glsl: add varying resources for arrays of complex types
[mesa.git] / src / compiler / glsl / linker.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file linker.cpp
26 * GLSL linker implementation
27 *
28 * Given a set of shaders that are to be linked to generate a final program,
29 * there are three distinct stages.
30 *
31 * In the first stage shaders are partitioned into groups based on the shader
32 * type. All shaders of a particular type (e.g., vertex shaders) are linked
33 * together.
34 *
35 * - Undefined references in each shader are resolve to definitions in
36 * another shader.
37 * - Types and qualifiers of uniforms, outputs, and global variables defined
38 * in multiple shaders with the same name are verified to be the same.
39 * - Initializers for uniforms and global variables defined
40 * in multiple shaders with the same name are verified to be the same.
41 *
42 * The result, in the terminology of the GLSL spec, is a set of shader
43 * executables for each processing unit.
44 *
45 * After the first stage is complete, a series of semantic checks are performed
46 * on each of the shader executables.
47 *
48 * - Each shader executable must define a \c main function.
49 * - Each vertex shader executable must write to \c gl_Position.
50 * - Each fragment shader executable must write to either \c gl_FragData or
51 * \c gl_FragColor.
52 *
53 * In the final stage individual shader executables are linked to create a
54 * complete exectuable.
55 *
56 * - Types of uniforms defined in multiple shader stages with the same name
57 * are verified to be the same.
58 * - Initializers for uniforms defined in multiple shader stages with the
59 * same name are verified to be the same.
60 * - Types and qualifiers of outputs defined in one stage are verified to
61 * be the same as the types and qualifiers of inputs defined with the same
62 * name in a later stage.
63 *
64 * \author Ian Romanick <ian.d.romanick@intel.com>
65 */
66
67 #include <ctype.h>
68 #include "util/strndup.h"
69 #include "main/core.h"
70 #include "glsl_symbol_table.h"
71 #include "glsl_parser_extras.h"
72 #include "ir.h"
73 #include "program.h"
74 #include "program/prog_instruction.h"
75 #include "program/program.h"
76 #include "util/mesa-sha1.h"
77 #include "util/set.h"
78 #include "string_to_uint_map.h"
79 #include "linker.h"
80 #include "link_varyings.h"
81 #include "ir_optimization.h"
82 #include "ir_rvalue_visitor.h"
83 #include "ir_uniform.h"
84 #include "builtin_functions.h"
85 #include "shader_cache.h"
86
87 #include "main/shaderobj.h"
88 #include "main/enums.h"
89
90
91 namespace {
92
93 struct find_variable {
94 const char *name;
95 bool found;
96
97 find_variable(const char *name) : name(name), found(false) {}
98 };
99
100 /**
101 * Visitor that determines whether or not a variable is ever written.
102 *
103 * Use \ref find_assignments for convenience.
104 */
105 class find_assignment_visitor : public ir_hierarchical_visitor {
106 public:
107 find_assignment_visitor(unsigned num_vars,
108 find_variable * const *vars)
109 : num_variables(num_vars), num_found(0), variables(vars)
110 {
111 }
112
113 virtual ir_visitor_status visit_enter(ir_assignment *ir)
114 {
115 ir_variable *const var = ir->lhs->variable_referenced();
116
117 return check_variable_name(var->name);
118 }
119
120 virtual ir_visitor_status visit_enter(ir_call *ir)
121 {
122 foreach_two_lists(formal_node, &ir->callee->parameters,
123 actual_node, &ir->actual_parameters) {
124 ir_rvalue *param_rval = (ir_rvalue *) actual_node;
125 ir_variable *sig_param = (ir_variable *) formal_node;
126
127 if (sig_param->data.mode == ir_var_function_out ||
128 sig_param->data.mode == ir_var_function_inout) {
129 ir_variable *var = param_rval->variable_referenced();
130 if (var && check_variable_name(var->name) == visit_stop)
131 return visit_stop;
132 }
133 }
134
135 if (ir->return_deref != NULL) {
136 ir_variable *const var = ir->return_deref->variable_referenced();
137
138 if (check_variable_name(var->name) == visit_stop)
139 return visit_stop;
140 }
141
142 return visit_continue_with_parent;
143 }
144
145 private:
146 ir_visitor_status check_variable_name(const char *name)
147 {
148 for (unsigned i = 0; i < num_variables; ++i) {
149 if (strcmp(variables[i]->name, name) == 0) {
150 if (!variables[i]->found) {
151 variables[i]->found = true;
152
153 assert(num_found < num_variables);
154 if (++num_found == num_variables)
155 return visit_stop;
156 }
157 break;
158 }
159 }
160
161 return visit_continue_with_parent;
162 }
163
164 private:
165 unsigned num_variables; /**< Number of variables to find */
166 unsigned num_found; /**< Number of variables already found */
167 find_variable * const *variables; /**< Variables to find */
168 };
169
170 /**
171 * Determine whether or not any of NULL-terminated list of variables is ever
172 * written to.
173 */
174 static void
175 find_assignments(exec_list *ir, find_variable * const *vars)
176 {
177 unsigned num_variables = 0;
178
179 for (find_variable * const *v = vars; *v; ++v)
180 num_variables++;
181
182 find_assignment_visitor visitor(num_variables, vars);
183 visitor.run(ir);
184 }
185
186 /**
187 * Determine whether or not the given variable is ever written to.
188 */
189 static void
190 find_assignments(exec_list *ir, find_variable *var)
191 {
192 find_assignment_visitor visitor(1, &var);
193 visitor.run(ir);
194 }
195
196 /**
197 * Visitor that determines whether or not a variable is ever read.
198 */
199 class find_deref_visitor : public ir_hierarchical_visitor {
200 public:
201 find_deref_visitor(const char *name)
202 : name(name), found(false)
203 {
204 /* empty */
205 }
206
207 virtual ir_visitor_status visit(ir_dereference_variable *ir)
208 {
209 if (strcmp(this->name, ir->var->name) == 0) {
210 this->found = true;
211 return visit_stop;
212 }
213
214 return visit_continue;
215 }
216
217 bool variable_found() const
218 {
219 return this->found;
220 }
221
222 private:
223 const char *name; /**< Find writes to a variable with this name. */
224 bool found; /**< Was a write to the variable found? */
225 };
226
227
228 /**
229 * A visitor helper that provides methods for updating the types of
230 * ir_dereferences. Classes that update variable types (say, updating
231 * array sizes) will want to use this so that dereference types stay in sync.
232 */
233 class deref_type_updater : public ir_hierarchical_visitor {
234 public:
235 virtual ir_visitor_status visit(ir_dereference_variable *ir)
236 {
237 ir->type = ir->var->type;
238 return visit_continue;
239 }
240
241 virtual ir_visitor_status visit_leave(ir_dereference_array *ir)
242 {
243 const glsl_type *const vt = ir->array->type;
244 if (vt->is_array())
245 ir->type = vt->fields.array;
246 return visit_continue;
247 }
248
249 virtual ir_visitor_status visit_leave(ir_dereference_record *ir)
250 {
251 ir->type = ir->record->type->fields.structure[ir->field_idx].type;
252 return visit_continue;
253 }
254 };
255
256
257 class array_resize_visitor : public deref_type_updater {
258 public:
259 unsigned num_vertices;
260 gl_shader_program *prog;
261 gl_shader_stage stage;
262
263 array_resize_visitor(unsigned num_vertices,
264 gl_shader_program *prog,
265 gl_shader_stage stage)
266 {
267 this->num_vertices = num_vertices;
268 this->prog = prog;
269 this->stage = stage;
270 }
271
272 virtual ~array_resize_visitor()
273 {
274 /* empty */
275 }
276
277 virtual ir_visitor_status visit(ir_variable *var)
278 {
279 if (!var->type->is_array() || var->data.mode != ir_var_shader_in ||
280 var->data.patch)
281 return visit_continue;
282
283 unsigned size = var->type->length;
284
285 if (stage == MESA_SHADER_GEOMETRY) {
286 /* Generate a link error if the shader has declared this array with
287 * an incorrect size.
288 */
289 if (!var->data.implicit_sized_array &&
290 size && size != this->num_vertices) {
291 linker_error(this->prog, "size of array %s declared as %u, "
292 "but number of input vertices is %u\n",
293 var->name, size, this->num_vertices);
294 return visit_continue;
295 }
296
297 /* Generate a link error if the shader attempts to access an input
298 * array using an index too large for its actual size assigned at
299 * link time.
300 */
301 if (var->data.max_array_access >= (int)this->num_vertices) {
302 linker_error(this->prog, "%s shader accesses element %i of "
303 "%s, but only %i input vertices\n",
304 _mesa_shader_stage_to_string(this->stage),
305 var->data.max_array_access, var->name, this->num_vertices);
306 return visit_continue;
307 }
308 }
309
310 var->type = glsl_type::get_array_instance(var->type->fields.array,
311 this->num_vertices);
312 var->data.max_array_access = this->num_vertices - 1;
313
314 return visit_continue;
315 }
316 };
317
318 /**
319 * Visitor that determines the highest stream id to which a (geometry) shader
320 * emits vertices. It also checks whether End{Stream}Primitive is ever called.
321 */
322 class find_emit_vertex_visitor : public ir_hierarchical_visitor {
323 public:
324 find_emit_vertex_visitor(int max_allowed)
325 : max_stream_allowed(max_allowed),
326 invalid_stream_id(0),
327 invalid_stream_id_from_emit_vertex(false),
328 end_primitive_found(false),
329 uses_non_zero_stream(false)
330 {
331 /* empty */
332 }
333
334 virtual ir_visitor_status visit_leave(ir_emit_vertex *ir)
335 {
336 int stream_id = ir->stream_id();
337
338 if (stream_id < 0) {
339 invalid_stream_id = stream_id;
340 invalid_stream_id_from_emit_vertex = true;
341 return visit_stop;
342 }
343
344 if (stream_id > max_stream_allowed) {
345 invalid_stream_id = stream_id;
346 invalid_stream_id_from_emit_vertex = true;
347 return visit_stop;
348 }
349
350 if (stream_id != 0)
351 uses_non_zero_stream = true;
352
353 return visit_continue;
354 }
355
356 virtual ir_visitor_status visit_leave(ir_end_primitive *ir)
357 {
358 end_primitive_found = true;
359
360 int stream_id = ir->stream_id();
361
362 if (stream_id < 0) {
363 invalid_stream_id = stream_id;
364 invalid_stream_id_from_emit_vertex = false;
365 return visit_stop;
366 }
367
368 if (stream_id > max_stream_allowed) {
369 invalid_stream_id = stream_id;
370 invalid_stream_id_from_emit_vertex = false;
371 return visit_stop;
372 }
373
374 if (stream_id != 0)
375 uses_non_zero_stream = true;
376
377 return visit_continue;
378 }
379
380 bool error()
381 {
382 return invalid_stream_id != 0;
383 }
384
385 const char *error_func()
386 {
387 return invalid_stream_id_from_emit_vertex ?
388 "EmitStreamVertex" : "EndStreamPrimitive";
389 }
390
391 int error_stream()
392 {
393 return invalid_stream_id;
394 }
395
396 bool uses_streams()
397 {
398 return uses_non_zero_stream;
399 }
400
401 bool uses_end_primitive()
402 {
403 return end_primitive_found;
404 }
405
406 private:
407 int max_stream_allowed;
408 int invalid_stream_id;
409 bool invalid_stream_id_from_emit_vertex;
410 bool end_primitive_found;
411 bool uses_non_zero_stream;
412 };
413
414 /* Class that finds array derefs and check if indexes are dynamic. */
415 class dynamic_sampler_array_indexing_visitor : public ir_hierarchical_visitor
416 {
417 public:
418 dynamic_sampler_array_indexing_visitor() :
419 dynamic_sampler_array_indexing(false)
420 {
421 }
422
423 ir_visitor_status visit_enter(ir_dereference_array *ir)
424 {
425 if (!ir->variable_referenced())
426 return visit_continue;
427
428 if (!ir->variable_referenced()->type->contains_sampler())
429 return visit_continue;
430
431 if (!ir->array_index->constant_expression_value(ralloc_parent(ir))) {
432 dynamic_sampler_array_indexing = true;
433 return visit_stop;
434 }
435 return visit_continue;
436 }
437
438 bool uses_dynamic_sampler_array_indexing()
439 {
440 return dynamic_sampler_array_indexing;
441 }
442
443 private:
444 bool dynamic_sampler_array_indexing;
445 };
446
447 } /* anonymous namespace */
448
449 void
450 linker_error(gl_shader_program *prog, const char *fmt, ...)
451 {
452 va_list ap;
453
454 ralloc_strcat(&prog->data->InfoLog, "error: ");
455 va_start(ap, fmt);
456 ralloc_vasprintf_append(&prog->data->InfoLog, fmt, ap);
457 va_end(ap);
458
459 prog->data->LinkStatus = linking_failure;
460 }
461
462
463 void
464 linker_warning(gl_shader_program *prog, const char *fmt, ...)
465 {
466 va_list ap;
467
468 ralloc_strcat(&prog->data->InfoLog, "warning: ");
469 va_start(ap, fmt);
470 ralloc_vasprintf_append(&prog->data->InfoLog, fmt, ap);
471 va_end(ap);
472
473 }
474
475
476 /**
477 * Given a string identifying a program resource, break it into a base name
478 * and an optional array index in square brackets.
479 *
480 * If an array index is present, \c out_base_name_end is set to point to the
481 * "[" that precedes the array index, and the array index itself is returned
482 * as a long.
483 *
484 * If no array index is present (or if the array index is negative or
485 * mal-formed), \c out_base_name_end, is set to point to the null terminator
486 * at the end of the input string, and -1 is returned.
487 *
488 * Only the final array index is parsed; if the string contains other array
489 * indices (or structure field accesses), they are left in the base name.
490 *
491 * No attempt is made to check that the base name is properly formed;
492 * typically the caller will look up the base name in a hash table, so
493 * ill-formed base names simply turn into hash table lookup failures.
494 */
495 long
496 parse_program_resource_name(const GLchar *name,
497 const GLchar **out_base_name_end)
498 {
499 /* Section 7.3.1 ("Program Interfaces") of the OpenGL 4.3 spec says:
500 *
501 * "When an integer array element or block instance number is part of
502 * the name string, it will be specified in decimal form without a "+"
503 * or "-" sign or any extra leading zeroes. Additionally, the name
504 * string will not include white space anywhere in the string."
505 */
506
507 const size_t len = strlen(name);
508 *out_base_name_end = name + len;
509
510 if (len == 0 || name[len-1] != ']')
511 return -1;
512
513 /* Walk backwards over the string looking for a non-digit character. This
514 * had better be the opening bracket for an array index.
515 *
516 * Initially, i specifies the location of the ']'. Since the string may
517 * contain only the ']' charcater, walk backwards very carefully.
518 */
519 unsigned i;
520 for (i = len - 1; (i > 0) && isdigit(name[i-1]); --i)
521 /* empty */ ;
522
523 if ((i == 0) || name[i-1] != '[')
524 return -1;
525
526 long array_index = strtol(&name[i], NULL, 10);
527 if (array_index < 0)
528 return -1;
529
530 /* Check for leading zero */
531 if (name[i] == '0' && name[i+1] != ']')
532 return -1;
533
534 *out_base_name_end = name + (i - 1);
535 return array_index;
536 }
537
538
539 void
540 link_invalidate_variable_locations(exec_list *ir)
541 {
542 foreach_in_list(ir_instruction, node, ir) {
543 ir_variable *const var = node->as_variable();
544
545 if (var == NULL)
546 continue;
547
548 /* Only assign locations for variables that lack an explicit location.
549 * Explicit locations are set for all built-in variables, generic vertex
550 * shader inputs (via layout(location=...)), and generic fragment shader
551 * outputs (also via layout(location=...)).
552 */
553 if (!var->data.explicit_location) {
554 var->data.location = -1;
555 var->data.location_frac = 0;
556 }
557
558 /* ir_variable::is_unmatched_generic_inout is used by the linker while
559 * connecting outputs from one stage to inputs of the next stage.
560 */
561 if (var->data.explicit_location &&
562 var->data.location < VARYING_SLOT_VAR0) {
563 var->data.is_unmatched_generic_inout = 0;
564 } else {
565 var->data.is_unmatched_generic_inout = 1;
566 }
567 }
568 }
569
570
571 /**
572 * Set clip_distance_array_size based and cull_distance_array_size on the given
573 * shader.
574 *
575 * Also check for errors based on incorrect usage of gl_ClipVertex and
576 * gl_ClipDistance and gl_CullDistance.
577 * Additionally test whether the arrays gl_ClipDistance and gl_CullDistance
578 * exceed the maximum size defined by gl_MaxCombinedClipAndCullDistances.
579 *
580 * Return false if an error was reported.
581 */
582 static void
583 analyze_clip_cull_usage(struct gl_shader_program *prog,
584 struct gl_linked_shader *shader,
585 struct gl_context *ctx,
586 GLuint *clip_distance_array_size,
587 GLuint *cull_distance_array_size)
588 {
589 *clip_distance_array_size = 0;
590 *cull_distance_array_size = 0;
591
592 if (prog->data->Version >= (prog->IsES ? 300 : 130)) {
593 /* From section 7.1 (Vertex Shader Special Variables) of the
594 * GLSL 1.30 spec:
595 *
596 * "It is an error for a shader to statically write both
597 * gl_ClipVertex and gl_ClipDistance."
598 *
599 * This does not apply to GLSL ES shaders, since GLSL ES defines neither
600 * gl_ClipVertex nor gl_ClipDistance. However with
601 * GL_EXT_clip_cull_distance, this functionality is exposed in ES 3.0.
602 */
603 find_variable gl_ClipDistance("gl_ClipDistance");
604 find_variable gl_CullDistance("gl_CullDistance");
605 find_variable gl_ClipVertex("gl_ClipVertex");
606 find_variable * const variables[] = {
607 &gl_ClipDistance,
608 &gl_CullDistance,
609 !prog->IsES ? &gl_ClipVertex : NULL,
610 NULL
611 };
612 find_assignments(shader->ir, variables);
613
614 /* From the ARB_cull_distance spec:
615 *
616 * It is a compile-time or link-time error for the set of shaders forming
617 * a program to statically read or write both gl_ClipVertex and either
618 * gl_ClipDistance or gl_CullDistance.
619 *
620 * This does not apply to GLSL ES shaders, since GLSL ES doesn't define
621 * gl_ClipVertex.
622 */
623 if (!prog->IsES) {
624 if (gl_ClipVertex.found && gl_ClipDistance.found) {
625 linker_error(prog, "%s shader writes to both `gl_ClipVertex' "
626 "and `gl_ClipDistance'\n",
627 _mesa_shader_stage_to_string(shader->Stage));
628 return;
629 }
630 if (gl_ClipVertex.found && gl_CullDistance.found) {
631 linker_error(prog, "%s shader writes to both `gl_ClipVertex' "
632 "and `gl_CullDistance'\n",
633 _mesa_shader_stage_to_string(shader->Stage));
634 return;
635 }
636 }
637
638 if (gl_ClipDistance.found) {
639 ir_variable *clip_distance_var =
640 shader->symbols->get_variable("gl_ClipDistance");
641 assert(clip_distance_var);
642 *clip_distance_array_size = clip_distance_var->type->length;
643 }
644 if (gl_CullDistance.found) {
645 ir_variable *cull_distance_var =
646 shader->symbols->get_variable("gl_CullDistance");
647 assert(cull_distance_var);
648 *cull_distance_array_size = cull_distance_var->type->length;
649 }
650 /* From the ARB_cull_distance spec:
651 *
652 * It is a compile-time or link-time error for the set of shaders forming
653 * a program to have the sum of the sizes of the gl_ClipDistance and
654 * gl_CullDistance arrays to be larger than
655 * gl_MaxCombinedClipAndCullDistances.
656 */
657 if ((*clip_distance_array_size + *cull_distance_array_size) >
658 ctx->Const.MaxClipPlanes) {
659 linker_error(prog, "%s shader: the combined size of "
660 "'gl_ClipDistance' and 'gl_CullDistance' size cannot "
661 "be larger than "
662 "gl_MaxCombinedClipAndCullDistances (%u)",
663 _mesa_shader_stage_to_string(shader->Stage),
664 ctx->Const.MaxClipPlanes);
665 }
666 }
667 }
668
669
670 /**
671 * Verify that a vertex shader executable meets all semantic requirements.
672 *
673 * Also sets info.clip_distance_array_size and
674 * info.cull_distance_array_size as a side effect.
675 *
676 * \param shader Vertex shader executable to be verified
677 */
678 static void
679 validate_vertex_shader_executable(struct gl_shader_program *prog,
680 struct gl_linked_shader *shader,
681 struct gl_context *ctx)
682 {
683 if (shader == NULL)
684 return;
685
686 /* From the GLSL 1.10 spec, page 48:
687 *
688 * "The variable gl_Position is available only in the vertex
689 * language and is intended for writing the homogeneous vertex
690 * position. All executions of a well-formed vertex shader
691 * executable must write a value into this variable. [...] The
692 * variable gl_Position is available only in the vertex
693 * language and is intended for writing the homogeneous vertex
694 * position. All executions of a well-formed vertex shader
695 * executable must write a value into this variable."
696 *
697 * while in GLSL 1.40 this text is changed to:
698 *
699 * "The variable gl_Position is available only in the vertex
700 * language and is intended for writing the homogeneous vertex
701 * position. It can be written at any time during shader
702 * execution. It may also be read back by a vertex shader
703 * after being written. This value will be used by primitive
704 * assembly, clipping, culling, and other fixed functionality
705 * operations, if present, that operate on primitives after
706 * vertex processing has occurred. Its value is undefined if
707 * the vertex shader executable does not write gl_Position."
708 *
709 * All GLSL ES Versions are similar to GLSL 1.40--failing to write to
710 * gl_Position is not an error.
711 */
712 if (prog->data->Version < (prog->IsES ? 300 : 140)) {
713 find_variable gl_Position("gl_Position");
714 find_assignments(shader->ir, &gl_Position);
715 if (!gl_Position.found) {
716 if (prog->IsES) {
717 linker_warning(prog,
718 "vertex shader does not write to `gl_Position'. "
719 "Its value is undefined. \n");
720 } else {
721 linker_error(prog,
722 "vertex shader does not write to `gl_Position'. \n");
723 }
724 return;
725 }
726 }
727
728 analyze_clip_cull_usage(prog, shader, ctx,
729 &shader->Program->info.clip_distance_array_size,
730 &shader->Program->info.cull_distance_array_size);
731 }
732
733 static void
734 validate_tess_eval_shader_executable(struct gl_shader_program *prog,
735 struct gl_linked_shader *shader,
736 struct gl_context *ctx)
737 {
738 if (shader == NULL)
739 return;
740
741 analyze_clip_cull_usage(prog, shader, ctx,
742 &shader->Program->info.clip_distance_array_size,
743 &shader->Program->info.cull_distance_array_size);
744 }
745
746
747 /**
748 * Verify that a fragment shader executable meets all semantic requirements
749 *
750 * \param shader Fragment shader executable to be verified
751 */
752 static void
753 validate_fragment_shader_executable(struct gl_shader_program *prog,
754 struct gl_linked_shader *shader)
755 {
756 if (shader == NULL)
757 return;
758
759 find_variable gl_FragColor("gl_FragColor");
760 find_variable gl_FragData("gl_FragData");
761 find_variable * const variables[] = { &gl_FragColor, &gl_FragData, NULL };
762 find_assignments(shader->ir, variables);
763
764 if (gl_FragColor.found && gl_FragData.found) {
765 linker_error(prog, "fragment shader writes to both "
766 "`gl_FragColor' and `gl_FragData'\n");
767 }
768 }
769
770 /**
771 * Verify that a geometry shader executable meets all semantic requirements
772 *
773 * Also sets prog->Geom.VerticesIn, and info.clip_distance_array_sizeand
774 * info.cull_distance_array_size as a side effect.
775 *
776 * \param shader Geometry shader executable to be verified
777 */
778 static void
779 validate_geometry_shader_executable(struct gl_shader_program *prog,
780 struct gl_linked_shader *shader,
781 struct gl_context *ctx)
782 {
783 if (shader == NULL)
784 return;
785
786 unsigned num_vertices =
787 vertices_per_prim(shader->Program->info.gs.input_primitive);
788 prog->Geom.VerticesIn = num_vertices;
789
790 analyze_clip_cull_usage(prog, shader, ctx,
791 &shader->Program->info.clip_distance_array_size,
792 &shader->Program->info.cull_distance_array_size);
793 }
794
795 /**
796 * Check if geometry shaders emit to non-zero streams and do corresponding
797 * validations.
798 */
799 static void
800 validate_geometry_shader_emissions(struct gl_context *ctx,
801 struct gl_shader_program *prog)
802 {
803 struct gl_linked_shader *sh = prog->_LinkedShaders[MESA_SHADER_GEOMETRY];
804
805 if (sh != NULL) {
806 find_emit_vertex_visitor emit_vertex(ctx->Const.MaxVertexStreams - 1);
807 emit_vertex.run(sh->ir);
808 if (emit_vertex.error()) {
809 linker_error(prog, "Invalid call %s(%d). Accepted values for the "
810 "stream parameter are in the range [0, %d].\n",
811 emit_vertex.error_func(),
812 emit_vertex.error_stream(),
813 ctx->Const.MaxVertexStreams - 1);
814 }
815 prog->Geom.UsesStreams = emit_vertex.uses_streams();
816 prog->Geom.UsesEndPrimitive = emit_vertex.uses_end_primitive();
817
818 /* From the ARB_gpu_shader5 spec:
819 *
820 * "Multiple vertex streams are supported only if the output primitive
821 * type is declared to be "points". A program will fail to link if it
822 * contains a geometry shader calling EmitStreamVertex() or
823 * EndStreamPrimitive() if its output primitive type is not "points".
824 *
825 * However, in the same spec:
826 *
827 * "The function EmitVertex() is equivalent to calling EmitStreamVertex()
828 * with <stream> set to zero."
829 *
830 * And:
831 *
832 * "The function EndPrimitive() is equivalent to calling
833 * EndStreamPrimitive() with <stream> set to zero."
834 *
835 * Since we can call EmitVertex() and EndPrimitive() when we output
836 * primitives other than points, calling EmitStreamVertex(0) or
837 * EmitEndPrimitive(0) should not produce errors. This it also what Nvidia
838 * does. Currently we only set prog->Geom.UsesStreams to TRUE when
839 * EmitStreamVertex() or EmitEndPrimitive() are called with a non-zero
840 * stream.
841 */
842 if (prog->Geom.UsesStreams &&
843 sh->Program->info.gs.output_primitive != GL_POINTS) {
844 linker_error(prog, "EmitStreamVertex(n) and EndStreamPrimitive(n) "
845 "with n>0 requires point output\n");
846 }
847 }
848 }
849
850 bool
851 validate_intrastage_arrays(struct gl_shader_program *prog,
852 ir_variable *const var,
853 ir_variable *const existing)
854 {
855 /* Consider the types to be "the same" if both types are arrays
856 * of the same type and one of the arrays is implicitly sized.
857 * In addition, set the type of the linked variable to the
858 * explicitly sized array.
859 */
860 if (var->type->is_array() && existing->type->is_array()) {
861 if ((var->type->fields.array == existing->type->fields.array) &&
862 ((var->type->length == 0)|| (existing->type->length == 0))) {
863 if (var->type->length != 0) {
864 if ((int)var->type->length <= existing->data.max_array_access) {
865 linker_error(prog, "%s `%s' declared as type "
866 "`%s' but outermost dimension has an index"
867 " of `%i'\n",
868 mode_string(var),
869 var->name, var->type->name,
870 existing->data.max_array_access);
871 }
872 existing->type = var->type;
873 return true;
874 } else if (existing->type->length != 0) {
875 if((int)existing->type->length <= var->data.max_array_access &&
876 !existing->data.from_ssbo_unsized_array) {
877 linker_error(prog, "%s `%s' declared as type "
878 "`%s' but outermost dimension has an index"
879 " of `%i'\n",
880 mode_string(var),
881 var->name, existing->type->name,
882 var->data.max_array_access);
883 }
884 return true;
885 }
886 }
887 }
888 return false;
889 }
890
891
892 /**
893 * Perform validation of global variables used across multiple shaders
894 */
895 static void
896 cross_validate_globals(struct gl_shader_program *prog,
897 struct exec_list *ir, glsl_symbol_table *variables,
898 bool uniforms_only)
899 {
900 foreach_in_list(ir_instruction, node, ir) {
901 ir_variable *const var = node->as_variable();
902
903 if (var == NULL)
904 continue;
905
906 if (uniforms_only && (var->data.mode != ir_var_uniform && var->data.mode != ir_var_shader_storage))
907 continue;
908
909 /* don't cross validate subroutine uniforms */
910 if (var->type->contains_subroutine())
911 continue;
912
913 /* Don't cross validate interface instances. These are only relevant
914 * inside a shader. The cross validation is done at the Interface Block
915 * name level.
916 */
917 if (var->is_interface_instance())
918 continue;
919
920 /* Don't cross validate temporaries that are at global scope. These
921 * will eventually get pulled into the shaders 'main'.
922 */
923 if (var->data.mode == ir_var_temporary)
924 continue;
925
926 /* If a global with this name has already been seen, verify that the
927 * new instance has the same type. In addition, if the globals have
928 * initializers, the values of the initializers must be the same.
929 */
930 ir_variable *const existing = variables->get_variable(var->name);
931 if (existing != NULL) {
932 /* Check if types match. */
933 if (var->type != existing->type) {
934 if (!validate_intrastage_arrays(prog, var, existing)) {
935 /* If it is an unsized array in a Shader Storage Block,
936 * two different shaders can access to different elements.
937 * Because of that, they might be converted to different
938 * sized arrays, then check that they are compatible but
939 * ignore the array size.
940 */
941 if (!(var->data.mode == ir_var_shader_storage &&
942 var->data.from_ssbo_unsized_array &&
943 existing->data.mode == ir_var_shader_storage &&
944 existing->data.from_ssbo_unsized_array &&
945 var->type->gl_type == existing->type->gl_type)) {
946 linker_error(prog, "%s `%s' declared as type "
947 "`%s' and type `%s'\n",
948 mode_string(var),
949 var->name, var->type->name,
950 existing->type->name);
951 return;
952 }
953 }
954 }
955
956 if (var->data.explicit_location) {
957 if (existing->data.explicit_location
958 && (var->data.location != existing->data.location)) {
959 linker_error(prog, "explicit locations for %s "
960 "`%s' have differing values\n",
961 mode_string(var), var->name);
962 return;
963 }
964
965 if (var->data.location_frac != existing->data.location_frac) {
966 linker_error(prog, "explicit components for %s `%s' have "
967 "differing values\n", mode_string(var), var->name);
968 return;
969 }
970
971 existing->data.location = var->data.location;
972 existing->data.explicit_location = true;
973 } else {
974 /* Check if uniform with implicit location was marked explicit
975 * by earlier shader stage. If so, mark it explicit in this stage
976 * too to make sure later processing does not treat it as
977 * implicit one.
978 */
979 if (existing->data.explicit_location) {
980 var->data.location = existing->data.location;
981 var->data.explicit_location = true;
982 }
983 }
984
985 /* From the GLSL 4.20 specification:
986 * "A link error will result if two compilation units in a program
987 * specify different integer-constant bindings for the same
988 * opaque-uniform name. However, it is not an error to specify a
989 * binding on some but not all declarations for the same name"
990 */
991 if (var->data.explicit_binding) {
992 if (existing->data.explicit_binding &&
993 var->data.binding != existing->data.binding) {
994 linker_error(prog, "explicit bindings for %s "
995 "`%s' have differing values\n",
996 mode_string(var), var->name);
997 return;
998 }
999
1000 existing->data.binding = var->data.binding;
1001 existing->data.explicit_binding = true;
1002 }
1003
1004 if (var->type->contains_atomic() &&
1005 var->data.offset != existing->data.offset) {
1006 linker_error(prog, "offset specifications for %s "
1007 "`%s' have differing values\n",
1008 mode_string(var), var->name);
1009 return;
1010 }
1011
1012 /* Validate layout qualifiers for gl_FragDepth.
1013 *
1014 * From the AMD/ARB_conservative_depth specs:
1015 *
1016 * "If gl_FragDepth is redeclared in any fragment shader in a
1017 * program, it must be redeclared in all fragment shaders in
1018 * that program that have static assignments to
1019 * gl_FragDepth. All redeclarations of gl_FragDepth in all
1020 * fragment shaders in a single program must have the same set
1021 * of qualifiers."
1022 */
1023 if (strcmp(var->name, "gl_FragDepth") == 0) {
1024 bool layout_declared = var->data.depth_layout != ir_depth_layout_none;
1025 bool layout_differs =
1026 var->data.depth_layout != existing->data.depth_layout;
1027
1028 if (layout_declared && layout_differs) {
1029 linker_error(prog,
1030 "All redeclarations of gl_FragDepth in all "
1031 "fragment shaders in a single program must have "
1032 "the same set of qualifiers.\n");
1033 }
1034
1035 if (var->data.used && layout_differs) {
1036 linker_error(prog,
1037 "If gl_FragDepth is redeclared with a layout "
1038 "qualifier in any fragment shader, it must be "
1039 "redeclared with the same layout qualifier in "
1040 "all fragment shaders that have assignments to "
1041 "gl_FragDepth\n");
1042 }
1043 }
1044
1045 /* Page 35 (page 41 of the PDF) of the GLSL 4.20 spec says:
1046 *
1047 * "If a shared global has multiple initializers, the
1048 * initializers must all be constant expressions, and they
1049 * must all have the same value. Otherwise, a link error will
1050 * result. (A shared global having only one initializer does
1051 * not require that initializer to be a constant expression.)"
1052 *
1053 * Previous to 4.20 the GLSL spec simply said that initializers
1054 * must have the same value. In this case of non-constant
1055 * initializers, this was impossible to determine. As a result,
1056 * no vendor actually implemented that behavior. The 4.20
1057 * behavior matches the implemented behavior of at least one other
1058 * vendor, so we'll implement that for all GLSL versions.
1059 */
1060 if (var->constant_initializer != NULL) {
1061 if (existing->constant_initializer != NULL) {
1062 if (!var->constant_initializer->has_value(existing->constant_initializer)) {
1063 linker_error(prog, "initializers for %s "
1064 "`%s' have differing values\n",
1065 mode_string(var), var->name);
1066 return;
1067 }
1068 } else {
1069 /* If the first-seen instance of a particular uniform did
1070 * not have an initializer but a later instance does,
1071 * replace the former with the later.
1072 */
1073 variables->replace_variable(existing->name, var);
1074 }
1075 }
1076
1077 if (var->data.has_initializer) {
1078 if (existing->data.has_initializer
1079 && (var->constant_initializer == NULL
1080 || existing->constant_initializer == NULL)) {
1081 linker_error(prog,
1082 "shared global variable `%s' has multiple "
1083 "non-constant initializers.\n",
1084 var->name);
1085 return;
1086 }
1087 }
1088
1089 if (existing->data.invariant != var->data.invariant) {
1090 linker_error(prog, "declarations for %s `%s' have "
1091 "mismatching invariant qualifiers\n",
1092 mode_string(var), var->name);
1093 return;
1094 }
1095 if (existing->data.centroid != var->data.centroid) {
1096 linker_error(prog, "declarations for %s `%s' have "
1097 "mismatching centroid qualifiers\n",
1098 mode_string(var), var->name);
1099 return;
1100 }
1101 if (existing->data.sample != var->data.sample) {
1102 linker_error(prog, "declarations for %s `%s` have "
1103 "mismatching sample qualifiers\n",
1104 mode_string(var), var->name);
1105 return;
1106 }
1107 if (existing->data.image_format != var->data.image_format) {
1108 linker_error(prog, "declarations for %s `%s` have "
1109 "mismatching image format qualifiers\n",
1110 mode_string(var), var->name);
1111 return;
1112 }
1113
1114 /* Only in GLSL ES 3.10, the precision qualifier should not match
1115 * between block members defined in matched block names within a
1116 * shader interface.
1117 *
1118 * In GLSL ES 3.00 and ES 3.20, precision qualifier for each block
1119 * member should match.
1120 */
1121 if (prog->IsES && (prog->data->Version != 310 ||
1122 !var->get_interface_type()) &&
1123 existing->data.precision != var->data.precision) {
1124 if ((existing->data.used && var->data.used) || prog->data->Version >= 300) {
1125 linker_error(prog, "declarations for %s `%s` have "
1126 "mismatching precision qualifiers\n",
1127 mode_string(var), var->name);
1128 return;
1129 } else {
1130 linker_warning(prog, "declarations for %s `%s` have "
1131 "mismatching precision qualifiers\n",
1132 mode_string(var), var->name);
1133 }
1134 }
1135 } else
1136 variables->add_variable(var);
1137 }
1138 }
1139
1140
1141 /**
1142 * Perform validation of uniforms used across multiple shader stages
1143 */
1144 static void
1145 cross_validate_uniforms(struct gl_shader_program *prog)
1146 {
1147 glsl_symbol_table variables;
1148 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1149 if (prog->_LinkedShaders[i] == NULL)
1150 continue;
1151
1152 cross_validate_globals(prog, prog->_LinkedShaders[i]->ir, &variables,
1153 true);
1154 }
1155 }
1156
1157 /**
1158 * Accumulates the array of buffer blocks and checks that all definitions of
1159 * blocks agree on their contents.
1160 */
1161 static bool
1162 interstage_cross_validate_uniform_blocks(struct gl_shader_program *prog,
1163 bool validate_ssbo)
1164 {
1165 int *InterfaceBlockStageIndex[MESA_SHADER_STAGES];
1166 struct gl_uniform_block *blks = NULL;
1167 unsigned *num_blks = validate_ssbo ? &prog->data->NumShaderStorageBlocks :
1168 &prog->data->NumUniformBlocks;
1169
1170 unsigned max_num_buffer_blocks = 0;
1171 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1172 if (prog->_LinkedShaders[i]) {
1173 if (validate_ssbo) {
1174 max_num_buffer_blocks +=
1175 prog->_LinkedShaders[i]->Program->info.num_ssbos;
1176 } else {
1177 max_num_buffer_blocks +=
1178 prog->_LinkedShaders[i]->Program->info.num_ubos;
1179 }
1180 }
1181 }
1182
1183 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1184 struct gl_linked_shader *sh = prog->_LinkedShaders[i];
1185
1186 InterfaceBlockStageIndex[i] = new int[max_num_buffer_blocks];
1187 for (unsigned int j = 0; j < max_num_buffer_blocks; j++)
1188 InterfaceBlockStageIndex[i][j] = -1;
1189
1190 if (sh == NULL)
1191 continue;
1192
1193 unsigned sh_num_blocks;
1194 struct gl_uniform_block **sh_blks;
1195 if (validate_ssbo) {
1196 sh_num_blocks = prog->_LinkedShaders[i]->Program->info.num_ssbos;
1197 sh_blks = sh->Program->sh.ShaderStorageBlocks;
1198 } else {
1199 sh_num_blocks = prog->_LinkedShaders[i]->Program->info.num_ubos;
1200 sh_blks = sh->Program->sh.UniformBlocks;
1201 }
1202
1203 for (unsigned int j = 0; j < sh_num_blocks; j++) {
1204 int index = link_cross_validate_uniform_block(prog, &blks, num_blks,
1205 sh_blks[j]);
1206
1207 if (index == -1) {
1208 linker_error(prog, "buffer block `%s' has mismatching "
1209 "definitions\n", sh_blks[j]->Name);
1210
1211 for (unsigned k = 0; k <= i; k++) {
1212 delete[] InterfaceBlockStageIndex[k];
1213 }
1214
1215 /* Reset the block count. This will help avoid various segfaults
1216 * from api calls that assume the array exists due to the count
1217 * being non-zero.
1218 */
1219 *num_blks = 0;
1220 return false;
1221 }
1222
1223 InterfaceBlockStageIndex[i][index] = j;
1224 }
1225 }
1226
1227 /* Update per stage block pointers to point to the program list.
1228 * FIXME: We should be able to free the per stage blocks here.
1229 */
1230 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1231 for (unsigned j = 0; j < *num_blks; j++) {
1232 int stage_index = InterfaceBlockStageIndex[i][j];
1233
1234 if (stage_index != -1) {
1235 struct gl_linked_shader *sh = prog->_LinkedShaders[i];
1236
1237 struct gl_uniform_block **sh_blks = validate_ssbo ?
1238 sh->Program->sh.ShaderStorageBlocks :
1239 sh->Program->sh.UniformBlocks;
1240
1241 blks[j].stageref |= sh_blks[stage_index]->stageref;
1242 sh_blks[stage_index] = &blks[j];
1243 }
1244 }
1245 }
1246
1247 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1248 delete[] InterfaceBlockStageIndex[i];
1249 }
1250
1251 if (validate_ssbo)
1252 prog->data->ShaderStorageBlocks = blks;
1253 else
1254 prog->data->UniformBlocks = blks;
1255
1256 return true;
1257 }
1258
1259
1260 /**
1261 * Populates a shaders symbol table with all global declarations
1262 */
1263 static void
1264 populate_symbol_table(gl_linked_shader *sh, glsl_symbol_table *symbols)
1265 {
1266 sh->symbols = new(sh) glsl_symbol_table;
1267
1268 _mesa_glsl_copy_symbols_from_table(sh->ir, symbols, sh->symbols);
1269 }
1270
1271
1272 /**
1273 * Remap variables referenced in an instruction tree
1274 *
1275 * This is used when instruction trees are cloned from one shader and placed in
1276 * another. These trees will contain references to \c ir_variable nodes that
1277 * do not exist in the target shader. This function finds these \c ir_variable
1278 * references and replaces the references with matching variables in the target
1279 * shader.
1280 *
1281 * If there is no matching variable in the target shader, a clone of the
1282 * \c ir_variable is made and added to the target shader. The new variable is
1283 * added to \b both the instruction stream and the symbol table.
1284 *
1285 * \param inst IR tree that is to be processed.
1286 * \param symbols Symbol table containing global scope symbols in the
1287 * linked shader.
1288 * \param instructions Instruction stream where new variable declarations
1289 * should be added.
1290 */
1291 static void
1292 remap_variables(ir_instruction *inst, struct gl_linked_shader *target,
1293 hash_table *temps)
1294 {
1295 class remap_visitor : public ir_hierarchical_visitor {
1296 public:
1297 remap_visitor(struct gl_linked_shader *target, hash_table *temps)
1298 {
1299 this->target = target;
1300 this->symbols = target->symbols;
1301 this->instructions = target->ir;
1302 this->temps = temps;
1303 }
1304
1305 virtual ir_visitor_status visit(ir_dereference_variable *ir)
1306 {
1307 if (ir->var->data.mode == ir_var_temporary) {
1308 hash_entry *entry = _mesa_hash_table_search(temps, ir->var);
1309 ir_variable *var = entry ? (ir_variable *) entry->data : NULL;
1310
1311 assert(var != NULL);
1312 ir->var = var;
1313 return visit_continue;
1314 }
1315
1316 ir_variable *const existing =
1317 this->symbols->get_variable(ir->var->name);
1318 if (existing != NULL)
1319 ir->var = existing;
1320 else {
1321 ir_variable *copy = ir->var->clone(this->target, NULL);
1322
1323 this->symbols->add_variable(copy);
1324 this->instructions->push_head(copy);
1325 ir->var = copy;
1326 }
1327
1328 return visit_continue;
1329 }
1330
1331 private:
1332 struct gl_linked_shader *target;
1333 glsl_symbol_table *symbols;
1334 exec_list *instructions;
1335 hash_table *temps;
1336 };
1337
1338 remap_visitor v(target, temps);
1339
1340 inst->accept(&v);
1341 }
1342
1343
1344 /**
1345 * Move non-declarations from one instruction stream to another
1346 *
1347 * The intended usage pattern of this function is to pass the pointer to the
1348 * head sentinel of a list (i.e., a pointer to the list cast to an \c exec_node
1349 * pointer) for \c last and \c false for \c make_copies on the first
1350 * call. Successive calls pass the return value of the previous call for
1351 * \c last and \c true for \c make_copies.
1352 *
1353 * \param instructions Source instruction stream
1354 * \param last Instruction after which new instructions should be
1355 * inserted in the target instruction stream
1356 * \param make_copies Flag selecting whether instructions in \c instructions
1357 * should be copied (via \c ir_instruction::clone) into the
1358 * target list or moved.
1359 *
1360 * \return
1361 * The new "last" instruction in the target instruction stream. This pointer
1362 * is suitable for use as the \c last parameter of a later call to this
1363 * function.
1364 */
1365 static exec_node *
1366 move_non_declarations(exec_list *instructions, exec_node *last,
1367 bool make_copies, gl_linked_shader *target)
1368 {
1369 hash_table *temps = NULL;
1370
1371 if (make_copies)
1372 temps = _mesa_hash_table_create(NULL, _mesa_hash_pointer,
1373 _mesa_key_pointer_equal);
1374
1375 foreach_in_list_safe(ir_instruction, inst, instructions) {
1376 if (inst->as_function())
1377 continue;
1378
1379 ir_variable *var = inst->as_variable();
1380 if ((var != NULL) && (var->data.mode != ir_var_temporary))
1381 continue;
1382
1383 assert(inst->as_assignment()
1384 || inst->as_call()
1385 || inst->as_if() /* for initializers with the ?: operator */
1386 || ((var != NULL) && (var->data.mode == ir_var_temporary)));
1387
1388 if (make_copies) {
1389 inst = inst->clone(target, NULL);
1390
1391 if (var != NULL)
1392 _mesa_hash_table_insert(temps, var, inst);
1393 else
1394 remap_variables(inst, target, temps);
1395 } else {
1396 inst->remove();
1397 }
1398
1399 last->insert_after(inst);
1400 last = inst;
1401 }
1402
1403 if (make_copies)
1404 _mesa_hash_table_destroy(temps, NULL);
1405
1406 return last;
1407 }
1408
1409
1410 /**
1411 * This class is only used in link_intrastage_shaders() below but declaring
1412 * it inside that function leads to compiler warnings with some versions of
1413 * gcc.
1414 */
1415 class array_sizing_visitor : public deref_type_updater {
1416 public:
1417 array_sizing_visitor()
1418 : mem_ctx(ralloc_context(NULL)),
1419 unnamed_interfaces(_mesa_hash_table_create(NULL, _mesa_hash_pointer,
1420 _mesa_key_pointer_equal))
1421 {
1422 }
1423
1424 ~array_sizing_visitor()
1425 {
1426 _mesa_hash_table_destroy(this->unnamed_interfaces, NULL);
1427 ralloc_free(this->mem_ctx);
1428 }
1429
1430 virtual ir_visitor_status visit(ir_variable *var)
1431 {
1432 const glsl_type *type_without_array;
1433 bool implicit_sized_array = var->data.implicit_sized_array;
1434 fixup_type(&var->type, var->data.max_array_access,
1435 var->data.from_ssbo_unsized_array,
1436 &implicit_sized_array);
1437 var->data.implicit_sized_array = implicit_sized_array;
1438 type_without_array = var->type->without_array();
1439 if (var->type->is_interface()) {
1440 if (interface_contains_unsized_arrays(var->type)) {
1441 const glsl_type *new_type =
1442 resize_interface_members(var->type,
1443 var->get_max_ifc_array_access(),
1444 var->is_in_shader_storage_block());
1445 var->type = new_type;
1446 var->change_interface_type(new_type);
1447 }
1448 } else if (type_without_array->is_interface()) {
1449 if (interface_contains_unsized_arrays(type_without_array)) {
1450 const glsl_type *new_type =
1451 resize_interface_members(type_without_array,
1452 var->get_max_ifc_array_access(),
1453 var->is_in_shader_storage_block());
1454 var->change_interface_type(new_type);
1455 var->type = update_interface_members_array(var->type, new_type);
1456 }
1457 } else if (const glsl_type *ifc_type = var->get_interface_type()) {
1458 /* Store a pointer to the variable in the unnamed_interfaces
1459 * hashtable.
1460 */
1461 hash_entry *entry =
1462 _mesa_hash_table_search(this->unnamed_interfaces,
1463 ifc_type);
1464
1465 ir_variable **interface_vars = entry ? (ir_variable **) entry->data : NULL;
1466
1467 if (interface_vars == NULL) {
1468 interface_vars = rzalloc_array(mem_ctx, ir_variable *,
1469 ifc_type->length);
1470 _mesa_hash_table_insert(this->unnamed_interfaces, ifc_type,
1471 interface_vars);
1472 }
1473 unsigned index = ifc_type->field_index(var->name);
1474 assert(index < ifc_type->length);
1475 assert(interface_vars[index] == NULL);
1476 interface_vars[index] = var;
1477 }
1478 return visit_continue;
1479 }
1480
1481 /**
1482 * For each unnamed interface block that was discovered while running the
1483 * visitor, adjust the interface type to reflect the newly assigned array
1484 * sizes, and fix up the ir_variable nodes to point to the new interface
1485 * type.
1486 */
1487 void fixup_unnamed_interface_types()
1488 {
1489 hash_table_call_foreach(this->unnamed_interfaces,
1490 fixup_unnamed_interface_type, NULL);
1491 }
1492
1493 private:
1494 /**
1495 * If the type pointed to by \c type represents an unsized array, replace
1496 * it with a sized array whose size is determined by max_array_access.
1497 */
1498 static void fixup_type(const glsl_type **type, unsigned max_array_access,
1499 bool from_ssbo_unsized_array, bool *implicit_sized)
1500 {
1501 if (!from_ssbo_unsized_array && (*type)->is_unsized_array()) {
1502 *type = glsl_type::get_array_instance((*type)->fields.array,
1503 max_array_access + 1);
1504 *implicit_sized = true;
1505 assert(*type != NULL);
1506 }
1507 }
1508
1509 static const glsl_type *
1510 update_interface_members_array(const glsl_type *type,
1511 const glsl_type *new_interface_type)
1512 {
1513 const glsl_type *element_type = type->fields.array;
1514 if (element_type->is_array()) {
1515 const glsl_type *new_array_type =
1516 update_interface_members_array(element_type, new_interface_type);
1517 return glsl_type::get_array_instance(new_array_type, type->length);
1518 } else {
1519 return glsl_type::get_array_instance(new_interface_type,
1520 type->length);
1521 }
1522 }
1523
1524 /**
1525 * Determine whether the given interface type contains unsized arrays (if
1526 * it doesn't, array_sizing_visitor doesn't need to process it).
1527 */
1528 static bool interface_contains_unsized_arrays(const glsl_type *type)
1529 {
1530 for (unsigned i = 0; i < type->length; i++) {
1531 const glsl_type *elem_type = type->fields.structure[i].type;
1532 if (elem_type->is_unsized_array())
1533 return true;
1534 }
1535 return false;
1536 }
1537
1538 /**
1539 * Create a new interface type based on the given type, with unsized arrays
1540 * replaced by sized arrays whose size is determined by
1541 * max_ifc_array_access.
1542 */
1543 static const glsl_type *
1544 resize_interface_members(const glsl_type *type,
1545 const int *max_ifc_array_access,
1546 bool is_ssbo)
1547 {
1548 unsigned num_fields = type->length;
1549 glsl_struct_field *fields = new glsl_struct_field[num_fields];
1550 memcpy(fields, type->fields.structure,
1551 num_fields * sizeof(*fields));
1552 for (unsigned i = 0; i < num_fields; i++) {
1553 bool implicit_sized_array = fields[i].implicit_sized_array;
1554 /* If SSBO last member is unsized array, we don't replace it by a sized
1555 * array.
1556 */
1557 if (is_ssbo && i == (num_fields - 1))
1558 fixup_type(&fields[i].type, max_ifc_array_access[i],
1559 true, &implicit_sized_array);
1560 else
1561 fixup_type(&fields[i].type, max_ifc_array_access[i],
1562 false, &implicit_sized_array);
1563 fields[i].implicit_sized_array = implicit_sized_array;
1564 }
1565 glsl_interface_packing packing =
1566 (glsl_interface_packing) type->interface_packing;
1567 bool row_major = (bool) type->interface_row_major;
1568 const glsl_type *new_ifc_type =
1569 glsl_type::get_interface_instance(fields, num_fields,
1570 packing, row_major, type->name);
1571 delete [] fields;
1572 return new_ifc_type;
1573 }
1574
1575 static void fixup_unnamed_interface_type(const void *key, void *data,
1576 void *)
1577 {
1578 const glsl_type *ifc_type = (const glsl_type *) key;
1579 ir_variable **interface_vars = (ir_variable **) data;
1580 unsigned num_fields = ifc_type->length;
1581 glsl_struct_field *fields = new glsl_struct_field[num_fields];
1582 memcpy(fields, ifc_type->fields.structure,
1583 num_fields * sizeof(*fields));
1584 bool interface_type_changed = false;
1585 for (unsigned i = 0; i < num_fields; i++) {
1586 if (interface_vars[i] != NULL &&
1587 fields[i].type != interface_vars[i]->type) {
1588 fields[i].type = interface_vars[i]->type;
1589 interface_type_changed = true;
1590 }
1591 }
1592 if (!interface_type_changed) {
1593 delete [] fields;
1594 return;
1595 }
1596 glsl_interface_packing packing =
1597 (glsl_interface_packing) ifc_type->interface_packing;
1598 bool row_major = (bool) ifc_type->interface_row_major;
1599 const glsl_type *new_ifc_type =
1600 glsl_type::get_interface_instance(fields, num_fields, packing,
1601 row_major, ifc_type->name);
1602 delete [] fields;
1603 for (unsigned i = 0; i < num_fields; i++) {
1604 if (interface_vars[i] != NULL)
1605 interface_vars[i]->change_interface_type(new_ifc_type);
1606 }
1607 }
1608
1609 /**
1610 * Memory context used to allocate the data in \c unnamed_interfaces.
1611 */
1612 void *mem_ctx;
1613
1614 /**
1615 * Hash table from const glsl_type * to an array of ir_variable *'s
1616 * pointing to the ir_variables constituting each unnamed interface block.
1617 */
1618 hash_table *unnamed_interfaces;
1619 };
1620
1621 static bool
1622 validate_xfb_buffer_stride(struct gl_context *ctx, unsigned idx,
1623 struct gl_shader_program *prog)
1624 {
1625 /* We will validate doubles at a later stage */
1626 if (prog->TransformFeedback.BufferStride[idx] % 4) {
1627 linker_error(prog, "invalid qualifier xfb_stride=%d must be a "
1628 "multiple of 4 or if its applied to a type that is "
1629 "or contains a double a multiple of 8.",
1630 prog->TransformFeedback.BufferStride[idx]);
1631 return false;
1632 }
1633
1634 if (prog->TransformFeedback.BufferStride[idx] / 4 >
1635 ctx->Const.MaxTransformFeedbackInterleavedComponents) {
1636 linker_error(prog, "The MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS "
1637 "limit has been exceeded.");
1638 return false;
1639 }
1640
1641 return true;
1642 }
1643
1644 /**
1645 * Check for conflicting xfb_stride default qualifiers and store buffer stride
1646 * for later use.
1647 */
1648 static void
1649 link_xfb_stride_layout_qualifiers(struct gl_context *ctx,
1650 struct gl_shader_program *prog,
1651 struct gl_shader **shader_list,
1652 unsigned num_shaders)
1653 {
1654 for (unsigned i = 0; i < MAX_FEEDBACK_BUFFERS; i++) {
1655 prog->TransformFeedback.BufferStride[i] = 0;
1656 }
1657
1658 for (unsigned i = 0; i < num_shaders; i++) {
1659 struct gl_shader *shader = shader_list[i];
1660
1661 for (unsigned j = 0; j < MAX_FEEDBACK_BUFFERS; j++) {
1662 if (shader->TransformFeedbackBufferStride[j]) {
1663 if (prog->TransformFeedback.BufferStride[j] == 0) {
1664 prog->TransformFeedback.BufferStride[j] =
1665 shader->TransformFeedbackBufferStride[j];
1666 if (!validate_xfb_buffer_stride(ctx, j, prog))
1667 return;
1668 } else if (prog->TransformFeedback.BufferStride[j] !=
1669 shader->TransformFeedbackBufferStride[j]){
1670 linker_error(prog,
1671 "intrastage shaders defined with conflicting "
1672 "xfb_stride for buffer %d (%d and %d)\n", j,
1673 prog->TransformFeedback.BufferStride[j],
1674 shader->TransformFeedbackBufferStride[j]);
1675 return;
1676 }
1677 }
1678 }
1679 }
1680 }
1681
1682 /**
1683 * Check for conflicting bindless/bound sampler/image layout qualifiers at
1684 * global scope.
1685 */
1686 static void
1687 link_bindless_layout_qualifiers(struct gl_shader_program *prog,
1688 struct gl_shader **shader_list,
1689 unsigned num_shaders)
1690 {
1691 bool bindless_sampler, bindless_image;
1692 bool bound_sampler, bound_image;
1693
1694 bindless_sampler = bindless_image = false;
1695 bound_sampler = bound_image = false;
1696
1697 for (unsigned i = 0; i < num_shaders; i++) {
1698 struct gl_shader *shader = shader_list[i];
1699
1700 if (shader->bindless_sampler)
1701 bindless_sampler = true;
1702 if (shader->bindless_image)
1703 bindless_image = true;
1704 if (shader->bound_sampler)
1705 bound_sampler = true;
1706 if (shader->bound_image)
1707 bound_image = true;
1708
1709 if ((bindless_sampler && bound_sampler) ||
1710 (bindless_image && bound_image)) {
1711 /* From section 4.4.6 of the ARB_bindless_texture spec:
1712 *
1713 * "If both bindless_sampler and bound_sampler, or bindless_image
1714 * and bound_image, are declared at global scope in any
1715 * compilation unit, a link- time error will be generated."
1716 */
1717 linker_error(prog, "both bindless_sampler and bound_sampler, or "
1718 "bindless_image and bound_image, can't be declared at "
1719 "global scope");
1720 }
1721 }
1722 }
1723
1724 /**
1725 * Performs the cross-validation of tessellation control shader vertices and
1726 * layout qualifiers for the attached tessellation control shaders,
1727 * and propagates them to the linked TCS and linked shader program.
1728 */
1729 static void
1730 link_tcs_out_layout_qualifiers(struct gl_shader_program *prog,
1731 struct gl_program *gl_prog,
1732 struct gl_shader **shader_list,
1733 unsigned num_shaders)
1734 {
1735 if (gl_prog->info.stage != MESA_SHADER_TESS_CTRL)
1736 return;
1737
1738 gl_prog->info.tess.tcs_vertices_out = 0;
1739
1740 /* From the GLSL 4.0 spec (chapter 4.3.8.2):
1741 *
1742 * "All tessellation control shader layout declarations in a program
1743 * must specify the same output patch vertex count. There must be at
1744 * least one layout qualifier specifying an output patch vertex count
1745 * in any program containing tessellation control shaders; however,
1746 * such a declaration is not required in all tessellation control
1747 * shaders."
1748 */
1749
1750 for (unsigned i = 0; i < num_shaders; i++) {
1751 struct gl_shader *shader = shader_list[i];
1752
1753 if (shader->info.TessCtrl.VerticesOut != 0) {
1754 if (gl_prog->info.tess.tcs_vertices_out != 0 &&
1755 gl_prog->info.tess.tcs_vertices_out !=
1756 (unsigned) shader->info.TessCtrl.VerticesOut) {
1757 linker_error(prog, "tessellation control shader defined with "
1758 "conflicting output vertex count (%d and %d)\n",
1759 gl_prog->info.tess.tcs_vertices_out,
1760 shader->info.TessCtrl.VerticesOut);
1761 return;
1762 }
1763 gl_prog->info.tess.tcs_vertices_out =
1764 shader->info.TessCtrl.VerticesOut;
1765 }
1766 }
1767
1768 /* Just do the intrastage -> interstage propagation right now,
1769 * since we already know we're in the right type of shader program
1770 * for doing it.
1771 */
1772 if (gl_prog->info.tess.tcs_vertices_out == 0) {
1773 linker_error(prog, "tessellation control shader didn't declare "
1774 "vertices out layout qualifier\n");
1775 return;
1776 }
1777 }
1778
1779
1780 /**
1781 * Performs the cross-validation of tessellation evaluation shader
1782 * primitive type, vertex spacing, ordering and point_mode layout qualifiers
1783 * for the attached tessellation evaluation shaders, and propagates them
1784 * to the linked TES and linked shader program.
1785 */
1786 static void
1787 link_tes_in_layout_qualifiers(struct gl_shader_program *prog,
1788 struct gl_program *gl_prog,
1789 struct gl_shader **shader_list,
1790 unsigned num_shaders)
1791 {
1792 if (gl_prog->info.stage != MESA_SHADER_TESS_EVAL)
1793 return;
1794
1795 int point_mode = -1;
1796 unsigned vertex_order = 0;
1797
1798 gl_prog->info.tess.primitive_mode = PRIM_UNKNOWN;
1799 gl_prog->info.tess.spacing = TESS_SPACING_UNSPECIFIED;
1800
1801 /* From the GLSL 4.0 spec (chapter 4.3.8.1):
1802 *
1803 * "At least one tessellation evaluation shader (compilation unit) in
1804 * a program must declare a primitive mode in its input layout.
1805 * Declaration vertex spacing, ordering, and point mode identifiers is
1806 * optional. It is not required that all tessellation evaluation
1807 * shaders in a program declare a primitive mode. If spacing or
1808 * vertex ordering declarations are omitted, the tessellation
1809 * primitive generator will use equal spacing or counter-clockwise
1810 * vertex ordering, respectively. If a point mode declaration is
1811 * omitted, the tessellation primitive generator will produce lines or
1812 * triangles according to the primitive mode."
1813 */
1814
1815 for (unsigned i = 0; i < num_shaders; i++) {
1816 struct gl_shader *shader = shader_list[i];
1817
1818 if (shader->info.TessEval.PrimitiveMode != PRIM_UNKNOWN) {
1819 if (gl_prog->info.tess.primitive_mode != PRIM_UNKNOWN &&
1820 gl_prog->info.tess.primitive_mode !=
1821 shader->info.TessEval.PrimitiveMode) {
1822 linker_error(prog, "tessellation evaluation shader defined with "
1823 "conflicting input primitive modes.\n");
1824 return;
1825 }
1826 gl_prog->info.tess.primitive_mode =
1827 shader->info.TessEval.PrimitiveMode;
1828 }
1829
1830 if (shader->info.TessEval.Spacing != 0) {
1831 if (gl_prog->info.tess.spacing != 0 && gl_prog->info.tess.spacing !=
1832 shader->info.TessEval.Spacing) {
1833 linker_error(prog, "tessellation evaluation shader defined with "
1834 "conflicting vertex spacing.\n");
1835 return;
1836 }
1837 gl_prog->info.tess.spacing = shader->info.TessEval.Spacing;
1838 }
1839
1840 if (shader->info.TessEval.VertexOrder != 0) {
1841 if (vertex_order != 0 &&
1842 vertex_order != shader->info.TessEval.VertexOrder) {
1843 linker_error(prog, "tessellation evaluation shader defined with "
1844 "conflicting ordering.\n");
1845 return;
1846 }
1847 vertex_order = shader->info.TessEval.VertexOrder;
1848 }
1849
1850 if (shader->info.TessEval.PointMode != -1) {
1851 if (point_mode != -1 &&
1852 point_mode != shader->info.TessEval.PointMode) {
1853 linker_error(prog, "tessellation evaluation shader defined with "
1854 "conflicting point modes.\n");
1855 return;
1856 }
1857 point_mode = shader->info.TessEval.PointMode;
1858 }
1859
1860 }
1861
1862 /* Just do the intrastage -> interstage propagation right now,
1863 * since we already know we're in the right type of shader program
1864 * for doing it.
1865 */
1866 if (gl_prog->info.tess.primitive_mode == PRIM_UNKNOWN) {
1867 linker_error(prog,
1868 "tessellation evaluation shader didn't declare input "
1869 "primitive modes.\n");
1870 return;
1871 }
1872
1873 if (gl_prog->info.tess.spacing == TESS_SPACING_UNSPECIFIED)
1874 gl_prog->info.tess.spacing = TESS_SPACING_EQUAL;
1875
1876 if (vertex_order == 0 || vertex_order == GL_CCW)
1877 gl_prog->info.tess.ccw = true;
1878 else
1879 gl_prog->info.tess.ccw = false;
1880
1881
1882 if (point_mode == -1 || point_mode == GL_FALSE)
1883 gl_prog->info.tess.point_mode = false;
1884 else
1885 gl_prog->info.tess.point_mode = true;
1886 }
1887
1888
1889 /**
1890 * Performs the cross-validation of layout qualifiers specified in
1891 * redeclaration of gl_FragCoord for the attached fragment shaders,
1892 * and propagates them to the linked FS and linked shader program.
1893 */
1894 static void
1895 link_fs_inout_layout_qualifiers(struct gl_shader_program *prog,
1896 struct gl_linked_shader *linked_shader,
1897 struct gl_shader **shader_list,
1898 unsigned num_shaders)
1899 {
1900 bool redeclares_gl_fragcoord = false;
1901 bool uses_gl_fragcoord = false;
1902 bool origin_upper_left = false;
1903 bool pixel_center_integer = false;
1904
1905 if (linked_shader->Stage != MESA_SHADER_FRAGMENT ||
1906 (prog->data->Version < 150 &&
1907 !prog->ARB_fragment_coord_conventions_enable))
1908 return;
1909
1910 for (unsigned i = 0; i < num_shaders; i++) {
1911 struct gl_shader *shader = shader_list[i];
1912 /* From the GLSL 1.50 spec, page 39:
1913 *
1914 * "If gl_FragCoord is redeclared in any fragment shader in a program,
1915 * it must be redeclared in all the fragment shaders in that program
1916 * that have a static use gl_FragCoord."
1917 */
1918 if ((redeclares_gl_fragcoord && !shader->redeclares_gl_fragcoord &&
1919 shader->uses_gl_fragcoord)
1920 || (shader->redeclares_gl_fragcoord && !redeclares_gl_fragcoord &&
1921 uses_gl_fragcoord)) {
1922 linker_error(prog, "fragment shader defined with conflicting "
1923 "layout qualifiers for gl_FragCoord\n");
1924 }
1925
1926 /* From the GLSL 1.50 spec, page 39:
1927 *
1928 * "All redeclarations of gl_FragCoord in all fragment shaders in a
1929 * single program must have the same set of qualifiers."
1930 */
1931 if (redeclares_gl_fragcoord && shader->redeclares_gl_fragcoord &&
1932 (shader->origin_upper_left != origin_upper_left ||
1933 shader->pixel_center_integer != pixel_center_integer)) {
1934 linker_error(prog, "fragment shader defined with conflicting "
1935 "layout qualifiers for gl_FragCoord\n");
1936 }
1937
1938 /* Update the linked shader state. Note that uses_gl_fragcoord should
1939 * accumulate the results. The other values should replace. If there
1940 * are multiple redeclarations, all the fields except uses_gl_fragcoord
1941 * are already known to be the same.
1942 */
1943 if (shader->redeclares_gl_fragcoord || shader->uses_gl_fragcoord) {
1944 redeclares_gl_fragcoord = shader->redeclares_gl_fragcoord;
1945 uses_gl_fragcoord |= shader->uses_gl_fragcoord;
1946 origin_upper_left = shader->origin_upper_left;
1947 pixel_center_integer = shader->pixel_center_integer;
1948 }
1949
1950 linked_shader->Program->info.fs.early_fragment_tests |=
1951 shader->EarlyFragmentTests || shader->PostDepthCoverage;
1952 linked_shader->Program->info.fs.inner_coverage |= shader->InnerCoverage;
1953 linked_shader->Program->info.fs.post_depth_coverage |=
1954 shader->PostDepthCoverage;
1955
1956 linked_shader->Program->sh.fs.BlendSupport |= shader->BlendSupport;
1957 }
1958 }
1959
1960 /**
1961 * Performs the cross-validation of geometry shader max_vertices and
1962 * primitive type layout qualifiers for the attached geometry shaders,
1963 * and propagates them to the linked GS and linked shader program.
1964 */
1965 static void
1966 link_gs_inout_layout_qualifiers(struct gl_shader_program *prog,
1967 struct gl_program *gl_prog,
1968 struct gl_shader **shader_list,
1969 unsigned num_shaders)
1970 {
1971 /* No in/out qualifiers defined for anything but GLSL 1.50+
1972 * geometry shaders so far.
1973 */
1974 if (gl_prog->info.stage != MESA_SHADER_GEOMETRY ||
1975 prog->data->Version < 150)
1976 return;
1977
1978 int vertices_out = -1;
1979
1980 gl_prog->info.gs.invocations = 0;
1981 gl_prog->info.gs.input_primitive = PRIM_UNKNOWN;
1982 gl_prog->info.gs.output_primitive = PRIM_UNKNOWN;
1983
1984 /* From the GLSL 1.50 spec, page 46:
1985 *
1986 * "All geometry shader output layout declarations in a program
1987 * must declare the same layout and same value for
1988 * max_vertices. There must be at least one geometry output
1989 * layout declaration somewhere in a program, but not all
1990 * geometry shaders (compilation units) are required to
1991 * declare it."
1992 */
1993
1994 for (unsigned i = 0; i < num_shaders; i++) {
1995 struct gl_shader *shader = shader_list[i];
1996
1997 if (shader->info.Geom.InputType != PRIM_UNKNOWN) {
1998 if (gl_prog->info.gs.input_primitive != PRIM_UNKNOWN &&
1999 gl_prog->info.gs.input_primitive !=
2000 shader->info.Geom.InputType) {
2001 linker_error(prog, "geometry shader defined with conflicting "
2002 "input types\n");
2003 return;
2004 }
2005 gl_prog->info.gs.input_primitive = shader->info.Geom.InputType;
2006 }
2007
2008 if (shader->info.Geom.OutputType != PRIM_UNKNOWN) {
2009 if (gl_prog->info.gs.output_primitive != PRIM_UNKNOWN &&
2010 gl_prog->info.gs.output_primitive !=
2011 shader->info.Geom.OutputType) {
2012 linker_error(prog, "geometry shader defined with conflicting "
2013 "output types\n");
2014 return;
2015 }
2016 gl_prog->info.gs.output_primitive = shader->info.Geom.OutputType;
2017 }
2018
2019 if (shader->info.Geom.VerticesOut != -1) {
2020 if (vertices_out != -1 &&
2021 vertices_out != shader->info.Geom.VerticesOut) {
2022 linker_error(prog, "geometry shader defined with conflicting "
2023 "output vertex count (%d and %d)\n",
2024 vertices_out, shader->info.Geom.VerticesOut);
2025 return;
2026 }
2027 vertices_out = shader->info.Geom.VerticesOut;
2028 }
2029
2030 if (shader->info.Geom.Invocations != 0) {
2031 if (gl_prog->info.gs.invocations != 0 &&
2032 gl_prog->info.gs.invocations !=
2033 (unsigned) shader->info.Geom.Invocations) {
2034 linker_error(prog, "geometry shader defined with conflicting "
2035 "invocation count (%d and %d)\n",
2036 gl_prog->info.gs.invocations,
2037 shader->info.Geom.Invocations);
2038 return;
2039 }
2040 gl_prog->info.gs.invocations = shader->info.Geom.Invocations;
2041 }
2042 }
2043
2044 /* Just do the intrastage -> interstage propagation right now,
2045 * since we already know we're in the right type of shader program
2046 * for doing it.
2047 */
2048 if (gl_prog->info.gs.input_primitive == PRIM_UNKNOWN) {
2049 linker_error(prog,
2050 "geometry shader didn't declare primitive input type\n");
2051 return;
2052 }
2053
2054 if (gl_prog->info.gs.output_primitive == PRIM_UNKNOWN) {
2055 linker_error(prog,
2056 "geometry shader didn't declare primitive output type\n");
2057 return;
2058 }
2059
2060 if (vertices_out == -1) {
2061 linker_error(prog,
2062 "geometry shader didn't declare max_vertices\n");
2063 return;
2064 } else {
2065 gl_prog->info.gs.vertices_out = vertices_out;
2066 }
2067
2068 if (gl_prog->info.gs.invocations == 0)
2069 gl_prog->info.gs.invocations = 1;
2070 }
2071
2072
2073 /**
2074 * Perform cross-validation of compute shader local_size_{x,y,z} layout
2075 * qualifiers for the attached compute shaders, and propagate them to the
2076 * linked CS and linked shader program.
2077 */
2078 static void
2079 link_cs_input_layout_qualifiers(struct gl_shader_program *prog,
2080 struct gl_program *gl_prog,
2081 struct gl_shader **shader_list,
2082 unsigned num_shaders)
2083 {
2084 /* This function is called for all shader stages, but it only has an effect
2085 * for compute shaders.
2086 */
2087 if (gl_prog->info.stage != MESA_SHADER_COMPUTE)
2088 return;
2089
2090 for (int i = 0; i < 3; i++)
2091 gl_prog->info.cs.local_size[i] = 0;
2092
2093 gl_prog->info.cs.local_size_variable = false;
2094
2095 /* From the ARB_compute_shader spec, in the section describing local size
2096 * declarations:
2097 *
2098 * If multiple compute shaders attached to a single program object
2099 * declare local work-group size, the declarations must be identical;
2100 * otherwise a link-time error results. Furthermore, if a program
2101 * object contains any compute shaders, at least one must contain an
2102 * input layout qualifier specifying the local work sizes of the
2103 * program, or a link-time error will occur.
2104 */
2105 for (unsigned sh = 0; sh < num_shaders; sh++) {
2106 struct gl_shader *shader = shader_list[sh];
2107
2108 if (shader->info.Comp.LocalSize[0] != 0) {
2109 if (gl_prog->info.cs.local_size[0] != 0) {
2110 for (int i = 0; i < 3; i++) {
2111 if (gl_prog->info.cs.local_size[i] !=
2112 shader->info.Comp.LocalSize[i]) {
2113 linker_error(prog, "compute shader defined with conflicting "
2114 "local sizes\n");
2115 return;
2116 }
2117 }
2118 }
2119 for (int i = 0; i < 3; i++) {
2120 gl_prog->info.cs.local_size[i] =
2121 shader->info.Comp.LocalSize[i];
2122 }
2123 } else if (shader->info.Comp.LocalSizeVariable) {
2124 if (gl_prog->info.cs.local_size[0] != 0) {
2125 /* The ARB_compute_variable_group_size spec says:
2126 *
2127 * If one compute shader attached to a program declares a
2128 * variable local group size and a second compute shader
2129 * attached to the same program declares a fixed local group
2130 * size, a link-time error results.
2131 */
2132 linker_error(prog, "compute shader defined with both fixed and "
2133 "variable local group size\n");
2134 return;
2135 }
2136 gl_prog->info.cs.local_size_variable = true;
2137 }
2138 }
2139
2140 /* Just do the intrastage -> interstage propagation right now,
2141 * since we already know we're in the right type of shader program
2142 * for doing it.
2143 */
2144 if (gl_prog->info.cs.local_size[0] == 0 &&
2145 !gl_prog->info.cs.local_size_variable) {
2146 linker_error(prog, "compute shader must contain a fixed or a variable "
2147 "local group size\n");
2148 return;
2149 }
2150 }
2151
2152
2153 /**
2154 * Combine a group of shaders for a single stage to generate a linked shader
2155 *
2156 * \note
2157 * If this function is supplied a single shader, it is cloned, and the new
2158 * shader is returned.
2159 */
2160 struct gl_linked_shader *
2161 link_intrastage_shaders(void *mem_ctx,
2162 struct gl_context *ctx,
2163 struct gl_shader_program *prog,
2164 struct gl_shader **shader_list,
2165 unsigned num_shaders,
2166 bool allow_missing_main)
2167 {
2168 struct gl_uniform_block *ubo_blocks = NULL;
2169 struct gl_uniform_block *ssbo_blocks = NULL;
2170 unsigned num_ubo_blocks = 0;
2171 unsigned num_ssbo_blocks = 0;
2172
2173 /* Check that global variables defined in multiple shaders are consistent.
2174 */
2175 glsl_symbol_table variables;
2176 for (unsigned i = 0; i < num_shaders; i++) {
2177 if (shader_list[i] == NULL)
2178 continue;
2179 cross_validate_globals(prog, shader_list[i]->ir, &variables, false);
2180 }
2181
2182 if (!prog->data->LinkStatus)
2183 return NULL;
2184
2185 /* Check that interface blocks defined in multiple shaders are consistent.
2186 */
2187 validate_intrastage_interface_blocks(prog, (const gl_shader **)shader_list,
2188 num_shaders);
2189 if (!prog->data->LinkStatus)
2190 return NULL;
2191
2192 /* Check that there is only a single definition of each function signature
2193 * across all shaders.
2194 */
2195 for (unsigned i = 0; i < (num_shaders - 1); i++) {
2196 foreach_in_list(ir_instruction, node, shader_list[i]->ir) {
2197 ir_function *const f = node->as_function();
2198
2199 if (f == NULL)
2200 continue;
2201
2202 for (unsigned j = i + 1; j < num_shaders; j++) {
2203 ir_function *const other =
2204 shader_list[j]->symbols->get_function(f->name);
2205
2206 /* If the other shader has no function (and therefore no function
2207 * signatures) with the same name, skip to the next shader.
2208 */
2209 if (other == NULL)
2210 continue;
2211
2212 foreach_in_list(ir_function_signature, sig, &f->signatures) {
2213 if (!sig->is_defined)
2214 continue;
2215
2216 ir_function_signature *other_sig =
2217 other->exact_matching_signature(NULL, &sig->parameters);
2218
2219 if (other_sig != NULL && other_sig->is_defined) {
2220 linker_error(prog, "function `%s' is multiply defined\n",
2221 f->name);
2222 return NULL;
2223 }
2224 }
2225 }
2226 }
2227 }
2228
2229 /* Find the shader that defines main, and make a clone of it.
2230 *
2231 * Starting with the clone, search for undefined references. If one is
2232 * found, find the shader that defines it. Clone the reference and add
2233 * it to the shader. Repeat until there are no undefined references or
2234 * until a reference cannot be resolved.
2235 */
2236 gl_shader *main = NULL;
2237 for (unsigned i = 0; i < num_shaders; i++) {
2238 if (_mesa_get_main_function_signature(shader_list[i]->symbols)) {
2239 main = shader_list[i];
2240 break;
2241 }
2242 }
2243
2244 if (main == NULL && allow_missing_main)
2245 main = shader_list[0];
2246
2247 if (main == NULL) {
2248 linker_error(prog, "%s shader lacks `main'\n",
2249 _mesa_shader_stage_to_string(shader_list[0]->Stage));
2250 return NULL;
2251 }
2252
2253 gl_linked_shader *linked = rzalloc(NULL, struct gl_linked_shader);
2254 linked->Stage = shader_list[0]->Stage;
2255
2256 /* Create program and attach it to the linked shader */
2257 struct gl_program *gl_prog =
2258 ctx->Driver.NewProgram(ctx,
2259 _mesa_shader_stage_to_program(shader_list[0]->Stage),
2260 prog->Name, false);
2261 if (!gl_prog) {
2262 prog->data->LinkStatus = linking_failure;
2263 _mesa_delete_linked_shader(ctx, linked);
2264 return NULL;
2265 }
2266
2267 if (!prog->data->cache_fallback)
2268 _mesa_reference_shader_program_data(ctx, &gl_prog->sh.data, prog->data);
2269
2270 /* Don't use _mesa_reference_program() just take ownership */
2271 linked->Program = gl_prog;
2272
2273 linked->ir = new(linked) exec_list;
2274 clone_ir_list(mem_ctx, linked->ir, main->ir);
2275
2276 link_fs_inout_layout_qualifiers(prog, linked, shader_list, num_shaders);
2277 link_tcs_out_layout_qualifiers(prog, gl_prog, shader_list, num_shaders);
2278 link_tes_in_layout_qualifiers(prog, gl_prog, shader_list, num_shaders);
2279 link_gs_inout_layout_qualifiers(prog, gl_prog, shader_list, num_shaders);
2280 link_cs_input_layout_qualifiers(prog, gl_prog, shader_list, num_shaders);
2281
2282 if (linked->Stage != MESA_SHADER_FRAGMENT)
2283 link_xfb_stride_layout_qualifiers(ctx, prog, shader_list, num_shaders);
2284
2285 link_bindless_layout_qualifiers(prog, shader_list, num_shaders);
2286
2287 populate_symbol_table(linked, shader_list[0]->symbols);
2288
2289 /* The pointer to the main function in the final linked shader (i.e., the
2290 * copy of the original shader that contained the main function).
2291 */
2292 ir_function_signature *const main_sig =
2293 _mesa_get_main_function_signature(linked->symbols);
2294
2295 /* Move any instructions other than variable declarations or function
2296 * declarations into main.
2297 */
2298 if (main_sig != NULL) {
2299 exec_node *insertion_point =
2300 move_non_declarations(linked->ir, (exec_node *) &main_sig->body, false,
2301 linked);
2302
2303 for (unsigned i = 0; i < num_shaders; i++) {
2304 if (shader_list[i] == main)
2305 continue;
2306
2307 insertion_point = move_non_declarations(shader_list[i]->ir,
2308 insertion_point, true, linked);
2309 }
2310 }
2311
2312 if (!link_function_calls(prog, linked, shader_list, num_shaders)) {
2313 _mesa_delete_linked_shader(ctx, linked);
2314 return NULL;
2315 }
2316
2317 /* Make a pass over all variable declarations to ensure that arrays with
2318 * unspecified sizes have a size specified. The size is inferred from the
2319 * max_array_access field.
2320 */
2321 array_sizing_visitor v;
2322 v.run(linked->ir);
2323 v.fixup_unnamed_interface_types();
2324
2325 if (!prog->data->cache_fallback) {
2326 /* Link up uniform blocks defined within this stage. */
2327 link_uniform_blocks(mem_ctx, ctx, prog, linked, &ubo_blocks,
2328 &num_ubo_blocks, &ssbo_blocks, &num_ssbo_blocks);
2329
2330 if (!prog->data->LinkStatus) {
2331 _mesa_delete_linked_shader(ctx, linked);
2332 return NULL;
2333 }
2334
2335 /* Copy ubo blocks to linked shader list */
2336 linked->Program->sh.UniformBlocks =
2337 ralloc_array(linked, gl_uniform_block *, num_ubo_blocks);
2338 ralloc_steal(linked, ubo_blocks);
2339 for (unsigned i = 0; i < num_ubo_blocks; i++) {
2340 linked->Program->sh.UniformBlocks[i] = &ubo_blocks[i];
2341 }
2342 linked->Program->info.num_ubos = num_ubo_blocks;
2343
2344 /* Copy ssbo blocks to linked shader list */
2345 linked->Program->sh.ShaderStorageBlocks =
2346 ralloc_array(linked, gl_uniform_block *, num_ssbo_blocks);
2347 ralloc_steal(linked, ssbo_blocks);
2348 for (unsigned i = 0; i < num_ssbo_blocks; i++) {
2349 linked->Program->sh.ShaderStorageBlocks[i] = &ssbo_blocks[i];
2350 }
2351 linked->Program->info.num_ssbos = num_ssbo_blocks;
2352 }
2353
2354 /* At this point linked should contain all of the linked IR, so
2355 * validate it to make sure nothing went wrong.
2356 */
2357 validate_ir_tree(linked->ir);
2358
2359 /* Set the size of geometry shader input arrays */
2360 if (linked->Stage == MESA_SHADER_GEOMETRY) {
2361 unsigned num_vertices =
2362 vertices_per_prim(gl_prog->info.gs.input_primitive);
2363 array_resize_visitor input_resize_visitor(num_vertices, prog,
2364 MESA_SHADER_GEOMETRY);
2365 foreach_in_list(ir_instruction, ir, linked->ir) {
2366 ir->accept(&input_resize_visitor);
2367 }
2368 }
2369
2370 if (ctx->Const.VertexID_is_zero_based)
2371 lower_vertex_id(linked);
2372
2373 if (ctx->Const.LowerCsDerivedVariables)
2374 lower_cs_derived(linked);
2375
2376 #ifdef DEBUG
2377 /* Compute the source checksum. */
2378 linked->SourceChecksum = 0;
2379 for (unsigned i = 0; i < num_shaders; i++) {
2380 if (shader_list[i] == NULL)
2381 continue;
2382 linked->SourceChecksum ^= shader_list[i]->SourceChecksum;
2383 }
2384 #endif
2385
2386 return linked;
2387 }
2388
2389 /**
2390 * Update the sizes of linked shader uniform arrays to the maximum
2391 * array index used.
2392 *
2393 * From page 81 (page 95 of the PDF) of the OpenGL 2.1 spec:
2394 *
2395 * If one or more elements of an array are active,
2396 * GetActiveUniform will return the name of the array in name,
2397 * subject to the restrictions listed above. The type of the array
2398 * is returned in type. The size parameter contains the highest
2399 * array element index used, plus one. The compiler or linker
2400 * determines the highest index used. There will be only one
2401 * active uniform reported by the GL per uniform array.
2402
2403 */
2404 static void
2405 update_array_sizes(struct gl_shader_program *prog)
2406 {
2407 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
2408 if (prog->_LinkedShaders[i] == NULL)
2409 continue;
2410
2411 bool types_were_updated = false;
2412
2413 foreach_in_list(ir_instruction, node, prog->_LinkedShaders[i]->ir) {
2414 ir_variable *const var = node->as_variable();
2415
2416 if ((var == NULL) || (var->data.mode != ir_var_uniform) ||
2417 !var->type->is_array())
2418 continue;
2419
2420 /* GL_ARB_uniform_buffer_object says that std140 uniforms
2421 * will not be eliminated. Since we always do std140, just
2422 * don't resize arrays in UBOs.
2423 *
2424 * Atomic counters are supposed to get deterministic
2425 * locations assigned based on the declaration ordering and
2426 * sizes, array compaction would mess that up.
2427 *
2428 * Subroutine uniforms are not removed.
2429 */
2430 if (var->is_in_buffer_block() || var->type->contains_atomic() ||
2431 var->type->contains_subroutine() || var->constant_initializer)
2432 continue;
2433
2434 int size = var->data.max_array_access;
2435 for (unsigned j = 0; j < MESA_SHADER_STAGES; j++) {
2436 if (prog->_LinkedShaders[j] == NULL)
2437 continue;
2438
2439 foreach_in_list(ir_instruction, node2, prog->_LinkedShaders[j]->ir) {
2440 ir_variable *other_var = node2->as_variable();
2441 if (!other_var)
2442 continue;
2443
2444 if (strcmp(var->name, other_var->name) == 0 &&
2445 other_var->data.max_array_access > size) {
2446 size = other_var->data.max_array_access;
2447 }
2448 }
2449 }
2450
2451 if (size + 1 != (int)var->type->length) {
2452 /* If this is a built-in uniform (i.e., it's backed by some
2453 * fixed-function state), adjust the number of state slots to
2454 * match the new array size. The number of slots per array entry
2455 * is not known. It seems safe to assume that the total number of
2456 * slots is an integer multiple of the number of array elements.
2457 * Determine the number of slots per array element by dividing by
2458 * the old (total) size.
2459 */
2460 const unsigned num_slots = var->get_num_state_slots();
2461 if (num_slots > 0) {
2462 var->set_num_state_slots((size + 1)
2463 * (num_slots / var->type->length));
2464 }
2465
2466 var->type = glsl_type::get_array_instance(var->type->fields.array,
2467 size + 1);
2468 types_were_updated = true;
2469 }
2470 }
2471
2472 /* Update the types of dereferences in case we changed any. */
2473 if (types_were_updated) {
2474 deref_type_updater v;
2475 v.run(prog->_LinkedShaders[i]->ir);
2476 }
2477 }
2478 }
2479
2480 /**
2481 * Resize tessellation evaluation per-vertex inputs to the size of
2482 * tessellation control per-vertex outputs.
2483 */
2484 static void
2485 resize_tes_inputs(struct gl_context *ctx,
2486 struct gl_shader_program *prog)
2487 {
2488 if (prog->_LinkedShaders[MESA_SHADER_TESS_EVAL] == NULL)
2489 return;
2490
2491 gl_linked_shader *const tcs = prog->_LinkedShaders[MESA_SHADER_TESS_CTRL];
2492 gl_linked_shader *const tes = prog->_LinkedShaders[MESA_SHADER_TESS_EVAL];
2493
2494 /* If no control shader is present, then the TES inputs are statically
2495 * sized to MaxPatchVertices; the actual size of the arrays won't be
2496 * known until draw time.
2497 */
2498 const int num_vertices = tcs
2499 ? tcs->Program->info.tess.tcs_vertices_out
2500 : ctx->Const.MaxPatchVertices;
2501
2502 array_resize_visitor input_resize_visitor(num_vertices, prog,
2503 MESA_SHADER_TESS_EVAL);
2504 foreach_in_list(ir_instruction, ir, tes->ir) {
2505 ir->accept(&input_resize_visitor);
2506 }
2507
2508 if (tcs || ctx->Const.LowerTESPatchVerticesIn) {
2509 /* Convert the gl_PatchVerticesIn system value into a constant, since
2510 * the value is known at this point.
2511 */
2512 foreach_in_list(ir_instruction, ir, tes->ir) {
2513 ir_variable *var = ir->as_variable();
2514 if (var && var->data.mode == ir_var_system_value &&
2515 var->data.location == SYSTEM_VALUE_VERTICES_IN) {
2516 void *mem_ctx = ralloc_parent(var);
2517 var->data.location = 0;
2518 var->data.explicit_location = false;
2519 if (tcs) {
2520 var->data.mode = ir_var_auto;
2521 var->constant_value = new(mem_ctx) ir_constant(num_vertices);
2522 } else {
2523 var->data.mode = ir_var_uniform;
2524 var->data.how_declared = ir_var_hidden;
2525 var->allocate_state_slots(1);
2526 ir_state_slot *slot0 = &var->get_state_slots()[0];
2527 slot0->swizzle = SWIZZLE_XXXX;
2528 slot0->tokens[0] = STATE_INTERNAL;
2529 slot0->tokens[1] = STATE_TES_PATCH_VERTICES_IN;
2530 for (int i = 2; i < STATE_LENGTH; i++)
2531 slot0->tokens[i] = 0;
2532 }
2533 }
2534 }
2535 }
2536 }
2537
2538 /**
2539 * Find a contiguous set of available bits in a bitmask.
2540 *
2541 * \param used_mask Bits representing used (1) and unused (0) locations
2542 * \param needed_count Number of contiguous bits needed.
2543 *
2544 * \return
2545 * Base location of the available bits on success or -1 on failure.
2546 */
2547 static int
2548 find_available_slots(unsigned used_mask, unsigned needed_count)
2549 {
2550 unsigned needed_mask = (1 << needed_count) - 1;
2551 const int max_bit_to_test = (8 * sizeof(used_mask)) - needed_count;
2552
2553 /* The comparison to 32 is redundant, but without it GCC emits "warning:
2554 * cannot optimize possibly infinite loops" for the loop below.
2555 */
2556 if ((needed_count == 0) || (max_bit_to_test < 0) || (max_bit_to_test > 32))
2557 return -1;
2558
2559 for (int i = 0; i <= max_bit_to_test; i++) {
2560 if ((needed_mask & ~used_mask) == needed_mask)
2561 return i;
2562
2563 needed_mask <<= 1;
2564 }
2565
2566 return -1;
2567 }
2568
2569
2570 /**
2571 * Assign locations for either VS inputs or FS outputs
2572 *
2573 * \param mem_ctx Temporary ralloc context used for linking
2574 * \param prog Shader program whose variables need locations assigned
2575 * \param constants Driver specific constant values for the program.
2576 * \param target_index Selector for the program target to receive location
2577 * assignmnets. Must be either \c MESA_SHADER_VERTEX or
2578 * \c MESA_SHADER_FRAGMENT.
2579 *
2580 * \return
2581 * If locations are successfully assigned, true is returned. Otherwise an
2582 * error is emitted to the shader link log and false is returned.
2583 */
2584 static bool
2585 assign_attribute_or_color_locations(void *mem_ctx,
2586 gl_shader_program *prog,
2587 struct gl_constants *constants,
2588 unsigned target_index)
2589 {
2590 /* Maximum number of generic locations. This corresponds to either the
2591 * maximum number of draw buffers or the maximum number of generic
2592 * attributes.
2593 */
2594 unsigned max_index = (target_index == MESA_SHADER_VERTEX) ?
2595 constants->Program[target_index].MaxAttribs :
2596 MAX2(constants->MaxDrawBuffers, constants->MaxDualSourceDrawBuffers);
2597
2598 /* Mark invalid locations as being used.
2599 */
2600 unsigned used_locations = (max_index >= 32)
2601 ? ~0 : ~((1 << max_index) - 1);
2602 unsigned double_storage_locations = 0;
2603
2604 assert((target_index == MESA_SHADER_VERTEX)
2605 || (target_index == MESA_SHADER_FRAGMENT));
2606
2607 gl_linked_shader *const sh = prog->_LinkedShaders[target_index];
2608 if (sh == NULL)
2609 return true;
2610
2611 /* Operate in a total of four passes.
2612 *
2613 * 1. Invalidate the location assignments for all vertex shader inputs.
2614 *
2615 * 2. Assign locations for inputs that have user-defined (via
2616 * glBindVertexAttribLocation) locations and outputs that have
2617 * user-defined locations (via glBindFragDataLocation).
2618 *
2619 * 3. Sort the attributes without assigned locations by number of slots
2620 * required in decreasing order. Fragmentation caused by attribute
2621 * locations assigned by the application may prevent large attributes
2622 * from having enough contiguous space.
2623 *
2624 * 4. Assign locations to any inputs without assigned locations.
2625 */
2626
2627 const int generic_base = (target_index == MESA_SHADER_VERTEX)
2628 ? (int) VERT_ATTRIB_GENERIC0 : (int) FRAG_RESULT_DATA0;
2629
2630 const enum ir_variable_mode direction =
2631 (target_index == MESA_SHADER_VERTEX)
2632 ? ir_var_shader_in : ir_var_shader_out;
2633
2634
2635 /* Temporary storage for the set of attributes that need locations assigned.
2636 */
2637 struct temp_attr {
2638 unsigned slots;
2639 ir_variable *var;
2640
2641 /* Used below in the call to qsort. */
2642 static int compare(const void *a, const void *b)
2643 {
2644 const temp_attr *const l = (const temp_attr *) a;
2645 const temp_attr *const r = (const temp_attr *) b;
2646
2647 /* Reversed because we want a descending order sort below. */
2648 return r->slots - l->slots;
2649 }
2650 } to_assign[32];
2651 assert(max_index <= 32);
2652
2653 /* Temporary array for the set of attributes that have locations assigned,
2654 * for the purpose of checking overlapping slots/components of (non-ES)
2655 * fragment shader outputs.
2656 */
2657 ir_variable *assigned[12 * 4]; /* (max # of FS outputs) * # components */
2658 unsigned assigned_attr = 0;
2659
2660 unsigned num_attr = 0;
2661
2662 foreach_in_list(ir_instruction, node, sh->ir) {
2663 ir_variable *const var = node->as_variable();
2664
2665 if ((var == NULL) || (var->data.mode != (unsigned) direction))
2666 continue;
2667
2668 if (var->data.explicit_location) {
2669 var->data.is_unmatched_generic_inout = 0;
2670 if ((var->data.location >= (int)(max_index + generic_base))
2671 || (var->data.location < 0)) {
2672 linker_error(prog,
2673 "invalid explicit location %d specified for `%s'\n",
2674 (var->data.location < 0)
2675 ? var->data.location
2676 : var->data.location - generic_base,
2677 var->name);
2678 return false;
2679 }
2680 } else if (target_index == MESA_SHADER_VERTEX) {
2681 unsigned binding;
2682
2683 if (prog->AttributeBindings->get(binding, var->name)) {
2684 assert(binding >= VERT_ATTRIB_GENERIC0);
2685 var->data.location = binding;
2686 var->data.is_unmatched_generic_inout = 0;
2687 }
2688 } else if (target_index == MESA_SHADER_FRAGMENT) {
2689 unsigned binding;
2690 unsigned index;
2691 const char *name = var->name;
2692 const glsl_type *type = var->type;
2693
2694 while (type) {
2695 /* Check if there's a binding for the variable name */
2696 if (prog->FragDataBindings->get(binding, name)) {
2697 assert(binding >= FRAG_RESULT_DATA0);
2698 var->data.location = binding;
2699 var->data.is_unmatched_generic_inout = 0;
2700
2701 if (prog->FragDataIndexBindings->get(index, name)) {
2702 var->data.index = index;
2703 }
2704 break;
2705 }
2706
2707 /* If not, but it's an array type, look for name[0] */
2708 if (type->is_array()) {
2709 name = ralloc_asprintf(mem_ctx, "%s[0]", name);
2710 type = type->fields.array;
2711 continue;
2712 }
2713
2714 break;
2715 }
2716 }
2717
2718 if (strcmp(var->name, "gl_LastFragData") == 0)
2719 continue;
2720
2721 /* From GL4.5 core spec, section 15.2 (Shader Execution):
2722 *
2723 * "Output binding assignments will cause LinkProgram to fail:
2724 * ...
2725 * If the program has an active output assigned to a location greater
2726 * than or equal to the value of MAX_DUAL_SOURCE_DRAW_BUFFERS and has
2727 * an active output assigned an index greater than or equal to one;"
2728 */
2729 if (target_index == MESA_SHADER_FRAGMENT && var->data.index >= 1 &&
2730 var->data.location - generic_base >=
2731 (int) constants->MaxDualSourceDrawBuffers) {
2732 linker_error(prog,
2733 "output location %d >= GL_MAX_DUAL_SOURCE_DRAW_BUFFERS "
2734 "with index %u for %s\n",
2735 var->data.location - generic_base, var->data.index,
2736 var->name);
2737 return false;
2738 }
2739
2740 const unsigned slots = var->type->count_attribute_slots(target_index == MESA_SHADER_VERTEX);
2741
2742 /* If the variable is not a built-in and has a location statically
2743 * assigned in the shader (presumably via a layout qualifier), make sure
2744 * that it doesn't collide with other assigned locations. Otherwise,
2745 * add it to the list of variables that need linker-assigned locations.
2746 */
2747 if (var->data.location != -1) {
2748 if (var->data.location >= generic_base && var->data.index < 1) {
2749 /* From page 61 of the OpenGL 4.0 spec:
2750 *
2751 * "LinkProgram will fail if the attribute bindings assigned
2752 * by BindAttribLocation do not leave not enough space to
2753 * assign a location for an active matrix attribute or an
2754 * active attribute array, both of which require multiple
2755 * contiguous generic attributes."
2756 *
2757 * I think above text prohibits the aliasing of explicit and
2758 * automatic assignments. But, aliasing is allowed in manual
2759 * assignments of attribute locations. See below comments for
2760 * the details.
2761 *
2762 * From OpenGL 4.0 spec, page 61:
2763 *
2764 * "It is possible for an application to bind more than one
2765 * attribute name to the same location. This is referred to as
2766 * aliasing. This will only work if only one of the aliased
2767 * attributes is active in the executable program, or if no
2768 * path through the shader consumes more than one attribute of
2769 * a set of attributes aliased to the same location. A link
2770 * error can occur if the linker determines that every path
2771 * through the shader consumes multiple aliased attributes,
2772 * but implementations are not required to generate an error
2773 * in this case."
2774 *
2775 * From GLSL 4.30 spec, page 54:
2776 *
2777 * "A program will fail to link if any two non-vertex shader
2778 * input variables are assigned to the same location. For
2779 * vertex shaders, multiple input variables may be assigned
2780 * to the same location using either layout qualifiers or via
2781 * the OpenGL API. However, such aliasing is intended only to
2782 * support vertex shaders where each execution path accesses
2783 * at most one input per each location. Implementations are
2784 * permitted, but not required, to generate link-time errors
2785 * if they detect that every path through the vertex shader
2786 * executable accesses multiple inputs assigned to any single
2787 * location. For all shader types, a program will fail to link
2788 * if explicit location assignments leave the linker unable
2789 * to find space for other variables without explicit
2790 * assignments."
2791 *
2792 * From OpenGL ES 3.0 spec, page 56:
2793 *
2794 * "Binding more than one attribute name to the same location
2795 * is referred to as aliasing, and is not permitted in OpenGL
2796 * ES Shading Language 3.00 vertex shaders. LinkProgram will
2797 * fail when this condition exists. However, aliasing is
2798 * possible in OpenGL ES Shading Language 1.00 vertex shaders.
2799 * This will only work if only one of the aliased attributes
2800 * is active in the executable program, or if no path through
2801 * the shader consumes more than one attribute of a set of
2802 * attributes aliased to the same location. A link error can
2803 * occur if the linker determines that every path through the
2804 * shader consumes multiple aliased attributes, but implemen-
2805 * tations are not required to generate an error in this case."
2806 *
2807 * After looking at above references from OpenGL, OpenGL ES and
2808 * GLSL specifications, we allow aliasing of vertex input variables
2809 * in: OpenGL 2.0 (and above) and OpenGL ES 2.0.
2810 *
2811 * NOTE: This is not required by the spec but its worth mentioning
2812 * here that we're not doing anything to make sure that no path
2813 * through the vertex shader executable accesses multiple inputs
2814 * assigned to any single location.
2815 */
2816
2817 /* Mask representing the contiguous slots that will be used by
2818 * this attribute.
2819 */
2820 const unsigned attr = var->data.location - generic_base;
2821 const unsigned use_mask = (1 << slots) - 1;
2822 const char *const string = (target_index == MESA_SHADER_VERTEX)
2823 ? "vertex shader input" : "fragment shader output";
2824
2825 /* Generate a link error if the requested locations for this
2826 * attribute exceed the maximum allowed attribute location.
2827 */
2828 if (attr + slots > max_index) {
2829 linker_error(prog,
2830 "insufficient contiguous locations "
2831 "available for %s `%s' %d %d %d\n", string,
2832 var->name, used_locations, use_mask, attr);
2833 return false;
2834 }
2835
2836 /* Generate a link error if the set of bits requested for this
2837 * attribute overlaps any previously allocated bits.
2838 */
2839 if ((~(use_mask << attr) & used_locations) != used_locations) {
2840 if (target_index == MESA_SHADER_FRAGMENT && !prog->IsES) {
2841 /* From section 4.4.2 (Output Layout Qualifiers) of the GLSL
2842 * 4.40 spec:
2843 *
2844 * "Additionally, for fragment shader outputs, if two
2845 * variables are placed within the same location, they
2846 * must have the same underlying type (floating-point or
2847 * integer). No component aliasing of output variables or
2848 * members is allowed.
2849 */
2850 for (unsigned i = 0; i < assigned_attr; i++) {
2851 unsigned assigned_slots =
2852 assigned[i]->type->count_attribute_slots(false);
2853 unsigned assig_attr =
2854 assigned[i]->data.location - generic_base;
2855 unsigned assigned_use_mask = (1 << assigned_slots) - 1;
2856
2857 if ((assigned_use_mask << assig_attr) &
2858 (use_mask << attr)) {
2859
2860 const glsl_type *assigned_type =
2861 assigned[i]->type->without_array();
2862 const glsl_type *type = var->type->without_array();
2863 if (assigned_type->base_type != type->base_type) {
2864 linker_error(prog, "types do not match for aliased"
2865 " %ss %s and %s\n", string,
2866 assigned[i]->name, var->name);
2867 return false;
2868 }
2869
2870 unsigned assigned_component_mask =
2871 ((1 << assigned_type->vector_elements) - 1) <<
2872 assigned[i]->data.location_frac;
2873 unsigned component_mask =
2874 ((1 << type->vector_elements) - 1) <<
2875 var->data.location_frac;
2876 if (assigned_component_mask & component_mask) {
2877 linker_error(prog, "overlapping component is "
2878 "assigned to %ss %s and %s "
2879 "(component=%d)\n",
2880 string, assigned[i]->name, var->name,
2881 var->data.location_frac);
2882 return false;
2883 }
2884 }
2885 }
2886 } else if (target_index == MESA_SHADER_FRAGMENT ||
2887 (prog->IsES && prog->data->Version >= 300)) {
2888 linker_error(prog, "overlapping location is assigned "
2889 "to %s `%s' %d %d %d\n", string, var->name,
2890 used_locations, use_mask, attr);
2891 return false;
2892 } else {
2893 linker_warning(prog, "overlapping location is assigned "
2894 "to %s `%s' %d %d %d\n", string, var->name,
2895 used_locations, use_mask, attr);
2896 }
2897 }
2898
2899 if (target_index == MESA_SHADER_FRAGMENT && !prog->IsES) {
2900 /* Only track assigned variables for non-ES fragment shaders
2901 * to avoid overflowing the array.
2902 *
2903 * At most one variable per fragment output component should
2904 * reach this.
2905 */
2906 assert(assigned_attr < ARRAY_SIZE(assigned));
2907 assigned[assigned_attr] = var;
2908 assigned_attr++;
2909 }
2910
2911 used_locations |= (use_mask << attr);
2912
2913 /* From the GL 4.5 core spec, section 11.1.1 (Vertex Attributes):
2914 *
2915 * "A program with more than the value of MAX_VERTEX_ATTRIBS
2916 * active attribute variables may fail to link, unless
2917 * device-dependent optimizations are able to make the program
2918 * fit within available hardware resources. For the purposes
2919 * of this test, attribute variables of the type dvec3, dvec4,
2920 * dmat2x3, dmat2x4, dmat3, dmat3x4, dmat4x3, and dmat4 may
2921 * count as consuming twice as many attributes as equivalent
2922 * single-precision types. While these types use the same number
2923 * of generic attributes as their single-precision equivalents,
2924 * implementations are permitted to consume two single-precision
2925 * vectors of internal storage for each three- or four-component
2926 * double-precision vector."
2927 *
2928 * Mark this attribute slot as taking up twice as much space
2929 * so we can count it properly against limits. According to
2930 * issue (3) of the GL_ARB_vertex_attrib_64bit behavior, this
2931 * is optional behavior, but it seems preferable.
2932 */
2933 if (var->type->without_array()->is_dual_slot())
2934 double_storage_locations |= (use_mask << attr);
2935 }
2936
2937 continue;
2938 }
2939
2940 if (num_attr >= max_index) {
2941 linker_error(prog, "too many %s (max %u)",
2942 target_index == MESA_SHADER_VERTEX ?
2943 "vertex shader inputs" : "fragment shader outputs",
2944 max_index);
2945 return false;
2946 }
2947 to_assign[num_attr].slots = slots;
2948 to_assign[num_attr].var = var;
2949 num_attr++;
2950 }
2951
2952 if (target_index == MESA_SHADER_VERTEX) {
2953 unsigned total_attribs_size =
2954 _mesa_bitcount(used_locations & ((1 << max_index) - 1)) +
2955 _mesa_bitcount(double_storage_locations);
2956 if (total_attribs_size > max_index) {
2957 linker_error(prog,
2958 "attempt to use %d vertex attribute slots only %d available ",
2959 total_attribs_size, max_index);
2960 return false;
2961 }
2962 }
2963
2964 /* If all of the attributes were assigned locations by the application (or
2965 * are built-in attributes with fixed locations), return early. This should
2966 * be the common case.
2967 */
2968 if (num_attr == 0)
2969 return true;
2970
2971 qsort(to_assign, num_attr, sizeof(to_assign[0]), temp_attr::compare);
2972
2973 if (target_index == MESA_SHADER_VERTEX) {
2974 /* VERT_ATTRIB_GENERIC0 is a pseudo-alias for VERT_ATTRIB_POS. It can
2975 * only be explicitly assigned by via glBindAttribLocation. Mark it as
2976 * reserved to prevent it from being automatically allocated below.
2977 */
2978 find_deref_visitor find("gl_Vertex");
2979 find.run(sh->ir);
2980 if (find.variable_found())
2981 used_locations |= (1 << 0);
2982 }
2983
2984 for (unsigned i = 0; i < num_attr; i++) {
2985 /* Mask representing the contiguous slots that will be used by this
2986 * attribute.
2987 */
2988 const unsigned use_mask = (1 << to_assign[i].slots) - 1;
2989
2990 int location = find_available_slots(used_locations, to_assign[i].slots);
2991
2992 if (location < 0) {
2993 const char *const string = (target_index == MESA_SHADER_VERTEX)
2994 ? "vertex shader input" : "fragment shader output";
2995
2996 linker_error(prog,
2997 "insufficient contiguous locations "
2998 "available for %s `%s'\n",
2999 string, to_assign[i].var->name);
3000 return false;
3001 }
3002
3003 to_assign[i].var->data.location = generic_base + location;
3004 to_assign[i].var->data.is_unmatched_generic_inout = 0;
3005 used_locations |= (use_mask << location);
3006
3007 if (to_assign[i].var->type->without_array()->is_dual_slot())
3008 double_storage_locations |= (use_mask << location);
3009 }
3010
3011 /* Now that we have all the locations, from the GL 4.5 core spec, section
3012 * 11.1.1 (Vertex Attributes), dvec3, dvec4, dmat2x3, dmat2x4, dmat3,
3013 * dmat3x4, dmat4x3, and dmat4 count as consuming twice as many attributes
3014 * as equivalent single-precision types.
3015 */
3016 if (target_index == MESA_SHADER_VERTEX) {
3017 unsigned total_attribs_size =
3018 _mesa_bitcount(used_locations & ((1 << max_index) - 1)) +
3019 _mesa_bitcount(double_storage_locations);
3020 if (total_attribs_size > max_index) {
3021 linker_error(prog,
3022 "attempt to use %d vertex attribute slots only %d available ",
3023 total_attribs_size, max_index);
3024 return false;
3025 }
3026 }
3027
3028 return true;
3029 }
3030
3031 /**
3032 * Match explicit locations of outputs to inputs and deactivate the
3033 * unmatch flag if found so we don't optimise them away.
3034 */
3035 static void
3036 match_explicit_outputs_to_inputs(gl_linked_shader *producer,
3037 gl_linked_shader *consumer)
3038 {
3039 glsl_symbol_table parameters;
3040 ir_variable *explicit_locations[MAX_VARYINGS_INCL_PATCH][4] =
3041 { {NULL, NULL} };
3042
3043 /* Find all shader outputs in the "producer" stage.
3044 */
3045 foreach_in_list(ir_instruction, node, producer->ir) {
3046 ir_variable *const var = node->as_variable();
3047
3048 if ((var == NULL) || (var->data.mode != ir_var_shader_out))
3049 continue;
3050
3051 if (var->data.explicit_location &&
3052 var->data.location >= VARYING_SLOT_VAR0) {
3053 const unsigned idx = var->data.location - VARYING_SLOT_VAR0;
3054 if (explicit_locations[idx][var->data.location_frac] == NULL)
3055 explicit_locations[idx][var->data.location_frac] = var;
3056 }
3057 }
3058
3059 /* Match inputs to outputs */
3060 foreach_in_list(ir_instruction, node, consumer->ir) {
3061 ir_variable *const input = node->as_variable();
3062
3063 if ((input == NULL) || (input->data.mode != ir_var_shader_in))
3064 continue;
3065
3066 ir_variable *output = NULL;
3067 if (input->data.explicit_location
3068 && input->data.location >= VARYING_SLOT_VAR0) {
3069 output = explicit_locations[input->data.location - VARYING_SLOT_VAR0]
3070 [input->data.location_frac];
3071
3072 if (output != NULL){
3073 input->data.is_unmatched_generic_inout = 0;
3074 output->data.is_unmatched_generic_inout = 0;
3075 }
3076 }
3077 }
3078 }
3079
3080 /**
3081 * Store the gl_FragDepth layout in the gl_shader_program struct.
3082 */
3083 static void
3084 store_fragdepth_layout(struct gl_shader_program *prog)
3085 {
3086 if (prog->_LinkedShaders[MESA_SHADER_FRAGMENT] == NULL) {
3087 return;
3088 }
3089
3090 struct exec_list *ir = prog->_LinkedShaders[MESA_SHADER_FRAGMENT]->ir;
3091
3092 /* We don't look up the gl_FragDepth symbol directly because if
3093 * gl_FragDepth is not used in the shader, it's removed from the IR.
3094 * However, the symbol won't be removed from the symbol table.
3095 *
3096 * We're only interested in the cases where the variable is NOT removed
3097 * from the IR.
3098 */
3099 foreach_in_list(ir_instruction, node, ir) {
3100 ir_variable *const var = node->as_variable();
3101
3102 if (var == NULL || var->data.mode != ir_var_shader_out) {
3103 continue;
3104 }
3105
3106 if (strcmp(var->name, "gl_FragDepth") == 0) {
3107 switch (var->data.depth_layout) {
3108 case ir_depth_layout_none:
3109 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_NONE;
3110 return;
3111 case ir_depth_layout_any:
3112 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_ANY;
3113 return;
3114 case ir_depth_layout_greater:
3115 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_GREATER;
3116 return;
3117 case ir_depth_layout_less:
3118 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_LESS;
3119 return;
3120 case ir_depth_layout_unchanged:
3121 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_UNCHANGED;
3122 return;
3123 default:
3124 assert(0);
3125 return;
3126 }
3127 }
3128 }
3129 }
3130
3131 /**
3132 * Validate the resources used by a program versus the implementation limits
3133 */
3134 static void
3135 check_resources(struct gl_context *ctx, struct gl_shader_program *prog)
3136 {
3137 unsigned total_uniform_blocks = 0;
3138 unsigned total_shader_storage_blocks = 0;
3139
3140 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3141 struct gl_linked_shader *sh = prog->_LinkedShaders[i];
3142
3143 if (sh == NULL)
3144 continue;
3145
3146 if (sh->Program->info.num_textures >
3147 ctx->Const.Program[i].MaxTextureImageUnits) {
3148 linker_error(prog, "Too many %s shader texture samplers\n",
3149 _mesa_shader_stage_to_string(i));
3150 }
3151
3152 if (sh->num_uniform_components >
3153 ctx->Const.Program[i].MaxUniformComponents) {
3154 if (ctx->Const.GLSLSkipStrictMaxUniformLimitCheck) {
3155 linker_warning(prog, "Too many %s shader default uniform block "
3156 "components, but the driver will try to optimize "
3157 "them out; this is non-portable out-of-spec "
3158 "behavior\n",
3159 _mesa_shader_stage_to_string(i));
3160 } else {
3161 linker_error(prog, "Too many %s shader default uniform block "
3162 "components\n",
3163 _mesa_shader_stage_to_string(i));
3164 }
3165 }
3166
3167 if (sh->num_combined_uniform_components >
3168 ctx->Const.Program[i].MaxCombinedUniformComponents) {
3169 if (ctx->Const.GLSLSkipStrictMaxUniformLimitCheck) {
3170 linker_warning(prog, "Too many %s shader uniform components, "
3171 "but the driver will try to optimize them out; "
3172 "this is non-portable out-of-spec behavior\n",
3173 _mesa_shader_stage_to_string(i));
3174 } else {
3175 linker_error(prog, "Too many %s shader uniform components\n",
3176 _mesa_shader_stage_to_string(i));
3177 }
3178 }
3179
3180 total_shader_storage_blocks += sh->Program->info.num_ssbos;
3181 total_uniform_blocks += sh->Program->info.num_ubos;
3182
3183 const unsigned max_uniform_blocks =
3184 ctx->Const.Program[i].MaxUniformBlocks;
3185 if (max_uniform_blocks < sh->Program->info.num_ubos) {
3186 linker_error(prog, "Too many %s uniform blocks (%d/%d)\n",
3187 _mesa_shader_stage_to_string(i),
3188 sh->Program->info.num_ubos, max_uniform_blocks);
3189 }
3190
3191 const unsigned max_shader_storage_blocks =
3192 ctx->Const.Program[i].MaxShaderStorageBlocks;
3193 if (max_shader_storage_blocks < sh->Program->info.num_ssbos) {
3194 linker_error(prog, "Too many %s shader storage blocks (%d/%d)\n",
3195 _mesa_shader_stage_to_string(i),
3196 sh->Program->info.num_ssbos, max_shader_storage_blocks);
3197 }
3198 }
3199
3200 if (total_uniform_blocks > ctx->Const.MaxCombinedUniformBlocks) {
3201 linker_error(prog, "Too many combined uniform blocks (%d/%d)\n",
3202 total_uniform_blocks, ctx->Const.MaxCombinedUniformBlocks);
3203 }
3204
3205 if (total_shader_storage_blocks > ctx->Const.MaxCombinedShaderStorageBlocks) {
3206 linker_error(prog, "Too many combined shader storage blocks (%d/%d)\n",
3207 total_shader_storage_blocks,
3208 ctx->Const.MaxCombinedShaderStorageBlocks);
3209 }
3210
3211 for (unsigned i = 0; i < prog->data->NumUniformBlocks; i++) {
3212 if (prog->data->UniformBlocks[i].UniformBufferSize >
3213 ctx->Const.MaxUniformBlockSize) {
3214 linker_error(prog, "Uniform block %s too big (%d/%d)\n",
3215 prog->data->UniformBlocks[i].Name,
3216 prog->data->UniformBlocks[i].UniformBufferSize,
3217 ctx->Const.MaxUniformBlockSize);
3218 }
3219 }
3220
3221 for (unsigned i = 0; i < prog->data->NumShaderStorageBlocks; i++) {
3222 if (prog->data->ShaderStorageBlocks[i].UniformBufferSize >
3223 ctx->Const.MaxShaderStorageBlockSize) {
3224 linker_error(prog, "Shader storage block %s too big (%d/%d)\n",
3225 prog->data->ShaderStorageBlocks[i].Name,
3226 prog->data->ShaderStorageBlocks[i].UniformBufferSize,
3227 ctx->Const.MaxShaderStorageBlockSize);
3228 }
3229 }
3230 }
3231
3232 static void
3233 link_calculate_subroutine_compat(struct gl_shader_program *prog)
3234 {
3235 unsigned mask = prog->data->linked_stages;
3236 while (mask) {
3237 const int i = u_bit_scan(&mask);
3238 struct gl_program *p = prog->_LinkedShaders[i]->Program;
3239
3240 for (unsigned j = 0; j < p->sh.NumSubroutineUniformRemapTable; j++) {
3241 if (p->sh.SubroutineUniformRemapTable[j] == INACTIVE_UNIFORM_EXPLICIT_LOCATION)
3242 continue;
3243
3244 struct gl_uniform_storage *uni = p->sh.SubroutineUniformRemapTable[j];
3245
3246 if (!uni)
3247 continue;
3248
3249 int count = 0;
3250 if (p->sh.NumSubroutineFunctions == 0) {
3251 linker_error(prog, "subroutine uniform %s defined but no valid functions found\n", uni->type->name);
3252 continue;
3253 }
3254 for (unsigned f = 0; f < p->sh.NumSubroutineFunctions; f++) {
3255 struct gl_subroutine_function *fn = &p->sh.SubroutineFunctions[f];
3256 for (int k = 0; k < fn->num_compat_types; k++) {
3257 if (fn->types[k] == uni->type) {
3258 count++;
3259 break;
3260 }
3261 }
3262 }
3263 uni->num_compatible_subroutines = count;
3264 }
3265 }
3266 }
3267
3268 static void
3269 check_subroutine_resources(struct gl_shader_program *prog)
3270 {
3271 unsigned mask = prog->data->linked_stages;
3272 while (mask) {
3273 const int i = u_bit_scan(&mask);
3274 struct gl_program *p = prog->_LinkedShaders[i]->Program;
3275
3276 if (p->sh.NumSubroutineUniformRemapTable > MAX_SUBROUTINE_UNIFORM_LOCATIONS) {
3277 linker_error(prog, "Too many %s shader subroutine uniforms\n",
3278 _mesa_shader_stage_to_string(i));
3279 }
3280 }
3281 }
3282 /**
3283 * Validate shader image resources.
3284 */
3285 static void
3286 check_image_resources(struct gl_context *ctx, struct gl_shader_program *prog)
3287 {
3288 unsigned total_image_units = 0;
3289 unsigned fragment_outputs = 0;
3290 unsigned total_shader_storage_blocks = 0;
3291
3292 if (!ctx->Extensions.ARB_shader_image_load_store)
3293 return;
3294
3295 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3296 struct gl_linked_shader *sh = prog->_LinkedShaders[i];
3297
3298 if (sh) {
3299 if (sh->Program->info.num_images > ctx->Const.Program[i].MaxImageUniforms)
3300 linker_error(prog, "Too many %s shader image uniforms (%u > %u)\n",
3301 _mesa_shader_stage_to_string(i),
3302 sh->Program->info.num_images,
3303 ctx->Const.Program[i].MaxImageUniforms);
3304
3305 total_image_units += sh->Program->info.num_images;
3306 total_shader_storage_blocks += sh->Program->info.num_ssbos;
3307
3308 if (i == MESA_SHADER_FRAGMENT) {
3309 foreach_in_list(ir_instruction, node, sh->ir) {
3310 ir_variable *var = node->as_variable();
3311 if (var && var->data.mode == ir_var_shader_out)
3312 /* since there are no double fs outputs - pass false */
3313 fragment_outputs += var->type->count_attribute_slots(false);
3314 }
3315 }
3316 }
3317 }
3318
3319 if (total_image_units > ctx->Const.MaxCombinedImageUniforms)
3320 linker_error(prog, "Too many combined image uniforms\n");
3321
3322 if (total_image_units + fragment_outputs + total_shader_storage_blocks >
3323 ctx->Const.MaxCombinedShaderOutputResources)
3324 linker_error(prog, "Too many combined image uniforms, shader storage "
3325 " buffers and fragment outputs\n");
3326 }
3327
3328
3329 /**
3330 * Initializes explicit location slots to INACTIVE_UNIFORM_EXPLICIT_LOCATION
3331 * for a variable, checks for overlaps between other uniforms using explicit
3332 * locations.
3333 */
3334 static int
3335 reserve_explicit_locations(struct gl_shader_program *prog,
3336 string_to_uint_map *map, ir_variable *var)
3337 {
3338 unsigned slots = var->type->uniform_locations();
3339 unsigned max_loc = var->data.location + slots - 1;
3340 unsigned return_value = slots;
3341
3342 /* Resize remap table if locations do not fit in the current one. */
3343 if (max_loc + 1 > prog->NumUniformRemapTable) {
3344 prog->UniformRemapTable =
3345 reralloc(prog, prog->UniformRemapTable,
3346 gl_uniform_storage *,
3347 max_loc + 1);
3348
3349 if (!prog->UniformRemapTable) {
3350 linker_error(prog, "Out of memory during linking.\n");
3351 return -1;
3352 }
3353
3354 /* Initialize allocated space. */
3355 for (unsigned i = prog->NumUniformRemapTable; i < max_loc + 1; i++)
3356 prog->UniformRemapTable[i] = NULL;
3357
3358 prog->NumUniformRemapTable = max_loc + 1;
3359 }
3360
3361 for (unsigned i = 0; i < slots; i++) {
3362 unsigned loc = var->data.location + i;
3363
3364 /* Check if location is already used. */
3365 if (prog->UniformRemapTable[loc] == INACTIVE_UNIFORM_EXPLICIT_LOCATION) {
3366
3367 /* Possibly same uniform from a different stage, this is ok. */
3368 unsigned hash_loc;
3369 if (map->get(hash_loc, var->name) && hash_loc == loc - i) {
3370 return_value = 0;
3371 continue;
3372 }
3373
3374 /* ARB_explicit_uniform_location specification states:
3375 *
3376 * "No two default-block uniform variables in the program can have
3377 * the same location, even if they are unused, otherwise a compiler
3378 * or linker error will be generated."
3379 */
3380 linker_error(prog,
3381 "location qualifier for uniform %s overlaps "
3382 "previously used location\n",
3383 var->name);
3384 return -1;
3385 }
3386
3387 /* Initialize location as inactive before optimization
3388 * rounds and location assignment.
3389 */
3390 prog->UniformRemapTable[loc] = INACTIVE_UNIFORM_EXPLICIT_LOCATION;
3391 }
3392
3393 /* Note, base location used for arrays. */
3394 map->put(var->data.location, var->name);
3395
3396 return return_value;
3397 }
3398
3399 static bool
3400 reserve_subroutine_explicit_locations(struct gl_shader_program *prog,
3401 struct gl_program *p,
3402 ir_variable *var)
3403 {
3404 unsigned slots = var->type->uniform_locations();
3405 unsigned max_loc = var->data.location + slots - 1;
3406
3407 /* Resize remap table if locations do not fit in the current one. */
3408 if (max_loc + 1 > p->sh.NumSubroutineUniformRemapTable) {
3409 p->sh.SubroutineUniformRemapTable =
3410 reralloc(p, p->sh.SubroutineUniformRemapTable,
3411 gl_uniform_storage *,
3412 max_loc + 1);
3413
3414 if (!p->sh.SubroutineUniformRemapTable) {
3415 linker_error(prog, "Out of memory during linking.\n");
3416 return false;
3417 }
3418
3419 /* Initialize allocated space. */
3420 for (unsigned i = p->sh.NumSubroutineUniformRemapTable; i < max_loc + 1; i++)
3421 p->sh.SubroutineUniformRemapTable[i] = NULL;
3422
3423 p->sh.NumSubroutineUniformRemapTable = max_loc + 1;
3424 }
3425
3426 for (unsigned i = 0; i < slots; i++) {
3427 unsigned loc = var->data.location + i;
3428
3429 /* Check if location is already used. */
3430 if (p->sh.SubroutineUniformRemapTable[loc] == INACTIVE_UNIFORM_EXPLICIT_LOCATION) {
3431
3432 /* ARB_explicit_uniform_location specification states:
3433 * "No two subroutine uniform variables can have the same location
3434 * in the same shader stage, otherwise a compiler or linker error
3435 * will be generated."
3436 */
3437 linker_error(prog,
3438 "location qualifier for uniform %s overlaps "
3439 "previously used location\n",
3440 var->name);
3441 return false;
3442 }
3443
3444 /* Initialize location as inactive before optimization
3445 * rounds and location assignment.
3446 */
3447 p->sh.SubroutineUniformRemapTable[loc] = INACTIVE_UNIFORM_EXPLICIT_LOCATION;
3448 }
3449
3450 return true;
3451 }
3452 /**
3453 * Check and reserve all explicit uniform locations, called before
3454 * any optimizations happen to handle also inactive uniforms and
3455 * inactive array elements that may get trimmed away.
3456 */
3457 static void
3458 check_explicit_uniform_locations(struct gl_context *ctx,
3459 struct gl_shader_program *prog)
3460 {
3461 prog->NumExplicitUniformLocations = 0;
3462
3463 if (!ctx->Extensions.ARB_explicit_uniform_location)
3464 return;
3465
3466 /* This map is used to detect if overlapping explicit locations
3467 * occur with the same uniform (from different stage) or a different one.
3468 */
3469 string_to_uint_map *uniform_map = new string_to_uint_map;
3470
3471 if (!uniform_map) {
3472 linker_error(prog, "Out of memory during linking.\n");
3473 return;
3474 }
3475
3476 unsigned entries_total = 0;
3477 unsigned mask = prog->data->linked_stages;
3478 while (mask) {
3479 const int i = u_bit_scan(&mask);
3480 struct gl_program *p = prog->_LinkedShaders[i]->Program;
3481
3482 foreach_in_list(ir_instruction, node, prog->_LinkedShaders[i]->ir) {
3483 ir_variable *var = node->as_variable();
3484 if (!var || var->data.mode != ir_var_uniform)
3485 continue;
3486
3487 if (var->data.explicit_location) {
3488 bool ret = false;
3489 if (var->type->without_array()->is_subroutine())
3490 ret = reserve_subroutine_explicit_locations(prog, p, var);
3491 else {
3492 int slots = reserve_explicit_locations(prog, uniform_map,
3493 var);
3494 if (slots != -1) {
3495 ret = true;
3496 entries_total += slots;
3497 }
3498 }
3499 if (!ret) {
3500 delete uniform_map;
3501 return;
3502 }
3503 }
3504 }
3505 }
3506
3507 struct empty_uniform_block *current_block = NULL;
3508
3509 for (unsigned i = 0; i < prog->NumUniformRemapTable; i++) {
3510 /* We found empty space in UniformRemapTable. */
3511 if (prog->UniformRemapTable[i] == NULL) {
3512 /* We've found the beginning of a new continous block of empty slots */
3513 if (!current_block || current_block->start + current_block->slots != i) {
3514 current_block = rzalloc(prog, struct empty_uniform_block);
3515 current_block->start = i;
3516 exec_list_push_tail(&prog->EmptyUniformLocations,
3517 &current_block->link);
3518 }
3519
3520 /* The current block continues, so we simply increment its slots */
3521 current_block->slots++;
3522 }
3523 }
3524
3525 delete uniform_map;
3526 prog->NumExplicitUniformLocations = entries_total;
3527 }
3528
3529 static bool
3530 should_add_buffer_variable(struct gl_shader_program *shProg,
3531 GLenum type, const char *name)
3532 {
3533 bool found_interface = false;
3534 unsigned block_name_len = 0;
3535 const char *block_name_dot = strchr(name, '.');
3536
3537 /* These rules only apply to buffer variables. So we return
3538 * true for the rest of types.
3539 */
3540 if (type != GL_BUFFER_VARIABLE)
3541 return true;
3542
3543 for (unsigned i = 0; i < shProg->data->NumShaderStorageBlocks; i++) {
3544 const char *block_name = shProg->data->ShaderStorageBlocks[i].Name;
3545 block_name_len = strlen(block_name);
3546
3547 const char *block_square_bracket = strchr(block_name, '[');
3548 if (block_square_bracket) {
3549 /* The block is part of an array of named interfaces,
3550 * for the name comparison we ignore the "[x]" part.
3551 */
3552 block_name_len -= strlen(block_square_bracket);
3553 }
3554
3555 if (block_name_dot) {
3556 /* Check if the variable name starts with the interface
3557 * name. The interface name (if present) should have the
3558 * length than the interface block name we are comparing to.
3559 */
3560 unsigned len = strlen(name) - strlen(block_name_dot);
3561 if (len != block_name_len)
3562 continue;
3563 }
3564
3565 if (strncmp(block_name, name, block_name_len) == 0) {
3566 found_interface = true;
3567 break;
3568 }
3569 }
3570
3571 /* We remove the interface name from the buffer variable name,
3572 * including the dot that follows it.
3573 */
3574 if (found_interface)
3575 name = name + block_name_len + 1;
3576
3577 /* The ARB_program_interface_query spec says:
3578 *
3579 * "For an active shader storage block member declared as an array, an
3580 * entry will be generated only for the first array element, regardless
3581 * of its type. For arrays of aggregate types, the enumeration rules
3582 * are applied recursively for the single enumerated array element."
3583 */
3584 const char *struct_first_dot = strchr(name, '.');
3585 const char *first_square_bracket = strchr(name, '[');
3586
3587 /* The buffer variable is on top level and it is not an array */
3588 if (!first_square_bracket) {
3589 return true;
3590 /* The shader storage block member is a struct, then generate the entry */
3591 } else if (struct_first_dot && struct_first_dot < first_square_bracket) {
3592 return true;
3593 } else {
3594 /* Shader storage block member is an array, only generate an entry for the
3595 * first array element.
3596 */
3597 if (strncmp(first_square_bracket, "[0]", 3) == 0)
3598 return true;
3599 }
3600
3601 return false;
3602 }
3603
3604 static bool
3605 add_program_resource(struct gl_shader_program *prog,
3606 struct set *resource_set,
3607 GLenum type, const void *data, uint8_t stages)
3608 {
3609 assert(data);
3610
3611 /* If resource already exists, do not add it again. */
3612 if (_mesa_set_search(resource_set, data))
3613 return true;
3614
3615 prog->data->ProgramResourceList =
3616 reralloc(prog,
3617 prog->data->ProgramResourceList,
3618 gl_program_resource,
3619 prog->data->NumProgramResourceList + 1);
3620
3621 if (!prog->data->ProgramResourceList) {
3622 linker_error(prog, "Out of memory during linking.\n");
3623 return false;
3624 }
3625
3626 struct gl_program_resource *res =
3627 &prog->data->ProgramResourceList[prog->data->NumProgramResourceList];
3628
3629 res->Type = type;
3630 res->Data = data;
3631 res->StageReferences = stages;
3632
3633 prog->data->NumProgramResourceList++;
3634
3635 _mesa_set_add(resource_set, data);
3636
3637 return true;
3638 }
3639
3640 /* Function checks if a variable var is a packed varying and
3641 * if given name is part of packed varying's list.
3642 *
3643 * If a variable is a packed varying, it has a name like
3644 * 'packed:a,b,c' where a, b and c are separate variables.
3645 */
3646 static bool
3647 included_in_packed_varying(ir_variable *var, const char *name)
3648 {
3649 if (strncmp(var->name, "packed:", 7) != 0)
3650 return false;
3651
3652 char *list = strdup(var->name + 7);
3653 assert(list);
3654
3655 bool found = false;
3656 char *saveptr;
3657 char *token = strtok_r(list, ",", &saveptr);
3658 while (token) {
3659 if (strcmp(token, name) == 0) {
3660 found = true;
3661 break;
3662 }
3663 token = strtok_r(NULL, ",", &saveptr);
3664 }
3665 free(list);
3666 return found;
3667 }
3668
3669 /**
3670 * Function builds a stage reference bitmask from variable name.
3671 */
3672 static uint8_t
3673 build_stageref(struct gl_shader_program *shProg, const char *name,
3674 unsigned mode)
3675 {
3676 uint8_t stages = 0;
3677
3678 /* Note, that we assume MAX 8 stages, if there will be more stages, type
3679 * used for reference mask in gl_program_resource will need to be changed.
3680 */
3681 assert(MESA_SHADER_STAGES < 8);
3682
3683 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3684 struct gl_linked_shader *sh = shProg->_LinkedShaders[i];
3685 if (!sh)
3686 continue;
3687
3688 /* Shader symbol table may contain variables that have
3689 * been optimized away. Search IR for the variable instead.
3690 */
3691 foreach_in_list(ir_instruction, node, sh->ir) {
3692 ir_variable *var = node->as_variable();
3693 if (var) {
3694 unsigned baselen = strlen(var->name);
3695
3696 if (included_in_packed_varying(var, name)) {
3697 stages |= (1 << i);
3698 break;
3699 }
3700
3701 /* Type needs to match if specified, otherwise we might
3702 * pick a variable with same name but different interface.
3703 */
3704 if (var->data.mode != mode)
3705 continue;
3706
3707 if (strncmp(var->name, name, baselen) == 0) {
3708 /* Check for exact name matches but also check for arrays and
3709 * structs.
3710 */
3711 if (name[baselen] == '\0' ||
3712 name[baselen] == '[' ||
3713 name[baselen] == '.') {
3714 stages |= (1 << i);
3715 break;
3716 }
3717 }
3718 }
3719 }
3720 }
3721 return stages;
3722 }
3723
3724 /**
3725 * Create gl_shader_variable from ir_variable class.
3726 */
3727 static gl_shader_variable *
3728 create_shader_variable(struct gl_shader_program *shProg,
3729 const ir_variable *in,
3730 const char *name, const glsl_type *type,
3731 const glsl_type *interface_type,
3732 bool use_implicit_location, int location,
3733 const glsl_type *outermost_struct_type)
3734 {
3735 /* Allocate zero-initialized memory to ensure that bitfield padding
3736 * is zero.
3737 */
3738 gl_shader_variable *out = rzalloc(shProg, struct gl_shader_variable);
3739 if (!out)
3740 return NULL;
3741
3742 /* Since gl_VertexID may be lowered to gl_VertexIDMESA, but applications
3743 * expect to see gl_VertexID in the program resource list. Pretend.
3744 */
3745 if (in->data.mode == ir_var_system_value &&
3746 in->data.location == SYSTEM_VALUE_VERTEX_ID_ZERO_BASE) {
3747 out->name = ralloc_strdup(shProg, "gl_VertexID");
3748 } else if ((in->data.mode == ir_var_shader_out &&
3749 in->data.location == VARYING_SLOT_TESS_LEVEL_OUTER) ||
3750 (in->data.mode == ir_var_system_value &&
3751 in->data.location == SYSTEM_VALUE_TESS_LEVEL_OUTER)) {
3752 out->name = ralloc_strdup(shProg, "gl_TessLevelOuter");
3753 type = glsl_type::get_array_instance(glsl_type::float_type, 4);
3754 } else if ((in->data.mode == ir_var_shader_out &&
3755 in->data.location == VARYING_SLOT_TESS_LEVEL_INNER) ||
3756 (in->data.mode == ir_var_system_value &&
3757 in->data.location == SYSTEM_VALUE_TESS_LEVEL_INNER)) {
3758 out->name = ralloc_strdup(shProg, "gl_TessLevelInner");
3759 type = glsl_type::get_array_instance(glsl_type::float_type, 2);
3760 } else {
3761 out->name = ralloc_strdup(shProg, name);
3762 }
3763
3764 if (!out->name)
3765 return NULL;
3766
3767 /* The ARB_program_interface_query spec says:
3768 *
3769 * "Not all active variables are assigned valid locations; the
3770 * following variables will have an effective location of -1:
3771 *
3772 * * uniforms declared as atomic counters;
3773 *
3774 * * members of a uniform block;
3775 *
3776 * * built-in inputs, outputs, and uniforms (starting with "gl_"); and
3777 *
3778 * * inputs or outputs not declared with a "location" layout
3779 * qualifier, except for vertex shader inputs and fragment shader
3780 * outputs."
3781 */
3782 if (in->type->is_atomic_uint() || is_gl_identifier(in->name) ||
3783 !(in->data.explicit_location || use_implicit_location)) {
3784 out->location = -1;
3785 } else {
3786 out->location = location;
3787 }
3788
3789 out->type = type;
3790 out->outermost_struct_type = outermost_struct_type;
3791 out->interface_type = interface_type;
3792 out->component = in->data.location_frac;
3793 out->index = in->data.index;
3794 out->patch = in->data.patch;
3795 out->mode = in->data.mode;
3796 out->interpolation = in->data.interpolation;
3797 out->explicit_location = in->data.explicit_location;
3798 out->precision = in->data.precision;
3799
3800 return out;
3801 }
3802
3803 static bool
3804 add_shader_variable(const struct gl_context *ctx,
3805 struct gl_shader_program *shProg,
3806 struct set *resource_set,
3807 unsigned stage_mask,
3808 GLenum programInterface, ir_variable *var,
3809 const char *name, const glsl_type *type,
3810 bool use_implicit_location, int location,
3811 bool inouts_share_location,
3812 const glsl_type *outermost_struct_type = NULL)
3813 {
3814 const glsl_type *interface_type = var->get_interface_type();
3815
3816 if (outermost_struct_type == NULL) {
3817 if (var->data.from_named_ifc_block) {
3818 const char *interface_name = interface_type->name;
3819
3820 if (interface_type->is_array()) {
3821 /* Issue #16 of the ARB_program_interface_query spec says:
3822 *
3823 * "* If a variable is a member of an interface block without an
3824 * instance name, it is enumerated using just the variable name.
3825 *
3826 * * If a variable is a member of an interface block with an
3827 * instance name, it is enumerated as "BlockName.Member", where
3828 * "BlockName" is the name of the interface block (not the
3829 * instance name) and "Member" is the name of the variable."
3830 *
3831 * In particular, it indicates that it should be "BlockName",
3832 * not "BlockName[array length]". The conformance suite and
3833 * dEQP both require this behavior.
3834 *
3835 * Here, we unwrap the extra array level added by named interface
3836 * block array lowering so we have the correct variable type. We
3837 * also unwrap the interface type when constructing the name.
3838 *
3839 * We leave interface_type the same so that ES 3.x SSO pipeline
3840 * validation can enforce the rules requiring array length to
3841 * match on interface blocks.
3842 */
3843 type = type->fields.array;
3844
3845 interface_name = interface_type->fields.array->name;
3846 }
3847
3848 name = ralloc_asprintf(shProg, "%s.%s", interface_name, name);
3849 }
3850 }
3851
3852 switch (type->base_type) {
3853 case GLSL_TYPE_STRUCT: {
3854 /* The ARB_program_interface_query spec says:
3855 *
3856 * "For an active variable declared as a structure, a separate entry
3857 * will be generated for each active structure member. The name of
3858 * each entry is formed by concatenating the name of the structure,
3859 * the "." character, and the name of the structure member. If a
3860 * structure member to enumerate is itself a structure or array,
3861 * these enumeration rules are applied recursively."
3862 */
3863 if (outermost_struct_type == NULL)
3864 outermost_struct_type = type;
3865
3866 unsigned field_location = location;
3867 for (unsigned i = 0; i < type->length; i++) {
3868 const struct glsl_struct_field *field = &type->fields.structure[i];
3869 char *field_name = ralloc_asprintf(shProg, "%s.%s", name, field->name);
3870 if (!add_shader_variable(ctx, shProg, resource_set,
3871 stage_mask, programInterface,
3872 var, field_name, field->type,
3873 use_implicit_location, field_location,
3874 false, outermost_struct_type))
3875 return false;
3876
3877 field_location += field->type->count_attribute_slots(false);
3878 }
3879 return true;
3880 }
3881
3882 case GLSL_TYPE_ARRAY: {
3883 /* The ARB_program_interface_query spec says:
3884 *
3885 * "For an active variable declared as an array of basic types, a
3886 * single entry will be generated, with its name string formed by
3887 * concatenating the name of the array and the string "[0]"."
3888 *
3889 * "For an active variable declared as an array of an aggregate data
3890 * type (structures or arrays), a separate entry will be generated
3891 * for each active array element, unless noted immediately below.
3892 * The name of each entry is formed by concatenating the name of
3893 * the array, the "[" character, an integer identifying the element
3894 * number, and the "]" character. These enumeration rules are
3895 * applied recursively, treating each enumerated array element as a
3896 * separate active variable."
3897 */
3898 const struct glsl_type *array_type = type->fields.array;
3899 if (array_type->base_type == GLSL_TYPE_STRUCT ||
3900 array_type->base_type == GLSL_TYPE_ARRAY) {
3901 unsigned elem_location = location;
3902 unsigned stride = inouts_share_location ? 0 :
3903 array_type->count_attribute_slots(false);
3904 for (unsigned i = 0; i < type->length; i++) {
3905 char *elem = ralloc_asprintf(shProg, "%s[%d]", name, i);
3906 if (!add_shader_variable(ctx, shProg, resource_set,
3907 stage_mask, programInterface,
3908 var, elem, array_type,
3909 use_implicit_location, elem_location,
3910 false, outermost_struct_type))
3911 return false;
3912 elem_location += stride;
3913 }
3914 return true;
3915 }
3916 /* fallthrough */
3917 }
3918
3919 default: {
3920 /* The ARB_program_interface_query spec says:
3921 *
3922 * "For an active variable declared as a single instance of a basic
3923 * type, a single entry will be generated, using the variable name
3924 * from the shader source."
3925 */
3926 gl_shader_variable *sha_v =
3927 create_shader_variable(shProg, var, name, type, interface_type,
3928 use_implicit_location, location,
3929 outermost_struct_type);
3930 if (!sha_v)
3931 return false;
3932
3933 return add_program_resource(shProg, resource_set,
3934 programInterface, sha_v, stage_mask);
3935 }
3936 }
3937 }
3938
3939 static bool
3940 inout_has_same_location(const ir_variable *var, unsigned stage)
3941 {
3942 if (!var->data.patch &&
3943 ((var->data.mode == ir_var_shader_out &&
3944 stage == MESA_SHADER_TESS_CTRL) ||
3945 (var->data.mode == ir_var_shader_in &&
3946 (stage == MESA_SHADER_TESS_CTRL || stage == MESA_SHADER_TESS_EVAL ||
3947 stage == MESA_SHADER_GEOMETRY))))
3948 return true;
3949 else
3950 return false;
3951 }
3952
3953 static bool
3954 add_interface_variables(const struct gl_context *ctx,
3955 struct gl_shader_program *shProg,
3956 struct set *resource_set,
3957 unsigned stage, GLenum programInterface)
3958 {
3959 exec_list *ir = shProg->_LinkedShaders[stage]->ir;
3960
3961 foreach_in_list(ir_instruction, node, ir) {
3962 ir_variable *var = node->as_variable();
3963
3964 if (!var || var->data.how_declared == ir_var_hidden)
3965 continue;
3966
3967 int loc_bias;
3968
3969 switch (var->data.mode) {
3970 case ir_var_system_value:
3971 case ir_var_shader_in:
3972 if (programInterface != GL_PROGRAM_INPUT)
3973 continue;
3974 loc_bias = (stage == MESA_SHADER_VERTEX) ? int(VERT_ATTRIB_GENERIC0)
3975 : int(VARYING_SLOT_VAR0);
3976 break;
3977 case ir_var_shader_out:
3978 if (programInterface != GL_PROGRAM_OUTPUT)
3979 continue;
3980 loc_bias = (stage == MESA_SHADER_FRAGMENT) ? int(FRAG_RESULT_DATA0)
3981 : int(VARYING_SLOT_VAR0);
3982 break;
3983 default:
3984 continue;
3985 };
3986
3987 if (var->data.patch)
3988 loc_bias = int(VARYING_SLOT_PATCH0);
3989
3990 /* Skip packed varyings, packed varyings are handled separately
3991 * by add_packed_varyings.
3992 */
3993 if (strncmp(var->name, "packed:", 7) == 0)
3994 continue;
3995
3996 /* Skip fragdata arrays, these are handled separately
3997 * by add_fragdata_arrays.
3998 */
3999 if (strncmp(var->name, "gl_out_FragData", 15) == 0)
4000 continue;
4001
4002 const bool vs_input_or_fs_output =
4003 (stage == MESA_SHADER_VERTEX && var->data.mode == ir_var_shader_in) ||
4004 (stage == MESA_SHADER_FRAGMENT && var->data.mode == ir_var_shader_out);
4005
4006 if (!add_shader_variable(ctx, shProg, resource_set,
4007 1 << stage, programInterface,
4008 var, var->name, var->type, vs_input_or_fs_output,
4009 var->data.location - loc_bias,
4010 inout_has_same_location(var, stage)))
4011 return false;
4012 }
4013 return true;
4014 }
4015
4016 static bool
4017 add_packed_varyings(const struct gl_context *ctx,
4018 struct gl_shader_program *shProg,
4019 struct set *resource_set,
4020 int stage, GLenum type)
4021 {
4022 struct gl_linked_shader *sh = shProg->_LinkedShaders[stage];
4023 GLenum iface;
4024
4025 if (!sh || !sh->packed_varyings)
4026 return true;
4027
4028 foreach_in_list(ir_instruction, node, sh->packed_varyings) {
4029 ir_variable *var = node->as_variable();
4030 if (var) {
4031 switch (var->data.mode) {
4032 case ir_var_shader_in:
4033 iface = GL_PROGRAM_INPUT;
4034 break;
4035 case ir_var_shader_out:
4036 iface = GL_PROGRAM_OUTPUT;
4037 break;
4038 default:
4039 unreachable("unexpected type");
4040 }
4041
4042 if (type == iface) {
4043 const int stage_mask =
4044 build_stageref(shProg, var->name, var->data.mode);
4045 if (!add_shader_variable(ctx, shProg, resource_set,
4046 stage_mask,
4047 iface, var, var->name, var->type, false,
4048 var->data.location - VARYING_SLOT_VAR0,
4049 inout_has_same_location(var, stage)))
4050 return false;
4051 }
4052 }
4053 }
4054 return true;
4055 }
4056
4057 static bool
4058 add_fragdata_arrays(const struct gl_context *ctx,
4059 struct gl_shader_program *shProg,
4060 struct set *resource_set)
4061 {
4062 struct gl_linked_shader *sh = shProg->_LinkedShaders[MESA_SHADER_FRAGMENT];
4063
4064 if (!sh || !sh->fragdata_arrays)
4065 return true;
4066
4067 foreach_in_list(ir_instruction, node, sh->fragdata_arrays) {
4068 ir_variable *var = node->as_variable();
4069 if (var) {
4070 assert(var->data.mode == ir_var_shader_out);
4071
4072 if (!add_shader_variable(ctx, shProg, resource_set,
4073 1 << MESA_SHADER_FRAGMENT,
4074 GL_PROGRAM_OUTPUT, var, var->name, var->type,
4075 true, var->data.location - FRAG_RESULT_DATA0,
4076 false))
4077 return false;
4078 }
4079 }
4080 return true;
4081 }
4082
4083 static char*
4084 get_top_level_name(const char *name)
4085 {
4086 const char *first_dot = strchr(name, '.');
4087 const char *first_square_bracket = strchr(name, '[');
4088 int name_size = 0;
4089
4090 /* The ARB_program_interface_query spec says:
4091 *
4092 * "For the property TOP_LEVEL_ARRAY_SIZE, a single integer identifying
4093 * the number of active array elements of the top-level shader storage
4094 * block member containing to the active variable is written to
4095 * <params>. If the top-level block member is not declared as an
4096 * array, the value one is written to <params>. If the top-level block
4097 * member is an array with no declared size, the value zero is written
4098 * to <params>."
4099 */
4100
4101 /* The buffer variable is on top level.*/
4102 if (!first_square_bracket && !first_dot)
4103 name_size = strlen(name);
4104 else if ((!first_square_bracket ||
4105 (first_dot && first_dot < first_square_bracket)))
4106 name_size = first_dot - name;
4107 else
4108 name_size = first_square_bracket - name;
4109
4110 return strndup(name, name_size);
4111 }
4112
4113 static char*
4114 get_var_name(const char *name)
4115 {
4116 const char *first_dot = strchr(name, '.');
4117
4118 if (!first_dot)
4119 return strdup(name);
4120
4121 return strndup(first_dot+1, strlen(first_dot) - 1);
4122 }
4123
4124 static bool
4125 is_top_level_shader_storage_block_member(const char* name,
4126 const char* interface_name,
4127 const char* field_name)
4128 {
4129 bool result = false;
4130
4131 /* If the given variable is already a top-level shader storage
4132 * block member, then return array_size = 1.
4133 * We could have two possibilities: if we have an instanced
4134 * shader storage block or not instanced.
4135 *
4136 * For the first, we check create a name as it was in top level and
4137 * compare it with the real name. If they are the same, then
4138 * the variable is already at top-level.
4139 *
4140 * Full instanced name is: interface name + '.' + var name +
4141 * NULL character
4142 */
4143 int name_length = strlen(interface_name) + 1 + strlen(field_name) + 1;
4144 char *full_instanced_name = (char *) calloc(name_length, sizeof(char));
4145 if (!full_instanced_name) {
4146 fprintf(stderr, "%s: Cannot allocate space for name\n", __func__);
4147 return false;
4148 }
4149
4150 snprintf(full_instanced_name, name_length, "%s.%s",
4151 interface_name, field_name);
4152
4153 /* Check if its top-level shader storage block member of an
4154 * instanced interface block, or of a unnamed interface block.
4155 */
4156 if (strcmp(name, full_instanced_name) == 0 ||
4157 strcmp(name, field_name) == 0)
4158 result = true;
4159
4160 free(full_instanced_name);
4161 return result;
4162 }
4163
4164 static int
4165 get_array_size(struct gl_uniform_storage *uni, const glsl_struct_field *field,
4166 char *interface_name, char *var_name)
4167 {
4168 /* The ARB_program_interface_query spec says:
4169 *
4170 * "For the property TOP_LEVEL_ARRAY_SIZE, a single integer identifying
4171 * the number of active array elements of the top-level shader storage
4172 * block member containing to the active variable is written to
4173 * <params>. If the top-level block member is not declared as an
4174 * array, the value one is written to <params>. If the top-level block
4175 * member is an array with no declared size, the value zero is written
4176 * to <params>."
4177 */
4178 if (is_top_level_shader_storage_block_member(uni->name,
4179 interface_name,
4180 var_name))
4181 return 1;
4182 else if (field->type->is_unsized_array())
4183 return 0;
4184 else if (field->type->is_array())
4185 return field->type->length;
4186
4187 return 1;
4188 }
4189
4190 static int
4191 get_array_stride(struct gl_context *ctx, struct gl_uniform_storage *uni,
4192 const glsl_type *interface, const glsl_struct_field *field,
4193 char *interface_name, char *var_name)
4194 {
4195 /* The ARB_program_interface_query spec says:
4196 *
4197 * "For the property TOP_LEVEL_ARRAY_STRIDE, a single integer
4198 * identifying the stride between array elements of the top-level
4199 * shader storage block member containing the active variable is
4200 * written to <params>. For top-level block members declared as
4201 * arrays, the value written is the difference, in basic machine units,
4202 * between the offsets of the active variable for consecutive elements
4203 * in the top-level array. For top-level block members not declared as
4204 * an array, zero is written to <params>."
4205 */
4206 if (field->type->is_array()) {
4207 const enum glsl_matrix_layout matrix_layout =
4208 glsl_matrix_layout(field->matrix_layout);
4209 bool row_major = matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR;
4210 const glsl_type *array_type = field->type->fields.array;
4211
4212 if (is_top_level_shader_storage_block_member(uni->name,
4213 interface_name,
4214 var_name))
4215 return 0;
4216
4217 if (GLSL_INTERFACE_PACKING_STD140 ==
4218 interface->
4219 get_internal_ifc_packing(ctx->Const.UseSTD430AsDefaultPacking)) {
4220 if (array_type->is_record() || array_type->is_array())
4221 return glsl_align(array_type->std140_size(row_major), 16);
4222 else
4223 return MAX2(array_type->std140_base_alignment(row_major), 16);
4224 } else {
4225 return array_type->std430_array_stride(row_major);
4226 }
4227 }
4228 return 0;
4229 }
4230
4231 static void
4232 calculate_array_size_and_stride(struct gl_context *ctx,
4233 struct gl_shader_program *shProg,
4234 struct gl_uniform_storage *uni)
4235 {
4236 int block_index = uni->block_index;
4237 int array_size = -1;
4238 int array_stride = -1;
4239 char *var_name = get_top_level_name(uni->name);
4240 char *interface_name =
4241 get_top_level_name(uni->is_shader_storage ?
4242 shProg->data->ShaderStorageBlocks[block_index].Name :
4243 shProg->data->UniformBlocks[block_index].Name);
4244
4245 if (strcmp(var_name, interface_name) == 0) {
4246 /* Deal with instanced array of SSBOs */
4247 char *temp_name = get_var_name(uni->name);
4248 if (!temp_name) {
4249 linker_error(shProg, "Out of memory during linking.\n");
4250 goto write_top_level_array_size_and_stride;
4251 }
4252 free(var_name);
4253 var_name = get_top_level_name(temp_name);
4254 free(temp_name);
4255 if (!var_name) {
4256 linker_error(shProg, "Out of memory during linking.\n");
4257 goto write_top_level_array_size_and_stride;
4258 }
4259 }
4260
4261 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4262 const gl_linked_shader *sh = shProg->_LinkedShaders[i];
4263 if (sh == NULL)
4264 continue;
4265
4266 foreach_in_list(ir_instruction, node, sh->ir) {
4267 ir_variable *var = node->as_variable();
4268 if (!var || !var->get_interface_type() ||
4269 var->data.mode != ir_var_shader_storage)
4270 continue;
4271
4272 const glsl_type *interface = var->get_interface_type();
4273
4274 if (strcmp(interface_name, interface->name) != 0)
4275 continue;
4276
4277 for (unsigned i = 0; i < interface->length; i++) {
4278 const glsl_struct_field *field = &interface->fields.structure[i];
4279 if (strcmp(field->name, var_name) != 0)
4280 continue;
4281
4282 array_stride = get_array_stride(ctx, uni, interface, field,
4283 interface_name, var_name);
4284 array_size = get_array_size(uni, field, interface_name, var_name);
4285 goto write_top_level_array_size_and_stride;
4286 }
4287 }
4288 }
4289 write_top_level_array_size_and_stride:
4290 free(interface_name);
4291 free(var_name);
4292 uni->top_level_array_stride = array_stride;
4293 uni->top_level_array_size = array_size;
4294 }
4295
4296 /**
4297 * Builds up a list of program resources that point to existing
4298 * resource data.
4299 */
4300 void
4301 build_program_resource_list(struct gl_context *ctx,
4302 struct gl_shader_program *shProg)
4303 {
4304 /* Rebuild resource list. */
4305 if (shProg->data->ProgramResourceList) {
4306 ralloc_free(shProg->data->ProgramResourceList);
4307 shProg->data->ProgramResourceList = NULL;
4308 shProg->data->NumProgramResourceList = 0;
4309 }
4310
4311 int input_stage = MESA_SHADER_STAGES, output_stage = 0;
4312
4313 /* Determine first input and final output stage. These are used to
4314 * detect which variables should be enumerated in the resource list
4315 * for GL_PROGRAM_INPUT and GL_PROGRAM_OUTPUT.
4316 */
4317 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4318 if (!shProg->_LinkedShaders[i])
4319 continue;
4320 if (input_stage == MESA_SHADER_STAGES)
4321 input_stage = i;
4322 output_stage = i;
4323 }
4324
4325 /* Empty shader, no resources. */
4326 if (input_stage == MESA_SHADER_STAGES && output_stage == 0)
4327 return;
4328
4329 struct set *resource_set = _mesa_set_create(NULL,
4330 _mesa_hash_pointer,
4331 _mesa_key_pointer_equal);
4332
4333 /* Program interface needs to expose varyings in case of SSO. */
4334 if (shProg->SeparateShader) {
4335 if (!add_packed_varyings(ctx, shProg, resource_set,
4336 input_stage, GL_PROGRAM_INPUT))
4337 return;
4338
4339 if (!add_packed_varyings(ctx, shProg, resource_set,
4340 output_stage, GL_PROGRAM_OUTPUT))
4341 return;
4342 }
4343
4344 if (!add_fragdata_arrays(ctx, shProg, resource_set))
4345 return;
4346
4347 /* Add inputs and outputs to the resource list. */
4348 if (!add_interface_variables(ctx, shProg, resource_set,
4349 input_stage, GL_PROGRAM_INPUT))
4350 return;
4351
4352 if (!add_interface_variables(ctx, shProg, resource_set,
4353 output_stage, GL_PROGRAM_OUTPUT))
4354 return;
4355
4356 if (shProg->last_vert_prog) {
4357 struct gl_transform_feedback_info *linked_xfb =
4358 shProg->last_vert_prog->sh.LinkedTransformFeedback;
4359
4360 /* Add transform feedback varyings. */
4361 if (linked_xfb->NumVarying > 0) {
4362 for (int i = 0; i < linked_xfb->NumVarying; i++) {
4363 if (!add_program_resource(shProg, resource_set,
4364 GL_TRANSFORM_FEEDBACK_VARYING,
4365 &linked_xfb->Varyings[i], 0))
4366 return;
4367 }
4368 }
4369
4370 /* Add transform feedback buffers. */
4371 for (unsigned i = 0; i < ctx->Const.MaxTransformFeedbackBuffers; i++) {
4372 if ((linked_xfb->ActiveBuffers >> i) & 1) {
4373 linked_xfb->Buffers[i].Binding = i;
4374 if (!add_program_resource(shProg, resource_set,
4375 GL_TRANSFORM_FEEDBACK_BUFFER,
4376 &linked_xfb->Buffers[i], 0))
4377 return;
4378 }
4379 }
4380 }
4381
4382 /* Add uniforms from uniform storage. */
4383 for (unsigned i = 0; i < shProg->data->NumUniformStorage; i++) {
4384 /* Do not add uniforms internally used by Mesa. */
4385 if (shProg->data->UniformStorage[i].hidden)
4386 continue;
4387
4388 uint8_t stageref =
4389 build_stageref(shProg, shProg->data->UniformStorage[i].name,
4390 ir_var_uniform);
4391
4392 /* Add stagereferences for uniforms in a uniform block. */
4393 bool is_shader_storage =
4394 shProg->data->UniformStorage[i].is_shader_storage;
4395 int block_index = shProg->data->UniformStorage[i].block_index;
4396 if (block_index != -1) {
4397 stageref |= is_shader_storage ?
4398 shProg->data->ShaderStorageBlocks[block_index].stageref :
4399 shProg->data->UniformBlocks[block_index].stageref;
4400 }
4401
4402 GLenum type = is_shader_storage ? GL_BUFFER_VARIABLE : GL_UNIFORM;
4403 if (!should_add_buffer_variable(shProg, type,
4404 shProg->data->UniformStorage[i].name))
4405 continue;
4406
4407 if (is_shader_storage) {
4408 calculate_array_size_and_stride(ctx, shProg,
4409 &shProg->data->UniformStorage[i]);
4410 }
4411
4412 if (!add_program_resource(shProg, resource_set, type,
4413 &shProg->data->UniformStorage[i], stageref))
4414 return;
4415 }
4416
4417 /* Add program uniform blocks. */
4418 for (unsigned i = 0; i < shProg->data->NumUniformBlocks; i++) {
4419 if (!add_program_resource(shProg, resource_set, GL_UNIFORM_BLOCK,
4420 &shProg->data->UniformBlocks[i], 0))
4421 return;
4422 }
4423
4424 /* Add program shader storage blocks. */
4425 for (unsigned i = 0; i < shProg->data->NumShaderStorageBlocks; i++) {
4426 if (!add_program_resource(shProg, resource_set, GL_SHADER_STORAGE_BLOCK,
4427 &shProg->data->ShaderStorageBlocks[i], 0))
4428 return;
4429 }
4430
4431 /* Add atomic counter buffers. */
4432 for (unsigned i = 0; i < shProg->data->NumAtomicBuffers; i++) {
4433 if (!add_program_resource(shProg, resource_set, GL_ATOMIC_COUNTER_BUFFER,
4434 &shProg->data->AtomicBuffers[i], 0))
4435 return;
4436 }
4437
4438 for (unsigned i = 0; i < shProg->data->NumUniformStorage; i++) {
4439 GLenum type;
4440 if (!shProg->data->UniformStorage[i].hidden)
4441 continue;
4442
4443 for (int j = MESA_SHADER_VERTEX; j < MESA_SHADER_STAGES; j++) {
4444 if (!shProg->data->UniformStorage[i].opaque[j].active ||
4445 !shProg->data->UniformStorage[i].type->is_subroutine())
4446 continue;
4447
4448 type = _mesa_shader_stage_to_subroutine_uniform((gl_shader_stage)j);
4449 /* add shader subroutines */
4450 if (!add_program_resource(shProg, resource_set,
4451 type, &shProg->data->UniformStorage[i], 0))
4452 return;
4453 }
4454 }
4455
4456 unsigned mask = shProg->data->linked_stages;
4457 while (mask) {
4458 const int i = u_bit_scan(&mask);
4459 struct gl_program *p = shProg->_LinkedShaders[i]->Program;
4460
4461 GLuint type = _mesa_shader_stage_to_subroutine((gl_shader_stage)i);
4462 for (unsigned j = 0; j < p->sh.NumSubroutineFunctions; j++) {
4463 if (!add_program_resource(shProg, resource_set,
4464 type, &p->sh.SubroutineFunctions[j], 0))
4465 return;
4466 }
4467 }
4468
4469 _mesa_set_destroy(resource_set, NULL);
4470 }
4471
4472 /**
4473 * This check is done to make sure we allow only constant expression
4474 * indexing and "constant-index-expression" (indexing with an expression
4475 * that includes loop induction variable).
4476 */
4477 static bool
4478 validate_sampler_array_indexing(struct gl_context *ctx,
4479 struct gl_shader_program *prog)
4480 {
4481 dynamic_sampler_array_indexing_visitor v;
4482 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4483 if (prog->_LinkedShaders[i] == NULL)
4484 continue;
4485
4486 bool no_dynamic_indexing =
4487 ctx->Const.ShaderCompilerOptions[i].EmitNoIndirectSampler;
4488
4489 /* Search for array derefs in shader. */
4490 v.run(prog->_LinkedShaders[i]->ir);
4491 if (v.uses_dynamic_sampler_array_indexing()) {
4492 const char *msg = "sampler arrays indexed with non-constant "
4493 "expressions is forbidden in GLSL %s %u";
4494 /* Backend has indicated that it has no dynamic indexing support. */
4495 if (no_dynamic_indexing) {
4496 linker_error(prog, msg, prog->IsES ? "ES" : "",
4497 prog->data->Version);
4498 return false;
4499 } else {
4500 linker_warning(prog, msg, prog->IsES ? "ES" : "",
4501 prog->data->Version);
4502 }
4503 }
4504 }
4505 return true;
4506 }
4507
4508 static void
4509 link_assign_subroutine_types(struct gl_shader_program *prog)
4510 {
4511 unsigned mask = prog->data->linked_stages;
4512 while (mask) {
4513 const int i = u_bit_scan(&mask);
4514 gl_program *p = prog->_LinkedShaders[i]->Program;
4515
4516 p->sh.MaxSubroutineFunctionIndex = 0;
4517 foreach_in_list(ir_instruction, node, prog->_LinkedShaders[i]->ir) {
4518 ir_function *fn = node->as_function();
4519 if (!fn)
4520 continue;
4521
4522 if (fn->is_subroutine)
4523 p->sh.NumSubroutineUniformTypes++;
4524
4525 if (!fn->num_subroutine_types)
4526 continue;
4527
4528 /* these should have been calculated earlier. */
4529 assert(fn->subroutine_index != -1);
4530 if (p->sh.NumSubroutineFunctions + 1 > MAX_SUBROUTINES) {
4531 linker_error(prog, "Too many subroutine functions declared.\n");
4532 return;
4533 }
4534 p->sh.SubroutineFunctions = reralloc(p, p->sh.SubroutineFunctions,
4535 struct gl_subroutine_function,
4536 p->sh.NumSubroutineFunctions + 1);
4537 p->sh.SubroutineFunctions[p->sh.NumSubroutineFunctions].name = ralloc_strdup(p, fn->name);
4538 p->sh.SubroutineFunctions[p->sh.NumSubroutineFunctions].num_compat_types = fn->num_subroutine_types;
4539 p->sh.SubroutineFunctions[p->sh.NumSubroutineFunctions].types =
4540 ralloc_array(p, const struct glsl_type *,
4541 fn->num_subroutine_types);
4542
4543 /* From Section 4.4.4(Subroutine Function Layout Qualifiers) of the
4544 * GLSL 4.5 spec:
4545 *
4546 * "Each subroutine with an index qualifier in the shader must be
4547 * given a unique index, otherwise a compile or link error will be
4548 * generated."
4549 */
4550 for (unsigned j = 0; j < p->sh.NumSubroutineFunctions; j++) {
4551 if (p->sh.SubroutineFunctions[j].index != -1 &&
4552 p->sh.SubroutineFunctions[j].index == fn->subroutine_index) {
4553 linker_error(prog, "each subroutine index qualifier in the "
4554 "shader must be unique\n");
4555 return;
4556 }
4557 }
4558 p->sh.SubroutineFunctions[p->sh.NumSubroutineFunctions].index =
4559 fn->subroutine_index;
4560
4561 if (fn->subroutine_index > (int)p->sh.MaxSubroutineFunctionIndex)
4562 p->sh.MaxSubroutineFunctionIndex = fn->subroutine_index;
4563
4564 for (int j = 0; j < fn->num_subroutine_types; j++)
4565 p->sh.SubroutineFunctions[p->sh.NumSubroutineFunctions].types[j] = fn->subroutine_types[j];
4566 p->sh.NumSubroutineFunctions++;
4567 }
4568 }
4569 }
4570
4571 static void
4572 set_always_active_io(exec_list *ir, ir_variable_mode io_mode)
4573 {
4574 assert(io_mode == ir_var_shader_in || io_mode == ir_var_shader_out);
4575
4576 foreach_in_list(ir_instruction, node, ir) {
4577 ir_variable *const var = node->as_variable();
4578
4579 if (var == NULL || var->data.mode != io_mode)
4580 continue;
4581
4582 /* Don't set always active on builtins that haven't been redeclared */
4583 if (var->data.how_declared == ir_var_declared_implicitly)
4584 continue;
4585
4586 var->data.always_active_io = true;
4587 }
4588 }
4589
4590 /**
4591 * When separate shader programs are enabled, only input/outputs between
4592 * the stages of a multi-stage separate program can be safely removed
4593 * from the shader interface. Other inputs/outputs must remain active.
4594 */
4595 static void
4596 disable_varying_optimizations_for_sso(struct gl_shader_program *prog)
4597 {
4598 unsigned first, last;
4599 assert(prog->SeparateShader);
4600
4601 first = MESA_SHADER_STAGES;
4602 last = 0;
4603
4604 /* Determine first and last stage. Excluding the compute stage */
4605 for (unsigned i = 0; i < MESA_SHADER_COMPUTE; i++) {
4606 if (!prog->_LinkedShaders[i])
4607 continue;
4608 if (first == MESA_SHADER_STAGES)
4609 first = i;
4610 last = i;
4611 }
4612
4613 if (first == MESA_SHADER_STAGES)
4614 return;
4615
4616 for (unsigned stage = 0; stage < MESA_SHADER_STAGES; stage++) {
4617 gl_linked_shader *sh = prog->_LinkedShaders[stage];
4618 if (!sh)
4619 continue;
4620
4621 /* Prevent the removal of inputs to the first and outputs from the last
4622 * stage, unless they are the initial pipeline inputs or final pipeline
4623 * outputs, respectively.
4624 *
4625 * The removal of IO between shaders in the same program is always
4626 * allowed.
4627 */
4628 if (stage == first && stage != MESA_SHADER_VERTEX)
4629 set_always_active_io(sh->ir, ir_var_shader_in);
4630 if (stage == last && stage != MESA_SHADER_FRAGMENT)
4631 set_always_active_io(sh->ir, ir_var_shader_out);
4632 }
4633 }
4634
4635 static void
4636 link_and_validate_uniforms(struct gl_context *ctx,
4637 struct gl_shader_program *prog)
4638 {
4639 update_array_sizes(prog);
4640 link_assign_uniform_locations(prog, ctx);
4641
4642 if (!prog->data->cache_fallback) {
4643 link_assign_atomic_counter_resources(ctx, prog);
4644 link_calculate_subroutine_compat(prog);
4645 check_resources(ctx, prog);
4646 check_subroutine_resources(prog);
4647 check_image_resources(ctx, prog);
4648 link_check_atomic_counter_resources(ctx, prog);
4649 }
4650 }
4651
4652 static bool
4653 link_varyings_and_uniforms(unsigned first, unsigned last,
4654 struct gl_context *ctx,
4655 struct gl_shader_program *prog, void *mem_ctx)
4656 {
4657 /* Mark all generic shader inputs and outputs as unpaired. */
4658 for (unsigned i = MESA_SHADER_VERTEX; i <= MESA_SHADER_FRAGMENT; i++) {
4659 if (prog->_LinkedShaders[i] != NULL) {
4660 link_invalidate_variable_locations(prog->_LinkedShaders[i]->ir);
4661 }
4662 }
4663
4664 unsigned prev = first;
4665 for (unsigned i = prev + 1; i <= MESA_SHADER_FRAGMENT; i++) {
4666 if (prog->_LinkedShaders[i] == NULL)
4667 continue;
4668
4669 match_explicit_outputs_to_inputs(prog->_LinkedShaders[prev],
4670 prog->_LinkedShaders[i]);
4671 prev = i;
4672 }
4673
4674 if (!assign_attribute_or_color_locations(mem_ctx, prog, &ctx->Const,
4675 MESA_SHADER_VERTEX)) {
4676 return false;
4677 }
4678
4679 if (!assign_attribute_or_color_locations(mem_ctx, prog, &ctx->Const,
4680 MESA_SHADER_FRAGMENT)) {
4681 return false;
4682 }
4683
4684 prog->last_vert_prog = NULL;
4685 for (int i = MESA_SHADER_GEOMETRY; i >= MESA_SHADER_VERTEX; i--) {
4686 if (prog->_LinkedShaders[i] == NULL)
4687 continue;
4688
4689 prog->last_vert_prog = prog->_LinkedShaders[i]->Program;
4690 break;
4691 }
4692
4693 if (!link_varyings(prog, first, last, ctx, mem_ctx))
4694 return false;
4695
4696 link_and_validate_uniforms(ctx, prog);
4697
4698 if (!prog->data->LinkStatus)
4699 return false;
4700
4701 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4702 if (prog->_LinkedShaders[i] == NULL)
4703 continue;
4704
4705 const struct gl_shader_compiler_options *options =
4706 &ctx->Const.ShaderCompilerOptions[i];
4707
4708 if (options->LowerBufferInterfaceBlocks)
4709 lower_ubo_reference(prog->_LinkedShaders[i],
4710 options->ClampBlockIndicesToArrayBounds,
4711 ctx->Const.UseSTD430AsDefaultPacking);
4712
4713 if (i == MESA_SHADER_COMPUTE)
4714 lower_shared_reference(ctx, prog, prog->_LinkedShaders[i]);
4715
4716 lower_vector_derefs(prog->_LinkedShaders[i]);
4717 do_vec_index_to_swizzle(prog->_LinkedShaders[i]->ir);
4718 }
4719
4720 return true;
4721 }
4722
4723 static void
4724 linker_optimisation_loop(struct gl_context *ctx, exec_list *ir,
4725 unsigned stage)
4726 {
4727 if (ctx->Const.GLSLOptimizeConservatively) {
4728 /* Run it just once. */
4729 do_common_optimization(ir, true, false,
4730 &ctx->Const.ShaderCompilerOptions[stage],
4731 ctx->Const.NativeIntegers);
4732 } else {
4733 /* Repeat it until it stops making changes. */
4734 while (do_common_optimization(ir, true, false,
4735 &ctx->Const.ShaderCompilerOptions[stage],
4736 ctx->Const.NativeIntegers))
4737 ;
4738 }
4739 }
4740
4741 void
4742 link_shaders(struct gl_context *ctx, struct gl_shader_program *prog)
4743 {
4744 prog->data->LinkStatus = linking_success; /* All error paths will set this to false */
4745 prog->data->Validated = false;
4746
4747 /* Section 7.3 (Program Objects) of the OpenGL 4.5 Core Profile spec says:
4748 *
4749 * "Linking can fail for a variety of reasons as specified in the
4750 * OpenGL Shading Language Specification, as well as any of the
4751 * following reasons:
4752 *
4753 * - No shader objects are attached to program."
4754 *
4755 * The Compatibility Profile specification does not list the error. In
4756 * Compatibility Profile missing shader stages are replaced by
4757 * fixed-function. This applies to the case where all stages are
4758 * missing.
4759 */
4760 if (prog->NumShaders == 0) {
4761 if (ctx->API != API_OPENGL_COMPAT)
4762 linker_error(prog, "no shaders attached to the program\n");
4763 return;
4764 }
4765
4766 #ifdef ENABLE_SHADER_CACHE
4767 /* If transform feedback used on the program then compile all shaders. */
4768 bool skip_cache = false;
4769 if (prog->TransformFeedback.NumVarying > 0) {
4770 for (unsigned i = 0; i < prog->NumShaders; i++) {
4771 _mesa_glsl_compile_shader(ctx, prog->Shaders[i], false, false, true);
4772 }
4773 skip_cache = true;
4774 }
4775
4776 if (!skip_cache && shader_cache_read_program_metadata(ctx, prog))
4777 return;
4778 #endif
4779
4780 void *mem_ctx = ralloc_context(NULL); // temporary linker context
4781
4782 prog->ARB_fragment_coord_conventions_enable = false;
4783
4784 /* Separate the shaders into groups based on their type.
4785 */
4786 struct gl_shader **shader_list[MESA_SHADER_STAGES];
4787 unsigned num_shaders[MESA_SHADER_STAGES];
4788
4789 for (int i = 0; i < MESA_SHADER_STAGES; i++) {
4790 shader_list[i] = (struct gl_shader **)
4791 calloc(prog->NumShaders, sizeof(struct gl_shader *));
4792 num_shaders[i] = 0;
4793 }
4794
4795 unsigned min_version = UINT_MAX;
4796 unsigned max_version = 0;
4797 for (unsigned i = 0; i < prog->NumShaders; i++) {
4798 min_version = MIN2(min_version, prog->Shaders[i]->Version);
4799 max_version = MAX2(max_version, prog->Shaders[i]->Version);
4800
4801 if (prog->Shaders[i]->IsES != prog->Shaders[0]->IsES) {
4802 linker_error(prog, "all shaders must use same shading "
4803 "language version\n");
4804 goto done;
4805 }
4806
4807 if (prog->Shaders[i]->ARB_fragment_coord_conventions_enable) {
4808 prog->ARB_fragment_coord_conventions_enable = true;
4809 }
4810
4811 gl_shader_stage shader_type = prog->Shaders[i]->Stage;
4812 shader_list[shader_type][num_shaders[shader_type]] = prog->Shaders[i];
4813 num_shaders[shader_type]++;
4814 }
4815
4816 /* In desktop GLSL, different shader versions may be linked together. In
4817 * GLSL ES, all shader versions must be the same.
4818 */
4819 if (prog->Shaders[0]->IsES && min_version != max_version) {
4820 linker_error(prog, "all shaders must use same shading "
4821 "language version\n");
4822 goto done;
4823 }
4824
4825 prog->data->Version = max_version;
4826 prog->IsES = prog->Shaders[0]->IsES;
4827
4828 /* Some shaders have to be linked with some other shaders present.
4829 */
4830 if (!prog->SeparateShader) {
4831 if (num_shaders[MESA_SHADER_GEOMETRY] > 0 &&
4832 num_shaders[MESA_SHADER_VERTEX] == 0) {
4833 linker_error(prog, "Geometry shader must be linked with "
4834 "vertex shader\n");
4835 goto done;
4836 }
4837 if (num_shaders[MESA_SHADER_TESS_EVAL] > 0 &&
4838 num_shaders[MESA_SHADER_VERTEX] == 0) {
4839 linker_error(prog, "Tessellation evaluation shader must be linked "
4840 "with vertex shader\n");
4841 goto done;
4842 }
4843 if (num_shaders[MESA_SHADER_TESS_CTRL] > 0 &&
4844 num_shaders[MESA_SHADER_VERTEX] == 0) {
4845 linker_error(prog, "Tessellation control shader must be linked with "
4846 "vertex shader\n");
4847 goto done;
4848 }
4849
4850 /* Section 7.3 of the OpenGL ES 3.2 specification says:
4851 *
4852 * "Linking can fail for [...] any of the following reasons:
4853 *
4854 * * program contains an object to form a tessellation control
4855 * shader [...] and [...] the program is not separable and
4856 * contains no object to form a tessellation evaluation shader"
4857 *
4858 * The OpenGL spec is contradictory. It allows linking without a tess
4859 * eval shader, but that can only be used with transform feedback and
4860 * rasterization disabled. However, transform feedback isn't allowed
4861 * with GL_PATCHES, so it can't be used.
4862 *
4863 * More investigation showed that the idea of transform feedback after
4864 * a tess control shader was dropped, because some hw vendors couldn't
4865 * support tessellation without a tess eval shader, but the linker
4866 * section wasn't updated to reflect that.
4867 *
4868 * All specifications (ARB_tessellation_shader, GL 4.0-4.5) have this
4869 * spec bug.
4870 *
4871 * Do what's reasonable and always require a tess eval shader if a tess
4872 * control shader is present.
4873 */
4874 if (num_shaders[MESA_SHADER_TESS_CTRL] > 0 &&
4875 num_shaders[MESA_SHADER_TESS_EVAL] == 0) {
4876 linker_error(prog, "Tessellation control shader must be linked with "
4877 "tessellation evaluation shader\n");
4878 goto done;
4879 }
4880
4881 if (prog->IsES) {
4882 if (num_shaders[MESA_SHADER_TESS_EVAL] > 0 &&
4883 num_shaders[MESA_SHADER_TESS_CTRL] == 0) {
4884 linker_error(prog, "GLSL ES requires non-separable programs "
4885 "containing a tessellation evaluation shader to also "
4886 "be linked with a tessellation control shader\n");
4887 goto done;
4888 }
4889 }
4890 }
4891
4892 /* Compute shaders have additional restrictions. */
4893 if (num_shaders[MESA_SHADER_COMPUTE] > 0 &&
4894 num_shaders[MESA_SHADER_COMPUTE] != prog->NumShaders) {
4895 linker_error(prog, "Compute shaders may not be linked with any other "
4896 "type of shader\n");
4897 }
4898
4899 /* Link all shaders for a particular stage and validate the result.
4900 */
4901 for (int stage = 0; stage < MESA_SHADER_STAGES; stage++) {
4902 if (num_shaders[stage] > 0) {
4903 gl_linked_shader *const sh =
4904 link_intrastage_shaders(mem_ctx, ctx, prog, shader_list[stage],
4905 num_shaders[stage], false);
4906
4907 if (!prog->data->LinkStatus) {
4908 if (sh)
4909 _mesa_delete_linked_shader(ctx, sh);
4910 goto done;
4911 }
4912
4913 switch (stage) {
4914 case MESA_SHADER_VERTEX:
4915 validate_vertex_shader_executable(prog, sh, ctx);
4916 break;
4917 case MESA_SHADER_TESS_CTRL:
4918 /* nothing to be done */
4919 break;
4920 case MESA_SHADER_TESS_EVAL:
4921 validate_tess_eval_shader_executable(prog, sh, ctx);
4922 break;
4923 case MESA_SHADER_GEOMETRY:
4924 validate_geometry_shader_executable(prog, sh, ctx);
4925 break;
4926 case MESA_SHADER_FRAGMENT:
4927 validate_fragment_shader_executable(prog, sh);
4928 break;
4929 }
4930 if (!prog->data->LinkStatus) {
4931 if (sh)
4932 _mesa_delete_linked_shader(ctx, sh);
4933 goto done;
4934 }
4935
4936 prog->_LinkedShaders[stage] = sh;
4937 prog->data->linked_stages |= 1 << stage;
4938 }
4939 }
4940
4941 /* Here begins the inter-stage linking phase. Some initial validation is
4942 * performed, then locations are assigned for uniforms, attributes, and
4943 * varyings.
4944 */
4945 cross_validate_uniforms(prog);
4946 if (!prog->data->LinkStatus)
4947 goto done;
4948
4949 unsigned first, last, prev;
4950
4951 first = MESA_SHADER_STAGES;
4952 last = 0;
4953
4954 /* Determine first and last stage. */
4955 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4956 if (!prog->_LinkedShaders[i])
4957 continue;
4958 if (first == MESA_SHADER_STAGES)
4959 first = i;
4960 last = i;
4961 }
4962
4963 if (!prog->data->cache_fallback) {
4964 check_explicit_uniform_locations(ctx, prog);
4965 link_assign_subroutine_types(prog);
4966 }
4967
4968 if (!prog->data->LinkStatus)
4969 goto done;
4970
4971 resize_tes_inputs(ctx, prog);
4972
4973 /* Validate the inputs of each stage with the output of the preceding
4974 * stage.
4975 */
4976 prev = first;
4977 for (unsigned i = prev + 1; i <= MESA_SHADER_FRAGMENT; i++) {
4978 if (prog->_LinkedShaders[i] == NULL)
4979 continue;
4980
4981 validate_interstage_inout_blocks(prog, prog->_LinkedShaders[prev],
4982 prog->_LinkedShaders[i]);
4983 if (!prog->data->LinkStatus)
4984 goto done;
4985
4986 cross_validate_outputs_to_inputs(ctx, prog,
4987 prog->_LinkedShaders[prev],
4988 prog->_LinkedShaders[i]);
4989 if (!prog->data->LinkStatus)
4990 goto done;
4991
4992 prev = i;
4993 }
4994
4995 /* The cross validation of outputs/inputs above validates explicit locations
4996 * but for SSO programs we need to do this also for the inputs in the
4997 * first stage and outputs of the last stage included in the program, since
4998 * there is no cross validation for these.
4999 */
5000 if (prog->SeparateShader)
5001 validate_sso_explicit_locations(ctx, prog,
5002 (gl_shader_stage) first,
5003 (gl_shader_stage) last);
5004
5005 /* Cross-validate uniform blocks between shader stages */
5006 validate_interstage_uniform_blocks(prog, prog->_LinkedShaders);
5007 if (!prog->data->LinkStatus)
5008 goto done;
5009
5010 for (unsigned int i = 0; i < MESA_SHADER_STAGES; i++) {
5011 if (prog->_LinkedShaders[i] != NULL)
5012 lower_named_interface_blocks(mem_ctx, prog->_LinkedShaders[i]);
5013 }
5014
5015 /* Implement the GLSL 1.30+ rule for discard vs infinite loops Do
5016 * it before optimization because we want most of the checks to get
5017 * dropped thanks to constant propagation.
5018 *
5019 * This rule also applies to GLSL ES 3.00.
5020 */
5021 if (max_version >= (prog->IsES ? 300 : 130)) {
5022 struct gl_linked_shader *sh = prog->_LinkedShaders[MESA_SHADER_FRAGMENT];
5023 if (sh) {
5024 lower_discard_flow(sh->ir);
5025 }
5026 }
5027
5028 if (prog->SeparateShader)
5029 disable_varying_optimizations_for_sso(prog);
5030
5031 if (!prog->data->cache_fallback) {
5032 /* Process UBOs */
5033 if (!interstage_cross_validate_uniform_blocks(prog, false))
5034 goto done;
5035
5036 /* Process SSBOs */
5037 if (!interstage_cross_validate_uniform_blocks(prog, true))
5038 goto done;
5039 }
5040
5041 /* Do common optimization before assigning storage for attributes,
5042 * uniforms, and varyings. Later optimization could possibly make
5043 * some of that unused.
5044 */
5045 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
5046 if (prog->_LinkedShaders[i] == NULL)
5047 continue;
5048
5049 detect_recursion_linked(prog, prog->_LinkedShaders[i]->ir);
5050 if (!prog->data->LinkStatus)
5051 goto done;
5052
5053 if (ctx->Const.ShaderCompilerOptions[i].LowerCombinedClipCullDistance) {
5054 lower_clip_cull_distance(prog, prog->_LinkedShaders[i]);
5055 }
5056
5057 if (ctx->Const.LowerTessLevel) {
5058 lower_tess_level(prog->_LinkedShaders[i]);
5059 }
5060
5061 /* Call opts before lowering const arrays to uniforms so we can const
5062 * propagate any elements accessed directly.
5063 */
5064 linker_optimisation_loop(ctx, prog->_LinkedShaders[i]->ir, i);
5065
5066 /* Call opts after lowering const arrays to copy propagate things. */
5067 if (lower_const_arrays_to_uniforms(prog->_LinkedShaders[i]->ir, i))
5068 linker_optimisation_loop(ctx, prog->_LinkedShaders[i]->ir, i);
5069
5070 propagate_invariance(prog->_LinkedShaders[i]->ir);
5071 }
5072
5073 /* Validation for special cases where we allow sampler array indexing
5074 * with loop induction variable. This check emits a warning or error
5075 * depending if backend can handle dynamic indexing.
5076 */
5077 if ((!prog->IsES && prog->data->Version < 130) ||
5078 (prog->IsES && prog->data->Version < 300)) {
5079 if (!validate_sampler_array_indexing(ctx, prog))
5080 goto done;
5081 }
5082
5083 /* Check and validate stream emissions in geometry shaders */
5084 validate_geometry_shader_emissions(ctx, prog);
5085
5086 store_fragdepth_layout(prog);
5087
5088 if(!link_varyings_and_uniforms(first, last, ctx, prog, mem_ctx))
5089 goto done;
5090
5091 /* OpenGL ES < 3.1 requires that a vertex shader and a fragment shader both
5092 * be present in a linked program. GL_ARB_ES2_compatibility doesn't say
5093 * anything about shader linking when one of the shaders (vertex or
5094 * fragment shader) is absent. So, the extension shouldn't change the
5095 * behavior specified in GLSL specification.
5096 *
5097 * From OpenGL ES 3.1 specification (7.3 Program Objects):
5098 * "Linking can fail for a variety of reasons as specified in the
5099 * OpenGL ES Shading Language Specification, as well as any of the
5100 * following reasons:
5101 *
5102 * ...
5103 *
5104 * * program contains objects to form either a vertex shader or
5105 * fragment shader, and program is not separable, and does not
5106 * contain objects to form both a vertex shader and fragment
5107 * shader."
5108 *
5109 * However, the only scenario in 3.1+ where we don't require them both is
5110 * when we have a compute shader. For example:
5111 *
5112 * - No shaders is a link error.
5113 * - Geom or Tess without a Vertex shader is a link error which means we
5114 * always require a Vertex shader and hence a Fragment shader.
5115 * - Finally a Compute shader linked with any other stage is a link error.
5116 */
5117 if (!prog->SeparateShader && ctx->API == API_OPENGLES2 &&
5118 num_shaders[MESA_SHADER_COMPUTE] == 0) {
5119 if (prog->_LinkedShaders[MESA_SHADER_VERTEX] == NULL) {
5120 linker_error(prog, "program lacks a vertex shader\n");
5121 } else if (prog->_LinkedShaders[MESA_SHADER_FRAGMENT] == NULL) {
5122 linker_error(prog, "program lacks a fragment shader\n");
5123 }
5124 }
5125
5126 done:
5127 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
5128 free(shader_list[i]);
5129 if (prog->_LinkedShaders[i] == NULL)
5130 continue;
5131
5132 /* Do a final validation step to make sure that the IR wasn't
5133 * invalidated by any modifications performed after intrastage linking.
5134 */
5135 validate_ir_tree(prog->_LinkedShaders[i]->ir);
5136
5137 /* Retain any live IR, but trash the rest. */
5138 reparent_ir(prog->_LinkedShaders[i]->ir, prog->_LinkedShaders[i]->ir);
5139
5140 /* The symbol table in the linked shaders may contain references to
5141 * variables that were removed (e.g., unused uniforms). Since it may
5142 * contain junk, there is no possible valid use. Delete it and set the
5143 * pointer to NULL.
5144 */
5145 delete prog->_LinkedShaders[i]->symbols;
5146 prog->_LinkedShaders[i]->symbols = NULL;
5147 }
5148
5149 ralloc_free(mem_ctx);
5150 }