glsl: on UBO/SSBOs link error reset the number of active blocks to 0
[mesa.git] / src / compiler / glsl / linker.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file linker.cpp
26 * GLSL linker implementation
27 *
28 * Given a set of shaders that are to be linked to generate a final program,
29 * there are three distinct stages.
30 *
31 * In the first stage shaders are partitioned into groups based on the shader
32 * type. All shaders of a particular type (e.g., vertex shaders) are linked
33 * together.
34 *
35 * - Undefined references in each shader are resolve to definitions in
36 * another shader.
37 * - Types and qualifiers of uniforms, outputs, and global variables defined
38 * in multiple shaders with the same name are verified to be the same.
39 * - Initializers for uniforms and global variables defined
40 * in multiple shaders with the same name are verified to be the same.
41 *
42 * The result, in the terminology of the GLSL spec, is a set of shader
43 * executables for each processing unit.
44 *
45 * After the first stage is complete, a series of semantic checks are performed
46 * on each of the shader executables.
47 *
48 * - Each shader executable must define a \c main function.
49 * - Each vertex shader executable must write to \c gl_Position.
50 * - Each fragment shader executable must write to either \c gl_FragData or
51 * \c gl_FragColor.
52 *
53 * In the final stage individual shader executables are linked to create a
54 * complete exectuable.
55 *
56 * - Types of uniforms defined in multiple shader stages with the same name
57 * are verified to be the same.
58 * - Initializers for uniforms defined in multiple shader stages with the
59 * same name are verified to be the same.
60 * - Types and qualifiers of outputs defined in one stage are verified to
61 * be the same as the types and qualifiers of inputs defined with the same
62 * name in a later stage.
63 *
64 * \author Ian Romanick <ian.d.romanick@intel.com>
65 */
66
67 #include <ctype.h>
68 #include "util/strndup.h"
69 #include "main/core.h"
70 #include "glsl_symbol_table.h"
71 #include "glsl_parser_extras.h"
72 #include "ir.h"
73 #include "program.h"
74 #include "program/prog_instruction.h"
75 #include "program/program.h"
76 #include "util/mesa-sha1.h"
77 #include "util/set.h"
78 #include "util/string_to_uint_map.h"
79 #include "linker.h"
80 #include "link_varyings.h"
81 #include "ir_optimization.h"
82 #include "ir_rvalue_visitor.h"
83 #include "ir_uniform.h"
84 #include "builtin_functions.h"
85 #include "shader_cache.h"
86
87 #include "main/shaderobj.h"
88 #include "main/enums.h"
89
90
91 namespace {
92
93 /**
94 * Visitor that determines whether or not a variable is ever written.
95 */
96 class find_assignment_visitor : public ir_hierarchical_visitor {
97 public:
98 find_assignment_visitor(const char *name)
99 : name(name), found(false)
100 {
101 /* empty */
102 }
103
104 virtual ir_visitor_status visit_enter(ir_assignment *ir)
105 {
106 ir_variable *const var = ir->lhs->variable_referenced();
107
108 if (strcmp(name, var->name) == 0) {
109 found = true;
110 return visit_stop;
111 }
112
113 return visit_continue_with_parent;
114 }
115
116 virtual ir_visitor_status visit_enter(ir_call *ir)
117 {
118 foreach_two_lists(formal_node, &ir->callee->parameters,
119 actual_node, &ir->actual_parameters) {
120 ir_rvalue *param_rval = (ir_rvalue *) actual_node;
121 ir_variable *sig_param = (ir_variable *) formal_node;
122
123 if (sig_param->data.mode == ir_var_function_out ||
124 sig_param->data.mode == ir_var_function_inout) {
125 ir_variable *var = param_rval->variable_referenced();
126 if (var && strcmp(name, var->name) == 0) {
127 found = true;
128 return visit_stop;
129 }
130 }
131 }
132
133 if (ir->return_deref != NULL) {
134 ir_variable *const var = ir->return_deref->variable_referenced();
135
136 if (strcmp(name, var->name) == 0) {
137 found = true;
138 return visit_stop;
139 }
140 }
141
142 return visit_continue_with_parent;
143 }
144
145 bool variable_found()
146 {
147 return found;
148 }
149
150 private:
151 const char *name; /**< Find writes to a variable with this name. */
152 bool found; /**< Was a write to the variable found? */
153 };
154
155
156 /**
157 * Visitor that determines whether or not a variable is ever read.
158 */
159 class find_deref_visitor : public ir_hierarchical_visitor {
160 public:
161 find_deref_visitor(const char *name)
162 : name(name), found(false)
163 {
164 /* empty */
165 }
166
167 virtual ir_visitor_status visit(ir_dereference_variable *ir)
168 {
169 if (strcmp(this->name, ir->var->name) == 0) {
170 this->found = true;
171 return visit_stop;
172 }
173
174 return visit_continue;
175 }
176
177 bool variable_found() const
178 {
179 return this->found;
180 }
181
182 private:
183 const char *name; /**< Find writes to a variable with this name. */
184 bool found; /**< Was a write to the variable found? */
185 };
186
187
188 /**
189 * A visitor helper that provides methods for updating the types of
190 * ir_dereferences. Classes that update variable types (say, updating
191 * array sizes) will want to use this so that dereference types stay in sync.
192 */
193 class deref_type_updater : public ir_hierarchical_visitor {
194 public:
195 virtual ir_visitor_status visit(ir_dereference_variable *ir)
196 {
197 ir->type = ir->var->type;
198 return visit_continue;
199 }
200
201 virtual ir_visitor_status visit_leave(ir_dereference_array *ir)
202 {
203 const glsl_type *const vt = ir->array->type;
204 if (vt->is_array())
205 ir->type = vt->fields.array;
206 return visit_continue;
207 }
208
209 virtual ir_visitor_status visit_leave(ir_dereference_record *ir)
210 {
211 for (unsigned i = 0; i < ir->record->type->length; i++) {
212 const struct glsl_struct_field *field =
213 &ir->record->type->fields.structure[i];
214 if (strcmp(field->name, ir->field) == 0) {
215 ir->type = field->type;
216 break;
217 }
218 }
219 return visit_continue;
220 }
221 };
222
223
224 class array_resize_visitor : public deref_type_updater {
225 public:
226 unsigned num_vertices;
227 gl_shader_program *prog;
228 gl_shader_stage stage;
229
230 array_resize_visitor(unsigned num_vertices,
231 gl_shader_program *prog,
232 gl_shader_stage stage)
233 {
234 this->num_vertices = num_vertices;
235 this->prog = prog;
236 this->stage = stage;
237 }
238
239 virtual ~array_resize_visitor()
240 {
241 /* empty */
242 }
243
244 virtual ir_visitor_status visit(ir_variable *var)
245 {
246 if (!var->type->is_array() || var->data.mode != ir_var_shader_in ||
247 var->data.patch)
248 return visit_continue;
249
250 unsigned size = var->type->length;
251
252 if (stage == MESA_SHADER_GEOMETRY) {
253 /* Generate a link error if the shader has declared this array with
254 * an incorrect size.
255 */
256 if (!var->data.implicit_sized_array &&
257 size && size != this->num_vertices) {
258 linker_error(this->prog, "size of array %s declared as %u, "
259 "but number of input vertices is %u\n",
260 var->name, size, this->num_vertices);
261 return visit_continue;
262 }
263
264 /* Generate a link error if the shader attempts to access an input
265 * array using an index too large for its actual size assigned at
266 * link time.
267 */
268 if (var->data.max_array_access >= (int)this->num_vertices) {
269 linker_error(this->prog, "%s shader accesses element %i of "
270 "%s, but only %i input vertices\n",
271 _mesa_shader_stage_to_string(this->stage),
272 var->data.max_array_access, var->name, this->num_vertices);
273 return visit_continue;
274 }
275 }
276
277 var->type = glsl_type::get_array_instance(var->type->fields.array,
278 this->num_vertices);
279 var->data.max_array_access = this->num_vertices - 1;
280
281 return visit_continue;
282 }
283 };
284
285 /**
286 * Visitor that determines the highest stream id to which a (geometry) shader
287 * emits vertices. It also checks whether End{Stream}Primitive is ever called.
288 */
289 class find_emit_vertex_visitor : public ir_hierarchical_visitor {
290 public:
291 find_emit_vertex_visitor(int max_allowed)
292 : max_stream_allowed(max_allowed),
293 invalid_stream_id(0),
294 invalid_stream_id_from_emit_vertex(false),
295 end_primitive_found(false),
296 uses_non_zero_stream(false)
297 {
298 /* empty */
299 }
300
301 virtual ir_visitor_status visit_leave(ir_emit_vertex *ir)
302 {
303 int stream_id = ir->stream_id();
304
305 if (stream_id < 0) {
306 invalid_stream_id = stream_id;
307 invalid_stream_id_from_emit_vertex = true;
308 return visit_stop;
309 }
310
311 if (stream_id > max_stream_allowed) {
312 invalid_stream_id = stream_id;
313 invalid_stream_id_from_emit_vertex = true;
314 return visit_stop;
315 }
316
317 if (stream_id != 0)
318 uses_non_zero_stream = true;
319
320 return visit_continue;
321 }
322
323 virtual ir_visitor_status visit_leave(ir_end_primitive *ir)
324 {
325 end_primitive_found = true;
326
327 int stream_id = ir->stream_id();
328
329 if (stream_id < 0) {
330 invalid_stream_id = stream_id;
331 invalid_stream_id_from_emit_vertex = false;
332 return visit_stop;
333 }
334
335 if (stream_id > max_stream_allowed) {
336 invalid_stream_id = stream_id;
337 invalid_stream_id_from_emit_vertex = false;
338 return visit_stop;
339 }
340
341 if (stream_id != 0)
342 uses_non_zero_stream = true;
343
344 return visit_continue;
345 }
346
347 bool error()
348 {
349 return invalid_stream_id != 0;
350 }
351
352 const char *error_func()
353 {
354 return invalid_stream_id_from_emit_vertex ?
355 "EmitStreamVertex" : "EndStreamPrimitive";
356 }
357
358 int error_stream()
359 {
360 return invalid_stream_id;
361 }
362
363 bool uses_streams()
364 {
365 return uses_non_zero_stream;
366 }
367
368 bool uses_end_primitive()
369 {
370 return end_primitive_found;
371 }
372
373 private:
374 int max_stream_allowed;
375 int invalid_stream_id;
376 bool invalid_stream_id_from_emit_vertex;
377 bool end_primitive_found;
378 bool uses_non_zero_stream;
379 };
380
381 /* Class that finds array derefs and check if indexes are dynamic. */
382 class dynamic_sampler_array_indexing_visitor : public ir_hierarchical_visitor
383 {
384 public:
385 dynamic_sampler_array_indexing_visitor() :
386 dynamic_sampler_array_indexing(false)
387 {
388 }
389
390 ir_visitor_status visit_enter(ir_dereference_array *ir)
391 {
392 if (!ir->variable_referenced())
393 return visit_continue;
394
395 if (!ir->variable_referenced()->type->contains_sampler())
396 return visit_continue;
397
398 if (!ir->array_index->constant_expression_value()) {
399 dynamic_sampler_array_indexing = true;
400 return visit_stop;
401 }
402 return visit_continue;
403 }
404
405 bool uses_dynamic_sampler_array_indexing()
406 {
407 return dynamic_sampler_array_indexing;
408 }
409
410 private:
411 bool dynamic_sampler_array_indexing;
412 };
413
414 } /* anonymous namespace */
415
416 void
417 linker_error(gl_shader_program *prog, const char *fmt, ...)
418 {
419 va_list ap;
420
421 ralloc_strcat(&prog->data->InfoLog, "error: ");
422 va_start(ap, fmt);
423 ralloc_vasprintf_append(&prog->data->InfoLog, fmt, ap);
424 va_end(ap);
425
426 prog->data->LinkStatus = linking_failure;
427 }
428
429
430 void
431 linker_warning(gl_shader_program *prog, const char *fmt, ...)
432 {
433 va_list ap;
434
435 ralloc_strcat(&prog->data->InfoLog, "warning: ");
436 va_start(ap, fmt);
437 ralloc_vasprintf_append(&prog->data->InfoLog, fmt, ap);
438 va_end(ap);
439
440 }
441
442
443 /**
444 * Given a string identifying a program resource, break it into a base name
445 * and an optional array index in square brackets.
446 *
447 * If an array index is present, \c out_base_name_end is set to point to the
448 * "[" that precedes the array index, and the array index itself is returned
449 * as a long.
450 *
451 * If no array index is present (or if the array index is negative or
452 * mal-formed), \c out_base_name_end, is set to point to the null terminator
453 * at the end of the input string, and -1 is returned.
454 *
455 * Only the final array index is parsed; if the string contains other array
456 * indices (or structure field accesses), they are left in the base name.
457 *
458 * No attempt is made to check that the base name is properly formed;
459 * typically the caller will look up the base name in a hash table, so
460 * ill-formed base names simply turn into hash table lookup failures.
461 */
462 long
463 parse_program_resource_name(const GLchar *name,
464 const GLchar **out_base_name_end)
465 {
466 /* Section 7.3.1 ("Program Interfaces") of the OpenGL 4.3 spec says:
467 *
468 * "When an integer array element or block instance number is part of
469 * the name string, it will be specified in decimal form without a "+"
470 * or "-" sign or any extra leading zeroes. Additionally, the name
471 * string will not include white space anywhere in the string."
472 */
473
474 const size_t len = strlen(name);
475 *out_base_name_end = name + len;
476
477 if (len == 0 || name[len-1] != ']')
478 return -1;
479
480 /* Walk backwards over the string looking for a non-digit character. This
481 * had better be the opening bracket for an array index.
482 *
483 * Initially, i specifies the location of the ']'. Since the string may
484 * contain only the ']' charcater, walk backwards very carefully.
485 */
486 unsigned i;
487 for (i = len - 1; (i > 0) && isdigit(name[i-1]); --i)
488 /* empty */ ;
489
490 if ((i == 0) || name[i-1] != '[')
491 return -1;
492
493 long array_index = strtol(&name[i], NULL, 10);
494 if (array_index < 0)
495 return -1;
496
497 /* Check for leading zero */
498 if (name[i] == '0' && name[i+1] != ']')
499 return -1;
500
501 *out_base_name_end = name + (i - 1);
502 return array_index;
503 }
504
505
506 void
507 link_invalidate_variable_locations(exec_list *ir)
508 {
509 foreach_in_list(ir_instruction, node, ir) {
510 ir_variable *const var = node->as_variable();
511
512 if (var == NULL)
513 continue;
514
515 /* Only assign locations for variables that lack an explicit location.
516 * Explicit locations are set for all built-in variables, generic vertex
517 * shader inputs (via layout(location=...)), and generic fragment shader
518 * outputs (also via layout(location=...)).
519 */
520 if (!var->data.explicit_location) {
521 var->data.location = -1;
522 var->data.location_frac = 0;
523 }
524
525 /* ir_variable::is_unmatched_generic_inout is used by the linker while
526 * connecting outputs from one stage to inputs of the next stage.
527 */
528 if (var->data.explicit_location &&
529 var->data.location < VARYING_SLOT_VAR0) {
530 var->data.is_unmatched_generic_inout = 0;
531 } else {
532 var->data.is_unmatched_generic_inout = 1;
533 }
534 }
535 }
536
537
538 /**
539 * Set clip_distance_array_size based and cull_distance_array_size on the given
540 * shader.
541 *
542 * Also check for errors based on incorrect usage of gl_ClipVertex and
543 * gl_ClipDistance and gl_CullDistance.
544 * Additionally test whether the arrays gl_ClipDistance and gl_CullDistance
545 * exceed the maximum size defined by gl_MaxCombinedClipAndCullDistances.
546 *
547 * Return false if an error was reported.
548 */
549 static void
550 analyze_clip_cull_usage(struct gl_shader_program *prog,
551 struct gl_linked_shader *shader,
552 struct gl_context *ctx,
553 GLuint *clip_distance_array_size,
554 GLuint *cull_distance_array_size)
555 {
556 *clip_distance_array_size = 0;
557 *cull_distance_array_size = 0;
558
559 if (prog->data->Version >= (prog->IsES ? 300 : 130)) {
560 /* From section 7.1 (Vertex Shader Special Variables) of the
561 * GLSL 1.30 spec:
562 *
563 * "It is an error for a shader to statically write both
564 * gl_ClipVertex and gl_ClipDistance."
565 *
566 * This does not apply to GLSL ES shaders, since GLSL ES defines neither
567 * gl_ClipVertex nor gl_ClipDistance. However with
568 * GL_EXT_clip_cull_distance, this functionality is exposed in ES 3.0.
569 */
570 find_assignment_visitor clip_distance("gl_ClipDistance");
571 find_assignment_visitor cull_distance("gl_CullDistance");
572
573 clip_distance.run(shader->ir);
574 cull_distance.run(shader->ir);
575
576 /* From the ARB_cull_distance spec:
577 *
578 * It is a compile-time or link-time error for the set of shaders forming
579 * a program to statically read or write both gl_ClipVertex and either
580 * gl_ClipDistance or gl_CullDistance.
581 *
582 * This does not apply to GLSL ES shaders, since GLSL ES doesn't define
583 * gl_ClipVertex.
584 */
585 if (!prog->IsES) {
586 find_assignment_visitor clip_vertex("gl_ClipVertex");
587
588 clip_vertex.run(shader->ir);
589
590 if (clip_vertex.variable_found() && clip_distance.variable_found()) {
591 linker_error(prog, "%s shader writes to both `gl_ClipVertex' "
592 "and `gl_ClipDistance'\n",
593 _mesa_shader_stage_to_string(shader->Stage));
594 return;
595 }
596 if (clip_vertex.variable_found() && cull_distance.variable_found()) {
597 linker_error(prog, "%s shader writes to both `gl_ClipVertex' "
598 "and `gl_CullDistance'\n",
599 _mesa_shader_stage_to_string(shader->Stage));
600 return;
601 }
602 }
603
604 if (clip_distance.variable_found()) {
605 ir_variable *clip_distance_var =
606 shader->symbols->get_variable("gl_ClipDistance");
607 assert(clip_distance_var);
608 *clip_distance_array_size = clip_distance_var->type->length;
609 }
610 if (cull_distance.variable_found()) {
611 ir_variable *cull_distance_var =
612 shader->symbols->get_variable("gl_CullDistance");
613 assert(cull_distance_var);
614 *cull_distance_array_size = cull_distance_var->type->length;
615 }
616 /* From the ARB_cull_distance spec:
617 *
618 * It is a compile-time or link-time error for the set of shaders forming
619 * a program to have the sum of the sizes of the gl_ClipDistance and
620 * gl_CullDistance arrays to be larger than
621 * gl_MaxCombinedClipAndCullDistances.
622 */
623 if ((*clip_distance_array_size + *cull_distance_array_size) >
624 ctx->Const.MaxClipPlanes) {
625 linker_error(prog, "%s shader: the combined size of "
626 "'gl_ClipDistance' and 'gl_CullDistance' size cannot "
627 "be larger than "
628 "gl_MaxCombinedClipAndCullDistances (%u)",
629 _mesa_shader_stage_to_string(shader->Stage),
630 ctx->Const.MaxClipPlanes);
631 }
632 }
633 }
634
635
636 /**
637 * Verify that a vertex shader executable meets all semantic requirements.
638 *
639 * Also sets info.clip_distance_array_size and
640 * info.cull_distance_array_size as a side effect.
641 *
642 * \param shader Vertex shader executable to be verified
643 */
644 void
645 validate_vertex_shader_executable(struct gl_shader_program *prog,
646 struct gl_linked_shader *shader,
647 struct gl_context *ctx)
648 {
649 if (shader == NULL)
650 return;
651
652 /* From the GLSL 1.10 spec, page 48:
653 *
654 * "The variable gl_Position is available only in the vertex
655 * language and is intended for writing the homogeneous vertex
656 * position. All executions of a well-formed vertex shader
657 * executable must write a value into this variable. [...] The
658 * variable gl_Position is available only in the vertex
659 * language and is intended for writing the homogeneous vertex
660 * position. All executions of a well-formed vertex shader
661 * executable must write a value into this variable."
662 *
663 * while in GLSL 1.40 this text is changed to:
664 *
665 * "The variable gl_Position is available only in the vertex
666 * language and is intended for writing the homogeneous vertex
667 * position. It can be written at any time during shader
668 * execution. It may also be read back by a vertex shader
669 * after being written. This value will be used by primitive
670 * assembly, clipping, culling, and other fixed functionality
671 * operations, if present, that operate on primitives after
672 * vertex processing has occurred. Its value is undefined if
673 * the vertex shader executable does not write gl_Position."
674 *
675 * All GLSL ES Versions are similar to GLSL 1.40--failing to write to
676 * gl_Position is not an error.
677 */
678 if (prog->data->Version < (prog->IsES ? 300 : 140)) {
679 find_assignment_visitor find("gl_Position");
680 find.run(shader->ir);
681 if (!find.variable_found()) {
682 if (prog->IsES) {
683 linker_warning(prog,
684 "vertex shader does not write to `gl_Position'. "
685 "Its value is undefined. \n");
686 } else {
687 linker_error(prog,
688 "vertex shader does not write to `gl_Position'. \n");
689 }
690 return;
691 }
692 }
693
694 analyze_clip_cull_usage(prog, shader, ctx,
695 &shader->Program->info.clip_distance_array_size,
696 &shader->Program->info.cull_distance_array_size);
697 }
698
699 void
700 validate_tess_eval_shader_executable(struct gl_shader_program *prog,
701 struct gl_linked_shader *shader,
702 struct gl_context *ctx)
703 {
704 if (shader == NULL)
705 return;
706
707 analyze_clip_cull_usage(prog, shader, ctx,
708 &shader->Program->info.clip_distance_array_size,
709 &shader->Program->info.cull_distance_array_size);
710 }
711
712
713 /**
714 * Verify that a fragment shader executable meets all semantic requirements
715 *
716 * \param shader Fragment shader executable to be verified
717 */
718 void
719 validate_fragment_shader_executable(struct gl_shader_program *prog,
720 struct gl_linked_shader *shader)
721 {
722 if (shader == NULL)
723 return;
724
725 find_assignment_visitor frag_color("gl_FragColor");
726 find_assignment_visitor frag_data("gl_FragData");
727
728 frag_color.run(shader->ir);
729 frag_data.run(shader->ir);
730
731 if (frag_color.variable_found() && frag_data.variable_found()) {
732 linker_error(prog, "fragment shader writes to both "
733 "`gl_FragColor' and `gl_FragData'\n");
734 }
735 }
736
737 /**
738 * Verify that a geometry shader executable meets all semantic requirements
739 *
740 * Also sets prog->Geom.VerticesIn, and info.clip_distance_array_sizeand
741 * info.cull_distance_array_size as a side effect.
742 *
743 * \param shader Geometry shader executable to be verified
744 */
745 void
746 validate_geometry_shader_executable(struct gl_shader_program *prog,
747 struct gl_linked_shader *shader,
748 struct gl_context *ctx)
749 {
750 if (shader == NULL)
751 return;
752
753 unsigned num_vertices =
754 vertices_per_prim(shader->Program->info.gs.input_primitive);
755 prog->Geom.VerticesIn = num_vertices;
756
757 analyze_clip_cull_usage(prog, shader, ctx,
758 &shader->Program->info.clip_distance_array_size,
759 &shader->Program->info.cull_distance_array_size);
760 }
761
762 /**
763 * Check if geometry shaders emit to non-zero streams and do corresponding
764 * validations.
765 */
766 static void
767 validate_geometry_shader_emissions(struct gl_context *ctx,
768 struct gl_shader_program *prog)
769 {
770 struct gl_linked_shader *sh = prog->_LinkedShaders[MESA_SHADER_GEOMETRY];
771
772 if (sh != NULL) {
773 find_emit_vertex_visitor emit_vertex(ctx->Const.MaxVertexStreams - 1);
774 emit_vertex.run(sh->ir);
775 if (emit_vertex.error()) {
776 linker_error(prog, "Invalid call %s(%d). Accepted values for the "
777 "stream parameter are in the range [0, %d].\n",
778 emit_vertex.error_func(),
779 emit_vertex.error_stream(),
780 ctx->Const.MaxVertexStreams - 1);
781 }
782 prog->Geom.UsesStreams = emit_vertex.uses_streams();
783 prog->Geom.UsesEndPrimitive = emit_vertex.uses_end_primitive();
784
785 /* From the ARB_gpu_shader5 spec:
786 *
787 * "Multiple vertex streams are supported only if the output primitive
788 * type is declared to be "points". A program will fail to link if it
789 * contains a geometry shader calling EmitStreamVertex() or
790 * EndStreamPrimitive() if its output primitive type is not "points".
791 *
792 * However, in the same spec:
793 *
794 * "The function EmitVertex() is equivalent to calling EmitStreamVertex()
795 * with <stream> set to zero."
796 *
797 * And:
798 *
799 * "The function EndPrimitive() is equivalent to calling
800 * EndStreamPrimitive() with <stream> set to zero."
801 *
802 * Since we can call EmitVertex() and EndPrimitive() when we output
803 * primitives other than points, calling EmitStreamVertex(0) or
804 * EmitEndPrimitive(0) should not produce errors. This it also what Nvidia
805 * does. Currently we only set prog->Geom.UsesStreams to TRUE when
806 * EmitStreamVertex() or EmitEndPrimitive() are called with a non-zero
807 * stream.
808 */
809 if (prog->Geom.UsesStreams &&
810 sh->Program->info.gs.output_primitive != GL_POINTS) {
811 linker_error(prog, "EmitStreamVertex(n) and EndStreamPrimitive(n) "
812 "with n>0 requires point output\n");
813 }
814 }
815 }
816
817 bool
818 validate_intrastage_arrays(struct gl_shader_program *prog,
819 ir_variable *const var,
820 ir_variable *const existing)
821 {
822 /* Consider the types to be "the same" if both types are arrays
823 * of the same type and one of the arrays is implicitly sized.
824 * In addition, set the type of the linked variable to the
825 * explicitly sized array.
826 */
827 if (var->type->is_array() && existing->type->is_array()) {
828 if ((var->type->fields.array == existing->type->fields.array) &&
829 ((var->type->length == 0)|| (existing->type->length == 0))) {
830 if (var->type->length != 0) {
831 if ((int)var->type->length <= existing->data.max_array_access) {
832 linker_error(prog, "%s `%s' declared as type "
833 "`%s' but outermost dimension has an index"
834 " of `%i'\n",
835 mode_string(var),
836 var->name, var->type->name,
837 existing->data.max_array_access);
838 }
839 existing->type = var->type;
840 return true;
841 } else if (existing->type->length != 0) {
842 if((int)existing->type->length <= var->data.max_array_access &&
843 !existing->data.from_ssbo_unsized_array) {
844 linker_error(prog, "%s `%s' declared as type "
845 "`%s' but outermost dimension has an index"
846 " of `%i'\n",
847 mode_string(var),
848 var->name, existing->type->name,
849 var->data.max_array_access);
850 }
851 return true;
852 }
853 } else {
854 /* The arrays of structs could have different glsl_type pointers but
855 * they are actually the same type. Use record_compare() to check that.
856 */
857 if (existing->type->fields.array->is_record() &&
858 var->type->fields.array->is_record() &&
859 existing->type->fields.array->record_compare(var->type->fields.array))
860 return true;
861 }
862 }
863 return false;
864 }
865
866
867 /**
868 * Perform validation of global variables used across multiple shaders
869 */
870 void
871 cross_validate_globals(struct gl_shader_program *prog,
872 struct exec_list *ir, glsl_symbol_table *variables,
873 bool uniforms_only)
874 {
875 foreach_in_list(ir_instruction, node, ir) {
876 ir_variable *const var = node->as_variable();
877
878 if (var == NULL)
879 continue;
880
881 if (uniforms_only && (var->data.mode != ir_var_uniform && var->data.mode != ir_var_shader_storage))
882 continue;
883
884 /* don't cross validate subroutine uniforms */
885 if (var->type->contains_subroutine())
886 continue;
887
888 /* Don't cross validate temporaries that are at global scope. These
889 * will eventually get pulled into the shaders 'main'.
890 */
891 if (var->data.mode == ir_var_temporary)
892 continue;
893
894 /* If a global with this name has already been seen, verify that the
895 * new instance has the same type. In addition, if the globals have
896 * initializers, the values of the initializers must be the same.
897 */
898 ir_variable *const existing = variables->get_variable(var->name);
899 if (existing != NULL) {
900 /* Check if types match. Interface blocks have some special
901 * rules so we handle those elsewhere.
902 */
903 if (var->type != existing->type &&
904 !var->is_interface_instance()) {
905 if (!validate_intrastage_arrays(prog, var, existing)) {
906 if (var->type->is_record() && existing->type->is_record()
907 && existing->type->record_compare(var->type)) {
908 existing->type = var->type;
909 } else {
910 /* If it is an unsized array in a Shader Storage Block,
911 * two different shaders can access to different elements.
912 * Because of that, they might be converted to different
913 * sized arrays, then check that they are compatible but
914 * ignore the array size.
915 */
916 if (!(var->data.mode == ir_var_shader_storage &&
917 var->data.from_ssbo_unsized_array &&
918 existing->data.mode == ir_var_shader_storage &&
919 existing->data.from_ssbo_unsized_array &&
920 var->type->gl_type == existing->type->gl_type)) {
921 linker_error(prog, "%s `%s' declared as type "
922 "`%s' and type `%s'\n",
923 mode_string(var),
924 var->name, var->type->name,
925 existing->type->name);
926 return;
927 }
928 }
929 }
930 }
931
932 if (var->data.explicit_location) {
933 if (existing->data.explicit_location
934 && (var->data.location != existing->data.location)) {
935 linker_error(prog, "explicit locations for %s "
936 "`%s' have differing values\n",
937 mode_string(var), var->name);
938 return;
939 }
940
941 if (var->data.location_frac != existing->data.location_frac) {
942 linker_error(prog, "explicit components for %s `%s' have "
943 "differing values\n", mode_string(var), var->name);
944 return;
945 }
946
947 existing->data.location = var->data.location;
948 existing->data.explicit_location = true;
949 } else {
950 /* Check if uniform with implicit location was marked explicit
951 * by earlier shader stage. If so, mark it explicit in this stage
952 * too to make sure later processing does not treat it as
953 * implicit one.
954 */
955 if (existing->data.explicit_location) {
956 var->data.location = existing->data.location;
957 var->data.explicit_location = true;
958 }
959 }
960
961 /* From the GLSL 4.20 specification:
962 * "A link error will result if two compilation units in a program
963 * specify different integer-constant bindings for the same
964 * opaque-uniform name. However, it is not an error to specify a
965 * binding on some but not all declarations for the same name"
966 */
967 if (var->data.explicit_binding) {
968 if (existing->data.explicit_binding &&
969 var->data.binding != existing->data.binding) {
970 linker_error(prog, "explicit bindings for %s "
971 "`%s' have differing values\n",
972 mode_string(var), var->name);
973 return;
974 }
975
976 existing->data.binding = var->data.binding;
977 existing->data.explicit_binding = true;
978 }
979
980 if (var->type->contains_atomic() &&
981 var->data.offset != existing->data.offset) {
982 linker_error(prog, "offset specifications for %s "
983 "`%s' have differing values\n",
984 mode_string(var), var->name);
985 return;
986 }
987
988 /* Validate layout qualifiers for gl_FragDepth.
989 *
990 * From the AMD/ARB_conservative_depth specs:
991 *
992 * "If gl_FragDepth is redeclared in any fragment shader in a
993 * program, it must be redeclared in all fragment shaders in
994 * that program that have static assignments to
995 * gl_FragDepth. All redeclarations of gl_FragDepth in all
996 * fragment shaders in a single program must have the same set
997 * of qualifiers."
998 */
999 if (strcmp(var->name, "gl_FragDepth") == 0) {
1000 bool layout_declared = var->data.depth_layout != ir_depth_layout_none;
1001 bool layout_differs =
1002 var->data.depth_layout != existing->data.depth_layout;
1003
1004 if (layout_declared && layout_differs) {
1005 linker_error(prog,
1006 "All redeclarations of gl_FragDepth in all "
1007 "fragment shaders in a single program must have "
1008 "the same set of qualifiers.\n");
1009 }
1010
1011 if (var->data.used && layout_differs) {
1012 linker_error(prog,
1013 "If gl_FragDepth is redeclared with a layout "
1014 "qualifier in any fragment shader, it must be "
1015 "redeclared with the same layout qualifier in "
1016 "all fragment shaders that have assignments to "
1017 "gl_FragDepth\n");
1018 }
1019 }
1020
1021 /* Page 35 (page 41 of the PDF) of the GLSL 4.20 spec says:
1022 *
1023 * "If a shared global has multiple initializers, the
1024 * initializers must all be constant expressions, and they
1025 * must all have the same value. Otherwise, a link error will
1026 * result. (A shared global having only one initializer does
1027 * not require that initializer to be a constant expression.)"
1028 *
1029 * Previous to 4.20 the GLSL spec simply said that initializers
1030 * must have the same value. In this case of non-constant
1031 * initializers, this was impossible to determine. As a result,
1032 * no vendor actually implemented that behavior. The 4.20
1033 * behavior matches the implemented behavior of at least one other
1034 * vendor, so we'll implement that for all GLSL versions.
1035 */
1036 if (var->constant_initializer != NULL) {
1037 if (existing->constant_initializer != NULL) {
1038 if (!var->constant_initializer->has_value(existing->constant_initializer)) {
1039 linker_error(prog, "initializers for %s "
1040 "`%s' have differing values\n",
1041 mode_string(var), var->name);
1042 return;
1043 }
1044 } else {
1045 /* If the first-seen instance of a particular uniform did
1046 * not have an initializer but a later instance does,
1047 * replace the former with the later.
1048 */
1049 variables->replace_variable(existing->name, var);
1050 }
1051 }
1052
1053 if (var->data.has_initializer) {
1054 if (existing->data.has_initializer
1055 && (var->constant_initializer == NULL
1056 || existing->constant_initializer == NULL)) {
1057 linker_error(prog,
1058 "shared global variable `%s' has multiple "
1059 "non-constant initializers.\n",
1060 var->name);
1061 return;
1062 }
1063 }
1064
1065 if (existing->data.invariant != var->data.invariant) {
1066 linker_error(prog, "declarations for %s `%s' have "
1067 "mismatching invariant qualifiers\n",
1068 mode_string(var), var->name);
1069 return;
1070 }
1071 if (existing->data.centroid != var->data.centroid) {
1072 linker_error(prog, "declarations for %s `%s' have "
1073 "mismatching centroid qualifiers\n",
1074 mode_string(var), var->name);
1075 return;
1076 }
1077 if (existing->data.sample != var->data.sample) {
1078 linker_error(prog, "declarations for %s `%s` have "
1079 "mismatching sample qualifiers\n",
1080 mode_string(var), var->name);
1081 return;
1082 }
1083 if (existing->data.image_format != var->data.image_format) {
1084 linker_error(prog, "declarations for %s `%s` have "
1085 "mismatching image format qualifiers\n",
1086 mode_string(var), var->name);
1087 return;
1088 }
1089
1090 /* Only in GLSL ES 3.10, the precision qualifier should not match
1091 * between block members defined in matched block names within a
1092 * shader interface.
1093 *
1094 * In GLSL ES 3.00 and ES 3.20, precision qualifier for each block
1095 * member should match.
1096 */
1097 if (prog->IsES && (prog->data->Version != 310 ||
1098 !var->get_interface_type()) &&
1099 existing->data.precision != var->data.precision) {
1100 linker_error(prog, "declarations for %s `%s` have "
1101 "mismatching precision qualifiers\n",
1102 mode_string(var), var->name);
1103 return;
1104 }
1105 } else
1106 variables->add_variable(var);
1107 }
1108 }
1109
1110
1111 /**
1112 * Perform validation of uniforms used across multiple shader stages
1113 */
1114 void
1115 cross_validate_uniforms(struct gl_shader_program *prog)
1116 {
1117 glsl_symbol_table variables;
1118 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1119 if (prog->_LinkedShaders[i] == NULL)
1120 continue;
1121
1122 cross_validate_globals(prog, prog->_LinkedShaders[i]->ir, &variables,
1123 true);
1124 }
1125 }
1126
1127 /**
1128 * Accumulates the array of buffer blocks and checks that all definitions of
1129 * blocks agree on their contents.
1130 */
1131 static bool
1132 interstage_cross_validate_uniform_blocks(struct gl_shader_program *prog,
1133 bool validate_ssbo)
1134 {
1135 int *InterfaceBlockStageIndex[MESA_SHADER_STAGES];
1136 struct gl_uniform_block *blks = NULL;
1137 unsigned *num_blks = validate_ssbo ? &prog->data->NumShaderStorageBlocks :
1138 &prog->data->NumUniformBlocks;
1139
1140 unsigned max_num_buffer_blocks = 0;
1141 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1142 if (prog->_LinkedShaders[i]) {
1143 if (validate_ssbo) {
1144 max_num_buffer_blocks +=
1145 prog->_LinkedShaders[i]->Program->info.num_ssbos;
1146 } else {
1147 max_num_buffer_blocks +=
1148 prog->_LinkedShaders[i]->Program->info.num_ubos;
1149 }
1150 }
1151 }
1152
1153 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1154 struct gl_linked_shader *sh = prog->_LinkedShaders[i];
1155
1156 InterfaceBlockStageIndex[i] = new int[max_num_buffer_blocks];
1157 for (unsigned int j = 0; j < max_num_buffer_blocks; j++)
1158 InterfaceBlockStageIndex[i][j] = -1;
1159
1160 if (sh == NULL)
1161 continue;
1162
1163 unsigned sh_num_blocks;
1164 struct gl_uniform_block **sh_blks;
1165 if (validate_ssbo) {
1166 sh_num_blocks = prog->_LinkedShaders[i]->Program->info.num_ssbos;
1167 sh_blks = sh->Program->sh.ShaderStorageBlocks;
1168 } else {
1169 sh_num_blocks = prog->_LinkedShaders[i]->Program->info.num_ubos;
1170 sh_blks = sh->Program->sh.UniformBlocks;
1171 }
1172
1173 for (unsigned int j = 0; j < sh_num_blocks; j++) {
1174 int index = link_cross_validate_uniform_block(prog, &blks, num_blks,
1175 sh_blks[j]);
1176
1177 if (index == -1) {
1178 linker_error(prog, "buffer block `%s' has mismatching "
1179 "definitions\n", sh_blks[j]->Name);
1180
1181 for (unsigned k = 0; k <= i; k++) {
1182 delete[] InterfaceBlockStageIndex[k];
1183 }
1184
1185 /* Reset the block count. This will help avoid various segfaults
1186 * from api calls that assume the array exists due to the count
1187 * being non-zero.
1188 */
1189 *num_blks = 0;
1190 return false;
1191 }
1192
1193 InterfaceBlockStageIndex[i][index] = j;
1194 }
1195 }
1196
1197 /* Update per stage block pointers to point to the program list.
1198 * FIXME: We should be able to free the per stage blocks here.
1199 */
1200 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1201 for (unsigned j = 0; j < *num_blks; j++) {
1202 int stage_index = InterfaceBlockStageIndex[i][j];
1203
1204 if (stage_index != -1) {
1205 struct gl_linked_shader *sh = prog->_LinkedShaders[i];
1206
1207 struct gl_uniform_block **sh_blks = validate_ssbo ?
1208 sh->Program->sh.ShaderStorageBlocks :
1209 sh->Program->sh.UniformBlocks;
1210
1211 blks[j].stageref |= sh_blks[stage_index]->stageref;
1212 sh_blks[stage_index] = &blks[j];
1213 }
1214 }
1215 }
1216
1217 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1218 delete[] InterfaceBlockStageIndex[i];
1219 }
1220
1221 if (validate_ssbo)
1222 prog->data->ShaderStorageBlocks = blks;
1223 else
1224 prog->data->UniformBlocks = blks;
1225
1226 return true;
1227 }
1228
1229
1230 /**
1231 * Populates a shaders symbol table with all global declarations
1232 */
1233 static void
1234 populate_symbol_table(gl_linked_shader *sh)
1235 {
1236 sh->symbols = new(sh) glsl_symbol_table;
1237
1238 foreach_in_list(ir_instruction, inst, sh->ir) {
1239 ir_variable *var;
1240 ir_function *func;
1241
1242 if ((func = inst->as_function()) != NULL) {
1243 sh->symbols->add_function(func);
1244 } else if ((var = inst->as_variable()) != NULL) {
1245 if (var->data.mode != ir_var_temporary)
1246 sh->symbols->add_variable(var);
1247 }
1248 }
1249 }
1250
1251
1252 /**
1253 * Remap variables referenced in an instruction tree
1254 *
1255 * This is used when instruction trees are cloned from one shader and placed in
1256 * another. These trees will contain references to \c ir_variable nodes that
1257 * do not exist in the target shader. This function finds these \c ir_variable
1258 * references and replaces the references with matching variables in the target
1259 * shader.
1260 *
1261 * If there is no matching variable in the target shader, a clone of the
1262 * \c ir_variable is made and added to the target shader. The new variable is
1263 * added to \b both the instruction stream and the symbol table.
1264 *
1265 * \param inst IR tree that is to be processed.
1266 * \param symbols Symbol table containing global scope symbols in the
1267 * linked shader.
1268 * \param instructions Instruction stream where new variable declarations
1269 * should be added.
1270 */
1271 void
1272 remap_variables(ir_instruction *inst, struct gl_linked_shader *target,
1273 hash_table *temps)
1274 {
1275 class remap_visitor : public ir_hierarchical_visitor {
1276 public:
1277 remap_visitor(struct gl_linked_shader *target, hash_table *temps)
1278 {
1279 this->target = target;
1280 this->symbols = target->symbols;
1281 this->instructions = target->ir;
1282 this->temps = temps;
1283 }
1284
1285 virtual ir_visitor_status visit(ir_dereference_variable *ir)
1286 {
1287 if (ir->var->data.mode == ir_var_temporary) {
1288 hash_entry *entry = _mesa_hash_table_search(temps, ir->var);
1289 ir_variable *var = entry ? (ir_variable *) entry->data : NULL;
1290
1291 assert(var != NULL);
1292 ir->var = var;
1293 return visit_continue;
1294 }
1295
1296 ir_variable *const existing =
1297 this->symbols->get_variable(ir->var->name);
1298 if (existing != NULL)
1299 ir->var = existing;
1300 else {
1301 ir_variable *copy = ir->var->clone(this->target, NULL);
1302
1303 this->symbols->add_variable(copy);
1304 this->instructions->push_head(copy);
1305 ir->var = copy;
1306 }
1307
1308 return visit_continue;
1309 }
1310
1311 private:
1312 struct gl_linked_shader *target;
1313 glsl_symbol_table *symbols;
1314 exec_list *instructions;
1315 hash_table *temps;
1316 };
1317
1318 remap_visitor v(target, temps);
1319
1320 inst->accept(&v);
1321 }
1322
1323
1324 /**
1325 * Move non-declarations from one instruction stream to another
1326 *
1327 * The intended usage pattern of this function is to pass the pointer to the
1328 * head sentinel of a list (i.e., a pointer to the list cast to an \c exec_node
1329 * pointer) for \c last and \c false for \c make_copies on the first
1330 * call. Successive calls pass the return value of the previous call for
1331 * \c last and \c true for \c make_copies.
1332 *
1333 * \param instructions Source instruction stream
1334 * \param last Instruction after which new instructions should be
1335 * inserted in the target instruction stream
1336 * \param make_copies Flag selecting whether instructions in \c instructions
1337 * should be copied (via \c ir_instruction::clone) into the
1338 * target list or moved.
1339 *
1340 * \return
1341 * The new "last" instruction in the target instruction stream. This pointer
1342 * is suitable for use as the \c last parameter of a later call to this
1343 * function.
1344 */
1345 exec_node *
1346 move_non_declarations(exec_list *instructions, exec_node *last,
1347 bool make_copies, gl_linked_shader *target)
1348 {
1349 hash_table *temps = NULL;
1350
1351 if (make_copies)
1352 temps = _mesa_hash_table_create(NULL, _mesa_hash_pointer,
1353 _mesa_key_pointer_equal);
1354
1355 foreach_in_list_safe(ir_instruction, inst, instructions) {
1356 if (inst->as_function())
1357 continue;
1358
1359 ir_variable *var = inst->as_variable();
1360 if ((var != NULL) && (var->data.mode != ir_var_temporary))
1361 continue;
1362
1363 assert(inst->as_assignment()
1364 || inst->as_call()
1365 || inst->as_if() /* for initializers with the ?: operator */
1366 || ((var != NULL) && (var->data.mode == ir_var_temporary)));
1367
1368 if (make_copies) {
1369 inst = inst->clone(target, NULL);
1370
1371 if (var != NULL)
1372 _mesa_hash_table_insert(temps, var, inst);
1373 else
1374 remap_variables(inst, target, temps);
1375 } else {
1376 inst->remove();
1377 }
1378
1379 last->insert_after(inst);
1380 last = inst;
1381 }
1382
1383 if (make_copies)
1384 _mesa_hash_table_destroy(temps, NULL);
1385
1386 return last;
1387 }
1388
1389
1390 /**
1391 * This class is only used in link_intrastage_shaders() below but declaring
1392 * it inside that function leads to compiler warnings with some versions of
1393 * gcc.
1394 */
1395 class array_sizing_visitor : public deref_type_updater {
1396 public:
1397 array_sizing_visitor()
1398 : mem_ctx(ralloc_context(NULL)),
1399 unnamed_interfaces(_mesa_hash_table_create(NULL, _mesa_hash_pointer,
1400 _mesa_key_pointer_equal))
1401 {
1402 }
1403
1404 ~array_sizing_visitor()
1405 {
1406 _mesa_hash_table_destroy(this->unnamed_interfaces, NULL);
1407 ralloc_free(this->mem_ctx);
1408 }
1409
1410 virtual ir_visitor_status visit(ir_variable *var)
1411 {
1412 const glsl_type *type_without_array;
1413 bool implicit_sized_array = var->data.implicit_sized_array;
1414 fixup_type(&var->type, var->data.max_array_access,
1415 var->data.from_ssbo_unsized_array,
1416 &implicit_sized_array);
1417 var->data.implicit_sized_array = implicit_sized_array;
1418 type_without_array = var->type->without_array();
1419 if (var->type->is_interface()) {
1420 if (interface_contains_unsized_arrays(var->type)) {
1421 const glsl_type *new_type =
1422 resize_interface_members(var->type,
1423 var->get_max_ifc_array_access(),
1424 var->is_in_shader_storage_block());
1425 var->type = new_type;
1426 var->change_interface_type(new_type);
1427 }
1428 } else if (type_without_array->is_interface()) {
1429 if (interface_contains_unsized_arrays(type_without_array)) {
1430 const glsl_type *new_type =
1431 resize_interface_members(type_without_array,
1432 var->get_max_ifc_array_access(),
1433 var->is_in_shader_storage_block());
1434 var->change_interface_type(new_type);
1435 var->type = update_interface_members_array(var->type, new_type);
1436 }
1437 } else if (const glsl_type *ifc_type = var->get_interface_type()) {
1438 /* Store a pointer to the variable in the unnamed_interfaces
1439 * hashtable.
1440 */
1441 hash_entry *entry =
1442 _mesa_hash_table_search(this->unnamed_interfaces,
1443 ifc_type);
1444
1445 ir_variable **interface_vars = entry ? (ir_variable **) entry->data : NULL;
1446
1447 if (interface_vars == NULL) {
1448 interface_vars = rzalloc_array(mem_ctx, ir_variable *,
1449 ifc_type->length);
1450 _mesa_hash_table_insert(this->unnamed_interfaces, ifc_type,
1451 interface_vars);
1452 }
1453 unsigned index = ifc_type->field_index(var->name);
1454 assert(index < ifc_type->length);
1455 assert(interface_vars[index] == NULL);
1456 interface_vars[index] = var;
1457 }
1458 return visit_continue;
1459 }
1460
1461 /**
1462 * For each unnamed interface block that was discovered while running the
1463 * visitor, adjust the interface type to reflect the newly assigned array
1464 * sizes, and fix up the ir_variable nodes to point to the new interface
1465 * type.
1466 */
1467 void fixup_unnamed_interface_types()
1468 {
1469 hash_table_call_foreach(this->unnamed_interfaces,
1470 fixup_unnamed_interface_type, NULL);
1471 }
1472
1473 private:
1474 /**
1475 * If the type pointed to by \c type represents an unsized array, replace
1476 * it with a sized array whose size is determined by max_array_access.
1477 */
1478 static void fixup_type(const glsl_type **type, unsigned max_array_access,
1479 bool from_ssbo_unsized_array, bool *implicit_sized)
1480 {
1481 if (!from_ssbo_unsized_array && (*type)->is_unsized_array()) {
1482 *type = glsl_type::get_array_instance((*type)->fields.array,
1483 max_array_access + 1);
1484 *implicit_sized = true;
1485 assert(*type != NULL);
1486 }
1487 }
1488
1489 static const glsl_type *
1490 update_interface_members_array(const glsl_type *type,
1491 const glsl_type *new_interface_type)
1492 {
1493 const glsl_type *element_type = type->fields.array;
1494 if (element_type->is_array()) {
1495 const glsl_type *new_array_type =
1496 update_interface_members_array(element_type, new_interface_type);
1497 return glsl_type::get_array_instance(new_array_type, type->length);
1498 } else {
1499 return glsl_type::get_array_instance(new_interface_type,
1500 type->length);
1501 }
1502 }
1503
1504 /**
1505 * Determine whether the given interface type contains unsized arrays (if
1506 * it doesn't, array_sizing_visitor doesn't need to process it).
1507 */
1508 static bool interface_contains_unsized_arrays(const glsl_type *type)
1509 {
1510 for (unsigned i = 0; i < type->length; i++) {
1511 const glsl_type *elem_type = type->fields.structure[i].type;
1512 if (elem_type->is_unsized_array())
1513 return true;
1514 }
1515 return false;
1516 }
1517
1518 /**
1519 * Create a new interface type based on the given type, with unsized arrays
1520 * replaced by sized arrays whose size is determined by
1521 * max_ifc_array_access.
1522 */
1523 static const glsl_type *
1524 resize_interface_members(const glsl_type *type,
1525 const int *max_ifc_array_access,
1526 bool is_ssbo)
1527 {
1528 unsigned num_fields = type->length;
1529 glsl_struct_field *fields = new glsl_struct_field[num_fields];
1530 memcpy(fields, type->fields.structure,
1531 num_fields * sizeof(*fields));
1532 for (unsigned i = 0; i < num_fields; i++) {
1533 bool implicit_sized_array = fields[i].implicit_sized_array;
1534 /* If SSBO last member is unsized array, we don't replace it by a sized
1535 * array.
1536 */
1537 if (is_ssbo && i == (num_fields - 1))
1538 fixup_type(&fields[i].type, max_ifc_array_access[i],
1539 true, &implicit_sized_array);
1540 else
1541 fixup_type(&fields[i].type, max_ifc_array_access[i],
1542 false, &implicit_sized_array);
1543 fields[i].implicit_sized_array = implicit_sized_array;
1544 }
1545 glsl_interface_packing packing =
1546 (glsl_interface_packing) type->interface_packing;
1547 bool row_major = (bool) type->interface_row_major;
1548 const glsl_type *new_ifc_type =
1549 glsl_type::get_interface_instance(fields, num_fields,
1550 packing, row_major, type->name);
1551 delete [] fields;
1552 return new_ifc_type;
1553 }
1554
1555 static void fixup_unnamed_interface_type(const void *key, void *data,
1556 void *)
1557 {
1558 const glsl_type *ifc_type = (const glsl_type *) key;
1559 ir_variable **interface_vars = (ir_variable **) data;
1560 unsigned num_fields = ifc_type->length;
1561 glsl_struct_field *fields = new glsl_struct_field[num_fields];
1562 memcpy(fields, ifc_type->fields.structure,
1563 num_fields * sizeof(*fields));
1564 bool interface_type_changed = false;
1565 for (unsigned i = 0; i < num_fields; i++) {
1566 if (interface_vars[i] != NULL &&
1567 fields[i].type != interface_vars[i]->type) {
1568 fields[i].type = interface_vars[i]->type;
1569 interface_type_changed = true;
1570 }
1571 }
1572 if (!interface_type_changed) {
1573 delete [] fields;
1574 return;
1575 }
1576 glsl_interface_packing packing =
1577 (glsl_interface_packing) ifc_type->interface_packing;
1578 bool row_major = (bool) ifc_type->interface_row_major;
1579 const glsl_type *new_ifc_type =
1580 glsl_type::get_interface_instance(fields, num_fields, packing,
1581 row_major, ifc_type->name);
1582 delete [] fields;
1583 for (unsigned i = 0; i < num_fields; i++) {
1584 if (interface_vars[i] != NULL)
1585 interface_vars[i]->change_interface_type(new_ifc_type);
1586 }
1587 }
1588
1589 /**
1590 * Memory context used to allocate the data in \c unnamed_interfaces.
1591 */
1592 void *mem_ctx;
1593
1594 /**
1595 * Hash table from const glsl_type * to an array of ir_variable *'s
1596 * pointing to the ir_variables constituting each unnamed interface block.
1597 */
1598 hash_table *unnamed_interfaces;
1599 };
1600
1601 static bool
1602 validate_xfb_buffer_stride(struct gl_context *ctx, unsigned idx,
1603 struct gl_shader_program *prog)
1604 {
1605 /* We will validate doubles at a later stage */
1606 if (prog->TransformFeedback.BufferStride[idx] % 4) {
1607 linker_error(prog, "invalid qualifier xfb_stride=%d must be a "
1608 "multiple of 4 or if its applied to a type that is "
1609 "or contains a double a multiple of 8.",
1610 prog->TransformFeedback.BufferStride[idx]);
1611 return false;
1612 }
1613
1614 if (prog->TransformFeedback.BufferStride[idx] / 4 >
1615 ctx->Const.MaxTransformFeedbackInterleavedComponents) {
1616 linker_error(prog, "The MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS "
1617 "limit has been exceeded.");
1618 return false;
1619 }
1620
1621 return true;
1622 }
1623
1624 /**
1625 * Check for conflicting xfb_stride default qualifiers and store buffer stride
1626 * for later use.
1627 */
1628 static void
1629 link_xfb_stride_layout_qualifiers(struct gl_context *ctx,
1630 struct gl_shader_program *prog,
1631 struct gl_linked_shader *linked_shader,
1632 struct gl_shader **shader_list,
1633 unsigned num_shaders)
1634 {
1635 for (unsigned i = 0; i < MAX_FEEDBACK_BUFFERS; i++) {
1636 prog->TransformFeedback.BufferStride[i] = 0;
1637 }
1638
1639 for (unsigned i = 0; i < num_shaders; i++) {
1640 struct gl_shader *shader = shader_list[i];
1641
1642 for (unsigned j = 0; j < MAX_FEEDBACK_BUFFERS; j++) {
1643 if (shader->TransformFeedbackBufferStride[j]) {
1644 if (prog->TransformFeedback.BufferStride[j] == 0) {
1645 prog->TransformFeedback.BufferStride[j] =
1646 shader->TransformFeedbackBufferStride[j];
1647 if (!validate_xfb_buffer_stride(ctx, j, prog))
1648 return;
1649 } else if (prog->TransformFeedback.BufferStride[j] !=
1650 shader->TransformFeedbackBufferStride[j]){
1651 linker_error(prog,
1652 "intrastage shaders defined with conflicting "
1653 "xfb_stride for buffer %d (%d and %d)\n", j,
1654 prog->TransformFeedback.BufferStride[j],
1655 shader->TransformFeedbackBufferStride[j]);
1656 return;
1657 }
1658 }
1659 }
1660 }
1661 }
1662
1663 /**
1664 * Performs the cross-validation of tessellation control shader vertices and
1665 * layout qualifiers for the attached tessellation control shaders,
1666 * and propagates them to the linked TCS and linked shader program.
1667 */
1668 static void
1669 link_tcs_out_layout_qualifiers(struct gl_shader_program *prog,
1670 struct gl_program *gl_prog,
1671 struct gl_shader **shader_list,
1672 unsigned num_shaders)
1673 {
1674 if (gl_prog->info.stage != MESA_SHADER_TESS_CTRL)
1675 return;
1676
1677 gl_prog->info.tess.tcs_vertices_out = 0;
1678
1679 /* From the GLSL 4.0 spec (chapter 4.3.8.2):
1680 *
1681 * "All tessellation control shader layout declarations in a program
1682 * must specify the same output patch vertex count. There must be at
1683 * least one layout qualifier specifying an output patch vertex count
1684 * in any program containing tessellation control shaders; however,
1685 * such a declaration is not required in all tessellation control
1686 * shaders."
1687 */
1688
1689 for (unsigned i = 0; i < num_shaders; i++) {
1690 struct gl_shader *shader = shader_list[i];
1691
1692 if (shader->info.TessCtrl.VerticesOut != 0) {
1693 if (gl_prog->info.tess.tcs_vertices_out != 0 &&
1694 gl_prog->info.tess.tcs_vertices_out !=
1695 (unsigned) shader->info.TessCtrl.VerticesOut) {
1696 linker_error(prog, "tessellation control shader defined with "
1697 "conflicting output vertex count (%d and %d)\n",
1698 gl_prog->info.tess.tcs_vertices_out,
1699 shader->info.TessCtrl.VerticesOut);
1700 return;
1701 }
1702 gl_prog->info.tess.tcs_vertices_out =
1703 shader->info.TessCtrl.VerticesOut;
1704 }
1705 }
1706
1707 /* Just do the intrastage -> interstage propagation right now,
1708 * since we already know we're in the right type of shader program
1709 * for doing it.
1710 */
1711 if (gl_prog->info.tess.tcs_vertices_out == 0) {
1712 linker_error(prog, "tessellation control shader didn't declare "
1713 "vertices out layout qualifier\n");
1714 return;
1715 }
1716 }
1717
1718
1719 /**
1720 * Performs the cross-validation of tessellation evaluation shader
1721 * primitive type, vertex spacing, ordering and point_mode layout qualifiers
1722 * for the attached tessellation evaluation shaders, and propagates them
1723 * to the linked TES and linked shader program.
1724 */
1725 static void
1726 link_tes_in_layout_qualifiers(struct gl_shader_program *prog,
1727 struct gl_program *gl_prog,
1728 struct gl_shader **shader_list,
1729 unsigned num_shaders)
1730 {
1731 if (gl_prog->info.stage != MESA_SHADER_TESS_EVAL)
1732 return;
1733
1734 int point_mode = -1;
1735 unsigned vertex_order = 0;
1736
1737 gl_prog->info.tess.primitive_mode = PRIM_UNKNOWN;
1738 gl_prog->info.tess.spacing = TESS_SPACING_UNSPECIFIED;
1739
1740 /* From the GLSL 4.0 spec (chapter 4.3.8.1):
1741 *
1742 * "At least one tessellation evaluation shader (compilation unit) in
1743 * a program must declare a primitive mode in its input layout.
1744 * Declaration vertex spacing, ordering, and point mode identifiers is
1745 * optional. It is not required that all tessellation evaluation
1746 * shaders in a program declare a primitive mode. If spacing or
1747 * vertex ordering declarations are omitted, the tessellation
1748 * primitive generator will use equal spacing or counter-clockwise
1749 * vertex ordering, respectively. If a point mode declaration is
1750 * omitted, the tessellation primitive generator will produce lines or
1751 * triangles according to the primitive mode."
1752 */
1753
1754 for (unsigned i = 0; i < num_shaders; i++) {
1755 struct gl_shader *shader = shader_list[i];
1756
1757 if (shader->info.TessEval.PrimitiveMode != PRIM_UNKNOWN) {
1758 if (gl_prog->info.tess.primitive_mode != PRIM_UNKNOWN &&
1759 gl_prog->info.tess.primitive_mode !=
1760 shader->info.TessEval.PrimitiveMode) {
1761 linker_error(prog, "tessellation evaluation shader defined with "
1762 "conflicting input primitive modes.\n");
1763 return;
1764 }
1765 gl_prog->info.tess.primitive_mode =
1766 shader->info.TessEval.PrimitiveMode;
1767 }
1768
1769 if (shader->info.TessEval.Spacing != 0) {
1770 if (gl_prog->info.tess.spacing != 0 && gl_prog->info.tess.spacing !=
1771 shader->info.TessEval.Spacing) {
1772 linker_error(prog, "tessellation evaluation shader defined with "
1773 "conflicting vertex spacing.\n");
1774 return;
1775 }
1776 gl_prog->info.tess.spacing = shader->info.TessEval.Spacing;
1777 }
1778
1779 if (shader->info.TessEval.VertexOrder != 0) {
1780 if (vertex_order != 0 &&
1781 vertex_order != shader->info.TessEval.VertexOrder) {
1782 linker_error(prog, "tessellation evaluation shader defined with "
1783 "conflicting ordering.\n");
1784 return;
1785 }
1786 vertex_order = shader->info.TessEval.VertexOrder;
1787 }
1788
1789 if (shader->info.TessEval.PointMode != -1) {
1790 if (point_mode != -1 &&
1791 point_mode != shader->info.TessEval.PointMode) {
1792 linker_error(prog, "tessellation evaluation shader defined with "
1793 "conflicting point modes.\n");
1794 return;
1795 }
1796 point_mode = shader->info.TessEval.PointMode;
1797 }
1798
1799 }
1800
1801 /* Just do the intrastage -> interstage propagation right now,
1802 * since we already know we're in the right type of shader program
1803 * for doing it.
1804 */
1805 if (gl_prog->info.tess.primitive_mode == PRIM_UNKNOWN) {
1806 linker_error(prog,
1807 "tessellation evaluation shader didn't declare input "
1808 "primitive modes.\n");
1809 return;
1810 }
1811
1812 if (gl_prog->info.tess.spacing == TESS_SPACING_UNSPECIFIED)
1813 gl_prog->info.tess.spacing = TESS_SPACING_EQUAL;
1814
1815 if (vertex_order == 0 || vertex_order == GL_CCW)
1816 gl_prog->info.tess.ccw = true;
1817 else
1818 gl_prog->info.tess.ccw = false;
1819
1820
1821 if (point_mode == -1 || point_mode == GL_FALSE)
1822 gl_prog->info.tess.point_mode = false;
1823 else
1824 gl_prog->info.tess.point_mode = true;
1825 }
1826
1827
1828 /**
1829 * Performs the cross-validation of layout qualifiers specified in
1830 * redeclaration of gl_FragCoord for the attached fragment shaders,
1831 * and propagates them to the linked FS and linked shader program.
1832 */
1833 static void
1834 link_fs_inout_layout_qualifiers(struct gl_shader_program *prog,
1835 struct gl_linked_shader *linked_shader,
1836 struct gl_shader **shader_list,
1837 unsigned num_shaders)
1838 {
1839 bool redeclares_gl_fragcoord = false;
1840 bool uses_gl_fragcoord = false;
1841 bool origin_upper_left = false;
1842 bool pixel_center_integer = false;
1843
1844 if (linked_shader->Stage != MESA_SHADER_FRAGMENT ||
1845 (prog->data->Version < 150 &&
1846 !prog->ARB_fragment_coord_conventions_enable))
1847 return;
1848
1849 for (unsigned i = 0; i < num_shaders; i++) {
1850 struct gl_shader *shader = shader_list[i];
1851 /* From the GLSL 1.50 spec, page 39:
1852 *
1853 * "If gl_FragCoord is redeclared in any fragment shader in a program,
1854 * it must be redeclared in all the fragment shaders in that program
1855 * that have a static use gl_FragCoord."
1856 */
1857 if ((redeclares_gl_fragcoord && !shader->redeclares_gl_fragcoord &&
1858 shader->uses_gl_fragcoord)
1859 || (shader->redeclares_gl_fragcoord && !redeclares_gl_fragcoord &&
1860 uses_gl_fragcoord)) {
1861 linker_error(prog, "fragment shader defined with conflicting "
1862 "layout qualifiers for gl_FragCoord\n");
1863 }
1864
1865 /* From the GLSL 1.50 spec, page 39:
1866 *
1867 * "All redeclarations of gl_FragCoord in all fragment shaders in a
1868 * single program must have the same set of qualifiers."
1869 */
1870 if (redeclares_gl_fragcoord && shader->redeclares_gl_fragcoord &&
1871 (shader->origin_upper_left != origin_upper_left ||
1872 shader->pixel_center_integer != pixel_center_integer)) {
1873 linker_error(prog, "fragment shader defined with conflicting "
1874 "layout qualifiers for gl_FragCoord\n");
1875 }
1876
1877 /* Update the linked shader state. Note that uses_gl_fragcoord should
1878 * accumulate the results. The other values should replace. If there
1879 * are multiple redeclarations, all the fields except uses_gl_fragcoord
1880 * are already known to be the same.
1881 */
1882 if (shader->redeclares_gl_fragcoord || shader->uses_gl_fragcoord) {
1883 redeclares_gl_fragcoord = shader->redeclares_gl_fragcoord;
1884 uses_gl_fragcoord |= shader->uses_gl_fragcoord;
1885 origin_upper_left = shader->origin_upper_left;
1886 pixel_center_integer = shader->pixel_center_integer;
1887 }
1888
1889 linked_shader->Program->info.fs.early_fragment_tests |=
1890 shader->EarlyFragmentTests || shader->PostDepthCoverage;
1891 linked_shader->Program->info.fs.inner_coverage |= shader->InnerCoverage;
1892 linked_shader->Program->info.fs.post_depth_coverage |=
1893 shader->PostDepthCoverage;
1894
1895 linked_shader->Program->sh.fs.BlendSupport |= shader->BlendSupport;
1896 }
1897 }
1898
1899 /**
1900 * Performs the cross-validation of geometry shader max_vertices and
1901 * primitive type layout qualifiers for the attached geometry shaders,
1902 * and propagates them to the linked GS and linked shader program.
1903 */
1904 static void
1905 link_gs_inout_layout_qualifiers(struct gl_shader_program *prog,
1906 struct gl_program *gl_prog,
1907 struct gl_shader **shader_list,
1908 unsigned num_shaders)
1909 {
1910 /* No in/out qualifiers defined for anything but GLSL 1.50+
1911 * geometry shaders so far.
1912 */
1913 if (gl_prog->info.stage != MESA_SHADER_GEOMETRY ||
1914 prog->data->Version < 150)
1915 return;
1916
1917 int vertices_out = -1;
1918
1919 gl_prog->info.gs.invocations = 0;
1920 gl_prog->info.gs.input_primitive = PRIM_UNKNOWN;
1921 gl_prog->info.gs.output_primitive = PRIM_UNKNOWN;
1922
1923 /* From the GLSL 1.50 spec, page 46:
1924 *
1925 * "All geometry shader output layout declarations in a program
1926 * must declare the same layout and same value for
1927 * max_vertices. There must be at least one geometry output
1928 * layout declaration somewhere in a program, but not all
1929 * geometry shaders (compilation units) are required to
1930 * declare it."
1931 */
1932
1933 for (unsigned i = 0; i < num_shaders; i++) {
1934 struct gl_shader *shader = shader_list[i];
1935
1936 if (shader->info.Geom.InputType != PRIM_UNKNOWN) {
1937 if (gl_prog->info.gs.input_primitive != PRIM_UNKNOWN &&
1938 gl_prog->info.gs.input_primitive !=
1939 shader->info.Geom.InputType) {
1940 linker_error(prog, "geometry shader defined with conflicting "
1941 "input types\n");
1942 return;
1943 }
1944 gl_prog->info.gs.input_primitive = shader->info.Geom.InputType;
1945 }
1946
1947 if (shader->info.Geom.OutputType != PRIM_UNKNOWN) {
1948 if (gl_prog->info.gs.output_primitive != PRIM_UNKNOWN &&
1949 gl_prog->info.gs.output_primitive !=
1950 shader->info.Geom.OutputType) {
1951 linker_error(prog, "geometry shader defined with conflicting "
1952 "output types\n");
1953 return;
1954 }
1955 gl_prog->info.gs.output_primitive = shader->info.Geom.OutputType;
1956 }
1957
1958 if (shader->info.Geom.VerticesOut != -1) {
1959 if (vertices_out != -1 &&
1960 vertices_out != shader->info.Geom.VerticesOut) {
1961 linker_error(prog, "geometry shader defined with conflicting "
1962 "output vertex count (%d and %d)\n",
1963 vertices_out, shader->info.Geom.VerticesOut);
1964 return;
1965 }
1966 vertices_out = shader->info.Geom.VerticesOut;
1967 }
1968
1969 if (shader->info.Geom.Invocations != 0) {
1970 if (gl_prog->info.gs.invocations != 0 &&
1971 gl_prog->info.gs.invocations !=
1972 (unsigned) shader->info.Geom.Invocations) {
1973 linker_error(prog, "geometry shader defined with conflicting "
1974 "invocation count (%d and %d)\n",
1975 gl_prog->info.gs.invocations,
1976 shader->info.Geom.Invocations);
1977 return;
1978 }
1979 gl_prog->info.gs.invocations = shader->info.Geom.Invocations;
1980 }
1981 }
1982
1983 /* Just do the intrastage -> interstage propagation right now,
1984 * since we already know we're in the right type of shader program
1985 * for doing it.
1986 */
1987 if (gl_prog->info.gs.input_primitive == PRIM_UNKNOWN) {
1988 linker_error(prog,
1989 "geometry shader didn't declare primitive input type\n");
1990 return;
1991 }
1992
1993 if (gl_prog->info.gs.output_primitive == PRIM_UNKNOWN) {
1994 linker_error(prog,
1995 "geometry shader didn't declare primitive output type\n");
1996 return;
1997 }
1998
1999 if (vertices_out == -1) {
2000 linker_error(prog,
2001 "geometry shader didn't declare max_vertices\n");
2002 return;
2003 } else {
2004 gl_prog->info.gs.vertices_out = vertices_out;
2005 }
2006
2007 if (gl_prog->info.gs.invocations == 0)
2008 gl_prog->info.gs.invocations = 1;
2009 }
2010
2011
2012 /**
2013 * Perform cross-validation of compute shader local_size_{x,y,z} layout
2014 * qualifiers for the attached compute shaders, and propagate them to the
2015 * linked CS and linked shader program.
2016 */
2017 static void
2018 link_cs_input_layout_qualifiers(struct gl_shader_program *prog,
2019 struct gl_program *gl_prog,
2020 struct gl_shader **shader_list,
2021 unsigned num_shaders)
2022 {
2023 /* This function is called for all shader stages, but it only has an effect
2024 * for compute shaders.
2025 */
2026 if (gl_prog->info.stage != MESA_SHADER_COMPUTE)
2027 return;
2028
2029 for (int i = 0; i < 3; i++)
2030 gl_prog->info.cs.local_size[i] = 0;
2031
2032 gl_prog->info.cs.local_size_variable = false;
2033
2034 /* From the ARB_compute_shader spec, in the section describing local size
2035 * declarations:
2036 *
2037 * If multiple compute shaders attached to a single program object
2038 * declare local work-group size, the declarations must be identical;
2039 * otherwise a link-time error results. Furthermore, if a program
2040 * object contains any compute shaders, at least one must contain an
2041 * input layout qualifier specifying the local work sizes of the
2042 * program, or a link-time error will occur.
2043 */
2044 for (unsigned sh = 0; sh < num_shaders; sh++) {
2045 struct gl_shader *shader = shader_list[sh];
2046
2047 if (shader->info.Comp.LocalSize[0] != 0) {
2048 if (gl_prog->info.cs.local_size[0] != 0) {
2049 for (int i = 0; i < 3; i++) {
2050 if (gl_prog->info.cs.local_size[i] !=
2051 shader->info.Comp.LocalSize[i]) {
2052 linker_error(prog, "compute shader defined with conflicting "
2053 "local sizes\n");
2054 return;
2055 }
2056 }
2057 }
2058 for (int i = 0; i < 3; i++) {
2059 gl_prog->info.cs.local_size[i] =
2060 shader->info.Comp.LocalSize[i];
2061 }
2062 } else if (shader->info.Comp.LocalSizeVariable) {
2063 if (gl_prog->info.cs.local_size[0] != 0) {
2064 /* The ARB_compute_variable_group_size spec says:
2065 *
2066 * If one compute shader attached to a program declares a
2067 * variable local group size and a second compute shader
2068 * attached to the same program declares a fixed local group
2069 * size, a link-time error results.
2070 */
2071 linker_error(prog, "compute shader defined with both fixed and "
2072 "variable local group size\n");
2073 return;
2074 }
2075 gl_prog->info.cs.local_size_variable = true;
2076 }
2077 }
2078
2079 /* Just do the intrastage -> interstage propagation right now,
2080 * since we already know we're in the right type of shader program
2081 * for doing it.
2082 */
2083 if (gl_prog->info.cs.local_size[0] == 0 &&
2084 !gl_prog->info.cs.local_size_variable) {
2085 linker_error(prog, "compute shader must contain a fixed or a variable "
2086 "local group size\n");
2087 return;
2088 }
2089 }
2090
2091
2092 /**
2093 * Combine a group of shaders for a single stage to generate a linked shader
2094 *
2095 * \note
2096 * If this function is supplied a single shader, it is cloned, and the new
2097 * shader is returned.
2098 */
2099 struct gl_linked_shader *
2100 link_intrastage_shaders(void *mem_ctx,
2101 struct gl_context *ctx,
2102 struct gl_shader_program *prog,
2103 struct gl_shader **shader_list,
2104 unsigned num_shaders,
2105 bool allow_missing_main)
2106 {
2107 struct gl_uniform_block *ubo_blocks = NULL;
2108 struct gl_uniform_block *ssbo_blocks = NULL;
2109 unsigned num_ubo_blocks = 0;
2110 unsigned num_ssbo_blocks = 0;
2111
2112 /* Check that global variables defined in multiple shaders are consistent.
2113 */
2114 glsl_symbol_table variables;
2115 for (unsigned i = 0; i < num_shaders; i++) {
2116 if (shader_list[i] == NULL)
2117 continue;
2118 cross_validate_globals(prog, shader_list[i]->ir, &variables, false);
2119 }
2120
2121 if (!prog->data->LinkStatus)
2122 return NULL;
2123
2124 /* Check that interface blocks defined in multiple shaders are consistent.
2125 */
2126 validate_intrastage_interface_blocks(prog, (const gl_shader **)shader_list,
2127 num_shaders);
2128 if (!prog->data->LinkStatus)
2129 return NULL;
2130
2131 /* Check that there is only a single definition of each function signature
2132 * across all shaders.
2133 */
2134 for (unsigned i = 0; i < (num_shaders - 1); i++) {
2135 foreach_in_list(ir_instruction, node, shader_list[i]->ir) {
2136 ir_function *const f = node->as_function();
2137
2138 if (f == NULL)
2139 continue;
2140
2141 for (unsigned j = i + 1; j < num_shaders; j++) {
2142 ir_function *const other =
2143 shader_list[j]->symbols->get_function(f->name);
2144
2145 /* If the other shader has no function (and therefore no function
2146 * signatures) with the same name, skip to the next shader.
2147 */
2148 if (other == NULL)
2149 continue;
2150
2151 foreach_in_list(ir_function_signature, sig, &f->signatures) {
2152 if (!sig->is_defined)
2153 continue;
2154
2155 ir_function_signature *other_sig =
2156 other->exact_matching_signature(NULL, &sig->parameters);
2157
2158 if (other_sig != NULL && other_sig->is_defined) {
2159 linker_error(prog, "function `%s' is multiply defined\n",
2160 f->name);
2161 return NULL;
2162 }
2163 }
2164 }
2165 }
2166 }
2167
2168 /* Find the shader that defines main, and make a clone of it.
2169 *
2170 * Starting with the clone, search for undefined references. If one is
2171 * found, find the shader that defines it. Clone the reference and add
2172 * it to the shader. Repeat until there are no undefined references or
2173 * until a reference cannot be resolved.
2174 */
2175 gl_shader *main = NULL;
2176 for (unsigned i = 0; i < num_shaders; i++) {
2177 if (_mesa_get_main_function_signature(shader_list[i]->symbols)) {
2178 main = shader_list[i];
2179 break;
2180 }
2181 }
2182
2183 if (main == NULL && allow_missing_main)
2184 main = shader_list[0];
2185
2186 if (main == NULL) {
2187 linker_error(prog, "%s shader lacks `main'\n",
2188 _mesa_shader_stage_to_string(shader_list[0]->Stage));
2189 return NULL;
2190 }
2191
2192 gl_linked_shader *linked = rzalloc(NULL, struct gl_linked_shader);
2193 linked->Stage = shader_list[0]->Stage;
2194
2195 /* Create program and attach it to the linked shader */
2196 struct gl_program *gl_prog =
2197 ctx->Driver.NewProgram(ctx,
2198 _mesa_shader_stage_to_program(shader_list[0]->Stage),
2199 prog->Name, false);
2200 if (!gl_prog) {
2201 prog->data->LinkStatus = linking_failure;
2202 _mesa_delete_linked_shader(ctx, linked);
2203 return NULL;
2204 }
2205
2206 if (!prog->data->cache_fallback)
2207 _mesa_reference_shader_program_data(ctx, &gl_prog->sh.data, prog->data);
2208
2209 /* Don't use _mesa_reference_program() just take ownership */
2210 linked->Program = gl_prog;
2211
2212 linked->ir = new(linked) exec_list;
2213 clone_ir_list(mem_ctx, linked->ir, main->ir);
2214
2215 link_fs_inout_layout_qualifiers(prog, linked, shader_list, num_shaders);
2216 link_tcs_out_layout_qualifiers(prog, gl_prog, shader_list, num_shaders);
2217 link_tes_in_layout_qualifiers(prog, gl_prog, shader_list, num_shaders);
2218 link_gs_inout_layout_qualifiers(prog, gl_prog, shader_list, num_shaders);
2219 link_cs_input_layout_qualifiers(prog, gl_prog, shader_list, num_shaders);
2220 link_xfb_stride_layout_qualifiers(ctx, prog, linked, shader_list,
2221 num_shaders);
2222
2223 populate_symbol_table(linked);
2224
2225 /* The pointer to the main function in the final linked shader (i.e., the
2226 * copy of the original shader that contained the main function).
2227 */
2228 ir_function_signature *const main_sig =
2229 _mesa_get_main_function_signature(linked->symbols);
2230
2231 /* Move any instructions other than variable declarations or function
2232 * declarations into main.
2233 */
2234 if (main_sig != NULL) {
2235 exec_node *insertion_point =
2236 move_non_declarations(linked->ir, (exec_node *) &main_sig->body, false,
2237 linked);
2238
2239 for (unsigned i = 0; i < num_shaders; i++) {
2240 if (shader_list[i] == main)
2241 continue;
2242
2243 insertion_point = move_non_declarations(shader_list[i]->ir,
2244 insertion_point, true, linked);
2245 }
2246 }
2247
2248 if (!link_function_calls(prog, linked, shader_list, num_shaders)) {
2249 _mesa_delete_linked_shader(ctx, linked);
2250 return NULL;
2251 }
2252
2253 /* Make a pass over all variable declarations to ensure that arrays with
2254 * unspecified sizes have a size specified. The size is inferred from the
2255 * max_array_access field.
2256 */
2257 array_sizing_visitor v;
2258 v.run(linked->ir);
2259 v.fixup_unnamed_interface_types();
2260
2261 if (!prog->data->cache_fallback) {
2262 /* Link up uniform blocks defined within this stage. */
2263 link_uniform_blocks(mem_ctx, ctx, prog, linked, &ubo_blocks,
2264 &num_ubo_blocks, &ssbo_blocks, &num_ssbo_blocks);
2265
2266 if (!prog->data->LinkStatus) {
2267 _mesa_delete_linked_shader(ctx, linked);
2268 return NULL;
2269 }
2270
2271 /* Copy ubo blocks to linked shader list */
2272 linked->Program->sh.UniformBlocks =
2273 ralloc_array(linked, gl_uniform_block *, num_ubo_blocks);
2274 ralloc_steal(linked, ubo_blocks);
2275 for (unsigned i = 0; i < num_ubo_blocks; i++) {
2276 linked->Program->sh.UniformBlocks[i] = &ubo_blocks[i];
2277 }
2278 linked->Program->info.num_ubos = num_ubo_blocks;
2279
2280 /* Copy ssbo blocks to linked shader list */
2281 linked->Program->sh.ShaderStorageBlocks =
2282 ralloc_array(linked, gl_uniform_block *, num_ssbo_blocks);
2283 ralloc_steal(linked, ssbo_blocks);
2284 for (unsigned i = 0; i < num_ssbo_blocks; i++) {
2285 linked->Program->sh.ShaderStorageBlocks[i] = &ssbo_blocks[i];
2286 }
2287 linked->Program->info.num_ssbos = num_ssbo_blocks;
2288 }
2289
2290 /* At this point linked should contain all of the linked IR, so
2291 * validate it to make sure nothing went wrong.
2292 */
2293 validate_ir_tree(linked->ir);
2294
2295 /* Set the size of geometry shader input arrays */
2296 if (linked->Stage == MESA_SHADER_GEOMETRY) {
2297 unsigned num_vertices =
2298 vertices_per_prim(gl_prog->info.gs.input_primitive);
2299 array_resize_visitor input_resize_visitor(num_vertices, prog,
2300 MESA_SHADER_GEOMETRY);
2301 foreach_in_list(ir_instruction, ir, linked->ir) {
2302 ir->accept(&input_resize_visitor);
2303 }
2304 }
2305
2306 if (ctx->Const.VertexID_is_zero_based)
2307 lower_vertex_id(linked);
2308
2309 #ifdef DEBUG
2310 /* Compute the source checksum. */
2311 linked->SourceChecksum = 0;
2312 for (unsigned i = 0; i < num_shaders; i++) {
2313 if (shader_list[i] == NULL)
2314 continue;
2315 linked->SourceChecksum ^= shader_list[i]->SourceChecksum;
2316 }
2317 #endif
2318
2319 return linked;
2320 }
2321
2322 /**
2323 * Update the sizes of linked shader uniform arrays to the maximum
2324 * array index used.
2325 *
2326 * From page 81 (page 95 of the PDF) of the OpenGL 2.1 spec:
2327 *
2328 * If one or more elements of an array are active,
2329 * GetActiveUniform will return the name of the array in name,
2330 * subject to the restrictions listed above. The type of the array
2331 * is returned in type. The size parameter contains the highest
2332 * array element index used, plus one. The compiler or linker
2333 * determines the highest index used. There will be only one
2334 * active uniform reported by the GL per uniform array.
2335
2336 */
2337 static void
2338 update_array_sizes(struct gl_shader_program *prog)
2339 {
2340 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
2341 if (prog->_LinkedShaders[i] == NULL)
2342 continue;
2343
2344 bool types_were_updated = false;
2345
2346 foreach_in_list(ir_instruction, node, prog->_LinkedShaders[i]->ir) {
2347 ir_variable *const var = node->as_variable();
2348
2349 if ((var == NULL) || (var->data.mode != ir_var_uniform) ||
2350 !var->type->is_array())
2351 continue;
2352
2353 /* GL_ARB_uniform_buffer_object says that std140 uniforms
2354 * will not be eliminated. Since we always do std140, just
2355 * don't resize arrays in UBOs.
2356 *
2357 * Atomic counters are supposed to get deterministic
2358 * locations assigned based on the declaration ordering and
2359 * sizes, array compaction would mess that up.
2360 *
2361 * Subroutine uniforms are not removed.
2362 */
2363 if (var->is_in_buffer_block() || var->type->contains_atomic() ||
2364 var->type->contains_subroutine() || var->constant_initializer)
2365 continue;
2366
2367 int size = var->data.max_array_access;
2368 for (unsigned j = 0; j < MESA_SHADER_STAGES; j++) {
2369 if (prog->_LinkedShaders[j] == NULL)
2370 continue;
2371
2372 foreach_in_list(ir_instruction, node2, prog->_LinkedShaders[j]->ir) {
2373 ir_variable *other_var = node2->as_variable();
2374 if (!other_var)
2375 continue;
2376
2377 if (strcmp(var->name, other_var->name) == 0 &&
2378 other_var->data.max_array_access > size) {
2379 size = other_var->data.max_array_access;
2380 }
2381 }
2382 }
2383
2384 if (size + 1 != (int)var->type->length) {
2385 /* If this is a built-in uniform (i.e., it's backed by some
2386 * fixed-function state), adjust the number of state slots to
2387 * match the new array size. The number of slots per array entry
2388 * is not known. It seems safe to assume that the total number of
2389 * slots is an integer multiple of the number of array elements.
2390 * Determine the number of slots per array element by dividing by
2391 * the old (total) size.
2392 */
2393 const unsigned num_slots = var->get_num_state_slots();
2394 if (num_slots > 0) {
2395 var->set_num_state_slots((size + 1)
2396 * (num_slots / var->type->length));
2397 }
2398
2399 var->type = glsl_type::get_array_instance(var->type->fields.array,
2400 size + 1);
2401 types_were_updated = true;
2402 }
2403 }
2404
2405 /* Update the types of dereferences in case we changed any. */
2406 if (types_were_updated) {
2407 deref_type_updater v;
2408 v.run(prog->_LinkedShaders[i]->ir);
2409 }
2410 }
2411 }
2412
2413 /**
2414 * Resize tessellation evaluation per-vertex inputs to the size of
2415 * tessellation control per-vertex outputs.
2416 */
2417 static void
2418 resize_tes_inputs(struct gl_context *ctx,
2419 struct gl_shader_program *prog)
2420 {
2421 if (prog->_LinkedShaders[MESA_SHADER_TESS_EVAL] == NULL)
2422 return;
2423
2424 gl_linked_shader *const tcs = prog->_LinkedShaders[MESA_SHADER_TESS_CTRL];
2425 gl_linked_shader *const tes = prog->_LinkedShaders[MESA_SHADER_TESS_EVAL];
2426
2427 /* If no control shader is present, then the TES inputs are statically
2428 * sized to MaxPatchVertices; the actual size of the arrays won't be
2429 * known until draw time.
2430 */
2431 const int num_vertices = tcs
2432 ? tcs->Program->info.tess.tcs_vertices_out
2433 : ctx->Const.MaxPatchVertices;
2434
2435 array_resize_visitor input_resize_visitor(num_vertices, prog,
2436 MESA_SHADER_TESS_EVAL);
2437 foreach_in_list(ir_instruction, ir, tes->ir) {
2438 ir->accept(&input_resize_visitor);
2439 }
2440
2441 if (tcs || ctx->Const.LowerTESPatchVerticesIn) {
2442 /* Convert the gl_PatchVerticesIn system value into a constant, since
2443 * the value is known at this point.
2444 */
2445 foreach_in_list(ir_instruction, ir, tes->ir) {
2446 ir_variable *var = ir->as_variable();
2447 if (var && var->data.mode == ir_var_system_value &&
2448 var->data.location == SYSTEM_VALUE_VERTICES_IN) {
2449 void *mem_ctx = ralloc_parent(var);
2450 var->data.location = 0;
2451 var->data.explicit_location = false;
2452 if (tcs) {
2453 var->data.mode = ir_var_auto;
2454 var->constant_value = new(mem_ctx) ir_constant(num_vertices);
2455 } else {
2456 var->data.mode = ir_var_uniform;
2457 var->data.how_declared = ir_var_hidden;
2458 var->allocate_state_slots(1);
2459 ir_state_slot *slot0 = &var->get_state_slots()[0];
2460 slot0->swizzle = SWIZZLE_XXXX;
2461 slot0->tokens[0] = STATE_INTERNAL;
2462 slot0->tokens[1] = STATE_TES_PATCH_VERTICES_IN;
2463 for (int i = 2; i < STATE_LENGTH; i++)
2464 slot0->tokens[i] = 0;
2465 }
2466 }
2467 }
2468 }
2469 }
2470
2471 /**
2472 * Find a contiguous set of available bits in a bitmask.
2473 *
2474 * \param used_mask Bits representing used (1) and unused (0) locations
2475 * \param needed_count Number of contiguous bits needed.
2476 *
2477 * \return
2478 * Base location of the available bits on success or -1 on failure.
2479 */
2480 int
2481 find_available_slots(unsigned used_mask, unsigned needed_count)
2482 {
2483 unsigned needed_mask = (1 << needed_count) - 1;
2484 const int max_bit_to_test = (8 * sizeof(used_mask)) - needed_count;
2485
2486 /* The comparison to 32 is redundant, but without it GCC emits "warning:
2487 * cannot optimize possibly infinite loops" for the loop below.
2488 */
2489 if ((needed_count == 0) || (max_bit_to_test < 0) || (max_bit_to_test > 32))
2490 return -1;
2491
2492 for (int i = 0; i <= max_bit_to_test; i++) {
2493 if ((needed_mask & ~used_mask) == needed_mask)
2494 return i;
2495
2496 needed_mask <<= 1;
2497 }
2498
2499 return -1;
2500 }
2501
2502
2503 /**
2504 * Assign locations for either VS inputs or FS outputs
2505 *
2506 * \param mem_ctx Temporary ralloc context used for linking
2507 * \param prog Shader program whose variables need locations assigned
2508 * \param constants Driver specific constant values for the program.
2509 * \param target_index Selector for the program target to receive location
2510 * assignmnets. Must be either \c MESA_SHADER_VERTEX or
2511 * \c MESA_SHADER_FRAGMENT.
2512 *
2513 * \return
2514 * If locations are successfully assigned, true is returned. Otherwise an
2515 * error is emitted to the shader link log and false is returned.
2516 */
2517 bool
2518 assign_attribute_or_color_locations(void *mem_ctx,
2519 gl_shader_program *prog,
2520 struct gl_constants *constants,
2521 unsigned target_index)
2522 {
2523 /* Maximum number of generic locations. This corresponds to either the
2524 * maximum number of draw buffers or the maximum number of generic
2525 * attributes.
2526 */
2527 unsigned max_index = (target_index == MESA_SHADER_VERTEX) ?
2528 constants->Program[target_index].MaxAttribs :
2529 MAX2(constants->MaxDrawBuffers, constants->MaxDualSourceDrawBuffers);
2530
2531 /* Mark invalid locations as being used.
2532 */
2533 unsigned used_locations = (max_index >= 32)
2534 ? ~0 : ~((1 << max_index) - 1);
2535 unsigned double_storage_locations = 0;
2536
2537 assert((target_index == MESA_SHADER_VERTEX)
2538 || (target_index == MESA_SHADER_FRAGMENT));
2539
2540 gl_linked_shader *const sh = prog->_LinkedShaders[target_index];
2541 if (sh == NULL)
2542 return true;
2543
2544 /* Operate in a total of four passes.
2545 *
2546 * 1. Invalidate the location assignments for all vertex shader inputs.
2547 *
2548 * 2. Assign locations for inputs that have user-defined (via
2549 * glBindVertexAttribLocation) locations and outputs that have
2550 * user-defined locations (via glBindFragDataLocation).
2551 *
2552 * 3. Sort the attributes without assigned locations by number of slots
2553 * required in decreasing order. Fragmentation caused by attribute
2554 * locations assigned by the application may prevent large attributes
2555 * from having enough contiguous space.
2556 *
2557 * 4. Assign locations to any inputs without assigned locations.
2558 */
2559
2560 const int generic_base = (target_index == MESA_SHADER_VERTEX)
2561 ? (int) VERT_ATTRIB_GENERIC0 : (int) FRAG_RESULT_DATA0;
2562
2563 const enum ir_variable_mode direction =
2564 (target_index == MESA_SHADER_VERTEX)
2565 ? ir_var_shader_in : ir_var_shader_out;
2566
2567
2568 /* Temporary storage for the set of attributes that need locations assigned.
2569 */
2570 struct temp_attr {
2571 unsigned slots;
2572 ir_variable *var;
2573
2574 /* Used below in the call to qsort. */
2575 static int compare(const void *a, const void *b)
2576 {
2577 const temp_attr *const l = (const temp_attr *) a;
2578 const temp_attr *const r = (const temp_attr *) b;
2579
2580 /* Reversed because we want a descending order sort below. */
2581 return r->slots - l->slots;
2582 }
2583 } to_assign[32];
2584 assert(max_index <= 32);
2585
2586 /* Temporary array for the set of attributes that have locations assigned.
2587 */
2588 ir_variable *assigned[16];
2589
2590 unsigned num_attr = 0;
2591 unsigned assigned_attr = 0;
2592
2593 foreach_in_list(ir_instruction, node, sh->ir) {
2594 ir_variable *const var = node->as_variable();
2595
2596 if ((var == NULL) || (var->data.mode != (unsigned) direction))
2597 continue;
2598
2599 if (var->data.explicit_location) {
2600 var->data.is_unmatched_generic_inout = 0;
2601 if ((var->data.location >= (int)(max_index + generic_base))
2602 || (var->data.location < 0)) {
2603 linker_error(prog,
2604 "invalid explicit location %d specified for `%s'\n",
2605 (var->data.location < 0)
2606 ? var->data.location
2607 : var->data.location - generic_base,
2608 var->name);
2609 return false;
2610 }
2611 } else if (target_index == MESA_SHADER_VERTEX) {
2612 unsigned binding;
2613
2614 if (prog->AttributeBindings->get(binding, var->name)) {
2615 assert(binding >= VERT_ATTRIB_GENERIC0);
2616 var->data.location = binding;
2617 var->data.is_unmatched_generic_inout = 0;
2618 }
2619 } else if (target_index == MESA_SHADER_FRAGMENT) {
2620 unsigned binding;
2621 unsigned index;
2622 const char *name = var->name;
2623 const glsl_type *type = var->type;
2624
2625 while (type) {
2626 /* Check if there's a binding for the variable name */
2627 if (prog->FragDataBindings->get(binding, name)) {
2628 assert(binding >= FRAG_RESULT_DATA0);
2629 var->data.location = binding;
2630 var->data.is_unmatched_generic_inout = 0;
2631
2632 if (prog->FragDataIndexBindings->get(index, name)) {
2633 var->data.index = index;
2634 }
2635 break;
2636 }
2637
2638 /* If not, but it's an array type, look for name[0] */
2639 if (type->is_array()) {
2640 name = ralloc_asprintf(mem_ctx, "%s[0]", name);
2641 type = type->fields.array;
2642 continue;
2643 }
2644
2645 break;
2646 }
2647 }
2648
2649 if (strcmp(var->name, "gl_LastFragData") == 0)
2650 continue;
2651
2652 /* From GL4.5 core spec, section 15.2 (Shader Execution):
2653 *
2654 * "Output binding assignments will cause LinkProgram to fail:
2655 * ...
2656 * If the program has an active output assigned to a location greater
2657 * than or equal to the value of MAX_DUAL_SOURCE_DRAW_BUFFERS and has
2658 * an active output assigned an index greater than or equal to one;"
2659 */
2660 if (target_index == MESA_SHADER_FRAGMENT && var->data.index >= 1 &&
2661 var->data.location - generic_base >=
2662 (int) constants->MaxDualSourceDrawBuffers) {
2663 linker_error(prog,
2664 "output location %d >= GL_MAX_DUAL_SOURCE_DRAW_BUFFERS "
2665 "with index %u for %s\n",
2666 var->data.location - generic_base, var->data.index,
2667 var->name);
2668 return false;
2669 }
2670
2671 const unsigned slots = var->type->count_attribute_slots(target_index == MESA_SHADER_VERTEX);
2672
2673 /* If the variable is not a built-in and has a location statically
2674 * assigned in the shader (presumably via a layout qualifier), make sure
2675 * that it doesn't collide with other assigned locations. Otherwise,
2676 * add it to the list of variables that need linker-assigned locations.
2677 */
2678 if (var->data.location != -1) {
2679 if (var->data.location >= generic_base && var->data.index < 1) {
2680 /* From page 61 of the OpenGL 4.0 spec:
2681 *
2682 * "LinkProgram will fail if the attribute bindings assigned
2683 * by BindAttribLocation do not leave not enough space to
2684 * assign a location for an active matrix attribute or an
2685 * active attribute array, both of which require multiple
2686 * contiguous generic attributes."
2687 *
2688 * I think above text prohibits the aliasing of explicit and
2689 * automatic assignments. But, aliasing is allowed in manual
2690 * assignments of attribute locations. See below comments for
2691 * the details.
2692 *
2693 * From OpenGL 4.0 spec, page 61:
2694 *
2695 * "It is possible for an application to bind more than one
2696 * attribute name to the same location. This is referred to as
2697 * aliasing. This will only work if only one of the aliased
2698 * attributes is active in the executable program, or if no
2699 * path through the shader consumes more than one attribute of
2700 * a set of attributes aliased to the same location. A link
2701 * error can occur if the linker determines that every path
2702 * through the shader consumes multiple aliased attributes,
2703 * but implementations are not required to generate an error
2704 * in this case."
2705 *
2706 * From GLSL 4.30 spec, page 54:
2707 *
2708 * "A program will fail to link if any two non-vertex shader
2709 * input variables are assigned to the same location. For
2710 * vertex shaders, multiple input variables may be assigned
2711 * to the same location using either layout qualifiers or via
2712 * the OpenGL API. However, such aliasing is intended only to
2713 * support vertex shaders where each execution path accesses
2714 * at most one input per each location. Implementations are
2715 * permitted, but not required, to generate link-time errors
2716 * if they detect that every path through the vertex shader
2717 * executable accesses multiple inputs assigned to any single
2718 * location. For all shader types, a program will fail to link
2719 * if explicit location assignments leave the linker unable
2720 * to find space for other variables without explicit
2721 * assignments."
2722 *
2723 * From OpenGL ES 3.0 spec, page 56:
2724 *
2725 * "Binding more than one attribute name to the same location
2726 * is referred to as aliasing, and is not permitted in OpenGL
2727 * ES Shading Language 3.00 vertex shaders. LinkProgram will
2728 * fail when this condition exists. However, aliasing is
2729 * possible in OpenGL ES Shading Language 1.00 vertex shaders.
2730 * This will only work if only one of the aliased attributes
2731 * is active in the executable program, or if no path through
2732 * the shader consumes more than one attribute of a set of
2733 * attributes aliased to the same location. A link error can
2734 * occur if the linker determines that every path through the
2735 * shader consumes multiple aliased attributes, but implemen-
2736 * tations are not required to generate an error in this case."
2737 *
2738 * After looking at above references from OpenGL, OpenGL ES and
2739 * GLSL specifications, we allow aliasing of vertex input variables
2740 * in: OpenGL 2.0 (and above) and OpenGL ES 2.0.
2741 *
2742 * NOTE: This is not required by the spec but its worth mentioning
2743 * here that we're not doing anything to make sure that no path
2744 * through the vertex shader executable accesses multiple inputs
2745 * assigned to any single location.
2746 */
2747
2748 /* Mask representing the contiguous slots that will be used by
2749 * this attribute.
2750 */
2751 const unsigned attr = var->data.location - generic_base;
2752 const unsigned use_mask = (1 << slots) - 1;
2753 const char *const string = (target_index == MESA_SHADER_VERTEX)
2754 ? "vertex shader input" : "fragment shader output";
2755
2756 /* Generate a link error if the requested locations for this
2757 * attribute exceed the maximum allowed attribute location.
2758 */
2759 if (attr + slots > max_index) {
2760 linker_error(prog,
2761 "insufficient contiguous locations "
2762 "available for %s `%s' %d %d %d\n", string,
2763 var->name, used_locations, use_mask, attr);
2764 return false;
2765 }
2766
2767 /* Generate a link error if the set of bits requested for this
2768 * attribute overlaps any previously allocated bits.
2769 */
2770 if ((~(use_mask << attr) & used_locations) != used_locations) {
2771 if (target_index == MESA_SHADER_FRAGMENT && !prog->IsES) {
2772 /* From section 4.4.2 (Output Layout Qualifiers) of the GLSL
2773 * 4.40 spec:
2774 *
2775 * "Additionally, for fragment shader outputs, if two
2776 * variables are placed within the same location, they
2777 * must have the same underlying type (floating-point or
2778 * integer). No component aliasing of output variables or
2779 * members is allowed.
2780 */
2781 for (unsigned i = 0; i < assigned_attr; i++) {
2782 unsigned assigned_slots =
2783 assigned[i]->type->count_attribute_slots(false);
2784 unsigned assig_attr =
2785 assigned[i]->data.location - generic_base;
2786 unsigned assigned_use_mask = (1 << assigned_slots) - 1;
2787
2788 if ((assigned_use_mask << assig_attr) &
2789 (use_mask << attr)) {
2790
2791 const glsl_type *assigned_type =
2792 assigned[i]->type->without_array();
2793 const glsl_type *type = var->type->without_array();
2794 if (assigned_type->base_type != type->base_type) {
2795 linker_error(prog, "types do not match for aliased"
2796 " %ss %s and %s\n", string,
2797 assigned[i]->name, var->name);
2798 return false;
2799 }
2800
2801 unsigned assigned_component_mask =
2802 ((1 << assigned_type->vector_elements) - 1) <<
2803 assigned[i]->data.location_frac;
2804 unsigned component_mask =
2805 ((1 << type->vector_elements) - 1) <<
2806 var->data.location_frac;
2807 if (assigned_component_mask & component_mask) {
2808 linker_error(prog, "overlapping component is "
2809 "assigned to %ss %s and %s "
2810 "(component=%d)\n",
2811 string, assigned[i]->name, var->name,
2812 var->data.location_frac);
2813 return false;
2814 }
2815 }
2816 }
2817 } else if (target_index == MESA_SHADER_FRAGMENT ||
2818 (prog->IsES && prog->data->Version >= 300)) {
2819 linker_error(prog, "overlapping location is assigned "
2820 "to %s `%s' %d %d %d\n", string, var->name,
2821 used_locations, use_mask, attr);
2822 return false;
2823 } else {
2824 linker_warning(prog, "overlapping location is assigned "
2825 "to %s `%s' %d %d %d\n", string, var->name,
2826 used_locations, use_mask, attr);
2827 }
2828 }
2829
2830 used_locations |= (use_mask << attr);
2831
2832 /* From the GL 4.5 core spec, section 11.1.1 (Vertex Attributes):
2833 *
2834 * "A program with more than the value of MAX_VERTEX_ATTRIBS
2835 * active attribute variables may fail to link, unless
2836 * device-dependent optimizations are able to make the program
2837 * fit within available hardware resources. For the purposes
2838 * of this test, attribute variables of the type dvec3, dvec4,
2839 * dmat2x3, dmat2x4, dmat3, dmat3x4, dmat4x3, and dmat4 may
2840 * count as consuming twice as many attributes as equivalent
2841 * single-precision types. While these types use the same number
2842 * of generic attributes as their single-precision equivalents,
2843 * implementations are permitted to consume two single-precision
2844 * vectors of internal storage for each three- or four-component
2845 * double-precision vector."
2846 *
2847 * Mark this attribute slot as taking up twice as much space
2848 * so we can count it properly against limits. According to
2849 * issue (3) of the GL_ARB_vertex_attrib_64bit behavior, this
2850 * is optional behavior, but it seems preferable.
2851 */
2852 if (var->type->without_array()->is_dual_slot())
2853 double_storage_locations |= (use_mask << attr);
2854 }
2855
2856 assigned[assigned_attr] = var;
2857 assigned_attr++;
2858
2859 continue;
2860 }
2861
2862 if (num_attr >= max_index) {
2863 linker_error(prog, "too many %s (max %u)",
2864 target_index == MESA_SHADER_VERTEX ?
2865 "vertex shader inputs" : "fragment shader outputs",
2866 max_index);
2867 return false;
2868 }
2869 to_assign[num_attr].slots = slots;
2870 to_assign[num_attr].var = var;
2871 num_attr++;
2872 }
2873
2874 if (target_index == MESA_SHADER_VERTEX) {
2875 unsigned total_attribs_size =
2876 _mesa_bitcount(used_locations & ((1 << max_index) - 1)) +
2877 _mesa_bitcount(double_storage_locations);
2878 if (total_attribs_size > max_index) {
2879 linker_error(prog,
2880 "attempt to use %d vertex attribute slots only %d available ",
2881 total_attribs_size, max_index);
2882 return false;
2883 }
2884 }
2885
2886 /* If all of the attributes were assigned locations by the application (or
2887 * are built-in attributes with fixed locations), return early. This should
2888 * be the common case.
2889 */
2890 if (num_attr == 0)
2891 return true;
2892
2893 qsort(to_assign, num_attr, sizeof(to_assign[0]), temp_attr::compare);
2894
2895 if (target_index == MESA_SHADER_VERTEX) {
2896 /* VERT_ATTRIB_GENERIC0 is a pseudo-alias for VERT_ATTRIB_POS. It can
2897 * only be explicitly assigned by via glBindAttribLocation. Mark it as
2898 * reserved to prevent it from being automatically allocated below.
2899 */
2900 find_deref_visitor find("gl_Vertex");
2901 find.run(sh->ir);
2902 if (find.variable_found())
2903 used_locations |= (1 << 0);
2904 }
2905
2906 for (unsigned i = 0; i < num_attr; i++) {
2907 /* Mask representing the contiguous slots that will be used by this
2908 * attribute.
2909 */
2910 const unsigned use_mask = (1 << to_assign[i].slots) - 1;
2911
2912 int location = find_available_slots(used_locations, to_assign[i].slots);
2913
2914 if (location < 0) {
2915 const char *const string = (target_index == MESA_SHADER_VERTEX)
2916 ? "vertex shader input" : "fragment shader output";
2917
2918 linker_error(prog,
2919 "insufficient contiguous locations "
2920 "available for %s `%s'\n",
2921 string, to_assign[i].var->name);
2922 return false;
2923 }
2924
2925 to_assign[i].var->data.location = generic_base + location;
2926 to_assign[i].var->data.is_unmatched_generic_inout = 0;
2927 used_locations |= (use_mask << location);
2928
2929 if (to_assign[i].var->type->without_array()->is_dual_slot())
2930 double_storage_locations |= (use_mask << location);
2931 }
2932
2933 /* Now that we have all the locations, from the GL 4.5 core spec, section
2934 * 11.1.1 (Vertex Attributes), dvec3, dvec4, dmat2x3, dmat2x4, dmat3,
2935 * dmat3x4, dmat4x3, and dmat4 count as consuming twice as many attributes
2936 * as equivalent single-precision types.
2937 */
2938 if (target_index == MESA_SHADER_VERTEX) {
2939 unsigned total_attribs_size =
2940 _mesa_bitcount(used_locations & ((1 << max_index) - 1)) +
2941 _mesa_bitcount(double_storage_locations);
2942 if (total_attribs_size > max_index) {
2943 linker_error(prog,
2944 "attempt to use %d vertex attribute slots only %d available ",
2945 total_attribs_size, max_index);
2946 return false;
2947 }
2948 }
2949
2950 return true;
2951 }
2952
2953 /**
2954 * Match explicit locations of outputs to inputs and deactivate the
2955 * unmatch flag if found so we don't optimise them away.
2956 */
2957 static void
2958 match_explicit_outputs_to_inputs(gl_linked_shader *producer,
2959 gl_linked_shader *consumer)
2960 {
2961 glsl_symbol_table parameters;
2962 ir_variable *explicit_locations[MAX_VARYINGS_INCL_PATCH][4] =
2963 { {NULL, NULL} };
2964
2965 /* Find all shader outputs in the "producer" stage.
2966 */
2967 foreach_in_list(ir_instruction, node, producer->ir) {
2968 ir_variable *const var = node->as_variable();
2969
2970 if ((var == NULL) || (var->data.mode != ir_var_shader_out))
2971 continue;
2972
2973 if (var->data.explicit_location &&
2974 var->data.location >= VARYING_SLOT_VAR0) {
2975 const unsigned idx = var->data.location - VARYING_SLOT_VAR0;
2976 if (explicit_locations[idx][var->data.location_frac] == NULL)
2977 explicit_locations[idx][var->data.location_frac] = var;
2978 }
2979 }
2980
2981 /* Match inputs to outputs */
2982 foreach_in_list(ir_instruction, node, consumer->ir) {
2983 ir_variable *const input = node->as_variable();
2984
2985 if ((input == NULL) || (input->data.mode != ir_var_shader_in))
2986 continue;
2987
2988 ir_variable *output = NULL;
2989 if (input->data.explicit_location
2990 && input->data.location >= VARYING_SLOT_VAR0) {
2991 output = explicit_locations[input->data.location - VARYING_SLOT_VAR0]
2992 [input->data.location_frac];
2993
2994 if (output != NULL){
2995 input->data.is_unmatched_generic_inout = 0;
2996 output->data.is_unmatched_generic_inout = 0;
2997 }
2998 }
2999 }
3000 }
3001
3002 /**
3003 * Store the gl_FragDepth layout in the gl_shader_program struct.
3004 */
3005 static void
3006 store_fragdepth_layout(struct gl_shader_program *prog)
3007 {
3008 if (prog->_LinkedShaders[MESA_SHADER_FRAGMENT] == NULL) {
3009 return;
3010 }
3011
3012 struct exec_list *ir = prog->_LinkedShaders[MESA_SHADER_FRAGMENT]->ir;
3013
3014 /* We don't look up the gl_FragDepth symbol directly because if
3015 * gl_FragDepth is not used in the shader, it's removed from the IR.
3016 * However, the symbol won't be removed from the symbol table.
3017 *
3018 * We're only interested in the cases where the variable is NOT removed
3019 * from the IR.
3020 */
3021 foreach_in_list(ir_instruction, node, ir) {
3022 ir_variable *const var = node->as_variable();
3023
3024 if (var == NULL || var->data.mode != ir_var_shader_out) {
3025 continue;
3026 }
3027
3028 if (strcmp(var->name, "gl_FragDepth") == 0) {
3029 switch (var->data.depth_layout) {
3030 case ir_depth_layout_none:
3031 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_NONE;
3032 return;
3033 case ir_depth_layout_any:
3034 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_ANY;
3035 return;
3036 case ir_depth_layout_greater:
3037 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_GREATER;
3038 return;
3039 case ir_depth_layout_less:
3040 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_LESS;
3041 return;
3042 case ir_depth_layout_unchanged:
3043 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_UNCHANGED;
3044 return;
3045 default:
3046 assert(0);
3047 return;
3048 }
3049 }
3050 }
3051 }
3052
3053 /**
3054 * Validate the resources used by a program versus the implementation limits
3055 */
3056 static void
3057 check_resources(struct gl_context *ctx, struct gl_shader_program *prog)
3058 {
3059 unsigned total_uniform_blocks = 0;
3060 unsigned total_shader_storage_blocks = 0;
3061
3062 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3063 struct gl_linked_shader *sh = prog->_LinkedShaders[i];
3064
3065 if (sh == NULL)
3066 continue;
3067
3068 if (sh->Program->info.num_textures >
3069 ctx->Const.Program[i].MaxTextureImageUnits) {
3070 linker_error(prog, "Too many %s shader texture samplers\n",
3071 _mesa_shader_stage_to_string(i));
3072 }
3073
3074 if (sh->num_uniform_components >
3075 ctx->Const.Program[i].MaxUniformComponents) {
3076 if (ctx->Const.GLSLSkipStrictMaxUniformLimitCheck) {
3077 linker_warning(prog, "Too many %s shader default uniform block "
3078 "components, but the driver will try to optimize "
3079 "them out; this is non-portable out-of-spec "
3080 "behavior\n",
3081 _mesa_shader_stage_to_string(i));
3082 } else {
3083 linker_error(prog, "Too many %s shader default uniform block "
3084 "components\n",
3085 _mesa_shader_stage_to_string(i));
3086 }
3087 }
3088
3089 if (sh->num_combined_uniform_components >
3090 ctx->Const.Program[i].MaxCombinedUniformComponents) {
3091 if (ctx->Const.GLSLSkipStrictMaxUniformLimitCheck) {
3092 linker_warning(prog, "Too many %s shader uniform components, "
3093 "but the driver will try to optimize them out; "
3094 "this is non-portable out-of-spec behavior\n",
3095 _mesa_shader_stage_to_string(i));
3096 } else {
3097 linker_error(prog, "Too many %s shader uniform components\n",
3098 _mesa_shader_stage_to_string(i));
3099 }
3100 }
3101
3102 total_shader_storage_blocks += sh->Program->info.num_ssbos;
3103 total_uniform_blocks += sh->Program->info.num_ubos;
3104
3105 const unsigned max_uniform_blocks =
3106 ctx->Const.Program[i].MaxUniformBlocks;
3107 if (max_uniform_blocks < sh->Program->info.num_ubos) {
3108 linker_error(prog, "Too many %s uniform blocks (%d/%d)\n",
3109 _mesa_shader_stage_to_string(i),
3110 sh->Program->info.num_ubos, max_uniform_blocks);
3111 }
3112
3113 const unsigned max_shader_storage_blocks =
3114 ctx->Const.Program[i].MaxShaderStorageBlocks;
3115 if (max_shader_storage_blocks < sh->Program->info.num_ssbos) {
3116 linker_error(prog, "Too many %s shader storage blocks (%d/%d)\n",
3117 _mesa_shader_stage_to_string(i),
3118 sh->Program->info.num_ssbos, max_shader_storage_blocks);
3119 }
3120 }
3121
3122 if (total_uniform_blocks > ctx->Const.MaxCombinedUniformBlocks) {
3123 linker_error(prog, "Too many combined uniform blocks (%d/%d)\n",
3124 total_uniform_blocks, ctx->Const.MaxCombinedUniformBlocks);
3125 }
3126
3127 if (total_shader_storage_blocks > ctx->Const.MaxCombinedShaderStorageBlocks) {
3128 linker_error(prog, "Too many combined shader storage blocks (%d/%d)\n",
3129 total_shader_storage_blocks,
3130 ctx->Const.MaxCombinedShaderStorageBlocks);
3131 }
3132
3133 for (unsigned i = 0; i < prog->data->NumUniformBlocks; i++) {
3134 if (prog->data->UniformBlocks[i].UniformBufferSize >
3135 ctx->Const.MaxUniformBlockSize) {
3136 linker_error(prog, "Uniform block %s too big (%d/%d)\n",
3137 prog->data->UniformBlocks[i].Name,
3138 prog->data->UniformBlocks[i].UniformBufferSize,
3139 ctx->Const.MaxUniformBlockSize);
3140 }
3141 }
3142
3143 for (unsigned i = 0; i < prog->data->NumShaderStorageBlocks; i++) {
3144 if (prog->data->ShaderStorageBlocks[i].UniformBufferSize >
3145 ctx->Const.MaxShaderStorageBlockSize) {
3146 linker_error(prog, "Shader storage block %s too big (%d/%d)\n",
3147 prog->data->ShaderStorageBlocks[i].Name,
3148 prog->data->ShaderStorageBlocks[i].UniformBufferSize,
3149 ctx->Const.MaxShaderStorageBlockSize);
3150 }
3151 }
3152 }
3153
3154 static void
3155 link_calculate_subroutine_compat(struct gl_shader_program *prog)
3156 {
3157 unsigned mask = prog->data->linked_stages;
3158 while (mask) {
3159 const int i = u_bit_scan(&mask);
3160 struct gl_program *p = prog->_LinkedShaders[i]->Program;
3161
3162 for (unsigned j = 0; j < p->sh.NumSubroutineUniformRemapTable; j++) {
3163 if (p->sh.SubroutineUniformRemapTable[j] == INACTIVE_UNIFORM_EXPLICIT_LOCATION)
3164 continue;
3165
3166 struct gl_uniform_storage *uni = p->sh.SubroutineUniformRemapTable[j];
3167
3168 if (!uni)
3169 continue;
3170
3171 int count = 0;
3172 if (p->sh.NumSubroutineFunctions == 0) {
3173 linker_error(prog, "subroutine uniform %s defined but no valid functions found\n", uni->type->name);
3174 continue;
3175 }
3176 for (unsigned f = 0; f < p->sh.NumSubroutineFunctions; f++) {
3177 struct gl_subroutine_function *fn = &p->sh.SubroutineFunctions[f];
3178 for (int k = 0; k < fn->num_compat_types; k++) {
3179 if (fn->types[k] == uni->type) {
3180 count++;
3181 break;
3182 }
3183 }
3184 }
3185 uni->num_compatible_subroutines = count;
3186 }
3187 }
3188 }
3189
3190 static void
3191 check_subroutine_resources(struct gl_shader_program *prog)
3192 {
3193 unsigned mask = prog->data->linked_stages;
3194 while (mask) {
3195 const int i = u_bit_scan(&mask);
3196 struct gl_program *p = prog->_LinkedShaders[i]->Program;
3197
3198 if (p->sh.NumSubroutineUniformRemapTable > MAX_SUBROUTINE_UNIFORM_LOCATIONS) {
3199 linker_error(prog, "Too many %s shader subroutine uniforms\n",
3200 _mesa_shader_stage_to_string(i));
3201 }
3202 }
3203 }
3204 /**
3205 * Validate shader image resources.
3206 */
3207 static void
3208 check_image_resources(struct gl_context *ctx, struct gl_shader_program *prog)
3209 {
3210 unsigned total_image_units = 0;
3211 unsigned fragment_outputs = 0;
3212 unsigned total_shader_storage_blocks = 0;
3213
3214 if (!ctx->Extensions.ARB_shader_image_load_store)
3215 return;
3216
3217 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3218 struct gl_linked_shader *sh = prog->_LinkedShaders[i];
3219
3220 if (sh) {
3221 if (sh->Program->info.num_images > ctx->Const.Program[i].MaxImageUniforms)
3222 linker_error(prog, "Too many %s shader image uniforms (%u > %u)\n",
3223 _mesa_shader_stage_to_string(i),
3224 sh->Program->info.num_images,
3225 ctx->Const.Program[i].MaxImageUniforms);
3226
3227 total_image_units += sh->Program->info.num_images;
3228 total_shader_storage_blocks += sh->Program->info.num_ssbos;
3229
3230 if (i == MESA_SHADER_FRAGMENT) {
3231 foreach_in_list(ir_instruction, node, sh->ir) {
3232 ir_variable *var = node->as_variable();
3233 if (var && var->data.mode == ir_var_shader_out)
3234 /* since there are no double fs outputs - pass false */
3235 fragment_outputs += var->type->count_attribute_slots(false);
3236 }
3237 }
3238 }
3239 }
3240
3241 if (total_image_units > ctx->Const.MaxCombinedImageUniforms)
3242 linker_error(prog, "Too many combined image uniforms\n");
3243
3244 if (total_image_units + fragment_outputs + total_shader_storage_blocks >
3245 ctx->Const.MaxCombinedShaderOutputResources)
3246 linker_error(prog, "Too many combined image uniforms, shader storage "
3247 " buffers and fragment outputs\n");
3248 }
3249
3250
3251 /**
3252 * Initializes explicit location slots to INACTIVE_UNIFORM_EXPLICIT_LOCATION
3253 * for a variable, checks for overlaps between other uniforms using explicit
3254 * locations.
3255 */
3256 static int
3257 reserve_explicit_locations(struct gl_shader_program *prog,
3258 string_to_uint_map *map, ir_variable *var)
3259 {
3260 unsigned slots = var->type->uniform_locations();
3261 unsigned max_loc = var->data.location + slots - 1;
3262 unsigned return_value = slots;
3263
3264 /* Resize remap table if locations do not fit in the current one. */
3265 if (max_loc + 1 > prog->NumUniformRemapTable) {
3266 prog->UniformRemapTable =
3267 reralloc(prog, prog->UniformRemapTable,
3268 gl_uniform_storage *,
3269 max_loc + 1);
3270
3271 if (!prog->UniformRemapTable) {
3272 linker_error(prog, "Out of memory during linking.\n");
3273 return -1;
3274 }
3275
3276 /* Initialize allocated space. */
3277 for (unsigned i = prog->NumUniformRemapTable; i < max_loc + 1; i++)
3278 prog->UniformRemapTable[i] = NULL;
3279
3280 prog->NumUniformRemapTable = max_loc + 1;
3281 }
3282
3283 for (unsigned i = 0; i < slots; i++) {
3284 unsigned loc = var->data.location + i;
3285
3286 /* Check if location is already used. */
3287 if (prog->UniformRemapTable[loc] == INACTIVE_UNIFORM_EXPLICIT_LOCATION) {
3288
3289 /* Possibly same uniform from a different stage, this is ok. */
3290 unsigned hash_loc;
3291 if (map->get(hash_loc, var->name) && hash_loc == loc - i) {
3292 return_value = 0;
3293 continue;
3294 }
3295
3296 /* ARB_explicit_uniform_location specification states:
3297 *
3298 * "No two default-block uniform variables in the program can have
3299 * the same location, even if they are unused, otherwise a compiler
3300 * or linker error will be generated."
3301 */
3302 linker_error(prog,
3303 "location qualifier for uniform %s overlaps "
3304 "previously used location\n",
3305 var->name);
3306 return -1;
3307 }
3308
3309 /* Initialize location as inactive before optimization
3310 * rounds and location assignment.
3311 */
3312 prog->UniformRemapTable[loc] = INACTIVE_UNIFORM_EXPLICIT_LOCATION;
3313 }
3314
3315 /* Note, base location used for arrays. */
3316 map->put(var->data.location, var->name);
3317
3318 return return_value;
3319 }
3320
3321 static bool
3322 reserve_subroutine_explicit_locations(struct gl_shader_program *prog,
3323 struct gl_program *p,
3324 ir_variable *var)
3325 {
3326 unsigned slots = var->type->uniform_locations();
3327 unsigned max_loc = var->data.location + slots - 1;
3328
3329 /* Resize remap table if locations do not fit in the current one. */
3330 if (max_loc + 1 > p->sh.NumSubroutineUniformRemapTable) {
3331 p->sh.SubroutineUniformRemapTable =
3332 reralloc(p, p->sh.SubroutineUniformRemapTable,
3333 gl_uniform_storage *,
3334 max_loc + 1);
3335
3336 if (!p->sh.SubroutineUniformRemapTable) {
3337 linker_error(prog, "Out of memory during linking.\n");
3338 return false;
3339 }
3340
3341 /* Initialize allocated space. */
3342 for (unsigned i = p->sh.NumSubroutineUniformRemapTable; i < max_loc + 1; i++)
3343 p->sh.SubroutineUniformRemapTable[i] = NULL;
3344
3345 p->sh.NumSubroutineUniformRemapTable = max_loc + 1;
3346 }
3347
3348 for (unsigned i = 0; i < slots; i++) {
3349 unsigned loc = var->data.location + i;
3350
3351 /* Check if location is already used. */
3352 if (p->sh.SubroutineUniformRemapTable[loc] == INACTIVE_UNIFORM_EXPLICIT_LOCATION) {
3353
3354 /* ARB_explicit_uniform_location specification states:
3355 * "No two subroutine uniform variables can have the same location
3356 * in the same shader stage, otherwise a compiler or linker error
3357 * will be generated."
3358 */
3359 linker_error(prog,
3360 "location qualifier for uniform %s overlaps "
3361 "previously used location\n",
3362 var->name);
3363 return false;
3364 }
3365
3366 /* Initialize location as inactive before optimization
3367 * rounds and location assignment.
3368 */
3369 p->sh.SubroutineUniformRemapTable[loc] = INACTIVE_UNIFORM_EXPLICIT_LOCATION;
3370 }
3371
3372 return true;
3373 }
3374 /**
3375 * Check and reserve all explicit uniform locations, called before
3376 * any optimizations happen to handle also inactive uniforms and
3377 * inactive array elements that may get trimmed away.
3378 */
3379 static void
3380 check_explicit_uniform_locations(struct gl_context *ctx,
3381 struct gl_shader_program *prog)
3382 {
3383 prog->NumExplicitUniformLocations = 0;
3384
3385 if (!ctx->Extensions.ARB_explicit_uniform_location)
3386 return;
3387
3388 /* This map is used to detect if overlapping explicit locations
3389 * occur with the same uniform (from different stage) or a different one.
3390 */
3391 string_to_uint_map *uniform_map = new string_to_uint_map;
3392
3393 if (!uniform_map) {
3394 linker_error(prog, "Out of memory during linking.\n");
3395 return;
3396 }
3397
3398 unsigned entries_total = 0;
3399 unsigned mask = prog->data->linked_stages;
3400 while (mask) {
3401 const int i = u_bit_scan(&mask);
3402 struct gl_program *p = prog->_LinkedShaders[i]->Program;
3403
3404 foreach_in_list(ir_instruction, node, prog->_LinkedShaders[i]->ir) {
3405 ir_variable *var = node->as_variable();
3406 if (!var || var->data.mode != ir_var_uniform)
3407 continue;
3408
3409 if (var->data.explicit_location) {
3410 bool ret = false;
3411 if (var->type->without_array()->is_subroutine())
3412 ret = reserve_subroutine_explicit_locations(prog, p, var);
3413 else {
3414 int slots = reserve_explicit_locations(prog, uniform_map,
3415 var);
3416 if (slots != -1) {
3417 ret = true;
3418 entries_total += slots;
3419 }
3420 }
3421 if (!ret) {
3422 delete uniform_map;
3423 return;
3424 }
3425 }
3426 }
3427 }
3428
3429 struct empty_uniform_block *current_block = NULL;
3430
3431 for (unsigned i = 0; i < prog->NumUniformRemapTable; i++) {
3432 /* We found empty space in UniformRemapTable. */
3433 if (prog->UniformRemapTable[i] == NULL) {
3434 /* We've found the beginning of a new continous block of empty slots */
3435 if (!current_block || current_block->start + current_block->slots != i) {
3436 current_block = rzalloc(prog, struct empty_uniform_block);
3437 current_block->start = i;
3438 exec_list_push_tail(&prog->EmptyUniformLocations,
3439 &current_block->link);
3440 }
3441
3442 /* The current block continues, so we simply increment its slots */
3443 current_block->slots++;
3444 }
3445 }
3446
3447 delete uniform_map;
3448 prog->NumExplicitUniformLocations = entries_total;
3449 }
3450
3451 static bool
3452 should_add_buffer_variable(struct gl_shader_program *shProg,
3453 GLenum type, const char *name)
3454 {
3455 bool found_interface = false;
3456 unsigned block_name_len = 0;
3457 const char *block_name_dot = strchr(name, '.');
3458
3459 /* These rules only apply to buffer variables. So we return
3460 * true for the rest of types.
3461 */
3462 if (type != GL_BUFFER_VARIABLE)
3463 return true;
3464
3465 for (unsigned i = 0; i < shProg->data->NumShaderStorageBlocks; i++) {
3466 const char *block_name = shProg->data->ShaderStorageBlocks[i].Name;
3467 block_name_len = strlen(block_name);
3468
3469 const char *block_square_bracket = strchr(block_name, '[');
3470 if (block_square_bracket) {
3471 /* The block is part of an array of named interfaces,
3472 * for the name comparison we ignore the "[x]" part.
3473 */
3474 block_name_len -= strlen(block_square_bracket);
3475 }
3476
3477 if (block_name_dot) {
3478 /* Check if the variable name starts with the interface
3479 * name. The interface name (if present) should have the
3480 * length than the interface block name we are comparing to.
3481 */
3482 unsigned len = strlen(name) - strlen(block_name_dot);
3483 if (len != block_name_len)
3484 continue;
3485 }
3486
3487 if (strncmp(block_name, name, block_name_len) == 0) {
3488 found_interface = true;
3489 break;
3490 }
3491 }
3492
3493 /* We remove the interface name from the buffer variable name,
3494 * including the dot that follows it.
3495 */
3496 if (found_interface)
3497 name = name + block_name_len + 1;
3498
3499 /* The ARB_program_interface_query spec says:
3500 *
3501 * "For an active shader storage block member declared as an array, an
3502 * entry will be generated only for the first array element, regardless
3503 * of its type. For arrays of aggregate types, the enumeration rules
3504 * are applied recursively for the single enumerated array element."
3505 */
3506 const char *struct_first_dot = strchr(name, '.');
3507 const char *first_square_bracket = strchr(name, '[');
3508
3509 /* The buffer variable is on top level and it is not an array */
3510 if (!first_square_bracket) {
3511 return true;
3512 /* The shader storage block member is a struct, then generate the entry */
3513 } else if (struct_first_dot && struct_first_dot < first_square_bracket) {
3514 return true;
3515 } else {
3516 /* Shader storage block member is an array, only generate an entry for the
3517 * first array element.
3518 */
3519 if (strncmp(first_square_bracket, "[0]", 3) == 0)
3520 return true;
3521 }
3522
3523 return false;
3524 }
3525
3526 static bool
3527 add_program_resource(struct gl_shader_program *prog,
3528 struct set *resource_set,
3529 GLenum type, const void *data, uint8_t stages)
3530 {
3531 assert(data);
3532
3533 /* If resource already exists, do not add it again. */
3534 if (_mesa_set_search(resource_set, data))
3535 return true;
3536
3537 prog->data->ProgramResourceList =
3538 reralloc(prog,
3539 prog->data->ProgramResourceList,
3540 gl_program_resource,
3541 prog->data->NumProgramResourceList + 1);
3542
3543 if (!prog->data->ProgramResourceList) {
3544 linker_error(prog, "Out of memory during linking.\n");
3545 return false;
3546 }
3547
3548 struct gl_program_resource *res =
3549 &prog->data->ProgramResourceList[prog->data->NumProgramResourceList];
3550
3551 res->Type = type;
3552 res->Data = data;
3553 res->StageReferences = stages;
3554
3555 prog->data->NumProgramResourceList++;
3556
3557 _mesa_set_add(resource_set, data);
3558
3559 return true;
3560 }
3561
3562 /* Function checks if a variable var is a packed varying and
3563 * if given name is part of packed varying's list.
3564 *
3565 * If a variable is a packed varying, it has a name like
3566 * 'packed:a,b,c' where a, b and c are separate variables.
3567 */
3568 static bool
3569 included_in_packed_varying(ir_variable *var, const char *name)
3570 {
3571 if (strncmp(var->name, "packed:", 7) != 0)
3572 return false;
3573
3574 char *list = strdup(var->name + 7);
3575 assert(list);
3576
3577 bool found = false;
3578 char *saveptr;
3579 char *token = strtok_r(list, ",", &saveptr);
3580 while (token) {
3581 if (strcmp(token, name) == 0) {
3582 found = true;
3583 break;
3584 }
3585 token = strtok_r(NULL, ",", &saveptr);
3586 }
3587 free(list);
3588 return found;
3589 }
3590
3591 /**
3592 * Function builds a stage reference bitmask from variable name.
3593 */
3594 static uint8_t
3595 build_stageref(struct gl_shader_program *shProg, const char *name,
3596 unsigned mode)
3597 {
3598 uint8_t stages = 0;
3599
3600 /* Note, that we assume MAX 8 stages, if there will be more stages, type
3601 * used for reference mask in gl_program_resource will need to be changed.
3602 */
3603 assert(MESA_SHADER_STAGES < 8);
3604
3605 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3606 struct gl_linked_shader *sh = shProg->_LinkedShaders[i];
3607 if (!sh)
3608 continue;
3609
3610 /* Shader symbol table may contain variables that have
3611 * been optimized away. Search IR for the variable instead.
3612 */
3613 foreach_in_list(ir_instruction, node, sh->ir) {
3614 ir_variable *var = node->as_variable();
3615 if (var) {
3616 unsigned baselen = strlen(var->name);
3617
3618 if (included_in_packed_varying(var, name)) {
3619 stages |= (1 << i);
3620 break;
3621 }
3622
3623 /* Type needs to match if specified, otherwise we might
3624 * pick a variable with same name but different interface.
3625 */
3626 if (var->data.mode != mode)
3627 continue;
3628
3629 if (strncmp(var->name, name, baselen) == 0) {
3630 /* Check for exact name matches but also check for arrays and
3631 * structs.
3632 */
3633 if (name[baselen] == '\0' ||
3634 name[baselen] == '[' ||
3635 name[baselen] == '.') {
3636 stages |= (1 << i);
3637 break;
3638 }
3639 }
3640 }
3641 }
3642 }
3643 return stages;
3644 }
3645
3646 /**
3647 * Create gl_shader_variable from ir_variable class.
3648 */
3649 static gl_shader_variable *
3650 create_shader_variable(struct gl_shader_program *shProg,
3651 const ir_variable *in,
3652 const char *name, const glsl_type *type,
3653 const glsl_type *interface_type,
3654 bool use_implicit_location, int location,
3655 const glsl_type *outermost_struct_type)
3656 {
3657 gl_shader_variable *out = ralloc(shProg, struct gl_shader_variable);
3658 if (!out)
3659 return NULL;
3660
3661 /* Since gl_VertexID may be lowered to gl_VertexIDMESA, but applications
3662 * expect to see gl_VertexID in the program resource list. Pretend.
3663 */
3664 if (in->data.mode == ir_var_system_value &&
3665 in->data.location == SYSTEM_VALUE_VERTEX_ID_ZERO_BASE) {
3666 out->name = ralloc_strdup(shProg, "gl_VertexID");
3667 } else if ((in->data.mode == ir_var_shader_out &&
3668 in->data.location == VARYING_SLOT_TESS_LEVEL_OUTER) ||
3669 (in->data.mode == ir_var_system_value &&
3670 in->data.location == SYSTEM_VALUE_TESS_LEVEL_OUTER)) {
3671 out->name = ralloc_strdup(shProg, "gl_TessLevelOuter");
3672 type = glsl_type::get_array_instance(glsl_type::float_type, 4);
3673 } else if ((in->data.mode == ir_var_shader_out &&
3674 in->data.location == VARYING_SLOT_TESS_LEVEL_INNER) ||
3675 (in->data.mode == ir_var_system_value &&
3676 in->data.location == SYSTEM_VALUE_TESS_LEVEL_INNER)) {
3677 out->name = ralloc_strdup(shProg, "gl_TessLevelInner");
3678 type = glsl_type::get_array_instance(glsl_type::float_type, 2);
3679 } else {
3680 out->name = ralloc_strdup(shProg, name);
3681 }
3682
3683 if (!out->name)
3684 return NULL;
3685
3686 /* The ARB_program_interface_query spec says:
3687 *
3688 * "Not all active variables are assigned valid locations; the
3689 * following variables will have an effective location of -1:
3690 *
3691 * * uniforms declared as atomic counters;
3692 *
3693 * * members of a uniform block;
3694 *
3695 * * built-in inputs, outputs, and uniforms (starting with "gl_"); and
3696 *
3697 * * inputs or outputs not declared with a "location" layout
3698 * qualifier, except for vertex shader inputs and fragment shader
3699 * outputs."
3700 */
3701 if (in->type->base_type == GLSL_TYPE_ATOMIC_UINT ||
3702 is_gl_identifier(in->name) ||
3703 !(in->data.explicit_location || use_implicit_location)) {
3704 out->location = -1;
3705 } else {
3706 out->location = location;
3707 }
3708
3709 out->type = type;
3710 out->outermost_struct_type = outermost_struct_type;
3711 out->interface_type = interface_type;
3712 out->component = in->data.location_frac;
3713 out->index = in->data.index;
3714 out->patch = in->data.patch;
3715 out->mode = in->data.mode;
3716 out->interpolation = in->data.interpolation;
3717 out->explicit_location = in->data.explicit_location;
3718 out->precision = in->data.precision;
3719
3720 return out;
3721 }
3722
3723 static bool
3724 add_shader_variable(const struct gl_context *ctx,
3725 struct gl_shader_program *shProg,
3726 struct set *resource_set,
3727 unsigned stage_mask,
3728 GLenum programInterface, ir_variable *var,
3729 const char *name, const glsl_type *type,
3730 bool use_implicit_location, int location,
3731 const glsl_type *outermost_struct_type = NULL)
3732 {
3733 const glsl_type *interface_type = var->get_interface_type();
3734
3735 if (outermost_struct_type == NULL) {
3736 if (var->data.from_named_ifc_block) {
3737 const char *interface_name = interface_type->name;
3738
3739 if (interface_type->is_array()) {
3740 /* Issue #16 of the ARB_program_interface_query spec says:
3741 *
3742 * "* If a variable is a member of an interface block without an
3743 * instance name, it is enumerated using just the variable name.
3744 *
3745 * * If a variable is a member of an interface block with an
3746 * instance name, it is enumerated as "BlockName.Member", where
3747 * "BlockName" is the name of the interface block (not the
3748 * instance name) and "Member" is the name of the variable."
3749 *
3750 * In particular, it indicates that it should be "BlockName",
3751 * not "BlockName[array length]". The conformance suite and
3752 * dEQP both require this behavior.
3753 *
3754 * Here, we unwrap the extra array level added by named interface
3755 * block array lowering so we have the correct variable type. We
3756 * also unwrap the interface type when constructing the name.
3757 *
3758 * We leave interface_type the same so that ES 3.x SSO pipeline
3759 * validation can enforce the rules requiring array length to
3760 * match on interface blocks.
3761 */
3762 type = type->fields.array;
3763
3764 interface_name = interface_type->fields.array->name;
3765 }
3766
3767 name = ralloc_asprintf(shProg, "%s.%s", interface_name, name);
3768 }
3769 }
3770
3771 switch (type->base_type) {
3772 case GLSL_TYPE_STRUCT: {
3773 /* The ARB_program_interface_query spec says:
3774 *
3775 * "For an active variable declared as a structure, a separate entry
3776 * will be generated for each active structure member. The name of
3777 * each entry is formed by concatenating the name of the structure,
3778 * the "." character, and the name of the structure member. If a
3779 * structure member to enumerate is itself a structure or array,
3780 * these enumeration rules are applied recursively."
3781 */
3782 if (outermost_struct_type == NULL)
3783 outermost_struct_type = type;
3784
3785 unsigned field_location = location;
3786 for (unsigned i = 0; i < type->length; i++) {
3787 const struct glsl_struct_field *field = &type->fields.structure[i];
3788 char *field_name = ralloc_asprintf(shProg, "%s.%s", name, field->name);
3789 if (!add_shader_variable(ctx, shProg, resource_set,
3790 stage_mask, programInterface,
3791 var, field_name, field->type,
3792 use_implicit_location, field_location,
3793 outermost_struct_type))
3794 return false;
3795
3796 field_location += field->type->count_attribute_slots(false);
3797 }
3798 return true;
3799 }
3800
3801 default: {
3802 /* The ARB_program_interface_query spec says:
3803 *
3804 * "For an active variable declared as a single instance of a basic
3805 * type, a single entry will be generated, using the variable name
3806 * from the shader source."
3807 */
3808 gl_shader_variable *sha_v =
3809 create_shader_variable(shProg, var, name, type, interface_type,
3810 use_implicit_location, location,
3811 outermost_struct_type);
3812 if (!sha_v)
3813 return false;
3814
3815 return add_program_resource(shProg, resource_set,
3816 programInterface, sha_v, stage_mask);
3817 }
3818 }
3819 }
3820
3821 static bool
3822 add_interface_variables(const struct gl_context *ctx,
3823 struct gl_shader_program *shProg,
3824 struct set *resource_set,
3825 unsigned stage, GLenum programInterface)
3826 {
3827 exec_list *ir = shProg->_LinkedShaders[stage]->ir;
3828
3829 foreach_in_list(ir_instruction, node, ir) {
3830 ir_variable *var = node->as_variable();
3831
3832 if (!var || var->data.how_declared == ir_var_hidden)
3833 continue;
3834
3835 int loc_bias;
3836
3837 switch (var->data.mode) {
3838 case ir_var_system_value:
3839 case ir_var_shader_in:
3840 if (programInterface != GL_PROGRAM_INPUT)
3841 continue;
3842 loc_bias = (stage == MESA_SHADER_VERTEX) ? int(VERT_ATTRIB_GENERIC0)
3843 : int(VARYING_SLOT_VAR0);
3844 break;
3845 case ir_var_shader_out:
3846 if (programInterface != GL_PROGRAM_OUTPUT)
3847 continue;
3848 loc_bias = (stage == MESA_SHADER_FRAGMENT) ? int(FRAG_RESULT_DATA0)
3849 : int(VARYING_SLOT_VAR0);
3850 break;
3851 default:
3852 continue;
3853 };
3854
3855 if (var->data.patch)
3856 loc_bias = int(VARYING_SLOT_PATCH0);
3857
3858 /* Skip packed varyings, packed varyings are handled separately
3859 * by add_packed_varyings.
3860 */
3861 if (strncmp(var->name, "packed:", 7) == 0)
3862 continue;
3863
3864 /* Skip fragdata arrays, these are handled separately
3865 * by add_fragdata_arrays.
3866 */
3867 if (strncmp(var->name, "gl_out_FragData", 15) == 0)
3868 continue;
3869
3870 const bool vs_input_or_fs_output =
3871 (stage == MESA_SHADER_VERTEX && var->data.mode == ir_var_shader_in) ||
3872 (stage == MESA_SHADER_FRAGMENT && var->data.mode == ir_var_shader_out);
3873
3874 if (!add_shader_variable(ctx, shProg, resource_set,
3875 1 << stage, programInterface,
3876 var, var->name, var->type, vs_input_or_fs_output,
3877 var->data.location - loc_bias))
3878 return false;
3879 }
3880 return true;
3881 }
3882
3883 static bool
3884 add_packed_varyings(const struct gl_context *ctx,
3885 struct gl_shader_program *shProg,
3886 struct set *resource_set,
3887 int stage, GLenum type)
3888 {
3889 struct gl_linked_shader *sh = shProg->_LinkedShaders[stage];
3890 GLenum iface;
3891
3892 if (!sh || !sh->packed_varyings)
3893 return true;
3894
3895 foreach_in_list(ir_instruction, node, sh->packed_varyings) {
3896 ir_variable *var = node->as_variable();
3897 if (var) {
3898 switch (var->data.mode) {
3899 case ir_var_shader_in:
3900 iface = GL_PROGRAM_INPUT;
3901 break;
3902 case ir_var_shader_out:
3903 iface = GL_PROGRAM_OUTPUT;
3904 break;
3905 default:
3906 unreachable("unexpected type");
3907 }
3908
3909 if (type == iface) {
3910 const int stage_mask =
3911 build_stageref(shProg, var->name, var->data.mode);
3912 if (!add_shader_variable(ctx, shProg, resource_set,
3913 stage_mask,
3914 iface, var, var->name, var->type, false,
3915 var->data.location - VARYING_SLOT_VAR0))
3916 return false;
3917 }
3918 }
3919 }
3920 return true;
3921 }
3922
3923 static bool
3924 add_fragdata_arrays(const struct gl_context *ctx,
3925 struct gl_shader_program *shProg,
3926 struct set *resource_set)
3927 {
3928 struct gl_linked_shader *sh = shProg->_LinkedShaders[MESA_SHADER_FRAGMENT];
3929
3930 if (!sh || !sh->fragdata_arrays)
3931 return true;
3932
3933 foreach_in_list(ir_instruction, node, sh->fragdata_arrays) {
3934 ir_variable *var = node->as_variable();
3935 if (var) {
3936 assert(var->data.mode == ir_var_shader_out);
3937
3938 if (!add_shader_variable(ctx, shProg, resource_set,
3939 1 << MESA_SHADER_FRAGMENT,
3940 GL_PROGRAM_OUTPUT, var, var->name, var->type,
3941 true, var->data.location - FRAG_RESULT_DATA0))
3942 return false;
3943 }
3944 }
3945 return true;
3946 }
3947
3948 static char*
3949 get_top_level_name(const char *name)
3950 {
3951 const char *first_dot = strchr(name, '.');
3952 const char *first_square_bracket = strchr(name, '[');
3953 int name_size = 0;
3954
3955 /* The ARB_program_interface_query spec says:
3956 *
3957 * "For the property TOP_LEVEL_ARRAY_SIZE, a single integer identifying
3958 * the number of active array elements of the top-level shader storage
3959 * block member containing to the active variable is written to
3960 * <params>. If the top-level block member is not declared as an
3961 * array, the value one is written to <params>. If the top-level block
3962 * member is an array with no declared size, the value zero is written
3963 * to <params>."
3964 */
3965
3966 /* The buffer variable is on top level.*/
3967 if (!first_square_bracket && !first_dot)
3968 name_size = strlen(name);
3969 else if ((!first_square_bracket ||
3970 (first_dot && first_dot < first_square_bracket)))
3971 name_size = first_dot - name;
3972 else
3973 name_size = first_square_bracket - name;
3974
3975 return strndup(name, name_size);
3976 }
3977
3978 static char*
3979 get_var_name(const char *name)
3980 {
3981 const char *first_dot = strchr(name, '.');
3982
3983 if (!first_dot)
3984 return strdup(name);
3985
3986 return strndup(first_dot+1, strlen(first_dot) - 1);
3987 }
3988
3989 static bool
3990 is_top_level_shader_storage_block_member(const char* name,
3991 const char* interface_name,
3992 const char* field_name)
3993 {
3994 bool result = false;
3995
3996 /* If the given variable is already a top-level shader storage
3997 * block member, then return array_size = 1.
3998 * We could have two possibilities: if we have an instanced
3999 * shader storage block or not instanced.
4000 *
4001 * For the first, we check create a name as it was in top level and
4002 * compare it with the real name. If they are the same, then
4003 * the variable is already at top-level.
4004 *
4005 * Full instanced name is: interface name + '.' + var name +
4006 * NULL character
4007 */
4008 int name_length = strlen(interface_name) + 1 + strlen(field_name) + 1;
4009 char *full_instanced_name = (char *) calloc(name_length, sizeof(char));
4010 if (!full_instanced_name) {
4011 fprintf(stderr, "%s: Cannot allocate space for name\n", __func__);
4012 return false;
4013 }
4014
4015 snprintf(full_instanced_name, name_length, "%s.%s",
4016 interface_name, field_name);
4017
4018 /* Check if its top-level shader storage block member of an
4019 * instanced interface block, or of a unnamed interface block.
4020 */
4021 if (strcmp(name, full_instanced_name) == 0 ||
4022 strcmp(name, field_name) == 0)
4023 result = true;
4024
4025 free(full_instanced_name);
4026 return result;
4027 }
4028
4029 static int
4030 get_array_size(struct gl_uniform_storage *uni, const glsl_struct_field *field,
4031 char *interface_name, char *var_name)
4032 {
4033 /* The ARB_program_interface_query spec says:
4034 *
4035 * "For the property TOP_LEVEL_ARRAY_SIZE, a single integer identifying
4036 * the number of active array elements of the top-level shader storage
4037 * block member containing to the active variable is written to
4038 * <params>. If the top-level block member is not declared as an
4039 * array, the value one is written to <params>. If the top-level block
4040 * member is an array with no declared size, the value zero is written
4041 * to <params>."
4042 */
4043 if (is_top_level_shader_storage_block_member(uni->name,
4044 interface_name,
4045 var_name))
4046 return 1;
4047 else if (field->type->is_unsized_array())
4048 return 0;
4049 else if (field->type->is_array())
4050 return field->type->length;
4051
4052 return 1;
4053 }
4054
4055 static int
4056 get_array_stride(struct gl_uniform_storage *uni, const glsl_type *interface,
4057 const glsl_struct_field *field, char *interface_name,
4058 char *var_name)
4059 {
4060 /* The ARB_program_interface_query spec says:
4061 *
4062 * "For the property TOP_LEVEL_ARRAY_STRIDE, a single integer
4063 * identifying the stride between array elements of the top-level
4064 * shader storage block member containing the active variable is
4065 * written to <params>. For top-level block members declared as
4066 * arrays, the value written is the difference, in basic machine units,
4067 * between the offsets of the active variable for consecutive elements
4068 * in the top-level array. For top-level block members not declared as
4069 * an array, zero is written to <params>."
4070 */
4071 if (field->type->is_array()) {
4072 const enum glsl_matrix_layout matrix_layout =
4073 glsl_matrix_layout(field->matrix_layout);
4074 bool row_major = matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR;
4075 const glsl_type *array_type = field->type->fields.array;
4076
4077 if (is_top_level_shader_storage_block_member(uni->name,
4078 interface_name,
4079 var_name))
4080 return 0;
4081
4082 if (interface->interface_packing != GLSL_INTERFACE_PACKING_STD430) {
4083 if (array_type->is_record() || array_type->is_array())
4084 return glsl_align(array_type->std140_size(row_major), 16);
4085 else
4086 return MAX2(array_type->std140_base_alignment(row_major), 16);
4087 } else {
4088 return array_type->std430_array_stride(row_major);
4089 }
4090 }
4091 return 0;
4092 }
4093
4094 static void
4095 calculate_array_size_and_stride(struct gl_shader_program *shProg,
4096 struct gl_uniform_storage *uni)
4097 {
4098 int block_index = uni->block_index;
4099 int array_size = -1;
4100 int array_stride = -1;
4101 char *var_name = get_top_level_name(uni->name);
4102 char *interface_name =
4103 get_top_level_name(uni->is_shader_storage ?
4104 shProg->data->ShaderStorageBlocks[block_index].Name :
4105 shProg->data->UniformBlocks[block_index].Name);
4106
4107 if (strcmp(var_name, interface_name) == 0) {
4108 /* Deal with instanced array of SSBOs */
4109 char *temp_name = get_var_name(uni->name);
4110 if (!temp_name) {
4111 linker_error(shProg, "Out of memory during linking.\n");
4112 goto write_top_level_array_size_and_stride;
4113 }
4114 free(var_name);
4115 var_name = get_top_level_name(temp_name);
4116 free(temp_name);
4117 if (!var_name) {
4118 linker_error(shProg, "Out of memory during linking.\n");
4119 goto write_top_level_array_size_and_stride;
4120 }
4121 }
4122
4123 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4124 const gl_linked_shader *sh = shProg->_LinkedShaders[i];
4125 if (sh == NULL)
4126 continue;
4127
4128 foreach_in_list(ir_instruction, node, sh->ir) {
4129 ir_variable *var = node->as_variable();
4130 if (!var || !var->get_interface_type() ||
4131 var->data.mode != ir_var_shader_storage)
4132 continue;
4133
4134 const glsl_type *interface = var->get_interface_type();
4135
4136 if (strcmp(interface_name, interface->name) != 0)
4137 continue;
4138
4139 for (unsigned i = 0; i < interface->length; i++) {
4140 const glsl_struct_field *field = &interface->fields.structure[i];
4141 if (strcmp(field->name, var_name) != 0)
4142 continue;
4143
4144 array_stride = get_array_stride(uni, interface, field,
4145 interface_name, var_name);
4146 array_size = get_array_size(uni, field, interface_name, var_name);
4147 goto write_top_level_array_size_and_stride;
4148 }
4149 }
4150 }
4151 write_top_level_array_size_and_stride:
4152 free(interface_name);
4153 free(var_name);
4154 uni->top_level_array_stride = array_stride;
4155 uni->top_level_array_size = array_size;
4156 }
4157
4158 /**
4159 * Builds up a list of program resources that point to existing
4160 * resource data.
4161 */
4162 void
4163 build_program_resource_list(struct gl_context *ctx,
4164 struct gl_shader_program *shProg)
4165 {
4166 /* Rebuild resource list. */
4167 if (shProg->data->ProgramResourceList) {
4168 ralloc_free(shProg->data->ProgramResourceList);
4169 shProg->data->ProgramResourceList = NULL;
4170 shProg->data->NumProgramResourceList = 0;
4171 }
4172
4173 int input_stage = MESA_SHADER_STAGES, output_stage = 0;
4174
4175 /* Determine first input and final output stage. These are used to
4176 * detect which variables should be enumerated in the resource list
4177 * for GL_PROGRAM_INPUT and GL_PROGRAM_OUTPUT.
4178 */
4179 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4180 if (!shProg->_LinkedShaders[i])
4181 continue;
4182 if (input_stage == MESA_SHADER_STAGES)
4183 input_stage = i;
4184 output_stage = i;
4185 }
4186
4187 /* Empty shader, no resources. */
4188 if (input_stage == MESA_SHADER_STAGES && output_stage == 0)
4189 return;
4190
4191 struct set *resource_set = _mesa_set_create(NULL,
4192 _mesa_hash_pointer,
4193 _mesa_key_pointer_equal);
4194
4195 /* Program interface needs to expose varyings in case of SSO. */
4196 if (shProg->SeparateShader) {
4197 if (!add_packed_varyings(ctx, shProg, resource_set,
4198 input_stage, GL_PROGRAM_INPUT))
4199 return;
4200
4201 if (!add_packed_varyings(ctx, shProg, resource_set,
4202 output_stage, GL_PROGRAM_OUTPUT))
4203 return;
4204 }
4205
4206 if (!add_fragdata_arrays(ctx, shProg, resource_set))
4207 return;
4208
4209 /* Add inputs and outputs to the resource list. */
4210 if (!add_interface_variables(ctx, shProg, resource_set,
4211 input_stage, GL_PROGRAM_INPUT))
4212 return;
4213
4214 if (!add_interface_variables(ctx, shProg, resource_set,
4215 output_stage, GL_PROGRAM_OUTPUT))
4216 return;
4217
4218 if (shProg->last_vert_prog) {
4219 struct gl_transform_feedback_info *linked_xfb =
4220 shProg->last_vert_prog->sh.LinkedTransformFeedback;
4221
4222 /* Add transform feedback varyings. */
4223 if (linked_xfb->NumVarying > 0) {
4224 for (int i = 0; i < linked_xfb->NumVarying; i++) {
4225 if (!add_program_resource(shProg, resource_set,
4226 GL_TRANSFORM_FEEDBACK_VARYING,
4227 &linked_xfb->Varyings[i], 0))
4228 return;
4229 }
4230 }
4231
4232 /* Add transform feedback buffers. */
4233 for (unsigned i = 0; i < ctx->Const.MaxTransformFeedbackBuffers; i++) {
4234 if ((linked_xfb->ActiveBuffers >> i) & 1) {
4235 linked_xfb->Buffers[i].Binding = i;
4236 if (!add_program_resource(shProg, resource_set,
4237 GL_TRANSFORM_FEEDBACK_BUFFER,
4238 &linked_xfb->Buffers[i], 0))
4239 return;
4240 }
4241 }
4242 }
4243
4244 /* Add uniforms from uniform storage. */
4245 for (unsigned i = 0; i < shProg->data->NumUniformStorage; i++) {
4246 /* Do not add uniforms internally used by Mesa. */
4247 if (shProg->data->UniformStorage[i].hidden)
4248 continue;
4249
4250 uint8_t stageref =
4251 build_stageref(shProg, shProg->data->UniformStorage[i].name,
4252 ir_var_uniform);
4253
4254 /* Add stagereferences for uniforms in a uniform block. */
4255 bool is_shader_storage =
4256 shProg->data->UniformStorage[i].is_shader_storage;
4257 int block_index = shProg->data->UniformStorage[i].block_index;
4258 if (block_index != -1) {
4259 stageref |= is_shader_storage ?
4260 shProg->data->ShaderStorageBlocks[block_index].stageref :
4261 shProg->data->UniformBlocks[block_index].stageref;
4262 }
4263
4264 GLenum type = is_shader_storage ? GL_BUFFER_VARIABLE : GL_UNIFORM;
4265 if (!should_add_buffer_variable(shProg, type,
4266 shProg->data->UniformStorage[i].name))
4267 continue;
4268
4269 if (is_shader_storage) {
4270 calculate_array_size_and_stride(shProg,
4271 &shProg->data->UniformStorage[i]);
4272 }
4273
4274 if (!add_program_resource(shProg, resource_set, type,
4275 &shProg->data->UniformStorage[i], stageref))
4276 return;
4277 }
4278
4279 /* Add program uniform blocks. */
4280 for (unsigned i = 0; i < shProg->data->NumUniformBlocks; i++) {
4281 if (!add_program_resource(shProg, resource_set, GL_UNIFORM_BLOCK,
4282 &shProg->data->UniformBlocks[i], 0))
4283 return;
4284 }
4285
4286 /* Add program shader storage blocks. */
4287 for (unsigned i = 0; i < shProg->data->NumShaderStorageBlocks; i++) {
4288 if (!add_program_resource(shProg, resource_set, GL_SHADER_STORAGE_BLOCK,
4289 &shProg->data->ShaderStorageBlocks[i], 0))
4290 return;
4291 }
4292
4293 /* Add atomic counter buffers. */
4294 for (unsigned i = 0; i < shProg->data->NumAtomicBuffers; i++) {
4295 if (!add_program_resource(shProg, resource_set, GL_ATOMIC_COUNTER_BUFFER,
4296 &shProg->data->AtomicBuffers[i], 0))
4297 return;
4298 }
4299
4300 for (unsigned i = 0; i < shProg->data->NumUniformStorage; i++) {
4301 GLenum type;
4302 if (!shProg->data->UniformStorage[i].hidden)
4303 continue;
4304
4305 for (int j = MESA_SHADER_VERTEX; j < MESA_SHADER_STAGES; j++) {
4306 if (!shProg->data->UniformStorage[i].opaque[j].active ||
4307 !shProg->data->UniformStorage[i].type->is_subroutine())
4308 continue;
4309
4310 type = _mesa_shader_stage_to_subroutine_uniform((gl_shader_stage)j);
4311 /* add shader subroutines */
4312 if (!add_program_resource(shProg, resource_set,
4313 type, &shProg->data->UniformStorage[i], 0))
4314 return;
4315 }
4316 }
4317
4318 unsigned mask = shProg->data->linked_stages;
4319 while (mask) {
4320 const int i = u_bit_scan(&mask);
4321 struct gl_program *p = shProg->_LinkedShaders[i]->Program;
4322
4323 GLuint type = _mesa_shader_stage_to_subroutine((gl_shader_stage)i);
4324 for (unsigned j = 0; j < p->sh.NumSubroutineFunctions; j++) {
4325 if (!add_program_resource(shProg, resource_set,
4326 type, &p->sh.SubroutineFunctions[j], 0))
4327 return;
4328 }
4329 }
4330
4331 _mesa_set_destroy(resource_set, NULL);
4332 }
4333
4334 /**
4335 * This check is done to make sure we allow only constant expression
4336 * indexing and "constant-index-expression" (indexing with an expression
4337 * that includes loop induction variable).
4338 */
4339 static bool
4340 validate_sampler_array_indexing(struct gl_context *ctx,
4341 struct gl_shader_program *prog)
4342 {
4343 dynamic_sampler_array_indexing_visitor v;
4344 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4345 if (prog->_LinkedShaders[i] == NULL)
4346 continue;
4347
4348 bool no_dynamic_indexing =
4349 ctx->Const.ShaderCompilerOptions[i].EmitNoIndirectSampler;
4350
4351 /* Search for array derefs in shader. */
4352 v.run(prog->_LinkedShaders[i]->ir);
4353 if (v.uses_dynamic_sampler_array_indexing()) {
4354 const char *msg = "sampler arrays indexed with non-constant "
4355 "expressions is forbidden in GLSL %s %u";
4356 /* Backend has indicated that it has no dynamic indexing support. */
4357 if (no_dynamic_indexing) {
4358 linker_error(prog, msg, prog->IsES ? "ES" : "",
4359 prog->data->Version);
4360 return false;
4361 } else {
4362 linker_warning(prog, msg, prog->IsES ? "ES" : "",
4363 prog->data->Version);
4364 }
4365 }
4366 }
4367 return true;
4368 }
4369
4370 static void
4371 link_assign_subroutine_types(struct gl_shader_program *prog)
4372 {
4373 unsigned mask = prog->data->linked_stages;
4374 while (mask) {
4375 const int i = u_bit_scan(&mask);
4376 gl_program *p = prog->_LinkedShaders[i]->Program;
4377
4378 p->sh.MaxSubroutineFunctionIndex = 0;
4379 foreach_in_list(ir_instruction, node, prog->_LinkedShaders[i]->ir) {
4380 ir_function *fn = node->as_function();
4381 if (!fn)
4382 continue;
4383
4384 if (fn->is_subroutine)
4385 p->sh.NumSubroutineUniformTypes++;
4386
4387 if (!fn->num_subroutine_types)
4388 continue;
4389
4390 /* these should have been calculated earlier. */
4391 assert(fn->subroutine_index != -1);
4392 if (p->sh.NumSubroutineFunctions + 1 > MAX_SUBROUTINES) {
4393 linker_error(prog, "Too many subroutine functions declared.\n");
4394 return;
4395 }
4396 p->sh.SubroutineFunctions = reralloc(p, p->sh.SubroutineFunctions,
4397 struct gl_subroutine_function,
4398 p->sh.NumSubroutineFunctions + 1);
4399 p->sh.SubroutineFunctions[p->sh.NumSubroutineFunctions].name = ralloc_strdup(p, fn->name);
4400 p->sh.SubroutineFunctions[p->sh.NumSubroutineFunctions].num_compat_types = fn->num_subroutine_types;
4401 p->sh.SubroutineFunctions[p->sh.NumSubroutineFunctions].types =
4402 ralloc_array(p, const struct glsl_type *,
4403 fn->num_subroutine_types);
4404
4405 /* From Section 4.4.4(Subroutine Function Layout Qualifiers) of the
4406 * GLSL 4.5 spec:
4407 *
4408 * "Each subroutine with an index qualifier in the shader must be
4409 * given a unique index, otherwise a compile or link error will be
4410 * generated."
4411 */
4412 for (unsigned j = 0; j < p->sh.NumSubroutineFunctions; j++) {
4413 if (p->sh.SubroutineFunctions[j].index != -1 &&
4414 p->sh.SubroutineFunctions[j].index == fn->subroutine_index) {
4415 linker_error(prog, "each subroutine index qualifier in the "
4416 "shader must be unique\n");
4417 return;
4418 }
4419 }
4420 p->sh.SubroutineFunctions[p->sh.NumSubroutineFunctions].index =
4421 fn->subroutine_index;
4422
4423 if (fn->subroutine_index > (int)p->sh.MaxSubroutineFunctionIndex)
4424 p->sh.MaxSubroutineFunctionIndex = fn->subroutine_index;
4425
4426 for (int j = 0; j < fn->num_subroutine_types; j++)
4427 p->sh.SubroutineFunctions[p->sh.NumSubroutineFunctions].types[j] = fn->subroutine_types[j];
4428 p->sh.NumSubroutineFunctions++;
4429 }
4430 }
4431 }
4432
4433 static void
4434 set_always_active_io(exec_list *ir, ir_variable_mode io_mode)
4435 {
4436 assert(io_mode == ir_var_shader_in || io_mode == ir_var_shader_out);
4437
4438 foreach_in_list(ir_instruction, node, ir) {
4439 ir_variable *const var = node->as_variable();
4440
4441 if (var == NULL || var->data.mode != io_mode)
4442 continue;
4443
4444 /* Don't set always active on builtins that haven't been redeclared */
4445 if (var->data.how_declared == ir_var_declared_implicitly)
4446 continue;
4447
4448 var->data.always_active_io = true;
4449 }
4450 }
4451
4452 /**
4453 * When separate shader programs are enabled, only input/outputs between
4454 * the stages of a multi-stage separate program can be safely removed
4455 * from the shader interface. Other inputs/outputs must remain active.
4456 */
4457 static void
4458 disable_varying_optimizations_for_sso(struct gl_shader_program *prog)
4459 {
4460 unsigned first, last;
4461 assert(prog->SeparateShader);
4462
4463 first = MESA_SHADER_STAGES;
4464 last = 0;
4465
4466 /* Determine first and last stage. Excluding the compute stage */
4467 for (unsigned i = 0; i < MESA_SHADER_COMPUTE; i++) {
4468 if (!prog->_LinkedShaders[i])
4469 continue;
4470 if (first == MESA_SHADER_STAGES)
4471 first = i;
4472 last = i;
4473 }
4474
4475 if (first == MESA_SHADER_STAGES)
4476 return;
4477
4478 for (unsigned stage = 0; stage < MESA_SHADER_STAGES; stage++) {
4479 gl_linked_shader *sh = prog->_LinkedShaders[stage];
4480 if (!sh)
4481 continue;
4482
4483 if (first == last) {
4484 /* For a single shader program only allow inputs to the vertex shader
4485 * and outputs from the fragment shader to be removed.
4486 */
4487 if (stage != MESA_SHADER_VERTEX)
4488 set_always_active_io(sh->ir, ir_var_shader_in);
4489 if (stage != MESA_SHADER_FRAGMENT)
4490 set_always_active_io(sh->ir, ir_var_shader_out);
4491 } else {
4492 /* For multi-stage separate shader programs only allow inputs and
4493 * outputs between the shader stages to be removed as well as inputs
4494 * to the vertex shader and outputs from the fragment shader.
4495 */
4496 if (stage == first && stage != MESA_SHADER_VERTEX)
4497 set_always_active_io(sh->ir, ir_var_shader_in);
4498 else if (stage == last && stage != MESA_SHADER_FRAGMENT)
4499 set_always_active_io(sh->ir, ir_var_shader_out);
4500 }
4501 }
4502 }
4503
4504 static void
4505 link_and_validate_uniforms(struct gl_context *ctx,
4506 struct gl_shader_program *prog)
4507 {
4508 update_array_sizes(prog);
4509 link_assign_uniform_locations(prog, ctx);
4510
4511 if (!prog->data->cache_fallback) {
4512 link_assign_atomic_counter_resources(ctx, prog);
4513 link_calculate_subroutine_compat(prog);
4514 check_resources(ctx, prog);
4515 check_subroutine_resources(prog);
4516 check_image_resources(ctx, prog);
4517 link_check_atomic_counter_resources(ctx, prog);
4518 }
4519 }
4520
4521 static bool
4522 link_varyings_and_uniforms(unsigned first, unsigned last,
4523 struct gl_context *ctx,
4524 struct gl_shader_program *prog, void *mem_ctx)
4525 {
4526 /* Mark all generic shader inputs and outputs as unpaired. */
4527 for (unsigned i = MESA_SHADER_VERTEX; i <= MESA_SHADER_FRAGMENT; i++) {
4528 if (prog->_LinkedShaders[i] != NULL) {
4529 link_invalidate_variable_locations(prog->_LinkedShaders[i]->ir);
4530 }
4531 }
4532
4533 unsigned prev = first;
4534 for (unsigned i = prev + 1; i <= MESA_SHADER_FRAGMENT; i++) {
4535 if (prog->_LinkedShaders[i] == NULL)
4536 continue;
4537
4538 match_explicit_outputs_to_inputs(prog->_LinkedShaders[prev],
4539 prog->_LinkedShaders[i]);
4540 prev = i;
4541 }
4542
4543 if (!assign_attribute_or_color_locations(mem_ctx, prog, &ctx->Const,
4544 MESA_SHADER_VERTEX)) {
4545 return false;
4546 }
4547
4548 if (!assign_attribute_or_color_locations(mem_ctx, prog, &ctx->Const,
4549 MESA_SHADER_FRAGMENT)) {
4550 return false;
4551 }
4552
4553 prog->last_vert_prog = NULL;
4554 for (int i = MESA_SHADER_GEOMETRY; i >= MESA_SHADER_VERTEX; i--) {
4555 if (prog->_LinkedShaders[i] == NULL)
4556 continue;
4557
4558 prog->last_vert_prog = prog->_LinkedShaders[i]->Program;
4559 break;
4560 }
4561
4562 if (!link_varyings(prog, first, last, ctx, mem_ctx))
4563 return false;
4564
4565 link_and_validate_uniforms(ctx, prog);
4566
4567 if (!prog->data->LinkStatus)
4568 return false;
4569
4570 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4571 if (prog->_LinkedShaders[i] == NULL)
4572 continue;
4573
4574 const struct gl_shader_compiler_options *options =
4575 &ctx->Const.ShaderCompilerOptions[i];
4576
4577 if (options->LowerBufferInterfaceBlocks)
4578 lower_ubo_reference(prog->_LinkedShaders[i],
4579 options->ClampBlockIndicesToArrayBounds);
4580
4581 if (i == MESA_SHADER_COMPUTE)
4582 lower_shared_reference(prog->_LinkedShaders[i],
4583 &prog->Comp.SharedSize);
4584
4585 lower_vector_derefs(prog->_LinkedShaders[i]);
4586 do_vec_index_to_swizzle(prog->_LinkedShaders[i]->ir);
4587 }
4588
4589 return true;
4590 }
4591
4592 static void
4593 linker_optimisation_loop(struct gl_context *ctx, exec_list *ir,
4594 unsigned stage)
4595 {
4596 if (ctx->Const.GLSLOptimizeConservatively) {
4597 /* Run it just once. */
4598 do_common_optimization(ir, true, false,
4599 &ctx->Const.ShaderCompilerOptions[stage],
4600 ctx->Const.NativeIntegers);
4601 } else {
4602 /* Repeat it until it stops making changes. */
4603 while (do_common_optimization(ir, true, false,
4604 &ctx->Const.ShaderCompilerOptions[stage],
4605 ctx->Const.NativeIntegers))
4606 ;
4607 }
4608 }
4609
4610 void
4611 link_shaders(struct gl_context *ctx, struct gl_shader_program *prog)
4612 {
4613 prog->data->LinkStatus = linking_success; /* All error paths will set this to false */
4614 prog->data->Validated = false;
4615
4616 /* Section 7.3 (Program Objects) of the OpenGL 4.5 Core Profile spec says:
4617 *
4618 * "Linking can fail for a variety of reasons as specified in the
4619 * OpenGL Shading Language Specification, as well as any of the
4620 * following reasons:
4621 *
4622 * - No shader objects are attached to program."
4623 *
4624 * The Compatibility Profile specification does not list the error. In
4625 * Compatibility Profile missing shader stages are replaced by
4626 * fixed-function. This applies to the case where all stages are
4627 * missing.
4628 */
4629 if (prog->NumShaders == 0) {
4630 if (ctx->API != API_OPENGL_COMPAT)
4631 linker_error(prog, "no shaders attached to the program\n");
4632 return;
4633 }
4634
4635 #ifdef ENABLE_SHADER_CACHE
4636 /* If transform feedback used on the program then compile all shaders. */
4637 bool skip_cache = false;
4638 if (prog->TransformFeedback.NumVarying > 0) {
4639 for (unsigned i = 0; i < prog->NumShaders; i++) {
4640 if (prog->Shaders[i]->ir) {
4641 continue;
4642 }
4643 _mesa_glsl_compile_shader(ctx, prog->Shaders[i], false, false, true);
4644 }
4645 skip_cache = true;
4646 }
4647
4648 if (!skip_cache && shader_cache_read_program_metadata(ctx, prog))
4649 return;
4650 #endif
4651
4652 void *mem_ctx = ralloc_context(NULL); // temporary linker context
4653
4654 prog->ARB_fragment_coord_conventions_enable = false;
4655
4656 /* Separate the shaders into groups based on their type.
4657 */
4658 struct gl_shader **shader_list[MESA_SHADER_STAGES];
4659 unsigned num_shaders[MESA_SHADER_STAGES];
4660
4661 for (int i = 0; i < MESA_SHADER_STAGES; i++) {
4662 shader_list[i] = (struct gl_shader **)
4663 calloc(prog->NumShaders, sizeof(struct gl_shader *));
4664 num_shaders[i] = 0;
4665 }
4666
4667 unsigned min_version = UINT_MAX;
4668 unsigned max_version = 0;
4669 for (unsigned i = 0; i < prog->NumShaders; i++) {
4670 min_version = MIN2(min_version, prog->Shaders[i]->Version);
4671 max_version = MAX2(max_version, prog->Shaders[i]->Version);
4672
4673 if (prog->Shaders[i]->IsES != prog->Shaders[0]->IsES) {
4674 linker_error(prog, "all shaders must use same shading "
4675 "language version\n");
4676 goto done;
4677 }
4678
4679 if (prog->Shaders[i]->ARB_fragment_coord_conventions_enable) {
4680 prog->ARB_fragment_coord_conventions_enable = true;
4681 }
4682
4683 gl_shader_stage shader_type = prog->Shaders[i]->Stage;
4684 shader_list[shader_type][num_shaders[shader_type]] = prog->Shaders[i];
4685 num_shaders[shader_type]++;
4686 }
4687
4688 /* In desktop GLSL, different shader versions may be linked together. In
4689 * GLSL ES, all shader versions must be the same.
4690 */
4691 if (prog->Shaders[0]->IsES && min_version != max_version) {
4692 linker_error(prog, "all shaders must use same shading "
4693 "language version\n");
4694 goto done;
4695 }
4696
4697 prog->data->Version = max_version;
4698 prog->IsES = prog->Shaders[0]->IsES;
4699
4700 /* Some shaders have to be linked with some other shaders present.
4701 */
4702 if (!prog->SeparateShader) {
4703 if (num_shaders[MESA_SHADER_GEOMETRY] > 0 &&
4704 num_shaders[MESA_SHADER_VERTEX] == 0) {
4705 linker_error(prog, "Geometry shader must be linked with "
4706 "vertex shader\n");
4707 goto done;
4708 }
4709 if (num_shaders[MESA_SHADER_TESS_EVAL] > 0 &&
4710 num_shaders[MESA_SHADER_VERTEX] == 0) {
4711 linker_error(prog, "Tessellation evaluation shader must be linked "
4712 "with vertex shader\n");
4713 goto done;
4714 }
4715 if (num_shaders[MESA_SHADER_TESS_CTRL] > 0 &&
4716 num_shaders[MESA_SHADER_VERTEX] == 0) {
4717 linker_error(prog, "Tessellation control shader must be linked with "
4718 "vertex shader\n");
4719 goto done;
4720 }
4721
4722 /* Section 7.3 of the OpenGL ES 3.2 specification says:
4723 *
4724 * "Linking can fail for [...] any of the following reasons:
4725 *
4726 * * program contains an object to form a tessellation control
4727 * shader [...] and [...] the program is not separable and
4728 * contains no object to form a tessellation evaluation shader"
4729 *
4730 * The OpenGL spec is contradictory. It allows linking without a tess
4731 * eval shader, but that can only be used with transform feedback and
4732 * rasterization disabled. However, transform feedback isn't allowed
4733 * with GL_PATCHES, so it can't be used.
4734 *
4735 * More investigation showed that the idea of transform feedback after
4736 * a tess control shader was dropped, because some hw vendors couldn't
4737 * support tessellation without a tess eval shader, but the linker
4738 * section wasn't updated to reflect that.
4739 *
4740 * All specifications (ARB_tessellation_shader, GL 4.0-4.5) have this
4741 * spec bug.
4742 *
4743 * Do what's reasonable and always require a tess eval shader if a tess
4744 * control shader is present.
4745 */
4746 if (num_shaders[MESA_SHADER_TESS_CTRL] > 0 &&
4747 num_shaders[MESA_SHADER_TESS_EVAL] == 0) {
4748 linker_error(prog, "Tessellation control shader must be linked with "
4749 "tessellation evaluation shader\n");
4750 goto done;
4751 }
4752
4753 if (prog->IsES) {
4754 if (num_shaders[MESA_SHADER_TESS_EVAL] > 0 &&
4755 num_shaders[MESA_SHADER_TESS_CTRL] == 0) {
4756 linker_error(prog, "GLSL ES requires non-separable programs "
4757 "containing a tessellation evaluation shader to also "
4758 "be linked with a tessellation control shader\n");
4759 goto done;
4760 }
4761 }
4762 }
4763
4764 /* Compute shaders have additional restrictions. */
4765 if (num_shaders[MESA_SHADER_COMPUTE] > 0 &&
4766 num_shaders[MESA_SHADER_COMPUTE] != prog->NumShaders) {
4767 linker_error(prog, "Compute shaders may not be linked with any other "
4768 "type of shader\n");
4769 }
4770
4771 /* Link all shaders for a particular stage and validate the result.
4772 */
4773 for (int stage = 0; stage < MESA_SHADER_STAGES; stage++) {
4774 if (num_shaders[stage] > 0) {
4775 gl_linked_shader *const sh =
4776 link_intrastage_shaders(mem_ctx, ctx, prog, shader_list[stage],
4777 num_shaders[stage], false);
4778
4779 if (!prog->data->LinkStatus) {
4780 if (sh)
4781 _mesa_delete_linked_shader(ctx, sh);
4782 goto done;
4783 }
4784
4785 switch (stage) {
4786 case MESA_SHADER_VERTEX:
4787 validate_vertex_shader_executable(prog, sh, ctx);
4788 break;
4789 case MESA_SHADER_TESS_CTRL:
4790 /* nothing to be done */
4791 break;
4792 case MESA_SHADER_TESS_EVAL:
4793 validate_tess_eval_shader_executable(prog, sh, ctx);
4794 break;
4795 case MESA_SHADER_GEOMETRY:
4796 validate_geometry_shader_executable(prog, sh, ctx);
4797 break;
4798 case MESA_SHADER_FRAGMENT:
4799 validate_fragment_shader_executable(prog, sh);
4800 break;
4801 }
4802 if (!prog->data->LinkStatus) {
4803 if (sh)
4804 _mesa_delete_linked_shader(ctx, sh);
4805 goto done;
4806 }
4807
4808 prog->_LinkedShaders[stage] = sh;
4809 prog->data->linked_stages |= 1 << stage;
4810 }
4811 }
4812
4813 /* Here begins the inter-stage linking phase. Some initial validation is
4814 * performed, then locations are assigned for uniforms, attributes, and
4815 * varyings.
4816 */
4817 cross_validate_uniforms(prog);
4818 if (!prog->data->LinkStatus)
4819 goto done;
4820
4821 unsigned first, last, prev;
4822
4823 first = MESA_SHADER_STAGES;
4824 last = 0;
4825
4826 /* Determine first and last stage. */
4827 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4828 if (!prog->_LinkedShaders[i])
4829 continue;
4830 if (first == MESA_SHADER_STAGES)
4831 first = i;
4832 last = i;
4833 }
4834
4835 if (!prog->data->cache_fallback) {
4836 check_explicit_uniform_locations(ctx, prog);
4837 link_assign_subroutine_types(prog);
4838 }
4839
4840 if (!prog->data->LinkStatus)
4841 goto done;
4842
4843 resize_tes_inputs(ctx, prog);
4844
4845 /* Validate the inputs of each stage with the output of the preceding
4846 * stage.
4847 */
4848 prev = first;
4849 for (unsigned i = prev + 1; i <= MESA_SHADER_FRAGMENT; i++) {
4850 if (prog->_LinkedShaders[i] == NULL)
4851 continue;
4852
4853 validate_interstage_inout_blocks(prog, prog->_LinkedShaders[prev],
4854 prog->_LinkedShaders[i]);
4855 if (!prog->data->LinkStatus)
4856 goto done;
4857
4858 cross_validate_outputs_to_inputs(prog,
4859 prog->_LinkedShaders[prev],
4860 prog->_LinkedShaders[i]);
4861 if (!prog->data->LinkStatus)
4862 goto done;
4863
4864 prev = i;
4865 }
4866
4867 /* Cross-validate uniform blocks between shader stages */
4868 validate_interstage_uniform_blocks(prog, prog->_LinkedShaders);
4869 if (!prog->data->LinkStatus)
4870 goto done;
4871
4872 for (unsigned int i = 0; i < MESA_SHADER_STAGES; i++) {
4873 if (prog->_LinkedShaders[i] != NULL)
4874 lower_named_interface_blocks(mem_ctx, prog->_LinkedShaders[i]);
4875 }
4876
4877 /* Implement the GLSL 1.30+ rule for discard vs infinite loops Do
4878 * it before optimization because we want most of the checks to get
4879 * dropped thanks to constant propagation.
4880 *
4881 * This rule also applies to GLSL ES 3.00.
4882 */
4883 if (max_version >= (prog->IsES ? 300 : 130)) {
4884 struct gl_linked_shader *sh = prog->_LinkedShaders[MESA_SHADER_FRAGMENT];
4885 if (sh) {
4886 lower_discard_flow(sh->ir);
4887 }
4888 }
4889
4890 if (prog->SeparateShader)
4891 disable_varying_optimizations_for_sso(prog);
4892
4893 if (!prog->data->cache_fallback) {
4894 /* Process UBOs */
4895 if (!interstage_cross_validate_uniform_blocks(prog, false))
4896 goto done;
4897
4898 /* Process SSBOs */
4899 if (!interstage_cross_validate_uniform_blocks(prog, true))
4900 goto done;
4901 }
4902
4903 /* Do common optimization before assigning storage for attributes,
4904 * uniforms, and varyings. Later optimization could possibly make
4905 * some of that unused.
4906 */
4907 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4908 if (prog->_LinkedShaders[i] == NULL)
4909 continue;
4910
4911 detect_recursion_linked(prog, prog->_LinkedShaders[i]->ir);
4912 if (!prog->data->LinkStatus)
4913 goto done;
4914
4915 if (ctx->Const.ShaderCompilerOptions[i].LowerCombinedClipCullDistance) {
4916 lower_clip_cull_distance(prog, prog->_LinkedShaders[i]);
4917 }
4918
4919 if (ctx->Const.LowerTessLevel) {
4920 lower_tess_level(prog->_LinkedShaders[i]);
4921 }
4922
4923 /* Call opts before lowering const arrays to uniforms so we can const
4924 * propagate any elements accessed directly.
4925 */
4926 linker_optimisation_loop(ctx, prog->_LinkedShaders[i]->ir, i);
4927
4928 /* Call opts after lowering const arrays to copy propagate things. */
4929 if (lower_const_arrays_to_uniforms(prog->_LinkedShaders[i]->ir, i))
4930 linker_optimisation_loop(ctx, prog->_LinkedShaders[i]->ir, i);
4931
4932 propagate_invariance(prog->_LinkedShaders[i]->ir);
4933 }
4934
4935 /* Validation for special cases where we allow sampler array indexing
4936 * with loop induction variable. This check emits a warning or error
4937 * depending if backend can handle dynamic indexing.
4938 */
4939 if ((!prog->IsES && prog->data->Version < 130) ||
4940 (prog->IsES && prog->data->Version < 300)) {
4941 if (!validate_sampler_array_indexing(ctx, prog))
4942 goto done;
4943 }
4944
4945 /* Check and validate stream emissions in geometry shaders */
4946 validate_geometry_shader_emissions(ctx, prog);
4947
4948 store_fragdepth_layout(prog);
4949
4950 if(!link_varyings_and_uniforms(first, last, ctx, prog, mem_ctx))
4951 goto done;
4952
4953 /* OpenGL ES < 3.1 requires that a vertex shader and a fragment shader both
4954 * be present in a linked program. GL_ARB_ES2_compatibility doesn't say
4955 * anything about shader linking when one of the shaders (vertex or
4956 * fragment shader) is absent. So, the extension shouldn't change the
4957 * behavior specified in GLSL specification.
4958 *
4959 * From OpenGL ES 3.1 specification (7.3 Program Objects):
4960 * "Linking can fail for a variety of reasons as specified in the
4961 * OpenGL ES Shading Language Specification, as well as any of the
4962 * following reasons:
4963 *
4964 * ...
4965 *
4966 * * program contains objects to form either a vertex shader or
4967 * fragment shader, and program is not separable, and does not
4968 * contain objects to form both a vertex shader and fragment
4969 * shader."
4970 *
4971 * However, the only scenario in 3.1+ where we don't require them both is
4972 * when we have a compute shader. For example:
4973 *
4974 * - No shaders is a link error.
4975 * - Geom or Tess without a Vertex shader is a link error which means we
4976 * always require a Vertex shader and hence a Fragment shader.
4977 * - Finally a Compute shader linked with any other stage is a link error.
4978 */
4979 if (!prog->SeparateShader && ctx->API == API_OPENGLES2 &&
4980 num_shaders[MESA_SHADER_COMPUTE] == 0) {
4981 if (prog->_LinkedShaders[MESA_SHADER_VERTEX] == NULL) {
4982 linker_error(prog, "program lacks a vertex shader\n");
4983 } else if (prog->_LinkedShaders[MESA_SHADER_FRAGMENT] == NULL) {
4984 linker_error(prog, "program lacks a fragment shader\n");
4985 }
4986 }
4987
4988 done:
4989 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4990 free(shader_list[i]);
4991 if (prog->_LinkedShaders[i] == NULL)
4992 continue;
4993
4994 /* Do a final validation step to make sure that the IR wasn't
4995 * invalidated by any modifications performed after intrastage linking.
4996 */
4997 validate_ir_tree(prog->_LinkedShaders[i]->ir);
4998
4999 /* Retain any live IR, but trash the rest. */
5000 reparent_ir(prog->_LinkedShaders[i]->ir, prog->_LinkedShaders[i]->ir);
5001
5002 /* The symbol table in the linked shaders may contain references to
5003 * variables that were removed (e.g., unused uniforms). Since it may
5004 * contain junk, there is no possible valid use. Delete it and set the
5005 * pointer to NULL.
5006 */
5007 delete prog->_LinkedShaders[i]->symbols;
5008 prog->_LinkedShaders[i]->symbols = NULL;
5009 }
5010
5011 ralloc_free(mem_ctx);
5012 }