mesa: change gl_link_status enums to uppercase
[mesa.git] / src / compiler / glsl / linker.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file linker.cpp
26 * GLSL linker implementation
27 *
28 * Given a set of shaders that are to be linked to generate a final program,
29 * there are three distinct stages.
30 *
31 * In the first stage shaders are partitioned into groups based on the shader
32 * type. All shaders of a particular type (e.g., vertex shaders) are linked
33 * together.
34 *
35 * - Undefined references in each shader are resolve to definitions in
36 * another shader.
37 * - Types and qualifiers of uniforms, outputs, and global variables defined
38 * in multiple shaders with the same name are verified to be the same.
39 * - Initializers for uniforms and global variables defined
40 * in multiple shaders with the same name are verified to be the same.
41 *
42 * The result, in the terminology of the GLSL spec, is a set of shader
43 * executables for each processing unit.
44 *
45 * After the first stage is complete, a series of semantic checks are performed
46 * on each of the shader executables.
47 *
48 * - Each shader executable must define a \c main function.
49 * - Each vertex shader executable must write to \c gl_Position.
50 * - Each fragment shader executable must write to either \c gl_FragData or
51 * \c gl_FragColor.
52 *
53 * In the final stage individual shader executables are linked to create a
54 * complete exectuable.
55 *
56 * - Types of uniforms defined in multiple shader stages with the same name
57 * are verified to be the same.
58 * - Initializers for uniforms defined in multiple shader stages with the
59 * same name are verified to be the same.
60 * - Types and qualifiers of outputs defined in one stage are verified to
61 * be the same as the types and qualifiers of inputs defined with the same
62 * name in a later stage.
63 *
64 * \author Ian Romanick <ian.d.romanick@intel.com>
65 */
66
67 #include <ctype.h>
68 #include "util/strndup.h"
69 #include "main/core.h"
70 #include "glsl_symbol_table.h"
71 #include "glsl_parser_extras.h"
72 #include "ir.h"
73 #include "program.h"
74 #include "program/prog_instruction.h"
75 #include "program/program.h"
76 #include "util/mesa-sha1.h"
77 #include "util/set.h"
78 #include "string_to_uint_map.h"
79 #include "linker.h"
80 #include "link_varyings.h"
81 #include "ir_optimization.h"
82 #include "ir_rvalue_visitor.h"
83 #include "ir_uniform.h"
84 #include "builtin_functions.h"
85 #include "shader_cache.h"
86
87 #include "main/shaderobj.h"
88 #include "main/enums.h"
89
90
91 namespace {
92
93 struct find_variable {
94 const char *name;
95 bool found;
96
97 find_variable(const char *name) : name(name), found(false) {}
98 };
99
100 /**
101 * Visitor that determines whether or not a variable is ever written.
102 *
103 * Use \ref find_assignments for convenience.
104 */
105 class find_assignment_visitor : public ir_hierarchical_visitor {
106 public:
107 find_assignment_visitor(unsigned num_vars,
108 find_variable * const *vars)
109 : num_variables(num_vars), num_found(0), variables(vars)
110 {
111 }
112
113 virtual ir_visitor_status visit_enter(ir_assignment *ir)
114 {
115 ir_variable *const var = ir->lhs->variable_referenced();
116
117 return check_variable_name(var->name);
118 }
119
120 virtual ir_visitor_status visit_enter(ir_call *ir)
121 {
122 foreach_two_lists(formal_node, &ir->callee->parameters,
123 actual_node, &ir->actual_parameters) {
124 ir_rvalue *param_rval = (ir_rvalue *) actual_node;
125 ir_variable *sig_param = (ir_variable *) formal_node;
126
127 if (sig_param->data.mode == ir_var_function_out ||
128 sig_param->data.mode == ir_var_function_inout) {
129 ir_variable *var = param_rval->variable_referenced();
130 if (var && check_variable_name(var->name) == visit_stop)
131 return visit_stop;
132 }
133 }
134
135 if (ir->return_deref != NULL) {
136 ir_variable *const var = ir->return_deref->variable_referenced();
137
138 if (check_variable_name(var->name) == visit_stop)
139 return visit_stop;
140 }
141
142 return visit_continue_with_parent;
143 }
144
145 private:
146 ir_visitor_status check_variable_name(const char *name)
147 {
148 for (unsigned i = 0; i < num_variables; ++i) {
149 if (strcmp(variables[i]->name, name) == 0) {
150 if (!variables[i]->found) {
151 variables[i]->found = true;
152
153 assert(num_found < num_variables);
154 if (++num_found == num_variables)
155 return visit_stop;
156 }
157 break;
158 }
159 }
160
161 return visit_continue_with_parent;
162 }
163
164 private:
165 unsigned num_variables; /**< Number of variables to find */
166 unsigned num_found; /**< Number of variables already found */
167 find_variable * const *variables; /**< Variables to find */
168 };
169
170 /**
171 * Determine whether or not any of NULL-terminated list of variables is ever
172 * written to.
173 */
174 static void
175 find_assignments(exec_list *ir, find_variable * const *vars)
176 {
177 unsigned num_variables = 0;
178
179 for (find_variable * const *v = vars; *v; ++v)
180 num_variables++;
181
182 find_assignment_visitor visitor(num_variables, vars);
183 visitor.run(ir);
184 }
185
186 /**
187 * Determine whether or not the given variable is ever written to.
188 */
189 static void
190 find_assignments(exec_list *ir, find_variable *var)
191 {
192 find_assignment_visitor visitor(1, &var);
193 visitor.run(ir);
194 }
195
196 /**
197 * Visitor that determines whether or not a variable is ever read.
198 */
199 class find_deref_visitor : public ir_hierarchical_visitor {
200 public:
201 find_deref_visitor(const char *name)
202 : name(name), found(false)
203 {
204 /* empty */
205 }
206
207 virtual ir_visitor_status visit(ir_dereference_variable *ir)
208 {
209 if (strcmp(this->name, ir->var->name) == 0) {
210 this->found = true;
211 return visit_stop;
212 }
213
214 return visit_continue;
215 }
216
217 bool variable_found() const
218 {
219 return this->found;
220 }
221
222 private:
223 const char *name; /**< Find writes to a variable with this name. */
224 bool found; /**< Was a write to the variable found? */
225 };
226
227
228 /**
229 * A visitor helper that provides methods for updating the types of
230 * ir_dereferences. Classes that update variable types (say, updating
231 * array sizes) will want to use this so that dereference types stay in sync.
232 */
233 class deref_type_updater : public ir_hierarchical_visitor {
234 public:
235 virtual ir_visitor_status visit(ir_dereference_variable *ir)
236 {
237 ir->type = ir->var->type;
238 return visit_continue;
239 }
240
241 virtual ir_visitor_status visit_leave(ir_dereference_array *ir)
242 {
243 const glsl_type *const vt = ir->array->type;
244 if (vt->is_array())
245 ir->type = vt->fields.array;
246 return visit_continue;
247 }
248
249 virtual ir_visitor_status visit_leave(ir_dereference_record *ir)
250 {
251 ir->type = ir->record->type->fields.structure[ir->field_idx].type;
252 return visit_continue;
253 }
254 };
255
256
257 class array_resize_visitor : public deref_type_updater {
258 public:
259 unsigned num_vertices;
260 gl_shader_program *prog;
261 gl_shader_stage stage;
262
263 array_resize_visitor(unsigned num_vertices,
264 gl_shader_program *prog,
265 gl_shader_stage stage)
266 {
267 this->num_vertices = num_vertices;
268 this->prog = prog;
269 this->stage = stage;
270 }
271
272 virtual ~array_resize_visitor()
273 {
274 /* empty */
275 }
276
277 virtual ir_visitor_status visit(ir_variable *var)
278 {
279 if (!var->type->is_array() || var->data.mode != ir_var_shader_in ||
280 var->data.patch)
281 return visit_continue;
282
283 unsigned size = var->type->length;
284
285 if (stage == MESA_SHADER_GEOMETRY) {
286 /* Generate a link error if the shader has declared this array with
287 * an incorrect size.
288 */
289 if (!var->data.implicit_sized_array &&
290 size && size != this->num_vertices) {
291 linker_error(this->prog, "size of array %s declared as %u, "
292 "but number of input vertices is %u\n",
293 var->name, size, this->num_vertices);
294 return visit_continue;
295 }
296
297 /* Generate a link error if the shader attempts to access an input
298 * array using an index too large for its actual size assigned at
299 * link time.
300 */
301 if (var->data.max_array_access >= (int)this->num_vertices) {
302 linker_error(this->prog, "%s shader accesses element %i of "
303 "%s, but only %i input vertices\n",
304 _mesa_shader_stage_to_string(this->stage),
305 var->data.max_array_access, var->name, this->num_vertices);
306 return visit_continue;
307 }
308 }
309
310 var->type = glsl_type::get_array_instance(var->type->fields.array,
311 this->num_vertices);
312 var->data.max_array_access = this->num_vertices - 1;
313
314 return visit_continue;
315 }
316 };
317
318 /**
319 * Visitor that determines the highest stream id to which a (geometry) shader
320 * emits vertices. It also checks whether End{Stream}Primitive is ever called.
321 */
322 class find_emit_vertex_visitor : public ir_hierarchical_visitor {
323 public:
324 find_emit_vertex_visitor(int max_allowed)
325 : max_stream_allowed(max_allowed),
326 invalid_stream_id(0),
327 invalid_stream_id_from_emit_vertex(false),
328 end_primitive_found(false),
329 uses_non_zero_stream(false)
330 {
331 /* empty */
332 }
333
334 virtual ir_visitor_status visit_leave(ir_emit_vertex *ir)
335 {
336 int stream_id = ir->stream_id();
337
338 if (stream_id < 0) {
339 invalid_stream_id = stream_id;
340 invalid_stream_id_from_emit_vertex = true;
341 return visit_stop;
342 }
343
344 if (stream_id > max_stream_allowed) {
345 invalid_stream_id = stream_id;
346 invalid_stream_id_from_emit_vertex = true;
347 return visit_stop;
348 }
349
350 if (stream_id != 0)
351 uses_non_zero_stream = true;
352
353 return visit_continue;
354 }
355
356 virtual ir_visitor_status visit_leave(ir_end_primitive *ir)
357 {
358 end_primitive_found = true;
359
360 int stream_id = ir->stream_id();
361
362 if (stream_id < 0) {
363 invalid_stream_id = stream_id;
364 invalid_stream_id_from_emit_vertex = false;
365 return visit_stop;
366 }
367
368 if (stream_id > max_stream_allowed) {
369 invalid_stream_id = stream_id;
370 invalid_stream_id_from_emit_vertex = false;
371 return visit_stop;
372 }
373
374 if (stream_id != 0)
375 uses_non_zero_stream = true;
376
377 return visit_continue;
378 }
379
380 bool error()
381 {
382 return invalid_stream_id != 0;
383 }
384
385 const char *error_func()
386 {
387 return invalid_stream_id_from_emit_vertex ?
388 "EmitStreamVertex" : "EndStreamPrimitive";
389 }
390
391 int error_stream()
392 {
393 return invalid_stream_id;
394 }
395
396 bool uses_streams()
397 {
398 return uses_non_zero_stream;
399 }
400
401 bool uses_end_primitive()
402 {
403 return end_primitive_found;
404 }
405
406 private:
407 int max_stream_allowed;
408 int invalid_stream_id;
409 bool invalid_stream_id_from_emit_vertex;
410 bool end_primitive_found;
411 bool uses_non_zero_stream;
412 };
413
414 /* Class that finds array derefs and check if indexes are dynamic. */
415 class dynamic_sampler_array_indexing_visitor : public ir_hierarchical_visitor
416 {
417 public:
418 dynamic_sampler_array_indexing_visitor() :
419 dynamic_sampler_array_indexing(false)
420 {
421 }
422
423 ir_visitor_status visit_enter(ir_dereference_array *ir)
424 {
425 if (!ir->variable_referenced())
426 return visit_continue;
427
428 if (!ir->variable_referenced()->type->contains_sampler())
429 return visit_continue;
430
431 if (!ir->array_index->constant_expression_value(ralloc_parent(ir))) {
432 dynamic_sampler_array_indexing = true;
433 return visit_stop;
434 }
435 return visit_continue;
436 }
437
438 bool uses_dynamic_sampler_array_indexing()
439 {
440 return dynamic_sampler_array_indexing;
441 }
442
443 private:
444 bool dynamic_sampler_array_indexing;
445 };
446
447 } /* anonymous namespace */
448
449 void
450 linker_error(gl_shader_program *prog, const char *fmt, ...)
451 {
452 va_list ap;
453
454 ralloc_strcat(&prog->data->InfoLog, "error: ");
455 va_start(ap, fmt);
456 ralloc_vasprintf_append(&prog->data->InfoLog, fmt, ap);
457 va_end(ap);
458
459 prog->data->LinkStatus = LINKING_FAILURE;
460 }
461
462
463 void
464 linker_warning(gl_shader_program *prog, const char *fmt, ...)
465 {
466 va_list ap;
467
468 ralloc_strcat(&prog->data->InfoLog, "warning: ");
469 va_start(ap, fmt);
470 ralloc_vasprintf_append(&prog->data->InfoLog, fmt, ap);
471 va_end(ap);
472
473 }
474
475
476 /**
477 * Given a string identifying a program resource, break it into a base name
478 * and an optional array index in square brackets.
479 *
480 * If an array index is present, \c out_base_name_end is set to point to the
481 * "[" that precedes the array index, and the array index itself is returned
482 * as a long.
483 *
484 * If no array index is present (or if the array index is negative or
485 * mal-formed), \c out_base_name_end, is set to point to the null terminator
486 * at the end of the input string, and -1 is returned.
487 *
488 * Only the final array index is parsed; if the string contains other array
489 * indices (or structure field accesses), they are left in the base name.
490 *
491 * No attempt is made to check that the base name is properly formed;
492 * typically the caller will look up the base name in a hash table, so
493 * ill-formed base names simply turn into hash table lookup failures.
494 */
495 long
496 parse_program_resource_name(const GLchar *name,
497 const GLchar **out_base_name_end)
498 {
499 /* Section 7.3.1 ("Program Interfaces") of the OpenGL 4.3 spec says:
500 *
501 * "When an integer array element or block instance number is part of
502 * the name string, it will be specified in decimal form without a "+"
503 * or "-" sign or any extra leading zeroes. Additionally, the name
504 * string will not include white space anywhere in the string."
505 */
506
507 const size_t len = strlen(name);
508 *out_base_name_end = name + len;
509
510 if (len == 0 || name[len-1] != ']')
511 return -1;
512
513 /* Walk backwards over the string looking for a non-digit character. This
514 * had better be the opening bracket for an array index.
515 *
516 * Initially, i specifies the location of the ']'. Since the string may
517 * contain only the ']' charcater, walk backwards very carefully.
518 */
519 unsigned i;
520 for (i = len - 1; (i > 0) && isdigit(name[i-1]); --i)
521 /* empty */ ;
522
523 if ((i == 0) || name[i-1] != '[')
524 return -1;
525
526 long array_index = strtol(&name[i], NULL, 10);
527 if (array_index < 0)
528 return -1;
529
530 /* Check for leading zero */
531 if (name[i] == '0' && name[i+1] != ']')
532 return -1;
533
534 *out_base_name_end = name + (i - 1);
535 return array_index;
536 }
537
538
539 void
540 link_invalidate_variable_locations(exec_list *ir)
541 {
542 foreach_in_list(ir_instruction, node, ir) {
543 ir_variable *const var = node->as_variable();
544
545 if (var == NULL)
546 continue;
547
548 /* Only assign locations for variables that lack an explicit location.
549 * Explicit locations are set for all built-in variables, generic vertex
550 * shader inputs (via layout(location=...)), and generic fragment shader
551 * outputs (also via layout(location=...)).
552 */
553 if (!var->data.explicit_location) {
554 var->data.location = -1;
555 var->data.location_frac = 0;
556 }
557
558 /* ir_variable::is_unmatched_generic_inout is used by the linker while
559 * connecting outputs from one stage to inputs of the next stage.
560 */
561 if (var->data.explicit_location &&
562 var->data.location < VARYING_SLOT_VAR0) {
563 var->data.is_unmatched_generic_inout = 0;
564 } else {
565 var->data.is_unmatched_generic_inout = 1;
566 }
567 }
568 }
569
570
571 /**
572 * Set clip_distance_array_size based and cull_distance_array_size on the given
573 * shader.
574 *
575 * Also check for errors based on incorrect usage of gl_ClipVertex and
576 * gl_ClipDistance and gl_CullDistance.
577 * Additionally test whether the arrays gl_ClipDistance and gl_CullDistance
578 * exceed the maximum size defined by gl_MaxCombinedClipAndCullDistances.
579 *
580 * Return false if an error was reported.
581 */
582 static void
583 analyze_clip_cull_usage(struct gl_shader_program *prog,
584 struct gl_linked_shader *shader,
585 struct gl_context *ctx,
586 GLuint *clip_distance_array_size,
587 GLuint *cull_distance_array_size)
588 {
589 *clip_distance_array_size = 0;
590 *cull_distance_array_size = 0;
591
592 if (prog->data->Version >= (prog->IsES ? 300 : 130)) {
593 /* From section 7.1 (Vertex Shader Special Variables) of the
594 * GLSL 1.30 spec:
595 *
596 * "It is an error for a shader to statically write both
597 * gl_ClipVertex and gl_ClipDistance."
598 *
599 * This does not apply to GLSL ES shaders, since GLSL ES defines neither
600 * gl_ClipVertex nor gl_ClipDistance. However with
601 * GL_EXT_clip_cull_distance, this functionality is exposed in ES 3.0.
602 */
603 find_variable gl_ClipDistance("gl_ClipDistance");
604 find_variable gl_CullDistance("gl_CullDistance");
605 find_variable gl_ClipVertex("gl_ClipVertex");
606 find_variable * const variables[] = {
607 &gl_ClipDistance,
608 &gl_CullDistance,
609 !prog->IsES ? &gl_ClipVertex : NULL,
610 NULL
611 };
612 find_assignments(shader->ir, variables);
613
614 /* From the ARB_cull_distance spec:
615 *
616 * It is a compile-time or link-time error for the set of shaders forming
617 * a program to statically read or write both gl_ClipVertex and either
618 * gl_ClipDistance or gl_CullDistance.
619 *
620 * This does not apply to GLSL ES shaders, since GLSL ES doesn't define
621 * gl_ClipVertex.
622 */
623 if (!prog->IsES) {
624 if (gl_ClipVertex.found && gl_ClipDistance.found) {
625 linker_error(prog, "%s shader writes to both `gl_ClipVertex' "
626 "and `gl_ClipDistance'\n",
627 _mesa_shader_stage_to_string(shader->Stage));
628 return;
629 }
630 if (gl_ClipVertex.found && gl_CullDistance.found) {
631 linker_error(prog, "%s shader writes to both `gl_ClipVertex' "
632 "and `gl_CullDistance'\n",
633 _mesa_shader_stage_to_string(shader->Stage));
634 return;
635 }
636 }
637
638 if (gl_ClipDistance.found) {
639 ir_variable *clip_distance_var =
640 shader->symbols->get_variable("gl_ClipDistance");
641 assert(clip_distance_var);
642 *clip_distance_array_size = clip_distance_var->type->length;
643 }
644 if (gl_CullDistance.found) {
645 ir_variable *cull_distance_var =
646 shader->symbols->get_variable("gl_CullDistance");
647 assert(cull_distance_var);
648 *cull_distance_array_size = cull_distance_var->type->length;
649 }
650 /* From the ARB_cull_distance spec:
651 *
652 * It is a compile-time or link-time error for the set of shaders forming
653 * a program to have the sum of the sizes of the gl_ClipDistance and
654 * gl_CullDistance arrays to be larger than
655 * gl_MaxCombinedClipAndCullDistances.
656 */
657 if ((*clip_distance_array_size + *cull_distance_array_size) >
658 ctx->Const.MaxClipPlanes) {
659 linker_error(prog, "%s shader: the combined size of "
660 "'gl_ClipDistance' and 'gl_CullDistance' size cannot "
661 "be larger than "
662 "gl_MaxCombinedClipAndCullDistances (%u)",
663 _mesa_shader_stage_to_string(shader->Stage),
664 ctx->Const.MaxClipPlanes);
665 }
666 }
667 }
668
669
670 /**
671 * Verify that a vertex shader executable meets all semantic requirements.
672 *
673 * Also sets info.clip_distance_array_size and
674 * info.cull_distance_array_size as a side effect.
675 *
676 * \param shader Vertex shader executable to be verified
677 */
678 static void
679 validate_vertex_shader_executable(struct gl_shader_program *prog,
680 struct gl_linked_shader *shader,
681 struct gl_context *ctx)
682 {
683 if (shader == NULL)
684 return;
685
686 /* From the GLSL 1.10 spec, page 48:
687 *
688 * "The variable gl_Position is available only in the vertex
689 * language and is intended for writing the homogeneous vertex
690 * position. All executions of a well-formed vertex shader
691 * executable must write a value into this variable. [...] The
692 * variable gl_Position is available only in the vertex
693 * language and is intended for writing the homogeneous vertex
694 * position. All executions of a well-formed vertex shader
695 * executable must write a value into this variable."
696 *
697 * while in GLSL 1.40 this text is changed to:
698 *
699 * "The variable gl_Position is available only in the vertex
700 * language and is intended for writing the homogeneous vertex
701 * position. It can be written at any time during shader
702 * execution. It may also be read back by a vertex shader
703 * after being written. This value will be used by primitive
704 * assembly, clipping, culling, and other fixed functionality
705 * operations, if present, that operate on primitives after
706 * vertex processing has occurred. Its value is undefined if
707 * the vertex shader executable does not write gl_Position."
708 *
709 * All GLSL ES Versions are similar to GLSL 1.40--failing to write to
710 * gl_Position is not an error.
711 */
712 if (prog->data->Version < (prog->IsES ? 300 : 140)) {
713 find_variable gl_Position("gl_Position");
714 find_assignments(shader->ir, &gl_Position);
715 if (!gl_Position.found) {
716 if (prog->IsES) {
717 linker_warning(prog,
718 "vertex shader does not write to `gl_Position'. "
719 "Its value is undefined. \n");
720 } else {
721 linker_error(prog,
722 "vertex shader does not write to `gl_Position'. \n");
723 }
724 return;
725 }
726 }
727
728 analyze_clip_cull_usage(prog, shader, ctx,
729 &shader->Program->info.clip_distance_array_size,
730 &shader->Program->info.cull_distance_array_size);
731 }
732
733 static void
734 validate_tess_eval_shader_executable(struct gl_shader_program *prog,
735 struct gl_linked_shader *shader,
736 struct gl_context *ctx)
737 {
738 if (shader == NULL)
739 return;
740
741 analyze_clip_cull_usage(prog, shader, ctx,
742 &shader->Program->info.clip_distance_array_size,
743 &shader->Program->info.cull_distance_array_size);
744 }
745
746
747 /**
748 * Verify that a fragment shader executable meets all semantic requirements
749 *
750 * \param shader Fragment shader executable to be verified
751 */
752 static void
753 validate_fragment_shader_executable(struct gl_shader_program *prog,
754 struct gl_linked_shader *shader)
755 {
756 if (shader == NULL)
757 return;
758
759 find_variable gl_FragColor("gl_FragColor");
760 find_variable gl_FragData("gl_FragData");
761 find_variable * const variables[] = { &gl_FragColor, &gl_FragData, NULL };
762 find_assignments(shader->ir, variables);
763
764 if (gl_FragColor.found && gl_FragData.found) {
765 linker_error(prog, "fragment shader writes to both "
766 "`gl_FragColor' and `gl_FragData'\n");
767 }
768 }
769
770 /**
771 * Verify that a geometry shader executable meets all semantic requirements
772 *
773 * Also sets prog->Geom.VerticesIn, and info.clip_distance_array_sizeand
774 * info.cull_distance_array_size as a side effect.
775 *
776 * \param shader Geometry shader executable to be verified
777 */
778 static void
779 validate_geometry_shader_executable(struct gl_shader_program *prog,
780 struct gl_linked_shader *shader,
781 struct gl_context *ctx)
782 {
783 if (shader == NULL)
784 return;
785
786 unsigned num_vertices =
787 vertices_per_prim(shader->Program->info.gs.input_primitive);
788 prog->Geom.VerticesIn = num_vertices;
789
790 analyze_clip_cull_usage(prog, shader, ctx,
791 &shader->Program->info.clip_distance_array_size,
792 &shader->Program->info.cull_distance_array_size);
793 }
794
795 /**
796 * Check if geometry shaders emit to non-zero streams and do corresponding
797 * validations.
798 */
799 static void
800 validate_geometry_shader_emissions(struct gl_context *ctx,
801 struct gl_shader_program *prog)
802 {
803 struct gl_linked_shader *sh = prog->_LinkedShaders[MESA_SHADER_GEOMETRY];
804
805 if (sh != NULL) {
806 find_emit_vertex_visitor emit_vertex(ctx->Const.MaxVertexStreams - 1);
807 emit_vertex.run(sh->ir);
808 if (emit_vertex.error()) {
809 linker_error(prog, "Invalid call %s(%d). Accepted values for the "
810 "stream parameter are in the range [0, %d].\n",
811 emit_vertex.error_func(),
812 emit_vertex.error_stream(),
813 ctx->Const.MaxVertexStreams - 1);
814 }
815 prog->Geom.UsesStreams = emit_vertex.uses_streams();
816 prog->Geom.UsesEndPrimitive = emit_vertex.uses_end_primitive();
817
818 /* From the ARB_gpu_shader5 spec:
819 *
820 * "Multiple vertex streams are supported only if the output primitive
821 * type is declared to be "points". A program will fail to link if it
822 * contains a geometry shader calling EmitStreamVertex() or
823 * EndStreamPrimitive() if its output primitive type is not "points".
824 *
825 * However, in the same spec:
826 *
827 * "The function EmitVertex() is equivalent to calling EmitStreamVertex()
828 * with <stream> set to zero."
829 *
830 * And:
831 *
832 * "The function EndPrimitive() is equivalent to calling
833 * EndStreamPrimitive() with <stream> set to zero."
834 *
835 * Since we can call EmitVertex() and EndPrimitive() when we output
836 * primitives other than points, calling EmitStreamVertex(0) or
837 * EmitEndPrimitive(0) should not produce errors. This it also what Nvidia
838 * does. Currently we only set prog->Geom.UsesStreams to TRUE when
839 * EmitStreamVertex() or EmitEndPrimitive() are called with a non-zero
840 * stream.
841 */
842 if (prog->Geom.UsesStreams &&
843 sh->Program->info.gs.output_primitive != GL_POINTS) {
844 linker_error(prog, "EmitStreamVertex(n) and EndStreamPrimitive(n) "
845 "with n>0 requires point output\n");
846 }
847 }
848 }
849
850 bool
851 validate_intrastage_arrays(struct gl_shader_program *prog,
852 ir_variable *const var,
853 ir_variable *const existing)
854 {
855 /* Consider the types to be "the same" if both types are arrays
856 * of the same type and one of the arrays is implicitly sized.
857 * In addition, set the type of the linked variable to the
858 * explicitly sized array.
859 */
860 if (var->type->is_array() && existing->type->is_array()) {
861 if ((var->type->fields.array == existing->type->fields.array) &&
862 ((var->type->length == 0)|| (existing->type->length == 0))) {
863 if (var->type->length != 0) {
864 if ((int)var->type->length <= existing->data.max_array_access) {
865 linker_error(prog, "%s `%s' declared as type "
866 "`%s' but outermost dimension has an index"
867 " of `%i'\n",
868 mode_string(var),
869 var->name, var->type->name,
870 existing->data.max_array_access);
871 }
872 existing->type = var->type;
873 return true;
874 } else if (existing->type->length != 0) {
875 if((int)existing->type->length <= var->data.max_array_access &&
876 !existing->data.from_ssbo_unsized_array) {
877 linker_error(prog, "%s `%s' declared as type "
878 "`%s' but outermost dimension has an index"
879 " of `%i'\n",
880 mode_string(var),
881 var->name, existing->type->name,
882 var->data.max_array_access);
883 }
884 return true;
885 }
886 }
887 }
888 return false;
889 }
890
891
892 /**
893 * Perform validation of global variables used across multiple shaders
894 */
895 static void
896 cross_validate_globals(struct gl_shader_program *prog,
897 struct exec_list *ir, glsl_symbol_table *variables,
898 bool uniforms_only)
899 {
900 foreach_in_list(ir_instruction, node, ir) {
901 ir_variable *const var = node->as_variable();
902
903 if (var == NULL)
904 continue;
905
906 if (uniforms_only && (var->data.mode != ir_var_uniform && var->data.mode != ir_var_shader_storage))
907 continue;
908
909 /* don't cross validate subroutine uniforms */
910 if (var->type->contains_subroutine())
911 continue;
912
913 /* Don't cross validate interface instances. These are only relevant
914 * inside a shader. The cross validation is done at the Interface Block
915 * name level.
916 */
917 if (var->is_interface_instance())
918 continue;
919
920 /* Don't cross validate temporaries that are at global scope. These
921 * will eventually get pulled into the shaders 'main'.
922 */
923 if (var->data.mode == ir_var_temporary)
924 continue;
925
926 /* If a global with this name has already been seen, verify that the
927 * new instance has the same type. In addition, if the globals have
928 * initializers, the values of the initializers must be the same.
929 */
930 ir_variable *const existing = variables->get_variable(var->name);
931 if (existing != NULL) {
932 /* Check if types match. */
933 if (var->type != existing->type) {
934 if (!validate_intrastage_arrays(prog, var, existing)) {
935 /* If it is an unsized array in a Shader Storage Block,
936 * two different shaders can access to different elements.
937 * Because of that, they might be converted to different
938 * sized arrays, then check that they are compatible but
939 * ignore the array size.
940 */
941 if (!(var->data.mode == ir_var_shader_storage &&
942 var->data.from_ssbo_unsized_array &&
943 existing->data.mode == ir_var_shader_storage &&
944 existing->data.from_ssbo_unsized_array &&
945 var->type->gl_type == existing->type->gl_type)) {
946 linker_error(prog, "%s `%s' declared as type "
947 "`%s' and type `%s'\n",
948 mode_string(var),
949 var->name, var->type->name,
950 existing->type->name);
951 return;
952 }
953 }
954 }
955
956 if (var->data.explicit_location) {
957 if (existing->data.explicit_location
958 && (var->data.location != existing->data.location)) {
959 linker_error(prog, "explicit locations for %s "
960 "`%s' have differing values\n",
961 mode_string(var), var->name);
962 return;
963 }
964
965 if (var->data.location_frac != existing->data.location_frac) {
966 linker_error(prog, "explicit components for %s `%s' have "
967 "differing values\n", mode_string(var), var->name);
968 return;
969 }
970
971 existing->data.location = var->data.location;
972 existing->data.explicit_location = true;
973 } else {
974 /* Check if uniform with implicit location was marked explicit
975 * by earlier shader stage. If so, mark it explicit in this stage
976 * too to make sure later processing does not treat it as
977 * implicit one.
978 */
979 if (existing->data.explicit_location) {
980 var->data.location = existing->data.location;
981 var->data.explicit_location = true;
982 }
983 }
984
985 /* From the GLSL 4.20 specification:
986 * "A link error will result if two compilation units in a program
987 * specify different integer-constant bindings for the same
988 * opaque-uniform name. However, it is not an error to specify a
989 * binding on some but not all declarations for the same name"
990 */
991 if (var->data.explicit_binding) {
992 if (existing->data.explicit_binding &&
993 var->data.binding != existing->data.binding) {
994 linker_error(prog, "explicit bindings for %s "
995 "`%s' have differing values\n",
996 mode_string(var), var->name);
997 return;
998 }
999
1000 existing->data.binding = var->data.binding;
1001 existing->data.explicit_binding = true;
1002 }
1003
1004 if (var->type->contains_atomic() &&
1005 var->data.offset != existing->data.offset) {
1006 linker_error(prog, "offset specifications for %s "
1007 "`%s' have differing values\n",
1008 mode_string(var), var->name);
1009 return;
1010 }
1011
1012 /* Validate layout qualifiers for gl_FragDepth.
1013 *
1014 * From the AMD/ARB_conservative_depth specs:
1015 *
1016 * "If gl_FragDepth is redeclared in any fragment shader in a
1017 * program, it must be redeclared in all fragment shaders in
1018 * that program that have static assignments to
1019 * gl_FragDepth. All redeclarations of gl_FragDepth in all
1020 * fragment shaders in a single program must have the same set
1021 * of qualifiers."
1022 */
1023 if (strcmp(var->name, "gl_FragDepth") == 0) {
1024 bool layout_declared = var->data.depth_layout != ir_depth_layout_none;
1025 bool layout_differs =
1026 var->data.depth_layout != existing->data.depth_layout;
1027
1028 if (layout_declared && layout_differs) {
1029 linker_error(prog,
1030 "All redeclarations of gl_FragDepth in all "
1031 "fragment shaders in a single program must have "
1032 "the same set of qualifiers.\n");
1033 }
1034
1035 if (var->data.used && layout_differs) {
1036 linker_error(prog,
1037 "If gl_FragDepth is redeclared with a layout "
1038 "qualifier in any fragment shader, it must be "
1039 "redeclared with the same layout qualifier in "
1040 "all fragment shaders that have assignments to "
1041 "gl_FragDepth\n");
1042 }
1043 }
1044
1045 /* Page 35 (page 41 of the PDF) of the GLSL 4.20 spec says:
1046 *
1047 * "If a shared global has multiple initializers, the
1048 * initializers must all be constant expressions, and they
1049 * must all have the same value. Otherwise, a link error will
1050 * result. (A shared global having only one initializer does
1051 * not require that initializer to be a constant expression.)"
1052 *
1053 * Previous to 4.20 the GLSL spec simply said that initializers
1054 * must have the same value. In this case of non-constant
1055 * initializers, this was impossible to determine. As a result,
1056 * no vendor actually implemented that behavior. The 4.20
1057 * behavior matches the implemented behavior of at least one other
1058 * vendor, so we'll implement that for all GLSL versions.
1059 */
1060 if (var->constant_initializer != NULL) {
1061 if (existing->constant_initializer != NULL) {
1062 if (!var->constant_initializer->has_value(existing->constant_initializer)) {
1063 linker_error(prog, "initializers for %s "
1064 "`%s' have differing values\n",
1065 mode_string(var), var->name);
1066 return;
1067 }
1068 } else {
1069 /* If the first-seen instance of a particular uniform did
1070 * not have an initializer but a later instance does,
1071 * replace the former with the later.
1072 */
1073 variables->replace_variable(existing->name, var);
1074 }
1075 }
1076
1077 if (var->data.has_initializer) {
1078 if (existing->data.has_initializer
1079 && (var->constant_initializer == NULL
1080 || existing->constant_initializer == NULL)) {
1081 linker_error(prog,
1082 "shared global variable `%s' has multiple "
1083 "non-constant initializers.\n",
1084 var->name);
1085 return;
1086 }
1087 }
1088
1089 if (existing->data.invariant != var->data.invariant) {
1090 linker_error(prog, "declarations for %s `%s' have "
1091 "mismatching invariant qualifiers\n",
1092 mode_string(var), var->name);
1093 return;
1094 }
1095 if (existing->data.centroid != var->data.centroid) {
1096 linker_error(prog, "declarations for %s `%s' have "
1097 "mismatching centroid qualifiers\n",
1098 mode_string(var), var->name);
1099 return;
1100 }
1101 if (existing->data.sample != var->data.sample) {
1102 linker_error(prog, "declarations for %s `%s` have "
1103 "mismatching sample qualifiers\n",
1104 mode_string(var), var->name);
1105 return;
1106 }
1107 if (existing->data.image_format != var->data.image_format) {
1108 linker_error(prog, "declarations for %s `%s` have "
1109 "mismatching image format qualifiers\n",
1110 mode_string(var), var->name);
1111 return;
1112 }
1113
1114 /* In OpenGL GLSL 4.20 spec, section 4.3.9, page 57:
1115 *
1116 * "It is a link-time error if any particular shader interface
1117 * contains:
1118 *
1119 * - two different blocks, each having no instance name, and each
1120 * having a member of the same name, or
1121 *
1122 * - a variable outside a block, and a block with no instance name,
1123 * where the variable has the same name as a member in the block."
1124 */
1125 if (var->data.mode == existing->data.mode &&
1126 var->get_interface_type() != existing->get_interface_type()) {
1127 linker_error(prog, "declarations for %s `%s` are in "
1128 "%s and %s\n",
1129 mode_string(var), var->name,
1130 existing->get_interface_type() ?
1131 existing->get_interface_type()->name : "outside a block",
1132 var->get_interface_type() ?
1133 var->get_interface_type()->name : "outside a block");
1134
1135 return;
1136 }
1137 /* Only in GLSL ES 3.10, the precision qualifier should not match
1138 * between block members defined in matched block names within a
1139 * shader interface.
1140 *
1141 * In GLSL ES 3.00 and ES 3.20, precision qualifier for each block
1142 * member should match.
1143 */
1144 if (prog->IsES && (prog->data->Version != 310 ||
1145 !var->get_interface_type()) &&
1146 existing->data.precision != var->data.precision) {
1147 if ((existing->data.used && var->data.used) || prog->data->Version >= 300) {
1148 linker_error(prog, "declarations for %s `%s` have "
1149 "mismatching precision qualifiers\n",
1150 mode_string(var), var->name);
1151 return;
1152 } else {
1153 linker_warning(prog, "declarations for %s `%s` have "
1154 "mismatching precision qualifiers\n",
1155 mode_string(var), var->name);
1156 }
1157 }
1158 } else
1159 variables->add_variable(var);
1160 }
1161 }
1162
1163
1164 /**
1165 * Perform validation of uniforms used across multiple shader stages
1166 */
1167 static void
1168 cross_validate_uniforms(struct gl_shader_program *prog)
1169 {
1170 glsl_symbol_table variables;
1171 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1172 if (prog->_LinkedShaders[i] == NULL)
1173 continue;
1174
1175 cross_validate_globals(prog, prog->_LinkedShaders[i]->ir, &variables,
1176 true);
1177 }
1178 }
1179
1180 /**
1181 * Accumulates the array of buffer blocks and checks that all definitions of
1182 * blocks agree on their contents.
1183 */
1184 static bool
1185 interstage_cross_validate_uniform_blocks(struct gl_shader_program *prog,
1186 bool validate_ssbo)
1187 {
1188 int *InterfaceBlockStageIndex[MESA_SHADER_STAGES];
1189 struct gl_uniform_block *blks = NULL;
1190 unsigned *num_blks = validate_ssbo ? &prog->data->NumShaderStorageBlocks :
1191 &prog->data->NumUniformBlocks;
1192
1193 unsigned max_num_buffer_blocks = 0;
1194 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1195 if (prog->_LinkedShaders[i]) {
1196 if (validate_ssbo) {
1197 max_num_buffer_blocks +=
1198 prog->_LinkedShaders[i]->Program->info.num_ssbos;
1199 } else {
1200 max_num_buffer_blocks +=
1201 prog->_LinkedShaders[i]->Program->info.num_ubos;
1202 }
1203 }
1204 }
1205
1206 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1207 struct gl_linked_shader *sh = prog->_LinkedShaders[i];
1208
1209 InterfaceBlockStageIndex[i] = new int[max_num_buffer_blocks];
1210 for (unsigned int j = 0; j < max_num_buffer_blocks; j++)
1211 InterfaceBlockStageIndex[i][j] = -1;
1212
1213 if (sh == NULL)
1214 continue;
1215
1216 unsigned sh_num_blocks;
1217 struct gl_uniform_block **sh_blks;
1218 if (validate_ssbo) {
1219 sh_num_blocks = prog->_LinkedShaders[i]->Program->info.num_ssbos;
1220 sh_blks = sh->Program->sh.ShaderStorageBlocks;
1221 } else {
1222 sh_num_blocks = prog->_LinkedShaders[i]->Program->info.num_ubos;
1223 sh_blks = sh->Program->sh.UniformBlocks;
1224 }
1225
1226 for (unsigned int j = 0; j < sh_num_blocks; j++) {
1227 int index = link_cross_validate_uniform_block(prog->data, &blks,
1228 num_blks, sh_blks[j]);
1229
1230 if (index == -1) {
1231 linker_error(prog, "buffer block `%s' has mismatching "
1232 "definitions\n", sh_blks[j]->Name);
1233
1234 for (unsigned k = 0; k <= i; k++) {
1235 delete[] InterfaceBlockStageIndex[k];
1236 }
1237
1238 /* Reset the block count. This will help avoid various segfaults
1239 * from api calls that assume the array exists due to the count
1240 * being non-zero.
1241 */
1242 *num_blks = 0;
1243 return false;
1244 }
1245
1246 InterfaceBlockStageIndex[i][index] = j;
1247 }
1248 }
1249
1250 /* Update per stage block pointers to point to the program list.
1251 * FIXME: We should be able to free the per stage blocks here.
1252 */
1253 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1254 for (unsigned j = 0; j < *num_blks; j++) {
1255 int stage_index = InterfaceBlockStageIndex[i][j];
1256
1257 if (stage_index != -1) {
1258 struct gl_linked_shader *sh = prog->_LinkedShaders[i];
1259
1260 struct gl_uniform_block **sh_blks = validate_ssbo ?
1261 sh->Program->sh.ShaderStorageBlocks :
1262 sh->Program->sh.UniformBlocks;
1263
1264 blks[j].stageref |= sh_blks[stage_index]->stageref;
1265 sh_blks[stage_index] = &blks[j];
1266 }
1267 }
1268 }
1269
1270 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1271 delete[] InterfaceBlockStageIndex[i];
1272 }
1273
1274 if (validate_ssbo)
1275 prog->data->ShaderStorageBlocks = blks;
1276 else
1277 prog->data->UniformBlocks = blks;
1278
1279 return true;
1280 }
1281
1282
1283 /**
1284 * Populates a shaders symbol table with all global declarations
1285 */
1286 static void
1287 populate_symbol_table(gl_linked_shader *sh, glsl_symbol_table *symbols)
1288 {
1289 sh->symbols = new(sh) glsl_symbol_table;
1290
1291 _mesa_glsl_copy_symbols_from_table(sh->ir, symbols, sh->symbols);
1292 }
1293
1294
1295 /**
1296 * Remap variables referenced in an instruction tree
1297 *
1298 * This is used when instruction trees are cloned from one shader and placed in
1299 * another. These trees will contain references to \c ir_variable nodes that
1300 * do not exist in the target shader. This function finds these \c ir_variable
1301 * references and replaces the references with matching variables in the target
1302 * shader.
1303 *
1304 * If there is no matching variable in the target shader, a clone of the
1305 * \c ir_variable is made and added to the target shader. The new variable is
1306 * added to \b both the instruction stream and the symbol table.
1307 *
1308 * \param inst IR tree that is to be processed.
1309 * \param symbols Symbol table containing global scope symbols in the
1310 * linked shader.
1311 * \param instructions Instruction stream where new variable declarations
1312 * should be added.
1313 */
1314 static void
1315 remap_variables(ir_instruction *inst, struct gl_linked_shader *target,
1316 hash_table *temps)
1317 {
1318 class remap_visitor : public ir_hierarchical_visitor {
1319 public:
1320 remap_visitor(struct gl_linked_shader *target, hash_table *temps)
1321 {
1322 this->target = target;
1323 this->symbols = target->symbols;
1324 this->instructions = target->ir;
1325 this->temps = temps;
1326 }
1327
1328 virtual ir_visitor_status visit(ir_dereference_variable *ir)
1329 {
1330 if (ir->var->data.mode == ir_var_temporary) {
1331 hash_entry *entry = _mesa_hash_table_search(temps, ir->var);
1332 ir_variable *var = entry ? (ir_variable *) entry->data : NULL;
1333
1334 assert(var != NULL);
1335 ir->var = var;
1336 return visit_continue;
1337 }
1338
1339 ir_variable *const existing =
1340 this->symbols->get_variable(ir->var->name);
1341 if (existing != NULL)
1342 ir->var = existing;
1343 else {
1344 ir_variable *copy = ir->var->clone(this->target, NULL);
1345
1346 this->symbols->add_variable(copy);
1347 this->instructions->push_head(copy);
1348 ir->var = copy;
1349 }
1350
1351 return visit_continue;
1352 }
1353
1354 private:
1355 struct gl_linked_shader *target;
1356 glsl_symbol_table *symbols;
1357 exec_list *instructions;
1358 hash_table *temps;
1359 };
1360
1361 remap_visitor v(target, temps);
1362
1363 inst->accept(&v);
1364 }
1365
1366
1367 /**
1368 * Move non-declarations from one instruction stream to another
1369 *
1370 * The intended usage pattern of this function is to pass the pointer to the
1371 * head sentinel of a list (i.e., a pointer to the list cast to an \c exec_node
1372 * pointer) for \c last and \c false for \c make_copies on the first
1373 * call. Successive calls pass the return value of the previous call for
1374 * \c last and \c true for \c make_copies.
1375 *
1376 * \param instructions Source instruction stream
1377 * \param last Instruction after which new instructions should be
1378 * inserted in the target instruction stream
1379 * \param make_copies Flag selecting whether instructions in \c instructions
1380 * should be copied (via \c ir_instruction::clone) into the
1381 * target list or moved.
1382 *
1383 * \return
1384 * The new "last" instruction in the target instruction stream. This pointer
1385 * is suitable for use as the \c last parameter of a later call to this
1386 * function.
1387 */
1388 static exec_node *
1389 move_non_declarations(exec_list *instructions, exec_node *last,
1390 bool make_copies, gl_linked_shader *target)
1391 {
1392 hash_table *temps = NULL;
1393
1394 if (make_copies)
1395 temps = _mesa_hash_table_create(NULL, _mesa_hash_pointer,
1396 _mesa_key_pointer_equal);
1397
1398 foreach_in_list_safe(ir_instruction, inst, instructions) {
1399 if (inst->as_function())
1400 continue;
1401
1402 ir_variable *var = inst->as_variable();
1403 if ((var != NULL) && (var->data.mode != ir_var_temporary))
1404 continue;
1405
1406 assert(inst->as_assignment()
1407 || inst->as_call()
1408 || inst->as_if() /* for initializers with the ?: operator */
1409 || ((var != NULL) && (var->data.mode == ir_var_temporary)));
1410
1411 if (make_copies) {
1412 inst = inst->clone(target, NULL);
1413
1414 if (var != NULL)
1415 _mesa_hash_table_insert(temps, var, inst);
1416 else
1417 remap_variables(inst, target, temps);
1418 } else {
1419 inst->remove();
1420 }
1421
1422 last->insert_after(inst);
1423 last = inst;
1424 }
1425
1426 if (make_copies)
1427 _mesa_hash_table_destroy(temps, NULL);
1428
1429 return last;
1430 }
1431
1432
1433 /**
1434 * This class is only used in link_intrastage_shaders() below but declaring
1435 * it inside that function leads to compiler warnings with some versions of
1436 * gcc.
1437 */
1438 class array_sizing_visitor : public deref_type_updater {
1439 public:
1440 array_sizing_visitor()
1441 : mem_ctx(ralloc_context(NULL)),
1442 unnamed_interfaces(_mesa_hash_table_create(NULL, _mesa_hash_pointer,
1443 _mesa_key_pointer_equal))
1444 {
1445 }
1446
1447 ~array_sizing_visitor()
1448 {
1449 _mesa_hash_table_destroy(this->unnamed_interfaces, NULL);
1450 ralloc_free(this->mem_ctx);
1451 }
1452
1453 virtual ir_visitor_status visit(ir_variable *var)
1454 {
1455 const glsl_type *type_without_array;
1456 bool implicit_sized_array = var->data.implicit_sized_array;
1457 fixup_type(&var->type, var->data.max_array_access,
1458 var->data.from_ssbo_unsized_array,
1459 &implicit_sized_array);
1460 var->data.implicit_sized_array = implicit_sized_array;
1461 type_without_array = var->type->without_array();
1462 if (var->type->is_interface()) {
1463 if (interface_contains_unsized_arrays(var->type)) {
1464 const glsl_type *new_type =
1465 resize_interface_members(var->type,
1466 var->get_max_ifc_array_access(),
1467 var->is_in_shader_storage_block());
1468 var->type = new_type;
1469 var->change_interface_type(new_type);
1470 }
1471 } else if (type_without_array->is_interface()) {
1472 if (interface_contains_unsized_arrays(type_without_array)) {
1473 const glsl_type *new_type =
1474 resize_interface_members(type_without_array,
1475 var->get_max_ifc_array_access(),
1476 var->is_in_shader_storage_block());
1477 var->change_interface_type(new_type);
1478 var->type = update_interface_members_array(var->type, new_type);
1479 }
1480 } else if (const glsl_type *ifc_type = var->get_interface_type()) {
1481 /* Store a pointer to the variable in the unnamed_interfaces
1482 * hashtable.
1483 */
1484 hash_entry *entry =
1485 _mesa_hash_table_search(this->unnamed_interfaces,
1486 ifc_type);
1487
1488 ir_variable **interface_vars = entry ? (ir_variable **) entry->data : NULL;
1489
1490 if (interface_vars == NULL) {
1491 interface_vars = rzalloc_array(mem_ctx, ir_variable *,
1492 ifc_type->length);
1493 _mesa_hash_table_insert(this->unnamed_interfaces, ifc_type,
1494 interface_vars);
1495 }
1496 unsigned index = ifc_type->field_index(var->name);
1497 assert(index < ifc_type->length);
1498 assert(interface_vars[index] == NULL);
1499 interface_vars[index] = var;
1500 }
1501 return visit_continue;
1502 }
1503
1504 /**
1505 * For each unnamed interface block that was discovered while running the
1506 * visitor, adjust the interface type to reflect the newly assigned array
1507 * sizes, and fix up the ir_variable nodes to point to the new interface
1508 * type.
1509 */
1510 void fixup_unnamed_interface_types()
1511 {
1512 hash_table_call_foreach(this->unnamed_interfaces,
1513 fixup_unnamed_interface_type, NULL);
1514 }
1515
1516 private:
1517 /**
1518 * If the type pointed to by \c type represents an unsized array, replace
1519 * it with a sized array whose size is determined by max_array_access.
1520 */
1521 static void fixup_type(const glsl_type **type, unsigned max_array_access,
1522 bool from_ssbo_unsized_array, bool *implicit_sized)
1523 {
1524 if (!from_ssbo_unsized_array && (*type)->is_unsized_array()) {
1525 *type = glsl_type::get_array_instance((*type)->fields.array,
1526 max_array_access + 1);
1527 *implicit_sized = true;
1528 assert(*type != NULL);
1529 }
1530 }
1531
1532 static const glsl_type *
1533 update_interface_members_array(const glsl_type *type,
1534 const glsl_type *new_interface_type)
1535 {
1536 const glsl_type *element_type = type->fields.array;
1537 if (element_type->is_array()) {
1538 const glsl_type *new_array_type =
1539 update_interface_members_array(element_type, new_interface_type);
1540 return glsl_type::get_array_instance(new_array_type, type->length);
1541 } else {
1542 return glsl_type::get_array_instance(new_interface_type,
1543 type->length);
1544 }
1545 }
1546
1547 /**
1548 * Determine whether the given interface type contains unsized arrays (if
1549 * it doesn't, array_sizing_visitor doesn't need to process it).
1550 */
1551 static bool interface_contains_unsized_arrays(const glsl_type *type)
1552 {
1553 for (unsigned i = 0; i < type->length; i++) {
1554 const glsl_type *elem_type = type->fields.structure[i].type;
1555 if (elem_type->is_unsized_array())
1556 return true;
1557 }
1558 return false;
1559 }
1560
1561 /**
1562 * Create a new interface type based on the given type, with unsized arrays
1563 * replaced by sized arrays whose size is determined by
1564 * max_ifc_array_access.
1565 */
1566 static const glsl_type *
1567 resize_interface_members(const glsl_type *type,
1568 const int *max_ifc_array_access,
1569 bool is_ssbo)
1570 {
1571 unsigned num_fields = type->length;
1572 glsl_struct_field *fields = new glsl_struct_field[num_fields];
1573 memcpy(fields, type->fields.structure,
1574 num_fields * sizeof(*fields));
1575 for (unsigned i = 0; i < num_fields; i++) {
1576 bool implicit_sized_array = fields[i].implicit_sized_array;
1577 /* If SSBO last member is unsized array, we don't replace it by a sized
1578 * array.
1579 */
1580 if (is_ssbo && i == (num_fields - 1))
1581 fixup_type(&fields[i].type, max_ifc_array_access[i],
1582 true, &implicit_sized_array);
1583 else
1584 fixup_type(&fields[i].type, max_ifc_array_access[i],
1585 false, &implicit_sized_array);
1586 fields[i].implicit_sized_array = implicit_sized_array;
1587 }
1588 glsl_interface_packing packing =
1589 (glsl_interface_packing) type->interface_packing;
1590 bool row_major = (bool) type->interface_row_major;
1591 const glsl_type *new_ifc_type =
1592 glsl_type::get_interface_instance(fields, num_fields,
1593 packing, row_major, type->name);
1594 delete [] fields;
1595 return new_ifc_type;
1596 }
1597
1598 static void fixup_unnamed_interface_type(const void *key, void *data,
1599 void *)
1600 {
1601 const glsl_type *ifc_type = (const glsl_type *) key;
1602 ir_variable **interface_vars = (ir_variable **) data;
1603 unsigned num_fields = ifc_type->length;
1604 glsl_struct_field *fields = new glsl_struct_field[num_fields];
1605 memcpy(fields, ifc_type->fields.structure,
1606 num_fields * sizeof(*fields));
1607 bool interface_type_changed = false;
1608 for (unsigned i = 0; i < num_fields; i++) {
1609 if (interface_vars[i] != NULL &&
1610 fields[i].type != interface_vars[i]->type) {
1611 fields[i].type = interface_vars[i]->type;
1612 interface_type_changed = true;
1613 }
1614 }
1615 if (!interface_type_changed) {
1616 delete [] fields;
1617 return;
1618 }
1619 glsl_interface_packing packing =
1620 (glsl_interface_packing) ifc_type->interface_packing;
1621 bool row_major = (bool) ifc_type->interface_row_major;
1622 const glsl_type *new_ifc_type =
1623 glsl_type::get_interface_instance(fields, num_fields, packing,
1624 row_major, ifc_type->name);
1625 delete [] fields;
1626 for (unsigned i = 0; i < num_fields; i++) {
1627 if (interface_vars[i] != NULL)
1628 interface_vars[i]->change_interface_type(new_ifc_type);
1629 }
1630 }
1631
1632 /**
1633 * Memory context used to allocate the data in \c unnamed_interfaces.
1634 */
1635 void *mem_ctx;
1636
1637 /**
1638 * Hash table from const glsl_type * to an array of ir_variable *'s
1639 * pointing to the ir_variables constituting each unnamed interface block.
1640 */
1641 hash_table *unnamed_interfaces;
1642 };
1643
1644 static bool
1645 validate_xfb_buffer_stride(struct gl_context *ctx, unsigned idx,
1646 struct gl_shader_program *prog)
1647 {
1648 /* We will validate doubles at a later stage */
1649 if (prog->TransformFeedback.BufferStride[idx] % 4) {
1650 linker_error(prog, "invalid qualifier xfb_stride=%d must be a "
1651 "multiple of 4 or if its applied to a type that is "
1652 "or contains a double a multiple of 8.",
1653 prog->TransformFeedback.BufferStride[idx]);
1654 return false;
1655 }
1656
1657 if (prog->TransformFeedback.BufferStride[idx] / 4 >
1658 ctx->Const.MaxTransformFeedbackInterleavedComponents) {
1659 linker_error(prog, "The MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS "
1660 "limit has been exceeded.");
1661 return false;
1662 }
1663
1664 return true;
1665 }
1666
1667 /**
1668 * Check for conflicting xfb_stride default qualifiers and store buffer stride
1669 * for later use.
1670 */
1671 static void
1672 link_xfb_stride_layout_qualifiers(struct gl_context *ctx,
1673 struct gl_shader_program *prog,
1674 struct gl_shader **shader_list,
1675 unsigned num_shaders)
1676 {
1677 for (unsigned i = 0; i < MAX_FEEDBACK_BUFFERS; i++) {
1678 prog->TransformFeedback.BufferStride[i] = 0;
1679 }
1680
1681 for (unsigned i = 0; i < num_shaders; i++) {
1682 struct gl_shader *shader = shader_list[i];
1683
1684 for (unsigned j = 0; j < MAX_FEEDBACK_BUFFERS; j++) {
1685 if (shader->TransformFeedbackBufferStride[j]) {
1686 if (prog->TransformFeedback.BufferStride[j] == 0) {
1687 prog->TransformFeedback.BufferStride[j] =
1688 shader->TransformFeedbackBufferStride[j];
1689 if (!validate_xfb_buffer_stride(ctx, j, prog))
1690 return;
1691 } else if (prog->TransformFeedback.BufferStride[j] !=
1692 shader->TransformFeedbackBufferStride[j]){
1693 linker_error(prog,
1694 "intrastage shaders defined with conflicting "
1695 "xfb_stride for buffer %d (%d and %d)\n", j,
1696 prog->TransformFeedback.BufferStride[j],
1697 shader->TransformFeedbackBufferStride[j]);
1698 return;
1699 }
1700 }
1701 }
1702 }
1703 }
1704
1705 /**
1706 * Check for conflicting bindless/bound sampler/image layout qualifiers at
1707 * global scope.
1708 */
1709 static void
1710 link_bindless_layout_qualifiers(struct gl_shader_program *prog,
1711 struct gl_shader **shader_list,
1712 unsigned num_shaders)
1713 {
1714 bool bindless_sampler, bindless_image;
1715 bool bound_sampler, bound_image;
1716
1717 bindless_sampler = bindless_image = false;
1718 bound_sampler = bound_image = false;
1719
1720 for (unsigned i = 0; i < num_shaders; i++) {
1721 struct gl_shader *shader = shader_list[i];
1722
1723 if (shader->bindless_sampler)
1724 bindless_sampler = true;
1725 if (shader->bindless_image)
1726 bindless_image = true;
1727 if (shader->bound_sampler)
1728 bound_sampler = true;
1729 if (shader->bound_image)
1730 bound_image = true;
1731
1732 if ((bindless_sampler && bound_sampler) ||
1733 (bindless_image && bound_image)) {
1734 /* From section 4.4.6 of the ARB_bindless_texture spec:
1735 *
1736 * "If both bindless_sampler and bound_sampler, or bindless_image
1737 * and bound_image, are declared at global scope in any
1738 * compilation unit, a link- time error will be generated."
1739 */
1740 linker_error(prog, "both bindless_sampler and bound_sampler, or "
1741 "bindless_image and bound_image, can't be declared at "
1742 "global scope");
1743 }
1744 }
1745 }
1746
1747 /**
1748 * Performs the cross-validation of tessellation control shader vertices and
1749 * layout qualifiers for the attached tessellation control shaders,
1750 * and propagates them to the linked TCS and linked shader program.
1751 */
1752 static void
1753 link_tcs_out_layout_qualifiers(struct gl_shader_program *prog,
1754 struct gl_program *gl_prog,
1755 struct gl_shader **shader_list,
1756 unsigned num_shaders)
1757 {
1758 if (gl_prog->info.stage != MESA_SHADER_TESS_CTRL)
1759 return;
1760
1761 gl_prog->info.tess.tcs_vertices_out = 0;
1762
1763 /* From the GLSL 4.0 spec (chapter 4.3.8.2):
1764 *
1765 * "All tessellation control shader layout declarations in a program
1766 * must specify the same output patch vertex count. There must be at
1767 * least one layout qualifier specifying an output patch vertex count
1768 * in any program containing tessellation control shaders; however,
1769 * such a declaration is not required in all tessellation control
1770 * shaders."
1771 */
1772
1773 for (unsigned i = 0; i < num_shaders; i++) {
1774 struct gl_shader *shader = shader_list[i];
1775
1776 if (shader->info.TessCtrl.VerticesOut != 0) {
1777 if (gl_prog->info.tess.tcs_vertices_out != 0 &&
1778 gl_prog->info.tess.tcs_vertices_out !=
1779 (unsigned) shader->info.TessCtrl.VerticesOut) {
1780 linker_error(prog, "tessellation control shader defined with "
1781 "conflicting output vertex count (%d and %d)\n",
1782 gl_prog->info.tess.tcs_vertices_out,
1783 shader->info.TessCtrl.VerticesOut);
1784 return;
1785 }
1786 gl_prog->info.tess.tcs_vertices_out =
1787 shader->info.TessCtrl.VerticesOut;
1788 }
1789 }
1790
1791 /* Just do the intrastage -> interstage propagation right now,
1792 * since we already know we're in the right type of shader program
1793 * for doing it.
1794 */
1795 if (gl_prog->info.tess.tcs_vertices_out == 0) {
1796 linker_error(prog, "tessellation control shader didn't declare "
1797 "vertices out layout qualifier\n");
1798 return;
1799 }
1800 }
1801
1802
1803 /**
1804 * Performs the cross-validation of tessellation evaluation shader
1805 * primitive type, vertex spacing, ordering and point_mode layout qualifiers
1806 * for the attached tessellation evaluation shaders, and propagates them
1807 * to the linked TES and linked shader program.
1808 */
1809 static void
1810 link_tes_in_layout_qualifiers(struct gl_shader_program *prog,
1811 struct gl_program *gl_prog,
1812 struct gl_shader **shader_list,
1813 unsigned num_shaders)
1814 {
1815 if (gl_prog->info.stage != MESA_SHADER_TESS_EVAL)
1816 return;
1817
1818 int point_mode = -1;
1819 unsigned vertex_order = 0;
1820
1821 gl_prog->info.tess.primitive_mode = PRIM_UNKNOWN;
1822 gl_prog->info.tess.spacing = TESS_SPACING_UNSPECIFIED;
1823
1824 /* From the GLSL 4.0 spec (chapter 4.3.8.1):
1825 *
1826 * "At least one tessellation evaluation shader (compilation unit) in
1827 * a program must declare a primitive mode in its input layout.
1828 * Declaration vertex spacing, ordering, and point mode identifiers is
1829 * optional. It is not required that all tessellation evaluation
1830 * shaders in a program declare a primitive mode. If spacing or
1831 * vertex ordering declarations are omitted, the tessellation
1832 * primitive generator will use equal spacing or counter-clockwise
1833 * vertex ordering, respectively. If a point mode declaration is
1834 * omitted, the tessellation primitive generator will produce lines or
1835 * triangles according to the primitive mode."
1836 */
1837
1838 for (unsigned i = 0; i < num_shaders; i++) {
1839 struct gl_shader *shader = shader_list[i];
1840
1841 if (shader->info.TessEval.PrimitiveMode != PRIM_UNKNOWN) {
1842 if (gl_prog->info.tess.primitive_mode != PRIM_UNKNOWN &&
1843 gl_prog->info.tess.primitive_mode !=
1844 shader->info.TessEval.PrimitiveMode) {
1845 linker_error(prog, "tessellation evaluation shader defined with "
1846 "conflicting input primitive modes.\n");
1847 return;
1848 }
1849 gl_prog->info.tess.primitive_mode =
1850 shader->info.TessEval.PrimitiveMode;
1851 }
1852
1853 if (shader->info.TessEval.Spacing != 0) {
1854 if (gl_prog->info.tess.spacing != 0 && gl_prog->info.tess.spacing !=
1855 shader->info.TessEval.Spacing) {
1856 linker_error(prog, "tessellation evaluation shader defined with "
1857 "conflicting vertex spacing.\n");
1858 return;
1859 }
1860 gl_prog->info.tess.spacing = shader->info.TessEval.Spacing;
1861 }
1862
1863 if (shader->info.TessEval.VertexOrder != 0) {
1864 if (vertex_order != 0 &&
1865 vertex_order != shader->info.TessEval.VertexOrder) {
1866 linker_error(prog, "tessellation evaluation shader defined with "
1867 "conflicting ordering.\n");
1868 return;
1869 }
1870 vertex_order = shader->info.TessEval.VertexOrder;
1871 }
1872
1873 if (shader->info.TessEval.PointMode != -1) {
1874 if (point_mode != -1 &&
1875 point_mode != shader->info.TessEval.PointMode) {
1876 linker_error(prog, "tessellation evaluation shader defined with "
1877 "conflicting point modes.\n");
1878 return;
1879 }
1880 point_mode = shader->info.TessEval.PointMode;
1881 }
1882
1883 }
1884
1885 /* Just do the intrastage -> interstage propagation right now,
1886 * since we already know we're in the right type of shader program
1887 * for doing it.
1888 */
1889 if (gl_prog->info.tess.primitive_mode == PRIM_UNKNOWN) {
1890 linker_error(prog,
1891 "tessellation evaluation shader didn't declare input "
1892 "primitive modes.\n");
1893 return;
1894 }
1895
1896 if (gl_prog->info.tess.spacing == TESS_SPACING_UNSPECIFIED)
1897 gl_prog->info.tess.spacing = TESS_SPACING_EQUAL;
1898
1899 if (vertex_order == 0 || vertex_order == GL_CCW)
1900 gl_prog->info.tess.ccw = true;
1901 else
1902 gl_prog->info.tess.ccw = false;
1903
1904
1905 if (point_mode == -1 || point_mode == GL_FALSE)
1906 gl_prog->info.tess.point_mode = false;
1907 else
1908 gl_prog->info.tess.point_mode = true;
1909 }
1910
1911
1912 /**
1913 * Performs the cross-validation of layout qualifiers specified in
1914 * redeclaration of gl_FragCoord for the attached fragment shaders,
1915 * and propagates them to the linked FS and linked shader program.
1916 */
1917 static void
1918 link_fs_inout_layout_qualifiers(struct gl_shader_program *prog,
1919 struct gl_linked_shader *linked_shader,
1920 struct gl_shader **shader_list,
1921 unsigned num_shaders)
1922 {
1923 bool redeclares_gl_fragcoord = false;
1924 bool uses_gl_fragcoord = false;
1925 bool origin_upper_left = false;
1926 bool pixel_center_integer = false;
1927
1928 if (linked_shader->Stage != MESA_SHADER_FRAGMENT ||
1929 (prog->data->Version < 150 &&
1930 !prog->ARB_fragment_coord_conventions_enable))
1931 return;
1932
1933 for (unsigned i = 0; i < num_shaders; i++) {
1934 struct gl_shader *shader = shader_list[i];
1935 /* From the GLSL 1.50 spec, page 39:
1936 *
1937 * "If gl_FragCoord is redeclared in any fragment shader in a program,
1938 * it must be redeclared in all the fragment shaders in that program
1939 * that have a static use gl_FragCoord."
1940 */
1941 if ((redeclares_gl_fragcoord && !shader->redeclares_gl_fragcoord &&
1942 shader->uses_gl_fragcoord)
1943 || (shader->redeclares_gl_fragcoord && !redeclares_gl_fragcoord &&
1944 uses_gl_fragcoord)) {
1945 linker_error(prog, "fragment shader defined with conflicting "
1946 "layout qualifiers for gl_FragCoord\n");
1947 }
1948
1949 /* From the GLSL 1.50 spec, page 39:
1950 *
1951 * "All redeclarations of gl_FragCoord in all fragment shaders in a
1952 * single program must have the same set of qualifiers."
1953 */
1954 if (redeclares_gl_fragcoord && shader->redeclares_gl_fragcoord &&
1955 (shader->origin_upper_left != origin_upper_left ||
1956 shader->pixel_center_integer != pixel_center_integer)) {
1957 linker_error(prog, "fragment shader defined with conflicting "
1958 "layout qualifiers for gl_FragCoord\n");
1959 }
1960
1961 /* Update the linked shader state. Note that uses_gl_fragcoord should
1962 * accumulate the results. The other values should replace. If there
1963 * are multiple redeclarations, all the fields except uses_gl_fragcoord
1964 * are already known to be the same.
1965 */
1966 if (shader->redeclares_gl_fragcoord || shader->uses_gl_fragcoord) {
1967 redeclares_gl_fragcoord = shader->redeclares_gl_fragcoord;
1968 uses_gl_fragcoord |= shader->uses_gl_fragcoord;
1969 origin_upper_left = shader->origin_upper_left;
1970 pixel_center_integer = shader->pixel_center_integer;
1971 }
1972
1973 linked_shader->Program->info.fs.early_fragment_tests |=
1974 shader->EarlyFragmentTests || shader->PostDepthCoverage;
1975 linked_shader->Program->info.fs.inner_coverage |= shader->InnerCoverage;
1976 linked_shader->Program->info.fs.post_depth_coverage |=
1977 shader->PostDepthCoverage;
1978
1979 linked_shader->Program->sh.fs.BlendSupport |= shader->BlendSupport;
1980 }
1981 }
1982
1983 /**
1984 * Performs the cross-validation of geometry shader max_vertices and
1985 * primitive type layout qualifiers for the attached geometry shaders,
1986 * and propagates them to the linked GS and linked shader program.
1987 */
1988 static void
1989 link_gs_inout_layout_qualifiers(struct gl_shader_program *prog,
1990 struct gl_program *gl_prog,
1991 struct gl_shader **shader_list,
1992 unsigned num_shaders)
1993 {
1994 /* No in/out qualifiers defined for anything but GLSL 1.50+
1995 * geometry shaders so far.
1996 */
1997 if (gl_prog->info.stage != MESA_SHADER_GEOMETRY ||
1998 prog->data->Version < 150)
1999 return;
2000
2001 int vertices_out = -1;
2002
2003 gl_prog->info.gs.invocations = 0;
2004 gl_prog->info.gs.input_primitive = PRIM_UNKNOWN;
2005 gl_prog->info.gs.output_primitive = PRIM_UNKNOWN;
2006
2007 /* From the GLSL 1.50 spec, page 46:
2008 *
2009 * "All geometry shader output layout declarations in a program
2010 * must declare the same layout and same value for
2011 * max_vertices. There must be at least one geometry output
2012 * layout declaration somewhere in a program, but not all
2013 * geometry shaders (compilation units) are required to
2014 * declare it."
2015 */
2016
2017 for (unsigned i = 0; i < num_shaders; i++) {
2018 struct gl_shader *shader = shader_list[i];
2019
2020 if (shader->info.Geom.InputType != PRIM_UNKNOWN) {
2021 if (gl_prog->info.gs.input_primitive != PRIM_UNKNOWN &&
2022 gl_prog->info.gs.input_primitive !=
2023 shader->info.Geom.InputType) {
2024 linker_error(prog, "geometry shader defined with conflicting "
2025 "input types\n");
2026 return;
2027 }
2028 gl_prog->info.gs.input_primitive = shader->info.Geom.InputType;
2029 }
2030
2031 if (shader->info.Geom.OutputType != PRIM_UNKNOWN) {
2032 if (gl_prog->info.gs.output_primitive != PRIM_UNKNOWN &&
2033 gl_prog->info.gs.output_primitive !=
2034 shader->info.Geom.OutputType) {
2035 linker_error(prog, "geometry shader defined with conflicting "
2036 "output types\n");
2037 return;
2038 }
2039 gl_prog->info.gs.output_primitive = shader->info.Geom.OutputType;
2040 }
2041
2042 if (shader->info.Geom.VerticesOut != -1) {
2043 if (vertices_out != -1 &&
2044 vertices_out != shader->info.Geom.VerticesOut) {
2045 linker_error(prog, "geometry shader defined with conflicting "
2046 "output vertex count (%d and %d)\n",
2047 vertices_out, shader->info.Geom.VerticesOut);
2048 return;
2049 }
2050 vertices_out = shader->info.Geom.VerticesOut;
2051 }
2052
2053 if (shader->info.Geom.Invocations != 0) {
2054 if (gl_prog->info.gs.invocations != 0 &&
2055 gl_prog->info.gs.invocations !=
2056 (unsigned) shader->info.Geom.Invocations) {
2057 linker_error(prog, "geometry shader defined with conflicting "
2058 "invocation count (%d and %d)\n",
2059 gl_prog->info.gs.invocations,
2060 shader->info.Geom.Invocations);
2061 return;
2062 }
2063 gl_prog->info.gs.invocations = shader->info.Geom.Invocations;
2064 }
2065 }
2066
2067 /* Just do the intrastage -> interstage propagation right now,
2068 * since we already know we're in the right type of shader program
2069 * for doing it.
2070 */
2071 if (gl_prog->info.gs.input_primitive == PRIM_UNKNOWN) {
2072 linker_error(prog,
2073 "geometry shader didn't declare primitive input type\n");
2074 return;
2075 }
2076
2077 if (gl_prog->info.gs.output_primitive == PRIM_UNKNOWN) {
2078 linker_error(prog,
2079 "geometry shader didn't declare primitive output type\n");
2080 return;
2081 }
2082
2083 if (vertices_out == -1) {
2084 linker_error(prog,
2085 "geometry shader didn't declare max_vertices\n");
2086 return;
2087 } else {
2088 gl_prog->info.gs.vertices_out = vertices_out;
2089 }
2090
2091 if (gl_prog->info.gs.invocations == 0)
2092 gl_prog->info.gs.invocations = 1;
2093 }
2094
2095
2096 /**
2097 * Perform cross-validation of compute shader local_size_{x,y,z} layout
2098 * qualifiers for the attached compute shaders, and propagate them to the
2099 * linked CS and linked shader program.
2100 */
2101 static void
2102 link_cs_input_layout_qualifiers(struct gl_shader_program *prog,
2103 struct gl_program *gl_prog,
2104 struct gl_shader **shader_list,
2105 unsigned num_shaders)
2106 {
2107 /* This function is called for all shader stages, but it only has an effect
2108 * for compute shaders.
2109 */
2110 if (gl_prog->info.stage != MESA_SHADER_COMPUTE)
2111 return;
2112
2113 for (int i = 0; i < 3; i++)
2114 gl_prog->info.cs.local_size[i] = 0;
2115
2116 gl_prog->info.cs.local_size_variable = false;
2117
2118 /* From the ARB_compute_shader spec, in the section describing local size
2119 * declarations:
2120 *
2121 * If multiple compute shaders attached to a single program object
2122 * declare local work-group size, the declarations must be identical;
2123 * otherwise a link-time error results. Furthermore, if a program
2124 * object contains any compute shaders, at least one must contain an
2125 * input layout qualifier specifying the local work sizes of the
2126 * program, or a link-time error will occur.
2127 */
2128 for (unsigned sh = 0; sh < num_shaders; sh++) {
2129 struct gl_shader *shader = shader_list[sh];
2130
2131 if (shader->info.Comp.LocalSize[0] != 0) {
2132 if (gl_prog->info.cs.local_size[0] != 0) {
2133 for (int i = 0; i < 3; i++) {
2134 if (gl_prog->info.cs.local_size[i] !=
2135 shader->info.Comp.LocalSize[i]) {
2136 linker_error(prog, "compute shader defined with conflicting "
2137 "local sizes\n");
2138 return;
2139 }
2140 }
2141 }
2142 for (int i = 0; i < 3; i++) {
2143 gl_prog->info.cs.local_size[i] =
2144 shader->info.Comp.LocalSize[i];
2145 }
2146 } else if (shader->info.Comp.LocalSizeVariable) {
2147 if (gl_prog->info.cs.local_size[0] != 0) {
2148 /* The ARB_compute_variable_group_size spec says:
2149 *
2150 * If one compute shader attached to a program declares a
2151 * variable local group size and a second compute shader
2152 * attached to the same program declares a fixed local group
2153 * size, a link-time error results.
2154 */
2155 linker_error(prog, "compute shader defined with both fixed and "
2156 "variable local group size\n");
2157 return;
2158 }
2159 gl_prog->info.cs.local_size_variable = true;
2160 }
2161 }
2162
2163 /* Just do the intrastage -> interstage propagation right now,
2164 * since we already know we're in the right type of shader program
2165 * for doing it.
2166 */
2167 if (gl_prog->info.cs.local_size[0] == 0 &&
2168 !gl_prog->info.cs.local_size_variable) {
2169 linker_error(prog, "compute shader must contain a fixed or a variable "
2170 "local group size\n");
2171 return;
2172 }
2173 }
2174
2175
2176 /**
2177 * Combine a group of shaders for a single stage to generate a linked shader
2178 *
2179 * \note
2180 * If this function is supplied a single shader, it is cloned, and the new
2181 * shader is returned.
2182 */
2183 struct gl_linked_shader *
2184 link_intrastage_shaders(void *mem_ctx,
2185 struct gl_context *ctx,
2186 struct gl_shader_program *prog,
2187 struct gl_shader **shader_list,
2188 unsigned num_shaders,
2189 bool allow_missing_main)
2190 {
2191 struct gl_uniform_block *ubo_blocks = NULL;
2192 struct gl_uniform_block *ssbo_blocks = NULL;
2193 unsigned num_ubo_blocks = 0;
2194 unsigned num_ssbo_blocks = 0;
2195
2196 /* Check that global variables defined in multiple shaders are consistent.
2197 */
2198 glsl_symbol_table variables;
2199 for (unsigned i = 0; i < num_shaders; i++) {
2200 if (shader_list[i] == NULL)
2201 continue;
2202 cross_validate_globals(prog, shader_list[i]->ir, &variables, false);
2203 }
2204
2205 if (!prog->data->LinkStatus)
2206 return NULL;
2207
2208 /* Check that interface blocks defined in multiple shaders are consistent.
2209 */
2210 validate_intrastage_interface_blocks(prog, (const gl_shader **)shader_list,
2211 num_shaders);
2212 if (!prog->data->LinkStatus)
2213 return NULL;
2214
2215 /* Check that there is only a single definition of each function signature
2216 * across all shaders.
2217 */
2218 for (unsigned i = 0; i < (num_shaders - 1); i++) {
2219 foreach_in_list(ir_instruction, node, shader_list[i]->ir) {
2220 ir_function *const f = node->as_function();
2221
2222 if (f == NULL)
2223 continue;
2224
2225 for (unsigned j = i + 1; j < num_shaders; j++) {
2226 ir_function *const other =
2227 shader_list[j]->symbols->get_function(f->name);
2228
2229 /* If the other shader has no function (and therefore no function
2230 * signatures) with the same name, skip to the next shader.
2231 */
2232 if (other == NULL)
2233 continue;
2234
2235 foreach_in_list(ir_function_signature, sig, &f->signatures) {
2236 if (!sig->is_defined)
2237 continue;
2238
2239 ir_function_signature *other_sig =
2240 other->exact_matching_signature(NULL, &sig->parameters);
2241
2242 if (other_sig != NULL && other_sig->is_defined) {
2243 linker_error(prog, "function `%s' is multiply defined\n",
2244 f->name);
2245 return NULL;
2246 }
2247 }
2248 }
2249 }
2250 }
2251
2252 /* Find the shader that defines main, and make a clone of it.
2253 *
2254 * Starting with the clone, search for undefined references. If one is
2255 * found, find the shader that defines it. Clone the reference and add
2256 * it to the shader. Repeat until there are no undefined references or
2257 * until a reference cannot be resolved.
2258 */
2259 gl_shader *main = NULL;
2260 for (unsigned i = 0; i < num_shaders; i++) {
2261 if (_mesa_get_main_function_signature(shader_list[i]->symbols)) {
2262 main = shader_list[i];
2263 break;
2264 }
2265 }
2266
2267 if (main == NULL && allow_missing_main)
2268 main = shader_list[0];
2269
2270 if (main == NULL) {
2271 linker_error(prog, "%s shader lacks `main'\n",
2272 _mesa_shader_stage_to_string(shader_list[0]->Stage));
2273 return NULL;
2274 }
2275
2276 gl_linked_shader *linked = rzalloc(NULL, struct gl_linked_shader);
2277 linked->Stage = shader_list[0]->Stage;
2278
2279 /* Create program and attach it to the linked shader */
2280 struct gl_program *gl_prog =
2281 ctx->Driver.NewProgram(ctx,
2282 _mesa_shader_stage_to_program(shader_list[0]->Stage),
2283 prog->Name, false);
2284 if (!gl_prog) {
2285 prog->data->LinkStatus = LINKING_FAILURE;
2286 _mesa_delete_linked_shader(ctx, linked);
2287 return NULL;
2288 }
2289
2290 _mesa_reference_shader_program_data(ctx, &gl_prog->sh.data, prog->data);
2291
2292 /* Don't use _mesa_reference_program() just take ownership */
2293 linked->Program = gl_prog;
2294
2295 linked->ir = new(linked) exec_list;
2296 clone_ir_list(mem_ctx, linked->ir, main->ir);
2297
2298 link_fs_inout_layout_qualifiers(prog, linked, shader_list, num_shaders);
2299 link_tcs_out_layout_qualifiers(prog, gl_prog, shader_list, num_shaders);
2300 link_tes_in_layout_qualifiers(prog, gl_prog, shader_list, num_shaders);
2301 link_gs_inout_layout_qualifiers(prog, gl_prog, shader_list, num_shaders);
2302 link_cs_input_layout_qualifiers(prog, gl_prog, shader_list, num_shaders);
2303
2304 if (linked->Stage != MESA_SHADER_FRAGMENT)
2305 link_xfb_stride_layout_qualifiers(ctx, prog, shader_list, num_shaders);
2306
2307 link_bindless_layout_qualifiers(prog, shader_list, num_shaders);
2308
2309 populate_symbol_table(linked, shader_list[0]->symbols);
2310
2311 /* The pointer to the main function in the final linked shader (i.e., the
2312 * copy of the original shader that contained the main function).
2313 */
2314 ir_function_signature *const main_sig =
2315 _mesa_get_main_function_signature(linked->symbols);
2316
2317 /* Move any instructions other than variable declarations or function
2318 * declarations into main.
2319 */
2320 if (main_sig != NULL) {
2321 exec_node *insertion_point =
2322 move_non_declarations(linked->ir, (exec_node *) &main_sig->body, false,
2323 linked);
2324
2325 for (unsigned i = 0; i < num_shaders; i++) {
2326 if (shader_list[i] == main)
2327 continue;
2328
2329 insertion_point = move_non_declarations(shader_list[i]->ir,
2330 insertion_point, true, linked);
2331 }
2332 }
2333
2334 if (!link_function_calls(prog, linked, shader_list, num_shaders)) {
2335 _mesa_delete_linked_shader(ctx, linked);
2336 return NULL;
2337 }
2338
2339 /* Make a pass over all variable declarations to ensure that arrays with
2340 * unspecified sizes have a size specified. The size is inferred from the
2341 * max_array_access field.
2342 */
2343 array_sizing_visitor v;
2344 v.run(linked->ir);
2345 v.fixup_unnamed_interface_types();
2346
2347 /* Link up uniform blocks defined within this stage. */
2348 link_uniform_blocks(mem_ctx, ctx, prog, linked, &ubo_blocks,
2349 &num_ubo_blocks, &ssbo_blocks, &num_ssbo_blocks);
2350
2351 if (!prog->data->LinkStatus) {
2352 _mesa_delete_linked_shader(ctx, linked);
2353 return NULL;
2354 }
2355
2356 /* Copy ubo blocks to linked shader list */
2357 linked->Program->sh.UniformBlocks =
2358 ralloc_array(linked, gl_uniform_block *, num_ubo_blocks);
2359 ralloc_steal(linked, ubo_blocks);
2360 for (unsigned i = 0; i < num_ubo_blocks; i++) {
2361 linked->Program->sh.UniformBlocks[i] = &ubo_blocks[i];
2362 }
2363 linked->Program->info.num_ubos = num_ubo_blocks;
2364
2365 /* Copy ssbo blocks to linked shader list */
2366 linked->Program->sh.ShaderStorageBlocks =
2367 ralloc_array(linked, gl_uniform_block *, num_ssbo_blocks);
2368 ralloc_steal(linked, ssbo_blocks);
2369 for (unsigned i = 0; i < num_ssbo_blocks; i++) {
2370 linked->Program->sh.ShaderStorageBlocks[i] = &ssbo_blocks[i];
2371 }
2372 linked->Program->info.num_ssbos = num_ssbo_blocks;
2373
2374 /* At this point linked should contain all of the linked IR, so
2375 * validate it to make sure nothing went wrong.
2376 */
2377 validate_ir_tree(linked->ir);
2378
2379 /* Set the size of geometry shader input arrays */
2380 if (linked->Stage == MESA_SHADER_GEOMETRY) {
2381 unsigned num_vertices =
2382 vertices_per_prim(gl_prog->info.gs.input_primitive);
2383 array_resize_visitor input_resize_visitor(num_vertices, prog,
2384 MESA_SHADER_GEOMETRY);
2385 foreach_in_list(ir_instruction, ir, linked->ir) {
2386 ir->accept(&input_resize_visitor);
2387 }
2388 }
2389
2390 if (ctx->Const.VertexID_is_zero_based)
2391 lower_vertex_id(linked);
2392
2393 if (ctx->Const.LowerCsDerivedVariables)
2394 lower_cs_derived(linked);
2395
2396 #ifdef DEBUG
2397 /* Compute the source checksum. */
2398 linked->SourceChecksum = 0;
2399 for (unsigned i = 0; i < num_shaders; i++) {
2400 if (shader_list[i] == NULL)
2401 continue;
2402 linked->SourceChecksum ^= shader_list[i]->SourceChecksum;
2403 }
2404 #endif
2405
2406 return linked;
2407 }
2408
2409 /**
2410 * Update the sizes of linked shader uniform arrays to the maximum
2411 * array index used.
2412 *
2413 * From page 81 (page 95 of the PDF) of the OpenGL 2.1 spec:
2414 *
2415 * If one or more elements of an array are active,
2416 * GetActiveUniform will return the name of the array in name,
2417 * subject to the restrictions listed above. The type of the array
2418 * is returned in type. The size parameter contains the highest
2419 * array element index used, plus one. The compiler or linker
2420 * determines the highest index used. There will be only one
2421 * active uniform reported by the GL per uniform array.
2422
2423 */
2424 static void
2425 update_array_sizes(struct gl_shader_program *prog)
2426 {
2427 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
2428 if (prog->_LinkedShaders[i] == NULL)
2429 continue;
2430
2431 bool types_were_updated = false;
2432
2433 foreach_in_list(ir_instruction, node, prog->_LinkedShaders[i]->ir) {
2434 ir_variable *const var = node->as_variable();
2435
2436 if ((var == NULL) || (var->data.mode != ir_var_uniform) ||
2437 !var->type->is_array())
2438 continue;
2439
2440 /* GL_ARB_uniform_buffer_object says that std140 uniforms
2441 * will not be eliminated. Since we always do std140, just
2442 * don't resize arrays in UBOs.
2443 *
2444 * Atomic counters are supposed to get deterministic
2445 * locations assigned based on the declaration ordering and
2446 * sizes, array compaction would mess that up.
2447 *
2448 * Subroutine uniforms are not removed.
2449 */
2450 if (var->is_in_buffer_block() || var->type->contains_atomic() ||
2451 var->type->contains_subroutine() || var->constant_initializer)
2452 continue;
2453
2454 int size = var->data.max_array_access;
2455 for (unsigned j = 0; j < MESA_SHADER_STAGES; j++) {
2456 if (prog->_LinkedShaders[j] == NULL)
2457 continue;
2458
2459 foreach_in_list(ir_instruction, node2, prog->_LinkedShaders[j]->ir) {
2460 ir_variable *other_var = node2->as_variable();
2461 if (!other_var)
2462 continue;
2463
2464 if (strcmp(var->name, other_var->name) == 0 &&
2465 other_var->data.max_array_access > size) {
2466 size = other_var->data.max_array_access;
2467 }
2468 }
2469 }
2470
2471 if (size + 1 != (int)var->type->length) {
2472 /* If this is a built-in uniform (i.e., it's backed by some
2473 * fixed-function state), adjust the number of state slots to
2474 * match the new array size. The number of slots per array entry
2475 * is not known. It seems safe to assume that the total number of
2476 * slots is an integer multiple of the number of array elements.
2477 * Determine the number of slots per array element by dividing by
2478 * the old (total) size.
2479 */
2480 const unsigned num_slots = var->get_num_state_slots();
2481 if (num_slots > 0) {
2482 var->set_num_state_slots((size + 1)
2483 * (num_slots / var->type->length));
2484 }
2485
2486 var->type = glsl_type::get_array_instance(var->type->fields.array,
2487 size + 1);
2488 types_were_updated = true;
2489 }
2490 }
2491
2492 /* Update the types of dereferences in case we changed any. */
2493 if (types_were_updated) {
2494 deref_type_updater v;
2495 v.run(prog->_LinkedShaders[i]->ir);
2496 }
2497 }
2498 }
2499
2500 /**
2501 * Resize tessellation evaluation per-vertex inputs to the size of
2502 * tessellation control per-vertex outputs.
2503 */
2504 static void
2505 resize_tes_inputs(struct gl_context *ctx,
2506 struct gl_shader_program *prog)
2507 {
2508 if (prog->_LinkedShaders[MESA_SHADER_TESS_EVAL] == NULL)
2509 return;
2510
2511 gl_linked_shader *const tcs = prog->_LinkedShaders[MESA_SHADER_TESS_CTRL];
2512 gl_linked_shader *const tes = prog->_LinkedShaders[MESA_SHADER_TESS_EVAL];
2513
2514 /* If no control shader is present, then the TES inputs are statically
2515 * sized to MaxPatchVertices; the actual size of the arrays won't be
2516 * known until draw time.
2517 */
2518 const int num_vertices = tcs
2519 ? tcs->Program->info.tess.tcs_vertices_out
2520 : ctx->Const.MaxPatchVertices;
2521
2522 array_resize_visitor input_resize_visitor(num_vertices, prog,
2523 MESA_SHADER_TESS_EVAL);
2524 foreach_in_list(ir_instruction, ir, tes->ir) {
2525 ir->accept(&input_resize_visitor);
2526 }
2527
2528 if (tcs) {
2529 /* Convert the gl_PatchVerticesIn system value into a constant, since
2530 * the value is known at this point.
2531 */
2532 foreach_in_list(ir_instruction, ir, tes->ir) {
2533 ir_variable *var = ir->as_variable();
2534 if (var && var->data.mode == ir_var_system_value &&
2535 var->data.location == SYSTEM_VALUE_VERTICES_IN) {
2536 void *mem_ctx = ralloc_parent(var);
2537 var->data.location = 0;
2538 var->data.explicit_location = false;
2539 var->data.mode = ir_var_auto;
2540 var->constant_value = new(mem_ctx) ir_constant(num_vertices);
2541 }
2542 }
2543 }
2544 }
2545
2546 /**
2547 * Find a contiguous set of available bits in a bitmask.
2548 *
2549 * \param used_mask Bits representing used (1) and unused (0) locations
2550 * \param needed_count Number of contiguous bits needed.
2551 *
2552 * \return
2553 * Base location of the available bits on success or -1 on failure.
2554 */
2555 static int
2556 find_available_slots(unsigned used_mask, unsigned needed_count)
2557 {
2558 unsigned needed_mask = (1 << needed_count) - 1;
2559 const int max_bit_to_test = (8 * sizeof(used_mask)) - needed_count;
2560
2561 /* The comparison to 32 is redundant, but without it GCC emits "warning:
2562 * cannot optimize possibly infinite loops" for the loop below.
2563 */
2564 if ((needed_count == 0) || (max_bit_to_test < 0) || (max_bit_to_test > 32))
2565 return -1;
2566
2567 for (int i = 0; i <= max_bit_to_test; i++) {
2568 if ((needed_mask & ~used_mask) == needed_mask)
2569 return i;
2570
2571 needed_mask <<= 1;
2572 }
2573
2574 return -1;
2575 }
2576
2577
2578 #define SAFE_MASK_FROM_INDEX(i) (((i) >= 32) ? ~0 : ((1 << (i)) - 1))
2579
2580 /**
2581 * Assign locations for either VS inputs or FS outputs
2582 *
2583 * \param mem_ctx Temporary ralloc context used for linking
2584 * \param prog Shader program whose variables need locations assigned
2585 * \param constants Driver specific constant values for the program.
2586 * \param target_index Selector for the program target to receive location
2587 * assignmnets. Must be either \c MESA_SHADER_VERTEX or
2588 * \c MESA_SHADER_FRAGMENT.
2589 *
2590 * \return
2591 * If locations are successfully assigned, true is returned. Otherwise an
2592 * error is emitted to the shader link log and false is returned.
2593 */
2594 static bool
2595 assign_attribute_or_color_locations(void *mem_ctx,
2596 gl_shader_program *prog,
2597 struct gl_constants *constants,
2598 unsigned target_index)
2599 {
2600 /* Maximum number of generic locations. This corresponds to either the
2601 * maximum number of draw buffers or the maximum number of generic
2602 * attributes.
2603 */
2604 unsigned max_index = (target_index == MESA_SHADER_VERTEX) ?
2605 constants->Program[target_index].MaxAttribs :
2606 MAX2(constants->MaxDrawBuffers, constants->MaxDualSourceDrawBuffers);
2607
2608 /* Mark invalid locations as being used.
2609 */
2610 unsigned used_locations = ~SAFE_MASK_FROM_INDEX(max_index);
2611 unsigned double_storage_locations = 0;
2612
2613 assert((target_index == MESA_SHADER_VERTEX)
2614 || (target_index == MESA_SHADER_FRAGMENT));
2615
2616 gl_linked_shader *const sh = prog->_LinkedShaders[target_index];
2617 if (sh == NULL)
2618 return true;
2619
2620 /* Operate in a total of four passes.
2621 *
2622 * 1. Invalidate the location assignments for all vertex shader inputs.
2623 *
2624 * 2. Assign locations for inputs that have user-defined (via
2625 * glBindVertexAttribLocation) locations and outputs that have
2626 * user-defined locations (via glBindFragDataLocation).
2627 *
2628 * 3. Sort the attributes without assigned locations by number of slots
2629 * required in decreasing order. Fragmentation caused by attribute
2630 * locations assigned by the application may prevent large attributes
2631 * from having enough contiguous space.
2632 *
2633 * 4. Assign locations to any inputs without assigned locations.
2634 */
2635
2636 const int generic_base = (target_index == MESA_SHADER_VERTEX)
2637 ? (int) VERT_ATTRIB_GENERIC0 : (int) FRAG_RESULT_DATA0;
2638
2639 const enum ir_variable_mode direction =
2640 (target_index == MESA_SHADER_VERTEX)
2641 ? ir_var_shader_in : ir_var_shader_out;
2642
2643
2644 /* Temporary storage for the set of attributes that need locations assigned.
2645 */
2646 struct temp_attr {
2647 unsigned slots;
2648 ir_variable *var;
2649
2650 /* Used below in the call to qsort. */
2651 static int compare(const void *a, const void *b)
2652 {
2653 const temp_attr *const l = (const temp_attr *) a;
2654 const temp_attr *const r = (const temp_attr *) b;
2655
2656 /* Reversed because we want a descending order sort below. */
2657 return r->slots - l->slots;
2658 }
2659 } to_assign[32];
2660 assert(max_index <= 32);
2661
2662 /* Temporary array for the set of attributes that have locations assigned,
2663 * for the purpose of checking overlapping slots/components of (non-ES)
2664 * fragment shader outputs.
2665 */
2666 ir_variable *assigned[12 * 4]; /* (max # of FS outputs) * # components */
2667 unsigned assigned_attr = 0;
2668
2669 unsigned num_attr = 0;
2670
2671 foreach_in_list(ir_instruction, node, sh->ir) {
2672 ir_variable *const var = node->as_variable();
2673
2674 if ((var == NULL) || (var->data.mode != (unsigned) direction))
2675 continue;
2676
2677 if (var->data.explicit_location) {
2678 var->data.is_unmatched_generic_inout = 0;
2679 if ((var->data.location >= (int)(max_index + generic_base))
2680 || (var->data.location < 0)) {
2681 linker_error(prog,
2682 "invalid explicit location %d specified for `%s'\n",
2683 (var->data.location < 0)
2684 ? var->data.location
2685 : var->data.location - generic_base,
2686 var->name);
2687 return false;
2688 }
2689 } else if (target_index == MESA_SHADER_VERTEX) {
2690 unsigned binding;
2691
2692 if (prog->AttributeBindings->get(binding, var->name)) {
2693 assert(binding >= VERT_ATTRIB_GENERIC0);
2694 var->data.location = binding;
2695 var->data.is_unmatched_generic_inout = 0;
2696 }
2697 } else if (target_index == MESA_SHADER_FRAGMENT) {
2698 unsigned binding;
2699 unsigned index;
2700 const char *name = var->name;
2701 const glsl_type *type = var->type;
2702
2703 while (type) {
2704 /* Check if there's a binding for the variable name */
2705 if (prog->FragDataBindings->get(binding, name)) {
2706 assert(binding >= FRAG_RESULT_DATA0);
2707 var->data.location = binding;
2708 var->data.is_unmatched_generic_inout = 0;
2709
2710 if (prog->FragDataIndexBindings->get(index, name)) {
2711 var->data.index = index;
2712 }
2713 break;
2714 }
2715
2716 /* If not, but it's an array type, look for name[0] */
2717 if (type->is_array()) {
2718 name = ralloc_asprintf(mem_ctx, "%s[0]", name);
2719 type = type->fields.array;
2720 continue;
2721 }
2722
2723 break;
2724 }
2725 }
2726
2727 if (strcmp(var->name, "gl_LastFragData") == 0)
2728 continue;
2729
2730 /* From GL4.5 core spec, section 15.2 (Shader Execution):
2731 *
2732 * "Output binding assignments will cause LinkProgram to fail:
2733 * ...
2734 * If the program has an active output assigned to a location greater
2735 * than or equal to the value of MAX_DUAL_SOURCE_DRAW_BUFFERS and has
2736 * an active output assigned an index greater than or equal to one;"
2737 */
2738 if (target_index == MESA_SHADER_FRAGMENT && var->data.index >= 1 &&
2739 var->data.location - generic_base >=
2740 (int) constants->MaxDualSourceDrawBuffers) {
2741 linker_error(prog,
2742 "output location %d >= GL_MAX_DUAL_SOURCE_DRAW_BUFFERS "
2743 "with index %u for %s\n",
2744 var->data.location - generic_base, var->data.index,
2745 var->name);
2746 return false;
2747 }
2748
2749 const unsigned slots = var->type->count_attribute_slots(target_index == MESA_SHADER_VERTEX);
2750
2751 /* If the variable is not a built-in and has a location statically
2752 * assigned in the shader (presumably via a layout qualifier), make sure
2753 * that it doesn't collide with other assigned locations. Otherwise,
2754 * add it to the list of variables that need linker-assigned locations.
2755 */
2756 if (var->data.location != -1) {
2757 if (var->data.location >= generic_base && var->data.index < 1) {
2758 /* From page 61 of the OpenGL 4.0 spec:
2759 *
2760 * "LinkProgram will fail if the attribute bindings assigned
2761 * by BindAttribLocation do not leave not enough space to
2762 * assign a location for an active matrix attribute or an
2763 * active attribute array, both of which require multiple
2764 * contiguous generic attributes."
2765 *
2766 * I think above text prohibits the aliasing of explicit and
2767 * automatic assignments. But, aliasing is allowed in manual
2768 * assignments of attribute locations. See below comments for
2769 * the details.
2770 *
2771 * From OpenGL 4.0 spec, page 61:
2772 *
2773 * "It is possible for an application to bind more than one
2774 * attribute name to the same location. This is referred to as
2775 * aliasing. This will only work if only one of the aliased
2776 * attributes is active in the executable program, or if no
2777 * path through the shader consumes more than one attribute of
2778 * a set of attributes aliased to the same location. A link
2779 * error can occur if the linker determines that every path
2780 * through the shader consumes multiple aliased attributes,
2781 * but implementations are not required to generate an error
2782 * in this case."
2783 *
2784 * From GLSL 4.30 spec, page 54:
2785 *
2786 * "A program will fail to link if any two non-vertex shader
2787 * input variables are assigned to the same location. For
2788 * vertex shaders, multiple input variables may be assigned
2789 * to the same location using either layout qualifiers or via
2790 * the OpenGL API. However, such aliasing is intended only to
2791 * support vertex shaders where each execution path accesses
2792 * at most one input per each location. Implementations are
2793 * permitted, but not required, to generate link-time errors
2794 * if they detect that every path through the vertex shader
2795 * executable accesses multiple inputs assigned to any single
2796 * location. For all shader types, a program will fail to link
2797 * if explicit location assignments leave the linker unable
2798 * to find space for other variables without explicit
2799 * assignments."
2800 *
2801 * From OpenGL ES 3.0 spec, page 56:
2802 *
2803 * "Binding more than one attribute name to the same location
2804 * is referred to as aliasing, and is not permitted in OpenGL
2805 * ES Shading Language 3.00 vertex shaders. LinkProgram will
2806 * fail when this condition exists. However, aliasing is
2807 * possible in OpenGL ES Shading Language 1.00 vertex shaders.
2808 * This will only work if only one of the aliased attributes
2809 * is active in the executable program, or if no path through
2810 * the shader consumes more than one attribute of a set of
2811 * attributes aliased to the same location. A link error can
2812 * occur if the linker determines that every path through the
2813 * shader consumes multiple aliased attributes, but implemen-
2814 * tations are not required to generate an error in this case."
2815 *
2816 * After looking at above references from OpenGL, OpenGL ES and
2817 * GLSL specifications, we allow aliasing of vertex input variables
2818 * in: OpenGL 2.0 (and above) and OpenGL ES 2.0.
2819 *
2820 * NOTE: This is not required by the spec but its worth mentioning
2821 * here that we're not doing anything to make sure that no path
2822 * through the vertex shader executable accesses multiple inputs
2823 * assigned to any single location.
2824 */
2825
2826 /* Mask representing the contiguous slots that will be used by
2827 * this attribute.
2828 */
2829 const unsigned attr = var->data.location - generic_base;
2830 const unsigned use_mask = (1 << slots) - 1;
2831 const char *const string = (target_index == MESA_SHADER_VERTEX)
2832 ? "vertex shader input" : "fragment shader output";
2833
2834 /* Generate a link error if the requested locations for this
2835 * attribute exceed the maximum allowed attribute location.
2836 */
2837 if (attr + slots > max_index) {
2838 linker_error(prog,
2839 "insufficient contiguous locations "
2840 "available for %s `%s' %d %d %d\n", string,
2841 var->name, used_locations, use_mask, attr);
2842 return false;
2843 }
2844
2845 /* Generate a link error if the set of bits requested for this
2846 * attribute overlaps any previously allocated bits.
2847 */
2848 if ((~(use_mask << attr) & used_locations) != used_locations) {
2849 if (target_index == MESA_SHADER_FRAGMENT && !prog->IsES) {
2850 /* From section 4.4.2 (Output Layout Qualifiers) of the GLSL
2851 * 4.40 spec:
2852 *
2853 * "Additionally, for fragment shader outputs, if two
2854 * variables are placed within the same location, they
2855 * must have the same underlying type (floating-point or
2856 * integer). No component aliasing of output variables or
2857 * members is allowed.
2858 */
2859 for (unsigned i = 0; i < assigned_attr; i++) {
2860 unsigned assigned_slots =
2861 assigned[i]->type->count_attribute_slots(false);
2862 unsigned assig_attr =
2863 assigned[i]->data.location - generic_base;
2864 unsigned assigned_use_mask = (1 << assigned_slots) - 1;
2865
2866 if ((assigned_use_mask << assig_attr) &
2867 (use_mask << attr)) {
2868
2869 const glsl_type *assigned_type =
2870 assigned[i]->type->without_array();
2871 const glsl_type *type = var->type->without_array();
2872 if (assigned_type->base_type != type->base_type) {
2873 linker_error(prog, "types do not match for aliased"
2874 " %ss %s and %s\n", string,
2875 assigned[i]->name, var->name);
2876 return false;
2877 }
2878
2879 unsigned assigned_component_mask =
2880 ((1 << assigned_type->vector_elements) - 1) <<
2881 assigned[i]->data.location_frac;
2882 unsigned component_mask =
2883 ((1 << type->vector_elements) - 1) <<
2884 var->data.location_frac;
2885 if (assigned_component_mask & component_mask) {
2886 linker_error(prog, "overlapping component is "
2887 "assigned to %ss %s and %s "
2888 "(component=%d)\n",
2889 string, assigned[i]->name, var->name,
2890 var->data.location_frac);
2891 return false;
2892 }
2893 }
2894 }
2895 } else if (target_index == MESA_SHADER_FRAGMENT ||
2896 (prog->IsES && prog->data->Version >= 300)) {
2897 linker_error(prog, "overlapping location is assigned "
2898 "to %s `%s' %d %d %d\n", string, var->name,
2899 used_locations, use_mask, attr);
2900 return false;
2901 } else {
2902 linker_warning(prog, "overlapping location is assigned "
2903 "to %s `%s' %d %d %d\n", string, var->name,
2904 used_locations, use_mask, attr);
2905 }
2906 }
2907
2908 if (target_index == MESA_SHADER_FRAGMENT && !prog->IsES) {
2909 /* Only track assigned variables for non-ES fragment shaders
2910 * to avoid overflowing the array.
2911 *
2912 * At most one variable per fragment output component should
2913 * reach this.
2914 */
2915 assert(assigned_attr < ARRAY_SIZE(assigned));
2916 assigned[assigned_attr] = var;
2917 assigned_attr++;
2918 }
2919
2920 used_locations |= (use_mask << attr);
2921
2922 /* From the GL 4.5 core spec, section 11.1.1 (Vertex Attributes):
2923 *
2924 * "A program with more than the value of MAX_VERTEX_ATTRIBS
2925 * active attribute variables may fail to link, unless
2926 * device-dependent optimizations are able to make the program
2927 * fit within available hardware resources. For the purposes
2928 * of this test, attribute variables of the type dvec3, dvec4,
2929 * dmat2x3, dmat2x4, dmat3, dmat3x4, dmat4x3, and dmat4 may
2930 * count as consuming twice as many attributes as equivalent
2931 * single-precision types. While these types use the same number
2932 * of generic attributes as their single-precision equivalents,
2933 * implementations are permitted to consume two single-precision
2934 * vectors of internal storage for each three- or four-component
2935 * double-precision vector."
2936 *
2937 * Mark this attribute slot as taking up twice as much space
2938 * so we can count it properly against limits. According to
2939 * issue (3) of the GL_ARB_vertex_attrib_64bit behavior, this
2940 * is optional behavior, but it seems preferable.
2941 */
2942 if (var->type->without_array()->is_dual_slot())
2943 double_storage_locations |= (use_mask << attr);
2944 }
2945
2946 continue;
2947 }
2948
2949 if (num_attr >= max_index) {
2950 linker_error(prog, "too many %s (max %u)",
2951 target_index == MESA_SHADER_VERTEX ?
2952 "vertex shader inputs" : "fragment shader outputs",
2953 max_index);
2954 return false;
2955 }
2956 to_assign[num_attr].slots = slots;
2957 to_assign[num_attr].var = var;
2958 num_attr++;
2959 }
2960
2961 if (target_index == MESA_SHADER_VERTEX) {
2962 unsigned total_attribs_size =
2963 _mesa_bitcount(used_locations & SAFE_MASK_FROM_INDEX(max_index)) +
2964 _mesa_bitcount(double_storage_locations);
2965 if (total_attribs_size > max_index) {
2966 linker_error(prog,
2967 "attempt to use %d vertex attribute slots only %d available ",
2968 total_attribs_size, max_index);
2969 return false;
2970 }
2971 }
2972
2973 /* If all of the attributes were assigned locations by the application (or
2974 * are built-in attributes with fixed locations), return early. This should
2975 * be the common case.
2976 */
2977 if (num_attr == 0)
2978 return true;
2979
2980 qsort(to_assign, num_attr, sizeof(to_assign[0]), temp_attr::compare);
2981
2982 if (target_index == MESA_SHADER_VERTEX) {
2983 /* VERT_ATTRIB_GENERIC0 is a pseudo-alias for VERT_ATTRIB_POS. It can
2984 * only be explicitly assigned by via glBindAttribLocation. Mark it as
2985 * reserved to prevent it from being automatically allocated below.
2986 */
2987 find_deref_visitor find("gl_Vertex");
2988 find.run(sh->ir);
2989 if (find.variable_found())
2990 used_locations |= (1 << 0);
2991 }
2992
2993 for (unsigned i = 0; i < num_attr; i++) {
2994 /* Mask representing the contiguous slots that will be used by this
2995 * attribute.
2996 */
2997 const unsigned use_mask = (1 << to_assign[i].slots) - 1;
2998
2999 int location = find_available_slots(used_locations, to_assign[i].slots);
3000
3001 if (location < 0) {
3002 const char *const string = (target_index == MESA_SHADER_VERTEX)
3003 ? "vertex shader input" : "fragment shader output";
3004
3005 linker_error(prog,
3006 "insufficient contiguous locations "
3007 "available for %s `%s'\n",
3008 string, to_assign[i].var->name);
3009 return false;
3010 }
3011
3012 to_assign[i].var->data.location = generic_base + location;
3013 to_assign[i].var->data.is_unmatched_generic_inout = 0;
3014 used_locations |= (use_mask << location);
3015
3016 if (to_assign[i].var->type->without_array()->is_dual_slot())
3017 double_storage_locations |= (use_mask << location);
3018 }
3019
3020 /* Now that we have all the locations, from the GL 4.5 core spec, section
3021 * 11.1.1 (Vertex Attributes), dvec3, dvec4, dmat2x3, dmat2x4, dmat3,
3022 * dmat3x4, dmat4x3, and dmat4 count as consuming twice as many attributes
3023 * as equivalent single-precision types.
3024 */
3025 if (target_index == MESA_SHADER_VERTEX) {
3026 unsigned total_attribs_size =
3027 _mesa_bitcount(used_locations & SAFE_MASK_FROM_INDEX(max_index)) +
3028 _mesa_bitcount(double_storage_locations);
3029 if (total_attribs_size > max_index) {
3030 linker_error(prog,
3031 "attempt to use %d vertex attribute slots only %d available ",
3032 total_attribs_size, max_index);
3033 return false;
3034 }
3035 }
3036
3037 return true;
3038 }
3039
3040 /**
3041 * Match explicit locations of outputs to inputs and deactivate the
3042 * unmatch flag if found so we don't optimise them away.
3043 */
3044 static void
3045 match_explicit_outputs_to_inputs(gl_linked_shader *producer,
3046 gl_linked_shader *consumer)
3047 {
3048 glsl_symbol_table parameters;
3049 ir_variable *explicit_locations[MAX_VARYINGS_INCL_PATCH][4] =
3050 { {NULL, NULL} };
3051
3052 /* Find all shader outputs in the "producer" stage.
3053 */
3054 foreach_in_list(ir_instruction, node, producer->ir) {
3055 ir_variable *const var = node->as_variable();
3056
3057 if ((var == NULL) || (var->data.mode != ir_var_shader_out))
3058 continue;
3059
3060 if (var->data.explicit_location &&
3061 var->data.location >= VARYING_SLOT_VAR0) {
3062 const unsigned idx = var->data.location - VARYING_SLOT_VAR0;
3063 if (explicit_locations[idx][var->data.location_frac] == NULL)
3064 explicit_locations[idx][var->data.location_frac] = var;
3065 }
3066 }
3067
3068 /* Match inputs to outputs */
3069 foreach_in_list(ir_instruction, node, consumer->ir) {
3070 ir_variable *const input = node->as_variable();
3071
3072 if ((input == NULL) || (input->data.mode != ir_var_shader_in))
3073 continue;
3074
3075 ir_variable *output = NULL;
3076 if (input->data.explicit_location
3077 && input->data.location >= VARYING_SLOT_VAR0) {
3078 output = explicit_locations[input->data.location - VARYING_SLOT_VAR0]
3079 [input->data.location_frac];
3080
3081 if (output != NULL){
3082 input->data.is_unmatched_generic_inout = 0;
3083 output->data.is_unmatched_generic_inout = 0;
3084 }
3085 }
3086 }
3087 }
3088
3089 /**
3090 * Store the gl_FragDepth layout in the gl_shader_program struct.
3091 */
3092 static void
3093 store_fragdepth_layout(struct gl_shader_program *prog)
3094 {
3095 if (prog->_LinkedShaders[MESA_SHADER_FRAGMENT] == NULL) {
3096 return;
3097 }
3098
3099 struct exec_list *ir = prog->_LinkedShaders[MESA_SHADER_FRAGMENT]->ir;
3100
3101 /* We don't look up the gl_FragDepth symbol directly because if
3102 * gl_FragDepth is not used in the shader, it's removed from the IR.
3103 * However, the symbol won't be removed from the symbol table.
3104 *
3105 * We're only interested in the cases where the variable is NOT removed
3106 * from the IR.
3107 */
3108 foreach_in_list(ir_instruction, node, ir) {
3109 ir_variable *const var = node->as_variable();
3110
3111 if (var == NULL || var->data.mode != ir_var_shader_out) {
3112 continue;
3113 }
3114
3115 if (strcmp(var->name, "gl_FragDepth") == 0) {
3116 switch (var->data.depth_layout) {
3117 case ir_depth_layout_none:
3118 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_NONE;
3119 return;
3120 case ir_depth_layout_any:
3121 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_ANY;
3122 return;
3123 case ir_depth_layout_greater:
3124 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_GREATER;
3125 return;
3126 case ir_depth_layout_less:
3127 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_LESS;
3128 return;
3129 case ir_depth_layout_unchanged:
3130 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_UNCHANGED;
3131 return;
3132 default:
3133 assert(0);
3134 return;
3135 }
3136 }
3137 }
3138 }
3139
3140 /**
3141 * Validate the resources used by a program versus the implementation limits
3142 */
3143 static void
3144 check_resources(struct gl_context *ctx, struct gl_shader_program *prog)
3145 {
3146 unsigned total_uniform_blocks = 0;
3147 unsigned total_shader_storage_blocks = 0;
3148
3149 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3150 struct gl_linked_shader *sh = prog->_LinkedShaders[i];
3151
3152 if (sh == NULL)
3153 continue;
3154
3155 if (sh->Program->info.num_textures >
3156 ctx->Const.Program[i].MaxTextureImageUnits) {
3157 linker_error(prog, "Too many %s shader texture samplers\n",
3158 _mesa_shader_stage_to_string(i));
3159 }
3160
3161 if (sh->num_uniform_components >
3162 ctx->Const.Program[i].MaxUniformComponents) {
3163 if (ctx->Const.GLSLSkipStrictMaxUniformLimitCheck) {
3164 linker_warning(prog, "Too many %s shader default uniform block "
3165 "components, but the driver will try to optimize "
3166 "them out; this is non-portable out-of-spec "
3167 "behavior\n",
3168 _mesa_shader_stage_to_string(i));
3169 } else {
3170 linker_error(prog, "Too many %s shader default uniform block "
3171 "components\n",
3172 _mesa_shader_stage_to_string(i));
3173 }
3174 }
3175
3176 if (sh->num_combined_uniform_components >
3177 ctx->Const.Program[i].MaxCombinedUniformComponents) {
3178 if (ctx->Const.GLSLSkipStrictMaxUniformLimitCheck) {
3179 linker_warning(prog, "Too many %s shader uniform components, "
3180 "but the driver will try to optimize them out; "
3181 "this is non-portable out-of-spec behavior\n",
3182 _mesa_shader_stage_to_string(i));
3183 } else {
3184 linker_error(prog, "Too many %s shader uniform components\n",
3185 _mesa_shader_stage_to_string(i));
3186 }
3187 }
3188
3189 total_shader_storage_blocks += sh->Program->info.num_ssbos;
3190 total_uniform_blocks += sh->Program->info.num_ubos;
3191
3192 const unsigned max_uniform_blocks =
3193 ctx->Const.Program[i].MaxUniformBlocks;
3194 if (max_uniform_blocks < sh->Program->info.num_ubos) {
3195 linker_error(prog, "Too many %s uniform blocks (%d/%d)\n",
3196 _mesa_shader_stage_to_string(i),
3197 sh->Program->info.num_ubos, max_uniform_blocks);
3198 }
3199
3200 const unsigned max_shader_storage_blocks =
3201 ctx->Const.Program[i].MaxShaderStorageBlocks;
3202 if (max_shader_storage_blocks < sh->Program->info.num_ssbos) {
3203 linker_error(prog, "Too many %s shader storage blocks (%d/%d)\n",
3204 _mesa_shader_stage_to_string(i),
3205 sh->Program->info.num_ssbos, max_shader_storage_blocks);
3206 }
3207 }
3208
3209 if (total_uniform_blocks > ctx->Const.MaxCombinedUniformBlocks) {
3210 linker_error(prog, "Too many combined uniform blocks (%d/%d)\n",
3211 total_uniform_blocks, ctx->Const.MaxCombinedUniformBlocks);
3212 }
3213
3214 if (total_shader_storage_blocks > ctx->Const.MaxCombinedShaderStorageBlocks) {
3215 linker_error(prog, "Too many combined shader storage blocks (%d/%d)\n",
3216 total_shader_storage_blocks,
3217 ctx->Const.MaxCombinedShaderStorageBlocks);
3218 }
3219
3220 for (unsigned i = 0; i < prog->data->NumUniformBlocks; i++) {
3221 if (prog->data->UniformBlocks[i].UniformBufferSize >
3222 ctx->Const.MaxUniformBlockSize) {
3223 linker_error(prog, "Uniform block %s too big (%d/%d)\n",
3224 prog->data->UniformBlocks[i].Name,
3225 prog->data->UniformBlocks[i].UniformBufferSize,
3226 ctx->Const.MaxUniformBlockSize);
3227 }
3228 }
3229
3230 for (unsigned i = 0; i < prog->data->NumShaderStorageBlocks; i++) {
3231 if (prog->data->ShaderStorageBlocks[i].UniformBufferSize >
3232 ctx->Const.MaxShaderStorageBlockSize) {
3233 linker_error(prog, "Shader storage block %s too big (%d/%d)\n",
3234 prog->data->ShaderStorageBlocks[i].Name,
3235 prog->data->ShaderStorageBlocks[i].UniformBufferSize,
3236 ctx->Const.MaxShaderStorageBlockSize);
3237 }
3238 }
3239 }
3240
3241 static void
3242 link_calculate_subroutine_compat(struct gl_shader_program *prog)
3243 {
3244 unsigned mask = prog->data->linked_stages;
3245 while (mask) {
3246 const int i = u_bit_scan(&mask);
3247 struct gl_program *p = prog->_LinkedShaders[i]->Program;
3248
3249 for (unsigned j = 0; j < p->sh.NumSubroutineUniformRemapTable; j++) {
3250 if (p->sh.SubroutineUniformRemapTable[j] == INACTIVE_UNIFORM_EXPLICIT_LOCATION)
3251 continue;
3252
3253 struct gl_uniform_storage *uni = p->sh.SubroutineUniformRemapTable[j];
3254
3255 if (!uni)
3256 continue;
3257
3258 int count = 0;
3259 if (p->sh.NumSubroutineFunctions == 0) {
3260 linker_error(prog, "subroutine uniform %s defined but no valid functions found\n", uni->type->name);
3261 continue;
3262 }
3263 for (unsigned f = 0; f < p->sh.NumSubroutineFunctions; f++) {
3264 struct gl_subroutine_function *fn = &p->sh.SubroutineFunctions[f];
3265 for (int k = 0; k < fn->num_compat_types; k++) {
3266 if (fn->types[k] == uni->type) {
3267 count++;
3268 break;
3269 }
3270 }
3271 }
3272 uni->num_compatible_subroutines = count;
3273 }
3274 }
3275 }
3276
3277 static void
3278 check_subroutine_resources(struct gl_shader_program *prog)
3279 {
3280 unsigned mask = prog->data->linked_stages;
3281 while (mask) {
3282 const int i = u_bit_scan(&mask);
3283 struct gl_program *p = prog->_LinkedShaders[i]->Program;
3284
3285 if (p->sh.NumSubroutineUniformRemapTable > MAX_SUBROUTINE_UNIFORM_LOCATIONS) {
3286 linker_error(prog, "Too many %s shader subroutine uniforms\n",
3287 _mesa_shader_stage_to_string(i));
3288 }
3289 }
3290 }
3291 /**
3292 * Validate shader image resources.
3293 */
3294 static void
3295 check_image_resources(struct gl_context *ctx, struct gl_shader_program *prog)
3296 {
3297 unsigned total_image_units = 0;
3298 unsigned fragment_outputs = 0;
3299 unsigned total_shader_storage_blocks = 0;
3300
3301 if (!ctx->Extensions.ARB_shader_image_load_store)
3302 return;
3303
3304 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3305 struct gl_linked_shader *sh = prog->_LinkedShaders[i];
3306
3307 if (sh) {
3308 if (sh->Program->info.num_images > ctx->Const.Program[i].MaxImageUniforms)
3309 linker_error(prog, "Too many %s shader image uniforms (%u > %u)\n",
3310 _mesa_shader_stage_to_string(i),
3311 sh->Program->info.num_images,
3312 ctx->Const.Program[i].MaxImageUniforms);
3313
3314 total_image_units += sh->Program->info.num_images;
3315 total_shader_storage_blocks += sh->Program->info.num_ssbos;
3316
3317 if (i == MESA_SHADER_FRAGMENT) {
3318 foreach_in_list(ir_instruction, node, sh->ir) {
3319 ir_variable *var = node->as_variable();
3320 if (var && var->data.mode == ir_var_shader_out)
3321 /* since there are no double fs outputs - pass false */
3322 fragment_outputs += var->type->count_attribute_slots(false);
3323 }
3324 }
3325 }
3326 }
3327
3328 if (total_image_units > ctx->Const.MaxCombinedImageUniforms)
3329 linker_error(prog, "Too many combined image uniforms\n");
3330
3331 if (total_image_units + fragment_outputs + total_shader_storage_blocks >
3332 ctx->Const.MaxCombinedShaderOutputResources)
3333 linker_error(prog, "Too many combined image uniforms, shader storage "
3334 " buffers and fragment outputs\n");
3335 }
3336
3337
3338 /**
3339 * Initializes explicit location slots to INACTIVE_UNIFORM_EXPLICIT_LOCATION
3340 * for a variable, checks for overlaps between other uniforms using explicit
3341 * locations.
3342 */
3343 static int
3344 reserve_explicit_locations(struct gl_shader_program *prog,
3345 string_to_uint_map *map, ir_variable *var)
3346 {
3347 unsigned slots = var->type->uniform_locations();
3348 unsigned max_loc = var->data.location + slots - 1;
3349 unsigned return_value = slots;
3350
3351 /* Resize remap table if locations do not fit in the current one. */
3352 if (max_loc + 1 > prog->NumUniformRemapTable) {
3353 prog->UniformRemapTable =
3354 reralloc(prog, prog->UniformRemapTable,
3355 gl_uniform_storage *,
3356 max_loc + 1);
3357
3358 if (!prog->UniformRemapTable) {
3359 linker_error(prog, "Out of memory during linking.\n");
3360 return -1;
3361 }
3362
3363 /* Initialize allocated space. */
3364 for (unsigned i = prog->NumUniformRemapTable; i < max_loc + 1; i++)
3365 prog->UniformRemapTable[i] = NULL;
3366
3367 prog->NumUniformRemapTable = max_loc + 1;
3368 }
3369
3370 for (unsigned i = 0; i < slots; i++) {
3371 unsigned loc = var->data.location + i;
3372
3373 /* Check if location is already used. */
3374 if (prog->UniformRemapTable[loc] == INACTIVE_UNIFORM_EXPLICIT_LOCATION) {
3375
3376 /* Possibly same uniform from a different stage, this is ok. */
3377 unsigned hash_loc;
3378 if (map->get(hash_loc, var->name) && hash_loc == loc - i) {
3379 return_value = 0;
3380 continue;
3381 }
3382
3383 /* ARB_explicit_uniform_location specification states:
3384 *
3385 * "No two default-block uniform variables in the program can have
3386 * the same location, even if they are unused, otherwise a compiler
3387 * or linker error will be generated."
3388 */
3389 linker_error(prog,
3390 "location qualifier for uniform %s overlaps "
3391 "previously used location\n",
3392 var->name);
3393 return -1;
3394 }
3395
3396 /* Initialize location as inactive before optimization
3397 * rounds and location assignment.
3398 */
3399 prog->UniformRemapTable[loc] = INACTIVE_UNIFORM_EXPLICIT_LOCATION;
3400 }
3401
3402 /* Note, base location used for arrays. */
3403 map->put(var->data.location, var->name);
3404
3405 return return_value;
3406 }
3407
3408 static bool
3409 reserve_subroutine_explicit_locations(struct gl_shader_program *prog,
3410 struct gl_program *p,
3411 ir_variable *var)
3412 {
3413 unsigned slots = var->type->uniform_locations();
3414 unsigned max_loc = var->data.location + slots - 1;
3415
3416 /* Resize remap table if locations do not fit in the current one. */
3417 if (max_loc + 1 > p->sh.NumSubroutineUniformRemapTable) {
3418 p->sh.SubroutineUniformRemapTable =
3419 reralloc(p, p->sh.SubroutineUniformRemapTable,
3420 gl_uniform_storage *,
3421 max_loc + 1);
3422
3423 if (!p->sh.SubroutineUniformRemapTable) {
3424 linker_error(prog, "Out of memory during linking.\n");
3425 return false;
3426 }
3427
3428 /* Initialize allocated space. */
3429 for (unsigned i = p->sh.NumSubroutineUniformRemapTable; i < max_loc + 1; i++)
3430 p->sh.SubroutineUniformRemapTable[i] = NULL;
3431
3432 p->sh.NumSubroutineUniformRemapTable = max_loc + 1;
3433 }
3434
3435 for (unsigned i = 0; i < slots; i++) {
3436 unsigned loc = var->data.location + i;
3437
3438 /* Check if location is already used. */
3439 if (p->sh.SubroutineUniformRemapTable[loc] == INACTIVE_UNIFORM_EXPLICIT_LOCATION) {
3440
3441 /* ARB_explicit_uniform_location specification states:
3442 * "No two subroutine uniform variables can have the same location
3443 * in the same shader stage, otherwise a compiler or linker error
3444 * will be generated."
3445 */
3446 linker_error(prog,
3447 "location qualifier for uniform %s overlaps "
3448 "previously used location\n",
3449 var->name);
3450 return false;
3451 }
3452
3453 /* Initialize location as inactive before optimization
3454 * rounds and location assignment.
3455 */
3456 p->sh.SubroutineUniformRemapTable[loc] = INACTIVE_UNIFORM_EXPLICIT_LOCATION;
3457 }
3458
3459 return true;
3460 }
3461 /**
3462 * Check and reserve all explicit uniform locations, called before
3463 * any optimizations happen to handle also inactive uniforms and
3464 * inactive array elements that may get trimmed away.
3465 */
3466 static void
3467 check_explicit_uniform_locations(struct gl_context *ctx,
3468 struct gl_shader_program *prog)
3469 {
3470 prog->NumExplicitUniformLocations = 0;
3471
3472 if (!ctx->Extensions.ARB_explicit_uniform_location)
3473 return;
3474
3475 /* This map is used to detect if overlapping explicit locations
3476 * occur with the same uniform (from different stage) or a different one.
3477 */
3478 string_to_uint_map *uniform_map = new string_to_uint_map;
3479
3480 if (!uniform_map) {
3481 linker_error(prog, "Out of memory during linking.\n");
3482 return;
3483 }
3484
3485 unsigned entries_total = 0;
3486 unsigned mask = prog->data->linked_stages;
3487 while (mask) {
3488 const int i = u_bit_scan(&mask);
3489 struct gl_program *p = prog->_LinkedShaders[i]->Program;
3490
3491 foreach_in_list(ir_instruction, node, prog->_LinkedShaders[i]->ir) {
3492 ir_variable *var = node->as_variable();
3493 if (!var || var->data.mode != ir_var_uniform)
3494 continue;
3495
3496 if (var->data.explicit_location) {
3497 bool ret = false;
3498 if (var->type->without_array()->is_subroutine())
3499 ret = reserve_subroutine_explicit_locations(prog, p, var);
3500 else {
3501 int slots = reserve_explicit_locations(prog, uniform_map,
3502 var);
3503 if (slots != -1) {
3504 ret = true;
3505 entries_total += slots;
3506 }
3507 }
3508 if (!ret) {
3509 delete uniform_map;
3510 return;
3511 }
3512 }
3513 }
3514 }
3515
3516 struct empty_uniform_block *current_block = NULL;
3517
3518 for (unsigned i = 0; i < prog->NumUniformRemapTable; i++) {
3519 /* We found empty space in UniformRemapTable. */
3520 if (prog->UniformRemapTable[i] == NULL) {
3521 /* We've found the beginning of a new continous block of empty slots */
3522 if (!current_block || current_block->start + current_block->slots != i) {
3523 current_block = rzalloc(prog, struct empty_uniform_block);
3524 current_block->start = i;
3525 exec_list_push_tail(&prog->EmptyUniformLocations,
3526 &current_block->link);
3527 }
3528
3529 /* The current block continues, so we simply increment its slots */
3530 current_block->slots++;
3531 }
3532 }
3533
3534 delete uniform_map;
3535 prog->NumExplicitUniformLocations = entries_total;
3536 }
3537
3538 static bool
3539 should_add_buffer_variable(struct gl_shader_program *shProg,
3540 GLenum type, const char *name)
3541 {
3542 bool found_interface = false;
3543 unsigned block_name_len = 0;
3544 const char *block_name_dot = strchr(name, '.');
3545
3546 /* These rules only apply to buffer variables. So we return
3547 * true for the rest of types.
3548 */
3549 if (type != GL_BUFFER_VARIABLE)
3550 return true;
3551
3552 for (unsigned i = 0; i < shProg->data->NumShaderStorageBlocks; i++) {
3553 const char *block_name = shProg->data->ShaderStorageBlocks[i].Name;
3554 block_name_len = strlen(block_name);
3555
3556 const char *block_square_bracket = strchr(block_name, '[');
3557 if (block_square_bracket) {
3558 /* The block is part of an array of named interfaces,
3559 * for the name comparison we ignore the "[x]" part.
3560 */
3561 block_name_len -= strlen(block_square_bracket);
3562 }
3563
3564 if (block_name_dot) {
3565 /* Check if the variable name starts with the interface
3566 * name. The interface name (if present) should have the
3567 * length than the interface block name we are comparing to.
3568 */
3569 unsigned len = strlen(name) - strlen(block_name_dot);
3570 if (len != block_name_len)
3571 continue;
3572 }
3573
3574 if (strncmp(block_name, name, block_name_len) == 0) {
3575 found_interface = true;
3576 break;
3577 }
3578 }
3579
3580 /* We remove the interface name from the buffer variable name,
3581 * including the dot that follows it.
3582 */
3583 if (found_interface)
3584 name = name + block_name_len + 1;
3585
3586 /* The ARB_program_interface_query spec says:
3587 *
3588 * "For an active shader storage block member declared as an array, an
3589 * entry will be generated only for the first array element, regardless
3590 * of its type. For arrays of aggregate types, the enumeration rules
3591 * are applied recursively for the single enumerated array element."
3592 */
3593 const char *struct_first_dot = strchr(name, '.');
3594 const char *first_square_bracket = strchr(name, '[');
3595
3596 /* The buffer variable is on top level and it is not an array */
3597 if (!first_square_bracket) {
3598 return true;
3599 /* The shader storage block member is a struct, then generate the entry */
3600 } else if (struct_first_dot && struct_first_dot < first_square_bracket) {
3601 return true;
3602 } else {
3603 /* Shader storage block member is an array, only generate an entry for the
3604 * first array element.
3605 */
3606 if (strncmp(first_square_bracket, "[0]", 3) == 0)
3607 return true;
3608 }
3609
3610 return false;
3611 }
3612
3613 static bool
3614 add_program_resource(struct gl_shader_program *prog,
3615 struct set *resource_set,
3616 GLenum type, const void *data, uint8_t stages)
3617 {
3618 assert(data);
3619
3620 /* If resource already exists, do not add it again. */
3621 if (_mesa_set_search(resource_set, data))
3622 return true;
3623
3624 prog->data->ProgramResourceList =
3625 reralloc(prog->data,
3626 prog->data->ProgramResourceList,
3627 gl_program_resource,
3628 prog->data->NumProgramResourceList + 1);
3629
3630 if (!prog->data->ProgramResourceList) {
3631 linker_error(prog, "Out of memory during linking.\n");
3632 return false;
3633 }
3634
3635 struct gl_program_resource *res =
3636 &prog->data->ProgramResourceList[prog->data->NumProgramResourceList];
3637
3638 res->Type = type;
3639 res->Data = data;
3640 res->StageReferences = stages;
3641
3642 prog->data->NumProgramResourceList++;
3643
3644 _mesa_set_add(resource_set, data);
3645
3646 return true;
3647 }
3648
3649 /* Function checks if a variable var is a packed varying and
3650 * if given name is part of packed varying's list.
3651 *
3652 * If a variable is a packed varying, it has a name like
3653 * 'packed:a,b,c' where a, b and c are separate variables.
3654 */
3655 static bool
3656 included_in_packed_varying(ir_variable *var, const char *name)
3657 {
3658 if (strncmp(var->name, "packed:", 7) != 0)
3659 return false;
3660
3661 char *list = strdup(var->name + 7);
3662 assert(list);
3663
3664 bool found = false;
3665 char *saveptr;
3666 char *token = strtok_r(list, ",", &saveptr);
3667 while (token) {
3668 if (strcmp(token, name) == 0) {
3669 found = true;
3670 break;
3671 }
3672 token = strtok_r(NULL, ",", &saveptr);
3673 }
3674 free(list);
3675 return found;
3676 }
3677
3678 /**
3679 * Function builds a stage reference bitmask from variable name.
3680 */
3681 static uint8_t
3682 build_stageref(struct gl_shader_program *shProg, const char *name,
3683 unsigned mode)
3684 {
3685 uint8_t stages = 0;
3686
3687 /* Note, that we assume MAX 8 stages, if there will be more stages, type
3688 * used for reference mask in gl_program_resource will need to be changed.
3689 */
3690 assert(MESA_SHADER_STAGES < 8);
3691
3692 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3693 struct gl_linked_shader *sh = shProg->_LinkedShaders[i];
3694 if (!sh)
3695 continue;
3696
3697 /* Shader symbol table may contain variables that have
3698 * been optimized away. Search IR for the variable instead.
3699 */
3700 foreach_in_list(ir_instruction, node, sh->ir) {
3701 ir_variable *var = node->as_variable();
3702 if (var) {
3703 unsigned baselen = strlen(var->name);
3704
3705 if (included_in_packed_varying(var, name)) {
3706 stages |= (1 << i);
3707 break;
3708 }
3709
3710 /* Type needs to match if specified, otherwise we might
3711 * pick a variable with same name but different interface.
3712 */
3713 if (var->data.mode != mode)
3714 continue;
3715
3716 if (strncmp(var->name, name, baselen) == 0) {
3717 /* Check for exact name matches but also check for arrays and
3718 * structs.
3719 */
3720 if (name[baselen] == '\0' ||
3721 name[baselen] == '[' ||
3722 name[baselen] == '.') {
3723 stages |= (1 << i);
3724 break;
3725 }
3726 }
3727 }
3728 }
3729 }
3730 return stages;
3731 }
3732
3733 /**
3734 * Create gl_shader_variable from ir_variable class.
3735 */
3736 static gl_shader_variable *
3737 create_shader_variable(struct gl_shader_program *shProg,
3738 const ir_variable *in,
3739 const char *name, const glsl_type *type,
3740 const glsl_type *interface_type,
3741 bool use_implicit_location, int location,
3742 const glsl_type *outermost_struct_type)
3743 {
3744 /* Allocate zero-initialized memory to ensure that bitfield padding
3745 * is zero.
3746 */
3747 gl_shader_variable *out = rzalloc(shProg, struct gl_shader_variable);
3748 if (!out)
3749 return NULL;
3750
3751 /* Since gl_VertexID may be lowered to gl_VertexIDMESA, but applications
3752 * expect to see gl_VertexID in the program resource list. Pretend.
3753 */
3754 if (in->data.mode == ir_var_system_value &&
3755 in->data.location == SYSTEM_VALUE_VERTEX_ID_ZERO_BASE) {
3756 out->name = ralloc_strdup(shProg, "gl_VertexID");
3757 } else if ((in->data.mode == ir_var_shader_out &&
3758 in->data.location == VARYING_SLOT_TESS_LEVEL_OUTER) ||
3759 (in->data.mode == ir_var_system_value &&
3760 in->data.location == SYSTEM_VALUE_TESS_LEVEL_OUTER)) {
3761 out->name = ralloc_strdup(shProg, "gl_TessLevelOuter");
3762 type = glsl_type::get_array_instance(glsl_type::float_type, 4);
3763 } else if ((in->data.mode == ir_var_shader_out &&
3764 in->data.location == VARYING_SLOT_TESS_LEVEL_INNER) ||
3765 (in->data.mode == ir_var_system_value &&
3766 in->data.location == SYSTEM_VALUE_TESS_LEVEL_INNER)) {
3767 out->name = ralloc_strdup(shProg, "gl_TessLevelInner");
3768 type = glsl_type::get_array_instance(glsl_type::float_type, 2);
3769 } else {
3770 out->name = ralloc_strdup(shProg, name);
3771 }
3772
3773 if (!out->name)
3774 return NULL;
3775
3776 /* The ARB_program_interface_query spec says:
3777 *
3778 * "Not all active variables are assigned valid locations; the
3779 * following variables will have an effective location of -1:
3780 *
3781 * * uniforms declared as atomic counters;
3782 *
3783 * * members of a uniform block;
3784 *
3785 * * built-in inputs, outputs, and uniforms (starting with "gl_"); and
3786 *
3787 * * inputs or outputs not declared with a "location" layout
3788 * qualifier, except for vertex shader inputs and fragment shader
3789 * outputs."
3790 */
3791 if (in->type->is_atomic_uint() || is_gl_identifier(in->name) ||
3792 !(in->data.explicit_location || use_implicit_location)) {
3793 out->location = -1;
3794 } else {
3795 out->location = location;
3796 }
3797
3798 out->type = type;
3799 out->outermost_struct_type = outermost_struct_type;
3800 out->interface_type = interface_type;
3801 out->component = in->data.location_frac;
3802 out->index = in->data.index;
3803 out->patch = in->data.patch;
3804 out->mode = in->data.mode;
3805 out->interpolation = in->data.interpolation;
3806 out->explicit_location = in->data.explicit_location;
3807 out->precision = in->data.precision;
3808
3809 return out;
3810 }
3811
3812 static bool
3813 add_shader_variable(const struct gl_context *ctx,
3814 struct gl_shader_program *shProg,
3815 struct set *resource_set,
3816 unsigned stage_mask,
3817 GLenum programInterface, ir_variable *var,
3818 const char *name, const glsl_type *type,
3819 bool use_implicit_location, int location,
3820 bool inouts_share_location,
3821 const glsl_type *outermost_struct_type = NULL)
3822 {
3823 const glsl_type *interface_type = var->get_interface_type();
3824
3825 if (outermost_struct_type == NULL) {
3826 if (var->data.from_named_ifc_block) {
3827 const char *interface_name = interface_type->name;
3828
3829 if (interface_type->is_array()) {
3830 /* Issue #16 of the ARB_program_interface_query spec says:
3831 *
3832 * "* If a variable is a member of an interface block without an
3833 * instance name, it is enumerated using just the variable name.
3834 *
3835 * * If a variable is a member of an interface block with an
3836 * instance name, it is enumerated as "BlockName.Member", where
3837 * "BlockName" is the name of the interface block (not the
3838 * instance name) and "Member" is the name of the variable."
3839 *
3840 * In particular, it indicates that it should be "BlockName",
3841 * not "BlockName[array length]". The conformance suite and
3842 * dEQP both require this behavior.
3843 *
3844 * Here, we unwrap the extra array level added by named interface
3845 * block array lowering so we have the correct variable type. We
3846 * also unwrap the interface type when constructing the name.
3847 *
3848 * We leave interface_type the same so that ES 3.x SSO pipeline
3849 * validation can enforce the rules requiring array length to
3850 * match on interface blocks.
3851 */
3852 type = type->fields.array;
3853
3854 interface_name = interface_type->fields.array->name;
3855 }
3856
3857 name = ralloc_asprintf(shProg, "%s.%s", interface_name, name);
3858 }
3859 }
3860
3861 switch (type->base_type) {
3862 case GLSL_TYPE_STRUCT: {
3863 /* The ARB_program_interface_query spec says:
3864 *
3865 * "For an active variable declared as a structure, a separate entry
3866 * will be generated for each active structure member. The name of
3867 * each entry is formed by concatenating the name of the structure,
3868 * the "." character, and the name of the structure member. If a
3869 * structure member to enumerate is itself a structure or array,
3870 * these enumeration rules are applied recursively."
3871 */
3872 if (outermost_struct_type == NULL)
3873 outermost_struct_type = type;
3874
3875 unsigned field_location = location;
3876 for (unsigned i = 0; i < type->length; i++) {
3877 const struct glsl_struct_field *field = &type->fields.structure[i];
3878 char *field_name = ralloc_asprintf(shProg, "%s.%s", name, field->name);
3879 if (!add_shader_variable(ctx, shProg, resource_set,
3880 stage_mask, programInterface,
3881 var, field_name, field->type,
3882 use_implicit_location, field_location,
3883 false, outermost_struct_type))
3884 return false;
3885
3886 field_location += field->type->count_attribute_slots(false);
3887 }
3888 return true;
3889 }
3890
3891 case GLSL_TYPE_ARRAY: {
3892 /* The ARB_program_interface_query spec says:
3893 *
3894 * "For an active variable declared as an array of basic types, a
3895 * single entry will be generated, with its name string formed by
3896 * concatenating the name of the array and the string "[0]"."
3897 *
3898 * "For an active variable declared as an array of an aggregate data
3899 * type (structures or arrays), a separate entry will be generated
3900 * for each active array element, unless noted immediately below.
3901 * The name of each entry is formed by concatenating the name of
3902 * the array, the "[" character, an integer identifying the element
3903 * number, and the "]" character. These enumeration rules are
3904 * applied recursively, treating each enumerated array element as a
3905 * separate active variable."
3906 */
3907 const struct glsl_type *array_type = type->fields.array;
3908 if (array_type->base_type == GLSL_TYPE_STRUCT ||
3909 array_type->base_type == GLSL_TYPE_ARRAY) {
3910 unsigned elem_location = location;
3911 unsigned stride = inouts_share_location ? 0 :
3912 array_type->count_attribute_slots(false);
3913 for (unsigned i = 0; i < type->length; i++) {
3914 char *elem = ralloc_asprintf(shProg, "%s[%d]", name, i);
3915 if (!add_shader_variable(ctx, shProg, resource_set,
3916 stage_mask, programInterface,
3917 var, elem, array_type,
3918 use_implicit_location, elem_location,
3919 false, outermost_struct_type))
3920 return false;
3921 elem_location += stride;
3922 }
3923 return true;
3924 }
3925 /* fallthrough */
3926 }
3927
3928 default: {
3929 /* The ARB_program_interface_query spec says:
3930 *
3931 * "For an active variable declared as a single instance of a basic
3932 * type, a single entry will be generated, using the variable name
3933 * from the shader source."
3934 */
3935 gl_shader_variable *sha_v =
3936 create_shader_variable(shProg, var, name, type, interface_type,
3937 use_implicit_location, location,
3938 outermost_struct_type);
3939 if (!sha_v)
3940 return false;
3941
3942 return add_program_resource(shProg, resource_set,
3943 programInterface, sha_v, stage_mask);
3944 }
3945 }
3946 }
3947
3948 static bool
3949 inout_has_same_location(const ir_variable *var, unsigned stage)
3950 {
3951 if (!var->data.patch &&
3952 ((var->data.mode == ir_var_shader_out &&
3953 stage == MESA_SHADER_TESS_CTRL) ||
3954 (var->data.mode == ir_var_shader_in &&
3955 (stage == MESA_SHADER_TESS_CTRL || stage == MESA_SHADER_TESS_EVAL ||
3956 stage == MESA_SHADER_GEOMETRY))))
3957 return true;
3958 else
3959 return false;
3960 }
3961
3962 static bool
3963 add_interface_variables(const struct gl_context *ctx,
3964 struct gl_shader_program *shProg,
3965 struct set *resource_set,
3966 unsigned stage, GLenum programInterface)
3967 {
3968 exec_list *ir = shProg->_LinkedShaders[stage]->ir;
3969
3970 foreach_in_list(ir_instruction, node, ir) {
3971 ir_variable *var = node->as_variable();
3972
3973 if (!var || var->data.how_declared == ir_var_hidden)
3974 continue;
3975
3976 int loc_bias;
3977
3978 switch (var->data.mode) {
3979 case ir_var_system_value:
3980 case ir_var_shader_in:
3981 if (programInterface != GL_PROGRAM_INPUT)
3982 continue;
3983 loc_bias = (stage == MESA_SHADER_VERTEX) ? int(VERT_ATTRIB_GENERIC0)
3984 : int(VARYING_SLOT_VAR0);
3985 break;
3986 case ir_var_shader_out:
3987 if (programInterface != GL_PROGRAM_OUTPUT)
3988 continue;
3989 loc_bias = (stage == MESA_SHADER_FRAGMENT) ? int(FRAG_RESULT_DATA0)
3990 : int(VARYING_SLOT_VAR0);
3991 break;
3992 default:
3993 continue;
3994 };
3995
3996 if (var->data.patch)
3997 loc_bias = int(VARYING_SLOT_PATCH0);
3998
3999 /* Skip packed varyings, packed varyings are handled separately
4000 * by add_packed_varyings.
4001 */
4002 if (strncmp(var->name, "packed:", 7) == 0)
4003 continue;
4004
4005 /* Skip fragdata arrays, these are handled separately
4006 * by add_fragdata_arrays.
4007 */
4008 if (strncmp(var->name, "gl_out_FragData", 15) == 0)
4009 continue;
4010
4011 const bool vs_input_or_fs_output =
4012 (stage == MESA_SHADER_VERTEX && var->data.mode == ir_var_shader_in) ||
4013 (stage == MESA_SHADER_FRAGMENT && var->data.mode == ir_var_shader_out);
4014
4015 if (!add_shader_variable(ctx, shProg, resource_set,
4016 1 << stage, programInterface,
4017 var, var->name, var->type, vs_input_or_fs_output,
4018 var->data.location - loc_bias,
4019 inout_has_same_location(var, stage)))
4020 return false;
4021 }
4022 return true;
4023 }
4024
4025 static bool
4026 add_packed_varyings(const struct gl_context *ctx,
4027 struct gl_shader_program *shProg,
4028 struct set *resource_set,
4029 int stage, GLenum type)
4030 {
4031 struct gl_linked_shader *sh = shProg->_LinkedShaders[stage];
4032 GLenum iface;
4033
4034 if (!sh || !sh->packed_varyings)
4035 return true;
4036
4037 foreach_in_list(ir_instruction, node, sh->packed_varyings) {
4038 ir_variable *var = node->as_variable();
4039 if (var) {
4040 switch (var->data.mode) {
4041 case ir_var_shader_in:
4042 iface = GL_PROGRAM_INPUT;
4043 break;
4044 case ir_var_shader_out:
4045 iface = GL_PROGRAM_OUTPUT;
4046 break;
4047 default:
4048 unreachable("unexpected type");
4049 }
4050
4051 if (type == iface) {
4052 const int stage_mask =
4053 build_stageref(shProg, var->name, var->data.mode);
4054 if (!add_shader_variable(ctx, shProg, resource_set,
4055 stage_mask,
4056 iface, var, var->name, var->type, false,
4057 var->data.location - VARYING_SLOT_VAR0,
4058 inout_has_same_location(var, stage)))
4059 return false;
4060 }
4061 }
4062 }
4063 return true;
4064 }
4065
4066 static bool
4067 add_fragdata_arrays(const struct gl_context *ctx,
4068 struct gl_shader_program *shProg,
4069 struct set *resource_set)
4070 {
4071 struct gl_linked_shader *sh = shProg->_LinkedShaders[MESA_SHADER_FRAGMENT];
4072
4073 if (!sh || !sh->fragdata_arrays)
4074 return true;
4075
4076 foreach_in_list(ir_instruction, node, sh->fragdata_arrays) {
4077 ir_variable *var = node->as_variable();
4078 if (var) {
4079 assert(var->data.mode == ir_var_shader_out);
4080
4081 if (!add_shader_variable(ctx, shProg, resource_set,
4082 1 << MESA_SHADER_FRAGMENT,
4083 GL_PROGRAM_OUTPUT, var, var->name, var->type,
4084 true, var->data.location - FRAG_RESULT_DATA0,
4085 false))
4086 return false;
4087 }
4088 }
4089 return true;
4090 }
4091
4092 static char*
4093 get_top_level_name(const char *name)
4094 {
4095 const char *first_dot = strchr(name, '.');
4096 const char *first_square_bracket = strchr(name, '[');
4097 int name_size = 0;
4098
4099 /* The ARB_program_interface_query spec says:
4100 *
4101 * "For the property TOP_LEVEL_ARRAY_SIZE, a single integer identifying
4102 * the number of active array elements of the top-level shader storage
4103 * block member containing to the active variable is written to
4104 * <params>. If the top-level block member is not declared as an
4105 * array, the value one is written to <params>. If the top-level block
4106 * member is an array with no declared size, the value zero is written
4107 * to <params>."
4108 */
4109
4110 /* The buffer variable is on top level.*/
4111 if (!first_square_bracket && !first_dot)
4112 name_size = strlen(name);
4113 else if ((!first_square_bracket ||
4114 (first_dot && first_dot < first_square_bracket)))
4115 name_size = first_dot - name;
4116 else
4117 name_size = first_square_bracket - name;
4118
4119 return strndup(name, name_size);
4120 }
4121
4122 static char*
4123 get_var_name(const char *name)
4124 {
4125 const char *first_dot = strchr(name, '.');
4126
4127 if (!first_dot)
4128 return strdup(name);
4129
4130 return strndup(first_dot+1, strlen(first_dot) - 1);
4131 }
4132
4133 static bool
4134 is_top_level_shader_storage_block_member(const char* name,
4135 const char* interface_name,
4136 const char* field_name)
4137 {
4138 bool result = false;
4139
4140 /* If the given variable is already a top-level shader storage
4141 * block member, then return array_size = 1.
4142 * We could have two possibilities: if we have an instanced
4143 * shader storage block or not instanced.
4144 *
4145 * For the first, we check create a name as it was in top level and
4146 * compare it with the real name. If they are the same, then
4147 * the variable is already at top-level.
4148 *
4149 * Full instanced name is: interface name + '.' + var name +
4150 * NULL character
4151 */
4152 int name_length = strlen(interface_name) + 1 + strlen(field_name) + 1;
4153 char *full_instanced_name = (char *) calloc(name_length, sizeof(char));
4154 if (!full_instanced_name) {
4155 fprintf(stderr, "%s: Cannot allocate space for name\n", __func__);
4156 return false;
4157 }
4158
4159 snprintf(full_instanced_name, name_length, "%s.%s",
4160 interface_name, field_name);
4161
4162 /* Check if its top-level shader storage block member of an
4163 * instanced interface block, or of a unnamed interface block.
4164 */
4165 if (strcmp(name, full_instanced_name) == 0 ||
4166 strcmp(name, field_name) == 0)
4167 result = true;
4168
4169 free(full_instanced_name);
4170 return result;
4171 }
4172
4173 static int
4174 get_array_size(struct gl_uniform_storage *uni, const glsl_struct_field *field,
4175 char *interface_name, char *var_name)
4176 {
4177 /* The ARB_program_interface_query spec says:
4178 *
4179 * "For the property TOP_LEVEL_ARRAY_SIZE, a single integer identifying
4180 * the number of active array elements of the top-level shader storage
4181 * block member containing to the active variable is written to
4182 * <params>. If the top-level block member is not declared as an
4183 * array, the value one is written to <params>. If the top-level block
4184 * member is an array with no declared size, the value zero is written
4185 * to <params>."
4186 */
4187 if (is_top_level_shader_storage_block_member(uni->name,
4188 interface_name,
4189 var_name))
4190 return 1;
4191 else if (field->type->is_unsized_array())
4192 return 0;
4193 else if (field->type->is_array())
4194 return field->type->length;
4195
4196 return 1;
4197 }
4198
4199 static int
4200 get_array_stride(struct gl_context *ctx, struct gl_uniform_storage *uni,
4201 const glsl_type *interface, const glsl_struct_field *field,
4202 char *interface_name, char *var_name)
4203 {
4204 /* The ARB_program_interface_query spec says:
4205 *
4206 * "For the property TOP_LEVEL_ARRAY_STRIDE, a single integer
4207 * identifying the stride between array elements of the top-level
4208 * shader storage block member containing the active variable is
4209 * written to <params>. For top-level block members declared as
4210 * arrays, the value written is the difference, in basic machine units,
4211 * between the offsets of the active variable for consecutive elements
4212 * in the top-level array. For top-level block members not declared as
4213 * an array, zero is written to <params>."
4214 */
4215 if (field->type->is_array()) {
4216 const enum glsl_matrix_layout matrix_layout =
4217 glsl_matrix_layout(field->matrix_layout);
4218 bool row_major = matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR;
4219 const glsl_type *array_type = field->type->fields.array;
4220
4221 if (is_top_level_shader_storage_block_member(uni->name,
4222 interface_name,
4223 var_name))
4224 return 0;
4225
4226 if (GLSL_INTERFACE_PACKING_STD140 ==
4227 interface->
4228 get_internal_ifc_packing(ctx->Const.UseSTD430AsDefaultPacking)) {
4229 if (array_type->is_record() || array_type->is_array())
4230 return glsl_align(array_type->std140_size(row_major), 16);
4231 else
4232 return MAX2(array_type->std140_base_alignment(row_major), 16);
4233 } else {
4234 return array_type->std430_array_stride(row_major);
4235 }
4236 }
4237 return 0;
4238 }
4239
4240 static void
4241 calculate_array_size_and_stride(struct gl_context *ctx,
4242 struct gl_shader_program *shProg,
4243 struct gl_uniform_storage *uni)
4244 {
4245 int block_index = uni->block_index;
4246 int array_size = -1;
4247 int array_stride = -1;
4248 char *var_name = get_top_level_name(uni->name);
4249 char *interface_name =
4250 get_top_level_name(uni->is_shader_storage ?
4251 shProg->data->ShaderStorageBlocks[block_index].Name :
4252 shProg->data->UniformBlocks[block_index].Name);
4253
4254 if (strcmp(var_name, interface_name) == 0) {
4255 /* Deal with instanced array of SSBOs */
4256 char *temp_name = get_var_name(uni->name);
4257 if (!temp_name) {
4258 linker_error(shProg, "Out of memory during linking.\n");
4259 goto write_top_level_array_size_and_stride;
4260 }
4261 free(var_name);
4262 var_name = get_top_level_name(temp_name);
4263 free(temp_name);
4264 if (!var_name) {
4265 linker_error(shProg, "Out of memory during linking.\n");
4266 goto write_top_level_array_size_and_stride;
4267 }
4268 }
4269
4270 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4271 const gl_linked_shader *sh = shProg->_LinkedShaders[i];
4272 if (sh == NULL)
4273 continue;
4274
4275 foreach_in_list(ir_instruction, node, sh->ir) {
4276 ir_variable *var = node->as_variable();
4277 if (!var || !var->get_interface_type() ||
4278 var->data.mode != ir_var_shader_storage)
4279 continue;
4280
4281 const glsl_type *interface = var->get_interface_type();
4282
4283 if (strcmp(interface_name, interface->name) != 0)
4284 continue;
4285
4286 for (unsigned i = 0; i < interface->length; i++) {
4287 const glsl_struct_field *field = &interface->fields.structure[i];
4288 if (strcmp(field->name, var_name) != 0)
4289 continue;
4290
4291 array_stride = get_array_stride(ctx, uni, interface, field,
4292 interface_name, var_name);
4293 array_size = get_array_size(uni, field, interface_name, var_name);
4294 goto write_top_level_array_size_and_stride;
4295 }
4296 }
4297 }
4298 write_top_level_array_size_and_stride:
4299 free(interface_name);
4300 free(var_name);
4301 uni->top_level_array_stride = array_stride;
4302 uni->top_level_array_size = array_size;
4303 }
4304
4305 /**
4306 * Builds up a list of program resources that point to existing
4307 * resource data.
4308 */
4309 void
4310 build_program_resource_list(struct gl_context *ctx,
4311 struct gl_shader_program *shProg)
4312 {
4313 /* Rebuild resource list. */
4314 if (shProg->data->ProgramResourceList) {
4315 ralloc_free(shProg->data->ProgramResourceList);
4316 shProg->data->ProgramResourceList = NULL;
4317 shProg->data->NumProgramResourceList = 0;
4318 }
4319
4320 int input_stage = MESA_SHADER_STAGES, output_stage = 0;
4321
4322 /* Determine first input and final output stage. These are used to
4323 * detect which variables should be enumerated in the resource list
4324 * for GL_PROGRAM_INPUT and GL_PROGRAM_OUTPUT.
4325 */
4326 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4327 if (!shProg->_LinkedShaders[i])
4328 continue;
4329 if (input_stage == MESA_SHADER_STAGES)
4330 input_stage = i;
4331 output_stage = i;
4332 }
4333
4334 /* Empty shader, no resources. */
4335 if (input_stage == MESA_SHADER_STAGES && output_stage == 0)
4336 return;
4337
4338 struct set *resource_set = _mesa_set_create(NULL,
4339 _mesa_hash_pointer,
4340 _mesa_key_pointer_equal);
4341
4342 /* Program interface needs to expose varyings in case of SSO. */
4343 if (shProg->SeparateShader) {
4344 if (!add_packed_varyings(ctx, shProg, resource_set,
4345 input_stage, GL_PROGRAM_INPUT))
4346 return;
4347
4348 if (!add_packed_varyings(ctx, shProg, resource_set,
4349 output_stage, GL_PROGRAM_OUTPUT))
4350 return;
4351 }
4352
4353 if (!add_fragdata_arrays(ctx, shProg, resource_set))
4354 return;
4355
4356 /* Add inputs and outputs to the resource list. */
4357 if (!add_interface_variables(ctx, shProg, resource_set,
4358 input_stage, GL_PROGRAM_INPUT))
4359 return;
4360
4361 if (!add_interface_variables(ctx, shProg, resource_set,
4362 output_stage, GL_PROGRAM_OUTPUT))
4363 return;
4364
4365 if (shProg->last_vert_prog) {
4366 struct gl_transform_feedback_info *linked_xfb =
4367 shProg->last_vert_prog->sh.LinkedTransformFeedback;
4368
4369 /* Add transform feedback varyings. */
4370 if (linked_xfb->NumVarying > 0) {
4371 for (int i = 0; i < linked_xfb->NumVarying; i++) {
4372 if (!add_program_resource(shProg, resource_set,
4373 GL_TRANSFORM_FEEDBACK_VARYING,
4374 &linked_xfb->Varyings[i], 0))
4375 return;
4376 }
4377 }
4378
4379 /* Add transform feedback buffers. */
4380 for (unsigned i = 0; i < ctx->Const.MaxTransformFeedbackBuffers; i++) {
4381 if ((linked_xfb->ActiveBuffers >> i) & 1) {
4382 linked_xfb->Buffers[i].Binding = i;
4383 if (!add_program_resource(shProg, resource_set,
4384 GL_TRANSFORM_FEEDBACK_BUFFER,
4385 &linked_xfb->Buffers[i], 0))
4386 return;
4387 }
4388 }
4389 }
4390
4391 /* Add uniforms from uniform storage. */
4392 for (unsigned i = 0; i < shProg->data->NumUniformStorage; i++) {
4393 /* Do not add uniforms internally used by Mesa. */
4394 if (shProg->data->UniformStorage[i].hidden)
4395 continue;
4396
4397 uint8_t stageref =
4398 build_stageref(shProg, shProg->data->UniformStorage[i].name,
4399 ir_var_uniform);
4400
4401 /* Add stagereferences for uniforms in a uniform block. */
4402 bool is_shader_storage =
4403 shProg->data->UniformStorage[i].is_shader_storage;
4404 int block_index = shProg->data->UniformStorage[i].block_index;
4405 if (block_index != -1) {
4406 stageref |= is_shader_storage ?
4407 shProg->data->ShaderStorageBlocks[block_index].stageref :
4408 shProg->data->UniformBlocks[block_index].stageref;
4409 }
4410
4411 GLenum type = is_shader_storage ? GL_BUFFER_VARIABLE : GL_UNIFORM;
4412 if (!should_add_buffer_variable(shProg, type,
4413 shProg->data->UniformStorage[i].name))
4414 continue;
4415
4416 if (is_shader_storage) {
4417 calculate_array_size_and_stride(ctx, shProg,
4418 &shProg->data->UniformStorage[i]);
4419 }
4420
4421 if (!add_program_resource(shProg, resource_set, type,
4422 &shProg->data->UniformStorage[i], stageref))
4423 return;
4424 }
4425
4426 /* Add program uniform blocks. */
4427 for (unsigned i = 0; i < shProg->data->NumUniformBlocks; i++) {
4428 if (!add_program_resource(shProg, resource_set, GL_UNIFORM_BLOCK,
4429 &shProg->data->UniformBlocks[i], 0))
4430 return;
4431 }
4432
4433 /* Add program shader storage blocks. */
4434 for (unsigned i = 0; i < shProg->data->NumShaderStorageBlocks; i++) {
4435 if (!add_program_resource(shProg, resource_set, GL_SHADER_STORAGE_BLOCK,
4436 &shProg->data->ShaderStorageBlocks[i], 0))
4437 return;
4438 }
4439
4440 /* Add atomic counter buffers. */
4441 for (unsigned i = 0; i < shProg->data->NumAtomicBuffers; i++) {
4442 if (!add_program_resource(shProg, resource_set, GL_ATOMIC_COUNTER_BUFFER,
4443 &shProg->data->AtomicBuffers[i], 0))
4444 return;
4445 }
4446
4447 for (unsigned i = 0; i < shProg->data->NumUniformStorage; i++) {
4448 GLenum type;
4449 if (!shProg->data->UniformStorage[i].hidden)
4450 continue;
4451
4452 for (int j = MESA_SHADER_VERTEX; j < MESA_SHADER_STAGES; j++) {
4453 if (!shProg->data->UniformStorage[i].opaque[j].active ||
4454 !shProg->data->UniformStorage[i].type->is_subroutine())
4455 continue;
4456
4457 type = _mesa_shader_stage_to_subroutine_uniform((gl_shader_stage)j);
4458 /* add shader subroutines */
4459 if (!add_program_resource(shProg, resource_set,
4460 type, &shProg->data->UniformStorage[i], 0))
4461 return;
4462 }
4463 }
4464
4465 unsigned mask = shProg->data->linked_stages;
4466 while (mask) {
4467 const int i = u_bit_scan(&mask);
4468 struct gl_program *p = shProg->_LinkedShaders[i]->Program;
4469
4470 GLuint type = _mesa_shader_stage_to_subroutine((gl_shader_stage)i);
4471 for (unsigned j = 0; j < p->sh.NumSubroutineFunctions; j++) {
4472 if (!add_program_resource(shProg, resource_set,
4473 type, &p->sh.SubroutineFunctions[j], 0))
4474 return;
4475 }
4476 }
4477
4478 _mesa_set_destroy(resource_set, NULL);
4479 }
4480
4481 /**
4482 * This check is done to make sure we allow only constant expression
4483 * indexing and "constant-index-expression" (indexing with an expression
4484 * that includes loop induction variable).
4485 */
4486 static bool
4487 validate_sampler_array_indexing(struct gl_context *ctx,
4488 struct gl_shader_program *prog)
4489 {
4490 dynamic_sampler_array_indexing_visitor v;
4491 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4492 if (prog->_LinkedShaders[i] == NULL)
4493 continue;
4494
4495 bool no_dynamic_indexing =
4496 ctx->Const.ShaderCompilerOptions[i].EmitNoIndirectSampler;
4497
4498 /* Search for array derefs in shader. */
4499 v.run(prog->_LinkedShaders[i]->ir);
4500 if (v.uses_dynamic_sampler_array_indexing()) {
4501 const char *msg = "sampler arrays indexed with non-constant "
4502 "expressions is forbidden in GLSL %s %u";
4503 /* Backend has indicated that it has no dynamic indexing support. */
4504 if (no_dynamic_indexing) {
4505 linker_error(prog, msg, prog->IsES ? "ES" : "",
4506 prog->data->Version);
4507 return false;
4508 } else {
4509 linker_warning(prog, msg, prog->IsES ? "ES" : "",
4510 prog->data->Version);
4511 }
4512 }
4513 }
4514 return true;
4515 }
4516
4517 static void
4518 link_assign_subroutine_types(struct gl_shader_program *prog)
4519 {
4520 unsigned mask = prog->data->linked_stages;
4521 while (mask) {
4522 const int i = u_bit_scan(&mask);
4523 gl_program *p = prog->_LinkedShaders[i]->Program;
4524
4525 p->sh.MaxSubroutineFunctionIndex = 0;
4526 foreach_in_list(ir_instruction, node, prog->_LinkedShaders[i]->ir) {
4527 ir_function *fn = node->as_function();
4528 if (!fn)
4529 continue;
4530
4531 if (fn->is_subroutine)
4532 p->sh.NumSubroutineUniformTypes++;
4533
4534 if (!fn->num_subroutine_types)
4535 continue;
4536
4537 /* these should have been calculated earlier. */
4538 assert(fn->subroutine_index != -1);
4539 if (p->sh.NumSubroutineFunctions + 1 > MAX_SUBROUTINES) {
4540 linker_error(prog, "Too many subroutine functions declared.\n");
4541 return;
4542 }
4543 p->sh.SubroutineFunctions = reralloc(p, p->sh.SubroutineFunctions,
4544 struct gl_subroutine_function,
4545 p->sh.NumSubroutineFunctions + 1);
4546 p->sh.SubroutineFunctions[p->sh.NumSubroutineFunctions].name = ralloc_strdup(p, fn->name);
4547 p->sh.SubroutineFunctions[p->sh.NumSubroutineFunctions].num_compat_types = fn->num_subroutine_types;
4548 p->sh.SubroutineFunctions[p->sh.NumSubroutineFunctions].types =
4549 ralloc_array(p, const struct glsl_type *,
4550 fn->num_subroutine_types);
4551
4552 /* From Section 4.4.4(Subroutine Function Layout Qualifiers) of the
4553 * GLSL 4.5 spec:
4554 *
4555 * "Each subroutine with an index qualifier in the shader must be
4556 * given a unique index, otherwise a compile or link error will be
4557 * generated."
4558 */
4559 for (unsigned j = 0; j < p->sh.NumSubroutineFunctions; j++) {
4560 if (p->sh.SubroutineFunctions[j].index != -1 &&
4561 p->sh.SubroutineFunctions[j].index == fn->subroutine_index) {
4562 linker_error(prog, "each subroutine index qualifier in the "
4563 "shader must be unique\n");
4564 return;
4565 }
4566 }
4567 p->sh.SubroutineFunctions[p->sh.NumSubroutineFunctions].index =
4568 fn->subroutine_index;
4569
4570 if (fn->subroutine_index > (int)p->sh.MaxSubroutineFunctionIndex)
4571 p->sh.MaxSubroutineFunctionIndex = fn->subroutine_index;
4572
4573 for (int j = 0; j < fn->num_subroutine_types; j++)
4574 p->sh.SubroutineFunctions[p->sh.NumSubroutineFunctions].types[j] = fn->subroutine_types[j];
4575 p->sh.NumSubroutineFunctions++;
4576 }
4577 }
4578 }
4579
4580 static void
4581 set_always_active_io(exec_list *ir, ir_variable_mode io_mode)
4582 {
4583 assert(io_mode == ir_var_shader_in || io_mode == ir_var_shader_out);
4584
4585 foreach_in_list(ir_instruction, node, ir) {
4586 ir_variable *const var = node->as_variable();
4587
4588 if (var == NULL || var->data.mode != io_mode)
4589 continue;
4590
4591 /* Don't set always active on builtins that haven't been redeclared */
4592 if (var->data.how_declared == ir_var_declared_implicitly)
4593 continue;
4594
4595 var->data.always_active_io = true;
4596 }
4597 }
4598
4599 /**
4600 * When separate shader programs are enabled, only input/outputs between
4601 * the stages of a multi-stage separate program can be safely removed
4602 * from the shader interface. Other inputs/outputs must remain active.
4603 */
4604 static void
4605 disable_varying_optimizations_for_sso(struct gl_shader_program *prog)
4606 {
4607 unsigned first, last;
4608 assert(prog->SeparateShader);
4609
4610 first = MESA_SHADER_STAGES;
4611 last = 0;
4612
4613 /* Determine first and last stage. Excluding the compute stage */
4614 for (unsigned i = 0; i < MESA_SHADER_COMPUTE; i++) {
4615 if (!prog->_LinkedShaders[i])
4616 continue;
4617 if (first == MESA_SHADER_STAGES)
4618 first = i;
4619 last = i;
4620 }
4621
4622 if (first == MESA_SHADER_STAGES)
4623 return;
4624
4625 for (unsigned stage = 0; stage < MESA_SHADER_STAGES; stage++) {
4626 gl_linked_shader *sh = prog->_LinkedShaders[stage];
4627 if (!sh)
4628 continue;
4629
4630 /* Prevent the removal of inputs to the first and outputs from the last
4631 * stage, unless they are the initial pipeline inputs or final pipeline
4632 * outputs, respectively.
4633 *
4634 * The removal of IO between shaders in the same program is always
4635 * allowed.
4636 */
4637 if (stage == first && stage != MESA_SHADER_VERTEX)
4638 set_always_active_io(sh->ir, ir_var_shader_in);
4639 if (stage == last && stage != MESA_SHADER_FRAGMENT)
4640 set_always_active_io(sh->ir, ir_var_shader_out);
4641 }
4642 }
4643
4644 static void
4645 link_and_validate_uniforms(struct gl_context *ctx,
4646 struct gl_shader_program *prog)
4647 {
4648 update_array_sizes(prog);
4649 link_assign_uniform_locations(prog, ctx);
4650
4651 link_assign_atomic_counter_resources(ctx, prog);
4652 link_calculate_subroutine_compat(prog);
4653 check_resources(ctx, prog);
4654 check_subroutine_resources(prog);
4655 check_image_resources(ctx, prog);
4656 link_check_atomic_counter_resources(ctx, prog);
4657 }
4658
4659 static bool
4660 link_varyings_and_uniforms(unsigned first, unsigned last,
4661 struct gl_context *ctx,
4662 struct gl_shader_program *prog, void *mem_ctx)
4663 {
4664 /* Mark all generic shader inputs and outputs as unpaired. */
4665 for (unsigned i = MESA_SHADER_VERTEX; i <= MESA_SHADER_FRAGMENT; i++) {
4666 if (prog->_LinkedShaders[i] != NULL) {
4667 link_invalidate_variable_locations(prog->_LinkedShaders[i]->ir);
4668 }
4669 }
4670
4671 unsigned prev = first;
4672 for (unsigned i = prev + 1; i <= MESA_SHADER_FRAGMENT; i++) {
4673 if (prog->_LinkedShaders[i] == NULL)
4674 continue;
4675
4676 match_explicit_outputs_to_inputs(prog->_LinkedShaders[prev],
4677 prog->_LinkedShaders[i]);
4678 prev = i;
4679 }
4680
4681 if (!assign_attribute_or_color_locations(mem_ctx, prog, &ctx->Const,
4682 MESA_SHADER_VERTEX)) {
4683 return false;
4684 }
4685
4686 if (!assign_attribute_or_color_locations(mem_ctx, prog, &ctx->Const,
4687 MESA_SHADER_FRAGMENT)) {
4688 return false;
4689 }
4690
4691 prog->last_vert_prog = NULL;
4692 for (int i = MESA_SHADER_GEOMETRY; i >= MESA_SHADER_VERTEX; i--) {
4693 if (prog->_LinkedShaders[i] == NULL)
4694 continue;
4695
4696 prog->last_vert_prog = prog->_LinkedShaders[i]->Program;
4697 break;
4698 }
4699
4700 if (!link_varyings(prog, first, last, ctx, mem_ctx))
4701 return false;
4702
4703 link_and_validate_uniforms(ctx, prog);
4704
4705 if (!prog->data->LinkStatus)
4706 return false;
4707
4708 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4709 if (prog->_LinkedShaders[i] == NULL)
4710 continue;
4711
4712 const struct gl_shader_compiler_options *options =
4713 &ctx->Const.ShaderCompilerOptions[i];
4714
4715 if (options->LowerBufferInterfaceBlocks)
4716 lower_ubo_reference(prog->_LinkedShaders[i],
4717 options->ClampBlockIndicesToArrayBounds,
4718 ctx->Const.UseSTD430AsDefaultPacking);
4719
4720 if (i == MESA_SHADER_COMPUTE)
4721 lower_shared_reference(ctx, prog, prog->_LinkedShaders[i]);
4722
4723 lower_vector_derefs(prog->_LinkedShaders[i]);
4724 do_vec_index_to_swizzle(prog->_LinkedShaders[i]->ir);
4725 }
4726
4727 return true;
4728 }
4729
4730 static void
4731 linker_optimisation_loop(struct gl_context *ctx, exec_list *ir,
4732 unsigned stage)
4733 {
4734 if (ctx->Const.GLSLOptimizeConservatively) {
4735 /* Run it just once. */
4736 do_common_optimization(ir, true, false,
4737 &ctx->Const.ShaderCompilerOptions[stage],
4738 ctx->Const.NativeIntegers);
4739 } else {
4740 /* Repeat it until it stops making changes. */
4741 while (do_common_optimization(ir, true, false,
4742 &ctx->Const.ShaderCompilerOptions[stage],
4743 ctx->Const.NativeIntegers))
4744 ;
4745 }
4746 }
4747
4748 void
4749 link_shaders(struct gl_context *ctx, struct gl_shader_program *prog)
4750 {
4751 prog->data->LinkStatus = LINKING_SUCCESS; /* All error paths will set this to false */
4752 prog->data->Validated = false;
4753
4754 /* Section 7.3 (Program Objects) of the OpenGL 4.5 Core Profile spec says:
4755 *
4756 * "Linking can fail for a variety of reasons as specified in the
4757 * OpenGL Shading Language Specification, as well as any of the
4758 * following reasons:
4759 *
4760 * - No shader objects are attached to program."
4761 *
4762 * The Compatibility Profile specification does not list the error. In
4763 * Compatibility Profile missing shader stages are replaced by
4764 * fixed-function. This applies to the case where all stages are
4765 * missing.
4766 */
4767 if (prog->NumShaders == 0) {
4768 if (ctx->API != API_OPENGL_COMPAT)
4769 linker_error(prog, "no shaders attached to the program\n");
4770 return;
4771 }
4772
4773 #ifdef ENABLE_SHADER_CACHE
4774 /* If transform feedback used on the program then compile all shaders. */
4775 bool skip_cache = false;
4776 if (prog->TransformFeedback.NumVarying > 0) {
4777 for (unsigned i = 0; i < prog->NumShaders; i++) {
4778 _mesa_glsl_compile_shader(ctx, prog->Shaders[i], false, false, true);
4779 }
4780 skip_cache = true;
4781 }
4782
4783 if (!skip_cache && shader_cache_read_program_metadata(ctx, prog))
4784 return;
4785 #endif
4786
4787 void *mem_ctx = ralloc_context(NULL); // temporary linker context
4788
4789 prog->ARB_fragment_coord_conventions_enable = false;
4790
4791 /* Separate the shaders into groups based on their type.
4792 */
4793 struct gl_shader **shader_list[MESA_SHADER_STAGES];
4794 unsigned num_shaders[MESA_SHADER_STAGES];
4795
4796 for (int i = 0; i < MESA_SHADER_STAGES; i++) {
4797 shader_list[i] = (struct gl_shader **)
4798 calloc(prog->NumShaders, sizeof(struct gl_shader *));
4799 num_shaders[i] = 0;
4800 }
4801
4802 unsigned min_version = UINT_MAX;
4803 unsigned max_version = 0;
4804 for (unsigned i = 0; i < prog->NumShaders; i++) {
4805 min_version = MIN2(min_version, prog->Shaders[i]->Version);
4806 max_version = MAX2(max_version, prog->Shaders[i]->Version);
4807
4808 if (prog->Shaders[i]->IsES != prog->Shaders[0]->IsES) {
4809 linker_error(prog, "all shaders must use same shading "
4810 "language version\n");
4811 goto done;
4812 }
4813
4814 if (prog->Shaders[i]->ARB_fragment_coord_conventions_enable) {
4815 prog->ARB_fragment_coord_conventions_enable = true;
4816 }
4817
4818 gl_shader_stage shader_type = prog->Shaders[i]->Stage;
4819 shader_list[shader_type][num_shaders[shader_type]] = prog->Shaders[i];
4820 num_shaders[shader_type]++;
4821 }
4822
4823 /* In desktop GLSL, different shader versions may be linked together. In
4824 * GLSL ES, all shader versions must be the same.
4825 */
4826 if (prog->Shaders[0]->IsES && min_version != max_version) {
4827 linker_error(prog, "all shaders must use same shading "
4828 "language version\n");
4829 goto done;
4830 }
4831
4832 prog->data->Version = max_version;
4833 prog->IsES = prog->Shaders[0]->IsES;
4834
4835 /* Some shaders have to be linked with some other shaders present.
4836 */
4837 if (!prog->SeparateShader) {
4838 if (num_shaders[MESA_SHADER_GEOMETRY] > 0 &&
4839 num_shaders[MESA_SHADER_VERTEX] == 0) {
4840 linker_error(prog, "Geometry shader must be linked with "
4841 "vertex shader\n");
4842 goto done;
4843 }
4844 if (num_shaders[MESA_SHADER_TESS_EVAL] > 0 &&
4845 num_shaders[MESA_SHADER_VERTEX] == 0) {
4846 linker_error(prog, "Tessellation evaluation shader must be linked "
4847 "with vertex shader\n");
4848 goto done;
4849 }
4850 if (num_shaders[MESA_SHADER_TESS_CTRL] > 0 &&
4851 num_shaders[MESA_SHADER_VERTEX] == 0) {
4852 linker_error(prog, "Tessellation control shader must be linked with "
4853 "vertex shader\n");
4854 goto done;
4855 }
4856
4857 /* Section 7.3 of the OpenGL ES 3.2 specification says:
4858 *
4859 * "Linking can fail for [...] any of the following reasons:
4860 *
4861 * * program contains an object to form a tessellation control
4862 * shader [...] and [...] the program is not separable and
4863 * contains no object to form a tessellation evaluation shader"
4864 *
4865 * The OpenGL spec is contradictory. It allows linking without a tess
4866 * eval shader, but that can only be used with transform feedback and
4867 * rasterization disabled. However, transform feedback isn't allowed
4868 * with GL_PATCHES, so it can't be used.
4869 *
4870 * More investigation showed that the idea of transform feedback after
4871 * a tess control shader was dropped, because some hw vendors couldn't
4872 * support tessellation without a tess eval shader, but the linker
4873 * section wasn't updated to reflect that.
4874 *
4875 * All specifications (ARB_tessellation_shader, GL 4.0-4.5) have this
4876 * spec bug.
4877 *
4878 * Do what's reasonable and always require a tess eval shader if a tess
4879 * control shader is present.
4880 */
4881 if (num_shaders[MESA_SHADER_TESS_CTRL] > 0 &&
4882 num_shaders[MESA_SHADER_TESS_EVAL] == 0) {
4883 linker_error(prog, "Tessellation control shader must be linked with "
4884 "tessellation evaluation shader\n");
4885 goto done;
4886 }
4887
4888 if (prog->IsES) {
4889 if (num_shaders[MESA_SHADER_TESS_EVAL] > 0 &&
4890 num_shaders[MESA_SHADER_TESS_CTRL] == 0) {
4891 linker_error(prog, "GLSL ES requires non-separable programs "
4892 "containing a tessellation evaluation shader to also "
4893 "be linked with a tessellation control shader\n");
4894 goto done;
4895 }
4896 }
4897 }
4898
4899 /* Compute shaders have additional restrictions. */
4900 if (num_shaders[MESA_SHADER_COMPUTE] > 0 &&
4901 num_shaders[MESA_SHADER_COMPUTE] != prog->NumShaders) {
4902 linker_error(prog, "Compute shaders may not be linked with any other "
4903 "type of shader\n");
4904 }
4905
4906 /* Link all shaders for a particular stage and validate the result.
4907 */
4908 for (int stage = 0; stage < MESA_SHADER_STAGES; stage++) {
4909 if (num_shaders[stage] > 0) {
4910 gl_linked_shader *const sh =
4911 link_intrastage_shaders(mem_ctx, ctx, prog, shader_list[stage],
4912 num_shaders[stage], false);
4913
4914 if (!prog->data->LinkStatus) {
4915 if (sh)
4916 _mesa_delete_linked_shader(ctx, sh);
4917 goto done;
4918 }
4919
4920 switch (stage) {
4921 case MESA_SHADER_VERTEX:
4922 validate_vertex_shader_executable(prog, sh, ctx);
4923 break;
4924 case MESA_SHADER_TESS_CTRL:
4925 /* nothing to be done */
4926 break;
4927 case MESA_SHADER_TESS_EVAL:
4928 validate_tess_eval_shader_executable(prog, sh, ctx);
4929 break;
4930 case MESA_SHADER_GEOMETRY:
4931 validate_geometry_shader_executable(prog, sh, ctx);
4932 break;
4933 case MESA_SHADER_FRAGMENT:
4934 validate_fragment_shader_executable(prog, sh);
4935 break;
4936 }
4937 if (!prog->data->LinkStatus) {
4938 if (sh)
4939 _mesa_delete_linked_shader(ctx, sh);
4940 goto done;
4941 }
4942
4943 prog->_LinkedShaders[stage] = sh;
4944 prog->data->linked_stages |= 1 << stage;
4945 }
4946 }
4947
4948 /* Here begins the inter-stage linking phase. Some initial validation is
4949 * performed, then locations are assigned for uniforms, attributes, and
4950 * varyings.
4951 */
4952 cross_validate_uniforms(prog);
4953 if (!prog->data->LinkStatus)
4954 goto done;
4955
4956 unsigned first, last, prev;
4957
4958 first = MESA_SHADER_STAGES;
4959 last = 0;
4960
4961 /* Determine first and last stage. */
4962 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4963 if (!prog->_LinkedShaders[i])
4964 continue;
4965 if (first == MESA_SHADER_STAGES)
4966 first = i;
4967 last = i;
4968 }
4969
4970 check_explicit_uniform_locations(ctx, prog);
4971 link_assign_subroutine_types(prog);
4972
4973 if (!prog->data->LinkStatus)
4974 goto done;
4975
4976 resize_tes_inputs(ctx, prog);
4977
4978 /* Validate the inputs of each stage with the output of the preceding
4979 * stage.
4980 */
4981 prev = first;
4982 for (unsigned i = prev + 1; i <= MESA_SHADER_FRAGMENT; i++) {
4983 if (prog->_LinkedShaders[i] == NULL)
4984 continue;
4985
4986 validate_interstage_inout_blocks(prog, prog->_LinkedShaders[prev],
4987 prog->_LinkedShaders[i]);
4988 if (!prog->data->LinkStatus)
4989 goto done;
4990
4991 cross_validate_outputs_to_inputs(ctx, prog,
4992 prog->_LinkedShaders[prev],
4993 prog->_LinkedShaders[i]);
4994 if (!prog->data->LinkStatus)
4995 goto done;
4996
4997 prev = i;
4998 }
4999
5000 /* The cross validation of outputs/inputs above validates explicit locations
5001 * but for SSO programs we need to do this also for the inputs in the
5002 * first stage and outputs of the last stage included in the program, since
5003 * there is no cross validation for these.
5004 */
5005 if (prog->SeparateShader)
5006 validate_sso_explicit_locations(ctx, prog,
5007 (gl_shader_stage) first,
5008 (gl_shader_stage) last);
5009
5010 /* Cross-validate uniform blocks between shader stages */
5011 validate_interstage_uniform_blocks(prog, prog->_LinkedShaders);
5012 if (!prog->data->LinkStatus)
5013 goto done;
5014
5015 for (unsigned int i = 0; i < MESA_SHADER_STAGES; i++) {
5016 if (prog->_LinkedShaders[i] != NULL)
5017 lower_named_interface_blocks(mem_ctx, prog->_LinkedShaders[i]);
5018 }
5019
5020 /* Implement the GLSL 1.30+ rule for discard vs infinite loops Do
5021 * it before optimization because we want most of the checks to get
5022 * dropped thanks to constant propagation.
5023 *
5024 * This rule also applies to GLSL ES 3.00.
5025 */
5026 if (max_version >= (prog->IsES ? 300 : 130)) {
5027 struct gl_linked_shader *sh = prog->_LinkedShaders[MESA_SHADER_FRAGMENT];
5028 if (sh) {
5029 lower_discard_flow(sh->ir);
5030 }
5031 }
5032
5033 if (prog->SeparateShader)
5034 disable_varying_optimizations_for_sso(prog);
5035
5036 /* Process UBOs */
5037 if (!interstage_cross_validate_uniform_blocks(prog, false))
5038 goto done;
5039
5040 /* Process SSBOs */
5041 if (!interstage_cross_validate_uniform_blocks(prog, true))
5042 goto done;
5043
5044 /* Do common optimization before assigning storage for attributes,
5045 * uniforms, and varyings. Later optimization could possibly make
5046 * some of that unused.
5047 */
5048 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
5049 if (prog->_LinkedShaders[i] == NULL)
5050 continue;
5051
5052 detect_recursion_linked(prog, prog->_LinkedShaders[i]->ir);
5053 if (!prog->data->LinkStatus)
5054 goto done;
5055
5056 if (ctx->Const.ShaderCompilerOptions[i].LowerCombinedClipCullDistance) {
5057 lower_clip_cull_distance(prog, prog->_LinkedShaders[i]);
5058 }
5059
5060 if (ctx->Const.LowerTessLevel) {
5061 lower_tess_level(prog->_LinkedShaders[i]);
5062 }
5063
5064 /* Call opts before lowering const arrays to uniforms so we can const
5065 * propagate any elements accessed directly.
5066 */
5067 linker_optimisation_loop(ctx, prog->_LinkedShaders[i]->ir, i);
5068
5069 /* Call opts after lowering const arrays to copy propagate things. */
5070 if (lower_const_arrays_to_uniforms(prog->_LinkedShaders[i]->ir, i))
5071 linker_optimisation_loop(ctx, prog->_LinkedShaders[i]->ir, i);
5072
5073 propagate_invariance(prog->_LinkedShaders[i]->ir);
5074 }
5075
5076 /* Validation for special cases where we allow sampler array indexing
5077 * with loop induction variable. This check emits a warning or error
5078 * depending if backend can handle dynamic indexing.
5079 */
5080 if ((!prog->IsES && prog->data->Version < 130) ||
5081 (prog->IsES && prog->data->Version < 300)) {
5082 if (!validate_sampler_array_indexing(ctx, prog))
5083 goto done;
5084 }
5085
5086 /* Check and validate stream emissions in geometry shaders */
5087 validate_geometry_shader_emissions(ctx, prog);
5088
5089 store_fragdepth_layout(prog);
5090
5091 if(!link_varyings_and_uniforms(first, last, ctx, prog, mem_ctx))
5092 goto done;
5093
5094 /* Linking varyings can cause some extra, useless swizzles to be generated
5095 * due to packing and unpacking.
5096 */
5097 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
5098 if (prog->_LinkedShaders[i] == NULL)
5099 continue;
5100
5101 optimize_swizzles(prog->_LinkedShaders[i]->ir);
5102 }
5103
5104 /* OpenGL ES < 3.1 requires that a vertex shader and a fragment shader both
5105 * be present in a linked program. GL_ARB_ES2_compatibility doesn't say
5106 * anything about shader linking when one of the shaders (vertex or
5107 * fragment shader) is absent. So, the extension shouldn't change the
5108 * behavior specified in GLSL specification.
5109 *
5110 * From OpenGL ES 3.1 specification (7.3 Program Objects):
5111 * "Linking can fail for a variety of reasons as specified in the
5112 * OpenGL ES Shading Language Specification, as well as any of the
5113 * following reasons:
5114 *
5115 * ...
5116 *
5117 * * program contains objects to form either a vertex shader or
5118 * fragment shader, and program is not separable, and does not
5119 * contain objects to form both a vertex shader and fragment
5120 * shader."
5121 *
5122 * However, the only scenario in 3.1+ where we don't require them both is
5123 * when we have a compute shader. For example:
5124 *
5125 * - No shaders is a link error.
5126 * - Geom or Tess without a Vertex shader is a link error which means we
5127 * always require a Vertex shader and hence a Fragment shader.
5128 * - Finally a Compute shader linked with any other stage is a link error.
5129 */
5130 if (!prog->SeparateShader && ctx->API == API_OPENGLES2 &&
5131 num_shaders[MESA_SHADER_COMPUTE] == 0) {
5132 if (prog->_LinkedShaders[MESA_SHADER_VERTEX] == NULL) {
5133 linker_error(prog, "program lacks a vertex shader\n");
5134 } else if (prog->_LinkedShaders[MESA_SHADER_FRAGMENT] == NULL) {
5135 linker_error(prog, "program lacks a fragment shader\n");
5136 }
5137 }
5138
5139 done:
5140 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
5141 free(shader_list[i]);
5142 if (prog->_LinkedShaders[i] == NULL)
5143 continue;
5144
5145 /* Do a final validation step to make sure that the IR wasn't
5146 * invalidated by any modifications performed after intrastage linking.
5147 */
5148 validate_ir_tree(prog->_LinkedShaders[i]->ir);
5149
5150 /* Retain any live IR, but trash the rest. */
5151 reparent_ir(prog->_LinkedShaders[i]->ir, prog->_LinkedShaders[i]->ir);
5152
5153 /* The symbol table in the linked shaders may contain references to
5154 * variables that were removed (e.g., unused uniforms). Since it may
5155 * contain junk, there is no possible valid use. Delete it and set the
5156 * pointer to NULL.
5157 */
5158 delete prog->_LinkedShaders[i]->symbols;
5159 prog->_LinkedShaders[i]->symbols = NULL;
5160 }
5161
5162 ralloc_free(mem_ctx);
5163 }