glsl: link bindless layout qualifiers
[mesa.git] / src / compiler / glsl / linker.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file linker.cpp
26 * GLSL linker implementation
27 *
28 * Given a set of shaders that are to be linked to generate a final program,
29 * there are three distinct stages.
30 *
31 * In the first stage shaders are partitioned into groups based on the shader
32 * type. All shaders of a particular type (e.g., vertex shaders) are linked
33 * together.
34 *
35 * - Undefined references in each shader are resolve to definitions in
36 * another shader.
37 * - Types and qualifiers of uniforms, outputs, and global variables defined
38 * in multiple shaders with the same name are verified to be the same.
39 * - Initializers for uniforms and global variables defined
40 * in multiple shaders with the same name are verified to be the same.
41 *
42 * The result, in the terminology of the GLSL spec, is a set of shader
43 * executables for each processing unit.
44 *
45 * After the first stage is complete, a series of semantic checks are performed
46 * on each of the shader executables.
47 *
48 * - Each shader executable must define a \c main function.
49 * - Each vertex shader executable must write to \c gl_Position.
50 * - Each fragment shader executable must write to either \c gl_FragData or
51 * \c gl_FragColor.
52 *
53 * In the final stage individual shader executables are linked to create a
54 * complete exectuable.
55 *
56 * - Types of uniforms defined in multiple shader stages with the same name
57 * are verified to be the same.
58 * - Initializers for uniforms defined in multiple shader stages with the
59 * same name are verified to be the same.
60 * - Types and qualifiers of outputs defined in one stage are verified to
61 * be the same as the types and qualifiers of inputs defined with the same
62 * name in a later stage.
63 *
64 * \author Ian Romanick <ian.d.romanick@intel.com>
65 */
66
67 #include <ctype.h>
68 #include "util/strndup.h"
69 #include "main/core.h"
70 #include "glsl_symbol_table.h"
71 #include "glsl_parser_extras.h"
72 #include "ir.h"
73 #include "program.h"
74 #include "program/prog_instruction.h"
75 #include "program/program.h"
76 #include "util/mesa-sha1.h"
77 #include "util/set.h"
78 #include "util/string_to_uint_map.h"
79 #include "linker.h"
80 #include "link_varyings.h"
81 #include "ir_optimization.h"
82 #include "ir_rvalue_visitor.h"
83 #include "ir_uniform.h"
84 #include "builtin_functions.h"
85 #include "shader_cache.h"
86
87 #include "main/shaderobj.h"
88 #include "main/enums.h"
89
90
91 namespace {
92
93 /**
94 * Visitor that determines whether or not a variable is ever written.
95 */
96 class find_assignment_visitor : public ir_hierarchical_visitor {
97 public:
98 find_assignment_visitor(const char *name)
99 : name(name), found(false)
100 {
101 /* empty */
102 }
103
104 virtual ir_visitor_status visit_enter(ir_assignment *ir)
105 {
106 ir_variable *const var = ir->lhs->variable_referenced();
107
108 if (strcmp(name, var->name) == 0) {
109 found = true;
110 return visit_stop;
111 }
112
113 return visit_continue_with_parent;
114 }
115
116 virtual ir_visitor_status visit_enter(ir_call *ir)
117 {
118 foreach_two_lists(formal_node, &ir->callee->parameters,
119 actual_node, &ir->actual_parameters) {
120 ir_rvalue *param_rval = (ir_rvalue *) actual_node;
121 ir_variable *sig_param = (ir_variable *) formal_node;
122
123 if (sig_param->data.mode == ir_var_function_out ||
124 sig_param->data.mode == ir_var_function_inout) {
125 ir_variable *var = param_rval->variable_referenced();
126 if (var && strcmp(name, var->name) == 0) {
127 found = true;
128 return visit_stop;
129 }
130 }
131 }
132
133 if (ir->return_deref != NULL) {
134 ir_variable *const var = ir->return_deref->variable_referenced();
135
136 if (strcmp(name, var->name) == 0) {
137 found = true;
138 return visit_stop;
139 }
140 }
141
142 return visit_continue_with_parent;
143 }
144
145 bool variable_found()
146 {
147 return found;
148 }
149
150 private:
151 const char *name; /**< Find writes to a variable with this name. */
152 bool found; /**< Was a write to the variable found? */
153 };
154
155
156 /**
157 * Visitor that determines whether or not a variable is ever read.
158 */
159 class find_deref_visitor : public ir_hierarchical_visitor {
160 public:
161 find_deref_visitor(const char *name)
162 : name(name), found(false)
163 {
164 /* empty */
165 }
166
167 virtual ir_visitor_status visit(ir_dereference_variable *ir)
168 {
169 if (strcmp(this->name, ir->var->name) == 0) {
170 this->found = true;
171 return visit_stop;
172 }
173
174 return visit_continue;
175 }
176
177 bool variable_found() const
178 {
179 return this->found;
180 }
181
182 private:
183 const char *name; /**< Find writes to a variable with this name. */
184 bool found; /**< Was a write to the variable found? */
185 };
186
187
188 /**
189 * A visitor helper that provides methods for updating the types of
190 * ir_dereferences. Classes that update variable types (say, updating
191 * array sizes) will want to use this so that dereference types stay in sync.
192 */
193 class deref_type_updater : public ir_hierarchical_visitor {
194 public:
195 virtual ir_visitor_status visit(ir_dereference_variable *ir)
196 {
197 ir->type = ir->var->type;
198 return visit_continue;
199 }
200
201 virtual ir_visitor_status visit_leave(ir_dereference_array *ir)
202 {
203 const glsl_type *const vt = ir->array->type;
204 if (vt->is_array())
205 ir->type = vt->fields.array;
206 return visit_continue;
207 }
208
209 virtual ir_visitor_status visit_leave(ir_dereference_record *ir)
210 {
211 for (unsigned i = 0; i < ir->record->type->length; i++) {
212 const struct glsl_struct_field *field =
213 &ir->record->type->fields.structure[i];
214 if (strcmp(field->name, ir->field) == 0) {
215 ir->type = field->type;
216 break;
217 }
218 }
219 return visit_continue;
220 }
221 };
222
223
224 class array_resize_visitor : public deref_type_updater {
225 public:
226 unsigned num_vertices;
227 gl_shader_program *prog;
228 gl_shader_stage stage;
229
230 array_resize_visitor(unsigned num_vertices,
231 gl_shader_program *prog,
232 gl_shader_stage stage)
233 {
234 this->num_vertices = num_vertices;
235 this->prog = prog;
236 this->stage = stage;
237 }
238
239 virtual ~array_resize_visitor()
240 {
241 /* empty */
242 }
243
244 virtual ir_visitor_status visit(ir_variable *var)
245 {
246 if (!var->type->is_array() || var->data.mode != ir_var_shader_in ||
247 var->data.patch)
248 return visit_continue;
249
250 unsigned size = var->type->length;
251
252 if (stage == MESA_SHADER_GEOMETRY) {
253 /* Generate a link error if the shader has declared this array with
254 * an incorrect size.
255 */
256 if (!var->data.implicit_sized_array &&
257 size && size != this->num_vertices) {
258 linker_error(this->prog, "size of array %s declared as %u, "
259 "but number of input vertices is %u\n",
260 var->name, size, this->num_vertices);
261 return visit_continue;
262 }
263
264 /* Generate a link error if the shader attempts to access an input
265 * array using an index too large for its actual size assigned at
266 * link time.
267 */
268 if (var->data.max_array_access >= (int)this->num_vertices) {
269 linker_error(this->prog, "%s shader accesses element %i of "
270 "%s, but only %i input vertices\n",
271 _mesa_shader_stage_to_string(this->stage),
272 var->data.max_array_access, var->name, this->num_vertices);
273 return visit_continue;
274 }
275 }
276
277 var->type = glsl_type::get_array_instance(var->type->fields.array,
278 this->num_vertices);
279 var->data.max_array_access = this->num_vertices - 1;
280
281 return visit_continue;
282 }
283 };
284
285 /**
286 * Visitor that determines the highest stream id to which a (geometry) shader
287 * emits vertices. It also checks whether End{Stream}Primitive is ever called.
288 */
289 class find_emit_vertex_visitor : public ir_hierarchical_visitor {
290 public:
291 find_emit_vertex_visitor(int max_allowed)
292 : max_stream_allowed(max_allowed),
293 invalid_stream_id(0),
294 invalid_stream_id_from_emit_vertex(false),
295 end_primitive_found(false),
296 uses_non_zero_stream(false)
297 {
298 /* empty */
299 }
300
301 virtual ir_visitor_status visit_leave(ir_emit_vertex *ir)
302 {
303 int stream_id = ir->stream_id();
304
305 if (stream_id < 0) {
306 invalid_stream_id = stream_id;
307 invalid_stream_id_from_emit_vertex = true;
308 return visit_stop;
309 }
310
311 if (stream_id > max_stream_allowed) {
312 invalid_stream_id = stream_id;
313 invalid_stream_id_from_emit_vertex = true;
314 return visit_stop;
315 }
316
317 if (stream_id != 0)
318 uses_non_zero_stream = true;
319
320 return visit_continue;
321 }
322
323 virtual ir_visitor_status visit_leave(ir_end_primitive *ir)
324 {
325 end_primitive_found = true;
326
327 int stream_id = ir->stream_id();
328
329 if (stream_id < 0) {
330 invalid_stream_id = stream_id;
331 invalid_stream_id_from_emit_vertex = false;
332 return visit_stop;
333 }
334
335 if (stream_id > max_stream_allowed) {
336 invalid_stream_id = stream_id;
337 invalid_stream_id_from_emit_vertex = false;
338 return visit_stop;
339 }
340
341 if (stream_id != 0)
342 uses_non_zero_stream = true;
343
344 return visit_continue;
345 }
346
347 bool error()
348 {
349 return invalid_stream_id != 0;
350 }
351
352 const char *error_func()
353 {
354 return invalid_stream_id_from_emit_vertex ?
355 "EmitStreamVertex" : "EndStreamPrimitive";
356 }
357
358 int error_stream()
359 {
360 return invalid_stream_id;
361 }
362
363 bool uses_streams()
364 {
365 return uses_non_zero_stream;
366 }
367
368 bool uses_end_primitive()
369 {
370 return end_primitive_found;
371 }
372
373 private:
374 int max_stream_allowed;
375 int invalid_stream_id;
376 bool invalid_stream_id_from_emit_vertex;
377 bool end_primitive_found;
378 bool uses_non_zero_stream;
379 };
380
381 /* Class that finds array derefs and check if indexes are dynamic. */
382 class dynamic_sampler_array_indexing_visitor : public ir_hierarchical_visitor
383 {
384 public:
385 dynamic_sampler_array_indexing_visitor() :
386 dynamic_sampler_array_indexing(false)
387 {
388 }
389
390 ir_visitor_status visit_enter(ir_dereference_array *ir)
391 {
392 if (!ir->variable_referenced())
393 return visit_continue;
394
395 if (!ir->variable_referenced()->type->contains_sampler())
396 return visit_continue;
397
398 if (!ir->array_index->constant_expression_value()) {
399 dynamic_sampler_array_indexing = true;
400 return visit_stop;
401 }
402 return visit_continue;
403 }
404
405 bool uses_dynamic_sampler_array_indexing()
406 {
407 return dynamic_sampler_array_indexing;
408 }
409
410 private:
411 bool dynamic_sampler_array_indexing;
412 };
413
414 } /* anonymous namespace */
415
416 void
417 linker_error(gl_shader_program *prog, const char *fmt, ...)
418 {
419 va_list ap;
420
421 ralloc_strcat(&prog->data->InfoLog, "error: ");
422 va_start(ap, fmt);
423 ralloc_vasprintf_append(&prog->data->InfoLog, fmt, ap);
424 va_end(ap);
425
426 prog->data->LinkStatus = linking_failure;
427 }
428
429
430 void
431 linker_warning(gl_shader_program *prog, const char *fmt, ...)
432 {
433 va_list ap;
434
435 ralloc_strcat(&prog->data->InfoLog, "warning: ");
436 va_start(ap, fmt);
437 ralloc_vasprintf_append(&prog->data->InfoLog, fmt, ap);
438 va_end(ap);
439
440 }
441
442
443 /**
444 * Given a string identifying a program resource, break it into a base name
445 * and an optional array index in square brackets.
446 *
447 * If an array index is present, \c out_base_name_end is set to point to the
448 * "[" that precedes the array index, and the array index itself is returned
449 * as a long.
450 *
451 * If no array index is present (or if the array index is negative or
452 * mal-formed), \c out_base_name_end, is set to point to the null terminator
453 * at the end of the input string, and -1 is returned.
454 *
455 * Only the final array index is parsed; if the string contains other array
456 * indices (or structure field accesses), they are left in the base name.
457 *
458 * No attempt is made to check that the base name is properly formed;
459 * typically the caller will look up the base name in a hash table, so
460 * ill-formed base names simply turn into hash table lookup failures.
461 */
462 long
463 parse_program_resource_name(const GLchar *name,
464 const GLchar **out_base_name_end)
465 {
466 /* Section 7.3.1 ("Program Interfaces") of the OpenGL 4.3 spec says:
467 *
468 * "When an integer array element or block instance number is part of
469 * the name string, it will be specified in decimal form without a "+"
470 * or "-" sign or any extra leading zeroes. Additionally, the name
471 * string will not include white space anywhere in the string."
472 */
473
474 const size_t len = strlen(name);
475 *out_base_name_end = name + len;
476
477 if (len == 0 || name[len-1] != ']')
478 return -1;
479
480 /* Walk backwards over the string looking for a non-digit character. This
481 * had better be the opening bracket for an array index.
482 *
483 * Initially, i specifies the location of the ']'. Since the string may
484 * contain only the ']' charcater, walk backwards very carefully.
485 */
486 unsigned i;
487 for (i = len - 1; (i > 0) && isdigit(name[i-1]); --i)
488 /* empty */ ;
489
490 if ((i == 0) || name[i-1] != '[')
491 return -1;
492
493 long array_index = strtol(&name[i], NULL, 10);
494 if (array_index < 0)
495 return -1;
496
497 /* Check for leading zero */
498 if (name[i] == '0' && name[i+1] != ']')
499 return -1;
500
501 *out_base_name_end = name + (i - 1);
502 return array_index;
503 }
504
505
506 void
507 link_invalidate_variable_locations(exec_list *ir)
508 {
509 foreach_in_list(ir_instruction, node, ir) {
510 ir_variable *const var = node->as_variable();
511
512 if (var == NULL)
513 continue;
514
515 /* Only assign locations for variables that lack an explicit location.
516 * Explicit locations are set for all built-in variables, generic vertex
517 * shader inputs (via layout(location=...)), and generic fragment shader
518 * outputs (also via layout(location=...)).
519 */
520 if (!var->data.explicit_location) {
521 var->data.location = -1;
522 var->data.location_frac = 0;
523 }
524
525 /* ir_variable::is_unmatched_generic_inout is used by the linker while
526 * connecting outputs from one stage to inputs of the next stage.
527 */
528 if (var->data.explicit_location &&
529 var->data.location < VARYING_SLOT_VAR0) {
530 var->data.is_unmatched_generic_inout = 0;
531 } else {
532 var->data.is_unmatched_generic_inout = 1;
533 }
534 }
535 }
536
537
538 /**
539 * Set clip_distance_array_size based and cull_distance_array_size on the given
540 * shader.
541 *
542 * Also check for errors based on incorrect usage of gl_ClipVertex and
543 * gl_ClipDistance and gl_CullDistance.
544 * Additionally test whether the arrays gl_ClipDistance and gl_CullDistance
545 * exceed the maximum size defined by gl_MaxCombinedClipAndCullDistances.
546 *
547 * Return false if an error was reported.
548 */
549 static void
550 analyze_clip_cull_usage(struct gl_shader_program *prog,
551 struct gl_linked_shader *shader,
552 struct gl_context *ctx,
553 GLuint *clip_distance_array_size,
554 GLuint *cull_distance_array_size)
555 {
556 *clip_distance_array_size = 0;
557 *cull_distance_array_size = 0;
558
559 if (prog->data->Version >= (prog->IsES ? 300 : 130)) {
560 /* From section 7.1 (Vertex Shader Special Variables) of the
561 * GLSL 1.30 spec:
562 *
563 * "It is an error for a shader to statically write both
564 * gl_ClipVertex and gl_ClipDistance."
565 *
566 * This does not apply to GLSL ES shaders, since GLSL ES defines neither
567 * gl_ClipVertex nor gl_ClipDistance. However with
568 * GL_EXT_clip_cull_distance, this functionality is exposed in ES 3.0.
569 */
570 find_assignment_visitor clip_distance("gl_ClipDistance");
571 find_assignment_visitor cull_distance("gl_CullDistance");
572
573 clip_distance.run(shader->ir);
574 cull_distance.run(shader->ir);
575
576 /* From the ARB_cull_distance spec:
577 *
578 * It is a compile-time or link-time error for the set of shaders forming
579 * a program to statically read or write both gl_ClipVertex and either
580 * gl_ClipDistance or gl_CullDistance.
581 *
582 * This does not apply to GLSL ES shaders, since GLSL ES doesn't define
583 * gl_ClipVertex.
584 */
585 if (!prog->IsES) {
586 find_assignment_visitor clip_vertex("gl_ClipVertex");
587
588 clip_vertex.run(shader->ir);
589
590 if (clip_vertex.variable_found() && clip_distance.variable_found()) {
591 linker_error(prog, "%s shader writes to both `gl_ClipVertex' "
592 "and `gl_ClipDistance'\n",
593 _mesa_shader_stage_to_string(shader->Stage));
594 return;
595 }
596 if (clip_vertex.variable_found() && cull_distance.variable_found()) {
597 linker_error(prog, "%s shader writes to both `gl_ClipVertex' "
598 "and `gl_CullDistance'\n",
599 _mesa_shader_stage_to_string(shader->Stage));
600 return;
601 }
602 }
603
604 if (clip_distance.variable_found()) {
605 ir_variable *clip_distance_var =
606 shader->symbols->get_variable("gl_ClipDistance");
607 assert(clip_distance_var);
608 *clip_distance_array_size = clip_distance_var->type->length;
609 }
610 if (cull_distance.variable_found()) {
611 ir_variable *cull_distance_var =
612 shader->symbols->get_variable("gl_CullDistance");
613 assert(cull_distance_var);
614 *cull_distance_array_size = cull_distance_var->type->length;
615 }
616 /* From the ARB_cull_distance spec:
617 *
618 * It is a compile-time or link-time error for the set of shaders forming
619 * a program to have the sum of the sizes of the gl_ClipDistance and
620 * gl_CullDistance arrays to be larger than
621 * gl_MaxCombinedClipAndCullDistances.
622 */
623 if ((*clip_distance_array_size + *cull_distance_array_size) >
624 ctx->Const.MaxClipPlanes) {
625 linker_error(prog, "%s shader: the combined size of "
626 "'gl_ClipDistance' and 'gl_CullDistance' size cannot "
627 "be larger than "
628 "gl_MaxCombinedClipAndCullDistances (%u)",
629 _mesa_shader_stage_to_string(shader->Stage),
630 ctx->Const.MaxClipPlanes);
631 }
632 }
633 }
634
635
636 /**
637 * Verify that a vertex shader executable meets all semantic requirements.
638 *
639 * Also sets info.clip_distance_array_size and
640 * info.cull_distance_array_size as a side effect.
641 *
642 * \param shader Vertex shader executable to be verified
643 */
644 void
645 validate_vertex_shader_executable(struct gl_shader_program *prog,
646 struct gl_linked_shader *shader,
647 struct gl_context *ctx)
648 {
649 if (shader == NULL)
650 return;
651
652 /* From the GLSL 1.10 spec, page 48:
653 *
654 * "The variable gl_Position is available only in the vertex
655 * language and is intended for writing the homogeneous vertex
656 * position. All executions of a well-formed vertex shader
657 * executable must write a value into this variable. [...] The
658 * variable gl_Position is available only in the vertex
659 * language and is intended for writing the homogeneous vertex
660 * position. All executions of a well-formed vertex shader
661 * executable must write a value into this variable."
662 *
663 * while in GLSL 1.40 this text is changed to:
664 *
665 * "The variable gl_Position is available only in the vertex
666 * language and is intended for writing the homogeneous vertex
667 * position. It can be written at any time during shader
668 * execution. It may also be read back by a vertex shader
669 * after being written. This value will be used by primitive
670 * assembly, clipping, culling, and other fixed functionality
671 * operations, if present, that operate on primitives after
672 * vertex processing has occurred. Its value is undefined if
673 * the vertex shader executable does not write gl_Position."
674 *
675 * All GLSL ES Versions are similar to GLSL 1.40--failing to write to
676 * gl_Position is not an error.
677 */
678 if (prog->data->Version < (prog->IsES ? 300 : 140)) {
679 find_assignment_visitor find("gl_Position");
680 find.run(shader->ir);
681 if (!find.variable_found()) {
682 if (prog->IsES) {
683 linker_warning(prog,
684 "vertex shader does not write to `gl_Position'. "
685 "Its value is undefined. \n");
686 } else {
687 linker_error(prog,
688 "vertex shader does not write to `gl_Position'. \n");
689 }
690 return;
691 }
692 }
693
694 analyze_clip_cull_usage(prog, shader, ctx,
695 &shader->Program->info.clip_distance_array_size,
696 &shader->Program->info.cull_distance_array_size);
697 }
698
699 void
700 validate_tess_eval_shader_executable(struct gl_shader_program *prog,
701 struct gl_linked_shader *shader,
702 struct gl_context *ctx)
703 {
704 if (shader == NULL)
705 return;
706
707 analyze_clip_cull_usage(prog, shader, ctx,
708 &shader->Program->info.clip_distance_array_size,
709 &shader->Program->info.cull_distance_array_size);
710 }
711
712
713 /**
714 * Verify that a fragment shader executable meets all semantic requirements
715 *
716 * \param shader Fragment shader executable to be verified
717 */
718 void
719 validate_fragment_shader_executable(struct gl_shader_program *prog,
720 struct gl_linked_shader *shader)
721 {
722 if (shader == NULL)
723 return;
724
725 find_assignment_visitor frag_color("gl_FragColor");
726 find_assignment_visitor frag_data("gl_FragData");
727
728 frag_color.run(shader->ir);
729 frag_data.run(shader->ir);
730
731 if (frag_color.variable_found() && frag_data.variable_found()) {
732 linker_error(prog, "fragment shader writes to both "
733 "`gl_FragColor' and `gl_FragData'\n");
734 }
735 }
736
737 /**
738 * Verify that a geometry shader executable meets all semantic requirements
739 *
740 * Also sets prog->Geom.VerticesIn, and info.clip_distance_array_sizeand
741 * info.cull_distance_array_size as a side effect.
742 *
743 * \param shader Geometry shader executable to be verified
744 */
745 void
746 validate_geometry_shader_executable(struct gl_shader_program *prog,
747 struct gl_linked_shader *shader,
748 struct gl_context *ctx)
749 {
750 if (shader == NULL)
751 return;
752
753 unsigned num_vertices =
754 vertices_per_prim(shader->Program->info.gs.input_primitive);
755 prog->Geom.VerticesIn = num_vertices;
756
757 analyze_clip_cull_usage(prog, shader, ctx,
758 &shader->Program->info.clip_distance_array_size,
759 &shader->Program->info.cull_distance_array_size);
760 }
761
762 /**
763 * Check if geometry shaders emit to non-zero streams and do corresponding
764 * validations.
765 */
766 static void
767 validate_geometry_shader_emissions(struct gl_context *ctx,
768 struct gl_shader_program *prog)
769 {
770 struct gl_linked_shader *sh = prog->_LinkedShaders[MESA_SHADER_GEOMETRY];
771
772 if (sh != NULL) {
773 find_emit_vertex_visitor emit_vertex(ctx->Const.MaxVertexStreams - 1);
774 emit_vertex.run(sh->ir);
775 if (emit_vertex.error()) {
776 linker_error(prog, "Invalid call %s(%d). Accepted values for the "
777 "stream parameter are in the range [0, %d].\n",
778 emit_vertex.error_func(),
779 emit_vertex.error_stream(),
780 ctx->Const.MaxVertexStreams - 1);
781 }
782 prog->Geom.UsesStreams = emit_vertex.uses_streams();
783 prog->Geom.UsesEndPrimitive = emit_vertex.uses_end_primitive();
784
785 /* From the ARB_gpu_shader5 spec:
786 *
787 * "Multiple vertex streams are supported only if the output primitive
788 * type is declared to be "points". A program will fail to link if it
789 * contains a geometry shader calling EmitStreamVertex() or
790 * EndStreamPrimitive() if its output primitive type is not "points".
791 *
792 * However, in the same spec:
793 *
794 * "The function EmitVertex() is equivalent to calling EmitStreamVertex()
795 * with <stream> set to zero."
796 *
797 * And:
798 *
799 * "The function EndPrimitive() is equivalent to calling
800 * EndStreamPrimitive() with <stream> set to zero."
801 *
802 * Since we can call EmitVertex() and EndPrimitive() when we output
803 * primitives other than points, calling EmitStreamVertex(0) or
804 * EmitEndPrimitive(0) should not produce errors. This it also what Nvidia
805 * does. Currently we only set prog->Geom.UsesStreams to TRUE when
806 * EmitStreamVertex() or EmitEndPrimitive() are called with a non-zero
807 * stream.
808 */
809 if (prog->Geom.UsesStreams &&
810 sh->Program->info.gs.output_primitive != GL_POINTS) {
811 linker_error(prog, "EmitStreamVertex(n) and EndStreamPrimitive(n) "
812 "with n>0 requires point output\n");
813 }
814 }
815 }
816
817 bool
818 validate_intrastage_arrays(struct gl_shader_program *prog,
819 ir_variable *const var,
820 ir_variable *const existing)
821 {
822 /* Consider the types to be "the same" if both types are arrays
823 * of the same type and one of the arrays is implicitly sized.
824 * In addition, set the type of the linked variable to the
825 * explicitly sized array.
826 */
827 if (var->type->is_array() && existing->type->is_array()) {
828 if ((var->type->fields.array == existing->type->fields.array) &&
829 ((var->type->length == 0)|| (existing->type->length == 0))) {
830 if (var->type->length != 0) {
831 if ((int)var->type->length <= existing->data.max_array_access) {
832 linker_error(prog, "%s `%s' declared as type "
833 "`%s' but outermost dimension has an index"
834 " of `%i'\n",
835 mode_string(var),
836 var->name, var->type->name,
837 existing->data.max_array_access);
838 }
839 existing->type = var->type;
840 return true;
841 } else if (existing->type->length != 0) {
842 if((int)existing->type->length <= var->data.max_array_access &&
843 !existing->data.from_ssbo_unsized_array) {
844 linker_error(prog, "%s `%s' declared as type "
845 "`%s' but outermost dimension has an index"
846 " of `%i'\n",
847 mode_string(var),
848 var->name, existing->type->name,
849 var->data.max_array_access);
850 }
851 return true;
852 }
853 } else {
854 /* The arrays of structs could have different glsl_type pointers but
855 * they are actually the same type. Use record_compare() to check that.
856 */
857 if (existing->type->fields.array->is_record() &&
858 var->type->fields.array->is_record() &&
859 existing->type->fields.array->record_compare(var->type->fields.array))
860 return true;
861 }
862 }
863 return false;
864 }
865
866
867 /**
868 * Perform validation of global variables used across multiple shaders
869 */
870 void
871 cross_validate_globals(struct gl_shader_program *prog,
872 struct exec_list *ir, glsl_symbol_table *variables,
873 bool uniforms_only)
874 {
875 foreach_in_list(ir_instruction, node, ir) {
876 ir_variable *const var = node->as_variable();
877
878 if (var == NULL)
879 continue;
880
881 if (uniforms_only && (var->data.mode != ir_var_uniform && var->data.mode != ir_var_shader_storage))
882 continue;
883
884 /* don't cross validate subroutine uniforms */
885 if (var->type->contains_subroutine())
886 continue;
887
888 /* Don't cross validate interface instances. These are only relevant
889 * inside a shader. The cross validation is done at the Interface Block
890 * name level.
891 */
892 if (var->is_interface_instance())
893 continue;
894
895 /* Don't cross validate temporaries that are at global scope. These
896 * will eventually get pulled into the shaders 'main'.
897 */
898 if (var->data.mode == ir_var_temporary)
899 continue;
900
901 /* If a global with this name has already been seen, verify that the
902 * new instance has the same type. In addition, if the globals have
903 * initializers, the values of the initializers must be the same.
904 */
905 ir_variable *const existing = variables->get_variable(var->name);
906 if (existing != NULL) {
907 /* Check if types match. */
908 if (var->type != existing->type) {
909 if (!validate_intrastage_arrays(prog, var, existing)) {
910 if (var->type->is_record() && existing->type->is_record()
911 && existing->type->record_compare(var->type)) {
912 existing->type = var->type;
913 } else {
914 /* If it is an unsized array in a Shader Storage Block,
915 * two different shaders can access to different elements.
916 * Because of that, they might be converted to different
917 * sized arrays, then check that they are compatible but
918 * ignore the array size.
919 */
920 if (!(var->data.mode == ir_var_shader_storage &&
921 var->data.from_ssbo_unsized_array &&
922 existing->data.mode == ir_var_shader_storage &&
923 existing->data.from_ssbo_unsized_array &&
924 var->type->gl_type == existing->type->gl_type)) {
925 linker_error(prog, "%s `%s' declared as type "
926 "`%s' and type `%s'\n",
927 mode_string(var),
928 var->name, var->type->name,
929 existing->type->name);
930 return;
931 }
932 }
933 }
934 }
935
936 if (var->data.explicit_location) {
937 if (existing->data.explicit_location
938 && (var->data.location != existing->data.location)) {
939 linker_error(prog, "explicit locations for %s "
940 "`%s' have differing values\n",
941 mode_string(var), var->name);
942 return;
943 }
944
945 if (var->data.location_frac != existing->data.location_frac) {
946 linker_error(prog, "explicit components for %s `%s' have "
947 "differing values\n", mode_string(var), var->name);
948 return;
949 }
950
951 existing->data.location = var->data.location;
952 existing->data.explicit_location = true;
953 } else {
954 /* Check if uniform with implicit location was marked explicit
955 * by earlier shader stage. If so, mark it explicit in this stage
956 * too to make sure later processing does not treat it as
957 * implicit one.
958 */
959 if (existing->data.explicit_location) {
960 var->data.location = existing->data.location;
961 var->data.explicit_location = true;
962 }
963 }
964
965 /* From the GLSL 4.20 specification:
966 * "A link error will result if two compilation units in a program
967 * specify different integer-constant bindings for the same
968 * opaque-uniform name. However, it is not an error to specify a
969 * binding on some but not all declarations for the same name"
970 */
971 if (var->data.explicit_binding) {
972 if (existing->data.explicit_binding &&
973 var->data.binding != existing->data.binding) {
974 linker_error(prog, "explicit bindings for %s "
975 "`%s' have differing values\n",
976 mode_string(var), var->name);
977 return;
978 }
979
980 existing->data.binding = var->data.binding;
981 existing->data.explicit_binding = true;
982 }
983
984 if (var->type->contains_atomic() &&
985 var->data.offset != existing->data.offset) {
986 linker_error(prog, "offset specifications for %s "
987 "`%s' have differing values\n",
988 mode_string(var), var->name);
989 return;
990 }
991
992 /* Validate layout qualifiers for gl_FragDepth.
993 *
994 * From the AMD/ARB_conservative_depth specs:
995 *
996 * "If gl_FragDepth is redeclared in any fragment shader in a
997 * program, it must be redeclared in all fragment shaders in
998 * that program that have static assignments to
999 * gl_FragDepth. All redeclarations of gl_FragDepth in all
1000 * fragment shaders in a single program must have the same set
1001 * of qualifiers."
1002 */
1003 if (strcmp(var->name, "gl_FragDepth") == 0) {
1004 bool layout_declared = var->data.depth_layout != ir_depth_layout_none;
1005 bool layout_differs =
1006 var->data.depth_layout != existing->data.depth_layout;
1007
1008 if (layout_declared && layout_differs) {
1009 linker_error(prog,
1010 "All redeclarations of gl_FragDepth in all "
1011 "fragment shaders in a single program must have "
1012 "the same set of qualifiers.\n");
1013 }
1014
1015 if (var->data.used && layout_differs) {
1016 linker_error(prog,
1017 "If gl_FragDepth is redeclared with a layout "
1018 "qualifier in any fragment shader, it must be "
1019 "redeclared with the same layout qualifier in "
1020 "all fragment shaders that have assignments to "
1021 "gl_FragDepth\n");
1022 }
1023 }
1024
1025 /* Page 35 (page 41 of the PDF) of the GLSL 4.20 spec says:
1026 *
1027 * "If a shared global has multiple initializers, the
1028 * initializers must all be constant expressions, and they
1029 * must all have the same value. Otherwise, a link error will
1030 * result. (A shared global having only one initializer does
1031 * not require that initializer to be a constant expression.)"
1032 *
1033 * Previous to 4.20 the GLSL spec simply said that initializers
1034 * must have the same value. In this case of non-constant
1035 * initializers, this was impossible to determine. As a result,
1036 * no vendor actually implemented that behavior. The 4.20
1037 * behavior matches the implemented behavior of at least one other
1038 * vendor, so we'll implement that for all GLSL versions.
1039 */
1040 if (var->constant_initializer != NULL) {
1041 if (existing->constant_initializer != NULL) {
1042 if (!var->constant_initializer->has_value(existing->constant_initializer)) {
1043 linker_error(prog, "initializers for %s "
1044 "`%s' have differing values\n",
1045 mode_string(var), var->name);
1046 return;
1047 }
1048 } else {
1049 /* If the first-seen instance of a particular uniform did
1050 * not have an initializer but a later instance does,
1051 * replace the former with the later.
1052 */
1053 variables->replace_variable(existing->name, var);
1054 }
1055 }
1056
1057 if (var->data.has_initializer) {
1058 if (existing->data.has_initializer
1059 && (var->constant_initializer == NULL
1060 || existing->constant_initializer == NULL)) {
1061 linker_error(prog,
1062 "shared global variable `%s' has multiple "
1063 "non-constant initializers.\n",
1064 var->name);
1065 return;
1066 }
1067 }
1068
1069 if (existing->data.invariant != var->data.invariant) {
1070 linker_error(prog, "declarations for %s `%s' have "
1071 "mismatching invariant qualifiers\n",
1072 mode_string(var), var->name);
1073 return;
1074 }
1075 if (existing->data.centroid != var->data.centroid) {
1076 linker_error(prog, "declarations for %s `%s' have "
1077 "mismatching centroid qualifiers\n",
1078 mode_string(var), var->name);
1079 return;
1080 }
1081 if (existing->data.sample != var->data.sample) {
1082 linker_error(prog, "declarations for %s `%s` have "
1083 "mismatching sample qualifiers\n",
1084 mode_string(var), var->name);
1085 return;
1086 }
1087 if (existing->data.image_format != var->data.image_format) {
1088 linker_error(prog, "declarations for %s `%s` have "
1089 "mismatching image format qualifiers\n",
1090 mode_string(var), var->name);
1091 return;
1092 }
1093
1094 /* Only in GLSL ES 3.10, the precision qualifier should not match
1095 * between block members defined in matched block names within a
1096 * shader interface.
1097 *
1098 * In GLSL ES 3.00 and ES 3.20, precision qualifier for each block
1099 * member should match.
1100 */
1101 if (prog->IsES && (prog->data->Version != 310 ||
1102 !var->get_interface_type()) &&
1103 existing->data.precision != var->data.precision) {
1104 linker_error(prog, "declarations for %s `%s` have "
1105 "mismatching precision qualifiers\n",
1106 mode_string(var), var->name);
1107 return;
1108 }
1109 } else
1110 variables->add_variable(var);
1111 }
1112 }
1113
1114
1115 /**
1116 * Perform validation of uniforms used across multiple shader stages
1117 */
1118 void
1119 cross_validate_uniforms(struct gl_shader_program *prog)
1120 {
1121 glsl_symbol_table variables;
1122 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1123 if (prog->_LinkedShaders[i] == NULL)
1124 continue;
1125
1126 cross_validate_globals(prog, prog->_LinkedShaders[i]->ir, &variables,
1127 true);
1128 }
1129 }
1130
1131 /**
1132 * Accumulates the array of buffer blocks and checks that all definitions of
1133 * blocks agree on their contents.
1134 */
1135 static bool
1136 interstage_cross_validate_uniform_blocks(struct gl_shader_program *prog,
1137 bool validate_ssbo)
1138 {
1139 int *InterfaceBlockStageIndex[MESA_SHADER_STAGES];
1140 struct gl_uniform_block *blks = NULL;
1141 unsigned *num_blks = validate_ssbo ? &prog->data->NumShaderStorageBlocks :
1142 &prog->data->NumUniformBlocks;
1143
1144 unsigned max_num_buffer_blocks = 0;
1145 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1146 if (prog->_LinkedShaders[i]) {
1147 if (validate_ssbo) {
1148 max_num_buffer_blocks +=
1149 prog->_LinkedShaders[i]->Program->info.num_ssbos;
1150 } else {
1151 max_num_buffer_blocks +=
1152 prog->_LinkedShaders[i]->Program->info.num_ubos;
1153 }
1154 }
1155 }
1156
1157 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1158 struct gl_linked_shader *sh = prog->_LinkedShaders[i];
1159
1160 InterfaceBlockStageIndex[i] = new int[max_num_buffer_blocks];
1161 for (unsigned int j = 0; j < max_num_buffer_blocks; j++)
1162 InterfaceBlockStageIndex[i][j] = -1;
1163
1164 if (sh == NULL)
1165 continue;
1166
1167 unsigned sh_num_blocks;
1168 struct gl_uniform_block **sh_blks;
1169 if (validate_ssbo) {
1170 sh_num_blocks = prog->_LinkedShaders[i]->Program->info.num_ssbos;
1171 sh_blks = sh->Program->sh.ShaderStorageBlocks;
1172 } else {
1173 sh_num_blocks = prog->_LinkedShaders[i]->Program->info.num_ubos;
1174 sh_blks = sh->Program->sh.UniformBlocks;
1175 }
1176
1177 for (unsigned int j = 0; j < sh_num_blocks; j++) {
1178 int index = link_cross_validate_uniform_block(prog, &blks, num_blks,
1179 sh_blks[j]);
1180
1181 if (index == -1) {
1182 linker_error(prog, "buffer block `%s' has mismatching "
1183 "definitions\n", sh_blks[j]->Name);
1184
1185 for (unsigned k = 0; k <= i; k++) {
1186 delete[] InterfaceBlockStageIndex[k];
1187 }
1188
1189 /* Reset the block count. This will help avoid various segfaults
1190 * from api calls that assume the array exists due to the count
1191 * being non-zero.
1192 */
1193 *num_blks = 0;
1194 return false;
1195 }
1196
1197 InterfaceBlockStageIndex[i][index] = j;
1198 }
1199 }
1200
1201 /* Update per stage block pointers to point to the program list.
1202 * FIXME: We should be able to free the per stage blocks here.
1203 */
1204 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1205 for (unsigned j = 0; j < *num_blks; j++) {
1206 int stage_index = InterfaceBlockStageIndex[i][j];
1207
1208 if (stage_index != -1) {
1209 struct gl_linked_shader *sh = prog->_LinkedShaders[i];
1210
1211 struct gl_uniform_block **sh_blks = validate_ssbo ?
1212 sh->Program->sh.ShaderStorageBlocks :
1213 sh->Program->sh.UniformBlocks;
1214
1215 blks[j].stageref |= sh_blks[stage_index]->stageref;
1216 sh_blks[stage_index] = &blks[j];
1217 }
1218 }
1219 }
1220
1221 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1222 delete[] InterfaceBlockStageIndex[i];
1223 }
1224
1225 if (validate_ssbo)
1226 prog->data->ShaderStorageBlocks = blks;
1227 else
1228 prog->data->UniformBlocks = blks;
1229
1230 return true;
1231 }
1232
1233
1234 /**
1235 * Populates a shaders symbol table with all global declarations
1236 */
1237 static void
1238 populate_symbol_table(gl_linked_shader *sh)
1239 {
1240 sh->symbols = new(sh) glsl_symbol_table;
1241
1242 foreach_in_list(ir_instruction, inst, sh->ir) {
1243 ir_variable *var;
1244 ir_function *func;
1245
1246 if ((func = inst->as_function()) != NULL) {
1247 sh->symbols->add_function(func);
1248 } else if ((var = inst->as_variable()) != NULL) {
1249 if (var->data.mode != ir_var_temporary)
1250 sh->symbols->add_variable(var);
1251 }
1252 }
1253 }
1254
1255
1256 /**
1257 * Remap variables referenced in an instruction tree
1258 *
1259 * This is used when instruction trees are cloned from one shader and placed in
1260 * another. These trees will contain references to \c ir_variable nodes that
1261 * do not exist in the target shader. This function finds these \c ir_variable
1262 * references and replaces the references with matching variables in the target
1263 * shader.
1264 *
1265 * If there is no matching variable in the target shader, a clone of the
1266 * \c ir_variable is made and added to the target shader. The new variable is
1267 * added to \b both the instruction stream and the symbol table.
1268 *
1269 * \param inst IR tree that is to be processed.
1270 * \param symbols Symbol table containing global scope symbols in the
1271 * linked shader.
1272 * \param instructions Instruction stream where new variable declarations
1273 * should be added.
1274 */
1275 void
1276 remap_variables(ir_instruction *inst, struct gl_linked_shader *target,
1277 hash_table *temps)
1278 {
1279 class remap_visitor : public ir_hierarchical_visitor {
1280 public:
1281 remap_visitor(struct gl_linked_shader *target, hash_table *temps)
1282 {
1283 this->target = target;
1284 this->symbols = target->symbols;
1285 this->instructions = target->ir;
1286 this->temps = temps;
1287 }
1288
1289 virtual ir_visitor_status visit(ir_dereference_variable *ir)
1290 {
1291 if (ir->var->data.mode == ir_var_temporary) {
1292 hash_entry *entry = _mesa_hash_table_search(temps, ir->var);
1293 ir_variable *var = entry ? (ir_variable *) entry->data : NULL;
1294
1295 assert(var != NULL);
1296 ir->var = var;
1297 return visit_continue;
1298 }
1299
1300 ir_variable *const existing =
1301 this->symbols->get_variable(ir->var->name);
1302 if (existing != NULL)
1303 ir->var = existing;
1304 else {
1305 ir_variable *copy = ir->var->clone(this->target, NULL);
1306
1307 this->symbols->add_variable(copy);
1308 this->instructions->push_head(copy);
1309 ir->var = copy;
1310 }
1311
1312 return visit_continue;
1313 }
1314
1315 private:
1316 struct gl_linked_shader *target;
1317 glsl_symbol_table *symbols;
1318 exec_list *instructions;
1319 hash_table *temps;
1320 };
1321
1322 remap_visitor v(target, temps);
1323
1324 inst->accept(&v);
1325 }
1326
1327
1328 /**
1329 * Move non-declarations from one instruction stream to another
1330 *
1331 * The intended usage pattern of this function is to pass the pointer to the
1332 * head sentinel of a list (i.e., a pointer to the list cast to an \c exec_node
1333 * pointer) for \c last and \c false for \c make_copies on the first
1334 * call. Successive calls pass the return value of the previous call for
1335 * \c last and \c true for \c make_copies.
1336 *
1337 * \param instructions Source instruction stream
1338 * \param last Instruction after which new instructions should be
1339 * inserted in the target instruction stream
1340 * \param make_copies Flag selecting whether instructions in \c instructions
1341 * should be copied (via \c ir_instruction::clone) into the
1342 * target list or moved.
1343 *
1344 * \return
1345 * The new "last" instruction in the target instruction stream. This pointer
1346 * is suitable for use as the \c last parameter of a later call to this
1347 * function.
1348 */
1349 exec_node *
1350 move_non_declarations(exec_list *instructions, exec_node *last,
1351 bool make_copies, gl_linked_shader *target)
1352 {
1353 hash_table *temps = NULL;
1354
1355 if (make_copies)
1356 temps = _mesa_hash_table_create(NULL, _mesa_hash_pointer,
1357 _mesa_key_pointer_equal);
1358
1359 foreach_in_list_safe(ir_instruction, inst, instructions) {
1360 if (inst->as_function())
1361 continue;
1362
1363 ir_variable *var = inst->as_variable();
1364 if ((var != NULL) && (var->data.mode != ir_var_temporary))
1365 continue;
1366
1367 assert(inst->as_assignment()
1368 || inst->as_call()
1369 || inst->as_if() /* for initializers with the ?: operator */
1370 || ((var != NULL) && (var->data.mode == ir_var_temporary)));
1371
1372 if (make_copies) {
1373 inst = inst->clone(target, NULL);
1374
1375 if (var != NULL)
1376 _mesa_hash_table_insert(temps, var, inst);
1377 else
1378 remap_variables(inst, target, temps);
1379 } else {
1380 inst->remove();
1381 }
1382
1383 last->insert_after(inst);
1384 last = inst;
1385 }
1386
1387 if (make_copies)
1388 _mesa_hash_table_destroy(temps, NULL);
1389
1390 return last;
1391 }
1392
1393
1394 /**
1395 * This class is only used in link_intrastage_shaders() below but declaring
1396 * it inside that function leads to compiler warnings with some versions of
1397 * gcc.
1398 */
1399 class array_sizing_visitor : public deref_type_updater {
1400 public:
1401 array_sizing_visitor()
1402 : mem_ctx(ralloc_context(NULL)),
1403 unnamed_interfaces(_mesa_hash_table_create(NULL, _mesa_hash_pointer,
1404 _mesa_key_pointer_equal))
1405 {
1406 }
1407
1408 ~array_sizing_visitor()
1409 {
1410 _mesa_hash_table_destroy(this->unnamed_interfaces, NULL);
1411 ralloc_free(this->mem_ctx);
1412 }
1413
1414 virtual ir_visitor_status visit(ir_variable *var)
1415 {
1416 const glsl_type *type_without_array;
1417 bool implicit_sized_array = var->data.implicit_sized_array;
1418 fixup_type(&var->type, var->data.max_array_access,
1419 var->data.from_ssbo_unsized_array,
1420 &implicit_sized_array);
1421 var->data.implicit_sized_array = implicit_sized_array;
1422 type_without_array = var->type->without_array();
1423 if (var->type->is_interface()) {
1424 if (interface_contains_unsized_arrays(var->type)) {
1425 const glsl_type *new_type =
1426 resize_interface_members(var->type,
1427 var->get_max_ifc_array_access(),
1428 var->is_in_shader_storage_block());
1429 var->type = new_type;
1430 var->change_interface_type(new_type);
1431 }
1432 } else if (type_without_array->is_interface()) {
1433 if (interface_contains_unsized_arrays(type_without_array)) {
1434 const glsl_type *new_type =
1435 resize_interface_members(type_without_array,
1436 var->get_max_ifc_array_access(),
1437 var->is_in_shader_storage_block());
1438 var->change_interface_type(new_type);
1439 var->type = update_interface_members_array(var->type, new_type);
1440 }
1441 } else if (const glsl_type *ifc_type = var->get_interface_type()) {
1442 /* Store a pointer to the variable in the unnamed_interfaces
1443 * hashtable.
1444 */
1445 hash_entry *entry =
1446 _mesa_hash_table_search(this->unnamed_interfaces,
1447 ifc_type);
1448
1449 ir_variable **interface_vars = entry ? (ir_variable **) entry->data : NULL;
1450
1451 if (interface_vars == NULL) {
1452 interface_vars = rzalloc_array(mem_ctx, ir_variable *,
1453 ifc_type->length);
1454 _mesa_hash_table_insert(this->unnamed_interfaces, ifc_type,
1455 interface_vars);
1456 }
1457 unsigned index = ifc_type->field_index(var->name);
1458 assert(index < ifc_type->length);
1459 assert(interface_vars[index] == NULL);
1460 interface_vars[index] = var;
1461 }
1462 return visit_continue;
1463 }
1464
1465 /**
1466 * For each unnamed interface block that was discovered while running the
1467 * visitor, adjust the interface type to reflect the newly assigned array
1468 * sizes, and fix up the ir_variable nodes to point to the new interface
1469 * type.
1470 */
1471 void fixup_unnamed_interface_types()
1472 {
1473 hash_table_call_foreach(this->unnamed_interfaces,
1474 fixup_unnamed_interface_type, NULL);
1475 }
1476
1477 private:
1478 /**
1479 * If the type pointed to by \c type represents an unsized array, replace
1480 * it with a sized array whose size is determined by max_array_access.
1481 */
1482 static void fixup_type(const glsl_type **type, unsigned max_array_access,
1483 bool from_ssbo_unsized_array, bool *implicit_sized)
1484 {
1485 if (!from_ssbo_unsized_array && (*type)->is_unsized_array()) {
1486 *type = glsl_type::get_array_instance((*type)->fields.array,
1487 max_array_access + 1);
1488 *implicit_sized = true;
1489 assert(*type != NULL);
1490 }
1491 }
1492
1493 static const glsl_type *
1494 update_interface_members_array(const glsl_type *type,
1495 const glsl_type *new_interface_type)
1496 {
1497 const glsl_type *element_type = type->fields.array;
1498 if (element_type->is_array()) {
1499 const glsl_type *new_array_type =
1500 update_interface_members_array(element_type, new_interface_type);
1501 return glsl_type::get_array_instance(new_array_type, type->length);
1502 } else {
1503 return glsl_type::get_array_instance(new_interface_type,
1504 type->length);
1505 }
1506 }
1507
1508 /**
1509 * Determine whether the given interface type contains unsized arrays (if
1510 * it doesn't, array_sizing_visitor doesn't need to process it).
1511 */
1512 static bool interface_contains_unsized_arrays(const glsl_type *type)
1513 {
1514 for (unsigned i = 0; i < type->length; i++) {
1515 const glsl_type *elem_type = type->fields.structure[i].type;
1516 if (elem_type->is_unsized_array())
1517 return true;
1518 }
1519 return false;
1520 }
1521
1522 /**
1523 * Create a new interface type based on the given type, with unsized arrays
1524 * replaced by sized arrays whose size is determined by
1525 * max_ifc_array_access.
1526 */
1527 static const glsl_type *
1528 resize_interface_members(const glsl_type *type,
1529 const int *max_ifc_array_access,
1530 bool is_ssbo)
1531 {
1532 unsigned num_fields = type->length;
1533 glsl_struct_field *fields = new glsl_struct_field[num_fields];
1534 memcpy(fields, type->fields.structure,
1535 num_fields * sizeof(*fields));
1536 for (unsigned i = 0; i < num_fields; i++) {
1537 bool implicit_sized_array = fields[i].implicit_sized_array;
1538 /* If SSBO last member is unsized array, we don't replace it by a sized
1539 * array.
1540 */
1541 if (is_ssbo && i == (num_fields - 1))
1542 fixup_type(&fields[i].type, max_ifc_array_access[i],
1543 true, &implicit_sized_array);
1544 else
1545 fixup_type(&fields[i].type, max_ifc_array_access[i],
1546 false, &implicit_sized_array);
1547 fields[i].implicit_sized_array = implicit_sized_array;
1548 }
1549 glsl_interface_packing packing =
1550 (glsl_interface_packing) type->interface_packing;
1551 bool row_major = (bool) type->interface_row_major;
1552 const glsl_type *new_ifc_type =
1553 glsl_type::get_interface_instance(fields, num_fields,
1554 packing, row_major, type->name);
1555 delete [] fields;
1556 return new_ifc_type;
1557 }
1558
1559 static void fixup_unnamed_interface_type(const void *key, void *data,
1560 void *)
1561 {
1562 const glsl_type *ifc_type = (const glsl_type *) key;
1563 ir_variable **interface_vars = (ir_variable **) data;
1564 unsigned num_fields = ifc_type->length;
1565 glsl_struct_field *fields = new glsl_struct_field[num_fields];
1566 memcpy(fields, ifc_type->fields.structure,
1567 num_fields * sizeof(*fields));
1568 bool interface_type_changed = false;
1569 for (unsigned i = 0; i < num_fields; i++) {
1570 if (interface_vars[i] != NULL &&
1571 fields[i].type != interface_vars[i]->type) {
1572 fields[i].type = interface_vars[i]->type;
1573 interface_type_changed = true;
1574 }
1575 }
1576 if (!interface_type_changed) {
1577 delete [] fields;
1578 return;
1579 }
1580 glsl_interface_packing packing =
1581 (glsl_interface_packing) ifc_type->interface_packing;
1582 bool row_major = (bool) ifc_type->interface_row_major;
1583 const glsl_type *new_ifc_type =
1584 glsl_type::get_interface_instance(fields, num_fields, packing,
1585 row_major, ifc_type->name);
1586 delete [] fields;
1587 for (unsigned i = 0; i < num_fields; i++) {
1588 if (interface_vars[i] != NULL)
1589 interface_vars[i]->change_interface_type(new_ifc_type);
1590 }
1591 }
1592
1593 /**
1594 * Memory context used to allocate the data in \c unnamed_interfaces.
1595 */
1596 void *mem_ctx;
1597
1598 /**
1599 * Hash table from const glsl_type * to an array of ir_variable *'s
1600 * pointing to the ir_variables constituting each unnamed interface block.
1601 */
1602 hash_table *unnamed_interfaces;
1603 };
1604
1605 static bool
1606 validate_xfb_buffer_stride(struct gl_context *ctx, unsigned idx,
1607 struct gl_shader_program *prog)
1608 {
1609 /* We will validate doubles at a later stage */
1610 if (prog->TransformFeedback.BufferStride[idx] % 4) {
1611 linker_error(prog, "invalid qualifier xfb_stride=%d must be a "
1612 "multiple of 4 or if its applied to a type that is "
1613 "or contains a double a multiple of 8.",
1614 prog->TransformFeedback.BufferStride[idx]);
1615 return false;
1616 }
1617
1618 if (prog->TransformFeedback.BufferStride[idx] / 4 >
1619 ctx->Const.MaxTransformFeedbackInterleavedComponents) {
1620 linker_error(prog, "The MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS "
1621 "limit has been exceeded.");
1622 return false;
1623 }
1624
1625 return true;
1626 }
1627
1628 /**
1629 * Check for conflicting xfb_stride default qualifiers and store buffer stride
1630 * for later use.
1631 */
1632 static void
1633 link_xfb_stride_layout_qualifiers(struct gl_context *ctx,
1634 struct gl_shader_program *prog,
1635 struct gl_linked_shader *linked_shader,
1636 struct gl_shader **shader_list,
1637 unsigned num_shaders)
1638 {
1639 for (unsigned i = 0; i < MAX_FEEDBACK_BUFFERS; i++) {
1640 prog->TransformFeedback.BufferStride[i] = 0;
1641 }
1642
1643 for (unsigned i = 0; i < num_shaders; i++) {
1644 struct gl_shader *shader = shader_list[i];
1645
1646 for (unsigned j = 0; j < MAX_FEEDBACK_BUFFERS; j++) {
1647 if (shader->TransformFeedbackBufferStride[j]) {
1648 if (prog->TransformFeedback.BufferStride[j] == 0) {
1649 prog->TransformFeedback.BufferStride[j] =
1650 shader->TransformFeedbackBufferStride[j];
1651 if (!validate_xfb_buffer_stride(ctx, j, prog))
1652 return;
1653 } else if (prog->TransformFeedback.BufferStride[j] !=
1654 shader->TransformFeedbackBufferStride[j]){
1655 linker_error(prog,
1656 "intrastage shaders defined with conflicting "
1657 "xfb_stride for buffer %d (%d and %d)\n", j,
1658 prog->TransformFeedback.BufferStride[j],
1659 shader->TransformFeedbackBufferStride[j]);
1660 return;
1661 }
1662 }
1663 }
1664 }
1665 }
1666
1667 /**
1668 * Check for conflicting bindless/bound sampler/image layout qualifiers at
1669 * global scope.
1670 */
1671 static void
1672 link_bindless_layout_qualifiers(struct gl_shader_program *prog,
1673 struct gl_program *gl_prog,
1674 struct gl_shader **shader_list,
1675 unsigned num_shaders)
1676 {
1677 bool bindless_sampler, bindless_image;
1678 bool bound_sampler, bound_image;
1679
1680 bindless_sampler = bindless_image = false;
1681 bound_sampler = bound_image = false;
1682
1683 for (unsigned i = 0; i < num_shaders; i++) {
1684 struct gl_shader *shader = shader_list[i];
1685
1686 if (shader->bindless_sampler)
1687 bindless_sampler = true;
1688 if (shader->bindless_image)
1689 bindless_image = true;
1690 if (shader->bound_sampler)
1691 bound_sampler = true;
1692 if (shader->bound_image)
1693 bound_image = true;
1694
1695 if ((bindless_sampler && bound_sampler) ||
1696 (bindless_image && bound_image)) {
1697 /* From section 4.4.6 of the ARB_bindless_texture spec:
1698 *
1699 * "If both bindless_sampler and bound_sampler, or bindless_image
1700 * and bound_image, are declared at global scope in any
1701 * compilation unit, a link- time error will be generated."
1702 */
1703 linker_error(prog, "both bindless_sampler and bound_sampler, or "
1704 "bindless_image and bound_image, can't be declared at "
1705 "global scope");
1706 }
1707 }
1708 }
1709
1710 /**
1711 * Performs the cross-validation of tessellation control shader vertices and
1712 * layout qualifiers for the attached tessellation control shaders,
1713 * and propagates them to the linked TCS and linked shader program.
1714 */
1715 static void
1716 link_tcs_out_layout_qualifiers(struct gl_shader_program *prog,
1717 struct gl_program *gl_prog,
1718 struct gl_shader **shader_list,
1719 unsigned num_shaders)
1720 {
1721 if (gl_prog->info.stage != MESA_SHADER_TESS_CTRL)
1722 return;
1723
1724 gl_prog->info.tess.tcs_vertices_out = 0;
1725
1726 /* From the GLSL 4.0 spec (chapter 4.3.8.2):
1727 *
1728 * "All tessellation control shader layout declarations in a program
1729 * must specify the same output patch vertex count. There must be at
1730 * least one layout qualifier specifying an output patch vertex count
1731 * in any program containing tessellation control shaders; however,
1732 * such a declaration is not required in all tessellation control
1733 * shaders."
1734 */
1735
1736 for (unsigned i = 0; i < num_shaders; i++) {
1737 struct gl_shader *shader = shader_list[i];
1738
1739 if (shader->info.TessCtrl.VerticesOut != 0) {
1740 if (gl_prog->info.tess.tcs_vertices_out != 0 &&
1741 gl_prog->info.tess.tcs_vertices_out !=
1742 (unsigned) shader->info.TessCtrl.VerticesOut) {
1743 linker_error(prog, "tessellation control shader defined with "
1744 "conflicting output vertex count (%d and %d)\n",
1745 gl_prog->info.tess.tcs_vertices_out,
1746 shader->info.TessCtrl.VerticesOut);
1747 return;
1748 }
1749 gl_prog->info.tess.tcs_vertices_out =
1750 shader->info.TessCtrl.VerticesOut;
1751 }
1752 }
1753
1754 /* Just do the intrastage -> interstage propagation right now,
1755 * since we already know we're in the right type of shader program
1756 * for doing it.
1757 */
1758 if (gl_prog->info.tess.tcs_vertices_out == 0) {
1759 linker_error(prog, "tessellation control shader didn't declare "
1760 "vertices out layout qualifier\n");
1761 return;
1762 }
1763 }
1764
1765
1766 /**
1767 * Performs the cross-validation of tessellation evaluation shader
1768 * primitive type, vertex spacing, ordering and point_mode layout qualifiers
1769 * for the attached tessellation evaluation shaders, and propagates them
1770 * to the linked TES and linked shader program.
1771 */
1772 static void
1773 link_tes_in_layout_qualifiers(struct gl_shader_program *prog,
1774 struct gl_program *gl_prog,
1775 struct gl_shader **shader_list,
1776 unsigned num_shaders)
1777 {
1778 if (gl_prog->info.stage != MESA_SHADER_TESS_EVAL)
1779 return;
1780
1781 int point_mode = -1;
1782 unsigned vertex_order = 0;
1783
1784 gl_prog->info.tess.primitive_mode = PRIM_UNKNOWN;
1785 gl_prog->info.tess.spacing = TESS_SPACING_UNSPECIFIED;
1786
1787 /* From the GLSL 4.0 spec (chapter 4.3.8.1):
1788 *
1789 * "At least one tessellation evaluation shader (compilation unit) in
1790 * a program must declare a primitive mode in its input layout.
1791 * Declaration vertex spacing, ordering, and point mode identifiers is
1792 * optional. It is not required that all tessellation evaluation
1793 * shaders in a program declare a primitive mode. If spacing or
1794 * vertex ordering declarations are omitted, the tessellation
1795 * primitive generator will use equal spacing or counter-clockwise
1796 * vertex ordering, respectively. If a point mode declaration is
1797 * omitted, the tessellation primitive generator will produce lines or
1798 * triangles according to the primitive mode."
1799 */
1800
1801 for (unsigned i = 0; i < num_shaders; i++) {
1802 struct gl_shader *shader = shader_list[i];
1803
1804 if (shader->info.TessEval.PrimitiveMode != PRIM_UNKNOWN) {
1805 if (gl_prog->info.tess.primitive_mode != PRIM_UNKNOWN &&
1806 gl_prog->info.tess.primitive_mode !=
1807 shader->info.TessEval.PrimitiveMode) {
1808 linker_error(prog, "tessellation evaluation shader defined with "
1809 "conflicting input primitive modes.\n");
1810 return;
1811 }
1812 gl_prog->info.tess.primitive_mode =
1813 shader->info.TessEval.PrimitiveMode;
1814 }
1815
1816 if (shader->info.TessEval.Spacing != 0) {
1817 if (gl_prog->info.tess.spacing != 0 && gl_prog->info.tess.spacing !=
1818 shader->info.TessEval.Spacing) {
1819 linker_error(prog, "tessellation evaluation shader defined with "
1820 "conflicting vertex spacing.\n");
1821 return;
1822 }
1823 gl_prog->info.tess.spacing = shader->info.TessEval.Spacing;
1824 }
1825
1826 if (shader->info.TessEval.VertexOrder != 0) {
1827 if (vertex_order != 0 &&
1828 vertex_order != shader->info.TessEval.VertexOrder) {
1829 linker_error(prog, "tessellation evaluation shader defined with "
1830 "conflicting ordering.\n");
1831 return;
1832 }
1833 vertex_order = shader->info.TessEval.VertexOrder;
1834 }
1835
1836 if (shader->info.TessEval.PointMode != -1) {
1837 if (point_mode != -1 &&
1838 point_mode != shader->info.TessEval.PointMode) {
1839 linker_error(prog, "tessellation evaluation shader defined with "
1840 "conflicting point modes.\n");
1841 return;
1842 }
1843 point_mode = shader->info.TessEval.PointMode;
1844 }
1845
1846 }
1847
1848 /* Just do the intrastage -> interstage propagation right now,
1849 * since we already know we're in the right type of shader program
1850 * for doing it.
1851 */
1852 if (gl_prog->info.tess.primitive_mode == PRIM_UNKNOWN) {
1853 linker_error(prog,
1854 "tessellation evaluation shader didn't declare input "
1855 "primitive modes.\n");
1856 return;
1857 }
1858
1859 if (gl_prog->info.tess.spacing == TESS_SPACING_UNSPECIFIED)
1860 gl_prog->info.tess.spacing = TESS_SPACING_EQUAL;
1861
1862 if (vertex_order == 0 || vertex_order == GL_CCW)
1863 gl_prog->info.tess.ccw = true;
1864 else
1865 gl_prog->info.tess.ccw = false;
1866
1867
1868 if (point_mode == -1 || point_mode == GL_FALSE)
1869 gl_prog->info.tess.point_mode = false;
1870 else
1871 gl_prog->info.tess.point_mode = true;
1872 }
1873
1874
1875 /**
1876 * Performs the cross-validation of layout qualifiers specified in
1877 * redeclaration of gl_FragCoord for the attached fragment shaders,
1878 * and propagates them to the linked FS and linked shader program.
1879 */
1880 static void
1881 link_fs_inout_layout_qualifiers(struct gl_shader_program *prog,
1882 struct gl_linked_shader *linked_shader,
1883 struct gl_shader **shader_list,
1884 unsigned num_shaders)
1885 {
1886 bool redeclares_gl_fragcoord = false;
1887 bool uses_gl_fragcoord = false;
1888 bool origin_upper_left = false;
1889 bool pixel_center_integer = false;
1890
1891 if (linked_shader->Stage != MESA_SHADER_FRAGMENT ||
1892 (prog->data->Version < 150 &&
1893 !prog->ARB_fragment_coord_conventions_enable))
1894 return;
1895
1896 for (unsigned i = 0; i < num_shaders; i++) {
1897 struct gl_shader *shader = shader_list[i];
1898 /* From the GLSL 1.50 spec, page 39:
1899 *
1900 * "If gl_FragCoord is redeclared in any fragment shader in a program,
1901 * it must be redeclared in all the fragment shaders in that program
1902 * that have a static use gl_FragCoord."
1903 */
1904 if ((redeclares_gl_fragcoord && !shader->redeclares_gl_fragcoord &&
1905 shader->uses_gl_fragcoord)
1906 || (shader->redeclares_gl_fragcoord && !redeclares_gl_fragcoord &&
1907 uses_gl_fragcoord)) {
1908 linker_error(prog, "fragment shader defined with conflicting "
1909 "layout qualifiers for gl_FragCoord\n");
1910 }
1911
1912 /* From the GLSL 1.50 spec, page 39:
1913 *
1914 * "All redeclarations of gl_FragCoord in all fragment shaders in a
1915 * single program must have the same set of qualifiers."
1916 */
1917 if (redeclares_gl_fragcoord && shader->redeclares_gl_fragcoord &&
1918 (shader->origin_upper_left != origin_upper_left ||
1919 shader->pixel_center_integer != pixel_center_integer)) {
1920 linker_error(prog, "fragment shader defined with conflicting "
1921 "layout qualifiers for gl_FragCoord\n");
1922 }
1923
1924 /* Update the linked shader state. Note that uses_gl_fragcoord should
1925 * accumulate the results. The other values should replace. If there
1926 * are multiple redeclarations, all the fields except uses_gl_fragcoord
1927 * are already known to be the same.
1928 */
1929 if (shader->redeclares_gl_fragcoord || shader->uses_gl_fragcoord) {
1930 redeclares_gl_fragcoord = shader->redeclares_gl_fragcoord;
1931 uses_gl_fragcoord |= shader->uses_gl_fragcoord;
1932 origin_upper_left = shader->origin_upper_left;
1933 pixel_center_integer = shader->pixel_center_integer;
1934 }
1935
1936 linked_shader->Program->info.fs.early_fragment_tests |=
1937 shader->EarlyFragmentTests || shader->PostDepthCoverage;
1938 linked_shader->Program->info.fs.inner_coverage |= shader->InnerCoverage;
1939 linked_shader->Program->info.fs.post_depth_coverage |=
1940 shader->PostDepthCoverage;
1941
1942 linked_shader->Program->sh.fs.BlendSupport |= shader->BlendSupport;
1943 }
1944 }
1945
1946 /**
1947 * Performs the cross-validation of geometry shader max_vertices and
1948 * primitive type layout qualifiers for the attached geometry shaders,
1949 * and propagates them to the linked GS and linked shader program.
1950 */
1951 static void
1952 link_gs_inout_layout_qualifiers(struct gl_shader_program *prog,
1953 struct gl_program *gl_prog,
1954 struct gl_shader **shader_list,
1955 unsigned num_shaders)
1956 {
1957 /* No in/out qualifiers defined for anything but GLSL 1.50+
1958 * geometry shaders so far.
1959 */
1960 if (gl_prog->info.stage != MESA_SHADER_GEOMETRY ||
1961 prog->data->Version < 150)
1962 return;
1963
1964 int vertices_out = -1;
1965
1966 gl_prog->info.gs.invocations = 0;
1967 gl_prog->info.gs.input_primitive = PRIM_UNKNOWN;
1968 gl_prog->info.gs.output_primitive = PRIM_UNKNOWN;
1969
1970 /* From the GLSL 1.50 spec, page 46:
1971 *
1972 * "All geometry shader output layout declarations in a program
1973 * must declare the same layout and same value for
1974 * max_vertices. There must be at least one geometry output
1975 * layout declaration somewhere in a program, but not all
1976 * geometry shaders (compilation units) are required to
1977 * declare it."
1978 */
1979
1980 for (unsigned i = 0; i < num_shaders; i++) {
1981 struct gl_shader *shader = shader_list[i];
1982
1983 if (shader->info.Geom.InputType != PRIM_UNKNOWN) {
1984 if (gl_prog->info.gs.input_primitive != PRIM_UNKNOWN &&
1985 gl_prog->info.gs.input_primitive !=
1986 shader->info.Geom.InputType) {
1987 linker_error(prog, "geometry shader defined with conflicting "
1988 "input types\n");
1989 return;
1990 }
1991 gl_prog->info.gs.input_primitive = shader->info.Geom.InputType;
1992 }
1993
1994 if (shader->info.Geom.OutputType != PRIM_UNKNOWN) {
1995 if (gl_prog->info.gs.output_primitive != PRIM_UNKNOWN &&
1996 gl_prog->info.gs.output_primitive !=
1997 shader->info.Geom.OutputType) {
1998 linker_error(prog, "geometry shader defined with conflicting "
1999 "output types\n");
2000 return;
2001 }
2002 gl_prog->info.gs.output_primitive = shader->info.Geom.OutputType;
2003 }
2004
2005 if (shader->info.Geom.VerticesOut != -1) {
2006 if (vertices_out != -1 &&
2007 vertices_out != shader->info.Geom.VerticesOut) {
2008 linker_error(prog, "geometry shader defined with conflicting "
2009 "output vertex count (%d and %d)\n",
2010 vertices_out, shader->info.Geom.VerticesOut);
2011 return;
2012 }
2013 vertices_out = shader->info.Geom.VerticesOut;
2014 }
2015
2016 if (shader->info.Geom.Invocations != 0) {
2017 if (gl_prog->info.gs.invocations != 0 &&
2018 gl_prog->info.gs.invocations !=
2019 (unsigned) shader->info.Geom.Invocations) {
2020 linker_error(prog, "geometry shader defined with conflicting "
2021 "invocation count (%d and %d)\n",
2022 gl_prog->info.gs.invocations,
2023 shader->info.Geom.Invocations);
2024 return;
2025 }
2026 gl_prog->info.gs.invocations = shader->info.Geom.Invocations;
2027 }
2028 }
2029
2030 /* Just do the intrastage -> interstage propagation right now,
2031 * since we already know we're in the right type of shader program
2032 * for doing it.
2033 */
2034 if (gl_prog->info.gs.input_primitive == PRIM_UNKNOWN) {
2035 linker_error(prog,
2036 "geometry shader didn't declare primitive input type\n");
2037 return;
2038 }
2039
2040 if (gl_prog->info.gs.output_primitive == PRIM_UNKNOWN) {
2041 linker_error(prog,
2042 "geometry shader didn't declare primitive output type\n");
2043 return;
2044 }
2045
2046 if (vertices_out == -1) {
2047 linker_error(prog,
2048 "geometry shader didn't declare max_vertices\n");
2049 return;
2050 } else {
2051 gl_prog->info.gs.vertices_out = vertices_out;
2052 }
2053
2054 if (gl_prog->info.gs.invocations == 0)
2055 gl_prog->info.gs.invocations = 1;
2056 }
2057
2058
2059 /**
2060 * Perform cross-validation of compute shader local_size_{x,y,z} layout
2061 * qualifiers for the attached compute shaders, and propagate them to the
2062 * linked CS and linked shader program.
2063 */
2064 static void
2065 link_cs_input_layout_qualifiers(struct gl_shader_program *prog,
2066 struct gl_program *gl_prog,
2067 struct gl_shader **shader_list,
2068 unsigned num_shaders)
2069 {
2070 /* This function is called for all shader stages, but it only has an effect
2071 * for compute shaders.
2072 */
2073 if (gl_prog->info.stage != MESA_SHADER_COMPUTE)
2074 return;
2075
2076 for (int i = 0; i < 3; i++)
2077 gl_prog->info.cs.local_size[i] = 0;
2078
2079 gl_prog->info.cs.local_size_variable = false;
2080
2081 /* From the ARB_compute_shader spec, in the section describing local size
2082 * declarations:
2083 *
2084 * If multiple compute shaders attached to a single program object
2085 * declare local work-group size, the declarations must be identical;
2086 * otherwise a link-time error results. Furthermore, if a program
2087 * object contains any compute shaders, at least one must contain an
2088 * input layout qualifier specifying the local work sizes of the
2089 * program, or a link-time error will occur.
2090 */
2091 for (unsigned sh = 0; sh < num_shaders; sh++) {
2092 struct gl_shader *shader = shader_list[sh];
2093
2094 if (shader->info.Comp.LocalSize[0] != 0) {
2095 if (gl_prog->info.cs.local_size[0] != 0) {
2096 for (int i = 0; i < 3; i++) {
2097 if (gl_prog->info.cs.local_size[i] !=
2098 shader->info.Comp.LocalSize[i]) {
2099 linker_error(prog, "compute shader defined with conflicting "
2100 "local sizes\n");
2101 return;
2102 }
2103 }
2104 }
2105 for (int i = 0; i < 3; i++) {
2106 gl_prog->info.cs.local_size[i] =
2107 shader->info.Comp.LocalSize[i];
2108 }
2109 } else if (shader->info.Comp.LocalSizeVariable) {
2110 if (gl_prog->info.cs.local_size[0] != 0) {
2111 /* The ARB_compute_variable_group_size spec says:
2112 *
2113 * If one compute shader attached to a program declares a
2114 * variable local group size and a second compute shader
2115 * attached to the same program declares a fixed local group
2116 * size, a link-time error results.
2117 */
2118 linker_error(prog, "compute shader defined with both fixed and "
2119 "variable local group size\n");
2120 return;
2121 }
2122 gl_prog->info.cs.local_size_variable = true;
2123 }
2124 }
2125
2126 /* Just do the intrastage -> interstage propagation right now,
2127 * since we already know we're in the right type of shader program
2128 * for doing it.
2129 */
2130 if (gl_prog->info.cs.local_size[0] == 0 &&
2131 !gl_prog->info.cs.local_size_variable) {
2132 linker_error(prog, "compute shader must contain a fixed or a variable "
2133 "local group size\n");
2134 return;
2135 }
2136 }
2137
2138
2139 /**
2140 * Combine a group of shaders for a single stage to generate a linked shader
2141 *
2142 * \note
2143 * If this function is supplied a single shader, it is cloned, and the new
2144 * shader is returned.
2145 */
2146 struct gl_linked_shader *
2147 link_intrastage_shaders(void *mem_ctx,
2148 struct gl_context *ctx,
2149 struct gl_shader_program *prog,
2150 struct gl_shader **shader_list,
2151 unsigned num_shaders,
2152 bool allow_missing_main)
2153 {
2154 struct gl_uniform_block *ubo_blocks = NULL;
2155 struct gl_uniform_block *ssbo_blocks = NULL;
2156 unsigned num_ubo_blocks = 0;
2157 unsigned num_ssbo_blocks = 0;
2158
2159 /* Check that global variables defined in multiple shaders are consistent.
2160 */
2161 glsl_symbol_table variables;
2162 for (unsigned i = 0; i < num_shaders; i++) {
2163 if (shader_list[i] == NULL)
2164 continue;
2165 cross_validate_globals(prog, shader_list[i]->ir, &variables, false);
2166 }
2167
2168 if (!prog->data->LinkStatus)
2169 return NULL;
2170
2171 /* Check that interface blocks defined in multiple shaders are consistent.
2172 */
2173 validate_intrastage_interface_blocks(prog, (const gl_shader **)shader_list,
2174 num_shaders);
2175 if (!prog->data->LinkStatus)
2176 return NULL;
2177
2178 /* Check that there is only a single definition of each function signature
2179 * across all shaders.
2180 */
2181 for (unsigned i = 0; i < (num_shaders - 1); i++) {
2182 foreach_in_list(ir_instruction, node, shader_list[i]->ir) {
2183 ir_function *const f = node->as_function();
2184
2185 if (f == NULL)
2186 continue;
2187
2188 for (unsigned j = i + 1; j < num_shaders; j++) {
2189 ir_function *const other =
2190 shader_list[j]->symbols->get_function(f->name);
2191
2192 /* If the other shader has no function (and therefore no function
2193 * signatures) with the same name, skip to the next shader.
2194 */
2195 if (other == NULL)
2196 continue;
2197
2198 foreach_in_list(ir_function_signature, sig, &f->signatures) {
2199 if (!sig->is_defined)
2200 continue;
2201
2202 ir_function_signature *other_sig =
2203 other->exact_matching_signature(NULL, &sig->parameters);
2204
2205 if (other_sig != NULL && other_sig->is_defined) {
2206 linker_error(prog, "function `%s' is multiply defined\n",
2207 f->name);
2208 return NULL;
2209 }
2210 }
2211 }
2212 }
2213 }
2214
2215 /* Find the shader that defines main, and make a clone of it.
2216 *
2217 * Starting with the clone, search for undefined references. If one is
2218 * found, find the shader that defines it. Clone the reference and add
2219 * it to the shader. Repeat until there are no undefined references or
2220 * until a reference cannot be resolved.
2221 */
2222 gl_shader *main = NULL;
2223 for (unsigned i = 0; i < num_shaders; i++) {
2224 if (_mesa_get_main_function_signature(shader_list[i]->symbols)) {
2225 main = shader_list[i];
2226 break;
2227 }
2228 }
2229
2230 if (main == NULL && allow_missing_main)
2231 main = shader_list[0];
2232
2233 if (main == NULL) {
2234 linker_error(prog, "%s shader lacks `main'\n",
2235 _mesa_shader_stage_to_string(shader_list[0]->Stage));
2236 return NULL;
2237 }
2238
2239 gl_linked_shader *linked = rzalloc(NULL, struct gl_linked_shader);
2240 linked->Stage = shader_list[0]->Stage;
2241
2242 /* Create program and attach it to the linked shader */
2243 struct gl_program *gl_prog =
2244 ctx->Driver.NewProgram(ctx,
2245 _mesa_shader_stage_to_program(shader_list[0]->Stage),
2246 prog->Name, false);
2247 if (!gl_prog) {
2248 prog->data->LinkStatus = linking_failure;
2249 _mesa_delete_linked_shader(ctx, linked);
2250 return NULL;
2251 }
2252
2253 if (!prog->data->cache_fallback)
2254 _mesa_reference_shader_program_data(ctx, &gl_prog->sh.data, prog->data);
2255
2256 /* Don't use _mesa_reference_program() just take ownership */
2257 linked->Program = gl_prog;
2258
2259 linked->ir = new(linked) exec_list;
2260 clone_ir_list(mem_ctx, linked->ir, main->ir);
2261
2262 link_fs_inout_layout_qualifiers(prog, linked, shader_list, num_shaders);
2263 link_tcs_out_layout_qualifiers(prog, gl_prog, shader_list, num_shaders);
2264 link_tes_in_layout_qualifiers(prog, gl_prog, shader_list, num_shaders);
2265 link_gs_inout_layout_qualifiers(prog, gl_prog, shader_list, num_shaders);
2266 link_cs_input_layout_qualifiers(prog, gl_prog, shader_list, num_shaders);
2267 link_xfb_stride_layout_qualifiers(ctx, prog, linked, shader_list,
2268 num_shaders);
2269 link_bindless_layout_qualifiers(prog, gl_prog, shader_list, num_shaders);
2270
2271 populate_symbol_table(linked);
2272
2273 /* The pointer to the main function in the final linked shader (i.e., the
2274 * copy of the original shader that contained the main function).
2275 */
2276 ir_function_signature *const main_sig =
2277 _mesa_get_main_function_signature(linked->symbols);
2278
2279 /* Move any instructions other than variable declarations or function
2280 * declarations into main.
2281 */
2282 if (main_sig != NULL) {
2283 exec_node *insertion_point =
2284 move_non_declarations(linked->ir, (exec_node *) &main_sig->body, false,
2285 linked);
2286
2287 for (unsigned i = 0; i < num_shaders; i++) {
2288 if (shader_list[i] == main)
2289 continue;
2290
2291 insertion_point = move_non_declarations(shader_list[i]->ir,
2292 insertion_point, true, linked);
2293 }
2294 }
2295
2296 if (!link_function_calls(prog, linked, shader_list, num_shaders)) {
2297 _mesa_delete_linked_shader(ctx, linked);
2298 return NULL;
2299 }
2300
2301 /* Make a pass over all variable declarations to ensure that arrays with
2302 * unspecified sizes have a size specified. The size is inferred from the
2303 * max_array_access field.
2304 */
2305 array_sizing_visitor v;
2306 v.run(linked->ir);
2307 v.fixup_unnamed_interface_types();
2308
2309 if (!prog->data->cache_fallback) {
2310 /* Link up uniform blocks defined within this stage. */
2311 link_uniform_blocks(mem_ctx, ctx, prog, linked, &ubo_blocks,
2312 &num_ubo_blocks, &ssbo_blocks, &num_ssbo_blocks);
2313
2314 if (!prog->data->LinkStatus) {
2315 _mesa_delete_linked_shader(ctx, linked);
2316 return NULL;
2317 }
2318
2319 /* Copy ubo blocks to linked shader list */
2320 linked->Program->sh.UniformBlocks =
2321 ralloc_array(linked, gl_uniform_block *, num_ubo_blocks);
2322 ralloc_steal(linked, ubo_blocks);
2323 for (unsigned i = 0; i < num_ubo_blocks; i++) {
2324 linked->Program->sh.UniformBlocks[i] = &ubo_blocks[i];
2325 }
2326 linked->Program->info.num_ubos = num_ubo_blocks;
2327
2328 /* Copy ssbo blocks to linked shader list */
2329 linked->Program->sh.ShaderStorageBlocks =
2330 ralloc_array(linked, gl_uniform_block *, num_ssbo_blocks);
2331 ralloc_steal(linked, ssbo_blocks);
2332 for (unsigned i = 0; i < num_ssbo_blocks; i++) {
2333 linked->Program->sh.ShaderStorageBlocks[i] = &ssbo_blocks[i];
2334 }
2335 linked->Program->info.num_ssbos = num_ssbo_blocks;
2336 }
2337
2338 /* At this point linked should contain all of the linked IR, so
2339 * validate it to make sure nothing went wrong.
2340 */
2341 validate_ir_tree(linked->ir);
2342
2343 /* Set the size of geometry shader input arrays */
2344 if (linked->Stage == MESA_SHADER_GEOMETRY) {
2345 unsigned num_vertices =
2346 vertices_per_prim(gl_prog->info.gs.input_primitive);
2347 array_resize_visitor input_resize_visitor(num_vertices, prog,
2348 MESA_SHADER_GEOMETRY);
2349 foreach_in_list(ir_instruction, ir, linked->ir) {
2350 ir->accept(&input_resize_visitor);
2351 }
2352 }
2353
2354 if (ctx->Const.VertexID_is_zero_based)
2355 lower_vertex_id(linked);
2356
2357 #ifdef DEBUG
2358 /* Compute the source checksum. */
2359 linked->SourceChecksum = 0;
2360 for (unsigned i = 0; i < num_shaders; i++) {
2361 if (shader_list[i] == NULL)
2362 continue;
2363 linked->SourceChecksum ^= shader_list[i]->SourceChecksum;
2364 }
2365 #endif
2366
2367 return linked;
2368 }
2369
2370 /**
2371 * Update the sizes of linked shader uniform arrays to the maximum
2372 * array index used.
2373 *
2374 * From page 81 (page 95 of the PDF) of the OpenGL 2.1 spec:
2375 *
2376 * If one or more elements of an array are active,
2377 * GetActiveUniform will return the name of the array in name,
2378 * subject to the restrictions listed above. The type of the array
2379 * is returned in type. The size parameter contains the highest
2380 * array element index used, plus one. The compiler or linker
2381 * determines the highest index used. There will be only one
2382 * active uniform reported by the GL per uniform array.
2383
2384 */
2385 static void
2386 update_array_sizes(struct gl_shader_program *prog)
2387 {
2388 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
2389 if (prog->_LinkedShaders[i] == NULL)
2390 continue;
2391
2392 bool types_were_updated = false;
2393
2394 foreach_in_list(ir_instruction, node, prog->_LinkedShaders[i]->ir) {
2395 ir_variable *const var = node->as_variable();
2396
2397 if ((var == NULL) || (var->data.mode != ir_var_uniform) ||
2398 !var->type->is_array())
2399 continue;
2400
2401 /* GL_ARB_uniform_buffer_object says that std140 uniforms
2402 * will not be eliminated. Since we always do std140, just
2403 * don't resize arrays in UBOs.
2404 *
2405 * Atomic counters are supposed to get deterministic
2406 * locations assigned based on the declaration ordering and
2407 * sizes, array compaction would mess that up.
2408 *
2409 * Subroutine uniforms are not removed.
2410 */
2411 if (var->is_in_buffer_block() || var->type->contains_atomic() ||
2412 var->type->contains_subroutine() || var->constant_initializer)
2413 continue;
2414
2415 int size = var->data.max_array_access;
2416 for (unsigned j = 0; j < MESA_SHADER_STAGES; j++) {
2417 if (prog->_LinkedShaders[j] == NULL)
2418 continue;
2419
2420 foreach_in_list(ir_instruction, node2, prog->_LinkedShaders[j]->ir) {
2421 ir_variable *other_var = node2->as_variable();
2422 if (!other_var)
2423 continue;
2424
2425 if (strcmp(var->name, other_var->name) == 0 &&
2426 other_var->data.max_array_access > size) {
2427 size = other_var->data.max_array_access;
2428 }
2429 }
2430 }
2431
2432 if (size + 1 != (int)var->type->length) {
2433 /* If this is a built-in uniform (i.e., it's backed by some
2434 * fixed-function state), adjust the number of state slots to
2435 * match the new array size. The number of slots per array entry
2436 * is not known. It seems safe to assume that the total number of
2437 * slots is an integer multiple of the number of array elements.
2438 * Determine the number of slots per array element by dividing by
2439 * the old (total) size.
2440 */
2441 const unsigned num_slots = var->get_num_state_slots();
2442 if (num_slots > 0) {
2443 var->set_num_state_slots((size + 1)
2444 * (num_slots / var->type->length));
2445 }
2446
2447 var->type = glsl_type::get_array_instance(var->type->fields.array,
2448 size + 1);
2449 types_were_updated = true;
2450 }
2451 }
2452
2453 /* Update the types of dereferences in case we changed any. */
2454 if (types_were_updated) {
2455 deref_type_updater v;
2456 v.run(prog->_LinkedShaders[i]->ir);
2457 }
2458 }
2459 }
2460
2461 /**
2462 * Resize tessellation evaluation per-vertex inputs to the size of
2463 * tessellation control per-vertex outputs.
2464 */
2465 static void
2466 resize_tes_inputs(struct gl_context *ctx,
2467 struct gl_shader_program *prog)
2468 {
2469 if (prog->_LinkedShaders[MESA_SHADER_TESS_EVAL] == NULL)
2470 return;
2471
2472 gl_linked_shader *const tcs = prog->_LinkedShaders[MESA_SHADER_TESS_CTRL];
2473 gl_linked_shader *const tes = prog->_LinkedShaders[MESA_SHADER_TESS_EVAL];
2474
2475 /* If no control shader is present, then the TES inputs are statically
2476 * sized to MaxPatchVertices; the actual size of the arrays won't be
2477 * known until draw time.
2478 */
2479 const int num_vertices = tcs
2480 ? tcs->Program->info.tess.tcs_vertices_out
2481 : ctx->Const.MaxPatchVertices;
2482
2483 array_resize_visitor input_resize_visitor(num_vertices, prog,
2484 MESA_SHADER_TESS_EVAL);
2485 foreach_in_list(ir_instruction, ir, tes->ir) {
2486 ir->accept(&input_resize_visitor);
2487 }
2488
2489 if (tcs || ctx->Const.LowerTESPatchVerticesIn) {
2490 /* Convert the gl_PatchVerticesIn system value into a constant, since
2491 * the value is known at this point.
2492 */
2493 foreach_in_list(ir_instruction, ir, tes->ir) {
2494 ir_variable *var = ir->as_variable();
2495 if (var && var->data.mode == ir_var_system_value &&
2496 var->data.location == SYSTEM_VALUE_VERTICES_IN) {
2497 void *mem_ctx = ralloc_parent(var);
2498 var->data.location = 0;
2499 var->data.explicit_location = false;
2500 if (tcs) {
2501 var->data.mode = ir_var_auto;
2502 var->constant_value = new(mem_ctx) ir_constant(num_vertices);
2503 } else {
2504 var->data.mode = ir_var_uniform;
2505 var->data.how_declared = ir_var_hidden;
2506 var->allocate_state_slots(1);
2507 ir_state_slot *slot0 = &var->get_state_slots()[0];
2508 slot0->swizzle = SWIZZLE_XXXX;
2509 slot0->tokens[0] = STATE_INTERNAL;
2510 slot0->tokens[1] = STATE_TES_PATCH_VERTICES_IN;
2511 for (int i = 2; i < STATE_LENGTH; i++)
2512 slot0->tokens[i] = 0;
2513 }
2514 }
2515 }
2516 }
2517 }
2518
2519 /**
2520 * Find a contiguous set of available bits in a bitmask.
2521 *
2522 * \param used_mask Bits representing used (1) and unused (0) locations
2523 * \param needed_count Number of contiguous bits needed.
2524 *
2525 * \return
2526 * Base location of the available bits on success or -1 on failure.
2527 */
2528 int
2529 find_available_slots(unsigned used_mask, unsigned needed_count)
2530 {
2531 unsigned needed_mask = (1 << needed_count) - 1;
2532 const int max_bit_to_test = (8 * sizeof(used_mask)) - needed_count;
2533
2534 /* The comparison to 32 is redundant, but without it GCC emits "warning:
2535 * cannot optimize possibly infinite loops" for the loop below.
2536 */
2537 if ((needed_count == 0) || (max_bit_to_test < 0) || (max_bit_to_test > 32))
2538 return -1;
2539
2540 for (int i = 0; i <= max_bit_to_test; i++) {
2541 if ((needed_mask & ~used_mask) == needed_mask)
2542 return i;
2543
2544 needed_mask <<= 1;
2545 }
2546
2547 return -1;
2548 }
2549
2550
2551 /**
2552 * Assign locations for either VS inputs or FS outputs
2553 *
2554 * \param mem_ctx Temporary ralloc context used for linking
2555 * \param prog Shader program whose variables need locations assigned
2556 * \param constants Driver specific constant values for the program.
2557 * \param target_index Selector for the program target to receive location
2558 * assignmnets. Must be either \c MESA_SHADER_VERTEX or
2559 * \c MESA_SHADER_FRAGMENT.
2560 *
2561 * \return
2562 * If locations are successfully assigned, true is returned. Otherwise an
2563 * error is emitted to the shader link log and false is returned.
2564 */
2565 bool
2566 assign_attribute_or_color_locations(void *mem_ctx,
2567 gl_shader_program *prog,
2568 struct gl_constants *constants,
2569 unsigned target_index)
2570 {
2571 /* Maximum number of generic locations. This corresponds to either the
2572 * maximum number of draw buffers or the maximum number of generic
2573 * attributes.
2574 */
2575 unsigned max_index = (target_index == MESA_SHADER_VERTEX) ?
2576 constants->Program[target_index].MaxAttribs :
2577 MAX2(constants->MaxDrawBuffers, constants->MaxDualSourceDrawBuffers);
2578
2579 /* Mark invalid locations as being used.
2580 */
2581 unsigned used_locations = (max_index >= 32)
2582 ? ~0 : ~((1 << max_index) - 1);
2583 unsigned double_storage_locations = 0;
2584
2585 assert((target_index == MESA_SHADER_VERTEX)
2586 || (target_index == MESA_SHADER_FRAGMENT));
2587
2588 gl_linked_shader *const sh = prog->_LinkedShaders[target_index];
2589 if (sh == NULL)
2590 return true;
2591
2592 /* Operate in a total of four passes.
2593 *
2594 * 1. Invalidate the location assignments for all vertex shader inputs.
2595 *
2596 * 2. Assign locations for inputs that have user-defined (via
2597 * glBindVertexAttribLocation) locations and outputs that have
2598 * user-defined locations (via glBindFragDataLocation).
2599 *
2600 * 3. Sort the attributes without assigned locations by number of slots
2601 * required in decreasing order. Fragmentation caused by attribute
2602 * locations assigned by the application may prevent large attributes
2603 * from having enough contiguous space.
2604 *
2605 * 4. Assign locations to any inputs without assigned locations.
2606 */
2607
2608 const int generic_base = (target_index == MESA_SHADER_VERTEX)
2609 ? (int) VERT_ATTRIB_GENERIC0 : (int) FRAG_RESULT_DATA0;
2610
2611 const enum ir_variable_mode direction =
2612 (target_index == MESA_SHADER_VERTEX)
2613 ? ir_var_shader_in : ir_var_shader_out;
2614
2615
2616 /* Temporary storage for the set of attributes that need locations assigned.
2617 */
2618 struct temp_attr {
2619 unsigned slots;
2620 ir_variable *var;
2621
2622 /* Used below in the call to qsort. */
2623 static int compare(const void *a, const void *b)
2624 {
2625 const temp_attr *const l = (const temp_attr *) a;
2626 const temp_attr *const r = (const temp_attr *) b;
2627
2628 /* Reversed because we want a descending order sort below. */
2629 return r->slots - l->slots;
2630 }
2631 } to_assign[32];
2632 assert(max_index <= 32);
2633
2634 /* Temporary array for the set of attributes that have locations assigned.
2635 */
2636 ir_variable *assigned[16];
2637
2638 unsigned num_attr = 0;
2639 unsigned assigned_attr = 0;
2640
2641 foreach_in_list(ir_instruction, node, sh->ir) {
2642 ir_variable *const var = node->as_variable();
2643
2644 if ((var == NULL) || (var->data.mode != (unsigned) direction))
2645 continue;
2646
2647 if (var->data.explicit_location) {
2648 var->data.is_unmatched_generic_inout = 0;
2649 if ((var->data.location >= (int)(max_index + generic_base))
2650 || (var->data.location < 0)) {
2651 linker_error(prog,
2652 "invalid explicit location %d specified for `%s'\n",
2653 (var->data.location < 0)
2654 ? var->data.location
2655 : var->data.location - generic_base,
2656 var->name);
2657 return false;
2658 }
2659 } else if (target_index == MESA_SHADER_VERTEX) {
2660 unsigned binding;
2661
2662 if (prog->AttributeBindings->get(binding, var->name)) {
2663 assert(binding >= VERT_ATTRIB_GENERIC0);
2664 var->data.location = binding;
2665 var->data.is_unmatched_generic_inout = 0;
2666 }
2667 } else if (target_index == MESA_SHADER_FRAGMENT) {
2668 unsigned binding;
2669 unsigned index;
2670 const char *name = var->name;
2671 const glsl_type *type = var->type;
2672
2673 while (type) {
2674 /* Check if there's a binding for the variable name */
2675 if (prog->FragDataBindings->get(binding, name)) {
2676 assert(binding >= FRAG_RESULT_DATA0);
2677 var->data.location = binding;
2678 var->data.is_unmatched_generic_inout = 0;
2679
2680 if (prog->FragDataIndexBindings->get(index, name)) {
2681 var->data.index = index;
2682 }
2683 break;
2684 }
2685
2686 /* If not, but it's an array type, look for name[0] */
2687 if (type->is_array()) {
2688 name = ralloc_asprintf(mem_ctx, "%s[0]", name);
2689 type = type->fields.array;
2690 continue;
2691 }
2692
2693 break;
2694 }
2695 }
2696
2697 if (strcmp(var->name, "gl_LastFragData") == 0)
2698 continue;
2699
2700 /* From GL4.5 core spec, section 15.2 (Shader Execution):
2701 *
2702 * "Output binding assignments will cause LinkProgram to fail:
2703 * ...
2704 * If the program has an active output assigned to a location greater
2705 * than or equal to the value of MAX_DUAL_SOURCE_DRAW_BUFFERS and has
2706 * an active output assigned an index greater than or equal to one;"
2707 */
2708 if (target_index == MESA_SHADER_FRAGMENT && var->data.index >= 1 &&
2709 var->data.location - generic_base >=
2710 (int) constants->MaxDualSourceDrawBuffers) {
2711 linker_error(prog,
2712 "output location %d >= GL_MAX_DUAL_SOURCE_DRAW_BUFFERS "
2713 "with index %u for %s\n",
2714 var->data.location - generic_base, var->data.index,
2715 var->name);
2716 return false;
2717 }
2718
2719 const unsigned slots = var->type->count_attribute_slots(target_index == MESA_SHADER_VERTEX);
2720
2721 /* If the variable is not a built-in and has a location statically
2722 * assigned in the shader (presumably via a layout qualifier), make sure
2723 * that it doesn't collide with other assigned locations. Otherwise,
2724 * add it to the list of variables that need linker-assigned locations.
2725 */
2726 if (var->data.location != -1) {
2727 if (var->data.location >= generic_base && var->data.index < 1) {
2728 /* From page 61 of the OpenGL 4.0 spec:
2729 *
2730 * "LinkProgram will fail if the attribute bindings assigned
2731 * by BindAttribLocation do not leave not enough space to
2732 * assign a location for an active matrix attribute or an
2733 * active attribute array, both of which require multiple
2734 * contiguous generic attributes."
2735 *
2736 * I think above text prohibits the aliasing of explicit and
2737 * automatic assignments. But, aliasing is allowed in manual
2738 * assignments of attribute locations. See below comments for
2739 * the details.
2740 *
2741 * From OpenGL 4.0 spec, page 61:
2742 *
2743 * "It is possible for an application to bind more than one
2744 * attribute name to the same location. This is referred to as
2745 * aliasing. This will only work if only one of the aliased
2746 * attributes is active in the executable program, or if no
2747 * path through the shader consumes more than one attribute of
2748 * a set of attributes aliased to the same location. A link
2749 * error can occur if the linker determines that every path
2750 * through the shader consumes multiple aliased attributes,
2751 * but implementations are not required to generate an error
2752 * in this case."
2753 *
2754 * From GLSL 4.30 spec, page 54:
2755 *
2756 * "A program will fail to link if any two non-vertex shader
2757 * input variables are assigned to the same location. For
2758 * vertex shaders, multiple input variables may be assigned
2759 * to the same location using either layout qualifiers or via
2760 * the OpenGL API. However, such aliasing is intended only to
2761 * support vertex shaders where each execution path accesses
2762 * at most one input per each location. Implementations are
2763 * permitted, but not required, to generate link-time errors
2764 * if they detect that every path through the vertex shader
2765 * executable accesses multiple inputs assigned to any single
2766 * location. For all shader types, a program will fail to link
2767 * if explicit location assignments leave the linker unable
2768 * to find space for other variables without explicit
2769 * assignments."
2770 *
2771 * From OpenGL ES 3.0 spec, page 56:
2772 *
2773 * "Binding more than one attribute name to the same location
2774 * is referred to as aliasing, and is not permitted in OpenGL
2775 * ES Shading Language 3.00 vertex shaders. LinkProgram will
2776 * fail when this condition exists. However, aliasing is
2777 * possible in OpenGL ES Shading Language 1.00 vertex shaders.
2778 * This will only work if only one of the aliased attributes
2779 * is active in the executable program, or if no path through
2780 * the shader consumes more than one attribute of a set of
2781 * attributes aliased to the same location. A link error can
2782 * occur if the linker determines that every path through the
2783 * shader consumes multiple aliased attributes, but implemen-
2784 * tations are not required to generate an error in this case."
2785 *
2786 * After looking at above references from OpenGL, OpenGL ES and
2787 * GLSL specifications, we allow aliasing of vertex input variables
2788 * in: OpenGL 2.0 (and above) and OpenGL ES 2.0.
2789 *
2790 * NOTE: This is not required by the spec but its worth mentioning
2791 * here that we're not doing anything to make sure that no path
2792 * through the vertex shader executable accesses multiple inputs
2793 * assigned to any single location.
2794 */
2795
2796 /* Mask representing the contiguous slots that will be used by
2797 * this attribute.
2798 */
2799 const unsigned attr = var->data.location - generic_base;
2800 const unsigned use_mask = (1 << slots) - 1;
2801 const char *const string = (target_index == MESA_SHADER_VERTEX)
2802 ? "vertex shader input" : "fragment shader output";
2803
2804 /* Generate a link error if the requested locations for this
2805 * attribute exceed the maximum allowed attribute location.
2806 */
2807 if (attr + slots > max_index) {
2808 linker_error(prog,
2809 "insufficient contiguous locations "
2810 "available for %s `%s' %d %d %d\n", string,
2811 var->name, used_locations, use_mask, attr);
2812 return false;
2813 }
2814
2815 /* Generate a link error if the set of bits requested for this
2816 * attribute overlaps any previously allocated bits.
2817 */
2818 if ((~(use_mask << attr) & used_locations) != used_locations) {
2819 if (target_index == MESA_SHADER_FRAGMENT && !prog->IsES) {
2820 /* From section 4.4.2 (Output Layout Qualifiers) of the GLSL
2821 * 4.40 spec:
2822 *
2823 * "Additionally, for fragment shader outputs, if two
2824 * variables are placed within the same location, they
2825 * must have the same underlying type (floating-point or
2826 * integer). No component aliasing of output variables or
2827 * members is allowed.
2828 */
2829 for (unsigned i = 0; i < assigned_attr; i++) {
2830 unsigned assigned_slots =
2831 assigned[i]->type->count_attribute_slots(false);
2832 unsigned assig_attr =
2833 assigned[i]->data.location - generic_base;
2834 unsigned assigned_use_mask = (1 << assigned_slots) - 1;
2835
2836 if ((assigned_use_mask << assig_attr) &
2837 (use_mask << attr)) {
2838
2839 const glsl_type *assigned_type =
2840 assigned[i]->type->without_array();
2841 const glsl_type *type = var->type->without_array();
2842 if (assigned_type->base_type != type->base_type) {
2843 linker_error(prog, "types do not match for aliased"
2844 " %ss %s and %s\n", string,
2845 assigned[i]->name, var->name);
2846 return false;
2847 }
2848
2849 unsigned assigned_component_mask =
2850 ((1 << assigned_type->vector_elements) - 1) <<
2851 assigned[i]->data.location_frac;
2852 unsigned component_mask =
2853 ((1 << type->vector_elements) - 1) <<
2854 var->data.location_frac;
2855 if (assigned_component_mask & component_mask) {
2856 linker_error(prog, "overlapping component is "
2857 "assigned to %ss %s and %s "
2858 "(component=%d)\n",
2859 string, assigned[i]->name, var->name,
2860 var->data.location_frac);
2861 return false;
2862 }
2863 }
2864 }
2865 } else if (target_index == MESA_SHADER_FRAGMENT ||
2866 (prog->IsES && prog->data->Version >= 300)) {
2867 linker_error(prog, "overlapping location is assigned "
2868 "to %s `%s' %d %d %d\n", string, var->name,
2869 used_locations, use_mask, attr);
2870 return false;
2871 } else {
2872 linker_warning(prog, "overlapping location is assigned "
2873 "to %s `%s' %d %d %d\n", string, var->name,
2874 used_locations, use_mask, attr);
2875 }
2876 }
2877
2878 used_locations |= (use_mask << attr);
2879
2880 /* From the GL 4.5 core spec, section 11.1.1 (Vertex Attributes):
2881 *
2882 * "A program with more than the value of MAX_VERTEX_ATTRIBS
2883 * active attribute variables may fail to link, unless
2884 * device-dependent optimizations are able to make the program
2885 * fit within available hardware resources. For the purposes
2886 * of this test, attribute variables of the type dvec3, dvec4,
2887 * dmat2x3, dmat2x4, dmat3, dmat3x4, dmat4x3, and dmat4 may
2888 * count as consuming twice as many attributes as equivalent
2889 * single-precision types. While these types use the same number
2890 * of generic attributes as their single-precision equivalents,
2891 * implementations are permitted to consume two single-precision
2892 * vectors of internal storage for each three- or four-component
2893 * double-precision vector."
2894 *
2895 * Mark this attribute slot as taking up twice as much space
2896 * so we can count it properly against limits. According to
2897 * issue (3) of the GL_ARB_vertex_attrib_64bit behavior, this
2898 * is optional behavior, but it seems preferable.
2899 */
2900 if (var->type->without_array()->is_dual_slot())
2901 double_storage_locations |= (use_mask << attr);
2902 }
2903
2904 assigned[assigned_attr] = var;
2905 assigned_attr++;
2906
2907 continue;
2908 }
2909
2910 if (num_attr >= max_index) {
2911 linker_error(prog, "too many %s (max %u)",
2912 target_index == MESA_SHADER_VERTEX ?
2913 "vertex shader inputs" : "fragment shader outputs",
2914 max_index);
2915 return false;
2916 }
2917 to_assign[num_attr].slots = slots;
2918 to_assign[num_attr].var = var;
2919 num_attr++;
2920 }
2921
2922 if (target_index == MESA_SHADER_VERTEX) {
2923 unsigned total_attribs_size =
2924 _mesa_bitcount(used_locations & ((1 << max_index) - 1)) +
2925 _mesa_bitcount(double_storage_locations);
2926 if (total_attribs_size > max_index) {
2927 linker_error(prog,
2928 "attempt to use %d vertex attribute slots only %d available ",
2929 total_attribs_size, max_index);
2930 return false;
2931 }
2932 }
2933
2934 /* If all of the attributes were assigned locations by the application (or
2935 * are built-in attributes with fixed locations), return early. This should
2936 * be the common case.
2937 */
2938 if (num_attr == 0)
2939 return true;
2940
2941 qsort(to_assign, num_attr, sizeof(to_assign[0]), temp_attr::compare);
2942
2943 if (target_index == MESA_SHADER_VERTEX) {
2944 /* VERT_ATTRIB_GENERIC0 is a pseudo-alias for VERT_ATTRIB_POS. It can
2945 * only be explicitly assigned by via glBindAttribLocation. Mark it as
2946 * reserved to prevent it from being automatically allocated below.
2947 */
2948 find_deref_visitor find("gl_Vertex");
2949 find.run(sh->ir);
2950 if (find.variable_found())
2951 used_locations |= (1 << 0);
2952 }
2953
2954 for (unsigned i = 0; i < num_attr; i++) {
2955 /* Mask representing the contiguous slots that will be used by this
2956 * attribute.
2957 */
2958 const unsigned use_mask = (1 << to_assign[i].slots) - 1;
2959
2960 int location = find_available_slots(used_locations, to_assign[i].slots);
2961
2962 if (location < 0) {
2963 const char *const string = (target_index == MESA_SHADER_VERTEX)
2964 ? "vertex shader input" : "fragment shader output";
2965
2966 linker_error(prog,
2967 "insufficient contiguous locations "
2968 "available for %s `%s'\n",
2969 string, to_assign[i].var->name);
2970 return false;
2971 }
2972
2973 to_assign[i].var->data.location = generic_base + location;
2974 to_assign[i].var->data.is_unmatched_generic_inout = 0;
2975 used_locations |= (use_mask << location);
2976
2977 if (to_assign[i].var->type->without_array()->is_dual_slot())
2978 double_storage_locations |= (use_mask << location);
2979 }
2980
2981 /* Now that we have all the locations, from the GL 4.5 core spec, section
2982 * 11.1.1 (Vertex Attributes), dvec3, dvec4, dmat2x3, dmat2x4, dmat3,
2983 * dmat3x4, dmat4x3, and dmat4 count as consuming twice as many attributes
2984 * as equivalent single-precision types.
2985 */
2986 if (target_index == MESA_SHADER_VERTEX) {
2987 unsigned total_attribs_size =
2988 _mesa_bitcount(used_locations & ((1 << max_index) - 1)) +
2989 _mesa_bitcount(double_storage_locations);
2990 if (total_attribs_size > max_index) {
2991 linker_error(prog,
2992 "attempt to use %d vertex attribute slots only %d available ",
2993 total_attribs_size, max_index);
2994 return false;
2995 }
2996 }
2997
2998 return true;
2999 }
3000
3001 /**
3002 * Match explicit locations of outputs to inputs and deactivate the
3003 * unmatch flag if found so we don't optimise them away.
3004 */
3005 static void
3006 match_explicit_outputs_to_inputs(gl_linked_shader *producer,
3007 gl_linked_shader *consumer)
3008 {
3009 glsl_symbol_table parameters;
3010 ir_variable *explicit_locations[MAX_VARYINGS_INCL_PATCH][4] =
3011 { {NULL, NULL} };
3012
3013 /* Find all shader outputs in the "producer" stage.
3014 */
3015 foreach_in_list(ir_instruction, node, producer->ir) {
3016 ir_variable *const var = node->as_variable();
3017
3018 if ((var == NULL) || (var->data.mode != ir_var_shader_out))
3019 continue;
3020
3021 if (var->data.explicit_location &&
3022 var->data.location >= VARYING_SLOT_VAR0) {
3023 const unsigned idx = var->data.location - VARYING_SLOT_VAR0;
3024 if (explicit_locations[idx][var->data.location_frac] == NULL)
3025 explicit_locations[idx][var->data.location_frac] = var;
3026 }
3027 }
3028
3029 /* Match inputs to outputs */
3030 foreach_in_list(ir_instruction, node, consumer->ir) {
3031 ir_variable *const input = node->as_variable();
3032
3033 if ((input == NULL) || (input->data.mode != ir_var_shader_in))
3034 continue;
3035
3036 ir_variable *output = NULL;
3037 if (input->data.explicit_location
3038 && input->data.location >= VARYING_SLOT_VAR0) {
3039 output = explicit_locations[input->data.location - VARYING_SLOT_VAR0]
3040 [input->data.location_frac];
3041
3042 if (output != NULL){
3043 input->data.is_unmatched_generic_inout = 0;
3044 output->data.is_unmatched_generic_inout = 0;
3045 }
3046 }
3047 }
3048 }
3049
3050 /**
3051 * Store the gl_FragDepth layout in the gl_shader_program struct.
3052 */
3053 static void
3054 store_fragdepth_layout(struct gl_shader_program *prog)
3055 {
3056 if (prog->_LinkedShaders[MESA_SHADER_FRAGMENT] == NULL) {
3057 return;
3058 }
3059
3060 struct exec_list *ir = prog->_LinkedShaders[MESA_SHADER_FRAGMENT]->ir;
3061
3062 /* We don't look up the gl_FragDepth symbol directly because if
3063 * gl_FragDepth is not used in the shader, it's removed from the IR.
3064 * However, the symbol won't be removed from the symbol table.
3065 *
3066 * We're only interested in the cases where the variable is NOT removed
3067 * from the IR.
3068 */
3069 foreach_in_list(ir_instruction, node, ir) {
3070 ir_variable *const var = node->as_variable();
3071
3072 if (var == NULL || var->data.mode != ir_var_shader_out) {
3073 continue;
3074 }
3075
3076 if (strcmp(var->name, "gl_FragDepth") == 0) {
3077 switch (var->data.depth_layout) {
3078 case ir_depth_layout_none:
3079 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_NONE;
3080 return;
3081 case ir_depth_layout_any:
3082 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_ANY;
3083 return;
3084 case ir_depth_layout_greater:
3085 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_GREATER;
3086 return;
3087 case ir_depth_layout_less:
3088 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_LESS;
3089 return;
3090 case ir_depth_layout_unchanged:
3091 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_UNCHANGED;
3092 return;
3093 default:
3094 assert(0);
3095 return;
3096 }
3097 }
3098 }
3099 }
3100
3101 /**
3102 * Validate the resources used by a program versus the implementation limits
3103 */
3104 static void
3105 check_resources(struct gl_context *ctx, struct gl_shader_program *prog)
3106 {
3107 unsigned total_uniform_blocks = 0;
3108 unsigned total_shader_storage_blocks = 0;
3109
3110 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3111 struct gl_linked_shader *sh = prog->_LinkedShaders[i];
3112
3113 if (sh == NULL)
3114 continue;
3115
3116 if (sh->Program->info.num_textures >
3117 ctx->Const.Program[i].MaxTextureImageUnits) {
3118 linker_error(prog, "Too many %s shader texture samplers\n",
3119 _mesa_shader_stage_to_string(i));
3120 }
3121
3122 if (sh->num_uniform_components >
3123 ctx->Const.Program[i].MaxUniformComponents) {
3124 if (ctx->Const.GLSLSkipStrictMaxUniformLimitCheck) {
3125 linker_warning(prog, "Too many %s shader default uniform block "
3126 "components, but the driver will try to optimize "
3127 "them out; this is non-portable out-of-spec "
3128 "behavior\n",
3129 _mesa_shader_stage_to_string(i));
3130 } else {
3131 linker_error(prog, "Too many %s shader default uniform block "
3132 "components\n",
3133 _mesa_shader_stage_to_string(i));
3134 }
3135 }
3136
3137 if (sh->num_combined_uniform_components >
3138 ctx->Const.Program[i].MaxCombinedUniformComponents) {
3139 if (ctx->Const.GLSLSkipStrictMaxUniformLimitCheck) {
3140 linker_warning(prog, "Too many %s shader uniform components, "
3141 "but the driver will try to optimize them out; "
3142 "this is non-portable out-of-spec behavior\n",
3143 _mesa_shader_stage_to_string(i));
3144 } else {
3145 linker_error(prog, "Too many %s shader uniform components\n",
3146 _mesa_shader_stage_to_string(i));
3147 }
3148 }
3149
3150 total_shader_storage_blocks += sh->Program->info.num_ssbos;
3151 total_uniform_blocks += sh->Program->info.num_ubos;
3152
3153 const unsigned max_uniform_blocks =
3154 ctx->Const.Program[i].MaxUniformBlocks;
3155 if (max_uniform_blocks < sh->Program->info.num_ubos) {
3156 linker_error(prog, "Too many %s uniform blocks (%d/%d)\n",
3157 _mesa_shader_stage_to_string(i),
3158 sh->Program->info.num_ubos, max_uniform_blocks);
3159 }
3160
3161 const unsigned max_shader_storage_blocks =
3162 ctx->Const.Program[i].MaxShaderStorageBlocks;
3163 if (max_shader_storage_blocks < sh->Program->info.num_ssbos) {
3164 linker_error(prog, "Too many %s shader storage blocks (%d/%d)\n",
3165 _mesa_shader_stage_to_string(i),
3166 sh->Program->info.num_ssbos, max_shader_storage_blocks);
3167 }
3168 }
3169
3170 if (total_uniform_blocks > ctx->Const.MaxCombinedUniformBlocks) {
3171 linker_error(prog, "Too many combined uniform blocks (%d/%d)\n",
3172 total_uniform_blocks, ctx->Const.MaxCombinedUniformBlocks);
3173 }
3174
3175 if (total_shader_storage_blocks > ctx->Const.MaxCombinedShaderStorageBlocks) {
3176 linker_error(prog, "Too many combined shader storage blocks (%d/%d)\n",
3177 total_shader_storage_blocks,
3178 ctx->Const.MaxCombinedShaderStorageBlocks);
3179 }
3180
3181 for (unsigned i = 0; i < prog->data->NumUniformBlocks; i++) {
3182 if (prog->data->UniformBlocks[i].UniformBufferSize >
3183 ctx->Const.MaxUniformBlockSize) {
3184 linker_error(prog, "Uniform block %s too big (%d/%d)\n",
3185 prog->data->UniformBlocks[i].Name,
3186 prog->data->UniformBlocks[i].UniformBufferSize,
3187 ctx->Const.MaxUniformBlockSize);
3188 }
3189 }
3190
3191 for (unsigned i = 0; i < prog->data->NumShaderStorageBlocks; i++) {
3192 if (prog->data->ShaderStorageBlocks[i].UniformBufferSize >
3193 ctx->Const.MaxShaderStorageBlockSize) {
3194 linker_error(prog, "Shader storage block %s too big (%d/%d)\n",
3195 prog->data->ShaderStorageBlocks[i].Name,
3196 prog->data->ShaderStorageBlocks[i].UniformBufferSize,
3197 ctx->Const.MaxShaderStorageBlockSize);
3198 }
3199 }
3200 }
3201
3202 static void
3203 link_calculate_subroutine_compat(struct gl_shader_program *prog)
3204 {
3205 unsigned mask = prog->data->linked_stages;
3206 while (mask) {
3207 const int i = u_bit_scan(&mask);
3208 struct gl_program *p = prog->_LinkedShaders[i]->Program;
3209
3210 for (unsigned j = 0; j < p->sh.NumSubroutineUniformRemapTable; j++) {
3211 if (p->sh.SubroutineUniformRemapTable[j] == INACTIVE_UNIFORM_EXPLICIT_LOCATION)
3212 continue;
3213
3214 struct gl_uniform_storage *uni = p->sh.SubroutineUniformRemapTable[j];
3215
3216 if (!uni)
3217 continue;
3218
3219 int count = 0;
3220 if (p->sh.NumSubroutineFunctions == 0) {
3221 linker_error(prog, "subroutine uniform %s defined but no valid functions found\n", uni->type->name);
3222 continue;
3223 }
3224 for (unsigned f = 0; f < p->sh.NumSubroutineFunctions; f++) {
3225 struct gl_subroutine_function *fn = &p->sh.SubroutineFunctions[f];
3226 for (int k = 0; k < fn->num_compat_types; k++) {
3227 if (fn->types[k] == uni->type) {
3228 count++;
3229 break;
3230 }
3231 }
3232 }
3233 uni->num_compatible_subroutines = count;
3234 }
3235 }
3236 }
3237
3238 static void
3239 check_subroutine_resources(struct gl_shader_program *prog)
3240 {
3241 unsigned mask = prog->data->linked_stages;
3242 while (mask) {
3243 const int i = u_bit_scan(&mask);
3244 struct gl_program *p = prog->_LinkedShaders[i]->Program;
3245
3246 if (p->sh.NumSubroutineUniformRemapTable > MAX_SUBROUTINE_UNIFORM_LOCATIONS) {
3247 linker_error(prog, "Too many %s shader subroutine uniforms\n",
3248 _mesa_shader_stage_to_string(i));
3249 }
3250 }
3251 }
3252 /**
3253 * Validate shader image resources.
3254 */
3255 static void
3256 check_image_resources(struct gl_context *ctx, struct gl_shader_program *prog)
3257 {
3258 unsigned total_image_units = 0;
3259 unsigned fragment_outputs = 0;
3260 unsigned total_shader_storage_blocks = 0;
3261
3262 if (!ctx->Extensions.ARB_shader_image_load_store)
3263 return;
3264
3265 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3266 struct gl_linked_shader *sh = prog->_LinkedShaders[i];
3267
3268 if (sh) {
3269 if (sh->Program->info.num_images > ctx->Const.Program[i].MaxImageUniforms)
3270 linker_error(prog, "Too many %s shader image uniforms (%u > %u)\n",
3271 _mesa_shader_stage_to_string(i),
3272 sh->Program->info.num_images,
3273 ctx->Const.Program[i].MaxImageUniforms);
3274
3275 total_image_units += sh->Program->info.num_images;
3276 total_shader_storage_blocks += sh->Program->info.num_ssbos;
3277
3278 if (i == MESA_SHADER_FRAGMENT) {
3279 foreach_in_list(ir_instruction, node, sh->ir) {
3280 ir_variable *var = node->as_variable();
3281 if (var && var->data.mode == ir_var_shader_out)
3282 /* since there are no double fs outputs - pass false */
3283 fragment_outputs += var->type->count_attribute_slots(false);
3284 }
3285 }
3286 }
3287 }
3288
3289 if (total_image_units > ctx->Const.MaxCombinedImageUniforms)
3290 linker_error(prog, "Too many combined image uniforms\n");
3291
3292 if (total_image_units + fragment_outputs + total_shader_storage_blocks >
3293 ctx->Const.MaxCombinedShaderOutputResources)
3294 linker_error(prog, "Too many combined image uniforms, shader storage "
3295 " buffers and fragment outputs\n");
3296 }
3297
3298
3299 /**
3300 * Initializes explicit location slots to INACTIVE_UNIFORM_EXPLICIT_LOCATION
3301 * for a variable, checks for overlaps between other uniforms using explicit
3302 * locations.
3303 */
3304 static int
3305 reserve_explicit_locations(struct gl_shader_program *prog,
3306 string_to_uint_map *map, ir_variable *var)
3307 {
3308 unsigned slots = var->type->uniform_locations();
3309 unsigned max_loc = var->data.location + slots - 1;
3310 unsigned return_value = slots;
3311
3312 /* Resize remap table if locations do not fit in the current one. */
3313 if (max_loc + 1 > prog->NumUniformRemapTable) {
3314 prog->UniformRemapTable =
3315 reralloc(prog, prog->UniformRemapTable,
3316 gl_uniform_storage *,
3317 max_loc + 1);
3318
3319 if (!prog->UniformRemapTable) {
3320 linker_error(prog, "Out of memory during linking.\n");
3321 return -1;
3322 }
3323
3324 /* Initialize allocated space. */
3325 for (unsigned i = prog->NumUniformRemapTable; i < max_loc + 1; i++)
3326 prog->UniformRemapTable[i] = NULL;
3327
3328 prog->NumUniformRemapTable = max_loc + 1;
3329 }
3330
3331 for (unsigned i = 0; i < slots; i++) {
3332 unsigned loc = var->data.location + i;
3333
3334 /* Check if location is already used. */
3335 if (prog->UniformRemapTable[loc] == INACTIVE_UNIFORM_EXPLICIT_LOCATION) {
3336
3337 /* Possibly same uniform from a different stage, this is ok. */
3338 unsigned hash_loc;
3339 if (map->get(hash_loc, var->name) && hash_loc == loc - i) {
3340 return_value = 0;
3341 continue;
3342 }
3343
3344 /* ARB_explicit_uniform_location specification states:
3345 *
3346 * "No two default-block uniform variables in the program can have
3347 * the same location, even if they are unused, otherwise a compiler
3348 * or linker error will be generated."
3349 */
3350 linker_error(prog,
3351 "location qualifier for uniform %s overlaps "
3352 "previously used location\n",
3353 var->name);
3354 return -1;
3355 }
3356
3357 /* Initialize location as inactive before optimization
3358 * rounds and location assignment.
3359 */
3360 prog->UniformRemapTable[loc] = INACTIVE_UNIFORM_EXPLICIT_LOCATION;
3361 }
3362
3363 /* Note, base location used for arrays. */
3364 map->put(var->data.location, var->name);
3365
3366 return return_value;
3367 }
3368
3369 static bool
3370 reserve_subroutine_explicit_locations(struct gl_shader_program *prog,
3371 struct gl_program *p,
3372 ir_variable *var)
3373 {
3374 unsigned slots = var->type->uniform_locations();
3375 unsigned max_loc = var->data.location + slots - 1;
3376
3377 /* Resize remap table if locations do not fit in the current one. */
3378 if (max_loc + 1 > p->sh.NumSubroutineUniformRemapTable) {
3379 p->sh.SubroutineUniformRemapTable =
3380 reralloc(p, p->sh.SubroutineUniformRemapTable,
3381 gl_uniform_storage *,
3382 max_loc + 1);
3383
3384 if (!p->sh.SubroutineUniformRemapTable) {
3385 linker_error(prog, "Out of memory during linking.\n");
3386 return false;
3387 }
3388
3389 /* Initialize allocated space. */
3390 for (unsigned i = p->sh.NumSubroutineUniformRemapTable; i < max_loc + 1; i++)
3391 p->sh.SubroutineUniformRemapTable[i] = NULL;
3392
3393 p->sh.NumSubroutineUniformRemapTable = max_loc + 1;
3394 }
3395
3396 for (unsigned i = 0; i < slots; i++) {
3397 unsigned loc = var->data.location + i;
3398
3399 /* Check if location is already used. */
3400 if (p->sh.SubroutineUniformRemapTable[loc] == INACTIVE_UNIFORM_EXPLICIT_LOCATION) {
3401
3402 /* ARB_explicit_uniform_location specification states:
3403 * "No two subroutine uniform variables can have the same location
3404 * in the same shader stage, otherwise a compiler or linker error
3405 * will be generated."
3406 */
3407 linker_error(prog,
3408 "location qualifier for uniform %s overlaps "
3409 "previously used location\n",
3410 var->name);
3411 return false;
3412 }
3413
3414 /* Initialize location as inactive before optimization
3415 * rounds and location assignment.
3416 */
3417 p->sh.SubroutineUniformRemapTable[loc] = INACTIVE_UNIFORM_EXPLICIT_LOCATION;
3418 }
3419
3420 return true;
3421 }
3422 /**
3423 * Check and reserve all explicit uniform locations, called before
3424 * any optimizations happen to handle also inactive uniforms and
3425 * inactive array elements that may get trimmed away.
3426 */
3427 static void
3428 check_explicit_uniform_locations(struct gl_context *ctx,
3429 struct gl_shader_program *prog)
3430 {
3431 prog->NumExplicitUniformLocations = 0;
3432
3433 if (!ctx->Extensions.ARB_explicit_uniform_location)
3434 return;
3435
3436 /* This map is used to detect if overlapping explicit locations
3437 * occur with the same uniform (from different stage) or a different one.
3438 */
3439 string_to_uint_map *uniform_map = new string_to_uint_map;
3440
3441 if (!uniform_map) {
3442 linker_error(prog, "Out of memory during linking.\n");
3443 return;
3444 }
3445
3446 unsigned entries_total = 0;
3447 unsigned mask = prog->data->linked_stages;
3448 while (mask) {
3449 const int i = u_bit_scan(&mask);
3450 struct gl_program *p = prog->_LinkedShaders[i]->Program;
3451
3452 foreach_in_list(ir_instruction, node, prog->_LinkedShaders[i]->ir) {
3453 ir_variable *var = node->as_variable();
3454 if (!var || var->data.mode != ir_var_uniform)
3455 continue;
3456
3457 if (var->data.explicit_location) {
3458 bool ret = false;
3459 if (var->type->without_array()->is_subroutine())
3460 ret = reserve_subroutine_explicit_locations(prog, p, var);
3461 else {
3462 int slots = reserve_explicit_locations(prog, uniform_map,
3463 var);
3464 if (slots != -1) {
3465 ret = true;
3466 entries_total += slots;
3467 }
3468 }
3469 if (!ret) {
3470 delete uniform_map;
3471 return;
3472 }
3473 }
3474 }
3475 }
3476
3477 struct empty_uniform_block *current_block = NULL;
3478
3479 for (unsigned i = 0; i < prog->NumUniformRemapTable; i++) {
3480 /* We found empty space in UniformRemapTable. */
3481 if (prog->UniformRemapTable[i] == NULL) {
3482 /* We've found the beginning of a new continous block of empty slots */
3483 if (!current_block || current_block->start + current_block->slots != i) {
3484 current_block = rzalloc(prog, struct empty_uniform_block);
3485 current_block->start = i;
3486 exec_list_push_tail(&prog->EmptyUniformLocations,
3487 &current_block->link);
3488 }
3489
3490 /* The current block continues, so we simply increment its slots */
3491 current_block->slots++;
3492 }
3493 }
3494
3495 delete uniform_map;
3496 prog->NumExplicitUniformLocations = entries_total;
3497 }
3498
3499 static bool
3500 should_add_buffer_variable(struct gl_shader_program *shProg,
3501 GLenum type, const char *name)
3502 {
3503 bool found_interface = false;
3504 unsigned block_name_len = 0;
3505 const char *block_name_dot = strchr(name, '.');
3506
3507 /* These rules only apply to buffer variables. So we return
3508 * true for the rest of types.
3509 */
3510 if (type != GL_BUFFER_VARIABLE)
3511 return true;
3512
3513 for (unsigned i = 0; i < shProg->data->NumShaderStorageBlocks; i++) {
3514 const char *block_name = shProg->data->ShaderStorageBlocks[i].Name;
3515 block_name_len = strlen(block_name);
3516
3517 const char *block_square_bracket = strchr(block_name, '[');
3518 if (block_square_bracket) {
3519 /* The block is part of an array of named interfaces,
3520 * for the name comparison we ignore the "[x]" part.
3521 */
3522 block_name_len -= strlen(block_square_bracket);
3523 }
3524
3525 if (block_name_dot) {
3526 /* Check if the variable name starts with the interface
3527 * name. The interface name (if present) should have the
3528 * length than the interface block name we are comparing to.
3529 */
3530 unsigned len = strlen(name) - strlen(block_name_dot);
3531 if (len != block_name_len)
3532 continue;
3533 }
3534
3535 if (strncmp(block_name, name, block_name_len) == 0) {
3536 found_interface = true;
3537 break;
3538 }
3539 }
3540
3541 /* We remove the interface name from the buffer variable name,
3542 * including the dot that follows it.
3543 */
3544 if (found_interface)
3545 name = name + block_name_len + 1;
3546
3547 /* The ARB_program_interface_query spec says:
3548 *
3549 * "For an active shader storage block member declared as an array, an
3550 * entry will be generated only for the first array element, regardless
3551 * of its type. For arrays of aggregate types, the enumeration rules
3552 * are applied recursively for the single enumerated array element."
3553 */
3554 const char *struct_first_dot = strchr(name, '.');
3555 const char *first_square_bracket = strchr(name, '[');
3556
3557 /* The buffer variable is on top level and it is not an array */
3558 if (!first_square_bracket) {
3559 return true;
3560 /* The shader storage block member is a struct, then generate the entry */
3561 } else if (struct_first_dot && struct_first_dot < first_square_bracket) {
3562 return true;
3563 } else {
3564 /* Shader storage block member is an array, only generate an entry for the
3565 * first array element.
3566 */
3567 if (strncmp(first_square_bracket, "[0]", 3) == 0)
3568 return true;
3569 }
3570
3571 return false;
3572 }
3573
3574 static bool
3575 add_program_resource(struct gl_shader_program *prog,
3576 struct set *resource_set,
3577 GLenum type, const void *data, uint8_t stages)
3578 {
3579 assert(data);
3580
3581 /* If resource already exists, do not add it again. */
3582 if (_mesa_set_search(resource_set, data))
3583 return true;
3584
3585 prog->data->ProgramResourceList =
3586 reralloc(prog,
3587 prog->data->ProgramResourceList,
3588 gl_program_resource,
3589 prog->data->NumProgramResourceList + 1);
3590
3591 if (!prog->data->ProgramResourceList) {
3592 linker_error(prog, "Out of memory during linking.\n");
3593 return false;
3594 }
3595
3596 struct gl_program_resource *res =
3597 &prog->data->ProgramResourceList[prog->data->NumProgramResourceList];
3598
3599 res->Type = type;
3600 res->Data = data;
3601 res->StageReferences = stages;
3602
3603 prog->data->NumProgramResourceList++;
3604
3605 _mesa_set_add(resource_set, data);
3606
3607 return true;
3608 }
3609
3610 /* Function checks if a variable var is a packed varying and
3611 * if given name is part of packed varying's list.
3612 *
3613 * If a variable is a packed varying, it has a name like
3614 * 'packed:a,b,c' where a, b and c are separate variables.
3615 */
3616 static bool
3617 included_in_packed_varying(ir_variable *var, const char *name)
3618 {
3619 if (strncmp(var->name, "packed:", 7) != 0)
3620 return false;
3621
3622 char *list = strdup(var->name + 7);
3623 assert(list);
3624
3625 bool found = false;
3626 char *saveptr;
3627 char *token = strtok_r(list, ",", &saveptr);
3628 while (token) {
3629 if (strcmp(token, name) == 0) {
3630 found = true;
3631 break;
3632 }
3633 token = strtok_r(NULL, ",", &saveptr);
3634 }
3635 free(list);
3636 return found;
3637 }
3638
3639 /**
3640 * Function builds a stage reference bitmask from variable name.
3641 */
3642 static uint8_t
3643 build_stageref(struct gl_shader_program *shProg, const char *name,
3644 unsigned mode)
3645 {
3646 uint8_t stages = 0;
3647
3648 /* Note, that we assume MAX 8 stages, if there will be more stages, type
3649 * used for reference mask in gl_program_resource will need to be changed.
3650 */
3651 assert(MESA_SHADER_STAGES < 8);
3652
3653 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3654 struct gl_linked_shader *sh = shProg->_LinkedShaders[i];
3655 if (!sh)
3656 continue;
3657
3658 /* Shader symbol table may contain variables that have
3659 * been optimized away. Search IR for the variable instead.
3660 */
3661 foreach_in_list(ir_instruction, node, sh->ir) {
3662 ir_variable *var = node->as_variable();
3663 if (var) {
3664 unsigned baselen = strlen(var->name);
3665
3666 if (included_in_packed_varying(var, name)) {
3667 stages |= (1 << i);
3668 break;
3669 }
3670
3671 /* Type needs to match if specified, otherwise we might
3672 * pick a variable with same name but different interface.
3673 */
3674 if (var->data.mode != mode)
3675 continue;
3676
3677 if (strncmp(var->name, name, baselen) == 0) {
3678 /* Check for exact name matches but also check for arrays and
3679 * structs.
3680 */
3681 if (name[baselen] == '\0' ||
3682 name[baselen] == '[' ||
3683 name[baselen] == '.') {
3684 stages |= (1 << i);
3685 break;
3686 }
3687 }
3688 }
3689 }
3690 }
3691 return stages;
3692 }
3693
3694 /**
3695 * Create gl_shader_variable from ir_variable class.
3696 */
3697 static gl_shader_variable *
3698 create_shader_variable(struct gl_shader_program *shProg,
3699 const ir_variable *in,
3700 const char *name, const glsl_type *type,
3701 const glsl_type *interface_type,
3702 bool use_implicit_location, int location,
3703 const glsl_type *outermost_struct_type)
3704 {
3705 gl_shader_variable *out = ralloc(shProg, struct gl_shader_variable);
3706 if (!out)
3707 return NULL;
3708
3709 /* Since gl_VertexID may be lowered to gl_VertexIDMESA, but applications
3710 * expect to see gl_VertexID in the program resource list. Pretend.
3711 */
3712 if (in->data.mode == ir_var_system_value &&
3713 in->data.location == SYSTEM_VALUE_VERTEX_ID_ZERO_BASE) {
3714 out->name = ralloc_strdup(shProg, "gl_VertexID");
3715 } else if ((in->data.mode == ir_var_shader_out &&
3716 in->data.location == VARYING_SLOT_TESS_LEVEL_OUTER) ||
3717 (in->data.mode == ir_var_system_value &&
3718 in->data.location == SYSTEM_VALUE_TESS_LEVEL_OUTER)) {
3719 out->name = ralloc_strdup(shProg, "gl_TessLevelOuter");
3720 type = glsl_type::get_array_instance(glsl_type::float_type, 4);
3721 } else if ((in->data.mode == ir_var_shader_out &&
3722 in->data.location == VARYING_SLOT_TESS_LEVEL_INNER) ||
3723 (in->data.mode == ir_var_system_value &&
3724 in->data.location == SYSTEM_VALUE_TESS_LEVEL_INNER)) {
3725 out->name = ralloc_strdup(shProg, "gl_TessLevelInner");
3726 type = glsl_type::get_array_instance(glsl_type::float_type, 2);
3727 } else {
3728 out->name = ralloc_strdup(shProg, name);
3729 }
3730
3731 if (!out->name)
3732 return NULL;
3733
3734 /* The ARB_program_interface_query spec says:
3735 *
3736 * "Not all active variables are assigned valid locations; the
3737 * following variables will have an effective location of -1:
3738 *
3739 * * uniforms declared as atomic counters;
3740 *
3741 * * members of a uniform block;
3742 *
3743 * * built-in inputs, outputs, and uniforms (starting with "gl_"); and
3744 *
3745 * * inputs or outputs not declared with a "location" layout
3746 * qualifier, except for vertex shader inputs and fragment shader
3747 * outputs."
3748 */
3749 if (in->type->is_atomic_uint() || is_gl_identifier(in->name) ||
3750 !(in->data.explicit_location || use_implicit_location)) {
3751 out->location = -1;
3752 } else {
3753 out->location = location;
3754 }
3755
3756 out->type = type;
3757 out->outermost_struct_type = outermost_struct_type;
3758 out->interface_type = interface_type;
3759 out->component = in->data.location_frac;
3760 out->index = in->data.index;
3761 out->patch = in->data.patch;
3762 out->mode = in->data.mode;
3763 out->interpolation = in->data.interpolation;
3764 out->explicit_location = in->data.explicit_location;
3765 out->precision = in->data.precision;
3766
3767 return out;
3768 }
3769
3770 static bool
3771 add_shader_variable(const struct gl_context *ctx,
3772 struct gl_shader_program *shProg,
3773 struct set *resource_set,
3774 unsigned stage_mask,
3775 GLenum programInterface, ir_variable *var,
3776 const char *name, const glsl_type *type,
3777 bool use_implicit_location, int location,
3778 const glsl_type *outermost_struct_type = NULL)
3779 {
3780 const glsl_type *interface_type = var->get_interface_type();
3781
3782 if (outermost_struct_type == NULL) {
3783 if (var->data.from_named_ifc_block) {
3784 const char *interface_name = interface_type->name;
3785
3786 if (interface_type->is_array()) {
3787 /* Issue #16 of the ARB_program_interface_query spec says:
3788 *
3789 * "* If a variable is a member of an interface block without an
3790 * instance name, it is enumerated using just the variable name.
3791 *
3792 * * If a variable is a member of an interface block with an
3793 * instance name, it is enumerated as "BlockName.Member", where
3794 * "BlockName" is the name of the interface block (not the
3795 * instance name) and "Member" is the name of the variable."
3796 *
3797 * In particular, it indicates that it should be "BlockName",
3798 * not "BlockName[array length]". The conformance suite and
3799 * dEQP both require this behavior.
3800 *
3801 * Here, we unwrap the extra array level added by named interface
3802 * block array lowering so we have the correct variable type. We
3803 * also unwrap the interface type when constructing the name.
3804 *
3805 * We leave interface_type the same so that ES 3.x SSO pipeline
3806 * validation can enforce the rules requiring array length to
3807 * match on interface blocks.
3808 */
3809 type = type->fields.array;
3810
3811 interface_name = interface_type->fields.array->name;
3812 }
3813
3814 name = ralloc_asprintf(shProg, "%s.%s", interface_name, name);
3815 }
3816 }
3817
3818 switch (type->base_type) {
3819 case GLSL_TYPE_STRUCT: {
3820 /* The ARB_program_interface_query spec says:
3821 *
3822 * "For an active variable declared as a structure, a separate entry
3823 * will be generated for each active structure member. The name of
3824 * each entry is formed by concatenating the name of the structure,
3825 * the "." character, and the name of the structure member. If a
3826 * structure member to enumerate is itself a structure or array,
3827 * these enumeration rules are applied recursively."
3828 */
3829 if (outermost_struct_type == NULL)
3830 outermost_struct_type = type;
3831
3832 unsigned field_location = location;
3833 for (unsigned i = 0; i < type->length; i++) {
3834 const struct glsl_struct_field *field = &type->fields.structure[i];
3835 char *field_name = ralloc_asprintf(shProg, "%s.%s", name, field->name);
3836 if (!add_shader_variable(ctx, shProg, resource_set,
3837 stage_mask, programInterface,
3838 var, field_name, field->type,
3839 use_implicit_location, field_location,
3840 outermost_struct_type))
3841 return false;
3842
3843 field_location += field->type->count_attribute_slots(false);
3844 }
3845 return true;
3846 }
3847
3848 default: {
3849 /* The ARB_program_interface_query spec says:
3850 *
3851 * "For an active variable declared as a single instance of a basic
3852 * type, a single entry will be generated, using the variable name
3853 * from the shader source."
3854 */
3855 gl_shader_variable *sha_v =
3856 create_shader_variable(shProg, var, name, type, interface_type,
3857 use_implicit_location, location,
3858 outermost_struct_type);
3859 if (!sha_v)
3860 return false;
3861
3862 return add_program_resource(shProg, resource_set,
3863 programInterface, sha_v, stage_mask);
3864 }
3865 }
3866 }
3867
3868 static bool
3869 add_interface_variables(const struct gl_context *ctx,
3870 struct gl_shader_program *shProg,
3871 struct set *resource_set,
3872 unsigned stage, GLenum programInterface)
3873 {
3874 exec_list *ir = shProg->_LinkedShaders[stage]->ir;
3875
3876 foreach_in_list(ir_instruction, node, ir) {
3877 ir_variable *var = node->as_variable();
3878
3879 if (!var || var->data.how_declared == ir_var_hidden)
3880 continue;
3881
3882 int loc_bias;
3883
3884 switch (var->data.mode) {
3885 case ir_var_system_value:
3886 case ir_var_shader_in:
3887 if (programInterface != GL_PROGRAM_INPUT)
3888 continue;
3889 loc_bias = (stage == MESA_SHADER_VERTEX) ? int(VERT_ATTRIB_GENERIC0)
3890 : int(VARYING_SLOT_VAR0);
3891 break;
3892 case ir_var_shader_out:
3893 if (programInterface != GL_PROGRAM_OUTPUT)
3894 continue;
3895 loc_bias = (stage == MESA_SHADER_FRAGMENT) ? int(FRAG_RESULT_DATA0)
3896 : int(VARYING_SLOT_VAR0);
3897 break;
3898 default:
3899 continue;
3900 };
3901
3902 if (var->data.patch)
3903 loc_bias = int(VARYING_SLOT_PATCH0);
3904
3905 /* Skip packed varyings, packed varyings are handled separately
3906 * by add_packed_varyings.
3907 */
3908 if (strncmp(var->name, "packed:", 7) == 0)
3909 continue;
3910
3911 /* Skip fragdata arrays, these are handled separately
3912 * by add_fragdata_arrays.
3913 */
3914 if (strncmp(var->name, "gl_out_FragData", 15) == 0)
3915 continue;
3916
3917 const bool vs_input_or_fs_output =
3918 (stage == MESA_SHADER_VERTEX && var->data.mode == ir_var_shader_in) ||
3919 (stage == MESA_SHADER_FRAGMENT && var->data.mode == ir_var_shader_out);
3920
3921 if (!add_shader_variable(ctx, shProg, resource_set,
3922 1 << stage, programInterface,
3923 var, var->name, var->type, vs_input_or_fs_output,
3924 var->data.location - loc_bias))
3925 return false;
3926 }
3927 return true;
3928 }
3929
3930 static bool
3931 add_packed_varyings(const struct gl_context *ctx,
3932 struct gl_shader_program *shProg,
3933 struct set *resource_set,
3934 int stage, GLenum type)
3935 {
3936 struct gl_linked_shader *sh = shProg->_LinkedShaders[stage];
3937 GLenum iface;
3938
3939 if (!sh || !sh->packed_varyings)
3940 return true;
3941
3942 foreach_in_list(ir_instruction, node, sh->packed_varyings) {
3943 ir_variable *var = node->as_variable();
3944 if (var) {
3945 switch (var->data.mode) {
3946 case ir_var_shader_in:
3947 iface = GL_PROGRAM_INPUT;
3948 break;
3949 case ir_var_shader_out:
3950 iface = GL_PROGRAM_OUTPUT;
3951 break;
3952 default:
3953 unreachable("unexpected type");
3954 }
3955
3956 if (type == iface) {
3957 const int stage_mask =
3958 build_stageref(shProg, var->name, var->data.mode);
3959 if (!add_shader_variable(ctx, shProg, resource_set,
3960 stage_mask,
3961 iface, var, var->name, var->type, false,
3962 var->data.location - VARYING_SLOT_VAR0))
3963 return false;
3964 }
3965 }
3966 }
3967 return true;
3968 }
3969
3970 static bool
3971 add_fragdata_arrays(const struct gl_context *ctx,
3972 struct gl_shader_program *shProg,
3973 struct set *resource_set)
3974 {
3975 struct gl_linked_shader *sh = shProg->_LinkedShaders[MESA_SHADER_FRAGMENT];
3976
3977 if (!sh || !sh->fragdata_arrays)
3978 return true;
3979
3980 foreach_in_list(ir_instruction, node, sh->fragdata_arrays) {
3981 ir_variable *var = node->as_variable();
3982 if (var) {
3983 assert(var->data.mode == ir_var_shader_out);
3984
3985 if (!add_shader_variable(ctx, shProg, resource_set,
3986 1 << MESA_SHADER_FRAGMENT,
3987 GL_PROGRAM_OUTPUT, var, var->name, var->type,
3988 true, var->data.location - FRAG_RESULT_DATA0))
3989 return false;
3990 }
3991 }
3992 return true;
3993 }
3994
3995 static char*
3996 get_top_level_name(const char *name)
3997 {
3998 const char *first_dot = strchr(name, '.');
3999 const char *first_square_bracket = strchr(name, '[');
4000 int name_size = 0;
4001
4002 /* The ARB_program_interface_query spec says:
4003 *
4004 * "For the property TOP_LEVEL_ARRAY_SIZE, a single integer identifying
4005 * the number of active array elements of the top-level shader storage
4006 * block member containing to the active variable is written to
4007 * <params>. If the top-level block member is not declared as an
4008 * array, the value one is written to <params>. If the top-level block
4009 * member is an array with no declared size, the value zero is written
4010 * to <params>."
4011 */
4012
4013 /* The buffer variable is on top level.*/
4014 if (!first_square_bracket && !first_dot)
4015 name_size = strlen(name);
4016 else if ((!first_square_bracket ||
4017 (first_dot && first_dot < first_square_bracket)))
4018 name_size = first_dot - name;
4019 else
4020 name_size = first_square_bracket - name;
4021
4022 return strndup(name, name_size);
4023 }
4024
4025 static char*
4026 get_var_name(const char *name)
4027 {
4028 const char *first_dot = strchr(name, '.');
4029
4030 if (!first_dot)
4031 return strdup(name);
4032
4033 return strndup(first_dot+1, strlen(first_dot) - 1);
4034 }
4035
4036 static bool
4037 is_top_level_shader_storage_block_member(const char* name,
4038 const char* interface_name,
4039 const char* field_name)
4040 {
4041 bool result = false;
4042
4043 /* If the given variable is already a top-level shader storage
4044 * block member, then return array_size = 1.
4045 * We could have two possibilities: if we have an instanced
4046 * shader storage block or not instanced.
4047 *
4048 * For the first, we check create a name as it was in top level and
4049 * compare it with the real name. If they are the same, then
4050 * the variable is already at top-level.
4051 *
4052 * Full instanced name is: interface name + '.' + var name +
4053 * NULL character
4054 */
4055 int name_length = strlen(interface_name) + 1 + strlen(field_name) + 1;
4056 char *full_instanced_name = (char *) calloc(name_length, sizeof(char));
4057 if (!full_instanced_name) {
4058 fprintf(stderr, "%s: Cannot allocate space for name\n", __func__);
4059 return false;
4060 }
4061
4062 snprintf(full_instanced_name, name_length, "%s.%s",
4063 interface_name, field_name);
4064
4065 /* Check if its top-level shader storage block member of an
4066 * instanced interface block, or of a unnamed interface block.
4067 */
4068 if (strcmp(name, full_instanced_name) == 0 ||
4069 strcmp(name, field_name) == 0)
4070 result = true;
4071
4072 free(full_instanced_name);
4073 return result;
4074 }
4075
4076 static int
4077 get_array_size(struct gl_uniform_storage *uni, const glsl_struct_field *field,
4078 char *interface_name, char *var_name)
4079 {
4080 /* The ARB_program_interface_query spec says:
4081 *
4082 * "For the property TOP_LEVEL_ARRAY_SIZE, a single integer identifying
4083 * the number of active array elements of the top-level shader storage
4084 * block member containing to the active variable is written to
4085 * <params>. If the top-level block member is not declared as an
4086 * array, the value one is written to <params>. If the top-level block
4087 * member is an array with no declared size, the value zero is written
4088 * to <params>."
4089 */
4090 if (is_top_level_shader_storage_block_member(uni->name,
4091 interface_name,
4092 var_name))
4093 return 1;
4094 else if (field->type->is_unsized_array())
4095 return 0;
4096 else if (field->type->is_array())
4097 return field->type->length;
4098
4099 return 1;
4100 }
4101
4102 static int
4103 get_array_stride(struct gl_uniform_storage *uni, const glsl_type *interface,
4104 const glsl_struct_field *field, char *interface_name,
4105 char *var_name)
4106 {
4107 /* The ARB_program_interface_query spec says:
4108 *
4109 * "For the property TOP_LEVEL_ARRAY_STRIDE, a single integer
4110 * identifying the stride between array elements of the top-level
4111 * shader storage block member containing the active variable is
4112 * written to <params>. For top-level block members declared as
4113 * arrays, the value written is the difference, in basic machine units,
4114 * between the offsets of the active variable for consecutive elements
4115 * in the top-level array. For top-level block members not declared as
4116 * an array, zero is written to <params>."
4117 */
4118 if (field->type->is_array()) {
4119 const enum glsl_matrix_layout matrix_layout =
4120 glsl_matrix_layout(field->matrix_layout);
4121 bool row_major = matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR;
4122 const glsl_type *array_type = field->type->fields.array;
4123
4124 if (is_top_level_shader_storage_block_member(uni->name,
4125 interface_name,
4126 var_name))
4127 return 0;
4128
4129 if (interface->interface_packing != GLSL_INTERFACE_PACKING_STD430) {
4130 if (array_type->is_record() || array_type->is_array())
4131 return glsl_align(array_type->std140_size(row_major), 16);
4132 else
4133 return MAX2(array_type->std140_base_alignment(row_major), 16);
4134 } else {
4135 return array_type->std430_array_stride(row_major);
4136 }
4137 }
4138 return 0;
4139 }
4140
4141 static void
4142 calculate_array_size_and_stride(struct gl_shader_program *shProg,
4143 struct gl_uniform_storage *uni)
4144 {
4145 int block_index = uni->block_index;
4146 int array_size = -1;
4147 int array_stride = -1;
4148 char *var_name = get_top_level_name(uni->name);
4149 char *interface_name =
4150 get_top_level_name(uni->is_shader_storage ?
4151 shProg->data->ShaderStorageBlocks[block_index].Name :
4152 shProg->data->UniformBlocks[block_index].Name);
4153
4154 if (strcmp(var_name, interface_name) == 0) {
4155 /* Deal with instanced array of SSBOs */
4156 char *temp_name = get_var_name(uni->name);
4157 if (!temp_name) {
4158 linker_error(shProg, "Out of memory during linking.\n");
4159 goto write_top_level_array_size_and_stride;
4160 }
4161 free(var_name);
4162 var_name = get_top_level_name(temp_name);
4163 free(temp_name);
4164 if (!var_name) {
4165 linker_error(shProg, "Out of memory during linking.\n");
4166 goto write_top_level_array_size_and_stride;
4167 }
4168 }
4169
4170 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4171 const gl_linked_shader *sh = shProg->_LinkedShaders[i];
4172 if (sh == NULL)
4173 continue;
4174
4175 foreach_in_list(ir_instruction, node, sh->ir) {
4176 ir_variable *var = node->as_variable();
4177 if (!var || !var->get_interface_type() ||
4178 var->data.mode != ir_var_shader_storage)
4179 continue;
4180
4181 const glsl_type *interface = var->get_interface_type();
4182
4183 if (strcmp(interface_name, interface->name) != 0)
4184 continue;
4185
4186 for (unsigned i = 0; i < interface->length; i++) {
4187 const glsl_struct_field *field = &interface->fields.structure[i];
4188 if (strcmp(field->name, var_name) != 0)
4189 continue;
4190
4191 array_stride = get_array_stride(uni, interface, field,
4192 interface_name, var_name);
4193 array_size = get_array_size(uni, field, interface_name, var_name);
4194 goto write_top_level_array_size_and_stride;
4195 }
4196 }
4197 }
4198 write_top_level_array_size_and_stride:
4199 free(interface_name);
4200 free(var_name);
4201 uni->top_level_array_stride = array_stride;
4202 uni->top_level_array_size = array_size;
4203 }
4204
4205 /**
4206 * Builds up a list of program resources that point to existing
4207 * resource data.
4208 */
4209 void
4210 build_program_resource_list(struct gl_context *ctx,
4211 struct gl_shader_program *shProg)
4212 {
4213 /* Rebuild resource list. */
4214 if (shProg->data->ProgramResourceList) {
4215 ralloc_free(shProg->data->ProgramResourceList);
4216 shProg->data->ProgramResourceList = NULL;
4217 shProg->data->NumProgramResourceList = 0;
4218 }
4219
4220 int input_stage = MESA_SHADER_STAGES, output_stage = 0;
4221
4222 /* Determine first input and final output stage. These are used to
4223 * detect which variables should be enumerated in the resource list
4224 * for GL_PROGRAM_INPUT and GL_PROGRAM_OUTPUT.
4225 */
4226 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4227 if (!shProg->_LinkedShaders[i])
4228 continue;
4229 if (input_stage == MESA_SHADER_STAGES)
4230 input_stage = i;
4231 output_stage = i;
4232 }
4233
4234 /* Empty shader, no resources. */
4235 if (input_stage == MESA_SHADER_STAGES && output_stage == 0)
4236 return;
4237
4238 struct set *resource_set = _mesa_set_create(NULL,
4239 _mesa_hash_pointer,
4240 _mesa_key_pointer_equal);
4241
4242 /* Program interface needs to expose varyings in case of SSO. */
4243 if (shProg->SeparateShader) {
4244 if (!add_packed_varyings(ctx, shProg, resource_set,
4245 input_stage, GL_PROGRAM_INPUT))
4246 return;
4247
4248 if (!add_packed_varyings(ctx, shProg, resource_set,
4249 output_stage, GL_PROGRAM_OUTPUT))
4250 return;
4251 }
4252
4253 if (!add_fragdata_arrays(ctx, shProg, resource_set))
4254 return;
4255
4256 /* Add inputs and outputs to the resource list. */
4257 if (!add_interface_variables(ctx, shProg, resource_set,
4258 input_stage, GL_PROGRAM_INPUT))
4259 return;
4260
4261 if (!add_interface_variables(ctx, shProg, resource_set,
4262 output_stage, GL_PROGRAM_OUTPUT))
4263 return;
4264
4265 if (shProg->last_vert_prog) {
4266 struct gl_transform_feedback_info *linked_xfb =
4267 shProg->last_vert_prog->sh.LinkedTransformFeedback;
4268
4269 /* Add transform feedback varyings. */
4270 if (linked_xfb->NumVarying > 0) {
4271 for (int i = 0; i < linked_xfb->NumVarying; i++) {
4272 if (!add_program_resource(shProg, resource_set,
4273 GL_TRANSFORM_FEEDBACK_VARYING,
4274 &linked_xfb->Varyings[i], 0))
4275 return;
4276 }
4277 }
4278
4279 /* Add transform feedback buffers. */
4280 for (unsigned i = 0; i < ctx->Const.MaxTransformFeedbackBuffers; i++) {
4281 if ((linked_xfb->ActiveBuffers >> i) & 1) {
4282 linked_xfb->Buffers[i].Binding = i;
4283 if (!add_program_resource(shProg, resource_set,
4284 GL_TRANSFORM_FEEDBACK_BUFFER,
4285 &linked_xfb->Buffers[i], 0))
4286 return;
4287 }
4288 }
4289 }
4290
4291 /* Add uniforms from uniform storage. */
4292 for (unsigned i = 0; i < shProg->data->NumUniformStorage; i++) {
4293 /* Do not add uniforms internally used by Mesa. */
4294 if (shProg->data->UniformStorage[i].hidden)
4295 continue;
4296
4297 uint8_t stageref =
4298 build_stageref(shProg, shProg->data->UniformStorage[i].name,
4299 ir_var_uniform);
4300
4301 /* Add stagereferences for uniforms in a uniform block. */
4302 bool is_shader_storage =
4303 shProg->data->UniformStorage[i].is_shader_storage;
4304 int block_index = shProg->data->UniformStorage[i].block_index;
4305 if (block_index != -1) {
4306 stageref |= is_shader_storage ?
4307 shProg->data->ShaderStorageBlocks[block_index].stageref :
4308 shProg->data->UniformBlocks[block_index].stageref;
4309 }
4310
4311 GLenum type = is_shader_storage ? GL_BUFFER_VARIABLE : GL_UNIFORM;
4312 if (!should_add_buffer_variable(shProg, type,
4313 shProg->data->UniformStorage[i].name))
4314 continue;
4315
4316 if (is_shader_storage) {
4317 calculate_array_size_and_stride(shProg,
4318 &shProg->data->UniformStorage[i]);
4319 }
4320
4321 if (!add_program_resource(shProg, resource_set, type,
4322 &shProg->data->UniformStorage[i], stageref))
4323 return;
4324 }
4325
4326 /* Add program uniform blocks. */
4327 for (unsigned i = 0; i < shProg->data->NumUniformBlocks; i++) {
4328 if (!add_program_resource(shProg, resource_set, GL_UNIFORM_BLOCK,
4329 &shProg->data->UniformBlocks[i], 0))
4330 return;
4331 }
4332
4333 /* Add program shader storage blocks. */
4334 for (unsigned i = 0; i < shProg->data->NumShaderStorageBlocks; i++) {
4335 if (!add_program_resource(shProg, resource_set, GL_SHADER_STORAGE_BLOCK,
4336 &shProg->data->ShaderStorageBlocks[i], 0))
4337 return;
4338 }
4339
4340 /* Add atomic counter buffers. */
4341 for (unsigned i = 0; i < shProg->data->NumAtomicBuffers; i++) {
4342 if (!add_program_resource(shProg, resource_set, GL_ATOMIC_COUNTER_BUFFER,
4343 &shProg->data->AtomicBuffers[i], 0))
4344 return;
4345 }
4346
4347 for (unsigned i = 0; i < shProg->data->NumUniformStorage; i++) {
4348 GLenum type;
4349 if (!shProg->data->UniformStorage[i].hidden)
4350 continue;
4351
4352 for (int j = MESA_SHADER_VERTEX; j < MESA_SHADER_STAGES; j++) {
4353 if (!shProg->data->UniformStorage[i].opaque[j].active ||
4354 !shProg->data->UniformStorage[i].type->is_subroutine())
4355 continue;
4356
4357 type = _mesa_shader_stage_to_subroutine_uniform((gl_shader_stage)j);
4358 /* add shader subroutines */
4359 if (!add_program_resource(shProg, resource_set,
4360 type, &shProg->data->UniformStorage[i], 0))
4361 return;
4362 }
4363 }
4364
4365 unsigned mask = shProg->data->linked_stages;
4366 while (mask) {
4367 const int i = u_bit_scan(&mask);
4368 struct gl_program *p = shProg->_LinkedShaders[i]->Program;
4369
4370 GLuint type = _mesa_shader_stage_to_subroutine((gl_shader_stage)i);
4371 for (unsigned j = 0; j < p->sh.NumSubroutineFunctions; j++) {
4372 if (!add_program_resource(shProg, resource_set,
4373 type, &p->sh.SubroutineFunctions[j], 0))
4374 return;
4375 }
4376 }
4377
4378 _mesa_set_destroy(resource_set, NULL);
4379 }
4380
4381 /**
4382 * This check is done to make sure we allow only constant expression
4383 * indexing and "constant-index-expression" (indexing with an expression
4384 * that includes loop induction variable).
4385 */
4386 static bool
4387 validate_sampler_array_indexing(struct gl_context *ctx,
4388 struct gl_shader_program *prog)
4389 {
4390 dynamic_sampler_array_indexing_visitor v;
4391 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4392 if (prog->_LinkedShaders[i] == NULL)
4393 continue;
4394
4395 bool no_dynamic_indexing =
4396 ctx->Const.ShaderCompilerOptions[i].EmitNoIndirectSampler;
4397
4398 /* Search for array derefs in shader. */
4399 v.run(prog->_LinkedShaders[i]->ir);
4400 if (v.uses_dynamic_sampler_array_indexing()) {
4401 const char *msg = "sampler arrays indexed with non-constant "
4402 "expressions is forbidden in GLSL %s %u";
4403 /* Backend has indicated that it has no dynamic indexing support. */
4404 if (no_dynamic_indexing) {
4405 linker_error(prog, msg, prog->IsES ? "ES" : "",
4406 prog->data->Version);
4407 return false;
4408 } else {
4409 linker_warning(prog, msg, prog->IsES ? "ES" : "",
4410 prog->data->Version);
4411 }
4412 }
4413 }
4414 return true;
4415 }
4416
4417 static void
4418 link_assign_subroutine_types(struct gl_shader_program *prog)
4419 {
4420 unsigned mask = prog->data->linked_stages;
4421 while (mask) {
4422 const int i = u_bit_scan(&mask);
4423 gl_program *p = prog->_LinkedShaders[i]->Program;
4424
4425 p->sh.MaxSubroutineFunctionIndex = 0;
4426 foreach_in_list(ir_instruction, node, prog->_LinkedShaders[i]->ir) {
4427 ir_function *fn = node->as_function();
4428 if (!fn)
4429 continue;
4430
4431 if (fn->is_subroutine)
4432 p->sh.NumSubroutineUniformTypes++;
4433
4434 if (!fn->num_subroutine_types)
4435 continue;
4436
4437 /* these should have been calculated earlier. */
4438 assert(fn->subroutine_index != -1);
4439 if (p->sh.NumSubroutineFunctions + 1 > MAX_SUBROUTINES) {
4440 linker_error(prog, "Too many subroutine functions declared.\n");
4441 return;
4442 }
4443 p->sh.SubroutineFunctions = reralloc(p, p->sh.SubroutineFunctions,
4444 struct gl_subroutine_function,
4445 p->sh.NumSubroutineFunctions + 1);
4446 p->sh.SubroutineFunctions[p->sh.NumSubroutineFunctions].name = ralloc_strdup(p, fn->name);
4447 p->sh.SubroutineFunctions[p->sh.NumSubroutineFunctions].num_compat_types = fn->num_subroutine_types;
4448 p->sh.SubroutineFunctions[p->sh.NumSubroutineFunctions].types =
4449 ralloc_array(p, const struct glsl_type *,
4450 fn->num_subroutine_types);
4451
4452 /* From Section 4.4.4(Subroutine Function Layout Qualifiers) of the
4453 * GLSL 4.5 spec:
4454 *
4455 * "Each subroutine with an index qualifier in the shader must be
4456 * given a unique index, otherwise a compile or link error will be
4457 * generated."
4458 */
4459 for (unsigned j = 0; j < p->sh.NumSubroutineFunctions; j++) {
4460 if (p->sh.SubroutineFunctions[j].index != -1 &&
4461 p->sh.SubroutineFunctions[j].index == fn->subroutine_index) {
4462 linker_error(prog, "each subroutine index qualifier in the "
4463 "shader must be unique\n");
4464 return;
4465 }
4466 }
4467 p->sh.SubroutineFunctions[p->sh.NumSubroutineFunctions].index =
4468 fn->subroutine_index;
4469
4470 if (fn->subroutine_index > (int)p->sh.MaxSubroutineFunctionIndex)
4471 p->sh.MaxSubroutineFunctionIndex = fn->subroutine_index;
4472
4473 for (int j = 0; j < fn->num_subroutine_types; j++)
4474 p->sh.SubroutineFunctions[p->sh.NumSubroutineFunctions].types[j] = fn->subroutine_types[j];
4475 p->sh.NumSubroutineFunctions++;
4476 }
4477 }
4478 }
4479
4480 static void
4481 set_always_active_io(exec_list *ir, ir_variable_mode io_mode)
4482 {
4483 assert(io_mode == ir_var_shader_in || io_mode == ir_var_shader_out);
4484
4485 foreach_in_list(ir_instruction, node, ir) {
4486 ir_variable *const var = node->as_variable();
4487
4488 if (var == NULL || var->data.mode != io_mode)
4489 continue;
4490
4491 /* Don't set always active on builtins that haven't been redeclared */
4492 if (var->data.how_declared == ir_var_declared_implicitly)
4493 continue;
4494
4495 var->data.always_active_io = true;
4496 }
4497 }
4498
4499 /**
4500 * When separate shader programs are enabled, only input/outputs between
4501 * the stages of a multi-stage separate program can be safely removed
4502 * from the shader interface. Other inputs/outputs must remain active.
4503 */
4504 static void
4505 disable_varying_optimizations_for_sso(struct gl_shader_program *prog)
4506 {
4507 unsigned first, last;
4508 assert(prog->SeparateShader);
4509
4510 first = MESA_SHADER_STAGES;
4511 last = 0;
4512
4513 /* Determine first and last stage. Excluding the compute stage */
4514 for (unsigned i = 0; i < MESA_SHADER_COMPUTE; i++) {
4515 if (!prog->_LinkedShaders[i])
4516 continue;
4517 if (first == MESA_SHADER_STAGES)
4518 first = i;
4519 last = i;
4520 }
4521
4522 if (first == MESA_SHADER_STAGES)
4523 return;
4524
4525 for (unsigned stage = 0; stage < MESA_SHADER_STAGES; stage++) {
4526 gl_linked_shader *sh = prog->_LinkedShaders[stage];
4527 if (!sh)
4528 continue;
4529
4530 if (first == last) {
4531 /* For a single shader program only allow inputs to the vertex shader
4532 * and outputs from the fragment shader to be removed.
4533 */
4534 if (stage != MESA_SHADER_VERTEX)
4535 set_always_active_io(sh->ir, ir_var_shader_in);
4536 if (stage != MESA_SHADER_FRAGMENT)
4537 set_always_active_io(sh->ir, ir_var_shader_out);
4538 } else {
4539 /* For multi-stage separate shader programs only allow inputs and
4540 * outputs between the shader stages to be removed as well as inputs
4541 * to the vertex shader and outputs from the fragment shader.
4542 */
4543 if (stage == first && stage != MESA_SHADER_VERTEX)
4544 set_always_active_io(sh->ir, ir_var_shader_in);
4545 else if (stage == last && stage != MESA_SHADER_FRAGMENT)
4546 set_always_active_io(sh->ir, ir_var_shader_out);
4547 }
4548 }
4549 }
4550
4551 static void
4552 link_and_validate_uniforms(struct gl_context *ctx,
4553 struct gl_shader_program *prog)
4554 {
4555 update_array_sizes(prog);
4556 link_assign_uniform_locations(prog, ctx);
4557
4558 if (!prog->data->cache_fallback) {
4559 link_assign_atomic_counter_resources(ctx, prog);
4560 link_calculate_subroutine_compat(prog);
4561 check_resources(ctx, prog);
4562 check_subroutine_resources(prog);
4563 check_image_resources(ctx, prog);
4564 link_check_atomic_counter_resources(ctx, prog);
4565 }
4566 }
4567
4568 static bool
4569 link_varyings_and_uniforms(unsigned first, unsigned last,
4570 struct gl_context *ctx,
4571 struct gl_shader_program *prog, void *mem_ctx)
4572 {
4573 /* Mark all generic shader inputs and outputs as unpaired. */
4574 for (unsigned i = MESA_SHADER_VERTEX; i <= MESA_SHADER_FRAGMENT; i++) {
4575 if (prog->_LinkedShaders[i] != NULL) {
4576 link_invalidate_variable_locations(prog->_LinkedShaders[i]->ir);
4577 }
4578 }
4579
4580 unsigned prev = first;
4581 for (unsigned i = prev + 1; i <= MESA_SHADER_FRAGMENT; i++) {
4582 if (prog->_LinkedShaders[i] == NULL)
4583 continue;
4584
4585 match_explicit_outputs_to_inputs(prog->_LinkedShaders[prev],
4586 prog->_LinkedShaders[i]);
4587 prev = i;
4588 }
4589
4590 if (!assign_attribute_or_color_locations(mem_ctx, prog, &ctx->Const,
4591 MESA_SHADER_VERTEX)) {
4592 return false;
4593 }
4594
4595 if (!assign_attribute_or_color_locations(mem_ctx, prog, &ctx->Const,
4596 MESA_SHADER_FRAGMENT)) {
4597 return false;
4598 }
4599
4600 prog->last_vert_prog = NULL;
4601 for (int i = MESA_SHADER_GEOMETRY; i >= MESA_SHADER_VERTEX; i--) {
4602 if (prog->_LinkedShaders[i] == NULL)
4603 continue;
4604
4605 prog->last_vert_prog = prog->_LinkedShaders[i]->Program;
4606 break;
4607 }
4608
4609 if (!link_varyings(prog, first, last, ctx, mem_ctx))
4610 return false;
4611
4612 link_and_validate_uniforms(ctx, prog);
4613
4614 if (!prog->data->LinkStatus)
4615 return false;
4616
4617 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4618 if (prog->_LinkedShaders[i] == NULL)
4619 continue;
4620
4621 const struct gl_shader_compiler_options *options =
4622 &ctx->Const.ShaderCompilerOptions[i];
4623
4624 if (options->LowerBufferInterfaceBlocks)
4625 lower_ubo_reference(prog->_LinkedShaders[i],
4626 options->ClampBlockIndicesToArrayBounds);
4627
4628 if (i == MESA_SHADER_COMPUTE)
4629 lower_shared_reference(prog->_LinkedShaders[i],
4630 &prog->Comp.SharedSize);
4631
4632 lower_vector_derefs(prog->_LinkedShaders[i]);
4633 do_vec_index_to_swizzle(prog->_LinkedShaders[i]->ir);
4634 }
4635
4636 return true;
4637 }
4638
4639 static void
4640 linker_optimisation_loop(struct gl_context *ctx, exec_list *ir,
4641 unsigned stage)
4642 {
4643 if (ctx->Const.GLSLOptimizeConservatively) {
4644 /* Run it just once. */
4645 do_common_optimization(ir, true, false,
4646 &ctx->Const.ShaderCompilerOptions[stage],
4647 ctx->Const.NativeIntegers);
4648 } else {
4649 /* Repeat it until it stops making changes. */
4650 while (do_common_optimization(ir, true, false,
4651 &ctx->Const.ShaderCompilerOptions[stage],
4652 ctx->Const.NativeIntegers))
4653 ;
4654 }
4655 }
4656
4657 void
4658 link_shaders(struct gl_context *ctx, struct gl_shader_program *prog)
4659 {
4660 prog->data->LinkStatus = linking_success; /* All error paths will set this to false */
4661 prog->data->Validated = false;
4662
4663 /* Section 7.3 (Program Objects) of the OpenGL 4.5 Core Profile spec says:
4664 *
4665 * "Linking can fail for a variety of reasons as specified in the
4666 * OpenGL Shading Language Specification, as well as any of the
4667 * following reasons:
4668 *
4669 * - No shader objects are attached to program."
4670 *
4671 * The Compatibility Profile specification does not list the error. In
4672 * Compatibility Profile missing shader stages are replaced by
4673 * fixed-function. This applies to the case where all stages are
4674 * missing.
4675 */
4676 if (prog->NumShaders == 0) {
4677 if (ctx->API != API_OPENGL_COMPAT)
4678 linker_error(prog, "no shaders attached to the program\n");
4679 return;
4680 }
4681
4682 #ifdef ENABLE_SHADER_CACHE
4683 /* If transform feedback used on the program then compile all shaders. */
4684 bool skip_cache = false;
4685 if (prog->TransformFeedback.NumVarying > 0) {
4686 for (unsigned i = 0; i < prog->NumShaders; i++) {
4687 _mesa_glsl_compile_shader(ctx, prog->Shaders[i], false, false, true);
4688 }
4689 skip_cache = true;
4690 }
4691
4692 if (!skip_cache && shader_cache_read_program_metadata(ctx, prog))
4693 return;
4694 #endif
4695
4696 void *mem_ctx = ralloc_context(NULL); // temporary linker context
4697
4698 prog->ARB_fragment_coord_conventions_enable = false;
4699
4700 /* Separate the shaders into groups based on their type.
4701 */
4702 struct gl_shader **shader_list[MESA_SHADER_STAGES];
4703 unsigned num_shaders[MESA_SHADER_STAGES];
4704
4705 for (int i = 0; i < MESA_SHADER_STAGES; i++) {
4706 shader_list[i] = (struct gl_shader **)
4707 calloc(prog->NumShaders, sizeof(struct gl_shader *));
4708 num_shaders[i] = 0;
4709 }
4710
4711 unsigned min_version = UINT_MAX;
4712 unsigned max_version = 0;
4713 for (unsigned i = 0; i < prog->NumShaders; i++) {
4714 min_version = MIN2(min_version, prog->Shaders[i]->Version);
4715 max_version = MAX2(max_version, prog->Shaders[i]->Version);
4716
4717 if (prog->Shaders[i]->IsES != prog->Shaders[0]->IsES) {
4718 linker_error(prog, "all shaders must use same shading "
4719 "language version\n");
4720 goto done;
4721 }
4722
4723 if (prog->Shaders[i]->ARB_fragment_coord_conventions_enable) {
4724 prog->ARB_fragment_coord_conventions_enable = true;
4725 }
4726
4727 gl_shader_stage shader_type = prog->Shaders[i]->Stage;
4728 shader_list[shader_type][num_shaders[shader_type]] = prog->Shaders[i];
4729 num_shaders[shader_type]++;
4730 }
4731
4732 /* In desktop GLSL, different shader versions may be linked together. In
4733 * GLSL ES, all shader versions must be the same.
4734 */
4735 if (prog->Shaders[0]->IsES && min_version != max_version) {
4736 linker_error(prog, "all shaders must use same shading "
4737 "language version\n");
4738 goto done;
4739 }
4740
4741 prog->data->Version = max_version;
4742 prog->IsES = prog->Shaders[0]->IsES;
4743
4744 /* Some shaders have to be linked with some other shaders present.
4745 */
4746 if (!prog->SeparateShader) {
4747 if (num_shaders[MESA_SHADER_GEOMETRY] > 0 &&
4748 num_shaders[MESA_SHADER_VERTEX] == 0) {
4749 linker_error(prog, "Geometry shader must be linked with "
4750 "vertex shader\n");
4751 goto done;
4752 }
4753 if (num_shaders[MESA_SHADER_TESS_EVAL] > 0 &&
4754 num_shaders[MESA_SHADER_VERTEX] == 0) {
4755 linker_error(prog, "Tessellation evaluation shader must be linked "
4756 "with vertex shader\n");
4757 goto done;
4758 }
4759 if (num_shaders[MESA_SHADER_TESS_CTRL] > 0 &&
4760 num_shaders[MESA_SHADER_VERTEX] == 0) {
4761 linker_error(prog, "Tessellation control shader must be linked with "
4762 "vertex shader\n");
4763 goto done;
4764 }
4765
4766 /* Section 7.3 of the OpenGL ES 3.2 specification says:
4767 *
4768 * "Linking can fail for [...] any of the following reasons:
4769 *
4770 * * program contains an object to form a tessellation control
4771 * shader [...] and [...] the program is not separable and
4772 * contains no object to form a tessellation evaluation shader"
4773 *
4774 * The OpenGL spec is contradictory. It allows linking without a tess
4775 * eval shader, but that can only be used with transform feedback and
4776 * rasterization disabled. However, transform feedback isn't allowed
4777 * with GL_PATCHES, so it can't be used.
4778 *
4779 * More investigation showed that the idea of transform feedback after
4780 * a tess control shader was dropped, because some hw vendors couldn't
4781 * support tessellation without a tess eval shader, but the linker
4782 * section wasn't updated to reflect that.
4783 *
4784 * All specifications (ARB_tessellation_shader, GL 4.0-4.5) have this
4785 * spec bug.
4786 *
4787 * Do what's reasonable and always require a tess eval shader if a tess
4788 * control shader is present.
4789 */
4790 if (num_shaders[MESA_SHADER_TESS_CTRL] > 0 &&
4791 num_shaders[MESA_SHADER_TESS_EVAL] == 0) {
4792 linker_error(prog, "Tessellation control shader must be linked with "
4793 "tessellation evaluation shader\n");
4794 goto done;
4795 }
4796
4797 if (prog->IsES) {
4798 if (num_shaders[MESA_SHADER_TESS_EVAL] > 0 &&
4799 num_shaders[MESA_SHADER_TESS_CTRL] == 0) {
4800 linker_error(prog, "GLSL ES requires non-separable programs "
4801 "containing a tessellation evaluation shader to also "
4802 "be linked with a tessellation control shader\n");
4803 goto done;
4804 }
4805 }
4806 }
4807
4808 /* Compute shaders have additional restrictions. */
4809 if (num_shaders[MESA_SHADER_COMPUTE] > 0 &&
4810 num_shaders[MESA_SHADER_COMPUTE] != prog->NumShaders) {
4811 linker_error(prog, "Compute shaders may not be linked with any other "
4812 "type of shader\n");
4813 }
4814
4815 /* Link all shaders for a particular stage and validate the result.
4816 */
4817 for (int stage = 0; stage < MESA_SHADER_STAGES; stage++) {
4818 if (num_shaders[stage] > 0) {
4819 gl_linked_shader *const sh =
4820 link_intrastage_shaders(mem_ctx, ctx, prog, shader_list[stage],
4821 num_shaders[stage], false);
4822
4823 if (!prog->data->LinkStatus) {
4824 if (sh)
4825 _mesa_delete_linked_shader(ctx, sh);
4826 goto done;
4827 }
4828
4829 switch (stage) {
4830 case MESA_SHADER_VERTEX:
4831 validate_vertex_shader_executable(prog, sh, ctx);
4832 break;
4833 case MESA_SHADER_TESS_CTRL:
4834 /* nothing to be done */
4835 break;
4836 case MESA_SHADER_TESS_EVAL:
4837 validate_tess_eval_shader_executable(prog, sh, ctx);
4838 break;
4839 case MESA_SHADER_GEOMETRY:
4840 validate_geometry_shader_executable(prog, sh, ctx);
4841 break;
4842 case MESA_SHADER_FRAGMENT:
4843 validate_fragment_shader_executable(prog, sh);
4844 break;
4845 }
4846 if (!prog->data->LinkStatus) {
4847 if (sh)
4848 _mesa_delete_linked_shader(ctx, sh);
4849 goto done;
4850 }
4851
4852 prog->_LinkedShaders[stage] = sh;
4853 prog->data->linked_stages |= 1 << stage;
4854 }
4855 }
4856
4857 /* Here begins the inter-stage linking phase. Some initial validation is
4858 * performed, then locations are assigned for uniforms, attributes, and
4859 * varyings.
4860 */
4861 cross_validate_uniforms(prog);
4862 if (!prog->data->LinkStatus)
4863 goto done;
4864
4865 unsigned first, last, prev;
4866
4867 first = MESA_SHADER_STAGES;
4868 last = 0;
4869
4870 /* Determine first and last stage. */
4871 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4872 if (!prog->_LinkedShaders[i])
4873 continue;
4874 if (first == MESA_SHADER_STAGES)
4875 first = i;
4876 last = i;
4877 }
4878
4879 if (!prog->data->cache_fallback) {
4880 check_explicit_uniform_locations(ctx, prog);
4881 link_assign_subroutine_types(prog);
4882 }
4883
4884 if (!prog->data->LinkStatus)
4885 goto done;
4886
4887 resize_tes_inputs(ctx, prog);
4888
4889 /* Validate the inputs of each stage with the output of the preceding
4890 * stage.
4891 */
4892 prev = first;
4893 for (unsigned i = prev + 1; i <= MESA_SHADER_FRAGMENT; i++) {
4894 if (prog->_LinkedShaders[i] == NULL)
4895 continue;
4896
4897 validate_interstage_inout_blocks(prog, prog->_LinkedShaders[prev],
4898 prog->_LinkedShaders[i]);
4899 if (!prog->data->LinkStatus)
4900 goto done;
4901
4902 cross_validate_outputs_to_inputs(prog,
4903 prog->_LinkedShaders[prev],
4904 prog->_LinkedShaders[i]);
4905 if (!prog->data->LinkStatus)
4906 goto done;
4907
4908 prev = i;
4909 }
4910
4911 /* Cross-validate uniform blocks between shader stages */
4912 validate_interstage_uniform_blocks(prog, prog->_LinkedShaders);
4913 if (!prog->data->LinkStatus)
4914 goto done;
4915
4916 for (unsigned int i = 0; i < MESA_SHADER_STAGES; i++) {
4917 if (prog->_LinkedShaders[i] != NULL)
4918 lower_named_interface_blocks(mem_ctx, prog->_LinkedShaders[i]);
4919 }
4920
4921 /* Implement the GLSL 1.30+ rule for discard vs infinite loops Do
4922 * it before optimization because we want most of the checks to get
4923 * dropped thanks to constant propagation.
4924 *
4925 * This rule also applies to GLSL ES 3.00.
4926 */
4927 if (max_version >= (prog->IsES ? 300 : 130)) {
4928 struct gl_linked_shader *sh = prog->_LinkedShaders[MESA_SHADER_FRAGMENT];
4929 if (sh) {
4930 lower_discard_flow(sh->ir);
4931 }
4932 }
4933
4934 if (prog->SeparateShader)
4935 disable_varying_optimizations_for_sso(prog);
4936
4937 if (!prog->data->cache_fallback) {
4938 /* Process UBOs */
4939 if (!interstage_cross_validate_uniform_blocks(prog, false))
4940 goto done;
4941
4942 /* Process SSBOs */
4943 if (!interstage_cross_validate_uniform_blocks(prog, true))
4944 goto done;
4945 }
4946
4947 /* Do common optimization before assigning storage for attributes,
4948 * uniforms, and varyings. Later optimization could possibly make
4949 * some of that unused.
4950 */
4951 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4952 if (prog->_LinkedShaders[i] == NULL)
4953 continue;
4954
4955 detect_recursion_linked(prog, prog->_LinkedShaders[i]->ir);
4956 if (!prog->data->LinkStatus)
4957 goto done;
4958
4959 if (ctx->Const.ShaderCompilerOptions[i].LowerCombinedClipCullDistance) {
4960 lower_clip_cull_distance(prog, prog->_LinkedShaders[i]);
4961 }
4962
4963 if (ctx->Const.LowerTessLevel) {
4964 lower_tess_level(prog->_LinkedShaders[i]);
4965 }
4966
4967 /* Call opts before lowering const arrays to uniforms so we can const
4968 * propagate any elements accessed directly.
4969 */
4970 linker_optimisation_loop(ctx, prog->_LinkedShaders[i]->ir, i);
4971
4972 /* Call opts after lowering const arrays to copy propagate things. */
4973 if (lower_const_arrays_to_uniforms(prog->_LinkedShaders[i]->ir, i))
4974 linker_optimisation_loop(ctx, prog->_LinkedShaders[i]->ir, i);
4975
4976 propagate_invariance(prog->_LinkedShaders[i]->ir);
4977 }
4978
4979 /* Validation for special cases where we allow sampler array indexing
4980 * with loop induction variable. This check emits a warning or error
4981 * depending if backend can handle dynamic indexing.
4982 */
4983 if ((!prog->IsES && prog->data->Version < 130) ||
4984 (prog->IsES && prog->data->Version < 300)) {
4985 if (!validate_sampler_array_indexing(ctx, prog))
4986 goto done;
4987 }
4988
4989 /* Check and validate stream emissions in geometry shaders */
4990 validate_geometry_shader_emissions(ctx, prog);
4991
4992 store_fragdepth_layout(prog);
4993
4994 if(!link_varyings_and_uniforms(first, last, ctx, prog, mem_ctx))
4995 goto done;
4996
4997 /* OpenGL ES < 3.1 requires that a vertex shader and a fragment shader both
4998 * be present in a linked program. GL_ARB_ES2_compatibility doesn't say
4999 * anything about shader linking when one of the shaders (vertex or
5000 * fragment shader) is absent. So, the extension shouldn't change the
5001 * behavior specified in GLSL specification.
5002 *
5003 * From OpenGL ES 3.1 specification (7.3 Program Objects):
5004 * "Linking can fail for a variety of reasons as specified in the
5005 * OpenGL ES Shading Language Specification, as well as any of the
5006 * following reasons:
5007 *
5008 * ...
5009 *
5010 * * program contains objects to form either a vertex shader or
5011 * fragment shader, and program is not separable, and does not
5012 * contain objects to form both a vertex shader and fragment
5013 * shader."
5014 *
5015 * However, the only scenario in 3.1+ where we don't require them both is
5016 * when we have a compute shader. For example:
5017 *
5018 * - No shaders is a link error.
5019 * - Geom or Tess without a Vertex shader is a link error which means we
5020 * always require a Vertex shader and hence a Fragment shader.
5021 * - Finally a Compute shader linked with any other stage is a link error.
5022 */
5023 if (!prog->SeparateShader && ctx->API == API_OPENGLES2 &&
5024 num_shaders[MESA_SHADER_COMPUTE] == 0) {
5025 if (prog->_LinkedShaders[MESA_SHADER_VERTEX] == NULL) {
5026 linker_error(prog, "program lacks a vertex shader\n");
5027 } else if (prog->_LinkedShaders[MESA_SHADER_FRAGMENT] == NULL) {
5028 linker_error(prog, "program lacks a fragment shader\n");
5029 }
5030 }
5031
5032 done:
5033 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
5034 free(shader_list[i]);
5035 if (prog->_LinkedShaders[i] == NULL)
5036 continue;
5037
5038 /* Do a final validation step to make sure that the IR wasn't
5039 * invalidated by any modifications performed after intrastage linking.
5040 */
5041 validate_ir_tree(prog->_LinkedShaders[i]->ir);
5042
5043 /* Retain any live IR, but trash the rest. */
5044 reparent_ir(prog->_LinkedShaders[i]->ir, prog->_LinkedShaders[i]->ir);
5045
5046 /* The symbol table in the linked shaders may contain references to
5047 * variables that were removed (e.g., unused uniforms). Since it may
5048 * contain junk, there is no possible valid use. Delete it and set the
5049 * pointer to NULL.
5050 */
5051 delete prog->_LinkedShaders[i]->symbols;
5052 prog->_LinkedShaders[i]->symbols = NULL;
5053 }
5054
5055 ralloc_free(mem_ctx);
5056 }