);
4558
4559 /* From Section 4.4.4(Subroutine Function Layout Qualifiers) of the
4560 * GLSL 4.5 spec:
4561 *
4562 * "Each subroutine with an index qualifier in the shader must be
4563 * given a unique index, otherwise a compile or link error will be
4564 * generated."
4565 */
4566 for (unsigned j = 0; j < p->sh.NumSubroutineFunctions; j++) {
4567 if (p->sh.SubroutineFunctions[j].index != -1 &&
4568 p->sh.SubroutineFunctions[j].index == fn->subroutine_index) {
4569 linker_error(prog, "each subroutine index qualifier in the "
4570 "shader must be unique\n");
4571 return;
4572 }
4573 }
4574 p->sh.SubroutineFunctions[p->sh.NumSubroutineFunctions].index =
4575 fn->subroutine_index;
4576
4577 if (fn->subroutine_index > (int)p->sh.MaxSubroutineFunctionIndex)
4578 p->sh.MaxSubroutineFunctionIndex = fn->subroutine_index;
4579
4580 for (int j = 0; j < fn->num_subroutine_types; j++)
4581 p->sh.SubroutineFunctions[p->sh.NumSubroutineFunctions].types[j] = fn->subroutine_types[j];
4582 p->sh.NumSubroutineFunctions++;
4583 }
4584 }
4585 }
4586
4587 static void
4588 set_always_active_io(exec_list *ir, ir_variable_mode io_mode)
4589 {
4590 assert(io_mode == ir_var_shader_in || io_mode == ir_var_shader_out);
4591
4592 foreach_in_list(ir_instruction, node, ir) {
4593 ir_variable *const var = node->as_variable();
4594
4595 if (var == NULL || var->data.mode != io_mode)
4596 continue;
4597
4598 /* Don't set always active on builtins that haven't been redeclared */
4599 if (var->data.how_declared == ir_var_declared_implicitly)
4600 continue;
4601
4602 var->data.always_active_io = true;
4603 }
4604 }
4605
4606 /**
4607 * When separate shader programs are enabled, only input/outputs between
4608 * the stages of a multi-stage separate program can be safely removed
4609 * from the shader interface. Other inputs/outputs must remain active.
4610 */
4611 static void
4612 disable_varying_optimizations_for_sso(struct gl_shader_program *prog)
4613 {
4614 unsigned first, last;
4615 assert(prog->SeparateShader);
4616
4617 first = MESA_SHADER_STAGES;
4618 last = 0;
4619
4620 /* Determine first and last stage. Excluding the compute stage */
4621 for (unsigned i = 0; i < MESA_SHADER_COMPUTE; i++) {
4622 if (!prog->_LinkedShaders[i])
4623 continue;
4624 if (first == MESA_SHADER_STAGES)
4625 first = i;
4626 last = i;
4627 }
4628
4629 if (first == MESA_SHADER_STAGES)
4630 return;
4631
4632 for (unsigned stage = 0; stage < MESA_SHADER_STAGES; stage++) {
4633 gl_linked_shader *sh = prog->_LinkedShaders[stage];
4634 if (!sh)
4635 continue;
4636
4637 /* Prevent the removal of inputs to the first and outputs from the last
4638 * stage, unless they are the initial pipeline inputs or final pipeline
4639 * outputs, respectively.
4640 *
4641 * The removal of IO between shaders in the same program is always
4642 * allowed.
4643 */
4644 if (stage == first && stage != MESA_SHADER_VERTEX)
4645 set_always_active_io(sh->ir, ir_var_shader_in);
4646 if (stage == last && stage != MESA_SHADER_FRAGMENT)
4647 set_always_active_io(sh->ir, ir_var_shader_out);
4648 }
4649 }
4650
4651 static void
4652 link_and_validate_uniforms(struct gl_context *ctx,
4653 struct gl_shader_program *prog)
4654 {
4655 update_array_sizes(prog);
4656 link_assign_uniform_locations(prog, ctx);
4657
4658 link_assign_atomic_counter_resources(ctx, prog);
4659 link_calculate_subroutine_compat(prog);
4660 check_resources(ctx, prog);
4661 check_subroutine_resources(prog);
4662 check_image_resources(ctx, prog);
4663 link_check_atomic_counter_resources(ctx, prog);
4664 }
4665
4666 static bool
4667 link_varyings_and_uniforms(unsigned first, unsigned last,
4668 struct gl_context *ctx,
4669 struct gl_shader_program *prog, void *mem_ctx)
4670 {
4671 /* Mark all generic shader inputs and outputs as unpaired. */
4672 for (unsigned i = MESA_SHADER_VERTEX; i <= MESA_SHADER_FRAGMENT; i++) {
4673 if (prog->_LinkedShaders[i] != NULL) {
4674 link_invalidate_variable_locations(prog->_LinkedShaders[i]->ir);
4675 }
4676 }
4677
4678 unsigned prev = first;
4679 for (unsigned i = prev + 1; i <= MESA_SHADER_FRAGMENT; i++) {
4680 if (prog->_LinkedShaders[i] == NULL)
4681 continue;
4682
4683 match_explicit_outputs_to_inputs(prog->_LinkedShaders[prev],
4684 prog->_LinkedShaders[i]);
4685 prev = i;
4686 }
4687
4688 if (!assign_attribute_or_color_locations(mem_ctx, prog, &ctx->Const,
4689 MESA_SHADER_VERTEX)) {
4690 return false;
4691 }
4692
4693 if (!assign_attribute_or_color_locations(mem_ctx, prog, &ctx->Const,
4694 MESA_SHADER_FRAGMENT)) {
4695 return false;
4696 }
4697
4698 prog->last_vert_prog = NULL;
4699 for (int i = MESA_SHADER_GEOMETRY; i >= MESA_SHADER_VERTEX; i--) {
4700 if (prog->_LinkedShaders[i] == NULL)
4701 continue;
4702
4703 prog->last_vert_prog = prog->_LinkedShaders[i]->Program;
4704 break;
4705 }
4706
4707 if (!link_varyings(prog, first, last, ctx, mem_ctx))
4708 return false;
4709
4710 link_and_validate_uniforms(ctx, prog);
4711
4712 if (!prog->data->LinkStatus)
4713 return false;
4714
4715 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4716 if (prog->_LinkedShaders[i] == NULL)
4717 continue;
4718
4719 const struct gl_shader_compiler_options *options =
4720 &ctx->Const.ShaderCompilerOptions[i];
4721
4722 if (options->LowerBufferInterfaceBlocks)
4723 lower_ubo_reference(prog->_LinkedShaders[i],
4724 options->ClampBlockIndicesToArrayBounds,
4725 ctx->Const.UseSTD430AsDefaultPacking);
4726
4727 if (i == MESA_SHADER_COMPUTE)
4728 lower_shared_reference(ctx, prog, prog->_LinkedShaders[i]);
4729
4730 lower_vector_derefs(prog->_LinkedShaders[i]);
4731 do_vec_index_to_swizzle(prog->_LinkedShaders[i]->ir);
4732 }
4733
4734 return true;
4735 }
4736
4737 static void
4738 linker_optimisation_loop(struct gl_context *ctx, exec_list *ir,
4739 unsigned stage)
4740 {
4741 if (ctx->Const.GLSLOptimizeConservatively) {
4742 /* Run it just once. */
4743 do_common_optimization(ir, true, false,
4744 &ctx->Const.ShaderCompilerOptions[stage],
4745 ctx->Const.NativeIntegers);
4746 } else {
4747 /* Repeat it until it stops making changes. */
4748 while (do_common_optimization(ir, true, false,
4749 &ctx->Const.ShaderCompilerOptions[stage],
4750 ctx->Const.NativeIntegers))
4751 ;
4752 }
4753 }
4754
4755 void
4756 link_shaders(struct gl_context *ctx, struct gl_shader_program *prog)
4757 {
4758 prog->data->LinkStatus = LINKING_SUCCESS; /* All error paths will set this to false */
4759 prog->data->Validated = false;
4760
4761 /* Section 7.3 (Program Objects) of the OpenGL 4.5 Core Profile spec says:
4762 *
4763 * "Linking can fail for a variety of reasons as specified in the
4764 * OpenGL Shading Language Specification, as well as any of the
4765 * following reasons:
4766 *
4767 * - No shader objects are attached to program."
4768 *
4769 * The Compatibility Profile specification does not list the error. In
4770 * Compatibility Profile missing shader stages are replaced by
4771 * fixed-function. This applies to the case where all stages are
4772 * missing.
4773 */
4774 if (prog->NumShaders == 0) {
4775 if (ctx->API != API_OPENGL_COMPAT)
4776 linker_error(prog, "no shaders attached to the program\n");
4777 return;
4778 }
4779
4780 #ifdef ENABLE_SHADER_CACHE
4781 /* If transform feedback used on the program then compile all shaders. */
4782 bool skip_cache = false;
4783 if (prog->TransformFeedback.NumVarying > 0) {
4784 for (unsigned i = 0; i < prog->NumShaders; i++) {
4785 _mesa_glsl_compile_shader(ctx, prog->Shaders[i], false, false, true);
4786 }
4787 skip_cache = true;
4788 }
4789
4790 if (!skip_cache && shader_cache_read_program_metadata(ctx, prog))
4791 return;
4792 #endif
4793
4794 void *mem_ctx = ralloc_context(NULL); // temporary linker context
4795
4796 prog->ARB_fragment_coord_conventions_enable = false;
4797
4798 /* Separate the shaders into groups based on their type.
4799 */
4800 struct gl_shader **shader_list[MESA_SHADER_STAGES];
4801 unsigned num_shaders[MESA_SHADER_STAGES];
4802
4803 for (int i = 0; i < MESA_SHADER_STAGES; i++) {
4804 shader_list[i] = (struct gl_shader **)
4805 calloc(prog->NumShaders, sizeof(struct gl_shader *));
4806 num_shaders[i] = 0;
4807 }
4808
4809 unsigned min_version = UINT_MAX;
4810 unsigned max_version = 0;
4811 for (unsigned i = 0; i < prog->NumShaders; i++) {
4812 min_version = MIN2(min_version, prog->Shaders[i]->Version);
4813 max_version = MAX2(max_version, prog->Shaders[i]->Version);
4814
4815 if (prog->Shaders[i]->IsES != prog->Shaders[0]->IsES) {
4816 linker_error(prog, "all shaders must use same shading "
4817 "language version\n");
4818 goto done;
4819 }
4820
4821 if (prog->Shaders[i]->ARB_fragment_coord_conventions_enable) {
4822 prog->ARB_fragment_coord_conventions_enable = true;
4823 }
4824
4825 gl_shader_stage shader_type = prog->Shaders[i]->Stage;
4826 shader_list[shader_type][num_shaders[shader_type]] = prog->Shaders[i];
4827 num_shaders[shader_type]++;
4828 }
4829
4830 /* In desktop GLSL, different shader versions may be linked together. In
4831 * GLSL ES, all shader versions must be the same.
4832 */
4833 if (prog->Shaders[0]->IsES && min_version != max_version) {
4834 linker_error(prog, "all shaders must use same shading "
4835 "language version\n");
4836 goto done;
4837 }
4838
4839 prog->data->Version = max_version;
4840 prog->IsES = prog->Shaders[0]->IsES;
4841
4842 /* Some shaders have to be linked with some other shaders present.
4843 */
4844 if (!prog->SeparateShader) {
4845 if (num_shaders[MESA_SHADER_GEOMETRY] > 0 &&
4846 num_shaders[MESA_SHADER_VERTEX] == 0) {
4847 linker_error(prog, "Geometry shader must be linked with "
4848 "vertex shader\n");
4849 goto done;
4850 }
4851 if (num_shaders[MESA_SHADER_TESS_EVAL] > 0 &&
4852 num_shaders[MESA_SHADER_VERTEX] == 0) {
4853 linker_error(prog, "Tessellation evaluation shader must be linked "
4854 "with vertex shader\n");
4855 goto done;
4856 }
4857 if (num_shaders[MESA_SHADER_TESS_CTRL] > 0 &&
4858 num_shaders[MESA_SHADER_VERTEX] == 0) {
4859 linker_error(prog, "Tessellation control shader must be linked with "
4860 "vertex shader\n");
4861 goto done;
4862 }
4863
4864 /* Section 7.3 of the OpenGL ES 3.2 specification says:
4865 *
4866 * "Linking can fail for [...] any of the following reasons:
4867 *
4868 * * program contains an object to form a tessellation control
4869 * shader [...] and [...] the program is not separable and
4870 * contains no object to form a tessellation evaluation shader"
4871 *
4872 * The OpenGL spec is contradictory. It allows linking without a tess
4873 * eval shader, but that can only be used with transform feedback and
4874 * rasterization disabled. However, transform feedback isn't allowed
4875 * with GL_PATCHES, so it can't be used.
4876 *
4877 * More investigation showed that the idea of transform feedback after
4878 * a tess control shader was dropped, because some hw vendors couldn't
4879 * support tessellation without a tess eval shader, but the linker
4880 * section wasn't updated to reflect that.
4881 *
4882 * All specifications (ARB_tessellation_shader, GL 4.0-4.5) have this
4883 * spec bug.
4884 *
4885 * Do what's reasonable and always require a tess eval shader if a tess
4886 * control shader is present.
4887 */
4888 if (num_shaders[MESA_SHADER_TESS_CTRL] > 0 &&
4889 num_shaders[MESA_SHADER_TESS_EVAL] == 0) {
4890 linker_error(prog, "Tessellation control shader must be linked with "
4891 "tessellation evaluation shader\n");
4892 goto done;
4893 }
4894
4895 if (prog->IsES) {
4896 if (num_shaders[MESA_SHADER_TESS_EVAL] > 0 &&
4897 num_shaders[MESA_SHADER_TESS_CTRL] == 0) {
4898 linker_error(prog, "GLSL ES requires non-separable programs "
4899 "containing a tessellation evaluation shader to also "
4900 "be linked with a tessellation control shader\n");
4901 goto done;
4902 }
4903 }
4904 }
4905
4906 /* Compute shaders have additional restrictions. */
4907 if (num_shaders[MESA_SHADER_COMPUTE] > 0 &&
4908 num_shaders[MESA_SHADER_COMPUTE] != prog->NumShaders) {
4909 linker_error(prog, "Compute shaders may not be linked with any other "
4910 "type of shader\n");
4911 }
4912
4913 /* Link all shaders for a particular stage and validate the result.
4914 */
4915 for (int stage = 0; stage < MESA_SHADER_STAGES; stage++) {
4916 if (num_shaders[stage] > 0) {
4917 gl_linked_shader *const sh =
4918 link_intrastage_shaders(mem_ctx, ctx, prog, shader_list[stage],
4919 num_shaders[stage], false);
4920
4921 if (!prog->data->LinkStatus) {
4922 if (sh)
4923 _mesa_delete_linked_shader(ctx, sh);
4924 goto done;
4925 }
4926
4927 switch (stage) {
4928 case MESA_SHADER_VERTEX:
4929 validate_vertex_shader_executable(prog, sh, ctx);
4930 break;
4931 case MESA_SHADER_TESS_CTRL:
4932 /* nothing to be done */
4933 break;
4934 case MESA_SHADER_TESS_EVAL:
4935 validate_tess_eval_shader_executable(prog, sh, ctx);
4936 break;
4937 case MESA_SHADER_GEOMETRY:
4938 validate_geometry_shader_executable(prog, sh, ctx);
4939 break;
4940 case MESA_SHADER_FRAGMENT:
4941 validate_fragment_shader_executable(prog, sh);
4942 break;
4943 }
4944 if (!prog->data->LinkStatus) {
4945 if (sh)
4946 _mesa_delete_linked_shader(ctx, sh);
4947 goto done;
4948 }
4949
4950 prog->_LinkedShaders[stage] = sh;
4951 prog->data->linked_stages |= 1 << stage;
4952 }
4953 }
4954
4955 /* Here begins the inter-stage linking phase. Some initial validation is
4956 * performed, then locations are assigned for uniforms, attributes, and
4957 * varyings.
4958 */
4959 cross_validate_uniforms(prog);
4960 if (!prog->data->LinkStatus)
4961 goto done;
4962
4963 unsigned first, last, prev;
4964
4965 first = MESA_SHADER_STAGES;
4966 last = 0;
4967
4968 /* Determine first and last stage. */
4969 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4970 if (!prog->_LinkedShaders[i])
4971 continue;
4972 if (first == MESA_SHADER_STAGES)
4973 first = i;
4974 last = i;
4975 }
4976
4977 check_explicit_uniform_locations(ctx, prog);
4978 link_assign_subroutine_types(prog);
4979
4980 if (!prog->data->LinkStatus)
4981 goto done;
4982
4983 resize_tes_inputs(ctx, prog);
4984
4985 /* Validate the inputs of each stage with the output of the preceding
4986 * stage.
4987 */
4988 prev = first;
4989 for (unsigned i = prev + 1; i <= MESA_SHADER_FRAGMENT; i++) {
4990 if (prog->_LinkedShaders[i] == NULL)
4991 continue;
4992
4993 validate_interstage_inout_blocks(prog, prog->_LinkedShaders[prev],
4994 prog->_LinkedShaders[i]);
4995 if (!prog->data->LinkStatus)
4996 goto done;
4997
4998 cross_validate_outputs_to_inputs(ctx, prog,
4999 prog->_LinkedShaders[prev],
5000 prog->_LinkedShaders[i]);
5001 if (!prog->data->LinkStatus)
5002 goto done;
5003
5004 prev = i;
5005 }
5006
5007 /* The cross validation of outputs/inputs above validates explicit locations
5008 * but for SSO programs we need to do this also for the inputs in the
5009 * first stage and outputs of the last stage included in the program, since
5010 * there is no cross validation for these.
5011 */
5012 if (prog->SeparateShader)
5013 validate_sso_explicit_locations(ctx, prog,
5014 (gl_shader_stage) first,
5015 (gl_shader_stage) last);
5016
5017 /* Cross-validate uniform blocks between shader stages */
5018 validate_interstage_uniform_blocks(prog, prog->_LinkedShaders);
5019 if (!prog->data->LinkStatus)
5020 goto done;
5021
5022 for (unsigned int i = 0; i < MESA_SHADER_STAGES; i++) {
5023 if (prog->_LinkedShaders[i] != NULL)
5024 lower_named_interface_blocks(mem_ctx, prog->_LinkedShaders[i]);
5025 }
5026
5027 /* Implement the GLSL 1.30+ rule for discard vs infinite loops Do
5028 * it before optimization because we want most of the checks to get
5029 * dropped thanks to constant propagation.
5030 *
5031 * This rule also applies to GLSL ES 3.00.
5032 */
5033 if (max_version >= (prog->IsES ? 300 : 130)) {
5034 struct gl_linked_shader *sh = prog->_LinkedShaders[MESA_SHADER_FRAGMENT];
5035 if (sh) {
5036 lower_discard_flow(sh->ir);
5037 }
5038 }
5039
5040 if (prog->SeparateShader)
5041 disable_varying_optimizations_for_sso(prog);
5042
5043 /* Process UBOs */
5044 if (!interstage_cross_validate_uniform_blocks(prog, false))
5045 goto done;
5046
5047 /* Process SSBOs */
5048 if (!interstage_cross_validate_uniform_blocks(prog, true))
5049 goto done;
5050
5051 /* Do common optimization before assigning storage for attributes,
5052 * uniforms, and varyings. Later optimization could possibly make
5053 * some of that unused.
5054 */
5055 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
5056 if (prog->_LinkedShaders[i] == NULL)
5057 continue;
5058
5059 detect_recursion_linked(prog, prog->_LinkedShaders[i]->ir);
5060 if (!prog->data->LinkStatus)
5061 goto done;
5062
5063 if (ctx->Const.ShaderCompilerOptions[i].LowerCombinedClipCullDistance) {
5064 lower_clip_cull_distance(prog, prog->_LinkedShaders[i]);
5065 }
5066
5067 if (ctx->Const.LowerTessLevel) {
5068 lower_tess_level(prog->_LinkedShaders[i]);
5069 }
5070
5071 /* Call opts before lowering const arrays to uniforms so we can const
5072 * propagate any elements accessed directly.
5073 */
5074 linker_optimisation_loop(ctx, prog->_LinkedShaders[i]->ir, i);
5075
5076 /* Call opts after lowering const arrays to copy propagate things. */
5077 if (lower_const_arrays_to_uniforms(prog->_LinkedShaders[i]->ir, i))
5078 linker_optimisation_loop(ctx, prog->_LinkedShaders[i]->ir, i);
5079
5080 propagate_invariance(prog->_LinkedShaders[i]->ir);
5081 }
5082
5083 /* Validation for special cases where we allow sampler array indexing
5084 * with loop induction variable. This check emits a warning or error
5085 * depending if backend can handle dynamic indexing.
5086 */
5087 if ((!prog->IsES && prog->data->Version < 130) ||
5088 (prog->IsES && prog->data->Version < 300)) {
5089 if (!validate_sampler_array_indexing(ctx, prog))
5090 goto done;
5091 }
5092
5093 /* Check and validate stream emissions in geometry shaders */
5094 validate_geometry_shader_emissions(ctx, prog);
5095
5096 store_fragdepth_layout(prog);
5097
5098 if(!link_varyings_and_uniforms(first, last, ctx, prog, mem_ctx))
5099 goto done;
5100
5101 /* Linking varyings can cause some extra, useless swizzles to be generated
5102 * due to packing and unpacking.
5103 */
5104 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
5105 if (prog->_LinkedShaders[i] == NULL)
5106 continue;
5107
5108 optimize_swizzles(prog->_LinkedShaders[i]->ir);
5109 }
5110
5111 /* OpenGL ES < 3.1 requires that a vertex shader and a fragment shader both
5112 * be present in a linked program. GL_ARB_ES2_compatibility doesn't say
5113 * anything about shader linking when one of the shaders (vertex or
5114 * fragment shader) is absent. So, the extension shouldn't change the
5115 * behavior specified in GLSL specification.
5116 *
5117 * From OpenGL ES 3.1 specification (7.3 Program Objects):
5118 * "Linking can fail for a variety of reasons as specified in the
5119 * OpenGL ES Shading Language Specification, as well as any of the
5120 * following reasons:
5121 *
5122 * ...
5123 *
5124 * * program contains objects to form either a vertex shader or
5125 * fragment shader, and program is not separable, and does not
5126 * contain objects to form both a vertex shader and fragment
5127 * shader."
5128 *
5129 * However, the only scenario in 3.1+ where we don't require them both is
5130 * when we have a compute shader. For example:
5131 *
5132 * - No shaders is a link error.
5133 * - Geom or Tess without a Vertex shader is a link error which means we
5134 * always require a Vertex shader and hence a Fragment shader.
5135 * - Finally a Compute shader linked with any other stage is a link error.
5136 */
5137 if (!prog->SeparateShader && ctx->API == API_OPENGLES2 &&
5138 num_shaders[MESA_SHADER_COMPUTE] == 0) {
5139 if (prog->_LinkedShaders[MESA_SHADER_VERTEX] == NULL) {
5140 linker_error(prog, "program lacks a vertex shader\n");
5141 } else if (prog->_LinkedShaders[MESA_SHADER_FRAGMENT] == NULL) {
5142 linker_error(prog, "program lacks a fragment shader\n");
5143 }
5144 }
5145
5146 done:
5147 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
5148 free(shader_list[i]);
5149 if (prog->_LinkedShaders[i] == NULL)
5150 continue;
5151
5152 /* Do a final validation step to make sure that the IR wasn't
5153 * invalidated by any modifications performed after intrastage linking.
5154 */
5155 validate_ir_tree(prog->_LinkedShaders[i]->ir);
5156
5157 /* Retain any live IR, but trash the rest. */
5158 reparent_ir(prog->_LinkedShaders[i]->ir, prog->_LinkedShaders[i]->ir);
5159
5160 /* The symbol table in the linked shaders may contain references to
5161 * variables that were removed (e.g., unused uniforms). Since it may
5162 * contain junk, there is no possible valid use. Delete it and set the
5163 * pointer to NULL.
5164 */
5165 delete prog->_LinkedShaders[i]->symbols;
5166 prog->_LinkedShaders[i]->symbols = NULL;
5167 }
5168
5169 ralloc_free(mem_ctx);
5170 }