glsl: make sure builtins are initialized before getting the shader
[mesa.git] / src / compiler / glsl / linker.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file linker.cpp
26 * GLSL linker implementation
27 *
28 * Given a set of shaders that are to be linked to generate a final program,
29 * there are three distinct stages.
30 *
31 * In the first stage shaders are partitioned into groups based on the shader
32 * type. All shaders of a particular type (e.g., vertex shaders) are linked
33 * together.
34 *
35 * - Undefined references in each shader are resolve to definitions in
36 * another shader.
37 * - Types and qualifiers of uniforms, outputs, and global variables defined
38 * in multiple shaders with the same name are verified to be the same.
39 * - Initializers for uniforms and global variables defined
40 * in multiple shaders with the same name are verified to be the same.
41 *
42 * The result, in the terminology of the GLSL spec, is a set of shader
43 * executables for each processing unit.
44 *
45 * After the first stage is complete, a series of semantic checks are performed
46 * on each of the shader executables.
47 *
48 * - Each shader executable must define a \c main function.
49 * - Each vertex shader executable must write to \c gl_Position.
50 * - Each fragment shader executable must write to either \c gl_FragData or
51 * \c gl_FragColor.
52 *
53 * In the final stage individual shader executables are linked to create a
54 * complete exectuable.
55 *
56 * - Types of uniforms defined in multiple shader stages with the same name
57 * are verified to be the same.
58 * - Initializers for uniforms defined in multiple shader stages with the
59 * same name are verified to be the same.
60 * - Types and qualifiers of outputs defined in one stage are verified to
61 * be the same as the types and qualifiers of inputs defined with the same
62 * name in a later stage.
63 *
64 * \author Ian Romanick <ian.d.romanick@intel.com>
65 */
66
67 #include <ctype.h>
68 #include "util/strndup.h"
69 #include "main/core.h"
70 #include "glsl_symbol_table.h"
71 #include "glsl_parser_extras.h"
72 #include "ir.h"
73 #include "program.h"
74 #include "program/hash_table.h"
75 #include "linker.h"
76 #include "link_varyings.h"
77 #include "ir_optimization.h"
78 #include "ir_rvalue_visitor.h"
79 #include "ir_uniform.h"
80
81 #include "main/shaderobj.h"
82 #include "main/enums.h"
83
84
85 void linker_error(gl_shader_program *, const char *, ...);
86
87 namespace {
88
89 /**
90 * Visitor that determines whether or not a variable is ever written.
91 */
92 class find_assignment_visitor : public ir_hierarchical_visitor {
93 public:
94 find_assignment_visitor(const char *name)
95 : name(name), found(false)
96 {
97 /* empty */
98 }
99
100 virtual ir_visitor_status visit_enter(ir_assignment *ir)
101 {
102 ir_variable *const var = ir->lhs->variable_referenced();
103
104 if (strcmp(name, var->name) == 0) {
105 found = true;
106 return visit_stop;
107 }
108
109 return visit_continue_with_parent;
110 }
111
112 virtual ir_visitor_status visit_enter(ir_call *ir)
113 {
114 foreach_two_lists(formal_node, &ir->callee->parameters,
115 actual_node, &ir->actual_parameters) {
116 ir_rvalue *param_rval = (ir_rvalue *) actual_node;
117 ir_variable *sig_param = (ir_variable *) formal_node;
118
119 if (sig_param->data.mode == ir_var_function_out ||
120 sig_param->data.mode == ir_var_function_inout) {
121 ir_variable *var = param_rval->variable_referenced();
122 if (var && strcmp(name, var->name) == 0) {
123 found = true;
124 return visit_stop;
125 }
126 }
127 }
128
129 if (ir->return_deref != NULL) {
130 ir_variable *const var = ir->return_deref->variable_referenced();
131
132 if (strcmp(name, var->name) == 0) {
133 found = true;
134 return visit_stop;
135 }
136 }
137
138 return visit_continue_with_parent;
139 }
140
141 bool variable_found()
142 {
143 return found;
144 }
145
146 private:
147 const char *name; /**< Find writes to a variable with this name. */
148 bool found; /**< Was a write to the variable found? */
149 };
150
151
152 /**
153 * Visitor that determines whether or not a variable is ever read.
154 */
155 class find_deref_visitor : public ir_hierarchical_visitor {
156 public:
157 find_deref_visitor(const char *name)
158 : name(name), found(false)
159 {
160 /* empty */
161 }
162
163 virtual ir_visitor_status visit(ir_dereference_variable *ir)
164 {
165 if (strcmp(this->name, ir->var->name) == 0) {
166 this->found = true;
167 return visit_stop;
168 }
169
170 return visit_continue;
171 }
172
173 bool variable_found() const
174 {
175 return this->found;
176 }
177
178 private:
179 const char *name; /**< Find writes to a variable with this name. */
180 bool found; /**< Was a write to the variable found? */
181 };
182
183
184 class geom_array_resize_visitor : public ir_hierarchical_visitor {
185 public:
186 unsigned num_vertices;
187 gl_shader_program *prog;
188
189 geom_array_resize_visitor(unsigned num_vertices, gl_shader_program *prog)
190 {
191 this->num_vertices = num_vertices;
192 this->prog = prog;
193 }
194
195 virtual ~geom_array_resize_visitor()
196 {
197 /* empty */
198 }
199
200 virtual ir_visitor_status visit(ir_variable *var)
201 {
202 if (!var->type->is_array() || var->data.mode != ir_var_shader_in)
203 return visit_continue;
204
205 unsigned size = var->type->length;
206
207 /* Generate a link error if the shader has declared this array with an
208 * incorrect size.
209 */
210 if (size && size != this->num_vertices) {
211 linker_error(this->prog, "size of array %s declared as %u, "
212 "but number of input vertices is %u\n",
213 var->name, size, this->num_vertices);
214 return visit_continue;
215 }
216
217 /* Generate a link error if the shader attempts to access an input
218 * array using an index too large for its actual size assigned at link
219 * time.
220 */
221 if (var->data.max_array_access >= this->num_vertices) {
222 linker_error(this->prog, "geometry shader accesses element %i of "
223 "%s, but only %i input vertices\n",
224 var->data.max_array_access, var->name, this->num_vertices);
225 return visit_continue;
226 }
227
228 var->type = glsl_type::get_array_instance(var->type->fields.array,
229 this->num_vertices);
230 var->data.max_array_access = this->num_vertices - 1;
231
232 return visit_continue;
233 }
234
235 /* Dereferences of input variables need to be updated so that their type
236 * matches the newly assigned type of the variable they are accessing. */
237 virtual ir_visitor_status visit(ir_dereference_variable *ir)
238 {
239 ir->type = ir->var->type;
240 return visit_continue;
241 }
242
243 /* Dereferences of 2D input arrays need to be updated so that their type
244 * matches the newly assigned type of the array they are accessing. */
245 virtual ir_visitor_status visit_leave(ir_dereference_array *ir)
246 {
247 const glsl_type *const vt = ir->array->type;
248 if (vt->is_array())
249 ir->type = vt->fields.array;
250 return visit_continue;
251 }
252 };
253
254 class tess_eval_array_resize_visitor : public ir_hierarchical_visitor {
255 public:
256 unsigned num_vertices;
257 gl_shader_program *prog;
258
259 tess_eval_array_resize_visitor(unsigned num_vertices, gl_shader_program *prog)
260 {
261 this->num_vertices = num_vertices;
262 this->prog = prog;
263 }
264
265 virtual ~tess_eval_array_resize_visitor()
266 {
267 /* empty */
268 }
269
270 virtual ir_visitor_status visit(ir_variable *var)
271 {
272 if (!var->type->is_array() || var->data.mode != ir_var_shader_in || var->data.patch)
273 return visit_continue;
274
275 var->type = glsl_type::get_array_instance(var->type->fields.array,
276 this->num_vertices);
277 var->data.max_array_access = this->num_vertices - 1;
278
279 return visit_continue;
280 }
281
282 /* Dereferences of input variables need to be updated so that their type
283 * matches the newly assigned type of the variable they are accessing. */
284 virtual ir_visitor_status visit(ir_dereference_variable *ir)
285 {
286 ir->type = ir->var->type;
287 return visit_continue;
288 }
289
290 /* Dereferences of 2D input arrays need to be updated so that their type
291 * matches the newly assigned type of the array they are accessing. */
292 virtual ir_visitor_status visit_leave(ir_dereference_array *ir)
293 {
294 const glsl_type *const vt = ir->array->type;
295 if (vt->is_array())
296 ir->type = vt->fields.array;
297 return visit_continue;
298 }
299 };
300
301 class barrier_use_visitor : public ir_hierarchical_visitor {
302 public:
303 barrier_use_visitor(gl_shader_program *prog)
304 : prog(prog), in_main(false), after_return(false), control_flow(0)
305 {
306 }
307
308 virtual ~barrier_use_visitor()
309 {
310 /* empty */
311 }
312
313 virtual ir_visitor_status visit_enter(ir_function *ir)
314 {
315 if (strcmp(ir->name, "main") == 0)
316 in_main = true;
317
318 return visit_continue;
319 }
320
321 virtual ir_visitor_status visit_leave(ir_function *)
322 {
323 in_main = false;
324 after_return = false;
325 return visit_continue;
326 }
327
328 virtual ir_visitor_status visit_leave(ir_return *)
329 {
330 after_return = true;
331 return visit_continue;
332 }
333
334 virtual ir_visitor_status visit_enter(ir_if *)
335 {
336 ++control_flow;
337 return visit_continue;
338 }
339
340 virtual ir_visitor_status visit_leave(ir_if *)
341 {
342 --control_flow;
343 return visit_continue;
344 }
345
346 virtual ir_visitor_status visit_enter(ir_loop *)
347 {
348 ++control_flow;
349 return visit_continue;
350 }
351
352 virtual ir_visitor_status visit_leave(ir_loop *)
353 {
354 --control_flow;
355 return visit_continue;
356 }
357
358 /* FINISHME: `switch` is not expressed at the IR level -- it's already
359 * been lowered to a mess of `if`s. We'll correctly disallow any use of
360 * barrier() in a conditional path within the switch, but not in a path
361 * which is always hit.
362 */
363
364 virtual ir_visitor_status visit_enter(ir_call *ir)
365 {
366 if (ir->use_builtin && strcmp(ir->callee_name(), "barrier") == 0) {
367 /* Use of barrier(); determine if it is legal: */
368 if (!in_main) {
369 linker_error(prog, "Builtin barrier() may only be used in main");
370 return visit_stop;
371 }
372
373 if (after_return) {
374 linker_error(prog, "Builtin barrier() may not be used after return");
375 return visit_stop;
376 }
377
378 if (control_flow != 0) {
379 linker_error(prog, "Builtin barrier() may not be used inside control flow");
380 return visit_stop;
381 }
382 }
383 return visit_continue;
384 }
385
386 private:
387 gl_shader_program *prog;
388 bool in_main, after_return;
389 int control_flow;
390 };
391
392 /**
393 * Visitor that determines the highest stream id to which a (geometry) shader
394 * emits vertices. It also checks whether End{Stream}Primitive is ever called.
395 */
396 class find_emit_vertex_visitor : public ir_hierarchical_visitor {
397 public:
398 find_emit_vertex_visitor(int max_allowed)
399 : max_stream_allowed(max_allowed),
400 invalid_stream_id(0),
401 invalid_stream_id_from_emit_vertex(false),
402 end_primitive_found(false),
403 uses_non_zero_stream(false)
404 {
405 /* empty */
406 }
407
408 virtual ir_visitor_status visit_leave(ir_emit_vertex *ir)
409 {
410 int stream_id = ir->stream_id();
411
412 if (stream_id < 0) {
413 invalid_stream_id = stream_id;
414 invalid_stream_id_from_emit_vertex = true;
415 return visit_stop;
416 }
417
418 if (stream_id > max_stream_allowed) {
419 invalid_stream_id = stream_id;
420 invalid_stream_id_from_emit_vertex = true;
421 return visit_stop;
422 }
423
424 if (stream_id != 0)
425 uses_non_zero_stream = true;
426
427 return visit_continue;
428 }
429
430 virtual ir_visitor_status visit_leave(ir_end_primitive *ir)
431 {
432 end_primitive_found = true;
433
434 int stream_id = ir->stream_id();
435
436 if (stream_id < 0) {
437 invalid_stream_id = stream_id;
438 invalid_stream_id_from_emit_vertex = false;
439 return visit_stop;
440 }
441
442 if (stream_id > max_stream_allowed) {
443 invalid_stream_id = stream_id;
444 invalid_stream_id_from_emit_vertex = false;
445 return visit_stop;
446 }
447
448 if (stream_id != 0)
449 uses_non_zero_stream = true;
450
451 return visit_continue;
452 }
453
454 bool error()
455 {
456 return invalid_stream_id != 0;
457 }
458
459 const char *error_func()
460 {
461 return invalid_stream_id_from_emit_vertex ?
462 "EmitStreamVertex" : "EndStreamPrimitive";
463 }
464
465 int error_stream()
466 {
467 return invalid_stream_id;
468 }
469
470 bool uses_streams()
471 {
472 return uses_non_zero_stream;
473 }
474
475 bool uses_end_primitive()
476 {
477 return end_primitive_found;
478 }
479
480 private:
481 int max_stream_allowed;
482 int invalid_stream_id;
483 bool invalid_stream_id_from_emit_vertex;
484 bool end_primitive_found;
485 bool uses_non_zero_stream;
486 };
487
488 /* Class that finds array derefs and check if indexes are dynamic. */
489 class dynamic_sampler_array_indexing_visitor : public ir_hierarchical_visitor
490 {
491 public:
492 dynamic_sampler_array_indexing_visitor() :
493 dynamic_sampler_array_indexing(false)
494 {
495 }
496
497 ir_visitor_status visit_enter(ir_dereference_array *ir)
498 {
499 if (!ir->variable_referenced())
500 return visit_continue;
501
502 if (!ir->variable_referenced()->type->contains_sampler())
503 return visit_continue;
504
505 if (!ir->array_index->constant_expression_value()) {
506 dynamic_sampler_array_indexing = true;
507 return visit_stop;
508 }
509 return visit_continue;
510 }
511
512 bool uses_dynamic_sampler_array_indexing()
513 {
514 return dynamic_sampler_array_indexing;
515 }
516
517 private:
518 bool dynamic_sampler_array_indexing;
519 };
520
521 } /* anonymous namespace */
522
523 void
524 linker_error(gl_shader_program *prog, const char *fmt, ...)
525 {
526 va_list ap;
527
528 ralloc_strcat(&prog->InfoLog, "error: ");
529 va_start(ap, fmt);
530 ralloc_vasprintf_append(&prog->InfoLog, fmt, ap);
531 va_end(ap);
532
533 prog->LinkStatus = false;
534 }
535
536
537 void
538 linker_warning(gl_shader_program *prog, const char *fmt, ...)
539 {
540 va_list ap;
541
542 ralloc_strcat(&prog->InfoLog, "warning: ");
543 va_start(ap, fmt);
544 ralloc_vasprintf_append(&prog->InfoLog, fmt, ap);
545 va_end(ap);
546
547 }
548
549
550 /**
551 * Given a string identifying a program resource, break it into a base name
552 * and an optional array index in square brackets.
553 *
554 * If an array index is present, \c out_base_name_end is set to point to the
555 * "[" that precedes the array index, and the array index itself is returned
556 * as a long.
557 *
558 * If no array index is present (or if the array index is negative or
559 * mal-formed), \c out_base_name_end, is set to point to the null terminator
560 * at the end of the input string, and -1 is returned.
561 *
562 * Only the final array index is parsed; if the string contains other array
563 * indices (or structure field accesses), they are left in the base name.
564 *
565 * No attempt is made to check that the base name is properly formed;
566 * typically the caller will look up the base name in a hash table, so
567 * ill-formed base names simply turn into hash table lookup failures.
568 */
569 long
570 parse_program_resource_name(const GLchar *name,
571 const GLchar **out_base_name_end)
572 {
573 /* Section 7.3.1 ("Program Interfaces") of the OpenGL 4.3 spec says:
574 *
575 * "When an integer array element or block instance number is part of
576 * the name string, it will be specified in decimal form without a "+"
577 * or "-" sign or any extra leading zeroes. Additionally, the name
578 * string will not include white space anywhere in the string."
579 */
580
581 const size_t len = strlen(name);
582 *out_base_name_end = name + len;
583
584 if (len == 0 || name[len-1] != ']')
585 return -1;
586
587 /* Walk backwards over the string looking for a non-digit character. This
588 * had better be the opening bracket for an array index.
589 *
590 * Initially, i specifies the location of the ']'. Since the string may
591 * contain only the ']' charcater, walk backwards very carefully.
592 */
593 unsigned i;
594 for (i = len - 1; (i > 0) && isdigit(name[i-1]); --i)
595 /* empty */ ;
596
597 if ((i == 0) || name[i-1] != '[')
598 return -1;
599
600 long array_index = strtol(&name[i], NULL, 10);
601 if (array_index < 0)
602 return -1;
603
604 /* Check for leading zero */
605 if (name[i] == '0' && name[i+1] != ']')
606 return -1;
607
608 *out_base_name_end = name + (i - 1);
609 return array_index;
610 }
611
612
613 void
614 link_invalidate_variable_locations(exec_list *ir)
615 {
616 foreach_in_list(ir_instruction, node, ir) {
617 ir_variable *const var = node->as_variable();
618
619 if (var == NULL)
620 continue;
621
622 /* Only assign locations for variables that lack an explicit location.
623 * Explicit locations are set for all built-in variables, generic vertex
624 * shader inputs (via layout(location=...)), and generic fragment shader
625 * outputs (also via layout(location=...)).
626 */
627 if (!var->data.explicit_location) {
628 var->data.location = -1;
629 var->data.location_frac = 0;
630 }
631
632 /* ir_variable::is_unmatched_generic_inout is used by the linker while
633 * connecting outputs from one stage to inputs of the next stage.
634 */
635 if (var->data.explicit_location &&
636 var->data.location < VARYING_SLOT_VAR0) {
637 var->data.is_unmatched_generic_inout = 0;
638 } else {
639 var->data.is_unmatched_generic_inout = 1;
640 }
641 }
642 }
643
644
645 /**
646 * Set clip_distance_array_size based on the given shader.
647 *
648 * Also check for errors based on incorrect usage of gl_ClipVertex and
649 * gl_ClipDistance.
650 *
651 * Return false if an error was reported.
652 */
653 static void
654 analyze_clip_usage(struct gl_shader_program *prog,
655 struct gl_shader *shader,
656 GLuint *clip_distance_array_size)
657 {
658 *clip_distance_array_size = 0;
659
660 if (!prog->IsES && prog->Version >= 130) {
661 /* From section 7.1 (Vertex Shader Special Variables) of the
662 * GLSL 1.30 spec:
663 *
664 * "It is an error for a shader to statically write both
665 * gl_ClipVertex and gl_ClipDistance."
666 *
667 * This does not apply to GLSL ES shaders, since GLSL ES defines neither
668 * gl_ClipVertex nor gl_ClipDistance.
669 */
670 find_assignment_visitor clip_vertex("gl_ClipVertex");
671 find_assignment_visitor clip_distance("gl_ClipDistance");
672
673 clip_vertex.run(shader->ir);
674 clip_distance.run(shader->ir);
675 if (clip_vertex.variable_found() && clip_distance.variable_found()) {
676 linker_error(prog, "%s shader writes to both `gl_ClipVertex' "
677 "and `gl_ClipDistance'\n",
678 _mesa_shader_stage_to_string(shader->Stage));
679 return;
680 }
681
682 if (clip_distance.variable_found()) {
683 ir_variable *clip_distance_var =
684 shader->symbols->get_variable("gl_ClipDistance");
685
686 assert(clip_distance_var);
687 *clip_distance_array_size = clip_distance_var->type->length;
688 }
689 }
690 }
691
692
693 /**
694 * Verify that a vertex shader executable meets all semantic requirements.
695 *
696 * Also sets prog->Vert.ClipDistanceArraySize as a side effect.
697 *
698 * \param shader Vertex shader executable to be verified
699 */
700 void
701 validate_vertex_shader_executable(struct gl_shader_program *prog,
702 struct gl_shader *shader)
703 {
704 if (shader == NULL)
705 return;
706
707 /* From the GLSL 1.10 spec, page 48:
708 *
709 * "The variable gl_Position is available only in the vertex
710 * language and is intended for writing the homogeneous vertex
711 * position. All executions of a well-formed vertex shader
712 * executable must write a value into this variable. [...] The
713 * variable gl_Position is available only in the vertex
714 * language and is intended for writing the homogeneous vertex
715 * position. All executions of a well-formed vertex shader
716 * executable must write a value into this variable."
717 *
718 * while in GLSL 1.40 this text is changed to:
719 *
720 * "The variable gl_Position is available only in the vertex
721 * language and is intended for writing the homogeneous vertex
722 * position. It can be written at any time during shader
723 * execution. It may also be read back by a vertex shader
724 * after being written. This value will be used by primitive
725 * assembly, clipping, culling, and other fixed functionality
726 * operations, if present, that operate on primitives after
727 * vertex processing has occurred. Its value is undefined if
728 * the vertex shader executable does not write gl_Position."
729 *
730 * All GLSL ES Versions are similar to GLSL 1.40--failing to write to
731 * gl_Position is not an error.
732 */
733 if (prog->Version < (prog->IsES ? 300 : 140)) {
734 find_assignment_visitor find("gl_Position");
735 find.run(shader->ir);
736 if (!find.variable_found()) {
737 if (prog->IsES) {
738 linker_warning(prog,
739 "vertex shader does not write to `gl_Position'."
740 "It's value is undefined. \n");
741 } else {
742 linker_error(prog,
743 "vertex shader does not write to `gl_Position'. \n");
744 }
745 return;
746 }
747 }
748
749 analyze_clip_usage(prog, shader, &prog->Vert.ClipDistanceArraySize);
750 }
751
752 void
753 validate_tess_eval_shader_executable(struct gl_shader_program *prog,
754 struct gl_shader *shader)
755 {
756 if (shader == NULL)
757 return;
758
759 analyze_clip_usage(prog, shader, &prog->TessEval.ClipDistanceArraySize);
760 }
761
762
763 /**
764 * Verify that a fragment shader executable meets all semantic requirements
765 *
766 * \param shader Fragment shader executable to be verified
767 */
768 void
769 validate_fragment_shader_executable(struct gl_shader_program *prog,
770 struct gl_shader *shader)
771 {
772 if (shader == NULL)
773 return;
774
775 find_assignment_visitor frag_color("gl_FragColor");
776 find_assignment_visitor frag_data("gl_FragData");
777
778 frag_color.run(shader->ir);
779 frag_data.run(shader->ir);
780
781 if (frag_color.variable_found() && frag_data.variable_found()) {
782 linker_error(prog, "fragment shader writes to both "
783 "`gl_FragColor' and `gl_FragData'\n");
784 }
785 }
786
787 /**
788 * Verify that a geometry shader executable meets all semantic requirements
789 *
790 * Also sets prog->Geom.VerticesIn, and prog->Geom.ClipDistanceArraySize as
791 * a side effect.
792 *
793 * \param shader Geometry shader executable to be verified
794 */
795 void
796 validate_geometry_shader_executable(struct gl_shader_program *prog,
797 struct gl_shader *shader)
798 {
799 if (shader == NULL)
800 return;
801
802 unsigned num_vertices = vertices_per_prim(prog->Geom.InputType);
803 prog->Geom.VerticesIn = num_vertices;
804
805 analyze_clip_usage(prog, shader, &prog->Geom.ClipDistanceArraySize);
806 }
807
808 /**
809 * Check if geometry shaders emit to non-zero streams and do corresponding
810 * validations.
811 */
812 static void
813 validate_geometry_shader_emissions(struct gl_context *ctx,
814 struct gl_shader_program *prog)
815 {
816 if (prog->_LinkedShaders[MESA_SHADER_GEOMETRY] != NULL) {
817 find_emit_vertex_visitor emit_vertex(ctx->Const.MaxVertexStreams - 1);
818 emit_vertex.run(prog->_LinkedShaders[MESA_SHADER_GEOMETRY]->ir);
819 if (emit_vertex.error()) {
820 linker_error(prog, "Invalid call %s(%d). Accepted values for the "
821 "stream parameter are in the range [0, %d].\n",
822 emit_vertex.error_func(),
823 emit_vertex.error_stream(),
824 ctx->Const.MaxVertexStreams - 1);
825 }
826 prog->Geom.UsesStreams = emit_vertex.uses_streams();
827 prog->Geom.UsesEndPrimitive = emit_vertex.uses_end_primitive();
828
829 /* From the ARB_gpu_shader5 spec:
830 *
831 * "Multiple vertex streams are supported only if the output primitive
832 * type is declared to be "points". A program will fail to link if it
833 * contains a geometry shader calling EmitStreamVertex() or
834 * EndStreamPrimitive() if its output primitive type is not "points".
835 *
836 * However, in the same spec:
837 *
838 * "The function EmitVertex() is equivalent to calling EmitStreamVertex()
839 * with <stream> set to zero."
840 *
841 * And:
842 *
843 * "The function EndPrimitive() is equivalent to calling
844 * EndStreamPrimitive() with <stream> set to zero."
845 *
846 * Since we can call EmitVertex() and EndPrimitive() when we output
847 * primitives other than points, calling EmitStreamVertex(0) or
848 * EmitEndPrimitive(0) should not produce errors. This it also what Nvidia
849 * does. Currently we only set prog->Geom.UsesStreams to TRUE when
850 * EmitStreamVertex() or EmitEndPrimitive() are called with a non-zero
851 * stream.
852 */
853 if (prog->Geom.UsesStreams && prog->Geom.OutputType != GL_POINTS) {
854 linker_error(prog, "EmitStreamVertex(n) and EndStreamPrimitive(n) "
855 "with n>0 requires point output\n");
856 }
857 }
858 }
859
860 bool
861 validate_intrastage_arrays(struct gl_shader_program *prog,
862 ir_variable *const var,
863 ir_variable *const existing)
864 {
865 /* Consider the types to be "the same" if both types are arrays
866 * of the same type and one of the arrays is implicitly sized.
867 * In addition, set the type of the linked variable to the
868 * explicitly sized array.
869 */
870 if (var->type->is_array() && existing->type->is_array()) {
871 if ((var->type->fields.array == existing->type->fields.array) &&
872 ((var->type->length == 0)|| (existing->type->length == 0))) {
873 if (var->type->length != 0) {
874 if (var->type->length <= existing->data.max_array_access) {
875 linker_error(prog, "%s `%s' declared as type "
876 "`%s' but outermost dimension has an index"
877 " of `%i'\n",
878 mode_string(var),
879 var->name, var->type->name,
880 existing->data.max_array_access);
881 }
882 existing->type = var->type;
883 return true;
884 } else if (existing->type->length != 0) {
885 if(existing->type->length <= var->data.max_array_access &&
886 !existing->data.from_ssbo_unsized_array) {
887 linker_error(prog, "%s `%s' declared as type "
888 "`%s' but outermost dimension has an index"
889 " of `%i'\n",
890 mode_string(var),
891 var->name, existing->type->name,
892 var->data.max_array_access);
893 }
894 return true;
895 }
896 } else {
897 /* The arrays of structs could have different glsl_type pointers but
898 * they are actually the same type. Use record_compare() to check that.
899 */
900 if (existing->type->fields.array->is_record() &&
901 var->type->fields.array->is_record() &&
902 existing->type->fields.array->record_compare(var->type->fields.array))
903 return true;
904 }
905 }
906 return false;
907 }
908
909
910 /**
911 * Perform validation of global variables used across multiple shaders
912 */
913 void
914 cross_validate_globals(struct gl_shader_program *prog,
915 struct gl_shader **shader_list,
916 unsigned num_shaders,
917 bool uniforms_only)
918 {
919 /* Examine all of the uniforms in all of the shaders and cross validate
920 * them.
921 */
922 glsl_symbol_table variables;
923 for (unsigned i = 0; i < num_shaders; i++) {
924 if (shader_list[i] == NULL)
925 continue;
926
927 foreach_in_list(ir_instruction, node, shader_list[i]->ir) {
928 ir_variable *const var = node->as_variable();
929
930 if (var == NULL)
931 continue;
932
933 if (uniforms_only && (var->data.mode != ir_var_uniform && var->data.mode != ir_var_shader_storage))
934 continue;
935
936 /* don't cross validate subroutine uniforms */
937 if (var->type->contains_subroutine())
938 continue;
939
940 /* Don't cross validate temporaries that are at global scope. These
941 * will eventually get pulled into the shaders 'main'.
942 */
943 if (var->data.mode == ir_var_temporary)
944 continue;
945
946 /* If a global with this name has already been seen, verify that the
947 * new instance has the same type. In addition, if the globals have
948 * initializers, the values of the initializers must be the same.
949 */
950 ir_variable *const existing = variables.get_variable(var->name);
951 if (existing != NULL) {
952 /* Check if types match. Interface blocks have some special
953 * rules so we handle those elsewhere.
954 */
955 if (var->type != existing->type &&
956 !var->is_interface_instance()) {
957 if (!validate_intrastage_arrays(prog, var, existing)) {
958 if (var->type->is_record() && existing->type->is_record()
959 && existing->type->record_compare(var->type)) {
960 existing->type = var->type;
961 } else {
962 /* If it is an unsized array in a Shader Storage Block,
963 * two different shaders can access to different elements.
964 * Because of that, they might be converted to different
965 * sized arrays, then check that they are compatible but
966 * ignore the array size.
967 */
968 if (!(var->data.mode == ir_var_shader_storage &&
969 var->data.from_ssbo_unsized_array &&
970 existing->data.mode == ir_var_shader_storage &&
971 existing->data.from_ssbo_unsized_array &&
972 var->type->gl_type == existing->type->gl_type)) {
973 linker_error(prog, "%s `%s' declared as type "
974 "`%s' and type `%s'\n",
975 mode_string(var),
976 var->name, var->type->name,
977 existing->type->name);
978 return;
979 }
980 }
981 }
982 }
983
984 if (var->data.explicit_location) {
985 if (existing->data.explicit_location
986 && (var->data.location != existing->data.location)) {
987 linker_error(prog, "explicit locations for %s "
988 "`%s' have differing values\n",
989 mode_string(var), var->name);
990 return;
991 }
992
993 existing->data.location = var->data.location;
994 existing->data.explicit_location = true;
995 } else {
996 /* Check if uniform with implicit location was marked explicit
997 * by earlier shader stage. If so, mark it explicit in this stage
998 * too to make sure later processing does not treat it as
999 * implicit one.
1000 */
1001 if (existing->data.explicit_location) {
1002 var->data.location = existing->data.location;
1003 var->data.explicit_location = true;
1004 }
1005 }
1006
1007 /* From the GLSL 4.20 specification:
1008 * "A link error will result if two compilation units in a program
1009 * specify different integer-constant bindings for the same
1010 * opaque-uniform name. However, it is not an error to specify a
1011 * binding on some but not all declarations for the same name"
1012 */
1013 if (var->data.explicit_binding) {
1014 if (existing->data.explicit_binding &&
1015 var->data.binding != existing->data.binding) {
1016 linker_error(prog, "explicit bindings for %s "
1017 "`%s' have differing values\n",
1018 mode_string(var), var->name);
1019 return;
1020 }
1021
1022 existing->data.binding = var->data.binding;
1023 existing->data.explicit_binding = true;
1024 }
1025
1026 if (var->type->contains_atomic() &&
1027 var->data.offset != existing->data.offset) {
1028 linker_error(prog, "offset specifications for %s "
1029 "`%s' have differing values\n",
1030 mode_string(var), var->name);
1031 return;
1032 }
1033
1034 /* Validate layout qualifiers for gl_FragDepth.
1035 *
1036 * From the AMD/ARB_conservative_depth specs:
1037 *
1038 * "If gl_FragDepth is redeclared in any fragment shader in a
1039 * program, it must be redeclared in all fragment shaders in
1040 * that program that have static assignments to
1041 * gl_FragDepth. All redeclarations of gl_FragDepth in all
1042 * fragment shaders in a single program must have the same set
1043 * of qualifiers."
1044 */
1045 if (strcmp(var->name, "gl_FragDepth") == 0) {
1046 bool layout_declared = var->data.depth_layout != ir_depth_layout_none;
1047 bool layout_differs =
1048 var->data.depth_layout != existing->data.depth_layout;
1049
1050 if (layout_declared && layout_differs) {
1051 linker_error(prog,
1052 "All redeclarations of gl_FragDepth in all "
1053 "fragment shaders in a single program must have "
1054 "the same set of qualifiers.\n");
1055 }
1056
1057 if (var->data.used && layout_differs) {
1058 linker_error(prog,
1059 "If gl_FragDepth is redeclared with a layout "
1060 "qualifier in any fragment shader, it must be "
1061 "redeclared with the same layout qualifier in "
1062 "all fragment shaders that have assignments to "
1063 "gl_FragDepth\n");
1064 }
1065 }
1066
1067 /* Page 35 (page 41 of the PDF) of the GLSL 4.20 spec says:
1068 *
1069 * "If a shared global has multiple initializers, the
1070 * initializers must all be constant expressions, and they
1071 * must all have the same value. Otherwise, a link error will
1072 * result. (A shared global having only one initializer does
1073 * not require that initializer to be a constant expression.)"
1074 *
1075 * Previous to 4.20 the GLSL spec simply said that initializers
1076 * must have the same value. In this case of non-constant
1077 * initializers, this was impossible to determine. As a result,
1078 * no vendor actually implemented that behavior. The 4.20
1079 * behavior matches the implemented behavior of at least one other
1080 * vendor, so we'll implement that for all GLSL versions.
1081 */
1082 if (var->constant_initializer != NULL) {
1083 if (existing->constant_initializer != NULL) {
1084 if (!var->constant_initializer->has_value(existing->constant_initializer)) {
1085 linker_error(prog, "initializers for %s "
1086 "`%s' have differing values\n",
1087 mode_string(var), var->name);
1088 return;
1089 }
1090 } else {
1091 /* If the first-seen instance of a particular uniform did not
1092 * have an initializer but a later instance does, copy the
1093 * initializer to the version stored in the symbol table.
1094 */
1095 /* FINISHME: This is wrong. The constant_value field should
1096 * FINISHME: not be modified! Imagine a case where a shader
1097 * FINISHME: without an initializer is linked in two different
1098 * FINISHME: programs with shaders that have differing
1099 * FINISHME: initializers. Linking with the first will
1100 * FINISHME: modify the shader, and linking with the second
1101 * FINISHME: will fail.
1102 */
1103 existing->constant_initializer =
1104 var->constant_initializer->clone(ralloc_parent(existing),
1105 NULL);
1106 }
1107 }
1108
1109 if (var->data.has_initializer) {
1110 if (existing->data.has_initializer
1111 && (var->constant_initializer == NULL
1112 || existing->constant_initializer == NULL)) {
1113 linker_error(prog,
1114 "shared global variable `%s' has multiple "
1115 "non-constant initializers.\n",
1116 var->name);
1117 return;
1118 }
1119
1120 /* Some instance had an initializer, so keep track of that. In
1121 * this location, all sorts of initializers (constant or
1122 * otherwise) will propagate the existence to the variable
1123 * stored in the symbol table.
1124 */
1125 existing->data.has_initializer = true;
1126 }
1127
1128 if (existing->data.invariant != var->data.invariant) {
1129 linker_error(prog, "declarations for %s `%s' have "
1130 "mismatching invariant qualifiers\n",
1131 mode_string(var), var->name);
1132 return;
1133 }
1134 if (existing->data.centroid != var->data.centroid) {
1135 linker_error(prog, "declarations for %s `%s' have "
1136 "mismatching centroid qualifiers\n",
1137 mode_string(var), var->name);
1138 return;
1139 }
1140 if (existing->data.sample != var->data.sample) {
1141 linker_error(prog, "declarations for %s `%s` have "
1142 "mismatching sample qualifiers\n",
1143 mode_string(var), var->name);
1144 return;
1145 }
1146 if (existing->data.image_format != var->data.image_format) {
1147 linker_error(prog, "declarations for %s `%s` have "
1148 "mismatching image format qualifiers\n",
1149 mode_string(var), var->name);
1150 return;
1151 }
1152 } else
1153 variables.add_variable(var);
1154 }
1155 }
1156 }
1157
1158
1159 /**
1160 * Perform validation of uniforms used across multiple shader stages
1161 */
1162 void
1163 cross_validate_uniforms(struct gl_shader_program *prog)
1164 {
1165 cross_validate_globals(prog, prog->_LinkedShaders,
1166 MESA_SHADER_STAGES, true);
1167 }
1168
1169 /**
1170 * Accumulates the array of prog->BufferInterfaceBlocks and checks that all
1171 * definitons of blocks agree on their contents.
1172 */
1173 static bool
1174 interstage_cross_validate_uniform_blocks(struct gl_shader_program *prog)
1175 {
1176 unsigned max_num_uniform_blocks = 0;
1177 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1178 if (prog->_LinkedShaders[i])
1179 max_num_uniform_blocks += prog->_LinkedShaders[i]->NumBufferInterfaceBlocks;
1180 }
1181
1182 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1183 struct gl_shader *sh = prog->_LinkedShaders[i];
1184
1185 prog->InterfaceBlockStageIndex[i] = ralloc_array(prog, int,
1186 max_num_uniform_blocks);
1187 for (unsigned int j = 0; j < max_num_uniform_blocks; j++)
1188 prog->InterfaceBlockStageIndex[i][j] = -1;
1189
1190 if (sh == NULL)
1191 continue;
1192
1193 for (unsigned int j = 0; j < sh->NumBufferInterfaceBlocks; j++) {
1194 int index = link_cross_validate_uniform_block(prog,
1195 &prog->BufferInterfaceBlocks,
1196 &prog->NumBufferInterfaceBlocks,
1197 &sh->BufferInterfaceBlocks[j]);
1198
1199 if (index == -1) {
1200 linker_error(prog, "uniform block `%s' has mismatching definitions\n",
1201 sh->BufferInterfaceBlocks[j].Name);
1202 return false;
1203 }
1204
1205 prog->InterfaceBlockStageIndex[i][index] = j;
1206 }
1207 }
1208
1209 return true;
1210 }
1211
1212
1213 /**
1214 * Populates a shaders symbol table with all global declarations
1215 */
1216 static void
1217 populate_symbol_table(gl_shader *sh)
1218 {
1219 sh->symbols = new(sh) glsl_symbol_table;
1220
1221 foreach_in_list(ir_instruction, inst, sh->ir) {
1222 ir_variable *var;
1223 ir_function *func;
1224
1225 if ((func = inst->as_function()) != NULL) {
1226 sh->symbols->add_function(func);
1227 } else if ((var = inst->as_variable()) != NULL) {
1228 if (var->data.mode != ir_var_temporary)
1229 sh->symbols->add_variable(var);
1230 }
1231 }
1232 }
1233
1234
1235 /**
1236 * Remap variables referenced in an instruction tree
1237 *
1238 * This is used when instruction trees are cloned from one shader and placed in
1239 * another. These trees will contain references to \c ir_variable nodes that
1240 * do not exist in the target shader. This function finds these \c ir_variable
1241 * references and replaces the references with matching variables in the target
1242 * shader.
1243 *
1244 * If there is no matching variable in the target shader, a clone of the
1245 * \c ir_variable is made and added to the target shader. The new variable is
1246 * added to \b both the instruction stream and the symbol table.
1247 *
1248 * \param inst IR tree that is to be processed.
1249 * \param symbols Symbol table containing global scope symbols in the
1250 * linked shader.
1251 * \param instructions Instruction stream where new variable declarations
1252 * should be added.
1253 */
1254 void
1255 remap_variables(ir_instruction *inst, struct gl_shader *target,
1256 hash_table *temps)
1257 {
1258 class remap_visitor : public ir_hierarchical_visitor {
1259 public:
1260 remap_visitor(struct gl_shader *target,
1261 hash_table *temps)
1262 {
1263 this->target = target;
1264 this->symbols = target->symbols;
1265 this->instructions = target->ir;
1266 this->temps = temps;
1267 }
1268
1269 virtual ir_visitor_status visit(ir_dereference_variable *ir)
1270 {
1271 if (ir->var->data.mode == ir_var_temporary) {
1272 ir_variable *var = (ir_variable *) hash_table_find(temps, ir->var);
1273
1274 assert(var != NULL);
1275 ir->var = var;
1276 return visit_continue;
1277 }
1278
1279 ir_variable *const existing =
1280 this->symbols->get_variable(ir->var->name);
1281 if (existing != NULL)
1282 ir->var = existing;
1283 else {
1284 ir_variable *copy = ir->var->clone(this->target, NULL);
1285
1286 this->symbols->add_variable(copy);
1287 this->instructions->push_head(copy);
1288 ir->var = copy;
1289 }
1290
1291 return visit_continue;
1292 }
1293
1294 private:
1295 struct gl_shader *target;
1296 glsl_symbol_table *symbols;
1297 exec_list *instructions;
1298 hash_table *temps;
1299 };
1300
1301 remap_visitor v(target, temps);
1302
1303 inst->accept(&v);
1304 }
1305
1306
1307 /**
1308 * Move non-declarations from one instruction stream to another
1309 *
1310 * The intended usage pattern of this function is to pass the pointer to the
1311 * head sentinel of a list (i.e., a pointer to the list cast to an \c exec_node
1312 * pointer) for \c last and \c false for \c make_copies on the first
1313 * call. Successive calls pass the return value of the previous call for
1314 * \c last and \c true for \c make_copies.
1315 *
1316 * \param instructions Source instruction stream
1317 * \param last Instruction after which new instructions should be
1318 * inserted in the target instruction stream
1319 * \param make_copies Flag selecting whether instructions in \c instructions
1320 * should be copied (via \c ir_instruction::clone) into the
1321 * target list or moved.
1322 *
1323 * \return
1324 * The new "last" instruction in the target instruction stream. This pointer
1325 * is suitable for use as the \c last parameter of a later call to this
1326 * function.
1327 */
1328 exec_node *
1329 move_non_declarations(exec_list *instructions, exec_node *last,
1330 bool make_copies, gl_shader *target)
1331 {
1332 hash_table *temps = NULL;
1333
1334 if (make_copies)
1335 temps = hash_table_ctor(0, hash_table_pointer_hash,
1336 hash_table_pointer_compare);
1337
1338 foreach_in_list_safe(ir_instruction, inst, instructions) {
1339 if (inst->as_function())
1340 continue;
1341
1342 ir_variable *var = inst->as_variable();
1343 if ((var != NULL) && (var->data.mode != ir_var_temporary))
1344 continue;
1345
1346 assert(inst->as_assignment()
1347 || inst->as_call()
1348 || inst->as_if() /* for initializers with the ?: operator */
1349 || ((var != NULL) && (var->data.mode == ir_var_temporary)));
1350
1351 if (make_copies) {
1352 inst = inst->clone(target, NULL);
1353
1354 if (var != NULL)
1355 hash_table_insert(temps, inst, var);
1356 else
1357 remap_variables(inst, target, temps);
1358 } else {
1359 inst->remove();
1360 }
1361
1362 last->insert_after(inst);
1363 last = inst;
1364 }
1365
1366 if (make_copies)
1367 hash_table_dtor(temps);
1368
1369 return last;
1370 }
1371
1372
1373 /**
1374 * This class is only used in link_intrastage_shaders() below but declaring
1375 * it inside that function leads to compiler warnings with some versions of
1376 * gcc.
1377 */
1378 class array_sizing_visitor : public ir_hierarchical_visitor {
1379 public:
1380 array_sizing_visitor()
1381 : mem_ctx(ralloc_context(NULL)),
1382 unnamed_interfaces(hash_table_ctor(0, hash_table_pointer_hash,
1383 hash_table_pointer_compare))
1384 {
1385 }
1386
1387 ~array_sizing_visitor()
1388 {
1389 hash_table_dtor(this->unnamed_interfaces);
1390 ralloc_free(this->mem_ctx);
1391 }
1392
1393 virtual ir_visitor_status visit(ir_variable *var)
1394 {
1395 const glsl_type *type_without_array;
1396 fixup_type(&var->type, var->data.max_array_access,
1397 var->data.from_ssbo_unsized_array);
1398 type_without_array = var->type->without_array();
1399 if (var->type->is_interface()) {
1400 if (interface_contains_unsized_arrays(var->type)) {
1401 const glsl_type *new_type =
1402 resize_interface_members(var->type,
1403 var->get_max_ifc_array_access(),
1404 var->is_in_shader_storage_block());
1405 var->type = new_type;
1406 var->change_interface_type(new_type);
1407 }
1408 } else if (type_without_array->is_interface()) {
1409 if (interface_contains_unsized_arrays(type_without_array)) {
1410 const glsl_type *new_type =
1411 resize_interface_members(type_without_array,
1412 var->get_max_ifc_array_access(),
1413 var->is_in_shader_storage_block());
1414 var->change_interface_type(new_type);
1415 var->type = update_interface_members_array(var->type, new_type);
1416 }
1417 } else if (const glsl_type *ifc_type = var->get_interface_type()) {
1418 /* Store a pointer to the variable in the unnamed_interfaces
1419 * hashtable.
1420 */
1421 ir_variable **interface_vars = (ir_variable **)
1422 hash_table_find(this->unnamed_interfaces, ifc_type);
1423 if (interface_vars == NULL) {
1424 interface_vars = rzalloc_array(mem_ctx, ir_variable *,
1425 ifc_type->length);
1426 hash_table_insert(this->unnamed_interfaces, interface_vars,
1427 ifc_type);
1428 }
1429 unsigned index = ifc_type->field_index(var->name);
1430 assert(index < ifc_type->length);
1431 assert(interface_vars[index] == NULL);
1432 interface_vars[index] = var;
1433 }
1434 return visit_continue;
1435 }
1436
1437 /**
1438 * For each unnamed interface block that was discovered while running the
1439 * visitor, adjust the interface type to reflect the newly assigned array
1440 * sizes, and fix up the ir_variable nodes to point to the new interface
1441 * type.
1442 */
1443 void fixup_unnamed_interface_types()
1444 {
1445 hash_table_call_foreach(this->unnamed_interfaces,
1446 fixup_unnamed_interface_type, NULL);
1447 }
1448
1449 private:
1450 /**
1451 * If the type pointed to by \c type represents an unsized array, replace
1452 * it with a sized array whose size is determined by max_array_access.
1453 */
1454 static void fixup_type(const glsl_type **type, unsigned max_array_access,
1455 bool from_ssbo_unsized_array)
1456 {
1457 if (!from_ssbo_unsized_array && (*type)->is_unsized_array()) {
1458 *type = glsl_type::get_array_instance((*type)->fields.array,
1459 max_array_access + 1);
1460 assert(*type != NULL);
1461 }
1462 }
1463
1464 static const glsl_type *
1465 update_interface_members_array(const glsl_type *type,
1466 const glsl_type *new_interface_type)
1467 {
1468 const glsl_type *element_type = type->fields.array;
1469 if (element_type->is_array()) {
1470 const glsl_type *new_array_type =
1471 update_interface_members_array(element_type, new_interface_type);
1472 return glsl_type::get_array_instance(new_array_type, type->length);
1473 } else {
1474 return glsl_type::get_array_instance(new_interface_type,
1475 type->length);
1476 }
1477 }
1478
1479 /**
1480 * Determine whether the given interface type contains unsized arrays (if
1481 * it doesn't, array_sizing_visitor doesn't need to process it).
1482 */
1483 static bool interface_contains_unsized_arrays(const glsl_type *type)
1484 {
1485 for (unsigned i = 0; i < type->length; i++) {
1486 const glsl_type *elem_type = type->fields.structure[i].type;
1487 if (elem_type->is_unsized_array())
1488 return true;
1489 }
1490 return false;
1491 }
1492
1493 /**
1494 * Create a new interface type based on the given type, with unsized arrays
1495 * replaced by sized arrays whose size is determined by
1496 * max_ifc_array_access.
1497 */
1498 static const glsl_type *
1499 resize_interface_members(const glsl_type *type,
1500 const unsigned *max_ifc_array_access,
1501 bool is_ssbo)
1502 {
1503 unsigned num_fields = type->length;
1504 glsl_struct_field *fields = new glsl_struct_field[num_fields];
1505 memcpy(fields, type->fields.structure,
1506 num_fields * sizeof(*fields));
1507 for (unsigned i = 0; i < num_fields; i++) {
1508 /* If SSBO last member is unsized array, we don't replace it by a sized
1509 * array.
1510 */
1511 if (is_ssbo && i == (num_fields - 1))
1512 fixup_type(&fields[i].type, max_ifc_array_access[i],
1513 true);
1514 else
1515 fixup_type(&fields[i].type, max_ifc_array_access[i],
1516 false);
1517 }
1518 glsl_interface_packing packing =
1519 (glsl_interface_packing) type->interface_packing;
1520 const glsl_type *new_ifc_type =
1521 glsl_type::get_interface_instance(fields, num_fields,
1522 packing, type->name);
1523 delete [] fields;
1524 return new_ifc_type;
1525 }
1526
1527 static void fixup_unnamed_interface_type(const void *key, void *data,
1528 void *)
1529 {
1530 const glsl_type *ifc_type = (const glsl_type *) key;
1531 ir_variable **interface_vars = (ir_variable **) data;
1532 unsigned num_fields = ifc_type->length;
1533 glsl_struct_field *fields = new glsl_struct_field[num_fields];
1534 memcpy(fields, ifc_type->fields.structure,
1535 num_fields * sizeof(*fields));
1536 bool interface_type_changed = false;
1537 for (unsigned i = 0; i < num_fields; i++) {
1538 if (interface_vars[i] != NULL &&
1539 fields[i].type != interface_vars[i]->type) {
1540 fields[i].type = interface_vars[i]->type;
1541 interface_type_changed = true;
1542 }
1543 }
1544 if (!interface_type_changed) {
1545 delete [] fields;
1546 return;
1547 }
1548 glsl_interface_packing packing =
1549 (glsl_interface_packing) ifc_type->interface_packing;
1550 const glsl_type *new_ifc_type =
1551 glsl_type::get_interface_instance(fields, num_fields, packing,
1552 ifc_type->name);
1553 delete [] fields;
1554 for (unsigned i = 0; i < num_fields; i++) {
1555 if (interface_vars[i] != NULL)
1556 interface_vars[i]->change_interface_type(new_ifc_type);
1557 }
1558 }
1559
1560 /**
1561 * Memory context used to allocate the data in \c unnamed_interfaces.
1562 */
1563 void *mem_ctx;
1564
1565 /**
1566 * Hash table from const glsl_type * to an array of ir_variable *'s
1567 * pointing to the ir_variables constituting each unnamed interface block.
1568 */
1569 hash_table *unnamed_interfaces;
1570 };
1571
1572
1573 /**
1574 * Performs the cross-validation of tessellation control shader vertices and
1575 * layout qualifiers for the attached tessellation control shaders,
1576 * and propagates them to the linked TCS and linked shader program.
1577 */
1578 static void
1579 link_tcs_out_layout_qualifiers(struct gl_shader_program *prog,
1580 struct gl_shader *linked_shader,
1581 struct gl_shader **shader_list,
1582 unsigned num_shaders)
1583 {
1584 linked_shader->TessCtrl.VerticesOut = 0;
1585
1586 if (linked_shader->Stage != MESA_SHADER_TESS_CTRL)
1587 return;
1588
1589 /* From the GLSL 4.0 spec (chapter 4.3.8.2):
1590 *
1591 * "All tessellation control shader layout declarations in a program
1592 * must specify the same output patch vertex count. There must be at
1593 * least one layout qualifier specifying an output patch vertex count
1594 * in any program containing tessellation control shaders; however,
1595 * such a declaration is not required in all tessellation control
1596 * shaders."
1597 */
1598
1599 for (unsigned i = 0; i < num_shaders; i++) {
1600 struct gl_shader *shader = shader_list[i];
1601
1602 if (shader->TessCtrl.VerticesOut != 0) {
1603 if (linked_shader->TessCtrl.VerticesOut != 0 &&
1604 linked_shader->TessCtrl.VerticesOut != shader->TessCtrl.VerticesOut) {
1605 linker_error(prog, "tessellation control shader defined with "
1606 "conflicting output vertex count (%d and %d)\n",
1607 linked_shader->TessCtrl.VerticesOut,
1608 shader->TessCtrl.VerticesOut);
1609 return;
1610 }
1611 linked_shader->TessCtrl.VerticesOut = shader->TessCtrl.VerticesOut;
1612 }
1613 }
1614
1615 /* Just do the intrastage -> interstage propagation right now,
1616 * since we already know we're in the right type of shader program
1617 * for doing it.
1618 */
1619 if (linked_shader->TessCtrl.VerticesOut == 0) {
1620 linker_error(prog, "tessellation control shader didn't declare "
1621 "vertices out layout qualifier\n");
1622 return;
1623 }
1624 prog->TessCtrl.VerticesOut = linked_shader->TessCtrl.VerticesOut;
1625 }
1626
1627
1628 /**
1629 * Performs the cross-validation of tessellation evaluation shader
1630 * primitive type, vertex spacing, ordering and point_mode layout qualifiers
1631 * for the attached tessellation evaluation shaders, and propagates them
1632 * to the linked TES and linked shader program.
1633 */
1634 static void
1635 link_tes_in_layout_qualifiers(struct gl_shader_program *prog,
1636 struct gl_shader *linked_shader,
1637 struct gl_shader **shader_list,
1638 unsigned num_shaders)
1639 {
1640 linked_shader->TessEval.PrimitiveMode = PRIM_UNKNOWN;
1641 linked_shader->TessEval.Spacing = 0;
1642 linked_shader->TessEval.VertexOrder = 0;
1643 linked_shader->TessEval.PointMode = -1;
1644
1645 if (linked_shader->Stage != MESA_SHADER_TESS_EVAL)
1646 return;
1647
1648 /* From the GLSL 4.0 spec (chapter 4.3.8.1):
1649 *
1650 * "At least one tessellation evaluation shader (compilation unit) in
1651 * a program must declare a primitive mode in its input layout.
1652 * Declaration vertex spacing, ordering, and point mode identifiers is
1653 * optional. It is not required that all tessellation evaluation
1654 * shaders in a program declare a primitive mode. If spacing or
1655 * vertex ordering declarations are omitted, the tessellation
1656 * primitive generator will use equal spacing or counter-clockwise
1657 * vertex ordering, respectively. If a point mode declaration is
1658 * omitted, the tessellation primitive generator will produce lines or
1659 * triangles according to the primitive mode."
1660 */
1661
1662 for (unsigned i = 0; i < num_shaders; i++) {
1663 struct gl_shader *shader = shader_list[i];
1664
1665 if (shader->TessEval.PrimitiveMode != PRIM_UNKNOWN) {
1666 if (linked_shader->TessEval.PrimitiveMode != PRIM_UNKNOWN &&
1667 linked_shader->TessEval.PrimitiveMode != shader->TessEval.PrimitiveMode) {
1668 linker_error(prog, "tessellation evaluation shader defined with "
1669 "conflicting input primitive modes.\n");
1670 return;
1671 }
1672 linked_shader->TessEval.PrimitiveMode = shader->TessEval.PrimitiveMode;
1673 }
1674
1675 if (shader->TessEval.Spacing != 0) {
1676 if (linked_shader->TessEval.Spacing != 0 &&
1677 linked_shader->TessEval.Spacing != shader->TessEval.Spacing) {
1678 linker_error(prog, "tessellation evaluation shader defined with "
1679 "conflicting vertex spacing.\n");
1680 return;
1681 }
1682 linked_shader->TessEval.Spacing = shader->TessEval.Spacing;
1683 }
1684
1685 if (shader->TessEval.VertexOrder != 0) {
1686 if (linked_shader->TessEval.VertexOrder != 0 &&
1687 linked_shader->TessEval.VertexOrder != shader->TessEval.VertexOrder) {
1688 linker_error(prog, "tessellation evaluation shader defined with "
1689 "conflicting ordering.\n");
1690 return;
1691 }
1692 linked_shader->TessEval.VertexOrder = shader->TessEval.VertexOrder;
1693 }
1694
1695 if (shader->TessEval.PointMode != -1) {
1696 if (linked_shader->TessEval.PointMode != -1 &&
1697 linked_shader->TessEval.PointMode != shader->TessEval.PointMode) {
1698 linker_error(prog, "tessellation evaluation shader defined with "
1699 "conflicting point modes.\n");
1700 return;
1701 }
1702 linked_shader->TessEval.PointMode = shader->TessEval.PointMode;
1703 }
1704
1705 }
1706
1707 /* Just do the intrastage -> interstage propagation right now,
1708 * since we already know we're in the right type of shader program
1709 * for doing it.
1710 */
1711 if (linked_shader->TessEval.PrimitiveMode == PRIM_UNKNOWN) {
1712 linker_error(prog,
1713 "tessellation evaluation shader didn't declare input "
1714 "primitive modes.\n");
1715 return;
1716 }
1717 prog->TessEval.PrimitiveMode = linked_shader->TessEval.PrimitiveMode;
1718
1719 if (linked_shader->TessEval.Spacing == 0)
1720 linked_shader->TessEval.Spacing = GL_EQUAL;
1721 prog->TessEval.Spacing = linked_shader->TessEval.Spacing;
1722
1723 if (linked_shader->TessEval.VertexOrder == 0)
1724 linked_shader->TessEval.VertexOrder = GL_CCW;
1725 prog->TessEval.VertexOrder = linked_shader->TessEval.VertexOrder;
1726
1727 if (linked_shader->TessEval.PointMode == -1)
1728 linked_shader->TessEval.PointMode = GL_FALSE;
1729 prog->TessEval.PointMode = linked_shader->TessEval.PointMode;
1730 }
1731
1732
1733 /**
1734 * Performs the cross-validation of layout qualifiers specified in
1735 * redeclaration of gl_FragCoord for the attached fragment shaders,
1736 * and propagates them to the linked FS and linked shader program.
1737 */
1738 static void
1739 link_fs_input_layout_qualifiers(struct gl_shader_program *prog,
1740 struct gl_shader *linked_shader,
1741 struct gl_shader **shader_list,
1742 unsigned num_shaders)
1743 {
1744 linked_shader->redeclares_gl_fragcoord = false;
1745 linked_shader->uses_gl_fragcoord = false;
1746 linked_shader->origin_upper_left = false;
1747 linked_shader->pixel_center_integer = false;
1748
1749 if (linked_shader->Stage != MESA_SHADER_FRAGMENT ||
1750 (prog->Version < 150 && !prog->ARB_fragment_coord_conventions_enable))
1751 return;
1752
1753 for (unsigned i = 0; i < num_shaders; i++) {
1754 struct gl_shader *shader = shader_list[i];
1755 /* From the GLSL 1.50 spec, page 39:
1756 *
1757 * "If gl_FragCoord is redeclared in any fragment shader in a program,
1758 * it must be redeclared in all the fragment shaders in that program
1759 * that have a static use gl_FragCoord."
1760 */
1761 if ((linked_shader->redeclares_gl_fragcoord
1762 && !shader->redeclares_gl_fragcoord
1763 && shader->uses_gl_fragcoord)
1764 || (shader->redeclares_gl_fragcoord
1765 && !linked_shader->redeclares_gl_fragcoord
1766 && linked_shader->uses_gl_fragcoord)) {
1767 linker_error(prog, "fragment shader defined with conflicting "
1768 "layout qualifiers for gl_FragCoord\n");
1769 }
1770
1771 /* From the GLSL 1.50 spec, page 39:
1772 *
1773 * "All redeclarations of gl_FragCoord in all fragment shaders in a
1774 * single program must have the same set of qualifiers."
1775 */
1776 if (linked_shader->redeclares_gl_fragcoord && shader->redeclares_gl_fragcoord
1777 && (shader->origin_upper_left != linked_shader->origin_upper_left
1778 || shader->pixel_center_integer != linked_shader->pixel_center_integer)) {
1779 linker_error(prog, "fragment shader defined with conflicting "
1780 "layout qualifiers for gl_FragCoord\n");
1781 }
1782
1783 /* Update the linked shader state. Note that uses_gl_fragcoord should
1784 * accumulate the results. The other values should replace. If there
1785 * are multiple redeclarations, all the fields except uses_gl_fragcoord
1786 * are already known to be the same.
1787 */
1788 if (shader->redeclares_gl_fragcoord || shader->uses_gl_fragcoord) {
1789 linked_shader->redeclares_gl_fragcoord =
1790 shader->redeclares_gl_fragcoord;
1791 linked_shader->uses_gl_fragcoord = linked_shader->uses_gl_fragcoord
1792 || shader->uses_gl_fragcoord;
1793 linked_shader->origin_upper_left = shader->origin_upper_left;
1794 linked_shader->pixel_center_integer = shader->pixel_center_integer;
1795 }
1796
1797 linked_shader->EarlyFragmentTests |= shader->EarlyFragmentTests;
1798 }
1799 }
1800
1801 /**
1802 * Performs the cross-validation of geometry shader max_vertices and
1803 * primitive type layout qualifiers for the attached geometry shaders,
1804 * and propagates them to the linked GS and linked shader program.
1805 */
1806 static void
1807 link_gs_inout_layout_qualifiers(struct gl_shader_program *prog,
1808 struct gl_shader *linked_shader,
1809 struct gl_shader **shader_list,
1810 unsigned num_shaders)
1811 {
1812 linked_shader->Geom.VerticesOut = 0;
1813 linked_shader->Geom.Invocations = 0;
1814 linked_shader->Geom.InputType = PRIM_UNKNOWN;
1815 linked_shader->Geom.OutputType = PRIM_UNKNOWN;
1816
1817 /* No in/out qualifiers defined for anything but GLSL 1.50+
1818 * geometry shaders so far.
1819 */
1820 if (linked_shader->Stage != MESA_SHADER_GEOMETRY || prog->Version < 150)
1821 return;
1822
1823 /* From the GLSL 1.50 spec, page 46:
1824 *
1825 * "All geometry shader output layout declarations in a program
1826 * must declare the same layout and same value for
1827 * max_vertices. There must be at least one geometry output
1828 * layout declaration somewhere in a program, but not all
1829 * geometry shaders (compilation units) are required to
1830 * declare it."
1831 */
1832
1833 for (unsigned i = 0; i < num_shaders; i++) {
1834 struct gl_shader *shader = shader_list[i];
1835
1836 if (shader->Geom.InputType != PRIM_UNKNOWN) {
1837 if (linked_shader->Geom.InputType != PRIM_UNKNOWN &&
1838 linked_shader->Geom.InputType != shader->Geom.InputType) {
1839 linker_error(prog, "geometry shader defined with conflicting "
1840 "input types\n");
1841 return;
1842 }
1843 linked_shader->Geom.InputType = shader->Geom.InputType;
1844 }
1845
1846 if (shader->Geom.OutputType != PRIM_UNKNOWN) {
1847 if (linked_shader->Geom.OutputType != PRIM_UNKNOWN &&
1848 linked_shader->Geom.OutputType != shader->Geom.OutputType) {
1849 linker_error(prog, "geometry shader defined with conflicting "
1850 "output types\n");
1851 return;
1852 }
1853 linked_shader->Geom.OutputType = shader->Geom.OutputType;
1854 }
1855
1856 if (shader->Geom.VerticesOut != 0) {
1857 if (linked_shader->Geom.VerticesOut != 0 &&
1858 linked_shader->Geom.VerticesOut != shader->Geom.VerticesOut) {
1859 linker_error(prog, "geometry shader defined with conflicting "
1860 "output vertex count (%d and %d)\n",
1861 linked_shader->Geom.VerticesOut,
1862 shader->Geom.VerticesOut);
1863 return;
1864 }
1865 linked_shader->Geom.VerticesOut = shader->Geom.VerticesOut;
1866 }
1867
1868 if (shader->Geom.Invocations != 0) {
1869 if (linked_shader->Geom.Invocations != 0 &&
1870 linked_shader->Geom.Invocations != shader->Geom.Invocations) {
1871 linker_error(prog, "geometry shader defined with conflicting "
1872 "invocation count (%d and %d)\n",
1873 linked_shader->Geom.Invocations,
1874 shader->Geom.Invocations);
1875 return;
1876 }
1877 linked_shader->Geom.Invocations = shader->Geom.Invocations;
1878 }
1879 }
1880
1881 /* Just do the intrastage -> interstage propagation right now,
1882 * since we already know we're in the right type of shader program
1883 * for doing it.
1884 */
1885 if (linked_shader->Geom.InputType == PRIM_UNKNOWN) {
1886 linker_error(prog,
1887 "geometry shader didn't declare primitive input type\n");
1888 return;
1889 }
1890 prog->Geom.InputType = linked_shader->Geom.InputType;
1891
1892 if (linked_shader->Geom.OutputType == PRIM_UNKNOWN) {
1893 linker_error(prog,
1894 "geometry shader didn't declare primitive output type\n");
1895 return;
1896 }
1897 prog->Geom.OutputType = linked_shader->Geom.OutputType;
1898
1899 if (linked_shader->Geom.VerticesOut == 0) {
1900 linker_error(prog,
1901 "geometry shader didn't declare max_vertices\n");
1902 return;
1903 }
1904 prog->Geom.VerticesOut = linked_shader->Geom.VerticesOut;
1905
1906 if (linked_shader->Geom.Invocations == 0)
1907 linked_shader->Geom.Invocations = 1;
1908
1909 prog->Geom.Invocations = linked_shader->Geom.Invocations;
1910 }
1911
1912
1913 /**
1914 * Perform cross-validation of compute shader local_size_{x,y,z} layout
1915 * qualifiers for the attached compute shaders, and propagate them to the
1916 * linked CS and linked shader program.
1917 */
1918 static void
1919 link_cs_input_layout_qualifiers(struct gl_shader_program *prog,
1920 struct gl_shader *linked_shader,
1921 struct gl_shader **shader_list,
1922 unsigned num_shaders)
1923 {
1924 for (int i = 0; i < 3; i++)
1925 linked_shader->Comp.LocalSize[i] = 0;
1926
1927 /* This function is called for all shader stages, but it only has an effect
1928 * for compute shaders.
1929 */
1930 if (linked_shader->Stage != MESA_SHADER_COMPUTE)
1931 return;
1932
1933 /* From the ARB_compute_shader spec, in the section describing local size
1934 * declarations:
1935 *
1936 * If multiple compute shaders attached to a single program object
1937 * declare local work-group size, the declarations must be identical;
1938 * otherwise a link-time error results. Furthermore, if a program
1939 * object contains any compute shaders, at least one must contain an
1940 * input layout qualifier specifying the local work sizes of the
1941 * program, or a link-time error will occur.
1942 */
1943 for (unsigned sh = 0; sh < num_shaders; sh++) {
1944 struct gl_shader *shader = shader_list[sh];
1945
1946 if (shader->Comp.LocalSize[0] != 0) {
1947 if (linked_shader->Comp.LocalSize[0] != 0) {
1948 for (int i = 0; i < 3; i++) {
1949 if (linked_shader->Comp.LocalSize[i] !=
1950 shader->Comp.LocalSize[i]) {
1951 linker_error(prog, "compute shader defined with conflicting "
1952 "local sizes\n");
1953 return;
1954 }
1955 }
1956 }
1957 for (int i = 0; i < 3; i++)
1958 linked_shader->Comp.LocalSize[i] = shader->Comp.LocalSize[i];
1959 }
1960 }
1961
1962 /* Just do the intrastage -> interstage propagation right now,
1963 * since we already know we're in the right type of shader program
1964 * for doing it.
1965 */
1966 if (linked_shader->Comp.LocalSize[0] == 0) {
1967 linker_error(prog, "compute shader didn't declare local size\n");
1968 return;
1969 }
1970 for (int i = 0; i < 3; i++)
1971 prog->Comp.LocalSize[i] = linked_shader->Comp.LocalSize[i];
1972 }
1973
1974
1975 /**
1976 * Combine a group of shaders for a single stage to generate a linked shader
1977 *
1978 * \note
1979 * If this function is supplied a single shader, it is cloned, and the new
1980 * shader is returned.
1981 */
1982 static struct gl_shader *
1983 link_intrastage_shaders(void *mem_ctx,
1984 struct gl_context *ctx,
1985 struct gl_shader_program *prog,
1986 struct gl_shader **shader_list,
1987 unsigned num_shaders)
1988 {
1989 struct gl_uniform_block *uniform_blocks = NULL;
1990
1991 /* Check that global variables defined in multiple shaders are consistent.
1992 */
1993 cross_validate_globals(prog, shader_list, num_shaders, false);
1994 if (!prog->LinkStatus)
1995 return NULL;
1996
1997 /* Check that interface blocks defined in multiple shaders are consistent.
1998 */
1999 validate_intrastage_interface_blocks(prog, (const gl_shader **)shader_list,
2000 num_shaders);
2001 if (!prog->LinkStatus)
2002 return NULL;
2003
2004 /* Link up uniform blocks defined within this stage. */
2005 const unsigned num_uniform_blocks =
2006 link_uniform_blocks(mem_ctx, ctx, prog, shader_list, num_shaders,
2007 &uniform_blocks);
2008 if (!prog->LinkStatus)
2009 return NULL;
2010
2011 /* Check that there is only a single definition of each function signature
2012 * across all shaders.
2013 */
2014 for (unsigned i = 0; i < (num_shaders - 1); i++) {
2015 foreach_in_list(ir_instruction, node, shader_list[i]->ir) {
2016 ir_function *const f = node->as_function();
2017
2018 if (f == NULL)
2019 continue;
2020
2021 for (unsigned j = i + 1; j < num_shaders; j++) {
2022 ir_function *const other =
2023 shader_list[j]->symbols->get_function(f->name);
2024
2025 /* If the other shader has no function (and therefore no function
2026 * signatures) with the same name, skip to the next shader.
2027 */
2028 if (other == NULL)
2029 continue;
2030
2031 foreach_in_list(ir_function_signature, sig, &f->signatures) {
2032 if (!sig->is_defined || sig->is_builtin())
2033 continue;
2034
2035 ir_function_signature *other_sig =
2036 other->exact_matching_signature(NULL, &sig->parameters);
2037
2038 if ((other_sig != NULL) && other_sig->is_defined
2039 && !other_sig->is_builtin()) {
2040 linker_error(prog, "function `%s' is multiply defined\n",
2041 f->name);
2042 return NULL;
2043 }
2044 }
2045 }
2046 }
2047 }
2048
2049 /* Find the shader that defines main, and make a clone of it.
2050 *
2051 * Starting with the clone, search for undefined references. If one is
2052 * found, find the shader that defines it. Clone the reference and add
2053 * it to the shader. Repeat until there are no undefined references or
2054 * until a reference cannot be resolved.
2055 */
2056 gl_shader *main = NULL;
2057 for (unsigned i = 0; i < num_shaders; i++) {
2058 if (_mesa_get_main_function_signature(shader_list[i]) != NULL) {
2059 main = shader_list[i];
2060 break;
2061 }
2062 }
2063
2064 if (main == NULL) {
2065 linker_error(prog, "%s shader lacks `main'\n",
2066 _mesa_shader_stage_to_string(shader_list[0]->Stage));
2067 return NULL;
2068 }
2069
2070 gl_shader *linked = ctx->Driver.NewShader(NULL, 0, main->Type);
2071 linked->ir = new(linked) exec_list;
2072 clone_ir_list(mem_ctx, linked->ir, main->ir);
2073
2074 linked->BufferInterfaceBlocks = uniform_blocks;
2075 linked->NumBufferInterfaceBlocks = num_uniform_blocks;
2076 ralloc_steal(linked, linked->BufferInterfaceBlocks);
2077
2078 link_fs_input_layout_qualifiers(prog, linked, shader_list, num_shaders);
2079 link_tcs_out_layout_qualifiers(prog, linked, shader_list, num_shaders);
2080 link_tes_in_layout_qualifiers(prog, linked, shader_list, num_shaders);
2081 link_gs_inout_layout_qualifiers(prog, linked, shader_list, num_shaders);
2082 link_cs_input_layout_qualifiers(prog, linked, shader_list, num_shaders);
2083
2084 populate_symbol_table(linked);
2085
2086 /* The pointer to the main function in the final linked shader (i.e., the
2087 * copy of the original shader that contained the main function).
2088 */
2089 ir_function_signature *const main_sig =
2090 _mesa_get_main_function_signature(linked);
2091
2092 /* Move any instructions other than variable declarations or function
2093 * declarations into main.
2094 */
2095 exec_node *insertion_point =
2096 move_non_declarations(linked->ir, (exec_node *) &main_sig->body, false,
2097 linked);
2098
2099 for (unsigned i = 0; i < num_shaders; i++) {
2100 if (shader_list[i] == main)
2101 continue;
2102
2103 insertion_point = move_non_declarations(shader_list[i]->ir,
2104 insertion_point, true, linked);
2105 }
2106
2107 /* Check if any shader needs built-in functions. */
2108 bool need_builtins = false;
2109 for (unsigned i = 0; i < num_shaders; i++) {
2110 if (shader_list[i]->uses_builtin_functions) {
2111 need_builtins = true;
2112 break;
2113 }
2114 }
2115
2116 bool ok;
2117 if (need_builtins) {
2118 /* Make a temporary array one larger than shader_list, which will hold
2119 * the built-in function shader as well.
2120 */
2121 gl_shader **linking_shaders = (gl_shader **)
2122 calloc(num_shaders + 1, sizeof(gl_shader *));
2123
2124 ok = linking_shaders != NULL;
2125
2126 if (ok) {
2127 memcpy(linking_shaders, shader_list, num_shaders * sizeof(gl_shader *));
2128 _mesa_glsl_initialize_builtin_functions();
2129 linking_shaders[num_shaders] = _mesa_glsl_get_builtin_function_shader();
2130
2131 ok = link_function_calls(prog, linked, linking_shaders, num_shaders + 1);
2132
2133 free(linking_shaders);
2134 } else {
2135 _mesa_error_no_memory(__func__);
2136 }
2137 } else {
2138 ok = link_function_calls(prog, linked, shader_list, num_shaders);
2139 }
2140
2141
2142 if (!ok) {
2143 _mesa_delete_shader(ctx, linked);
2144 return NULL;
2145 }
2146
2147 /* At this point linked should contain all of the linked IR, so
2148 * validate it to make sure nothing went wrong.
2149 */
2150 validate_ir_tree(linked->ir);
2151
2152 /* Set the size of geometry shader input arrays */
2153 if (linked->Stage == MESA_SHADER_GEOMETRY) {
2154 unsigned num_vertices = vertices_per_prim(prog->Geom.InputType);
2155 geom_array_resize_visitor input_resize_visitor(num_vertices, prog);
2156 foreach_in_list(ir_instruction, ir, linked->ir) {
2157 ir->accept(&input_resize_visitor);
2158 }
2159 }
2160
2161 if (ctx->Const.VertexID_is_zero_based)
2162 lower_vertex_id(linked);
2163
2164 /* Validate correct usage of barrier() in the tess control shader */
2165 if (linked->Stage == MESA_SHADER_TESS_CTRL) {
2166 barrier_use_visitor visitor(prog);
2167 foreach_in_list(ir_instruction, ir, linked->ir) {
2168 ir->accept(&visitor);
2169 }
2170 }
2171
2172 /* Make a pass over all variable declarations to ensure that arrays with
2173 * unspecified sizes have a size specified. The size is inferred from the
2174 * max_array_access field.
2175 */
2176 array_sizing_visitor v;
2177 v.run(linked->ir);
2178 v.fixup_unnamed_interface_types();
2179
2180 return linked;
2181 }
2182
2183 /**
2184 * Update the sizes of linked shader uniform arrays to the maximum
2185 * array index used.
2186 *
2187 * From page 81 (page 95 of the PDF) of the OpenGL 2.1 spec:
2188 *
2189 * If one or more elements of an array are active,
2190 * GetActiveUniform will return the name of the array in name,
2191 * subject to the restrictions listed above. The type of the array
2192 * is returned in type. The size parameter contains the highest
2193 * array element index used, plus one. The compiler or linker
2194 * determines the highest index used. There will be only one
2195 * active uniform reported by the GL per uniform array.
2196
2197 */
2198 static void
2199 update_array_sizes(struct gl_shader_program *prog)
2200 {
2201 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
2202 if (prog->_LinkedShaders[i] == NULL)
2203 continue;
2204
2205 foreach_in_list(ir_instruction, node, prog->_LinkedShaders[i]->ir) {
2206 ir_variable *const var = node->as_variable();
2207
2208 if ((var == NULL) || (var->data.mode != ir_var_uniform) ||
2209 !var->type->is_array())
2210 continue;
2211
2212 /* GL_ARB_uniform_buffer_object says that std140 uniforms
2213 * will not be eliminated. Since we always do std140, just
2214 * don't resize arrays in UBOs.
2215 *
2216 * Atomic counters are supposed to get deterministic
2217 * locations assigned based on the declaration ordering and
2218 * sizes, array compaction would mess that up.
2219 *
2220 * Subroutine uniforms are not removed.
2221 */
2222 if (var->is_in_buffer_block() || var->type->contains_atomic() ||
2223 var->type->contains_subroutine())
2224 continue;
2225
2226 unsigned int size = var->data.max_array_access;
2227 for (unsigned j = 0; j < MESA_SHADER_STAGES; j++) {
2228 if (prog->_LinkedShaders[j] == NULL)
2229 continue;
2230
2231 foreach_in_list(ir_instruction, node2, prog->_LinkedShaders[j]->ir) {
2232 ir_variable *other_var = node2->as_variable();
2233 if (!other_var)
2234 continue;
2235
2236 if (strcmp(var->name, other_var->name) == 0 &&
2237 other_var->data.max_array_access > size) {
2238 size = other_var->data.max_array_access;
2239 }
2240 }
2241 }
2242
2243 if (size + 1 != var->type->length) {
2244 /* If this is a built-in uniform (i.e., it's backed by some
2245 * fixed-function state), adjust the number of state slots to
2246 * match the new array size. The number of slots per array entry
2247 * is not known. It seems safe to assume that the total number of
2248 * slots is an integer multiple of the number of array elements.
2249 * Determine the number of slots per array element by dividing by
2250 * the old (total) size.
2251 */
2252 const unsigned num_slots = var->get_num_state_slots();
2253 if (num_slots > 0) {
2254 var->set_num_state_slots((size + 1)
2255 * (num_slots / var->type->length));
2256 }
2257
2258 var->type = glsl_type::get_array_instance(var->type->fields.array,
2259 size + 1);
2260 /* FINISHME: We should update the types of array
2261 * dereferences of this variable now.
2262 */
2263 }
2264 }
2265 }
2266 }
2267
2268 /**
2269 * Resize tessellation evaluation per-vertex inputs to the size of
2270 * tessellation control per-vertex outputs.
2271 */
2272 static void
2273 resize_tes_inputs(struct gl_context *ctx,
2274 struct gl_shader_program *prog)
2275 {
2276 if (prog->_LinkedShaders[MESA_SHADER_TESS_EVAL] == NULL)
2277 return;
2278
2279 gl_shader *const tcs = prog->_LinkedShaders[MESA_SHADER_TESS_CTRL];
2280 gl_shader *const tes = prog->_LinkedShaders[MESA_SHADER_TESS_EVAL];
2281
2282 /* If no control shader is present, then the TES inputs are statically
2283 * sized to MaxPatchVertices; the actual size of the arrays won't be
2284 * known until draw time.
2285 */
2286 const int num_vertices = tcs
2287 ? tcs->TessCtrl.VerticesOut
2288 : ctx->Const.MaxPatchVertices;
2289
2290 tess_eval_array_resize_visitor input_resize_visitor(num_vertices, prog);
2291 foreach_in_list(ir_instruction, ir, tes->ir) {
2292 ir->accept(&input_resize_visitor);
2293 }
2294
2295 if (tcs) {
2296 /* Convert the gl_PatchVerticesIn system value into a constant, since
2297 * the value is known at this point.
2298 */
2299 foreach_in_list(ir_instruction, ir, tes->ir) {
2300 ir_variable *var = ir->as_variable();
2301 if (var && var->data.mode == ir_var_system_value &&
2302 var->data.location == SYSTEM_VALUE_VERTICES_IN) {
2303 void *mem_ctx = ralloc_parent(var);
2304 var->data.mode = ir_var_auto;
2305 var->data.location = 0;
2306 var->constant_value = new(mem_ctx) ir_constant(num_vertices);
2307 }
2308 }
2309 }
2310 }
2311
2312 /**
2313 * Find a contiguous set of available bits in a bitmask.
2314 *
2315 * \param used_mask Bits representing used (1) and unused (0) locations
2316 * \param needed_count Number of contiguous bits needed.
2317 *
2318 * \return
2319 * Base location of the available bits on success or -1 on failure.
2320 */
2321 int
2322 find_available_slots(unsigned used_mask, unsigned needed_count)
2323 {
2324 unsigned needed_mask = (1 << needed_count) - 1;
2325 const int max_bit_to_test = (8 * sizeof(used_mask)) - needed_count;
2326
2327 /* The comparison to 32 is redundant, but without it GCC emits "warning:
2328 * cannot optimize possibly infinite loops" for the loop below.
2329 */
2330 if ((needed_count == 0) || (max_bit_to_test < 0) || (max_bit_to_test > 32))
2331 return -1;
2332
2333 for (int i = 0; i <= max_bit_to_test; i++) {
2334 if ((needed_mask & ~used_mask) == needed_mask)
2335 return i;
2336
2337 needed_mask <<= 1;
2338 }
2339
2340 return -1;
2341 }
2342
2343
2344 /**
2345 * Assign locations for either VS inputs or FS outputs
2346 *
2347 * \param prog Shader program whose variables need locations assigned
2348 * \param constants Driver specific constant values for the program.
2349 * \param target_index Selector for the program target to receive location
2350 * assignmnets. Must be either \c MESA_SHADER_VERTEX or
2351 * \c MESA_SHADER_FRAGMENT.
2352 *
2353 * \return
2354 * If locations are successfully assigned, true is returned. Otherwise an
2355 * error is emitted to the shader link log and false is returned.
2356 */
2357 bool
2358 assign_attribute_or_color_locations(gl_shader_program *prog,
2359 struct gl_constants *constants,
2360 unsigned target_index)
2361 {
2362 /* Maximum number of generic locations. This corresponds to either the
2363 * maximum number of draw buffers or the maximum number of generic
2364 * attributes.
2365 */
2366 unsigned max_index = (target_index == MESA_SHADER_VERTEX) ?
2367 constants->Program[target_index].MaxAttribs :
2368 MAX2(constants->MaxDrawBuffers, constants->MaxDualSourceDrawBuffers);
2369
2370 /* Mark invalid locations as being used.
2371 */
2372 unsigned used_locations = (max_index >= 32)
2373 ? ~0 : ~((1 << max_index) - 1);
2374 unsigned double_storage_locations = 0;
2375
2376 assert((target_index == MESA_SHADER_VERTEX)
2377 || (target_index == MESA_SHADER_FRAGMENT));
2378
2379 gl_shader *const sh = prog->_LinkedShaders[target_index];
2380 if (sh == NULL)
2381 return true;
2382
2383 /* Operate in a total of four passes.
2384 *
2385 * 1. Invalidate the location assignments for all vertex shader inputs.
2386 *
2387 * 2. Assign locations for inputs that have user-defined (via
2388 * glBindVertexAttribLocation) locations and outputs that have
2389 * user-defined locations (via glBindFragDataLocation).
2390 *
2391 * 3. Sort the attributes without assigned locations by number of slots
2392 * required in decreasing order. Fragmentation caused by attribute
2393 * locations assigned by the application may prevent large attributes
2394 * from having enough contiguous space.
2395 *
2396 * 4. Assign locations to any inputs without assigned locations.
2397 */
2398
2399 const int generic_base = (target_index == MESA_SHADER_VERTEX)
2400 ? (int) VERT_ATTRIB_GENERIC0 : (int) FRAG_RESULT_DATA0;
2401
2402 const enum ir_variable_mode direction =
2403 (target_index == MESA_SHADER_VERTEX)
2404 ? ir_var_shader_in : ir_var_shader_out;
2405
2406
2407 /* Temporary storage for the set of attributes that need locations assigned.
2408 */
2409 struct temp_attr {
2410 unsigned slots;
2411 ir_variable *var;
2412
2413 /* Used below in the call to qsort. */
2414 static int compare(const void *a, const void *b)
2415 {
2416 const temp_attr *const l = (const temp_attr *) a;
2417 const temp_attr *const r = (const temp_attr *) b;
2418
2419 /* Reversed because we want a descending order sort below. */
2420 return r->slots - l->slots;
2421 }
2422 } to_assign[16];
2423
2424 unsigned num_attr = 0;
2425
2426 foreach_in_list(ir_instruction, node, sh->ir) {
2427 ir_variable *const var = node->as_variable();
2428
2429 if ((var == NULL) || (var->data.mode != (unsigned) direction))
2430 continue;
2431
2432 if (var->data.explicit_location) {
2433 var->data.is_unmatched_generic_inout = 0;
2434 if ((var->data.location >= (int)(max_index + generic_base))
2435 || (var->data.location < 0)) {
2436 linker_error(prog,
2437 "invalid explicit location %d specified for `%s'\n",
2438 (var->data.location < 0)
2439 ? var->data.location
2440 : var->data.location - generic_base,
2441 var->name);
2442 return false;
2443 }
2444 } else if (target_index == MESA_SHADER_VERTEX) {
2445 unsigned binding;
2446
2447 if (prog->AttributeBindings->get(binding, var->name)) {
2448 assert(binding >= VERT_ATTRIB_GENERIC0);
2449 var->data.location = binding;
2450 var->data.is_unmatched_generic_inout = 0;
2451 }
2452 } else if (target_index == MESA_SHADER_FRAGMENT) {
2453 unsigned binding;
2454 unsigned index;
2455
2456 if (prog->FragDataBindings->get(binding, var->name)) {
2457 assert(binding >= FRAG_RESULT_DATA0);
2458 var->data.location = binding;
2459 var->data.is_unmatched_generic_inout = 0;
2460
2461 if (prog->FragDataIndexBindings->get(index, var->name)) {
2462 var->data.index = index;
2463 }
2464 }
2465 }
2466
2467 /* From GL4.5 core spec, section 15.2 (Shader Execution):
2468 *
2469 * "Output binding assignments will cause LinkProgram to fail:
2470 * ...
2471 * If the program has an active output assigned to a location greater
2472 * than or equal to the value of MAX_DUAL_SOURCE_DRAW_BUFFERS and has
2473 * an active output assigned an index greater than or equal to one;"
2474 */
2475 if (target_index == MESA_SHADER_FRAGMENT && var->data.index >= 1 &&
2476 var->data.location - generic_base >=
2477 (int) constants->MaxDualSourceDrawBuffers) {
2478 linker_error(prog,
2479 "output location %d >= GL_MAX_DUAL_SOURCE_DRAW_BUFFERS "
2480 "with index %u for %s\n",
2481 var->data.location - generic_base, var->data.index,
2482 var->name);
2483 return false;
2484 }
2485
2486 const unsigned slots = var->type->count_attribute_slots(target_index == MESA_SHADER_VERTEX ? true : false);
2487
2488 /* If the variable is not a built-in and has a location statically
2489 * assigned in the shader (presumably via a layout qualifier), make sure
2490 * that it doesn't collide with other assigned locations. Otherwise,
2491 * add it to the list of variables that need linker-assigned locations.
2492 */
2493 if (var->data.location != -1) {
2494 if (var->data.location >= generic_base && var->data.index < 1) {
2495 /* From page 61 of the OpenGL 4.0 spec:
2496 *
2497 * "LinkProgram will fail if the attribute bindings assigned
2498 * by BindAttribLocation do not leave not enough space to
2499 * assign a location for an active matrix attribute or an
2500 * active attribute array, both of which require multiple
2501 * contiguous generic attributes."
2502 *
2503 * I think above text prohibits the aliasing of explicit and
2504 * automatic assignments. But, aliasing is allowed in manual
2505 * assignments of attribute locations. See below comments for
2506 * the details.
2507 *
2508 * From OpenGL 4.0 spec, page 61:
2509 *
2510 * "It is possible for an application to bind more than one
2511 * attribute name to the same location. This is referred to as
2512 * aliasing. This will only work if only one of the aliased
2513 * attributes is active in the executable program, or if no
2514 * path through the shader consumes more than one attribute of
2515 * a set of attributes aliased to the same location. A link
2516 * error can occur if the linker determines that every path
2517 * through the shader consumes multiple aliased attributes,
2518 * but implementations are not required to generate an error
2519 * in this case."
2520 *
2521 * From GLSL 4.30 spec, page 54:
2522 *
2523 * "A program will fail to link if any two non-vertex shader
2524 * input variables are assigned to the same location. For
2525 * vertex shaders, multiple input variables may be assigned
2526 * to the same location using either layout qualifiers or via
2527 * the OpenGL API. However, such aliasing is intended only to
2528 * support vertex shaders where each execution path accesses
2529 * at most one input per each location. Implementations are
2530 * permitted, but not required, to generate link-time errors
2531 * if they detect that every path through the vertex shader
2532 * executable accesses multiple inputs assigned to any single
2533 * location. For all shader types, a program will fail to link
2534 * if explicit location assignments leave the linker unable
2535 * to find space for other variables without explicit
2536 * assignments."
2537 *
2538 * From OpenGL ES 3.0 spec, page 56:
2539 *
2540 * "Binding more than one attribute name to the same location
2541 * is referred to as aliasing, and is not permitted in OpenGL
2542 * ES Shading Language 3.00 vertex shaders. LinkProgram will
2543 * fail when this condition exists. However, aliasing is
2544 * possible in OpenGL ES Shading Language 1.00 vertex shaders.
2545 * This will only work if only one of the aliased attributes
2546 * is active in the executable program, or if no path through
2547 * the shader consumes more than one attribute of a set of
2548 * attributes aliased to the same location. A link error can
2549 * occur if the linker determines that every path through the
2550 * shader consumes multiple aliased attributes, but implemen-
2551 * tations are not required to generate an error in this case."
2552 *
2553 * After looking at above references from OpenGL, OpenGL ES and
2554 * GLSL specifications, we allow aliasing of vertex input variables
2555 * in: OpenGL 2.0 (and above) and OpenGL ES 2.0.
2556 *
2557 * NOTE: This is not required by the spec but its worth mentioning
2558 * here that we're not doing anything to make sure that no path
2559 * through the vertex shader executable accesses multiple inputs
2560 * assigned to any single location.
2561 */
2562
2563 /* Mask representing the contiguous slots that will be used by
2564 * this attribute.
2565 */
2566 const unsigned attr = var->data.location - generic_base;
2567 const unsigned use_mask = (1 << slots) - 1;
2568 const char *const string = (target_index == MESA_SHADER_VERTEX)
2569 ? "vertex shader input" : "fragment shader output";
2570
2571 /* Generate a link error if the requested locations for this
2572 * attribute exceed the maximum allowed attribute location.
2573 */
2574 if (attr + slots > max_index) {
2575 linker_error(prog,
2576 "insufficient contiguous locations "
2577 "available for %s `%s' %d %d %d\n", string,
2578 var->name, used_locations, use_mask, attr);
2579 return false;
2580 }
2581
2582 /* Generate a link error if the set of bits requested for this
2583 * attribute overlaps any previously allocated bits.
2584 */
2585 if ((~(use_mask << attr) & used_locations) != used_locations) {
2586 if (target_index == MESA_SHADER_FRAGMENT ||
2587 (prog->IsES && prog->Version >= 300)) {
2588 linker_error(prog,
2589 "overlapping location is assigned "
2590 "to %s `%s' %d %d %d\n", string,
2591 var->name, used_locations, use_mask, attr);
2592 return false;
2593 } else {
2594 linker_warning(prog,
2595 "overlapping location is assigned "
2596 "to %s `%s' %d %d %d\n", string,
2597 var->name, used_locations, use_mask, attr);
2598 }
2599 }
2600
2601 used_locations |= (use_mask << attr);
2602
2603 /* From the GL 4.5 core spec, section 11.1.1 (Vertex Attributes):
2604 *
2605 * "A program with more than the value of MAX_VERTEX_ATTRIBS
2606 * active attribute variables may fail to link, unless
2607 * device-dependent optimizations are able to make the program
2608 * fit within available hardware resources. For the purposes
2609 * of this test, attribute variables of the type dvec3, dvec4,
2610 * dmat2x3, dmat2x4, dmat3, dmat3x4, dmat4x3, and dmat4 may
2611 * count as consuming twice as many attributes as equivalent
2612 * single-precision types. While these types use the same number
2613 * of generic attributes as their single-precision equivalents,
2614 * implementations are permitted to consume two single-precision
2615 * vectors of internal storage for each three- or four-component
2616 * double-precision vector."
2617 *
2618 * Mark this attribute slot as taking up twice as much space
2619 * so we can count it properly against limits. According to
2620 * issue (3) of the GL_ARB_vertex_attrib_64bit behavior, this
2621 * is optional behavior, but it seems preferable.
2622 */
2623 if (var->type->without_array()->is_dual_slot_double())
2624 double_storage_locations |= (use_mask << attr);
2625 }
2626
2627 continue;
2628 }
2629
2630 to_assign[num_attr].slots = slots;
2631 to_assign[num_attr].var = var;
2632 num_attr++;
2633 }
2634
2635 if (target_index == MESA_SHADER_VERTEX) {
2636 unsigned total_attribs_size =
2637 _mesa_bitcount(used_locations & ((1 << max_index) - 1)) +
2638 _mesa_bitcount(double_storage_locations);
2639 if (total_attribs_size > max_index) {
2640 linker_error(prog,
2641 "attempt to use %d vertex attribute slots only %d available ",
2642 total_attribs_size, max_index);
2643 return false;
2644 }
2645 }
2646
2647 /* If all of the attributes were assigned locations by the application (or
2648 * are built-in attributes with fixed locations), return early. This should
2649 * be the common case.
2650 */
2651 if (num_attr == 0)
2652 return true;
2653
2654 qsort(to_assign, num_attr, sizeof(to_assign[0]), temp_attr::compare);
2655
2656 if (target_index == MESA_SHADER_VERTEX) {
2657 /* VERT_ATTRIB_GENERIC0 is a pseudo-alias for VERT_ATTRIB_POS. It can
2658 * only be explicitly assigned by via glBindAttribLocation. Mark it as
2659 * reserved to prevent it from being automatically allocated below.
2660 */
2661 find_deref_visitor find("gl_Vertex");
2662 find.run(sh->ir);
2663 if (find.variable_found())
2664 used_locations |= (1 << 0);
2665 }
2666
2667 for (unsigned i = 0; i < num_attr; i++) {
2668 /* Mask representing the contiguous slots that will be used by this
2669 * attribute.
2670 */
2671 const unsigned use_mask = (1 << to_assign[i].slots) - 1;
2672
2673 int location = find_available_slots(used_locations, to_assign[i].slots);
2674
2675 if (location < 0) {
2676 const char *const string = (target_index == MESA_SHADER_VERTEX)
2677 ? "vertex shader input" : "fragment shader output";
2678
2679 linker_error(prog,
2680 "insufficient contiguous locations "
2681 "available for %s `%s'\n",
2682 string, to_assign[i].var->name);
2683 return false;
2684 }
2685
2686 to_assign[i].var->data.location = generic_base + location;
2687 to_assign[i].var->data.is_unmatched_generic_inout = 0;
2688 used_locations |= (use_mask << location);
2689 }
2690
2691 return true;
2692 }
2693
2694 /**
2695 * Match explicit locations of outputs to inputs and deactivate the
2696 * unmatch flag if found so we don't optimise them away.
2697 */
2698 static void
2699 match_explicit_outputs_to_inputs(struct gl_shader_program *prog,
2700 gl_shader *producer,
2701 gl_shader *consumer)
2702 {
2703 glsl_symbol_table parameters;
2704 ir_variable *explicit_locations[MAX_VARYING] = { NULL };
2705
2706 /* Find all shader outputs in the "producer" stage.
2707 */
2708 foreach_in_list(ir_instruction, node, producer->ir) {
2709 ir_variable *const var = node->as_variable();
2710
2711 if ((var == NULL) || (var->data.mode != ir_var_shader_out))
2712 continue;
2713
2714 if (var->data.explicit_location &&
2715 var->data.location >= VARYING_SLOT_VAR0) {
2716 const unsigned idx = var->data.location - VARYING_SLOT_VAR0;
2717 if (explicit_locations[idx] == NULL)
2718 explicit_locations[idx] = var;
2719 }
2720 }
2721
2722 /* Match inputs to outputs */
2723 foreach_in_list(ir_instruction, node, consumer->ir) {
2724 ir_variable *const input = node->as_variable();
2725
2726 if ((input == NULL) || (input->data.mode != ir_var_shader_in))
2727 continue;
2728
2729 ir_variable *output = NULL;
2730 if (input->data.explicit_location
2731 && input->data.location >= VARYING_SLOT_VAR0) {
2732 output = explicit_locations[input->data.location - VARYING_SLOT_VAR0];
2733
2734 if (output != NULL){
2735 input->data.is_unmatched_generic_inout = 0;
2736 output->data.is_unmatched_generic_inout = 0;
2737 }
2738 }
2739 }
2740 }
2741
2742 /**
2743 * Store the gl_FragDepth layout in the gl_shader_program struct.
2744 */
2745 static void
2746 store_fragdepth_layout(struct gl_shader_program *prog)
2747 {
2748 if (prog->_LinkedShaders[MESA_SHADER_FRAGMENT] == NULL) {
2749 return;
2750 }
2751
2752 struct exec_list *ir = prog->_LinkedShaders[MESA_SHADER_FRAGMENT]->ir;
2753
2754 /* We don't look up the gl_FragDepth symbol directly because if
2755 * gl_FragDepth is not used in the shader, it's removed from the IR.
2756 * However, the symbol won't be removed from the symbol table.
2757 *
2758 * We're only interested in the cases where the variable is NOT removed
2759 * from the IR.
2760 */
2761 foreach_in_list(ir_instruction, node, ir) {
2762 ir_variable *const var = node->as_variable();
2763
2764 if (var == NULL || var->data.mode != ir_var_shader_out) {
2765 continue;
2766 }
2767
2768 if (strcmp(var->name, "gl_FragDepth") == 0) {
2769 switch (var->data.depth_layout) {
2770 case ir_depth_layout_none:
2771 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_NONE;
2772 return;
2773 case ir_depth_layout_any:
2774 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_ANY;
2775 return;
2776 case ir_depth_layout_greater:
2777 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_GREATER;
2778 return;
2779 case ir_depth_layout_less:
2780 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_LESS;
2781 return;
2782 case ir_depth_layout_unchanged:
2783 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_UNCHANGED;
2784 return;
2785 default:
2786 assert(0);
2787 return;
2788 }
2789 }
2790 }
2791 }
2792
2793 /**
2794 * Validate the resources used by a program versus the implementation limits
2795 */
2796 static void
2797 check_resources(struct gl_context *ctx, struct gl_shader_program *prog)
2798 {
2799 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
2800 struct gl_shader *sh = prog->_LinkedShaders[i];
2801
2802 if (sh == NULL)
2803 continue;
2804
2805 if (sh->num_samplers > ctx->Const.Program[i].MaxTextureImageUnits) {
2806 linker_error(prog, "Too many %s shader texture samplers\n",
2807 _mesa_shader_stage_to_string(i));
2808 }
2809
2810 if (sh->num_uniform_components >
2811 ctx->Const.Program[i].MaxUniformComponents) {
2812 if (ctx->Const.GLSLSkipStrictMaxUniformLimitCheck) {
2813 linker_warning(prog, "Too many %s shader default uniform block "
2814 "components, but the driver will try to optimize "
2815 "them out; this is non-portable out-of-spec "
2816 "behavior\n",
2817 _mesa_shader_stage_to_string(i));
2818 } else {
2819 linker_error(prog, "Too many %s shader default uniform block "
2820 "components\n",
2821 _mesa_shader_stage_to_string(i));
2822 }
2823 }
2824
2825 if (sh->num_combined_uniform_components >
2826 ctx->Const.Program[i].MaxCombinedUniformComponents) {
2827 if (ctx->Const.GLSLSkipStrictMaxUniformLimitCheck) {
2828 linker_warning(prog, "Too many %s shader uniform components, "
2829 "but the driver will try to optimize them out; "
2830 "this is non-portable out-of-spec behavior\n",
2831 _mesa_shader_stage_to_string(i));
2832 } else {
2833 linker_error(prog, "Too many %s shader uniform components\n",
2834 _mesa_shader_stage_to_string(i));
2835 }
2836 }
2837 }
2838
2839 unsigned blocks[MESA_SHADER_STAGES] = {0};
2840 unsigned total_uniform_blocks = 0;
2841 unsigned shader_blocks[MESA_SHADER_STAGES] = {0};
2842 unsigned total_shader_storage_blocks = 0;
2843
2844 for (unsigned i = 0; i < prog->NumBufferInterfaceBlocks; i++) {
2845 /* Don't check SSBOs for Uniform Block Size */
2846 if (!prog->BufferInterfaceBlocks[i].IsShaderStorage &&
2847 prog->BufferInterfaceBlocks[i].UniformBufferSize > ctx->Const.MaxUniformBlockSize) {
2848 linker_error(prog, "Uniform block %s too big (%d/%d)\n",
2849 prog->BufferInterfaceBlocks[i].Name,
2850 prog->BufferInterfaceBlocks[i].UniformBufferSize,
2851 ctx->Const.MaxUniformBlockSize);
2852 }
2853
2854 if (prog->BufferInterfaceBlocks[i].IsShaderStorage &&
2855 prog->BufferInterfaceBlocks[i].UniformBufferSize > ctx->Const.MaxShaderStorageBlockSize) {
2856 linker_error(prog, "Shader storage block %s too big (%d/%d)\n",
2857 prog->BufferInterfaceBlocks[i].Name,
2858 prog->BufferInterfaceBlocks[i].UniformBufferSize,
2859 ctx->Const.MaxShaderStorageBlockSize);
2860 }
2861
2862 for (unsigned j = 0; j < MESA_SHADER_STAGES; j++) {
2863 if (prog->InterfaceBlockStageIndex[j][i] != -1) {
2864 struct gl_shader *sh = prog->_LinkedShaders[j];
2865 int stage_index = prog->InterfaceBlockStageIndex[j][i];
2866 if (sh && sh->BufferInterfaceBlocks[stage_index].IsShaderStorage) {
2867 shader_blocks[j]++;
2868 total_shader_storage_blocks++;
2869 } else {
2870 blocks[j]++;
2871 total_uniform_blocks++;
2872 }
2873 }
2874 }
2875
2876 if (total_uniform_blocks > ctx->Const.MaxCombinedUniformBlocks) {
2877 linker_error(prog, "Too many combined uniform blocks (%d/%d)\n",
2878 total_uniform_blocks,
2879 ctx->Const.MaxCombinedUniformBlocks);
2880 } else {
2881 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
2882 const unsigned max_uniform_blocks =
2883 ctx->Const.Program[i].MaxUniformBlocks;
2884 if (blocks[i] > max_uniform_blocks) {
2885 linker_error(prog, "Too many %s uniform blocks (%d/%d)\n",
2886 _mesa_shader_stage_to_string(i),
2887 blocks[i],
2888 max_uniform_blocks);
2889 break;
2890 }
2891 }
2892 }
2893
2894 if (total_shader_storage_blocks > ctx->Const.MaxCombinedShaderStorageBlocks) {
2895 linker_error(prog, "Too many combined shader storage blocks (%d/%d)\n",
2896 total_shader_storage_blocks,
2897 ctx->Const.MaxCombinedShaderStorageBlocks);
2898 } else {
2899 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
2900 const unsigned max_shader_storage_blocks =
2901 ctx->Const.Program[i].MaxShaderStorageBlocks;
2902 if (shader_blocks[i] > max_shader_storage_blocks) {
2903 linker_error(prog, "Too many %s shader storage blocks (%d/%d)\n",
2904 _mesa_shader_stage_to_string(i),
2905 shader_blocks[i],
2906 max_shader_storage_blocks);
2907 break;
2908 }
2909 }
2910 }
2911 }
2912 }
2913
2914 static void
2915 link_calculate_subroutine_compat(struct gl_shader_program *prog)
2916 {
2917 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
2918 struct gl_shader *sh = prog->_LinkedShaders[i];
2919 int count;
2920 if (!sh)
2921 continue;
2922
2923 for (unsigned j = 0; j < sh->NumSubroutineUniformRemapTable; j++) {
2924 struct gl_uniform_storage *uni = sh->SubroutineUniformRemapTable[j];
2925
2926 if (!uni)
2927 continue;
2928
2929 count = 0;
2930 for (unsigned f = 0; f < sh->NumSubroutineFunctions; f++) {
2931 struct gl_subroutine_function *fn = &sh->SubroutineFunctions[f];
2932 for (int k = 0; k < fn->num_compat_types; k++) {
2933 if (fn->types[k] == uni->type) {
2934 count++;
2935 break;
2936 }
2937 }
2938 }
2939 uni->num_compatible_subroutines = count;
2940 }
2941 }
2942 }
2943
2944 static void
2945 check_subroutine_resources(struct gl_shader_program *prog)
2946 {
2947 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
2948 struct gl_shader *sh = prog->_LinkedShaders[i];
2949
2950 if (sh) {
2951 if (sh->NumSubroutineUniformRemapTable > MAX_SUBROUTINE_UNIFORM_LOCATIONS)
2952 linker_error(prog, "Too many %s shader subroutine uniforms\n",
2953 _mesa_shader_stage_to_string(i));
2954 }
2955 }
2956 }
2957 /**
2958 * Validate shader image resources.
2959 */
2960 static void
2961 check_image_resources(struct gl_context *ctx, struct gl_shader_program *prog)
2962 {
2963 unsigned total_image_units = 0;
2964 unsigned fragment_outputs = 0;
2965 unsigned total_shader_storage_blocks = 0;
2966
2967 if (!ctx->Extensions.ARB_shader_image_load_store)
2968 return;
2969
2970 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
2971 struct gl_shader *sh = prog->_LinkedShaders[i];
2972
2973 if (sh) {
2974 if (sh->NumImages > ctx->Const.Program[i].MaxImageUniforms)
2975 linker_error(prog, "Too many %s shader image uniforms (%u > %u)\n",
2976 _mesa_shader_stage_to_string(i), sh->NumImages,
2977 ctx->Const.Program[i].MaxImageUniforms);
2978
2979 total_image_units += sh->NumImages;
2980
2981 for (unsigned j = 0; j < prog->NumBufferInterfaceBlocks; j++) {
2982 int stage_index = prog->InterfaceBlockStageIndex[i][j];
2983 if (stage_index != -1 && sh->BufferInterfaceBlocks[stage_index].IsShaderStorage)
2984 total_shader_storage_blocks++;
2985 }
2986
2987 if (i == MESA_SHADER_FRAGMENT) {
2988 foreach_in_list(ir_instruction, node, sh->ir) {
2989 ir_variable *var = node->as_variable();
2990 if (var && var->data.mode == ir_var_shader_out)
2991 /* since there are no double fs outputs - pass false */
2992 fragment_outputs += var->type->count_attribute_slots(false);
2993 }
2994 }
2995 }
2996 }
2997
2998 if (total_image_units > ctx->Const.MaxCombinedImageUniforms)
2999 linker_error(prog, "Too many combined image uniforms\n");
3000
3001 if (total_image_units + fragment_outputs + total_shader_storage_blocks >
3002 ctx->Const.MaxCombinedShaderOutputResources)
3003 linker_error(prog, "Too many combined image uniforms, shader storage "
3004 " buffers and fragment outputs\n");
3005 }
3006
3007
3008 /**
3009 * Initializes explicit location slots to INACTIVE_UNIFORM_EXPLICIT_LOCATION
3010 * for a variable, checks for overlaps between other uniforms using explicit
3011 * locations.
3012 */
3013 static bool
3014 reserve_explicit_locations(struct gl_shader_program *prog,
3015 string_to_uint_map *map, ir_variable *var)
3016 {
3017 unsigned slots = var->type->uniform_locations();
3018 unsigned max_loc = var->data.location + slots - 1;
3019
3020 /* Resize remap table if locations do not fit in the current one. */
3021 if (max_loc + 1 > prog->NumUniformRemapTable) {
3022 prog->UniformRemapTable =
3023 reralloc(prog, prog->UniformRemapTable,
3024 gl_uniform_storage *,
3025 max_loc + 1);
3026
3027 if (!prog->UniformRemapTable) {
3028 linker_error(prog, "Out of memory during linking.\n");
3029 return false;
3030 }
3031
3032 /* Initialize allocated space. */
3033 for (unsigned i = prog->NumUniformRemapTable; i < max_loc + 1; i++)
3034 prog->UniformRemapTable[i] = NULL;
3035
3036 prog->NumUniformRemapTable = max_loc + 1;
3037 }
3038
3039 for (unsigned i = 0; i < slots; i++) {
3040 unsigned loc = var->data.location + i;
3041
3042 /* Check if location is already used. */
3043 if (prog->UniformRemapTable[loc] == INACTIVE_UNIFORM_EXPLICIT_LOCATION) {
3044
3045 /* Possibly same uniform from a different stage, this is ok. */
3046 unsigned hash_loc;
3047 if (map->get(hash_loc, var->name) && hash_loc == loc - i)
3048 continue;
3049
3050 /* ARB_explicit_uniform_location specification states:
3051 *
3052 * "No two default-block uniform variables in the program can have
3053 * the same location, even if they are unused, otherwise a compiler
3054 * or linker error will be generated."
3055 */
3056 linker_error(prog,
3057 "location qualifier for uniform %s overlaps "
3058 "previously used location\n",
3059 var->name);
3060 return false;
3061 }
3062
3063 /* Initialize location as inactive before optimization
3064 * rounds and location assignment.
3065 */
3066 prog->UniformRemapTable[loc] = INACTIVE_UNIFORM_EXPLICIT_LOCATION;
3067 }
3068
3069 /* Note, base location used for arrays. */
3070 map->put(var->data.location, var->name);
3071
3072 return true;
3073 }
3074
3075 static bool
3076 reserve_subroutine_explicit_locations(struct gl_shader_program *prog,
3077 struct gl_shader *sh,
3078 ir_variable *var)
3079 {
3080 unsigned slots = var->type->uniform_locations();
3081 unsigned max_loc = var->data.location + slots - 1;
3082
3083 /* Resize remap table if locations do not fit in the current one. */
3084 if (max_loc + 1 > sh->NumSubroutineUniformRemapTable) {
3085 sh->SubroutineUniformRemapTable =
3086 reralloc(sh, sh->SubroutineUniformRemapTable,
3087 gl_uniform_storage *,
3088 max_loc + 1);
3089
3090 if (!sh->SubroutineUniformRemapTable) {
3091 linker_error(prog, "Out of memory during linking.\n");
3092 return false;
3093 }
3094
3095 /* Initialize allocated space. */
3096 for (unsigned i = sh->NumSubroutineUniformRemapTable; i < max_loc + 1; i++)
3097 sh->SubroutineUniformRemapTable[i] = NULL;
3098
3099 sh->NumSubroutineUniformRemapTable = max_loc + 1;
3100 }
3101
3102 for (unsigned i = 0; i < slots; i++) {
3103 unsigned loc = var->data.location + i;
3104
3105 /* Check if location is already used. */
3106 if (sh->SubroutineUniformRemapTable[loc] == INACTIVE_UNIFORM_EXPLICIT_LOCATION) {
3107
3108 /* ARB_explicit_uniform_location specification states:
3109 * "No two subroutine uniform variables can have the same location
3110 * in the same shader stage, otherwise a compiler or linker error
3111 * will be generated."
3112 */
3113 linker_error(prog,
3114 "location qualifier for uniform %s overlaps "
3115 "previously used location\n",
3116 var->name);
3117 return false;
3118 }
3119
3120 /* Initialize location as inactive before optimization
3121 * rounds and location assignment.
3122 */
3123 sh->SubroutineUniformRemapTable[loc] = INACTIVE_UNIFORM_EXPLICIT_LOCATION;
3124 }
3125
3126 return true;
3127 }
3128 /**
3129 * Check and reserve all explicit uniform locations, called before
3130 * any optimizations happen to handle also inactive uniforms and
3131 * inactive array elements that may get trimmed away.
3132 */
3133 static void
3134 check_explicit_uniform_locations(struct gl_context *ctx,
3135 struct gl_shader_program *prog)
3136 {
3137 if (!ctx->Extensions.ARB_explicit_uniform_location)
3138 return;
3139
3140 /* This map is used to detect if overlapping explicit locations
3141 * occur with the same uniform (from different stage) or a different one.
3142 */
3143 string_to_uint_map *uniform_map = new string_to_uint_map;
3144
3145 if (!uniform_map) {
3146 linker_error(prog, "Out of memory during linking.\n");
3147 return;
3148 }
3149
3150 unsigned entries_total = 0;
3151 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3152 struct gl_shader *sh = prog->_LinkedShaders[i];
3153
3154 if (!sh)
3155 continue;
3156
3157 foreach_in_list(ir_instruction, node, sh->ir) {
3158 ir_variable *var = node->as_variable();
3159 if (!var || var->data.mode != ir_var_uniform)
3160 continue;
3161
3162 entries_total += var->type->uniform_locations();
3163
3164 if (var->data.explicit_location) {
3165 bool ret;
3166 if (var->type->without_array()->is_subroutine())
3167 ret = reserve_subroutine_explicit_locations(prog, sh, var);
3168 else
3169 ret = reserve_explicit_locations(prog, uniform_map, var);
3170 if (!ret) {
3171 delete uniform_map;
3172 return;
3173 }
3174 }
3175 }
3176 }
3177
3178 /* Verify that total amount of entries for explicit and implicit locations
3179 * is less than MAX_UNIFORM_LOCATIONS.
3180 */
3181 if (entries_total >= ctx->Const.MaxUserAssignableUniformLocations) {
3182 linker_error(prog, "count of uniform locations >= MAX_UNIFORM_LOCATIONS"
3183 "(%u >= %u)", entries_total,
3184 ctx->Const.MaxUserAssignableUniformLocations);
3185 }
3186 delete uniform_map;
3187 }
3188
3189 static bool
3190 should_add_buffer_variable(struct gl_shader_program *shProg,
3191 GLenum type, const char *name)
3192 {
3193 bool found_interface = false;
3194 unsigned block_name_len = 0;
3195 const char *block_name_dot = strchr(name, '.');
3196
3197 /* These rules only apply to buffer variables. So we return
3198 * true for the rest of types.
3199 */
3200 if (type != GL_BUFFER_VARIABLE)
3201 return true;
3202
3203 for (unsigned i = 0; i < shProg->NumBufferInterfaceBlocks; i++) {
3204 const char *block_name = shProg->BufferInterfaceBlocks[i].Name;
3205 block_name_len = strlen(block_name);
3206
3207 const char *block_square_bracket = strchr(block_name, '[');
3208 if (block_square_bracket) {
3209 /* The block is part of an array of named interfaces,
3210 * for the name comparison we ignore the "[x]" part.
3211 */
3212 block_name_len -= strlen(block_square_bracket);
3213 }
3214
3215 if (block_name_dot) {
3216 /* Check if the variable name starts with the interface
3217 * name. The interface name (if present) should have the
3218 * length than the interface block name we are comparing to.
3219 */
3220 unsigned len = strlen(name) - strlen(block_name_dot);
3221 if (len != block_name_len)
3222 continue;
3223 }
3224
3225 if (strncmp(block_name, name, block_name_len) == 0) {
3226 found_interface = true;
3227 break;
3228 }
3229 }
3230
3231 /* We remove the interface name from the buffer variable name,
3232 * including the dot that follows it.
3233 */
3234 if (found_interface)
3235 name = name + block_name_len + 1;
3236
3237 /* From: ARB_program_interface_query extension:
3238 *
3239 * "For an active shader storage block member declared as an array, an
3240 * entry will be generated only for the first array element, regardless
3241 * of its type. For arrays of aggregate types, the enumeration rules are
3242 * applied recursively for the single enumerated array element.
3243 */
3244 const char *struct_first_dot = strchr(name, '.');
3245 const char *first_square_bracket = strchr(name, '[');
3246
3247 /* The buffer variable is on top level and it is not an array */
3248 if (!first_square_bracket) {
3249 return true;
3250 /* The shader storage block member is a struct, then generate the entry */
3251 } else if (struct_first_dot && struct_first_dot < first_square_bracket) {
3252 return true;
3253 } else {
3254 /* Shader storage block member is an array, only generate an entry for the
3255 * first array element.
3256 */
3257 if (strncmp(first_square_bracket, "[0]", 3) == 0)
3258 return true;
3259 }
3260
3261 return false;
3262 }
3263
3264 static bool
3265 add_program_resource(struct gl_shader_program *prog, GLenum type,
3266 const void *data, uint8_t stages)
3267 {
3268 assert(data);
3269
3270 /* If resource already exists, do not add it again. */
3271 for (unsigned i = 0; i < prog->NumProgramResourceList; i++)
3272 if (prog->ProgramResourceList[i].Data == data)
3273 return true;
3274
3275 prog->ProgramResourceList =
3276 reralloc(prog,
3277 prog->ProgramResourceList,
3278 gl_program_resource,
3279 prog->NumProgramResourceList + 1);
3280
3281 if (!prog->ProgramResourceList) {
3282 linker_error(prog, "Out of memory during linking.\n");
3283 return false;
3284 }
3285
3286 struct gl_program_resource *res =
3287 &prog->ProgramResourceList[prog->NumProgramResourceList];
3288
3289 res->Type = type;
3290 res->Data = data;
3291 res->StageReferences = stages;
3292
3293 prog->NumProgramResourceList++;
3294
3295 return true;
3296 }
3297
3298 /* Function checks if a variable var is a packed varying and
3299 * if given name is part of packed varying's list.
3300 *
3301 * If a variable is a packed varying, it has a name like
3302 * 'packed:a,b,c' where a, b and c are separate variables.
3303 */
3304 static bool
3305 included_in_packed_varying(ir_variable *var, const char *name)
3306 {
3307 if (strncmp(var->name, "packed:", 7) != 0)
3308 return false;
3309
3310 char *list = strdup(var->name + 7);
3311 assert(list);
3312
3313 bool found = false;
3314 char *saveptr;
3315 char *token = strtok_r(list, ",", &saveptr);
3316 while (token) {
3317 if (strcmp(token, name) == 0) {
3318 found = true;
3319 break;
3320 }
3321 token = strtok_r(NULL, ",", &saveptr);
3322 }
3323 free(list);
3324 return found;
3325 }
3326
3327 /**
3328 * Function builds a stage reference bitmask from variable name.
3329 */
3330 static uint8_t
3331 build_stageref(struct gl_shader_program *shProg, const char *name,
3332 unsigned mode)
3333 {
3334 uint8_t stages = 0;
3335
3336 /* Note, that we assume MAX 8 stages, if there will be more stages, type
3337 * used for reference mask in gl_program_resource will need to be changed.
3338 */
3339 assert(MESA_SHADER_STAGES < 8);
3340
3341 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3342 struct gl_shader *sh = shProg->_LinkedShaders[i];
3343 if (!sh)
3344 continue;
3345
3346 /* Shader symbol table may contain variables that have
3347 * been optimized away. Search IR for the variable instead.
3348 */
3349 foreach_in_list(ir_instruction, node, sh->ir) {
3350 ir_variable *var = node->as_variable();
3351 if (var) {
3352 unsigned baselen = strlen(var->name);
3353
3354 if (included_in_packed_varying(var, name)) {
3355 stages |= (1 << i);
3356 break;
3357 }
3358
3359 /* Type needs to match if specified, otherwise we might
3360 * pick a variable with same name but different interface.
3361 */
3362 if (var->data.mode != mode)
3363 continue;
3364
3365 if (strncmp(var->name, name, baselen) == 0) {
3366 /* Check for exact name matches but also check for arrays and
3367 * structs.
3368 */
3369 if (name[baselen] == '\0' ||
3370 name[baselen] == '[' ||
3371 name[baselen] == '.') {
3372 stages |= (1 << i);
3373 break;
3374 }
3375 }
3376 }
3377 }
3378 }
3379 return stages;
3380 }
3381
3382 /**
3383 * Create gl_shader_variable from ir_variable class.
3384 */
3385 static gl_shader_variable *
3386 create_shader_variable(struct gl_shader_program *shProg, const ir_variable *in)
3387 {
3388 gl_shader_variable *out = ralloc(shProg, struct gl_shader_variable);
3389 if (!out)
3390 return NULL;
3391
3392 out->type = in->type;
3393 out->name = ralloc_strdup(shProg, in->name);
3394
3395 if (!out->name)
3396 return NULL;
3397
3398 out->location = in->data.location;
3399 out->index = in->data.index;
3400 out->patch = in->data.patch;
3401 out->mode = in->data.mode;
3402
3403 return out;
3404 }
3405
3406 static bool
3407 add_interface_variables(struct gl_shader_program *shProg,
3408 exec_list *ir, GLenum programInterface)
3409 {
3410 foreach_in_list(ir_instruction, node, ir) {
3411 ir_variable *var = node->as_variable();
3412 uint8_t mask = 0;
3413
3414 if (!var)
3415 continue;
3416
3417 switch (var->data.mode) {
3418 /* From GL 4.3 core spec, section 11.1.1 (Vertex Attributes):
3419 * "For GetActiveAttrib, all active vertex shader input variables
3420 * are enumerated, including the special built-in inputs gl_VertexID
3421 * and gl_InstanceID."
3422 */
3423 case ir_var_system_value:
3424 if (var->data.location != SYSTEM_VALUE_VERTEX_ID &&
3425 var->data.location != SYSTEM_VALUE_VERTEX_ID_ZERO_BASE &&
3426 var->data.location != SYSTEM_VALUE_INSTANCE_ID)
3427 continue;
3428 /* Mark special built-in inputs referenced by the vertex stage so
3429 * that they are considered active by the shader queries.
3430 */
3431 mask = (1 << (MESA_SHADER_VERTEX));
3432 /* FALLTHROUGH */
3433 case ir_var_shader_in:
3434 if (programInterface != GL_PROGRAM_INPUT)
3435 continue;
3436 break;
3437 case ir_var_shader_out:
3438 if (programInterface != GL_PROGRAM_OUTPUT)
3439 continue;
3440 break;
3441 default:
3442 continue;
3443 };
3444
3445 /* Skip packed varyings, packed varyings are handled separately
3446 * by add_packed_varyings.
3447 */
3448 if (strncmp(var->name, "packed:", 7) == 0)
3449 continue;
3450
3451 /* Skip fragdata arrays, these are handled separately
3452 * by add_fragdata_arrays.
3453 */
3454 if (strncmp(var->name, "gl_out_FragData", 15) == 0)
3455 continue;
3456
3457 gl_shader_variable *sha_v = create_shader_variable(shProg, var);
3458 if (!sha_v)
3459 return false;
3460
3461 if (!add_program_resource(shProg, programInterface, sha_v,
3462 build_stageref(shProg, sha_v->name,
3463 sha_v->mode) | mask))
3464 return false;
3465 }
3466 return true;
3467 }
3468
3469 static bool
3470 add_packed_varyings(struct gl_shader_program *shProg, int stage, GLenum type)
3471 {
3472 struct gl_shader *sh = shProg->_LinkedShaders[stage];
3473 GLenum iface;
3474
3475 if (!sh || !sh->packed_varyings)
3476 return true;
3477
3478 foreach_in_list(ir_instruction, node, sh->packed_varyings) {
3479 ir_variable *var = node->as_variable();
3480 if (var) {
3481 switch (var->data.mode) {
3482 case ir_var_shader_in:
3483 iface = GL_PROGRAM_INPUT;
3484 break;
3485 case ir_var_shader_out:
3486 iface = GL_PROGRAM_OUTPUT;
3487 break;
3488 default:
3489 unreachable("unexpected type");
3490 }
3491
3492 if (type == iface) {
3493 gl_shader_variable *sha_v = create_shader_variable(shProg, var);
3494 if (!sha_v)
3495 return false;
3496 if (!add_program_resource(shProg, iface, sha_v,
3497 build_stageref(shProg, sha_v->name,
3498 sha_v->mode)))
3499 return false;
3500 }
3501 }
3502 }
3503 return true;
3504 }
3505
3506 static bool
3507 add_fragdata_arrays(struct gl_shader_program *shProg)
3508 {
3509 struct gl_shader *sh = shProg->_LinkedShaders[MESA_SHADER_FRAGMENT];
3510
3511 if (!sh || !sh->fragdata_arrays)
3512 return true;
3513
3514 foreach_in_list(ir_instruction, node, sh->fragdata_arrays) {
3515 ir_variable *var = node->as_variable();
3516 if (var) {
3517 assert(var->data.mode == ir_var_shader_out);
3518 gl_shader_variable *sha_v = create_shader_variable(shProg, var);
3519 if (!sha_v)
3520 return false;
3521 if (!add_program_resource(shProg, GL_PROGRAM_OUTPUT, sha_v,
3522 1 << MESA_SHADER_FRAGMENT))
3523 return false;
3524 }
3525 }
3526 return true;
3527 }
3528
3529 static char*
3530 get_top_level_name(const char *name)
3531 {
3532 const char *first_dot = strchr(name, '.');
3533 const char *first_square_bracket = strchr(name, '[');
3534 int name_size = 0;
3535 /* From ARB_program_interface_query spec:
3536 *
3537 * "For the property TOP_LEVEL_ARRAY_SIZE, a single integer identifying the
3538 * number of active array elements of the top-level shader storage block
3539 * member containing to the active variable is written to <params>. If the
3540 * top-level block member is not declared as an array, the value one is
3541 * written to <params>. If the top-level block member is an array with no
3542 * declared size, the value zero is written to <params>.
3543 */
3544
3545 /* The buffer variable is on top level.*/
3546 if (!first_square_bracket && !first_dot)
3547 name_size = strlen(name);
3548 else if ((!first_square_bracket ||
3549 (first_dot && first_dot < first_square_bracket)))
3550 name_size = first_dot - name;
3551 else
3552 name_size = first_square_bracket - name;
3553
3554 return strndup(name, name_size);
3555 }
3556
3557 static char*
3558 get_var_name(const char *name)
3559 {
3560 const char *first_dot = strchr(name, '.');
3561
3562 if (!first_dot)
3563 return strdup(name);
3564
3565 return strndup(first_dot+1, strlen(first_dot) - 1);
3566 }
3567
3568 static bool
3569 is_top_level_shader_storage_block_member(const char* name,
3570 const char* interface_name,
3571 const char* field_name)
3572 {
3573 bool result = false;
3574
3575 /* If the given variable is already a top-level shader storage
3576 * block member, then return array_size = 1.
3577 * We could have two possibilities: if we have an instanced
3578 * shader storage block or not instanced.
3579 *
3580 * For the first, we check create a name as it was in top level and
3581 * compare it with the real name. If they are the same, then
3582 * the variable is already at top-level.
3583 *
3584 * Full instanced name is: interface name + '.' + var name +
3585 * NULL character
3586 */
3587 int name_length = strlen(interface_name) + 1 + strlen(field_name) + 1;
3588 char *full_instanced_name = (char *) calloc(name_length, sizeof(char));
3589 if (!full_instanced_name) {
3590 fprintf(stderr, "%s: Cannot allocate space for name\n", __func__);
3591 return false;
3592 }
3593
3594 snprintf(full_instanced_name, name_length, "%s.%s",
3595 interface_name, field_name);
3596
3597 /* Check if its top-level shader storage block member of an
3598 * instanced interface block, or of a unnamed interface block.
3599 */
3600 if (strcmp(name, full_instanced_name) == 0 ||
3601 strcmp(name, field_name) == 0)
3602 result = true;
3603
3604 free(full_instanced_name);
3605 return result;
3606 }
3607
3608 static int
3609 get_array_size(struct gl_uniform_storage *uni, const glsl_struct_field *field,
3610 char *interface_name, char *var_name)
3611 {
3612 /* From GL_ARB_program_interface_query spec:
3613 *
3614 * "For the property TOP_LEVEL_ARRAY_SIZE, a single integer
3615 * identifying the number of active array elements of the top-level
3616 * shader storage block member containing to the active variable is
3617 * written to <params>. If the top-level block member is not
3618 * declared as an array, the value one is written to <params>. If
3619 * the top-level block member is an array with no declared size,
3620 * the value zero is written to <params>.
3621 */
3622 if (is_top_level_shader_storage_block_member(uni->name,
3623 interface_name,
3624 var_name))
3625 return 1;
3626 else if (field->type->is_unsized_array())
3627 return 0;
3628 else if (field->type->is_array())
3629 return field->type->length;
3630
3631 return 1;
3632 }
3633
3634 static int
3635 get_array_stride(struct gl_uniform_storage *uni, const glsl_type *interface,
3636 const glsl_struct_field *field, char *interface_name,
3637 char *var_name)
3638 {
3639 /* From GL_ARB_program_interface_query:
3640 *
3641 * "For the property TOP_LEVEL_ARRAY_STRIDE, a single integer
3642 * identifying the stride between array elements of the top-level
3643 * shader storage block member containing the active variable is
3644 * written to <params>. For top-level block members declared as
3645 * arrays, the value written is the difference, in basic machine
3646 * units, between the offsets of the active variable for
3647 * consecutive elements in the top-level array. For top-level
3648 * block members not declared as an array, zero is written to
3649 * <params>."
3650 */
3651 if (field->type->is_array()) {
3652 const enum glsl_matrix_layout matrix_layout =
3653 glsl_matrix_layout(field->matrix_layout);
3654 bool row_major = matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR;
3655 const glsl_type *array_type = field->type->fields.array;
3656
3657 if (is_top_level_shader_storage_block_member(uni->name,
3658 interface_name,
3659 var_name))
3660 return 0;
3661
3662 if (interface->interface_packing != GLSL_INTERFACE_PACKING_STD430) {
3663 if (array_type->is_record() || array_type->is_array())
3664 return glsl_align(array_type->std140_size(row_major), 16);
3665 else
3666 return MAX2(array_type->std140_base_alignment(row_major), 16);
3667 } else {
3668 return array_type->std430_array_stride(row_major);
3669 }
3670 }
3671 return 0;
3672 }
3673
3674 static void
3675 calculate_array_size_and_stride(struct gl_shader_program *shProg,
3676 struct gl_uniform_storage *uni)
3677 {
3678 int block_index = uni->block_index;
3679 int array_size = -1;
3680 int array_stride = -1;
3681 char *var_name = get_top_level_name(uni->name);
3682 char *interface_name =
3683 get_top_level_name(shProg->BufferInterfaceBlocks[block_index].Name);
3684
3685 if (strcmp(var_name, interface_name) == 0) {
3686 /* Deal with instanced array of SSBOs */
3687 char *temp_name = get_var_name(uni->name);
3688 if (!temp_name) {
3689 linker_error(shProg, "Out of memory during linking.\n");
3690 goto write_top_level_array_size_and_stride;
3691 }
3692 free(var_name);
3693 var_name = get_top_level_name(temp_name);
3694 free(temp_name);
3695 if (!var_name) {
3696 linker_error(shProg, "Out of memory during linking.\n");
3697 goto write_top_level_array_size_and_stride;
3698 }
3699 }
3700
3701 for (unsigned i = 0; i < shProg->NumShaders; i++) {
3702 if (shProg->Shaders[i] == NULL)
3703 continue;
3704
3705 const gl_shader *stage = shProg->Shaders[i];
3706 foreach_in_list(ir_instruction, node, stage->ir) {
3707 ir_variable *var = node->as_variable();
3708 if (!var || !var->get_interface_type() ||
3709 var->data.mode != ir_var_shader_storage)
3710 continue;
3711
3712 const glsl_type *interface = var->get_interface_type();
3713
3714 if (strcmp(interface_name, interface->name) != 0)
3715 continue;
3716
3717 for (unsigned i = 0; i < interface->length; i++) {
3718 const glsl_struct_field *field = &interface->fields.structure[i];
3719 if (strcmp(field->name, var_name) != 0)
3720 continue;
3721
3722 array_stride = get_array_stride(uni, interface, field,
3723 interface_name, var_name);
3724 array_size = get_array_size(uni, field, interface_name, var_name);
3725 goto write_top_level_array_size_and_stride;
3726 }
3727 }
3728 }
3729 write_top_level_array_size_and_stride:
3730 free(interface_name);
3731 free(var_name);
3732 uni->top_level_array_stride = array_stride;
3733 uni->top_level_array_size = array_size;
3734 }
3735
3736 /**
3737 * Builds up a list of program resources that point to existing
3738 * resource data.
3739 */
3740 void
3741 build_program_resource_list(struct gl_shader_program *shProg)
3742 {
3743 /* Rebuild resource list. */
3744 if (shProg->ProgramResourceList) {
3745 ralloc_free(shProg->ProgramResourceList);
3746 shProg->ProgramResourceList = NULL;
3747 shProg->NumProgramResourceList = 0;
3748 }
3749
3750 int input_stage = MESA_SHADER_STAGES, output_stage = 0;
3751
3752 /* Determine first input and final output stage. These are used to
3753 * detect which variables should be enumerated in the resource list
3754 * for GL_PROGRAM_INPUT and GL_PROGRAM_OUTPUT.
3755 */
3756 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3757 if (!shProg->_LinkedShaders[i])
3758 continue;
3759 if (input_stage == MESA_SHADER_STAGES)
3760 input_stage = i;
3761 output_stage = i;
3762 }
3763
3764 /* Empty shader, no resources. */
3765 if (input_stage == MESA_SHADER_STAGES && output_stage == 0)
3766 return;
3767
3768 /* Program interface needs to expose varyings in case of SSO. */
3769 if (shProg->SeparateShader) {
3770 if (!add_packed_varyings(shProg, input_stage, GL_PROGRAM_INPUT))
3771 return;
3772
3773 if (!add_packed_varyings(shProg, output_stage, GL_PROGRAM_OUTPUT))
3774 return;
3775 }
3776
3777 if (!add_fragdata_arrays(shProg))
3778 return;
3779
3780 /* Add inputs and outputs to the resource list. */
3781 if (!add_interface_variables(shProg, shProg->_LinkedShaders[input_stage]->ir,
3782 GL_PROGRAM_INPUT))
3783 return;
3784
3785 if (!add_interface_variables(shProg, shProg->_LinkedShaders[output_stage]->ir,
3786 GL_PROGRAM_OUTPUT))
3787 return;
3788
3789 /* Add transform feedback varyings. */
3790 if (shProg->LinkedTransformFeedback.NumVarying > 0) {
3791 for (int i = 0; i < shProg->LinkedTransformFeedback.NumVarying; i++) {
3792 if (!add_program_resource(shProg, GL_TRANSFORM_FEEDBACK_VARYING,
3793 &shProg->LinkedTransformFeedback.Varyings[i],
3794 0))
3795 return;
3796 }
3797 }
3798
3799 /* Add uniforms from uniform storage. */
3800 for (unsigned i = 0; i < shProg->NumUniformStorage; i++) {
3801 /* Do not add uniforms internally used by Mesa. */
3802 if (shProg->UniformStorage[i].hidden)
3803 continue;
3804
3805 uint8_t stageref =
3806 build_stageref(shProg, shProg->UniformStorage[i].name,
3807 ir_var_uniform);
3808
3809 /* Add stagereferences for uniforms in a uniform block. */
3810 int block_index = shProg->UniformStorage[i].block_index;
3811 if (block_index != -1) {
3812 for (unsigned j = 0; j < MESA_SHADER_STAGES; j++) {
3813 if (shProg->InterfaceBlockStageIndex[j][block_index] != -1)
3814 stageref |= (1 << j);
3815 }
3816 }
3817
3818 bool is_shader_storage = shProg->UniformStorage[i].is_shader_storage;
3819 GLenum type = is_shader_storage ? GL_BUFFER_VARIABLE : GL_UNIFORM;
3820 if (!should_add_buffer_variable(shProg, type,
3821 shProg->UniformStorage[i].name))
3822 continue;
3823
3824 if (is_shader_storage) {
3825 calculate_array_size_and_stride(shProg, &shProg->UniformStorage[i]);
3826 }
3827
3828 if (!add_program_resource(shProg, type,
3829 &shProg->UniformStorage[i], stageref))
3830 return;
3831 }
3832
3833 /* Add program uniform blocks and shader storage blocks. */
3834 for (unsigned i = 0; i < shProg->NumBufferInterfaceBlocks; i++) {
3835 bool is_shader_storage = shProg->BufferInterfaceBlocks[i].IsShaderStorage;
3836 GLenum type = is_shader_storage ? GL_SHADER_STORAGE_BLOCK : GL_UNIFORM_BLOCK;
3837 if (!add_program_resource(shProg, type,
3838 &shProg->BufferInterfaceBlocks[i], 0))
3839 return;
3840 }
3841
3842 /* Add atomic counter buffers. */
3843 for (unsigned i = 0; i < shProg->NumAtomicBuffers; i++) {
3844 if (!add_program_resource(shProg, GL_ATOMIC_COUNTER_BUFFER,
3845 &shProg->AtomicBuffers[i], 0))
3846 return;
3847 }
3848
3849 for (unsigned i = 0; i < shProg->NumUniformStorage; i++) {
3850 GLenum type;
3851 if (!shProg->UniformStorage[i].hidden)
3852 continue;
3853
3854 for (int j = MESA_SHADER_VERTEX; j < MESA_SHADER_STAGES; j++) {
3855 if (!shProg->UniformStorage[i].opaque[j].active ||
3856 !shProg->UniformStorage[i].type->is_subroutine())
3857 continue;
3858
3859 type = _mesa_shader_stage_to_subroutine_uniform((gl_shader_stage)j);
3860 /* add shader subroutines */
3861 if (!add_program_resource(shProg, type, &shProg->UniformStorage[i], 0))
3862 return;
3863 }
3864 }
3865
3866 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3867 struct gl_shader *sh = shProg->_LinkedShaders[i];
3868 GLuint type;
3869
3870 if (!sh)
3871 continue;
3872
3873 type = _mesa_shader_stage_to_subroutine((gl_shader_stage)i);
3874 for (unsigned j = 0; j < sh->NumSubroutineFunctions; j++) {
3875 if (!add_program_resource(shProg, type, &sh->SubroutineFunctions[j], 0))
3876 return;
3877 }
3878 }
3879 }
3880
3881 /**
3882 * This check is done to make sure we allow only constant expression
3883 * indexing and "constant-index-expression" (indexing with an expression
3884 * that includes loop induction variable).
3885 */
3886 static bool
3887 validate_sampler_array_indexing(struct gl_context *ctx,
3888 struct gl_shader_program *prog)
3889 {
3890 dynamic_sampler_array_indexing_visitor v;
3891 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3892 if (prog->_LinkedShaders[i] == NULL)
3893 continue;
3894
3895 bool no_dynamic_indexing =
3896 ctx->Const.ShaderCompilerOptions[i].EmitNoIndirectSampler;
3897
3898 /* Search for array derefs in shader. */
3899 v.run(prog->_LinkedShaders[i]->ir);
3900 if (v.uses_dynamic_sampler_array_indexing()) {
3901 const char *msg = "sampler arrays indexed with non-constant "
3902 "expressions is forbidden in GLSL %s %u";
3903 /* Backend has indicated that it has no dynamic indexing support. */
3904 if (no_dynamic_indexing) {
3905 linker_error(prog, msg, prog->IsES ? "ES" : "", prog->Version);
3906 return false;
3907 } else {
3908 linker_warning(prog, msg, prog->IsES ? "ES" : "", prog->Version);
3909 }
3910 }
3911 }
3912 return true;
3913 }
3914
3915 static void
3916 link_assign_subroutine_types(struct gl_shader_program *prog)
3917 {
3918 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3919 gl_shader *sh = prog->_LinkedShaders[i];
3920
3921 if (sh == NULL)
3922 continue;
3923
3924 foreach_in_list(ir_instruction, node, sh->ir) {
3925 ir_function *fn = node->as_function();
3926 if (!fn)
3927 continue;
3928
3929 if (fn->is_subroutine)
3930 sh->NumSubroutineUniformTypes++;
3931
3932 if (!fn->num_subroutine_types)
3933 continue;
3934
3935 sh->SubroutineFunctions = reralloc(sh, sh->SubroutineFunctions,
3936 struct gl_subroutine_function,
3937 sh->NumSubroutineFunctions + 1);
3938 sh->SubroutineFunctions[sh->NumSubroutineFunctions].name = ralloc_strdup(sh, fn->name);
3939 sh->SubroutineFunctions[sh->NumSubroutineFunctions].num_compat_types = fn->num_subroutine_types;
3940 sh->SubroutineFunctions[sh->NumSubroutineFunctions].types =
3941 ralloc_array(sh, const struct glsl_type *,
3942 fn->num_subroutine_types);
3943
3944 /* From Section 4.4.4(Subroutine Function Layout Qualifiers) of the
3945 * GLSL 4.5 spec:
3946 *
3947 * "Each subroutine with an index qualifier in the shader must be
3948 * given a unique index, otherwise a compile or link error will be
3949 * generated."
3950 */
3951 for (unsigned j = 0; j < sh->NumSubroutineFunctions; j++) {
3952 if (sh->SubroutineFunctions[j].index != -1 &&
3953 sh->SubroutineFunctions[j].index == fn->subroutine_index) {
3954 linker_error(prog, "each subroutine index qualifier in the "
3955 "shader must be unique\n");
3956 return;
3957 }
3958 }
3959 sh->SubroutineFunctions[sh->NumSubroutineFunctions].index =
3960 fn->subroutine_index;
3961
3962 for (int j = 0; j < fn->num_subroutine_types; j++)
3963 sh->SubroutineFunctions[sh->NumSubroutineFunctions].types[j] = fn->subroutine_types[j];
3964 sh->NumSubroutineFunctions++;
3965 }
3966
3967 /* Assign index for subroutines without an explicit index*/
3968 int index = 0;
3969 for (unsigned j = 0; j < sh->NumSubroutineFunctions; j++) {
3970 while (sh->SubroutineFunctions[j].index == -1) {
3971 for (unsigned k = 0; k < sh->NumSubroutineFunctions; k++) {
3972 if (sh->SubroutineFunctions[k].index == index)
3973 break;
3974 else if (k == sh->NumSubroutineFunctions - 1)
3975 sh->SubroutineFunctions[j].index = index;
3976 }
3977 index++;
3978 }
3979 }
3980 }
3981 }
3982
3983 static void
3984 split_ubos_and_ssbos(void *mem_ctx,
3985 struct gl_uniform_block *blocks,
3986 unsigned num_blocks,
3987 struct gl_uniform_block ***ubos,
3988 unsigned *num_ubos,
3989 unsigned **ubo_interface_block_indices,
3990 struct gl_uniform_block ***ssbos,
3991 unsigned *num_ssbos,
3992 unsigned **ssbo_interface_block_indices)
3993 {
3994 unsigned num_ubo_blocks = 0;
3995 unsigned num_ssbo_blocks = 0;
3996
3997 for (unsigned i = 0; i < num_blocks; i++) {
3998 if (blocks[i].IsShaderStorage)
3999 num_ssbo_blocks++;
4000 else
4001 num_ubo_blocks++;
4002 }
4003
4004 *ubos = ralloc_array(mem_ctx, gl_uniform_block *, num_ubo_blocks);
4005 *num_ubos = 0;
4006
4007 *ssbos = ralloc_array(mem_ctx, gl_uniform_block *, num_ssbo_blocks);
4008 *num_ssbos = 0;
4009
4010 if (ubo_interface_block_indices)
4011 *ubo_interface_block_indices =
4012 ralloc_array(mem_ctx, unsigned, num_ubo_blocks);
4013
4014 if (ssbo_interface_block_indices)
4015 *ssbo_interface_block_indices =
4016 ralloc_array(mem_ctx, unsigned, num_ssbo_blocks);
4017
4018 for (unsigned i = 0; i < num_blocks; i++) {
4019 if (blocks[i].IsShaderStorage) {
4020 (*ssbos)[*num_ssbos] = &blocks[i];
4021 if (ssbo_interface_block_indices)
4022 (*ssbo_interface_block_indices)[*num_ssbos] = i;
4023 (*num_ssbos)++;
4024 } else {
4025 (*ubos)[*num_ubos] = &blocks[i];
4026 if (ubo_interface_block_indices)
4027 (*ubo_interface_block_indices)[*num_ubos] = i;
4028 (*num_ubos)++;
4029 }
4030 }
4031
4032 assert(*num_ubos + *num_ssbos == num_blocks);
4033 }
4034
4035 static void
4036 set_always_active_io(exec_list *ir, ir_variable_mode io_mode)
4037 {
4038 assert(io_mode == ir_var_shader_in || io_mode == ir_var_shader_out);
4039
4040 foreach_in_list(ir_instruction, node, ir) {
4041 ir_variable *const var = node->as_variable();
4042
4043 if (var == NULL || var->data.mode != io_mode)
4044 continue;
4045
4046 /* Don't set always active on builtins that haven't been redeclared */
4047 if (var->data.how_declared == ir_var_declared_implicitly)
4048 continue;
4049
4050 var->data.always_active_io = true;
4051 }
4052 }
4053
4054 /**
4055 * When separate shader programs are enabled, only input/outputs between
4056 * the stages of a multi-stage separate program can be safely removed
4057 * from the shader interface. Other inputs/outputs must remain active.
4058 */
4059 static void
4060 disable_varying_optimizations_for_sso(struct gl_shader_program *prog)
4061 {
4062 unsigned first, last;
4063 assert(prog->SeparateShader);
4064
4065 first = MESA_SHADER_STAGES;
4066 last = 0;
4067
4068 /* Determine first and last stage. Excluding the compute stage */
4069 for (unsigned i = 0; i < MESA_SHADER_COMPUTE; i++) {
4070 if (!prog->_LinkedShaders[i])
4071 continue;
4072 if (first == MESA_SHADER_STAGES)
4073 first = i;
4074 last = i;
4075 }
4076
4077 if (first == MESA_SHADER_STAGES)
4078 return;
4079
4080 for (unsigned stage = 0; stage < MESA_SHADER_STAGES; stage++) {
4081 gl_shader *sh = prog->_LinkedShaders[stage];
4082 if (!sh)
4083 continue;
4084
4085 if (first == last) {
4086 /* For a single shader program only allow inputs to the vertex shader
4087 * and outputs from the fragment shader to be removed.
4088 */
4089 if (stage != MESA_SHADER_VERTEX)
4090 set_always_active_io(sh->ir, ir_var_shader_in);
4091 if (stage != MESA_SHADER_FRAGMENT)
4092 set_always_active_io(sh->ir, ir_var_shader_out);
4093 } else {
4094 /* For multi-stage separate shader programs only allow inputs and
4095 * outputs between the shader stages to be removed as well as inputs
4096 * to the vertex shader and outputs from the fragment shader.
4097 */
4098 if (stage == first && stage != MESA_SHADER_VERTEX)
4099 set_always_active_io(sh->ir, ir_var_shader_in);
4100 else if (stage == last && stage != MESA_SHADER_FRAGMENT)
4101 set_always_active_io(sh->ir, ir_var_shader_out);
4102 }
4103 }
4104 }
4105
4106 void
4107 link_shaders(struct gl_context *ctx, struct gl_shader_program *prog)
4108 {
4109 tfeedback_decl *tfeedback_decls = NULL;
4110 unsigned num_tfeedback_decls = prog->TransformFeedback.NumVarying;
4111
4112 void *mem_ctx = ralloc_context(NULL); // temporary linker context
4113
4114 prog->LinkStatus = true; /* All error paths will set this to false */
4115 prog->Validated = false;
4116 prog->_Used = false;
4117
4118 prog->ARB_fragment_coord_conventions_enable = false;
4119
4120 /* Separate the shaders into groups based on their type.
4121 */
4122 struct gl_shader **shader_list[MESA_SHADER_STAGES];
4123 unsigned num_shaders[MESA_SHADER_STAGES];
4124
4125 for (int i = 0; i < MESA_SHADER_STAGES; i++) {
4126 shader_list[i] = (struct gl_shader **)
4127 calloc(prog->NumShaders, sizeof(struct gl_shader *));
4128 num_shaders[i] = 0;
4129 }
4130
4131 unsigned min_version = UINT_MAX;
4132 unsigned max_version = 0;
4133 const bool is_es_prog =
4134 (prog->NumShaders > 0 && prog->Shaders[0]->IsES) ? true : false;
4135 for (unsigned i = 0; i < prog->NumShaders; i++) {
4136 min_version = MIN2(min_version, prog->Shaders[i]->Version);
4137 max_version = MAX2(max_version, prog->Shaders[i]->Version);
4138
4139 if (prog->Shaders[i]->IsES != is_es_prog) {
4140 linker_error(prog, "all shaders must use same shading "
4141 "language version\n");
4142 goto done;
4143 }
4144
4145 if (prog->Shaders[i]->ARB_fragment_coord_conventions_enable) {
4146 prog->ARB_fragment_coord_conventions_enable = true;
4147 }
4148
4149 gl_shader_stage shader_type = prog->Shaders[i]->Stage;
4150 shader_list[shader_type][num_shaders[shader_type]] = prog->Shaders[i];
4151 num_shaders[shader_type]++;
4152 }
4153
4154 /* In desktop GLSL, different shader versions may be linked together. In
4155 * GLSL ES, all shader versions must be the same.
4156 */
4157 if (is_es_prog && min_version != max_version) {
4158 linker_error(prog, "all shaders must use same shading "
4159 "language version\n");
4160 goto done;
4161 }
4162
4163 prog->Version = max_version;
4164 prog->IsES = is_es_prog;
4165
4166 /* From OpenGL 4.5 Core specification (7.3 Program Objects):
4167 * "Linking can fail for a variety of reasons as specified in the OpenGL
4168 * Shading Language Specification, as well as any of the following
4169 * reasons:
4170 *
4171 * * No shader objects are attached to program.
4172 *
4173 * ..."
4174 *
4175 * Same rule applies for OpenGL ES >= 3.1.
4176 */
4177
4178 if (prog->NumShaders == 0 &&
4179 ((ctx->API == API_OPENGL_CORE && ctx->Version >= 45) ||
4180 (ctx->API == API_OPENGLES2 && ctx->Version >= 31))) {
4181 linker_error(prog, "No shader objects are attached to program.\n");
4182 goto done;
4183 }
4184
4185 /* Some shaders have to be linked with some other shaders present.
4186 */
4187 if (num_shaders[MESA_SHADER_GEOMETRY] > 0 &&
4188 num_shaders[MESA_SHADER_VERTEX] == 0 &&
4189 !prog->SeparateShader) {
4190 linker_error(prog, "Geometry shader must be linked with "
4191 "vertex shader\n");
4192 goto done;
4193 }
4194 if (num_shaders[MESA_SHADER_TESS_EVAL] > 0 &&
4195 num_shaders[MESA_SHADER_VERTEX] == 0 &&
4196 !prog->SeparateShader) {
4197 linker_error(prog, "Tessellation evaluation shader must be linked with "
4198 "vertex shader\n");
4199 goto done;
4200 }
4201 if (num_shaders[MESA_SHADER_TESS_CTRL] > 0 &&
4202 num_shaders[MESA_SHADER_VERTEX] == 0 &&
4203 !prog->SeparateShader) {
4204 linker_error(prog, "Tessellation control shader must be linked with "
4205 "vertex shader\n");
4206 goto done;
4207 }
4208
4209 /* The spec is self-contradictory here. It allows linking without a tess
4210 * eval shader, but that can only be used with transform feedback and
4211 * rasterization disabled. However, transform feedback isn't allowed
4212 * with GL_PATCHES, so it can't be used.
4213 *
4214 * More investigation showed that the idea of transform feedback after
4215 * a tess control shader was dropped, because some hw vendors couldn't
4216 * support tessellation without a tess eval shader, but the linker section
4217 * wasn't updated to reflect that.
4218 *
4219 * All specifications (ARB_tessellation_shader, GL 4.0-4.5) have this
4220 * spec bug.
4221 *
4222 * Do what's reasonable and always require a tess eval shader if a tess
4223 * control shader is present.
4224 */
4225 if (num_shaders[MESA_SHADER_TESS_CTRL] > 0 &&
4226 num_shaders[MESA_SHADER_TESS_EVAL] == 0 &&
4227 !prog->SeparateShader) {
4228 linker_error(prog, "Tessellation control shader must be linked with "
4229 "tessellation evaluation shader\n");
4230 goto done;
4231 }
4232
4233 /* Compute shaders have additional restrictions. */
4234 if (num_shaders[MESA_SHADER_COMPUTE] > 0 &&
4235 num_shaders[MESA_SHADER_COMPUTE] != prog->NumShaders) {
4236 linker_error(prog, "Compute shaders may not be linked with any other "
4237 "type of shader\n");
4238 }
4239
4240 for (unsigned int i = 0; i < MESA_SHADER_STAGES; i++) {
4241 if (prog->_LinkedShaders[i] != NULL)
4242 _mesa_delete_shader(ctx, prog->_LinkedShaders[i]);
4243
4244 prog->_LinkedShaders[i] = NULL;
4245 }
4246
4247 /* Link all shaders for a particular stage and validate the result.
4248 */
4249 for (int stage = 0; stage < MESA_SHADER_STAGES; stage++) {
4250 if (num_shaders[stage] > 0) {
4251 gl_shader *const sh =
4252 link_intrastage_shaders(mem_ctx, ctx, prog, shader_list[stage],
4253 num_shaders[stage]);
4254
4255 if (!prog->LinkStatus) {
4256 if (sh)
4257 _mesa_delete_shader(ctx, sh);
4258 goto done;
4259 }
4260
4261 switch (stage) {
4262 case MESA_SHADER_VERTEX:
4263 validate_vertex_shader_executable(prog, sh);
4264 break;
4265 case MESA_SHADER_TESS_CTRL:
4266 /* nothing to be done */
4267 break;
4268 case MESA_SHADER_TESS_EVAL:
4269 validate_tess_eval_shader_executable(prog, sh);
4270 break;
4271 case MESA_SHADER_GEOMETRY:
4272 validate_geometry_shader_executable(prog, sh);
4273 break;
4274 case MESA_SHADER_FRAGMENT:
4275 validate_fragment_shader_executable(prog, sh);
4276 break;
4277 }
4278 if (!prog->LinkStatus) {
4279 if (sh)
4280 _mesa_delete_shader(ctx, sh);
4281 goto done;
4282 }
4283
4284 _mesa_reference_shader(ctx, &prog->_LinkedShaders[stage], sh);
4285 }
4286 }
4287
4288 if (num_shaders[MESA_SHADER_GEOMETRY] > 0)
4289 prog->LastClipDistanceArraySize = prog->Geom.ClipDistanceArraySize;
4290 else if (num_shaders[MESA_SHADER_TESS_EVAL] > 0)
4291 prog->LastClipDistanceArraySize = prog->TessEval.ClipDistanceArraySize;
4292 else if (num_shaders[MESA_SHADER_VERTEX] > 0)
4293 prog->LastClipDistanceArraySize = prog->Vert.ClipDistanceArraySize;
4294 else
4295 prog->LastClipDistanceArraySize = 0; /* Not used */
4296
4297 /* Here begins the inter-stage linking phase. Some initial validation is
4298 * performed, then locations are assigned for uniforms, attributes, and
4299 * varyings.
4300 */
4301 cross_validate_uniforms(prog);
4302 if (!prog->LinkStatus)
4303 goto done;
4304
4305 unsigned first, last, prev;
4306
4307 first = MESA_SHADER_STAGES;
4308 last = 0;
4309
4310 /* Determine first and last stage. */
4311 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4312 if (!prog->_LinkedShaders[i])
4313 continue;
4314 if (first == MESA_SHADER_STAGES)
4315 first = i;
4316 last = i;
4317 }
4318
4319 check_explicit_uniform_locations(ctx, prog);
4320 link_assign_subroutine_types(prog);
4321
4322 if (!prog->LinkStatus)
4323 goto done;
4324
4325 resize_tes_inputs(ctx, prog);
4326
4327 /* Validate the inputs of each stage with the output of the preceding
4328 * stage.
4329 */
4330 prev = first;
4331 for (unsigned i = prev + 1; i <= MESA_SHADER_FRAGMENT; i++) {
4332 if (prog->_LinkedShaders[i] == NULL)
4333 continue;
4334
4335 validate_interstage_inout_blocks(prog, prog->_LinkedShaders[prev],
4336 prog->_LinkedShaders[i]);
4337 if (!prog->LinkStatus)
4338 goto done;
4339
4340 cross_validate_outputs_to_inputs(prog,
4341 prog->_LinkedShaders[prev],
4342 prog->_LinkedShaders[i]);
4343 if (!prog->LinkStatus)
4344 goto done;
4345
4346 prev = i;
4347 }
4348
4349 /* Cross-validate uniform blocks between shader stages */
4350 validate_interstage_uniform_blocks(prog, prog->_LinkedShaders,
4351 MESA_SHADER_STAGES);
4352 if (!prog->LinkStatus)
4353 goto done;
4354
4355 for (unsigned int i = 0; i < MESA_SHADER_STAGES; i++) {
4356 if (prog->_LinkedShaders[i] != NULL)
4357 lower_named_interface_blocks(mem_ctx, prog->_LinkedShaders[i]);
4358 }
4359
4360 /* Implement the GLSL 1.30+ rule for discard vs infinite loops Do
4361 * it before optimization because we want most of the checks to get
4362 * dropped thanks to constant propagation.
4363 *
4364 * This rule also applies to GLSL ES 3.00.
4365 */
4366 if (max_version >= (is_es_prog ? 300 : 130)) {
4367 struct gl_shader *sh = prog->_LinkedShaders[MESA_SHADER_FRAGMENT];
4368 if (sh) {
4369 lower_discard_flow(sh->ir);
4370 }
4371 }
4372
4373 if (prog->SeparateShader)
4374 disable_varying_optimizations_for_sso(prog);
4375
4376 if (!interstage_cross_validate_uniform_blocks(prog))
4377 goto done;
4378
4379 /* Do common optimization before assigning storage for attributes,
4380 * uniforms, and varyings. Later optimization could possibly make
4381 * some of that unused.
4382 */
4383 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4384 if (prog->_LinkedShaders[i] == NULL)
4385 continue;
4386
4387 detect_recursion_linked(prog, prog->_LinkedShaders[i]->ir);
4388 if (!prog->LinkStatus)
4389 goto done;
4390
4391 if (ctx->Const.ShaderCompilerOptions[i].LowerClipDistance) {
4392 lower_clip_distance(prog->_LinkedShaders[i]);
4393 }
4394
4395 if (ctx->Const.LowerTessLevel) {
4396 lower_tess_level(prog->_LinkedShaders[i]);
4397 }
4398
4399 while (do_common_optimization(prog->_LinkedShaders[i]->ir, true, false,
4400 &ctx->Const.ShaderCompilerOptions[i],
4401 ctx->Const.NativeIntegers))
4402 ;
4403
4404 lower_const_arrays_to_uniforms(prog->_LinkedShaders[i]->ir);
4405 }
4406
4407 /* Validation for special cases where we allow sampler array indexing
4408 * with loop induction variable. This check emits a warning or error
4409 * depending if backend can handle dynamic indexing.
4410 */
4411 if ((!prog->IsES && prog->Version < 130) ||
4412 (prog->IsES && prog->Version < 300)) {
4413 if (!validate_sampler_array_indexing(ctx, prog))
4414 goto done;
4415 }
4416
4417 /* Check and validate stream emissions in geometry shaders */
4418 validate_geometry_shader_emissions(ctx, prog);
4419
4420 /* Mark all generic shader inputs and outputs as unpaired. */
4421 for (unsigned i = MESA_SHADER_VERTEX; i <= MESA_SHADER_FRAGMENT; i++) {
4422 if (prog->_LinkedShaders[i] != NULL) {
4423 link_invalidate_variable_locations(prog->_LinkedShaders[i]->ir);
4424 }
4425 }
4426
4427 prev = first;
4428 for (unsigned i = prev + 1; i <= MESA_SHADER_FRAGMENT; i++) {
4429 if (prog->_LinkedShaders[i] == NULL)
4430 continue;
4431
4432 match_explicit_outputs_to_inputs(prog, prog->_LinkedShaders[prev],
4433 prog->_LinkedShaders[i]);
4434 prev = i;
4435 }
4436
4437 if (!assign_attribute_or_color_locations(prog, &ctx->Const,
4438 MESA_SHADER_VERTEX)) {
4439 goto done;
4440 }
4441
4442 if (!assign_attribute_or_color_locations(prog, &ctx->Const,
4443 MESA_SHADER_FRAGMENT)) {
4444 goto done;
4445 }
4446
4447 if (num_tfeedback_decls != 0) {
4448 /* From GL_EXT_transform_feedback:
4449 * A program will fail to link if:
4450 *
4451 * * the <count> specified by TransformFeedbackVaryingsEXT is
4452 * non-zero, but the program object has no vertex or geometry
4453 * shader;
4454 */
4455 if (first == MESA_SHADER_FRAGMENT) {
4456 linker_error(prog, "Transform feedback varyings specified, but "
4457 "no vertex or geometry shader is present.\n");
4458 goto done;
4459 }
4460
4461 tfeedback_decls = ralloc_array(mem_ctx, tfeedback_decl,
4462 prog->TransformFeedback.NumVarying);
4463 if (!parse_tfeedback_decls(ctx, prog, mem_ctx, num_tfeedback_decls,
4464 prog->TransformFeedback.VaryingNames,
4465 tfeedback_decls))
4466 goto done;
4467 }
4468
4469 /* Linking the stages in the opposite order (from fragment to vertex)
4470 * ensures that inter-shader outputs written to in an earlier stage are
4471 * eliminated if they are (transitively) not used in a later stage.
4472 */
4473 int next;
4474
4475 if (first < MESA_SHADER_FRAGMENT) {
4476 gl_shader *const sh = prog->_LinkedShaders[last];
4477
4478 if (first != MESA_SHADER_VERTEX) {
4479 /* There was no vertex shader, but we still have to assign varying
4480 * locations for use by tessellation/geometry shader inputs in SSO.
4481 *
4482 * If the shader is not separable (i.e., prog->SeparateShader is
4483 * false), linking will have already failed when first is not
4484 * MESA_SHADER_VERTEX.
4485 */
4486 if (!assign_varying_locations(ctx, mem_ctx, prog,
4487 NULL, prog->_LinkedShaders[first],
4488 num_tfeedback_decls, tfeedback_decls))
4489 goto done;
4490 }
4491
4492 if (last != MESA_SHADER_FRAGMENT &&
4493 (num_tfeedback_decls != 0 || prog->SeparateShader)) {
4494 /* There was no fragment shader, but we still have to assign varying
4495 * locations for use by transform feedback.
4496 */
4497 if (!assign_varying_locations(ctx, mem_ctx, prog,
4498 sh, NULL,
4499 num_tfeedback_decls, tfeedback_decls))
4500 goto done;
4501 }
4502
4503 do_dead_builtin_varyings(ctx, sh, NULL,
4504 num_tfeedback_decls, tfeedback_decls);
4505
4506 remove_unused_shader_inputs_and_outputs(prog->SeparateShader, sh,
4507 ir_var_shader_out);
4508 }
4509 else if (first == MESA_SHADER_FRAGMENT) {
4510 /* If the program only contains a fragment shader...
4511 */
4512 gl_shader *const sh = prog->_LinkedShaders[first];
4513
4514 do_dead_builtin_varyings(ctx, NULL, sh,
4515 num_tfeedback_decls, tfeedback_decls);
4516
4517 if (prog->SeparateShader) {
4518 if (!assign_varying_locations(ctx, mem_ctx, prog,
4519 NULL /* producer */,
4520 sh /* consumer */,
4521 0 /* num_tfeedback_decls */,
4522 NULL /* tfeedback_decls */))
4523 goto done;
4524 } else {
4525 remove_unused_shader_inputs_and_outputs(false, sh,
4526 ir_var_shader_in);
4527 }
4528 }
4529
4530 next = last;
4531 for (int i = next - 1; i >= 0; i--) {
4532 if (prog->_LinkedShaders[i] == NULL)
4533 continue;
4534
4535 gl_shader *const sh_i = prog->_LinkedShaders[i];
4536 gl_shader *const sh_next = prog->_LinkedShaders[next];
4537
4538 if (!assign_varying_locations(ctx, mem_ctx, prog, sh_i, sh_next,
4539 next == MESA_SHADER_FRAGMENT ? num_tfeedback_decls : 0,
4540 tfeedback_decls))
4541 goto done;
4542
4543 do_dead_builtin_varyings(ctx, sh_i, sh_next,
4544 next == MESA_SHADER_FRAGMENT ? num_tfeedback_decls : 0,
4545 tfeedback_decls);
4546
4547 /* This must be done after all dead varyings are eliminated. */
4548 if (!check_against_output_limit(ctx, prog, sh_i))
4549 goto done;
4550 if (!check_against_input_limit(ctx, prog, sh_next))
4551 goto done;
4552
4553 next = i;
4554 }
4555
4556 if (!store_tfeedback_info(ctx, prog, num_tfeedback_decls, tfeedback_decls))
4557 goto done;
4558
4559 update_array_sizes(prog);
4560 link_assign_uniform_locations(prog, ctx->Const.UniformBooleanTrue);
4561 link_assign_atomic_counter_resources(ctx, prog);
4562 store_fragdepth_layout(prog);
4563
4564 link_calculate_subroutine_compat(prog);
4565 check_resources(ctx, prog);
4566 check_subroutine_resources(prog);
4567 check_image_resources(ctx, prog);
4568 link_check_atomic_counter_resources(ctx, prog);
4569
4570 if (!prog->LinkStatus)
4571 goto done;
4572
4573 /* OpenGL ES requires that a vertex shader and a fragment shader both be
4574 * present in a linked program. GL_ARB_ES2_compatibility doesn't say
4575 * anything about shader linking when one of the shaders (vertex or
4576 * fragment shader) is absent. So, the extension shouldn't change the
4577 * behavior specified in GLSL specification.
4578 */
4579 if (!prog->SeparateShader && ctx->API == API_OPENGLES2) {
4580 /* With ES < 3.1 one needs to have always vertex + fragment shader. */
4581 if (ctx->Version < 31) {
4582 if (prog->_LinkedShaders[MESA_SHADER_VERTEX] == NULL) {
4583 linker_error(prog, "program lacks a vertex shader\n");
4584 } else if (prog->_LinkedShaders[MESA_SHADER_FRAGMENT] == NULL) {
4585 linker_error(prog, "program lacks a fragment shader\n");
4586 }
4587 } else {
4588 /* From OpenGL ES 3.1 specification (7.3 Program Objects):
4589 * "Linking can fail for a variety of reasons as specified in the
4590 * OpenGL ES Shading Language Specification, as well as any of the
4591 * following reasons:
4592 *
4593 * ...
4594 *
4595 * * program contains objects to form either a vertex shader or
4596 * fragment shader, and program is not separable, and does not
4597 * contain objects to form both a vertex shader and fragment
4598 * shader."
4599 */
4600 if (!!prog->_LinkedShaders[MESA_SHADER_VERTEX] ^
4601 !!prog->_LinkedShaders[MESA_SHADER_FRAGMENT]) {
4602 linker_error(prog, "Program needs to contain both vertex and "
4603 "fragment shaders.\n");
4604 }
4605 }
4606 }
4607
4608 /* Split BufferInterfaceBlocks into UniformBlocks and ShaderStorageBlocks
4609 * for gl_shader_program and gl_shader, so that drivers that need separate
4610 * index spaces for each set can have that.
4611 */
4612 for (unsigned i = MESA_SHADER_VERTEX; i < MESA_SHADER_STAGES; i++) {
4613 if (prog->_LinkedShaders[i] != NULL) {
4614 gl_shader *sh = prog->_LinkedShaders[i];
4615 split_ubos_and_ssbos(sh,
4616 sh->BufferInterfaceBlocks,
4617 sh->NumBufferInterfaceBlocks,
4618 &sh->UniformBlocks,
4619 &sh->NumUniformBlocks,
4620 NULL,
4621 &sh->ShaderStorageBlocks,
4622 &sh->NumShaderStorageBlocks,
4623 NULL);
4624 }
4625 }
4626
4627 split_ubos_and_ssbos(prog,
4628 prog->BufferInterfaceBlocks,
4629 prog->NumBufferInterfaceBlocks,
4630 &prog->UniformBlocks,
4631 &prog->NumUniformBlocks,
4632 &prog->UboInterfaceBlockIndex,
4633 &prog->ShaderStorageBlocks,
4634 &prog->NumShaderStorageBlocks,
4635 &prog->SsboInterfaceBlockIndex);
4636
4637 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4638 if (prog->_LinkedShaders[i] == NULL)
4639 continue;
4640
4641 if (ctx->Const.ShaderCompilerOptions[i].LowerBufferInterfaceBlocks)
4642 lower_ubo_reference(prog->_LinkedShaders[i]);
4643
4644 if (ctx->Const.ShaderCompilerOptions[i].LowerShaderSharedVariables)
4645 lower_shared_reference(prog->_LinkedShaders[i],
4646 &prog->Comp.SharedSize);
4647
4648 lower_vector_derefs(prog->_LinkedShaders[i]);
4649 }
4650
4651 done:
4652 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4653 free(shader_list[i]);
4654 if (prog->_LinkedShaders[i] == NULL)
4655 continue;
4656
4657 /* Do a final validation step to make sure that the IR wasn't
4658 * invalidated by any modifications performed after intrastage linking.
4659 */
4660 validate_ir_tree(prog->_LinkedShaders[i]->ir);
4661
4662 /* Retain any live IR, but trash the rest. */
4663 reparent_ir(prog->_LinkedShaders[i]->ir, prog->_LinkedShaders[i]->ir);
4664
4665 /* The symbol table in the linked shaders may contain references to
4666 * variables that were removed (e.g., unused uniforms). Since it may
4667 * contain junk, there is no possible valid use. Delete it and set the
4668 * pointer to NULL.
4669 */
4670 delete prog->_LinkedShaders[i]->symbols;
4671 prog->_LinkedShaders[i]->symbols = NULL;
4672 }
4673
4674 ralloc_free(mem_ctx);
4675 }