glsl/linker: validate explicit locations for SSO programs
[mesa.git] / src / compiler / glsl / linker.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file linker.cpp
26 * GLSL linker implementation
27 *
28 * Given a set of shaders that are to be linked to generate a final program,
29 * there are three distinct stages.
30 *
31 * In the first stage shaders are partitioned into groups based on the shader
32 * type. All shaders of a particular type (e.g., vertex shaders) are linked
33 * together.
34 *
35 * - Undefined references in each shader are resolve to definitions in
36 * another shader.
37 * - Types and qualifiers of uniforms, outputs, and global variables defined
38 * in multiple shaders with the same name are verified to be the same.
39 * - Initializers for uniforms and global variables defined
40 * in multiple shaders with the same name are verified to be the same.
41 *
42 * The result, in the terminology of the GLSL spec, is a set of shader
43 * executables for each processing unit.
44 *
45 * After the first stage is complete, a series of semantic checks are performed
46 * on each of the shader executables.
47 *
48 * - Each shader executable must define a \c main function.
49 * - Each vertex shader executable must write to \c gl_Position.
50 * - Each fragment shader executable must write to either \c gl_FragData or
51 * \c gl_FragColor.
52 *
53 * In the final stage individual shader executables are linked to create a
54 * complete exectuable.
55 *
56 * - Types of uniforms defined in multiple shader stages with the same name
57 * are verified to be the same.
58 * - Initializers for uniforms defined in multiple shader stages with the
59 * same name are verified to be the same.
60 * - Types and qualifiers of outputs defined in one stage are verified to
61 * be the same as the types and qualifiers of inputs defined with the same
62 * name in a later stage.
63 *
64 * \author Ian Romanick <ian.d.romanick@intel.com>
65 */
66
67 #include <ctype.h>
68 #include "util/strndup.h"
69 #include "main/core.h"
70 #include "glsl_symbol_table.h"
71 #include "glsl_parser_extras.h"
72 #include "ir.h"
73 #include "program.h"
74 #include "program/prog_instruction.h"
75 #include "program/program.h"
76 #include "util/mesa-sha1.h"
77 #include "util/set.h"
78 #include "string_to_uint_map.h"
79 #include "linker.h"
80 #include "link_varyings.h"
81 #include "ir_optimization.h"
82 #include "ir_rvalue_visitor.h"
83 #include "ir_uniform.h"
84 #include "builtin_functions.h"
85 #include "shader_cache.h"
86
87 #include "main/shaderobj.h"
88 #include "main/enums.h"
89
90
91 namespace {
92
93 struct find_variable {
94 const char *name;
95 bool found;
96
97 find_variable(const char *name) : name(name), found(false) {}
98 };
99
100 /**
101 * Visitor that determines whether or not a variable is ever written.
102 *
103 * Use \ref find_assignments for convenience.
104 */
105 class find_assignment_visitor : public ir_hierarchical_visitor {
106 public:
107 find_assignment_visitor(unsigned num_vars,
108 find_variable * const *vars)
109 : num_variables(num_vars), num_found(0), variables(vars)
110 {
111 }
112
113 virtual ir_visitor_status visit_enter(ir_assignment *ir)
114 {
115 ir_variable *const var = ir->lhs->variable_referenced();
116
117 return check_variable_name(var->name);
118 }
119
120 virtual ir_visitor_status visit_enter(ir_call *ir)
121 {
122 foreach_two_lists(formal_node, &ir->callee->parameters,
123 actual_node, &ir->actual_parameters) {
124 ir_rvalue *param_rval = (ir_rvalue *) actual_node;
125 ir_variable *sig_param = (ir_variable *) formal_node;
126
127 if (sig_param->data.mode == ir_var_function_out ||
128 sig_param->data.mode == ir_var_function_inout) {
129 ir_variable *var = param_rval->variable_referenced();
130 if (var && check_variable_name(var->name) == visit_stop)
131 return visit_stop;
132 }
133 }
134
135 if (ir->return_deref != NULL) {
136 ir_variable *const var = ir->return_deref->variable_referenced();
137
138 if (check_variable_name(var->name) == visit_stop)
139 return visit_stop;
140 }
141
142 return visit_continue_with_parent;
143 }
144
145 private:
146 ir_visitor_status check_variable_name(const char *name)
147 {
148 for (unsigned i = 0; i < num_variables; ++i) {
149 if (strcmp(variables[i]->name, name) == 0) {
150 if (!variables[i]->found) {
151 variables[i]->found = true;
152
153 assert(num_found < num_variables);
154 if (++num_found == num_variables)
155 return visit_stop;
156 }
157 break;
158 }
159 }
160
161 return visit_continue_with_parent;
162 }
163
164 private:
165 unsigned num_variables; /**< Number of variables to find */
166 unsigned num_found; /**< Number of variables already found */
167 find_variable * const *variables; /**< Variables to find */
168 };
169
170 /**
171 * Determine whether or not any of NULL-terminated list of variables is ever
172 * written to.
173 */
174 static void
175 find_assignments(exec_list *ir, find_variable * const *vars)
176 {
177 unsigned num_variables = 0;
178
179 for (find_variable * const *v = vars; *v; ++v)
180 num_variables++;
181
182 find_assignment_visitor visitor(num_variables, vars);
183 visitor.run(ir);
184 }
185
186 /**
187 * Determine whether or not the given variable is ever written to.
188 */
189 static void
190 find_assignments(exec_list *ir, find_variable *var)
191 {
192 find_assignment_visitor visitor(1, &var);
193 visitor.run(ir);
194 }
195
196 /**
197 * Visitor that determines whether or not a variable is ever read.
198 */
199 class find_deref_visitor : public ir_hierarchical_visitor {
200 public:
201 find_deref_visitor(const char *name)
202 : name(name), found(false)
203 {
204 /* empty */
205 }
206
207 virtual ir_visitor_status visit(ir_dereference_variable *ir)
208 {
209 if (strcmp(this->name, ir->var->name) == 0) {
210 this->found = true;
211 return visit_stop;
212 }
213
214 return visit_continue;
215 }
216
217 bool variable_found() const
218 {
219 return this->found;
220 }
221
222 private:
223 const char *name; /**< Find writes to a variable with this name. */
224 bool found; /**< Was a write to the variable found? */
225 };
226
227
228 /**
229 * A visitor helper that provides methods for updating the types of
230 * ir_dereferences. Classes that update variable types (say, updating
231 * array sizes) will want to use this so that dereference types stay in sync.
232 */
233 class deref_type_updater : public ir_hierarchical_visitor {
234 public:
235 virtual ir_visitor_status visit(ir_dereference_variable *ir)
236 {
237 ir->type = ir->var->type;
238 return visit_continue;
239 }
240
241 virtual ir_visitor_status visit_leave(ir_dereference_array *ir)
242 {
243 const glsl_type *const vt = ir->array->type;
244 if (vt->is_array())
245 ir->type = vt->fields.array;
246 return visit_continue;
247 }
248
249 virtual ir_visitor_status visit_leave(ir_dereference_record *ir)
250 {
251 ir->type = ir->record->type->fields.structure[ir->field_idx].type;
252 return visit_continue;
253 }
254 };
255
256
257 class array_resize_visitor : public deref_type_updater {
258 public:
259 unsigned num_vertices;
260 gl_shader_program *prog;
261 gl_shader_stage stage;
262
263 array_resize_visitor(unsigned num_vertices,
264 gl_shader_program *prog,
265 gl_shader_stage stage)
266 {
267 this->num_vertices = num_vertices;
268 this->prog = prog;
269 this->stage = stage;
270 }
271
272 virtual ~array_resize_visitor()
273 {
274 /* empty */
275 }
276
277 virtual ir_visitor_status visit(ir_variable *var)
278 {
279 if (!var->type->is_array() || var->data.mode != ir_var_shader_in ||
280 var->data.patch)
281 return visit_continue;
282
283 unsigned size = var->type->length;
284
285 if (stage == MESA_SHADER_GEOMETRY) {
286 /* Generate a link error if the shader has declared this array with
287 * an incorrect size.
288 */
289 if (!var->data.implicit_sized_array &&
290 size && size != this->num_vertices) {
291 linker_error(this->prog, "size of array %s declared as %u, "
292 "but number of input vertices is %u\n",
293 var->name, size, this->num_vertices);
294 return visit_continue;
295 }
296
297 /* Generate a link error if the shader attempts to access an input
298 * array using an index too large for its actual size assigned at
299 * link time.
300 */
301 if (var->data.max_array_access >= (int)this->num_vertices) {
302 linker_error(this->prog, "%s shader accesses element %i of "
303 "%s, but only %i input vertices\n",
304 _mesa_shader_stage_to_string(this->stage),
305 var->data.max_array_access, var->name, this->num_vertices);
306 return visit_continue;
307 }
308 }
309
310 var->type = glsl_type::get_array_instance(var->type->fields.array,
311 this->num_vertices);
312 var->data.max_array_access = this->num_vertices - 1;
313
314 return visit_continue;
315 }
316 };
317
318 /**
319 * Visitor that determines the highest stream id to which a (geometry) shader
320 * emits vertices. It also checks whether End{Stream}Primitive is ever called.
321 */
322 class find_emit_vertex_visitor : public ir_hierarchical_visitor {
323 public:
324 find_emit_vertex_visitor(int max_allowed)
325 : max_stream_allowed(max_allowed),
326 invalid_stream_id(0),
327 invalid_stream_id_from_emit_vertex(false),
328 end_primitive_found(false),
329 uses_non_zero_stream(false)
330 {
331 /* empty */
332 }
333
334 virtual ir_visitor_status visit_leave(ir_emit_vertex *ir)
335 {
336 int stream_id = ir->stream_id();
337
338 if (stream_id < 0) {
339 invalid_stream_id = stream_id;
340 invalid_stream_id_from_emit_vertex = true;
341 return visit_stop;
342 }
343
344 if (stream_id > max_stream_allowed) {
345 invalid_stream_id = stream_id;
346 invalid_stream_id_from_emit_vertex = true;
347 return visit_stop;
348 }
349
350 if (stream_id != 0)
351 uses_non_zero_stream = true;
352
353 return visit_continue;
354 }
355
356 virtual ir_visitor_status visit_leave(ir_end_primitive *ir)
357 {
358 end_primitive_found = true;
359
360 int stream_id = ir->stream_id();
361
362 if (stream_id < 0) {
363 invalid_stream_id = stream_id;
364 invalid_stream_id_from_emit_vertex = false;
365 return visit_stop;
366 }
367
368 if (stream_id > max_stream_allowed) {
369 invalid_stream_id = stream_id;
370 invalid_stream_id_from_emit_vertex = false;
371 return visit_stop;
372 }
373
374 if (stream_id != 0)
375 uses_non_zero_stream = true;
376
377 return visit_continue;
378 }
379
380 bool error()
381 {
382 return invalid_stream_id != 0;
383 }
384
385 const char *error_func()
386 {
387 return invalid_stream_id_from_emit_vertex ?
388 "EmitStreamVertex" : "EndStreamPrimitive";
389 }
390
391 int error_stream()
392 {
393 return invalid_stream_id;
394 }
395
396 bool uses_streams()
397 {
398 return uses_non_zero_stream;
399 }
400
401 bool uses_end_primitive()
402 {
403 return end_primitive_found;
404 }
405
406 private:
407 int max_stream_allowed;
408 int invalid_stream_id;
409 bool invalid_stream_id_from_emit_vertex;
410 bool end_primitive_found;
411 bool uses_non_zero_stream;
412 };
413
414 /* Class that finds array derefs and check if indexes are dynamic. */
415 class dynamic_sampler_array_indexing_visitor : public ir_hierarchical_visitor
416 {
417 public:
418 dynamic_sampler_array_indexing_visitor() :
419 dynamic_sampler_array_indexing(false)
420 {
421 }
422
423 ir_visitor_status visit_enter(ir_dereference_array *ir)
424 {
425 if (!ir->variable_referenced())
426 return visit_continue;
427
428 if (!ir->variable_referenced()->type->contains_sampler())
429 return visit_continue;
430
431 if (!ir->array_index->constant_expression_value(ralloc_parent(ir))) {
432 dynamic_sampler_array_indexing = true;
433 return visit_stop;
434 }
435 return visit_continue;
436 }
437
438 bool uses_dynamic_sampler_array_indexing()
439 {
440 return dynamic_sampler_array_indexing;
441 }
442
443 private:
444 bool dynamic_sampler_array_indexing;
445 };
446
447 } /* anonymous namespace */
448
449 void
450 linker_error(gl_shader_program *prog, const char *fmt, ...)
451 {
452 va_list ap;
453
454 ralloc_strcat(&prog->data->InfoLog, "error: ");
455 va_start(ap, fmt);
456 ralloc_vasprintf_append(&prog->data->InfoLog, fmt, ap);
457 va_end(ap);
458
459 prog->data->LinkStatus = linking_failure;
460 }
461
462
463 void
464 linker_warning(gl_shader_program *prog, const char *fmt, ...)
465 {
466 va_list ap;
467
468 ralloc_strcat(&prog->data->InfoLog, "warning: ");
469 va_start(ap, fmt);
470 ralloc_vasprintf_append(&prog->data->InfoLog, fmt, ap);
471 va_end(ap);
472
473 }
474
475
476 /**
477 * Given a string identifying a program resource, break it into a base name
478 * and an optional array index in square brackets.
479 *
480 * If an array index is present, \c out_base_name_end is set to point to the
481 * "[" that precedes the array index, and the array index itself is returned
482 * as a long.
483 *
484 * If no array index is present (or if the array index is negative or
485 * mal-formed), \c out_base_name_end, is set to point to the null terminator
486 * at the end of the input string, and -1 is returned.
487 *
488 * Only the final array index is parsed; if the string contains other array
489 * indices (or structure field accesses), they are left in the base name.
490 *
491 * No attempt is made to check that the base name is properly formed;
492 * typically the caller will look up the base name in a hash table, so
493 * ill-formed base names simply turn into hash table lookup failures.
494 */
495 long
496 parse_program_resource_name(const GLchar *name,
497 const GLchar **out_base_name_end)
498 {
499 /* Section 7.3.1 ("Program Interfaces") of the OpenGL 4.3 spec says:
500 *
501 * "When an integer array element or block instance number is part of
502 * the name string, it will be specified in decimal form without a "+"
503 * or "-" sign or any extra leading zeroes. Additionally, the name
504 * string will not include white space anywhere in the string."
505 */
506
507 const size_t len = strlen(name);
508 *out_base_name_end = name + len;
509
510 if (len == 0 || name[len-1] != ']')
511 return -1;
512
513 /* Walk backwards over the string looking for a non-digit character. This
514 * had better be the opening bracket for an array index.
515 *
516 * Initially, i specifies the location of the ']'. Since the string may
517 * contain only the ']' charcater, walk backwards very carefully.
518 */
519 unsigned i;
520 for (i = len - 1; (i > 0) && isdigit(name[i-1]); --i)
521 /* empty */ ;
522
523 if ((i == 0) || name[i-1] != '[')
524 return -1;
525
526 long array_index = strtol(&name[i], NULL, 10);
527 if (array_index < 0)
528 return -1;
529
530 /* Check for leading zero */
531 if (name[i] == '0' && name[i+1] != ']')
532 return -1;
533
534 *out_base_name_end = name + (i - 1);
535 return array_index;
536 }
537
538
539 void
540 link_invalidate_variable_locations(exec_list *ir)
541 {
542 foreach_in_list(ir_instruction, node, ir) {
543 ir_variable *const var = node->as_variable();
544
545 if (var == NULL)
546 continue;
547
548 /* Only assign locations for variables that lack an explicit location.
549 * Explicit locations are set for all built-in variables, generic vertex
550 * shader inputs (via layout(location=...)), and generic fragment shader
551 * outputs (also via layout(location=...)).
552 */
553 if (!var->data.explicit_location) {
554 var->data.location = -1;
555 var->data.location_frac = 0;
556 }
557
558 /* ir_variable::is_unmatched_generic_inout is used by the linker while
559 * connecting outputs from one stage to inputs of the next stage.
560 */
561 if (var->data.explicit_location &&
562 var->data.location < VARYING_SLOT_VAR0) {
563 var->data.is_unmatched_generic_inout = 0;
564 } else {
565 var->data.is_unmatched_generic_inout = 1;
566 }
567 }
568 }
569
570
571 /**
572 * Set clip_distance_array_size based and cull_distance_array_size on the given
573 * shader.
574 *
575 * Also check for errors based on incorrect usage of gl_ClipVertex and
576 * gl_ClipDistance and gl_CullDistance.
577 * Additionally test whether the arrays gl_ClipDistance and gl_CullDistance
578 * exceed the maximum size defined by gl_MaxCombinedClipAndCullDistances.
579 *
580 * Return false if an error was reported.
581 */
582 static void
583 analyze_clip_cull_usage(struct gl_shader_program *prog,
584 struct gl_linked_shader *shader,
585 struct gl_context *ctx,
586 GLuint *clip_distance_array_size,
587 GLuint *cull_distance_array_size)
588 {
589 *clip_distance_array_size = 0;
590 *cull_distance_array_size = 0;
591
592 if (prog->data->Version >= (prog->IsES ? 300 : 130)) {
593 /* From section 7.1 (Vertex Shader Special Variables) of the
594 * GLSL 1.30 spec:
595 *
596 * "It is an error for a shader to statically write both
597 * gl_ClipVertex and gl_ClipDistance."
598 *
599 * This does not apply to GLSL ES shaders, since GLSL ES defines neither
600 * gl_ClipVertex nor gl_ClipDistance. However with
601 * GL_EXT_clip_cull_distance, this functionality is exposed in ES 3.0.
602 */
603 find_variable gl_ClipDistance("gl_ClipDistance");
604 find_variable gl_CullDistance("gl_CullDistance");
605 find_variable gl_ClipVertex("gl_ClipVertex");
606 find_variable * const variables[] = {
607 &gl_ClipDistance,
608 &gl_CullDistance,
609 !prog->IsES ? &gl_ClipVertex : NULL,
610 NULL
611 };
612 find_assignments(shader->ir, variables);
613
614 /* From the ARB_cull_distance spec:
615 *
616 * It is a compile-time or link-time error for the set of shaders forming
617 * a program to statically read or write both gl_ClipVertex and either
618 * gl_ClipDistance or gl_CullDistance.
619 *
620 * This does not apply to GLSL ES shaders, since GLSL ES doesn't define
621 * gl_ClipVertex.
622 */
623 if (!prog->IsES) {
624 if (gl_ClipVertex.found && gl_ClipDistance.found) {
625 linker_error(prog, "%s shader writes to both `gl_ClipVertex' "
626 "and `gl_ClipDistance'\n",
627 _mesa_shader_stage_to_string(shader->Stage));
628 return;
629 }
630 if (gl_ClipVertex.found && gl_CullDistance.found) {
631 linker_error(prog, "%s shader writes to both `gl_ClipVertex' "
632 "and `gl_CullDistance'\n",
633 _mesa_shader_stage_to_string(shader->Stage));
634 return;
635 }
636 }
637
638 if (gl_ClipDistance.found) {
639 ir_variable *clip_distance_var =
640 shader->symbols->get_variable("gl_ClipDistance");
641 assert(clip_distance_var);
642 *clip_distance_array_size = clip_distance_var->type->length;
643 }
644 if (gl_CullDistance.found) {
645 ir_variable *cull_distance_var =
646 shader->symbols->get_variable("gl_CullDistance");
647 assert(cull_distance_var);
648 *cull_distance_array_size = cull_distance_var->type->length;
649 }
650 /* From the ARB_cull_distance spec:
651 *
652 * It is a compile-time or link-time error for the set of shaders forming
653 * a program to have the sum of the sizes of the gl_ClipDistance and
654 * gl_CullDistance arrays to be larger than
655 * gl_MaxCombinedClipAndCullDistances.
656 */
657 if ((*clip_distance_array_size + *cull_distance_array_size) >
658 ctx->Const.MaxClipPlanes) {
659 linker_error(prog, "%s shader: the combined size of "
660 "'gl_ClipDistance' and 'gl_CullDistance' size cannot "
661 "be larger than "
662 "gl_MaxCombinedClipAndCullDistances (%u)",
663 _mesa_shader_stage_to_string(shader->Stage),
664 ctx->Const.MaxClipPlanes);
665 }
666 }
667 }
668
669
670 /**
671 * Verify that a vertex shader executable meets all semantic requirements.
672 *
673 * Also sets info.clip_distance_array_size and
674 * info.cull_distance_array_size as a side effect.
675 *
676 * \param shader Vertex shader executable to be verified
677 */
678 static void
679 validate_vertex_shader_executable(struct gl_shader_program *prog,
680 struct gl_linked_shader *shader,
681 struct gl_context *ctx)
682 {
683 if (shader == NULL)
684 return;
685
686 /* From the GLSL 1.10 spec, page 48:
687 *
688 * "The variable gl_Position is available only in the vertex
689 * language and is intended for writing the homogeneous vertex
690 * position. All executions of a well-formed vertex shader
691 * executable must write a value into this variable. [...] The
692 * variable gl_Position is available only in the vertex
693 * language and is intended for writing the homogeneous vertex
694 * position. All executions of a well-formed vertex shader
695 * executable must write a value into this variable."
696 *
697 * while in GLSL 1.40 this text is changed to:
698 *
699 * "The variable gl_Position is available only in the vertex
700 * language and is intended for writing the homogeneous vertex
701 * position. It can be written at any time during shader
702 * execution. It may also be read back by a vertex shader
703 * after being written. This value will be used by primitive
704 * assembly, clipping, culling, and other fixed functionality
705 * operations, if present, that operate on primitives after
706 * vertex processing has occurred. Its value is undefined if
707 * the vertex shader executable does not write gl_Position."
708 *
709 * All GLSL ES Versions are similar to GLSL 1.40--failing to write to
710 * gl_Position is not an error.
711 */
712 if (prog->data->Version < (prog->IsES ? 300 : 140)) {
713 find_variable gl_Position("gl_Position");
714 find_assignments(shader->ir, &gl_Position);
715 if (!gl_Position.found) {
716 if (prog->IsES) {
717 linker_warning(prog,
718 "vertex shader does not write to `gl_Position'. "
719 "Its value is undefined. \n");
720 } else {
721 linker_error(prog,
722 "vertex shader does not write to `gl_Position'. \n");
723 }
724 return;
725 }
726 }
727
728 analyze_clip_cull_usage(prog, shader, ctx,
729 &shader->Program->info.clip_distance_array_size,
730 &shader->Program->info.cull_distance_array_size);
731 }
732
733 static void
734 validate_tess_eval_shader_executable(struct gl_shader_program *prog,
735 struct gl_linked_shader *shader,
736 struct gl_context *ctx)
737 {
738 if (shader == NULL)
739 return;
740
741 analyze_clip_cull_usage(prog, shader, ctx,
742 &shader->Program->info.clip_distance_array_size,
743 &shader->Program->info.cull_distance_array_size);
744 }
745
746
747 /**
748 * Verify that a fragment shader executable meets all semantic requirements
749 *
750 * \param shader Fragment shader executable to be verified
751 */
752 static void
753 validate_fragment_shader_executable(struct gl_shader_program *prog,
754 struct gl_linked_shader *shader)
755 {
756 if (shader == NULL)
757 return;
758
759 find_variable gl_FragColor("gl_FragColor");
760 find_variable gl_FragData("gl_FragData");
761 find_variable * const variables[] = { &gl_FragColor, &gl_FragData, NULL };
762 find_assignments(shader->ir, variables);
763
764 if (gl_FragColor.found && gl_FragData.found) {
765 linker_error(prog, "fragment shader writes to both "
766 "`gl_FragColor' and `gl_FragData'\n");
767 }
768 }
769
770 /**
771 * Verify that a geometry shader executable meets all semantic requirements
772 *
773 * Also sets prog->Geom.VerticesIn, and info.clip_distance_array_sizeand
774 * info.cull_distance_array_size as a side effect.
775 *
776 * \param shader Geometry shader executable to be verified
777 */
778 static void
779 validate_geometry_shader_executable(struct gl_shader_program *prog,
780 struct gl_linked_shader *shader,
781 struct gl_context *ctx)
782 {
783 if (shader == NULL)
784 return;
785
786 unsigned num_vertices =
787 vertices_per_prim(shader->Program->info.gs.input_primitive);
788 prog->Geom.VerticesIn = num_vertices;
789
790 analyze_clip_cull_usage(prog, shader, ctx,
791 &shader->Program->info.clip_distance_array_size,
792 &shader->Program->info.cull_distance_array_size);
793 }
794
795 /**
796 * Check if geometry shaders emit to non-zero streams and do corresponding
797 * validations.
798 */
799 static void
800 validate_geometry_shader_emissions(struct gl_context *ctx,
801 struct gl_shader_program *prog)
802 {
803 struct gl_linked_shader *sh = prog->_LinkedShaders[MESA_SHADER_GEOMETRY];
804
805 if (sh != NULL) {
806 find_emit_vertex_visitor emit_vertex(ctx->Const.MaxVertexStreams - 1);
807 emit_vertex.run(sh->ir);
808 if (emit_vertex.error()) {
809 linker_error(prog, "Invalid call %s(%d). Accepted values for the "
810 "stream parameter are in the range [0, %d].\n",
811 emit_vertex.error_func(),
812 emit_vertex.error_stream(),
813 ctx->Const.MaxVertexStreams - 1);
814 }
815 prog->Geom.UsesStreams = emit_vertex.uses_streams();
816 prog->Geom.UsesEndPrimitive = emit_vertex.uses_end_primitive();
817
818 /* From the ARB_gpu_shader5 spec:
819 *
820 * "Multiple vertex streams are supported only if the output primitive
821 * type is declared to be "points". A program will fail to link if it
822 * contains a geometry shader calling EmitStreamVertex() or
823 * EndStreamPrimitive() if its output primitive type is not "points".
824 *
825 * However, in the same spec:
826 *
827 * "The function EmitVertex() is equivalent to calling EmitStreamVertex()
828 * with <stream> set to zero."
829 *
830 * And:
831 *
832 * "The function EndPrimitive() is equivalent to calling
833 * EndStreamPrimitive() with <stream> set to zero."
834 *
835 * Since we can call EmitVertex() and EndPrimitive() when we output
836 * primitives other than points, calling EmitStreamVertex(0) or
837 * EmitEndPrimitive(0) should not produce errors. This it also what Nvidia
838 * does. Currently we only set prog->Geom.UsesStreams to TRUE when
839 * EmitStreamVertex() or EmitEndPrimitive() are called with a non-zero
840 * stream.
841 */
842 if (prog->Geom.UsesStreams &&
843 sh->Program->info.gs.output_primitive != GL_POINTS) {
844 linker_error(prog, "EmitStreamVertex(n) and EndStreamPrimitive(n) "
845 "with n>0 requires point output\n");
846 }
847 }
848 }
849
850 bool
851 validate_intrastage_arrays(struct gl_shader_program *prog,
852 ir_variable *const var,
853 ir_variable *const existing)
854 {
855 /* Consider the types to be "the same" if both types are arrays
856 * of the same type and one of the arrays is implicitly sized.
857 * In addition, set the type of the linked variable to the
858 * explicitly sized array.
859 */
860 if (var->type->is_array() && existing->type->is_array()) {
861 if ((var->type->fields.array == existing->type->fields.array) &&
862 ((var->type->length == 0)|| (existing->type->length == 0))) {
863 if (var->type->length != 0) {
864 if ((int)var->type->length <= existing->data.max_array_access) {
865 linker_error(prog, "%s `%s' declared as type "
866 "`%s' but outermost dimension has an index"
867 " of `%i'\n",
868 mode_string(var),
869 var->name, var->type->name,
870 existing->data.max_array_access);
871 }
872 existing->type = var->type;
873 return true;
874 } else if (existing->type->length != 0) {
875 if((int)existing->type->length <= var->data.max_array_access &&
876 !existing->data.from_ssbo_unsized_array) {
877 linker_error(prog, "%s `%s' declared as type "
878 "`%s' but outermost dimension has an index"
879 " of `%i'\n",
880 mode_string(var),
881 var->name, existing->type->name,
882 var->data.max_array_access);
883 }
884 return true;
885 }
886 }
887 }
888 return false;
889 }
890
891
892 /**
893 * Perform validation of global variables used across multiple shaders
894 */
895 static void
896 cross_validate_globals(struct gl_shader_program *prog,
897 struct exec_list *ir, glsl_symbol_table *variables,
898 bool uniforms_only)
899 {
900 foreach_in_list(ir_instruction, node, ir) {
901 ir_variable *const var = node->as_variable();
902
903 if (var == NULL)
904 continue;
905
906 if (uniforms_only && (var->data.mode != ir_var_uniform && var->data.mode != ir_var_shader_storage))
907 continue;
908
909 /* don't cross validate subroutine uniforms */
910 if (var->type->contains_subroutine())
911 continue;
912
913 /* Don't cross validate interface instances. These are only relevant
914 * inside a shader. The cross validation is done at the Interface Block
915 * name level.
916 */
917 if (var->is_interface_instance())
918 continue;
919
920 /* Don't cross validate temporaries that are at global scope. These
921 * will eventually get pulled into the shaders 'main'.
922 */
923 if (var->data.mode == ir_var_temporary)
924 continue;
925
926 /* If a global with this name has already been seen, verify that the
927 * new instance has the same type. In addition, if the globals have
928 * initializers, the values of the initializers must be the same.
929 */
930 ir_variable *const existing = variables->get_variable(var->name);
931 if (existing != NULL) {
932 /* Check if types match. */
933 if (var->type != existing->type) {
934 if (!validate_intrastage_arrays(prog, var, existing)) {
935 /* If it is an unsized array in a Shader Storage Block,
936 * two different shaders can access to different elements.
937 * Because of that, they might be converted to different
938 * sized arrays, then check that they are compatible but
939 * ignore the array size.
940 */
941 if (!(var->data.mode == ir_var_shader_storage &&
942 var->data.from_ssbo_unsized_array &&
943 existing->data.mode == ir_var_shader_storage &&
944 existing->data.from_ssbo_unsized_array &&
945 var->type->gl_type == existing->type->gl_type)) {
946 linker_error(prog, "%s `%s' declared as type "
947 "`%s' and type `%s'\n",
948 mode_string(var),
949 var->name, var->type->name,
950 existing->type->name);
951 return;
952 }
953 }
954 }
955
956 if (var->data.explicit_location) {
957 if (existing->data.explicit_location
958 && (var->data.location != existing->data.location)) {
959 linker_error(prog, "explicit locations for %s "
960 "`%s' have differing values\n",
961 mode_string(var), var->name);
962 return;
963 }
964
965 if (var->data.location_frac != existing->data.location_frac) {
966 linker_error(prog, "explicit components for %s `%s' have "
967 "differing values\n", mode_string(var), var->name);
968 return;
969 }
970
971 existing->data.location = var->data.location;
972 existing->data.explicit_location = true;
973 } else {
974 /* Check if uniform with implicit location was marked explicit
975 * by earlier shader stage. If so, mark it explicit in this stage
976 * too to make sure later processing does not treat it as
977 * implicit one.
978 */
979 if (existing->data.explicit_location) {
980 var->data.location = existing->data.location;
981 var->data.explicit_location = true;
982 }
983 }
984
985 /* From the GLSL 4.20 specification:
986 * "A link error will result if two compilation units in a program
987 * specify different integer-constant bindings for the same
988 * opaque-uniform name. However, it is not an error to specify a
989 * binding on some but not all declarations for the same name"
990 */
991 if (var->data.explicit_binding) {
992 if (existing->data.explicit_binding &&
993 var->data.binding != existing->data.binding) {
994 linker_error(prog, "explicit bindings for %s "
995 "`%s' have differing values\n",
996 mode_string(var), var->name);
997 return;
998 }
999
1000 existing->data.binding = var->data.binding;
1001 existing->data.explicit_binding = true;
1002 }
1003
1004 if (var->type->contains_atomic() &&
1005 var->data.offset != existing->data.offset) {
1006 linker_error(prog, "offset specifications for %s "
1007 "`%s' have differing values\n",
1008 mode_string(var), var->name);
1009 return;
1010 }
1011
1012 /* Validate layout qualifiers for gl_FragDepth.
1013 *
1014 * From the AMD/ARB_conservative_depth specs:
1015 *
1016 * "If gl_FragDepth is redeclared in any fragment shader in a
1017 * program, it must be redeclared in all fragment shaders in
1018 * that program that have static assignments to
1019 * gl_FragDepth. All redeclarations of gl_FragDepth in all
1020 * fragment shaders in a single program must have the same set
1021 * of qualifiers."
1022 */
1023 if (strcmp(var->name, "gl_FragDepth") == 0) {
1024 bool layout_declared = var->data.depth_layout != ir_depth_layout_none;
1025 bool layout_differs =
1026 var->data.depth_layout != existing->data.depth_layout;
1027
1028 if (layout_declared && layout_differs) {
1029 linker_error(prog,
1030 "All redeclarations of gl_FragDepth in all "
1031 "fragment shaders in a single program must have "
1032 "the same set of qualifiers.\n");
1033 }
1034
1035 if (var->data.used && layout_differs) {
1036 linker_error(prog,
1037 "If gl_FragDepth is redeclared with a layout "
1038 "qualifier in any fragment shader, it must be "
1039 "redeclared with the same layout qualifier in "
1040 "all fragment shaders that have assignments to "
1041 "gl_FragDepth\n");
1042 }
1043 }
1044
1045 /* Page 35 (page 41 of the PDF) of the GLSL 4.20 spec says:
1046 *
1047 * "If a shared global has multiple initializers, the
1048 * initializers must all be constant expressions, and they
1049 * must all have the same value. Otherwise, a link error will
1050 * result. (A shared global having only one initializer does
1051 * not require that initializer to be a constant expression.)"
1052 *
1053 * Previous to 4.20 the GLSL spec simply said that initializers
1054 * must have the same value. In this case of non-constant
1055 * initializers, this was impossible to determine. As a result,
1056 * no vendor actually implemented that behavior. The 4.20
1057 * behavior matches the implemented behavior of at least one other
1058 * vendor, so we'll implement that for all GLSL versions.
1059 */
1060 if (var->constant_initializer != NULL) {
1061 if (existing->constant_initializer != NULL) {
1062 if (!var->constant_initializer->has_value(existing->constant_initializer)) {
1063 linker_error(prog, "initializers for %s "
1064 "`%s' have differing values\n",
1065 mode_string(var), var->name);
1066 return;
1067 }
1068 } else {
1069 /* If the first-seen instance of a particular uniform did
1070 * not have an initializer but a later instance does,
1071 * replace the former with the later.
1072 */
1073 variables->replace_variable(existing->name, var);
1074 }
1075 }
1076
1077 if (var->data.has_initializer) {
1078 if (existing->data.has_initializer
1079 && (var->constant_initializer == NULL
1080 || existing->constant_initializer == NULL)) {
1081 linker_error(prog,
1082 "shared global variable `%s' has multiple "
1083 "non-constant initializers.\n",
1084 var->name);
1085 return;
1086 }
1087 }
1088
1089 if (existing->data.invariant != var->data.invariant) {
1090 linker_error(prog, "declarations for %s `%s' have "
1091 "mismatching invariant qualifiers\n",
1092 mode_string(var), var->name);
1093 return;
1094 }
1095 if (existing->data.centroid != var->data.centroid) {
1096 linker_error(prog, "declarations for %s `%s' have "
1097 "mismatching centroid qualifiers\n",
1098 mode_string(var), var->name);
1099 return;
1100 }
1101 if (existing->data.sample != var->data.sample) {
1102 linker_error(prog, "declarations for %s `%s` have "
1103 "mismatching sample qualifiers\n",
1104 mode_string(var), var->name);
1105 return;
1106 }
1107 if (existing->data.image_format != var->data.image_format) {
1108 linker_error(prog, "declarations for %s `%s` have "
1109 "mismatching image format qualifiers\n",
1110 mode_string(var), var->name);
1111 return;
1112 }
1113
1114 /* Only in GLSL ES 3.10, the precision qualifier should not match
1115 * between block members defined in matched block names within a
1116 * shader interface.
1117 *
1118 * In GLSL ES 3.00 and ES 3.20, precision qualifier for each block
1119 * member should match.
1120 */
1121 if (prog->IsES && (prog->data->Version != 310 ||
1122 !var->get_interface_type()) &&
1123 existing->data.precision != var->data.precision) {
1124 linker_error(prog, "declarations for %s `%s` have "
1125 "mismatching precision qualifiers\n",
1126 mode_string(var), var->name);
1127 return;
1128 }
1129 } else
1130 variables->add_variable(var);
1131 }
1132 }
1133
1134
1135 /**
1136 * Perform validation of uniforms used across multiple shader stages
1137 */
1138 static void
1139 cross_validate_uniforms(struct gl_shader_program *prog)
1140 {
1141 glsl_symbol_table variables;
1142 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1143 if (prog->_LinkedShaders[i] == NULL)
1144 continue;
1145
1146 cross_validate_globals(prog, prog->_LinkedShaders[i]->ir, &variables,
1147 true);
1148 }
1149 }
1150
1151 /**
1152 * Accumulates the array of buffer blocks and checks that all definitions of
1153 * blocks agree on their contents.
1154 */
1155 static bool
1156 interstage_cross_validate_uniform_blocks(struct gl_shader_program *prog,
1157 bool validate_ssbo)
1158 {
1159 int *InterfaceBlockStageIndex[MESA_SHADER_STAGES];
1160 struct gl_uniform_block *blks = NULL;
1161 unsigned *num_blks = validate_ssbo ? &prog->data->NumShaderStorageBlocks :
1162 &prog->data->NumUniformBlocks;
1163
1164 unsigned max_num_buffer_blocks = 0;
1165 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1166 if (prog->_LinkedShaders[i]) {
1167 if (validate_ssbo) {
1168 max_num_buffer_blocks +=
1169 prog->_LinkedShaders[i]->Program->info.num_ssbos;
1170 } else {
1171 max_num_buffer_blocks +=
1172 prog->_LinkedShaders[i]->Program->info.num_ubos;
1173 }
1174 }
1175 }
1176
1177 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1178 struct gl_linked_shader *sh = prog->_LinkedShaders[i];
1179
1180 InterfaceBlockStageIndex[i] = new int[max_num_buffer_blocks];
1181 for (unsigned int j = 0; j < max_num_buffer_blocks; j++)
1182 InterfaceBlockStageIndex[i][j] = -1;
1183
1184 if (sh == NULL)
1185 continue;
1186
1187 unsigned sh_num_blocks;
1188 struct gl_uniform_block **sh_blks;
1189 if (validate_ssbo) {
1190 sh_num_blocks = prog->_LinkedShaders[i]->Program->info.num_ssbos;
1191 sh_blks = sh->Program->sh.ShaderStorageBlocks;
1192 } else {
1193 sh_num_blocks = prog->_LinkedShaders[i]->Program->info.num_ubos;
1194 sh_blks = sh->Program->sh.UniformBlocks;
1195 }
1196
1197 for (unsigned int j = 0; j < sh_num_blocks; j++) {
1198 int index = link_cross_validate_uniform_block(prog, &blks, num_blks,
1199 sh_blks[j]);
1200
1201 if (index == -1) {
1202 linker_error(prog, "buffer block `%s' has mismatching "
1203 "definitions\n", sh_blks[j]->Name);
1204
1205 for (unsigned k = 0; k <= i; k++) {
1206 delete[] InterfaceBlockStageIndex[k];
1207 }
1208
1209 /* Reset the block count. This will help avoid various segfaults
1210 * from api calls that assume the array exists due to the count
1211 * being non-zero.
1212 */
1213 *num_blks = 0;
1214 return false;
1215 }
1216
1217 InterfaceBlockStageIndex[i][index] = j;
1218 }
1219 }
1220
1221 /* Update per stage block pointers to point to the program list.
1222 * FIXME: We should be able to free the per stage blocks here.
1223 */
1224 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1225 for (unsigned j = 0; j < *num_blks; j++) {
1226 int stage_index = InterfaceBlockStageIndex[i][j];
1227
1228 if (stage_index != -1) {
1229 struct gl_linked_shader *sh = prog->_LinkedShaders[i];
1230
1231 struct gl_uniform_block **sh_blks = validate_ssbo ?
1232 sh->Program->sh.ShaderStorageBlocks :
1233 sh->Program->sh.UniformBlocks;
1234
1235 blks[j].stageref |= sh_blks[stage_index]->stageref;
1236 sh_blks[stage_index] = &blks[j];
1237 }
1238 }
1239 }
1240
1241 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1242 delete[] InterfaceBlockStageIndex[i];
1243 }
1244
1245 if (validate_ssbo)
1246 prog->data->ShaderStorageBlocks = blks;
1247 else
1248 prog->data->UniformBlocks = blks;
1249
1250 return true;
1251 }
1252
1253
1254 /**
1255 * Populates a shaders symbol table with all global declarations
1256 */
1257 static void
1258 populate_symbol_table(gl_linked_shader *sh)
1259 {
1260 sh->symbols = new(sh) glsl_symbol_table;
1261
1262 foreach_in_list(ir_instruction, inst, sh->ir) {
1263 ir_variable *var;
1264 ir_function *func;
1265
1266 if ((func = inst->as_function()) != NULL) {
1267 sh->symbols->add_function(func);
1268 } else if ((var = inst->as_variable()) != NULL) {
1269 if (var->data.mode != ir_var_temporary)
1270 sh->symbols->add_variable(var);
1271 }
1272 }
1273 }
1274
1275
1276 /**
1277 * Remap variables referenced in an instruction tree
1278 *
1279 * This is used when instruction trees are cloned from one shader and placed in
1280 * another. These trees will contain references to \c ir_variable nodes that
1281 * do not exist in the target shader. This function finds these \c ir_variable
1282 * references and replaces the references with matching variables in the target
1283 * shader.
1284 *
1285 * If there is no matching variable in the target shader, a clone of the
1286 * \c ir_variable is made and added to the target shader. The new variable is
1287 * added to \b both the instruction stream and the symbol table.
1288 *
1289 * \param inst IR tree that is to be processed.
1290 * \param symbols Symbol table containing global scope symbols in the
1291 * linked shader.
1292 * \param instructions Instruction stream where new variable declarations
1293 * should be added.
1294 */
1295 static void
1296 remap_variables(ir_instruction *inst, struct gl_linked_shader *target,
1297 hash_table *temps)
1298 {
1299 class remap_visitor : public ir_hierarchical_visitor {
1300 public:
1301 remap_visitor(struct gl_linked_shader *target, hash_table *temps)
1302 {
1303 this->target = target;
1304 this->symbols = target->symbols;
1305 this->instructions = target->ir;
1306 this->temps = temps;
1307 }
1308
1309 virtual ir_visitor_status visit(ir_dereference_variable *ir)
1310 {
1311 if (ir->var->data.mode == ir_var_temporary) {
1312 hash_entry *entry = _mesa_hash_table_search(temps, ir->var);
1313 ir_variable *var = entry ? (ir_variable *) entry->data : NULL;
1314
1315 assert(var != NULL);
1316 ir->var = var;
1317 return visit_continue;
1318 }
1319
1320 ir_variable *const existing =
1321 this->symbols->get_variable(ir->var->name);
1322 if (existing != NULL)
1323 ir->var = existing;
1324 else {
1325 ir_variable *copy = ir->var->clone(this->target, NULL);
1326
1327 this->symbols->add_variable(copy);
1328 this->instructions->push_head(copy);
1329 ir->var = copy;
1330 }
1331
1332 return visit_continue;
1333 }
1334
1335 private:
1336 struct gl_linked_shader *target;
1337 glsl_symbol_table *symbols;
1338 exec_list *instructions;
1339 hash_table *temps;
1340 };
1341
1342 remap_visitor v(target, temps);
1343
1344 inst->accept(&v);
1345 }
1346
1347
1348 /**
1349 * Move non-declarations from one instruction stream to another
1350 *
1351 * The intended usage pattern of this function is to pass the pointer to the
1352 * head sentinel of a list (i.e., a pointer to the list cast to an \c exec_node
1353 * pointer) for \c last and \c false for \c make_copies on the first
1354 * call. Successive calls pass the return value of the previous call for
1355 * \c last and \c true for \c make_copies.
1356 *
1357 * \param instructions Source instruction stream
1358 * \param last Instruction after which new instructions should be
1359 * inserted in the target instruction stream
1360 * \param make_copies Flag selecting whether instructions in \c instructions
1361 * should be copied (via \c ir_instruction::clone) into the
1362 * target list or moved.
1363 *
1364 * \return
1365 * The new "last" instruction in the target instruction stream. This pointer
1366 * is suitable for use as the \c last parameter of a later call to this
1367 * function.
1368 */
1369 static exec_node *
1370 move_non_declarations(exec_list *instructions, exec_node *last,
1371 bool make_copies, gl_linked_shader *target)
1372 {
1373 hash_table *temps = NULL;
1374
1375 if (make_copies)
1376 temps = _mesa_hash_table_create(NULL, _mesa_hash_pointer,
1377 _mesa_key_pointer_equal);
1378
1379 foreach_in_list_safe(ir_instruction, inst, instructions) {
1380 if (inst->as_function())
1381 continue;
1382
1383 ir_variable *var = inst->as_variable();
1384 if ((var != NULL) && (var->data.mode != ir_var_temporary))
1385 continue;
1386
1387 assert(inst->as_assignment()
1388 || inst->as_call()
1389 || inst->as_if() /* for initializers with the ?: operator */
1390 || ((var != NULL) && (var->data.mode == ir_var_temporary)));
1391
1392 if (make_copies) {
1393 inst = inst->clone(target, NULL);
1394
1395 if (var != NULL)
1396 _mesa_hash_table_insert(temps, var, inst);
1397 else
1398 remap_variables(inst, target, temps);
1399 } else {
1400 inst->remove();
1401 }
1402
1403 last->insert_after(inst);
1404 last = inst;
1405 }
1406
1407 if (make_copies)
1408 _mesa_hash_table_destroy(temps, NULL);
1409
1410 return last;
1411 }
1412
1413
1414 /**
1415 * This class is only used in link_intrastage_shaders() below but declaring
1416 * it inside that function leads to compiler warnings with some versions of
1417 * gcc.
1418 */
1419 class array_sizing_visitor : public deref_type_updater {
1420 public:
1421 array_sizing_visitor()
1422 : mem_ctx(ralloc_context(NULL)),
1423 unnamed_interfaces(_mesa_hash_table_create(NULL, _mesa_hash_pointer,
1424 _mesa_key_pointer_equal))
1425 {
1426 }
1427
1428 ~array_sizing_visitor()
1429 {
1430 _mesa_hash_table_destroy(this->unnamed_interfaces, NULL);
1431 ralloc_free(this->mem_ctx);
1432 }
1433
1434 virtual ir_visitor_status visit(ir_variable *var)
1435 {
1436 const glsl_type *type_without_array;
1437 bool implicit_sized_array = var->data.implicit_sized_array;
1438 fixup_type(&var->type, var->data.max_array_access,
1439 var->data.from_ssbo_unsized_array,
1440 &implicit_sized_array);
1441 var->data.implicit_sized_array = implicit_sized_array;
1442 type_without_array = var->type->without_array();
1443 if (var->type->is_interface()) {
1444 if (interface_contains_unsized_arrays(var->type)) {
1445 const glsl_type *new_type =
1446 resize_interface_members(var->type,
1447 var->get_max_ifc_array_access(),
1448 var->is_in_shader_storage_block());
1449 var->type = new_type;
1450 var->change_interface_type(new_type);
1451 }
1452 } else if (type_without_array->is_interface()) {
1453 if (interface_contains_unsized_arrays(type_without_array)) {
1454 const glsl_type *new_type =
1455 resize_interface_members(type_without_array,
1456 var->get_max_ifc_array_access(),
1457 var->is_in_shader_storage_block());
1458 var->change_interface_type(new_type);
1459 var->type = update_interface_members_array(var->type, new_type);
1460 }
1461 } else if (const glsl_type *ifc_type = var->get_interface_type()) {
1462 /* Store a pointer to the variable in the unnamed_interfaces
1463 * hashtable.
1464 */
1465 hash_entry *entry =
1466 _mesa_hash_table_search(this->unnamed_interfaces,
1467 ifc_type);
1468
1469 ir_variable **interface_vars = entry ? (ir_variable **) entry->data : NULL;
1470
1471 if (interface_vars == NULL) {
1472 interface_vars = rzalloc_array(mem_ctx, ir_variable *,
1473 ifc_type->length);
1474 _mesa_hash_table_insert(this->unnamed_interfaces, ifc_type,
1475 interface_vars);
1476 }
1477 unsigned index = ifc_type->field_index(var->name);
1478 assert(index < ifc_type->length);
1479 assert(interface_vars[index] == NULL);
1480 interface_vars[index] = var;
1481 }
1482 return visit_continue;
1483 }
1484
1485 /**
1486 * For each unnamed interface block that was discovered while running the
1487 * visitor, adjust the interface type to reflect the newly assigned array
1488 * sizes, and fix up the ir_variable nodes to point to the new interface
1489 * type.
1490 */
1491 void fixup_unnamed_interface_types()
1492 {
1493 hash_table_call_foreach(this->unnamed_interfaces,
1494 fixup_unnamed_interface_type, NULL);
1495 }
1496
1497 private:
1498 /**
1499 * If the type pointed to by \c type represents an unsized array, replace
1500 * it with a sized array whose size is determined by max_array_access.
1501 */
1502 static void fixup_type(const glsl_type **type, unsigned max_array_access,
1503 bool from_ssbo_unsized_array, bool *implicit_sized)
1504 {
1505 if (!from_ssbo_unsized_array && (*type)->is_unsized_array()) {
1506 *type = glsl_type::get_array_instance((*type)->fields.array,
1507 max_array_access + 1);
1508 *implicit_sized = true;
1509 assert(*type != NULL);
1510 }
1511 }
1512
1513 static const glsl_type *
1514 update_interface_members_array(const glsl_type *type,
1515 const glsl_type *new_interface_type)
1516 {
1517 const glsl_type *element_type = type->fields.array;
1518 if (element_type->is_array()) {
1519 const glsl_type *new_array_type =
1520 update_interface_members_array(element_type, new_interface_type);
1521 return glsl_type::get_array_instance(new_array_type, type->length);
1522 } else {
1523 return glsl_type::get_array_instance(new_interface_type,
1524 type->length);
1525 }
1526 }
1527
1528 /**
1529 * Determine whether the given interface type contains unsized arrays (if
1530 * it doesn't, array_sizing_visitor doesn't need to process it).
1531 */
1532 static bool interface_contains_unsized_arrays(const glsl_type *type)
1533 {
1534 for (unsigned i = 0; i < type->length; i++) {
1535 const glsl_type *elem_type = type->fields.structure[i].type;
1536 if (elem_type->is_unsized_array())
1537 return true;
1538 }
1539 return false;
1540 }
1541
1542 /**
1543 * Create a new interface type based on the given type, with unsized arrays
1544 * replaced by sized arrays whose size is determined by
1545 * max_ifc_array_access.
1546 */
1547 static const glsl_type *
1548 resize_interface_members(const glsl_type *type,
1549 const int *max_ifc_array_access,
1550 bool is_ssbo)
1551 {
1552 unsigned num_fields = type->length;
1553 glsl_struct_field *fields = new glsl_struct_field[num_fields];
1554 memcpy(fields, type->fields.structure,
1555 num_fields * sizeof(*fields));
1556 for (unsigned i = 0; i < num_fields; i++) {
1557 bool implicit_sized_array = fields[i].implicit_sized_array;
1558 /* If SSBO last member is unsized array, we don't replace it by a sized
1559 * array.
1560 */
1561 if (is_ssbo && i == (num_fields - 1))
1562 fixup_type(&fields[i].type, max_ifc_array_access[i],
1563 true, &implicit_sized_array);
1564 else
1565 fixup_type(&fields[i].type, max_ifc_array_access[i],
1566 false, &implicit_sized_array);
1567 fields[i].implicit_sized_array = implicit_sized_array;
1568 }
1569 glsl_interface_packing packing =
1570 (glsl_interface_packing) type->interface_packing;
1571 bool row_major = (bool) type->interface_row_major;
1572 const glsl_type *new_ifc_type =
1573 glsl_type::get_interface_instance(fields, num_fields,
1574 packing, row_major, type->name);
1575 delete [] fields;
1576 return new_ifc_type;
1577 }
1578
1579 static void fixup_unnamed_interface_type(const void *key, void *data,
1580 void *)
1581 {
1582 const glsl_type *ifc_type = (const glsl_type *) key;
1583 ir_variable **interface_vars = (ir_variable **) data;
1584 unsigned num_fields = ifc_type->length;
1585 glsl_struct_field *fields = new glsl_struct_field[num_fields];
1586 memcpy(fields, ifc_type->fields.structure,
1587 num_fields * sizeof(*fields));
1588 bool interface_type_changed = false;
1589 for (unsigned i = 0; i < num_fields; i++) {
1590 if (interface_vars[i] != NULL &&
1591 fields[i].type != interface_vars[i]->type) {
1592 fields[i].type = interface_vars[i]->type;
1593 interface_type_changed = true;
1594 }
1595 }
1596 if (!interface_type_changed) {
1597 delete [] fields;
1598 return;
1599 }
1600 glsl_interface_packing packing =
1601 (glsl_interface_packing) ifc_type->interface_packing;
1602 bool row_major = (bool) ifc_type->interface_row_major;
1603 const glsl_type *new_ifc_type =
1604 glsl_type::get_interface_instance(fields, num_fields, packing,
1605 row_major, ifc_type->name);
1606 delete [] fields;
1607 for (unsigned i = 0; i < num_fields; i++) {
1608 if (interface_vars[i] != NULL)
1609 interface_vars[i]->change_interface_type(new_ifc_type);
1610 }
1611 }
1612
1613 /**
1614 * Memory context used to allocate the data in \c unnamed_interfaces.
1615 */
1616 void *mem_ctx;
1617
1618 /**
1619 * Hash table from const glsl_type * to an array of ir_variable *'s
1620 * pointing to the ir_variables constituting each unnamed interface block.
1621 */
1622 hash_table *unnamed_interfaces;
1623 };
1624
1625 static bool
1626 validate_xfb_buffer_stride(struct gl_context *ctx, unsigned idx,
1627 struct gl_shader_program *prog)
1628 {
1629 /* We will validate doubles at a later stage */
1630 if (prog->TransformFeedback.BufferStride[idx] % 4) {
1631 linker_error(prog, "invalid qualifier xfb_stride=%d must be a "
1632 "multiple of 4 or if its applied to a type that is "
1633 "or contains a double a multiple of 8.",
1634 prog->TransformFeedback.BufferStride[idx]);
1635 return false;
1636 }
1637
1638 if (prog->TransformFeedback.BufferStride[idx] / 4 >
1639 ctx->Const.MaxTransformFeedbackInterleavedComponents) {
1640 linker_error(prog, "The MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS "
1641 "limit has been exceeded.");
1642 return false;
1643 }
1644
1645 return true;
1646 }
1647
1648 /**
1649 * Check for conflicting xfb_stride default qualifiers and store buffer stride
1650 * for later use.
1651 */
1652 static void
1653 link_xfb_stride_layout_qualifiers(struct gl_context *ctx,
1654 struct gl_shader_program *prog,
1655 struct gl_shader **shader_list,
1656 unsigned num_shaders)
1657 {
1658 for (unsigned i = 0; i < MAX_FEEDBACK_BUFFERS; i++) {
1659 prog->TransformFeedback.BufferStride[i] = 0;
1660 }
1661
1662 for (unsigned i = 0; i < num_shaders; i++) {
1663 struct gl_shader *shader = shader_list[i];
1664
1665 for (unsigned j = 0; j < MAX_FEEDBACK_BUFFERS; j++) {
1666 if (shader->TransformFeedbackBufferStride[j]) {
1667 if (prog->TransformFeedback.BufferStride[j] == 0) {
1668 prog->TransformFeedback.BufferStride[j] =
1669 shader->TransformFeedbackBufferStride[j];
1670 if (!validate_xfb_buffer_stride(ctx, j, prog))
1671 return;
1672 } else if (prog->TransformFeedback.BufferStride[j] !=
1673 shader->TransformFeedbackBufferStride[j]){
1674 linker_error(prog,
1675 "intrastage shaders defined with conflicting "
1676 "xfb_stride for buffer %d (%d and %d)\n", j,
1677 prog->TransformFeedback.BufferStride[j],
1678 shader->TransformFeedbackBufferStride[j]);
1679 return;
1680 }
1681 }
1682 }
1683 }
1684 }
1685
1686 /**
1687 * Check for conflicting bindless/bound sampler/image layout qualifiers at
1688 * global scope.
1689 */
1690 static void
1691 link_bindless_layout_qualifiers(struct gl_shader_program *prog,
1692 struct gl_shader **shader_list,
1693 unsigned num_shaders)
1694 {
1695 bool bindless_sampler, bindless_image;
1696 bool bound_sampler, bound_image;
1697
1698 bindless_sampler = bindless_image = false;
1699 bound_sampler = bound_image = false;
1700
1701 for (unsigned i = 0; i < num_shaders; i++) {
1702 struct gl_shader *shader = shader_list[i];
1703
1704 if (shader->bindless_sampler)
1705 bindless_sampler = true;
1706 if (shader->bindless_image)
1707 bindless_image = true;
1708 if (shader->bound_sampler)
1709 bound_sampler = true;
1710 if (shader->bound_image)
1711 bound_image = true;
1712
1713 if ((bindless_sampler && bound_sampler) ||
1714 (bindless_image && bound_image)) {
1715 /* From section 4.4.6 of the ARB_bindless_texture spec:
1716 *
1717 * "If both bindless_sampler and bound_sampler, or bindless_image
1718 * and bound_image, are declared at global scope in any
1719 * compilation unit, a link- time error will be generated."
1720 */
1721 linker_error(prog, "both bindless_sampler and bound_sampler, or "
1722 "bindless_image and bound_image, can't be declared at "
1723 "global scope");
1724 }
1725 }
1726 }
1727
1728 /**
1729 * Performs the cross-validation of tessellation control shader vertices and
1730 * layout qualifiers for the attached tessellation control shaders,
1731 * and propagates them to the linked TCS and linked shader program.
1732 */
1733 static void
1734 link_tcs_out_layout_qualifiers(struct gl_shader_program *prog,
1735 struct gl_program *gl_prog,
1736 struct gl_shader **shader_list,
1737 unsigned num_shaders)
1738 {
1739 if (gl_prog->info.stage != MESA_SHADER_TESS_CTRL)
1740 return;
1741
1742 gl_prog->info.tess.tcs_vertices_out = 0;
1743
1744 /* From the GLSL 4.0 spec (chapter 4.3.8.2):
1745 *
1746 * "All tessellation control shader layout declarations in a program
1747 * must specify the same output patch vertex count. There must be at
1748 * least one layout qualifier specifying an output patch vertex count
1749 * in any program containing tessellation control shaders; however,
1750 * such a declaration is not required in all tessellation control
1751 * shaders."
1752 */
1753
1754 for (unsigned i = 0; i < num_shaders; i++) {
1755 struct gl_shader *shader = shader_list[i];
1756
1757 if (shader->info.TessCtrl.VerticesOut != 0) {
1758 if (gl_prog->info.tess.tcs_vertices_out != 0 &&
1759 gl_prog->info.tess.tcs_vertices_out !=
1760 (unsigned) shader->info.TessCtrl.VerticesOut) {
1761 linker_error(prog, "tessellation control shader defined with "
1762 "conflicting output vertex count (%d and %d)\n",
1763 gl_prog->info.tess.tcs_vertices_out,
1764 shader->info.TessCtrl.VerticesOut);
1765 return;
1766 }
1767 gl_prog->info.tess.tcs_vertices_out =
1768 shader->info.TessCtrl.VerticesOut;
1769 }
1770 }
1771
1772 /* Just do the intrastage -> interstage propagation right now,
1773 * since we already know we're in the right type of shader program
1774 * for doing it.
1775 */
1776 if (gl_prog->info.tess.tcs_vertices_out == 0) {
1777 linker_error(prog, "tessellation control shader didn't declare "
1778 "vertices out layout qualifier\n");
1779 return;
1780 }
1781 }
1782
1783
1784 /**
1785 * Performs the cross-validation of tessellation evaluation shader
1786 * primitive type, vertex spacing, ordering and point_mode layout qualifiers
1787 * for the attached tessellation evaluation shaders, and propagates them
1788 * to the linked TES and linked shader program.
1789 */
1790 static void
1791 link_tes_in_layout_qualifiers(struct gl_shader_program *prog,
1792 struct gl_program *gl_prog,
1793 struct gl_shader **shader_list,
1794 unsigned num_shaders)
1795 {
1796 if (gl_prog->info.stage != MESA_SHADER_TESS_EVAL)
1797 return;
1798
1799 int point_mode = -1;
1800 unsigned vertex_order = 0;
1801
1802 gl_prog->info.tess.primitive_mode = PRIM_UNKNOWN;
1803 gl_prog->info.tess.spacing = TESS_SPACING_UNSPECIFIED;
1804
1805 /* From the GLSL 4.0 spec (chapter 4.3.8.1):
1806 *
1807 * "At least one tessellation evaluation shader (compilation unit) in
1808 * a program must declare a primitive mode in its input layout.
1809 * Declaration vertex spacing, ordering, and point mode identifiers is
1810 * optional. It is not required that all tessellation evaluation
1811 * shaders in a program declare a primitive mode. If spacing or
1812 * vertex ordering declarations are omitted, the tessellation
1813 * primitive generator will use equal spacing or counter-clockwise
1814 * vertex ordering, respectively. If a point mode declaration is
1815 * omitted, the tessellation primitive generator will produce lines or
1816 * triangles according to the primitive mode."
1817 */
1818
1819 for (unsigned i = 0; i < num_shaders; i++) {
1820 struct gl_shader *shader = shader_list[i];
1821
1822 if (shader->info.TessEval.PrimitiveMode != PRIM_UNKNOWN) {
1823 if (gl_prog->info.tess.primitive_mode != PRIM_UNKNOWN &&
1824 gl_prog->info.tess.primitive_mode !=
1825 shader->info.TessEval.PrimitiveMode) {
1826 linker_error(prog, "tessellation evaluation shader defined with "
1827 "conflicting input primitive modes.\n");
1828 return;
1829 }
1830 gl_prog->info.tess.primitive_mode =
1831 shader->info.TessEval.PrimitiveMode;
1832 }
1833
1834 if (shader->info.TessEval.Spacing != 0) {
1835 if (gl_prog->info.tess.spacing != 0 && gl_prog->info.tess.spacing !=
1836 shader->info.TessEval.Spacing) {
1837 linker_error(prog, "tessellation evaluation shader defined with "
1838 "conflicting vertex spacing.\n");
1839 return;
1840 }
1841 gl_prog->info.tess.spacing = shader->info.TessEval.Spacing;
1842 }
1843
1844 if (shader->info.TessEval.VertexOrder != 0) {
1845 if (vertex_order != 0 &&
1846 vertex_order != shader->info.TessEval.VertexOrder) {
1847 linker_error(prog, "tessellation evaluation shader defined with "
1848 "conflicting ordering.\n");
1849 return;
1850 }
1851 vertex_order = shader->info.TessEval.VertexOrder;
1852 }
1853
1854 if (shader->info.TessEval.PointMode != -1) {
1855 if (point_mode != -1 &&
1856 point_mode != shader->info.TessEval.PointMode) {
1857 linker_error(prog, "tessellation evaluation shader defined with "
1858 "conflicting point modes.\n");
1859 return;
1860 }
1861 point_mode = shader->info.TessEval.PointMode;
1862 }
1863
1864 }
1865
1866 /* Just do the intrastage -> interstage propagation right now,
1867 * since we already know we're in the right type of shader program
1868 * for doing it.
1869 */
1870 if (gl_prog->info.tess.primitive_mode == PRIM_UNKNOWN) {
1871 linker_error(prog,
1872 "tessellation evaluation shader didn't declare input "
1873 "primitive modes.\n");
1874 return;
1875 }
1876
1877 if (gl_prog->info.tess.spacing == TESS_SPACING_UNSPECIFIED)
1878 gl_prog->info.tess.spacing = TESS_SPACING_EQUAL;
1879
1880 if (vertex_order == 0 || vertex_order == GL_CCW)
1881 gl_prog->info.tess.ccw = true;
1882 else
1883 gl_prog->info.tess.ccw = false;
1884
1885
1886 if (point_mode == -1 || point_mode == GL_FALSE)
1887 gl_prog->info.tess.point_mode = false;
1888 else
1889 gl_prog->info.tess.point_mode = true;
1890 }
1891
1892
1893 /**
1894 * Performs the cross-validation of layout qualifiers specified in
1895 * redeclaration of gl_FragCoord for the attached fragment shaders,
1896 * and propagates them to the linked FS and linked shader program.
1897 */
1898 static void
1899 link_fs_inout_layout_qualifiers(struct gl_shader_program *prog,
1900 struct gl_linked_shader *linked_shader,
1901 struct gl_shader **shader_list,
1902 unsigned num_shaders)
1903 {
1904 bool redeclares_gl_fragcoord = false;
1905 bool uses_gl_fragcoord = false;
1906 bool origin_upper_left = false;
1907 bool pixel_center_integer = false;
1908
1909 if (linked_shader->Stage != MESA_SHADER_FRAGMENT ||
1910 (prog->data->Version < 150 &&
1911 !prog->ARB_fragment_coord_conventions_enable))
1912 return;
1913
1914 for (unsigned i = 0; i < num_shaders; i++) {
1915 struct gl_shader *shader = shader_list[i];
1916 /* From the GLSL 1.50 spec, page 39:
1917 *
1918 * "If gl_FragCoord is redeclared in any fragment shader in a program,
1919 * it must be redeclared in all the fragment shaders in that program
1920 * that have a static use gl_FragCoord."
1921 */
1922 if ((redeclares_gl_fragcoord && !shader->redeclares_gl_fragcoord &&
1923 shader->uses_gl_fragcoord)
1924 || (shader->redeclares_gl_fragcoord && !redeclares_gl_fragcoord &&
1925 uses_gl_fragcoord)) {
1926 linker_error(prog, "fragment shader defined with conflicting "
1927 "layout qualifiers for gl_FragCoord\n");
1928 }
1929
1930 /* From the GLSL 1.50 spec, page 39:
1931 *
1932 * "All redeclarations of gl_FragCoord in all fragment shaders in a
1933 * single program must have the same set of qualifiers."
1934 */
1935 if (redeclares_gl_fragcoord && shader->redeclares_gl_fragcoord &&
1936 (shader->origin_upper_left != origin_upper_left ||
1937 shader->pixel_center_integer != pixel_center_integer)) {
1938 linker_error(prog, "fragment shader defined with conflicting "
1939 "layout qualifiers for gl_FragCoord\n");
1940 }
1941
1942 /* Update the linked shader state. Note that uses_gl_fragcoord should
1943 * accumulate the results. The other values should replace. If there
1944 * are multiple redeclarations, all the fields except uses_gl_fragcoord
1945 * are already known to be the same.
1946 */
1947 if (shader->redeclares_gl_fragcoord || shader->uses_gl_fragcoord) {
1948 redeclares_gl_fragcoord = shader->redeclares_gl_fragcoord;
1949 uses_gl_fragcoord |= shader->uses_gl_fragcoord;
1950 origin_upper_left = shader->origin_upper_left;
1951 pixel_center_integer = shader->pixel_center_integer;
1952 }
1953
1954 linked_shader->Program->info.fs.early_fragment_tests |=
1955 shader->EarlyFragmentTests || shader->PostDepthCoverage;
1956 linked_shader->Program->info.fs.inner_coverage |= shader->InnerCoverage;
1957 linked_shader->Program->info.fs.post_depth_coverage |=
1958 shader->PostDepthCoverage;
1959
1960 linked_shader->Program->sh.fs.BlendSupport |= shader->BlendSupport;
1961 }
1962 }
1963
1964 /**
1965 * Performs the cross-validation of geometry shader max_vertices and
1966 * primitive type layout qualifiers for the attached geometry shaders,
1967 * and propagates them to the linked GS and linked shader program.
1968 */
1969 static void
1970 link_gs_inout_layout_qualifiers(struct gl_shader_program *prog,
1971 struct gl_program *gl_prog,
1972 struct gl_shader **shader_list,
1973 unsigned num_shaders)
1974 {
1975 /* No in/out qualifiers defined for anything but GLSL 1.50+
1976 * geometry shaders so far.
1977 */
1978 if (gl_prog->info.stage != MESA_SHADER_GEOMETRY ||
1979 prog->data->Version < 150)
1980 return;
1981
1982 int vertices_out = -1;
1983
1984 gl_prog->info.gs.invocations = 0;
1985 gl_prog->info.gs.input_primitive = PRIM_UNKNOWN;
1986 gl_prog->info.gs.output_primitive = PRIM_UNKNOWN;
1987
1988 /* From the GLSL 1.50 spec, page 46:
1989 *
1990 * "All geometry shader output layout declarations in a program
1991 * must declare the same layout and same value for
1992 * max_vertices. There must be at least one geometry output
1993 * layout declaration somewhere in a program, but not all
1994 * geometry shaders (compilation units) are required to
1995 * declare it."
1996 */
1997
1998 for (unsigned i = 0; i < num_shaders; i++) {
1999 struct gl_shader *shader = shader_list[i];
2000
2001 if (shader->info.Geom.InputType != PRIM_UNKNOWN) {
2002 if (gl_prog->info.gs.input_primitive != PRIM_UNKNOWN &&
2003 gl_prog->info.gs.input_primitive !=
2004 shader->info.Geom.InputType) {
2005 linker_error(prog, "geometry shader defined with conflicting "
2006 "input types\n");
2007 return;
2008 }
2009 gl_prog->info.gs.input_primitive = shader->info.Geom.InputType;
2010 }
2011
2012 if (shader->info.Geom.OutputType != PRIM_UNKNOWN) {
2013 if (gl_prog->info.gs.output_primitive != PRIM_UNKNOWN &&
2014 gl_prog->info.gs.output_primitive !=
2015 shader->info.Geom.OutputType) {
2016 linker_error(prog, "geometry shader defined with conflicting "
2017 "output types\n");
2018 return;
2019 }
2020 gl_prog->info.gs.output_primitive = shader->info.Geom.OutputType;
2021 }
2022
2023 if (shader->info.Geom.VerticesOut != -1) {
2024 if (vertices_out != -1 &&
2025 vertices_out != shader->info.Geom.VerticesOut) {
2026 linker_error(prog, "geometry shader defined with conflicting "
2027 "output vertex count (%d and %d)\n",
2028 vertices_out, shader->info.Geom.VerticesOut);
2029 return;
2030 }
2031 vertices_out = shader->info.Geom.VerticesOut;
2032 }
2033
2034 if (shader->info.Geom.Invocations != 0) {
2035 if (gl_prog->info.gs.invocations != 0 &&
2036 gl_prog->info.gs.invocations !=
2037 (unsigned) shader->info.Geom.Invocations) {
2038 linker_error(prog, "geometry shader defined with conflicting "
2039 "invocation count (%d and %d)\n",
2040 gl_prog->info.gs.invocations,
2041 shader->info.Geom.Invocations);
2042 return;
2043 }
2044 gl_prog->info.gs.invocations = shader->info.Geom.Invocations;
2045 }
2046 }
2047
2048 /* Just do the intrastage -> interstage propagation right now,
2049 * since we already know we're in the right type of shader program
2050 * for doing it.
2051 */
2052 if (gl_prog->info.gs.input_primitive == PRIM_UNKNOWN) {
2053 linker_error(prog,
2054 "geometry shader didn't declare primitive input type\n");
2055 return;
2056 }
2057
2058 if (gl_prog->info.gs.output_primitive == PRIM_UNKNOWN) {
2059 linker_error(prog,
2060 "geometry shader didn't declare primitive output type\n");
2061 return;
2062 }
2063
2064 if (vertices_out == -1) {
2065 linker_error(prog,
2066 "geometry shader didn't declare max_vertices\n");
2067 return;
2068 } else {
2069 gl_prog->info.gs.vertices_out = vertices_out;
2070 }
2071
2072 if (gl_prog->info.gs.invocations == 0)
2073 gl_prog->info.gs.invocations = 1;
2074 }
2075
2076
2077 /**
2078 * Perform cross-validation of compute shader local_size_{x,y,z} layout
2079 * qualifiers for the attached compute shaders, and propagate them to the
2080 * linked CS and linked shader program.
2081 */
2082 static void
2083 link_cs_input_layout_qualifiers(struct gl_shader_program *prog,
2084 struct gl_program *gl_prog,
2085 struct gl_shader **shader_list,
2086 unsigned num_shaders)
2087 {
2088 /* This function is called for all shader stages, but it only has an effect
2089 * for compute shaders.
2090 */
2091 if (gl_prog->info.stage != MESA_SHADER_COMPUTE)
2092 return;
2093
2094 for (int i = 0; i < 3; i++)
2095 gl_prog->info.cs.local_size[i] = 0;
2096
2097 gl_prog->info.cs.local_size_variable = false;
2098
2099 /* From the ARB_compute_shader spec, in the section describing local size
2100 * declarations:
2101 *
2102 * If multiple compute shaders attached to a single program object
2103 * declare local work-group size, the declarations must be identical;
2104 * otherwise a link-time error results. Furthermore, if a program
2105 * object contains any compute shaders, at least one must contain an
2106 * input layout qualifier specifying the local work sizes of the
2107 * program, or a link-time error will occur.
2108 */
2109 for (unsigned sh = 0; sh < num_shaders; sh++) {
2110 struct gl_shader *shader = shader_list[sh];
2111
2112 if (shader->info.Comp.LocalSize[0] != 0) {
2113 if (gl_prog->info.cs.local_size[0] != 0) {
2114 for (int i = 0; i < 3; i++) {
2115 if (gl_prog->info.cs.local_size[i] !=
2116 shader->info.Comp.LocalSize[i]) {
2117 linker_error(prog, "compute shader defined with conflicting "
2118 "local sizes\n");
2119 return;
2120 }
2121 }
2122 }
2123 for (int i = 0; i < 3; i++) {
2124 gl_prog->info.cs.local_size[i] =
2125 shader->info.Comp.LocalSize[i];
2126 }
2127 } else if (shader->info.Comp.LocalSizeVariable) {
2128 if (gl_prog->info.cs.local_size[0] != 0) {
2129 /* The ARB_compute_variable_group_size spec says:
2130 *
2131 * If one compute shader attached to a program declares a
2132 * variable local group size and a second compute shader
2133 * attached to the same program declares a fixed local group
2134 * size, a link-time error results.
2135 */
2136 linker_error(prog, "compute shader defined with both fixed and "
2137 "variable local group size\n");
2138 return;
2139 }
2140 gl_prog->info.cs.local_size_variable = true;
2141 }
2142 }
2143
2144 /* Just do the intrastage -> interstage propagation right now,
2145 * since we already know we're in the right type of shader program
2146 * for doing it.
2147 */
2148 if (gl_prog->info.cs.local_size[0] == 0 &&
2149 !gl_prog->info.cs.local_size_variable) {
2150 linker_error(prog, "compute shader must contain a fixed or a variable "
2151 "local group size\n");
2152 return;
2153 }
2154 }
2155
2156
2157 /**
2158 * Combine a group of shaders for a single stage to generate a linked shader
2159 *
2160 * \note
2161 * If this function is supplied a single shader, it is cloned, and the new
2162 * shader is returned.
2163 */
2164 struct gl_linked_shader *
2165 link_intrastage_shaders(void *mem_ctx,
2166 struct gl_context *ctx,
2167 struct gl_shader_program *prog,
2168 struct gl_shader **shader_list,
2169 unsigned num_shaders,
2170 bool allow_missing_main)
2171 {
2172 struct gl_uniform_block *ubo_blocks = NULL;
2173 struct gl_uniform_block *ssbo_blocks = NULL;
2174 unsigned num_ubo_blocks = 0;
2175 unsigned num_ssbo_blocks = 0;
2176
2177 /* Check that global variables defined in multiple shaders are consistent.
2178 */
2179 glsl_symbol_table variables;
2180 for (unsigned i = 0; i < num_shaders; i++) {
2181 if (shader_list[i] == NULL)
2182 continue;
2183 cross_validate_globals(prog, shader_list[i]->ir, &variables, false);
2184 }
2185
2186 if (!prog->data->LinkStatus)
2187 return NULL;
2188
2189 /* Check that interface blocks defined in multiple shaders are consistent.
2190 */
2191 validate_intrastage_interface_blocks(prog, (const gl_shader **)shader_list,
2192 num_shaders);
2193 if (!prog->data->LinkStatus)
2194 return NULL;
2195
2196 /* Check that there is only a single definition of each function signature
2197 * across all shaders.
2198 */
2199 for (unsigned i = 0; i < (num_shaders - 1); i++) {
2200 foreach_in_list(ir_instruction, node, shader_list[i]->ir) {
2201 ir_function *const f = node->as_function();
2202
2203 if (f == NULL)
2204 continue;
2205
2206 for (unsigned j = i + 1; j < num_shaders; j++) {
2207 ir_function *const other =
2208 shader_list[j]->symbols->get_function(f->name);
2209
2210 /* If the other shader has no function (and therefore no function
2211 * signatures) with the same name, skip to the next shader.
2212 */
2213 if (other == NULL)
2214 continue;
2215
2216 foreach_in_list(ir_function_signature, sig, &f->signatures) {
2217 if (!sig->is_defined)
2218 continue;
2219
2220 ir_function_signature *other_sig =
2221 other->exact_matching_signature(NULL, &sig->parameters);
2222
2223 if (other_sig != NULL && other_sig->is_defined) {
2224 linker_error(prog, "function `%s' is multiply defined\n",
2225 f->name);
2226 return NULL;
2227 }
2228 }
2229 }
2230 }
2231 }
2232
2233 /* Find the shader that defines main, and make a clone of it.
2234 *
2235 * Starting with the clone, search for undefined references. If one is
2236 * found, find the shader that defines it. Clone the reference and add
2237 * it to the shader. Repeat until there are no undefined references or
2238 * until a reference cannot be resolved.
2239 */
2240 gl_shader *main = NULL;
2241 for (unsigned i = 0; i < num_shaders; i++) {
2242 if (_mesa_get_main_function_signature(shader_list[i]->symbols)) {
2243 main = shader_list[i];
2244 break;
2245 }
2246 }
2247
2248 if (main == NULL && allow_missing_main)
2249 main = shader_list[0];
2250
2251 if (main == NULL) {
2252 linker_error(prog, "%s shader lacks `main'\n",
2253 _mesa_shader_stage_to_string(shader_list[0]->Stage));
2254 return NULL;
2255 }
2256
2257 gl_linked_shader *linked = rzalloc(NULL, struct gl_linked_shader);
2258 linked->Stage = shader_list[0]->Stage;
2259
2260 /* Create program and attach it to the linked shader */
2261 struct gl_program *gl_prog =
2262 ctx->Driver.NewProgram(ctx,
2263 _mesa_shader_stage_to_program(shader_list[0]->Stage),
2264 prog->Name, false);
2265 if (!gl_prog) {
2266 prog->data->LinkStatus = linking_failure;
2267 _mesa_delete_linked_shader(ctx, linked);
2268 return NULL;
2269 }
2270
2271 if (!prog->data->cache_fallback)
2272 _mesa_reference_shader_program_data(ctx, &gl_prog->sh.data, prog->data);
2273
2274 /* Don't use _mesa_reference_program() just take ownership */
2275 linked->Program = gl_prog;
2276
2277 linked->ir = new(linked) exec_list;
2278 clone_ir_list(mem_ctx, linked->ir, main->ir);
2279
2280 link_fs_inout_layout_qualifiers(prog, linked, shader_list, num_shaders);
2281 link_tcs_out_layout_qualifiers(prog, gl_prog, shader_list, num_shaders);
2282 link_tes_in_layout_qualifiers(prog, gl_prog, shader_list, num_shaders);
2283 link_gs_inout_layout_qualifiers(prog, gl_prog, shader_list, num_shaders);
2284 link_cs_input_layout_qualifiers(prog, gl_prog, shader_list, num_shaders);
2285
2286 if (linked->Stage != MESA_SHADER_FRAGMENT)
2287 link_xfb_stride_layout_qualifiers(ctx, prog, shader_list, num_shaders);
2288
2289 link_bindless_layout_qualifiers(prog, shader_list, num_shaders);
2290
2291 populate_symbol_table(linked);
2292
2293 /* The pointer to the main function in the final linked shader (i.e., the
2294 * copy of the original shader that contained the main function).
2295 */
2296 ir_function_signature *const main_sig =
2297 _mesa_get_main_function_signature(linked->symbols);
2298
2299 /* Move any instructions other than variable declarations or function
2300 * declarations into main.
2301 */
2302 if (main_sig != NULL) {
2303 exec_node *insertion_point =
2304 move_non_declarations(linked->ir, (exec_node *) &main_sig->body, false,
2305 linked);
2306
2307 for (unsigned i = 0; i < num_shaders; i++) {
2308 if (shader_list[i] == main)
2309 continue;
2310
2311 insertion_point = move_non_declarations(shader_list[i]->ir,
2312 insertion_point, true, linked);
2313 }
2314 }
2315
2316 if (!link_function_calls(prog, linked, shader_list, num_shaders)) {
2317 _mesa_delete_linked_shader(ctx, linked);
2318 return NULL;
2319 }
2320
2321 /* Make a pass over all variable declarations to ensure that arrays with
2322 * unspecified sizes have a size specified. The size is inferred from the
2323 * max_array_access field.
2324 */
2325 array_sizing_visitor v;
2326 v.run(linked->ir);
2327 v.fixup_unnamed_interface_types();
2328
2329 if (!prog->data->cache_fallback) {
2330 /* Link up uniform blocks defined within this stage. */
2331 link_uniform_blocks(mem_ctx, ctx, prog, linked, &ubo_blocks,
2332 &num_ubo_blocks, &ssbo_blocks, &num_ssbo_blocks);
2333
2334 if (!prog->data->LinkStatus) {
2335 _mesa_delete_linked_shader(ctx, linked);
2336 return NULL;
2337 }
2338
2339 /* Copy ubo blocks to linked shader list */
2340 linked->Program->sh.UniformBlocks =
2341 ralloc_array(linked, gl_uniform_block *, num_ubo_blocks);
2342 ralloc_steal(linked, ubo_blocks);
2343 for (unsigned i = 0; i < num_ubo_blocks; i++) {
2344 linked->Program->sh.UniformBlocks[i] = &ubo_blocks[i];
2345 }
2346 linked->Program->info.num_ubos = num_ubo_blocks;
2347
2348 /* Copy ssbo blocks to linked shader list */
2349 linked->Program->sh.ShaderStorageBlocks =
2350 ralloc_array(linked, gl_uniform_block *, num_ssbo_blocks);
2351 ralloc_steal(linked, ssbo_blocks);
2352 for (unsigned i = 0; i < num_ssbo_blocks; i++) {
2353 linked->Program->sh.ShaderStorageBlocks[i] = &ssbo_blocks[i];
2354 }
2355 linked->Program->info.num_ssbos = num_ssbo_blocks;
2356 }
2357
2358 /* At this point linked should contain all of the linked IR, so
2359 * validate it to make sure nothing went wrong.
2360 */
2361 validate_ir_tree(linked->ir);
2362
2363 /* Set the size of geometry shader input arrays */
2364 if (linked->Stage == MESA_SHADER_GEOMETRY) {
2365 unsigned num_vertices =
2366 vertices_per_prim(gl_prog->info.gs.input_primitive);
2367 array_resize_visitor input_resize_visitor(num_vertices, prog,
2368 MESA_SHADER_GEOMETRY);
2369 foreach_in_list(ir_instruction, ir, linked->ir) {
2370 ir->accept(&input_resize_visitor);
2371 }
2372 }
2373
2374 if (ctx->Const.VertexID_is_zero_based)
2375 lower_vertex_id(linked);
2376
2377 if (ctx->Const.LowerCsDerivedVariables)
2378 lower_cs_derived(linked);
2379
2380 #ifdef DEBUG
2381 /* Compute the source checksum. */
2382 linked->SourceChecksum = 0;
2383 for (unsigned i = 0; i < num_shaders; i++) {
2384 if (shader_list[i] == NULL)
2385 continue;
2386 linked->SourceChecksum ^= shader_list[i]->SourceChecksum;
2387 }
2388 #endif
2389
2390 return linked;
2391 }
2392
2393 /**
2394 * Update the sizes of linked shader uniform arrays to the maximum
2395 * array index used.
2396 *
2397 * From page 81 (page 95 of the PDF) of the OpenGL 2.1 spec:
2398 *
2399 * If one or more elements of an array are active,
2400 * GetActiveUniform will return the name of the array in name,
2401 * subject to the restrictions listed above. The type of the array
2402 * is returned in type. The size parameter contains the highest
2403 * array element index used, plus one. The compiler or linker
2404 * determines the highest index used. There will be only one
2405 * active uniform reported by the GL per uniform array.
2406
2407 */
2408 static void
2409 update_array_sizes(struct gl_shader_program *prog)
2410 {
2411 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
2412 if (prog->_LinkedShaders[i] == NULL)
2413 continue;
2414
2415 bool types_were_updated = false;
2416
2417 foreach_in_list(ir_instruction, node, prog->_LinkedShaders[i]->ir) {
2418 ir_variable *const var = node->as_variable();
2419
2420 if ((var == NULL) || (var->data.mode != ir_var_uniform) ||
2421 !var->type->is_array())
2422 continue;
2423
2424 /* GL_ARB_uniform_buffer_object says that std140 uniforms
2425 * will not be eliminated. Since we always do std140, just
2426 * don't resize arrays in UBOs.
2427 *
2428 * Atomic counters are supposed to get deterministic
2429 * locations assigned based on the declaration ordering and
2430 * sizes, array compaction would mess that up.
2431 *
2432 * Subroutine uniforms are not removed.
2433 */
2434 if (var->is_in_buffer_block() || var->type->contains_atomic() ||
2435 var->type->contains_subroutine() || var->constant_initializer)
2436 continue;
2437
2438 int size = var->data.max_array_access;
2439 for (unsigned j = 0; j < MESA_SHADER_STAGES; j++) {
2440 if (prog->_LinkedShaders[j] == NULL)
2441 continue;
2442
2443 foreach_in_list(ir_instruction, node2, prog->_LinkedShaders[j]->ir) {
2444 ir_variable *other_var = node2->as_variable();
2445 if (!other_var)
2446 continue;
2447
2448 if (strcmp(var->name, other_var->name) == 0 &&
2449 other_var->data.max_array_access > size) {
2450 size = other_var->data.max_array_access;
2451 }
2452 }
2453 }
2454
2455 if (size + 1 != (int)var->type->length) {
2456 /* If this is a built-in uniform (i.e., it's backed by some
2457 * fixed-function state), adjust the number of state slots to
2458 * match the new array size. The number of slots per array entry
2459 * is not known. It seems safe to assume that the total number of
2460 * slots is an integer multiple of the number of array elements.
2461 * Determine the number of slots per array element by dividing by
2462 * the old (total) size.
2463 */
2464 const unsigned num_slots = var->get_num_state_slots();
2465 if (num_slots > 0) {
2466 var->set_num_state_slots((size + 1)
2467 * (num_slots / var->type->length));
2468 }
2469
2470 var->type = glsl_type::get_array_instance(var->type->fields.array,
2471 size + 1);
2472 types_were_updated = true;
2473 }
2474 }
2475
2476 /* Update the types of dereferences in case we changed any. */
2477 if (types_were_updated) {
2478 deref_type_updater v;
2479 v.run(prog->_LinkedShaders[i]->ir);
2480 }
2481 }
2482 }
2483
2484 /**
2485 * Resize tessellation evaluation per-vertex inputs to the size of
2486 * tessellation control per-vertex outputs.
2487 */
2488 static void
2489 resize_tes_inputs(struct gl_context *ctx,
2490 struct gl_shader_program *prog)
2491 {
2492 if (prog->_LinkedShaders[MESA_SHADER_TESS_EVAL] == NULL)
2493 return;
2494
2495 gl_linked_shader *const tcs = prog->_LinkedShaders[MESA_SHADER_TESS_CTRL];
2496 gl_linked_shader *const tes = prog->_LinkedShaders[MESA_SHADER_TESS_EVAL];
2497
2498 /* If no control shader is present, then the TES inputs are statically
2499 * sized to MaxPatchVertices; the actual size of the arrays won't be
2500 * known until draw time.
2501 */
2502 const int num_vertices = tcs
2503 ? tcs->Program->info.tess.tcs_vertices_out
2504 : ctx->Const.MaxPatchVertices;
2505
2506 array_resize_visitor input_resize_visitor(num_vertices, prog,
2507 MESA_SHADER_TESS_EVAL);
2508 foreach_in_list(ir_instruction, ir, tes->ir) {
2509 ir->accept(&input_resize_visitor);
2510 }
2511
2512 if (tcs || ctx->Const.LowerTESPatchVerticesIn) {
2513 /* Convert the gl_PatchVerticesIn system value into a constant, since
2514 * the value is known at this point.
2515 */
2516 foreach_in_list(ir_instruction, ir, tes->ir) {
2517 ir_variable *var = ir->as_variable();
2518 if (var && var->data.mode == ir_var_system_value &&
2519 var->data.location == SYSTEM_VALUE_VERTICES_IN) {
2520 void *mem_ctx = ralloc_parent(var);
2521 var->data.location = 0;
2522 var->data.explicit_location = false;
2523 if (tcs) {
2524 var->data.mode = ir_var_auto;
2525 var->constant_value = new(mem_ctx) ir_constant(num_vertices);
2526 } else {
2527 var->data.mode = ir_var_uniform;
2528 var->data.how_declared = ir_var_hidden;
2529 var->allocate_state_slots(1);
2530 ir_state_slot *slot0 = &var->get_state_slots()[0];
2531 slot0->swizzle = SWIZZLE_XXXX;
2532 slot0->tokens[0] = STATE_INTERNAL;
2533 slot0->tokens[1] = STATE_TES_PATCH_VERTICES_IN;
2534 for (int i = 2; i < STATE_LENGTH; i++)
2535 slot0->tokens[i] = 0;
2536 }
2537 }
2538 }
2539 }
2540 }
2541
2542 /**
2543 * Find a contiguous set of available bits in a bitmask.
2544 *
2545 * \param used_mask Bits representing used (1) and unused (0) locations
2546 * \param needed_count Number of contiguous bits needed.
2547 *
2548 * \return
2549 * Base location of the available bits on success or -1 on failure.
2550 */
2551 static int
2552 find_available_slots(unsigned used_mask, unsigned needed_count)
2553 {
2554 unsigned needed_mask = (1 << needed_count) - 1;
2555 const int max_bit_to_test = (8 * sizeof(used_mask)) - needed_count;
2556
2557 /* The comparison to 32 is redundant, but without it GCC emits "warning:
2558 * cannot optimize possibly infinite loops" for the loop below.
2559 */
2560 if ((needed_count == 0) || (max_bit_to_test < 0) || (max_bit_to_test > 32))
2561 return -1;
2562
2563 for (int i = 0; i <= max_bit_to_test; i++) {
2564 if ((needed_mask & ~used_mask) == needed_mask)
2565 return i;
2566
2567 needed_mask <<= 1;
2568 }
2569
2570 return -1;
2571 }
2572
2573
2574 /**
2575 * Assign locations for either VS inputs or FS outputs
2576 *
2577 * \param mem_ctx Temporary ralloc context used for linking
2578 * \param prog Shader program whose variables need locations assigned
2579 * \param constants Driver specific constant values for the program.
2580 * \param target_index Selector for the program target to receive location
2581 * assignmnets. Must be either \c MESA_SHADER_VERTEX or
2582 * \c MESA_SHADER_FRAGMENT.
2583 *
2584 * \return
2585 * If locations are successfully assigned, true is returned. Otherwise an
2586 * error is emitted to the shader link log and false is returned.
2587 */
2588 static bool
2589 assign_attribute_or_color_locations(void *mem_ctx,
2590 gl_shader_program *prog,
2591 struct gl_constants *constants,
2592 unsigned target_index)
2593 {
2594 /* Maximum number of generic locations. This corresponds to either the
2595 * maximum number of draw buffers or the maximum number of generic
2596 * attributes.
2597 */
2598 unsigned max_index = (target_index == MESA_SHADER_VERTEX) ?
2599 constants->Program[target_index].MaxAttribs :
2600 MAX2(constants->MaxDrawBuffers, constants->MaxDualSourceDrawBuffers);
2601
2602 /* Mark invalid locations as being used.
2603 */
2604 unsigned used_locations = (max_index >= 32)
2605 ? ~0 : ~((1 << max_index) - 1);
2606 unsigned double_storage_locations = 0;
2607
2608 assert((target_index == MESA_SHADER_VERTEX)
2609 || (target_index == MESA_SHADER_FRAGMENT));
2610
2611 gl_linked_shader *const sh = prog->_LinkedShaders[target_index];
2612 if (sh == NULL)
2613 return true;
2614
2615 /* Operate in a total of four passes.
2616 *
2617 * 1. Invalidate the location assignments for all vertex shader inputs.
2618 *
2619 * 2. Assign locations for inputs that have user-defined (via
2620 * glBindVertexAttribLocation) locations and outputs that have
2621 * user-defined locations (via glBindFragDataLocation).
2622 *
2623 * 3. Sort the attributes without assigned locations by number of slots
2624 * required in decreasing order. Fragmentation caused by attribute
2625 * locations assigned by the application may prevent large attributes
2626 * from having enough contiguous space.
2627 *
2628 * 4. Assign locations to any inputs without assigned locations.
2629 */
2630
2631 const int generic_base = (target_index == MESA_SHADER_VERTEX)
2632 ? (int) VERT_ATTRIB_GENERIC0 : (int) FRAG_RESULT_DATA0;
2633
2634 const enum ir_variable_mode direction =
2635 (target_index == MESA_SHADER_VERTEX)
2636 ? ir_var_shader_in : ir_var_shader_out;
2637
2638
2639 /* Temporary storage for the set of attributes that need locations assigned.
2640 */
2641 struct temp_attr {
2642 unsigned slots;
2643 ir_variable *var;
2644
2645 /* Used below in the call to qsort. */
2646 static int compare(const void *a, const void *b)
2647 {
2648 const temp_attr *const l = (const temp_attr *) a;
2649 const temp_attr *const r = (const temp_attr *) b;
2650
2651 /* Reversed because we want a descending order sort below. */
2652 return r->slots - l->slots;
2653 }
2654 } to_assign[32];
2655 assert(max_index <= 32);
2656
2657 /* Temporary array for the set of attributes that have locations assigned,
2658 * for the purpose of checking overlapping slots/components of (non-ES)
2659 * fragment shader outputs.
2660 */
2661 ir_variable *assigned[12 * 4]; /* (max # of FS outputs) * # components */
2662 unsigned assigned_attr = 0;
2663
2664 unsigned num_attr = 0;
2665
2666 foreach_in_list(ir_instruction, node, sh->ir) {
2667 ir_variable *const var = node->as_variable();
2668
2669 if ((var == NULL) || (var->data.mode != (unsigned) direction))
2670 continue;
2671
2672 if (var->data.explicit_location) {
2673 var->data.is_unmatched_generic_inout = 0;
2674 if ((var->data.location >= (int)(max_index + generic_base))
2675 || (var->data.location < 0)) {
2676 linker_error(prog,
2677 "invalid explicit location %d specified for `%s'\n",
2678 (var->data.location < 0)
2679 ? var->data.location
2680 : var->data.location - generic_base,
2681 var->name);
2682 return false;
2683 }
2684 } else if (target_index == MESA_SHADER_VERTEX) {
2685 unsigned binding;
2686
2687 if (prog->AttributeBindings->get(binding, var->name)) {
2688 assert(binding >= VERT_ATTRIB_GENERIC0);
2689 var->data.location = binding;
2690 var->data.is_unmatched_generic_inout = 0;
2691 }
2692 } else if (target_index == MESA_SHADER_FRAGMENT) {
2693 unsigned binding;
2694 unsigned index;
2695 const char *name = var->name;
2696 const glsl_type *type = var->type;
2697
2698 while (type) {
2699 /* Check if there's a binding for the variable name */
2700 if (prog->FragDataBindings->get(binding, name)) {
2701 assert(binding >= FRAG_RESULT_DATA0);
2702 var->data.location = binding;
2703 var->data.is_unmatched_generic_inout = 0;
2704
2705 if (prog->FragDataIndexBindings->get(index, name)) {
2706 var->data.index = index;
2707 }
2708 break;
2709 }
2710
2711 /* If not, but it's an array type, look for name[0] */
2712 if (type->is_array()) {
2713 name = ralloc_asprintf(mem_ctx, "%s[0]", name);
2714 type = type->fields.array;
2715 continue;
2716 }
2717
2718 break;
2719 }
2720 }
2721
2722 if (strcmp(var->name, "gl_LastFragData") == 0)
2723 continue;
2724
2725 /* From GL4.5 core spec, section 15.2 (Shader Execution):
2726 *
2727 * "Output binding assignments will cause LinkProgram to fail:
2728 * ...
2729 * If the program has an active output assigned to a location greater
2730 * than or equal to the value of MAX_DUAL_SOURCE_DRAW_BUFFERS and has
2731 * an active output assigned an index greater than or equal to one;"
2732 */
2733 if (target_index == MESA_SHADER_FRAGMENT && var->data.index >= 1 &&
2734 var->data.location - generic_base >=
2735 (int) constants->MaxDualSourceDrawBuffers) {
2736 linker_error(prog,
2737 "output location %d >= GL_MAX_DUAL_SOURCE_DRAW_BUFFERS "
2738 "with index %u for %s\n",
2739 var->data.location - generic_base, var->data.index,
2740 var->name);
2741 return false;
2742 }
2743
2744 const unsigned slots = var->type->count_attribute_slots(target_index == MESA_SHADER_VERTEX);
2745
2746 /* If the variable is not a built-in and has a location statically
2747 * assigned in the shader (presumably via a layout qualifier), make sure
2748 * that it doesn't collide with other assigned locations. Otherwise,
2749 * add it to the list of variables that need linker-assigned locations.
2750 */
2751 if (var->data.location != -1) {
2752 if (var->data.location >= generic_base && var->data.index < 1) {
2753 /* From page 61 of the OpenGL 4.0 spec:
2754 *
2755 * "LinkProgram will fail if the attribute bindings assigned
2756 * by BindAttribLocation do not leave not enough space to
2757 * assign a location for an active matrix attribute or an
2758 * active attribute array, both of which require multiple
2759 * contiguous generic attributes."
2760 *
2761 * I think above text prohibits the aliasing of explicit and
2762 * automatic assignments. But, aliasing is allowed in manual
2763 * assignments of attribute locations. See below comments for
2764 * the details.
2765 *
2766 * From OpenGL 4.0 spec, page 61:
2767 *
2768 * "It is possible for an application to bind more than one
2769 * attribute name to the same location. This is referred to as
2770 * aliasing. This will only work if only one of the aliased
2771 * attributes is active in the executable program, or if no
2772 * path through the shader consumes more than one attribute of
2773 * a set of attributes aliased to the same location. A link
2774 * error can occur if the linker determines that every path
2775 * through the shader consumes multiple aliased attributes,
2776 * but implementations are not required to generate an error
2777 * in this case."
2778 *
2779 * From GLSL 4.30 spec, page 54:
2780 *
2781 * "A program will fail to link if any two non-vertex shader
2782 * input variables are assigned to the same location. For
2783 * vertex shaders, multiple input variables may be assigned
2784 * to the same location using either layout qualifiers or via
2785 * the OpenGL API. However, such aliasing is intended only to
2786 * support vertex shaders where each execution path accesses
2787 * at most one input per each location. Implementations are
2788 * permitted, but not required, to generate link-time errors
2789 * if they detect that every path through the vertex shader
2790 * executable accesses multiple inputs assigned to any single
2791 * location. For all shader types, a program will fail to link
2792 * if explicit location assignments leave the linker unable
2793 * to find space for other variables without explicit
2794 * assignments."
2795 *
2796 * From OpenGL ES 3.0 spec, page 56:
2797 *
2798 * "Binding more than one attribute name to the same location
2799 * is referred to as aliasing, and is not permitted in OpenGL
2800 * ES Shading Language 3.00 vertex shaders. LinkProgram will
2801 * fail when this condition exists. However, aliasing is
2802 * possible in OpenGL ES Shading Language 1.00 vertex shaders.
2803 * This will only work if only one of the aliased attributes
2804 * is active in the executable program, or if no path through
2805 * the shader consumes more than one attribute of a set of
2806 * attributes aliased to the same location. A link error can
2807 * occur if the linker determines that every path through the
2808 * shader consumes multiple aliased attributes, but implemen-
2809 * tations are not required to generate an error in this case."
2810 *
2811 * After looking at above references from OpenGL, OpenGL ES and
2812 * GLSL specifications, we allow aliasing of vertex input variables
2813 * in: OpenGL 2.0 (and above) and OpenGL ES 2.0.
2814 *
2815 * NOTE: This is not required by the spec but its worth mentioning
2816 * here that we're not doing anything to make sure that no path
2817 * through the vertex shader executable accesses multiple inputs
2818 * assigned to any single location.
2819 */
2820
2821 /* Mask representing the contiguous slots that will be used by
2822 * this attribute.
2823 */
2824 const unsigned attr = var->data.location - generic_base;
2825 const unsigned use_mask = (1 << slots) - 1;
2826 const char *const string = (target_index == MESA_SHADER_VERTEX)
2827 ? "vertex shader input" : "fragment shader output";
2828
2829 /* Generate a link error if the requested locations for this
2830 * attribute exceed the maximum allowed attribute location.
2831 */
2832 if (attr + slots > max_index) {
2833 linker_error(prog,
2834 "insufficient contiguous locations "
2835 "available for %s `%s' %d %d %d\n", string,
2836 var->name, used_locations, use_mask, attr);
2837 return false;
2838 }
2839
2840 /* Generate a link error if the set of bits requested for this
2841 * attribute overlaps any previously allocated bits.
2842 */
2843 if ((~(use_mask << attr) & used_locations) != used_locations) {
2844 if (target_index == MESA_SHADER_FRAGMENT && !prog->IsES) {
2845 /* From section 4.4.2 (Output Layout Qualifiers) of the GLSL
2846 * 4.40 spec:
2847 *
2848 * "Additionally, for fragment shader outputs, if two
2849 * variables are placed within the same location, they
2850 * must have the same underlying type (floating-point or
2851 * integer). No component aliasing of output variables or
2852 * members is allowed.
2853 */
2854 for (unsigned i = 0; i < assigned_attr; i++) {
2855 unsigned assigned_slots =
2856 assigned[i]->type->count_attribute_slots(false);
2857 unsigned assig_attr =
2858 assigned[i]->data.location - generic_base;
2859 unsigned assigned_use_mask = (1 << assigned_slots) - 1;
2860
2861 if ((assigned_use_mask << assig_attr) &
2862 (use_mask << attr)) {
2863
2864 const glsl_type *assigned_type =
2865 assigned[i]->type->without_array();
2866 const glsl_type *type = var->type->without_array();
2867 if (assigned_type->base_type != type->base_type) {
2868 linker_error(prog, "types do not match for aliased"
2869 " %ss %s and %s\n", string,
2870 assigned[i]->name, var->name);
2871 return false;
2872 }
2873
2874 unsigned assigned_component_mask =
2875 ((1 << assigned_type->vector_elements) - 1) <<
2876 assigned[i]->data.location_frac;
2877 unsigned component_mask =
2878 ((1 << type->vector_elements) - 1) <<
2879 var->data.location_frac;
2880 if (assigned_component_mask & component_mask) {
2881 linker_error(prog, "overlapping component is "
2882 "assigned to %ss %s and %s "
2883 "(component=%d)\n",
2884 string, assigned[i]->name, var->name,
2885 var->data.location_frac);
2886 return false;
2887 }
2888 }
2889 }
2890 } else if (target_index == MESA_SHADER_FRAGMENT ||
2891 (prog->IsES && prog->data->Version >= 300)) {
2892 linker_error(prog, "overlapping location is assigned "
2893 "to %s `%s' %d %d %d\n", string, var->name,
2894 used_locations, use_mask, attr);
2895 return false;
2896 } else {
2897 linker_warning(prog, "overlapping location is assigned "
2898 "to %s `%s' %d %d %d\n", string, var->name,
2899 used_locations, use_mask, attr);
2900 }
2901 }
2902
2903 if (target_index == MESA_SHADER_FRAGMENT && !prog->IsES) {
2904 /* Only track assigned variables for non-ES fragment shaders
2905 * to avoid overflowing the array.
2906 *
2907 * At most one variable per fragment output component should
2908 * reach this.
2909 */
2910 assert(assigned_attr < ARRAY_SIZE(assigned));
2911 assigned[assigned_attr] = var;
2912 assigned_attr++;
2913 }
2914
2915 used_locations |= (use_mask << attr);
2916
2917 /* From the GL 4.5 core spec, section 11.1.1 (Vertex Attributes):
2918 *
2919 * "A program with more than the value of MAX_VERTEX_ATTRIBS
2920 * active attribute variables may fail to link, unless
2921 * device-dependent optimizations are able to make the program
2922 * fit within available hardware resources. For the purposes
2923 * of this test, attribute variables of the type dvec3, dvec4,
2924 * dmat2x3, dmat2x4, dmat3, dmat3x4, dmat4x3, and dmat4 may
2925 * count as consuming twice as many attributes as equivalent
2926 * single-precision types. While these types use the same number
2927 * of generic attributes as their single-precision equivalents,
2928 * implementations are permitted to consume two single-precision
2929 * vectors of internal storage for each three- or four-component
2930 * double-precision vector."
2931 *
2932 * Mark this attribute slot as taking up twice as much space
2933 * so we can count it properly against limits. According to
2934 * issue (3) of the GL_ARB_vertex_attrib_64bit behavior, this
2935 * is optional behavior, but it seems preferable.
2936 */
2937 if (var->type->without_array()->is_dual_slot())
2938 double_storage_locations |= (use_mask << attr);
2939 }
2940
2941 continue;
2942 }
2943
2944 if (num_attr >= max_index) {
2945 linker_error(prog, "too many %s (max %u)",
2946 target_index == MESA_SHADER_VERTEX ?
2947 "vertex shader inputs" : "fragment shader outputs",
2948 max_index);
2949 return false;
2950 }
2951 to_assign[num_attr].slots = slots;
2952 to_assign[num_attr].var = var;
2953 num_attr++;
2954 }
2955
2956 if (target_index == MESA_SHADER_VERTEX) {
2957 unsigned total_attribs_size =
2958 _mesa_bitcount(used_locations & ((1 << max_index) - 1)) +
2959 _mesa_bitcount(double_storage_locations);
2960 if (total_attribs_size > max_index) {
2961 linker_error(prog,
2962 "attempt to use %d vertex attribute slots only %d available ",
2963 total_attribs_size, max_index);
2964 return false;
2965 }
2966 }
2967
2968 /* If all of the attributes were assigned locations by the application (or
2969 * are built-in attributes with fixed locations), return early. This should
2970 * be the common case.
2971 */
2972 if (num_attr == 0)
2973 return true;
2974
2975 qsort(to_assign, num_attr, sizeof(to_assign[0]), temp_attr::compare);
2976
2977 if (target_index == MESA_SHADER_VERTEX) {
2978 /* VERT_ATTRIB_GENERIC0 is a pseudo-alias for VERT_ATTRIB_POS. It can
2979 * only be explicitly assigned by via glBindAttribLocation. Mark it as
2980 * reserved to prevent it from being automatically allocated below.
2981 */
2982 find_deref_visitor find("gl_Vertex");
2983 find.run(sh->ir);
2984 if (find.variable_found())
2985 used_locations |= (1 << 0);
2986 }
2987
2988 for (unsigned i = 0; i < num_attr; i++) {
2989 /* Mask representing the contiguous slots that will be used by this
2990 * attribute.
2991 */
2992 const unsigned use_mask = (1 << to_assign[i].slots) - 1;
2993
2994 int location = find_available_slots(used_locations, to_assign[i].slots);
2995
2996 if (location < 0) {
2997 const char *const string = (target_index == MESA_SHADER_VERTEX)
2998 ? "vertex shader input" : "fragment shader output";
2999
3000 linker_error(prog,
3001 "insufficient contiguous locations "
3002 "available for %s `%s'\n",
3003 string, to_assign[i].var->name);
3004 return false;
3005 }
3006
3007 to_assign[i].var->data.location = generic_base + location;
3008 to_assign[i].var->data.is_unmatched_generic_inout = 0;
3009 used_locations |= (use_mask << location);
3010
3011 if (to_assign[i].var->type->without_array()->is_dual_slot())
3012 double_storage_locations |= (use_mask << location);
3013 }
3014
3015 /* Now that we have all the locations, from the GL 4.5 core spec, section
3016 * 11.1.1 (Vertex Attributes), dvec3, dvec4, dmat2x3, dmat2x4, dmat3,
3017 * dmat3x4, dmat4x3, and dmat4 count as consuming twice as many attributes
3018 * as equivalent single-precision types.
3019 */
3020 if (target_index == MESA_SHADER_VERTEX) {
3021 unsigned total_attribs_size =
3022 _mesa_bitcount(used_locations & ((1 << max_index) - 1)) +
3023 _mesa_bitcount(double_storage_locations);
3024 if (total_attribs_size > max_index) {
3025 linker_error(prog,
3026 "attempt to use %d vertex attribute slots only %d available ",
3027 total_attribs_size, max_index);
3028 return false;
3029 }
3030 }
3031
3032 return true;
3033 }
3034
3035 /**
3036 * Match explicit locations of outputs to inputs and deactivate the
3037 * unmatch flag if found so we don't optimise them away.
3038 */
3039 static void
3040 match_explicit_outputs_to_inputs(gl_linked_shader *producer,
3041 gl_linked_shader *consumer)
3042 {
3043 glsl_symbol_table parameters;
3044 ir_variable *explicit_locations[MAX_VARYINGS_INCL_PATCH][4] =
3045 { {NULL, NULL} };
3046
3047 /* Find all shader outputs in the "producer" stage.
3048 */
3049 foreach_in_list(ir_instruction, node, producer->ir) {
3050 ir_variable *const var = node->as_variable();
3051
3052 if ((var == NULL) || (var->data.mode != ir_var_shader_out))
3053 continue;
3054
3055 if (var->data.explicit_location &&
3056 var->data.location >= VARYING_SLOT_VAR0) {
3057 const unsigned idx = var->data.location - VARYING_SLOT_VAR0;
3058 if (explicit_locations[idx][var->data.location_frac] == NULL)
3059 explicit_locations[idx][var->data.location_frac] = var;
3060 }
3061 }
3062
3063 /* Match inputs to outputs */
3064 foreach_in_list(ir_instruction, node, consumer->ir) {
3065 ir_variable *const input = node->as_variable();
3066
3067 if ((input == NULL) || (input->data.mode != ir_var_shader_in))
3068 continue;
3069
3070 ir_variable *output = NULL;
3071 if (input->data.explicit_location
3072 && input->data.location >= VARYING_SLOT_VAR0) {
3073 output = explicit_locations[input->data.location - VARYING_SLOT_VAR0]
3074 [input->data.location_frac];
3075
3076 if (output != NULL){
3077 input->data.is_unmatched_generic_inout = 0;
3078 output->data.is_unmatched_generic_inout = 0;
3079 }
3080 }
3081 }
3082 }
3083
3084 /**
3085 * Store the gl_FragDepth layout in the gl_shader_program struct.
3086 */
3087 static void
3088 store_fragdepth_layout(struct gl_shader_program *prog)
3089 {
3090 if (prog->_LinkedShaders[MESA_SHADER_FRAGMENT] == NULL) {
3091 return;
3092 }
3093
3094 struct exec_list *ir = prog->_LinkedShaders[MESA_SHADER_FRAGMENT]->ir;
3095
3096 /* We don't look up the gl_FragDepth symbol directly because if
3097 * gl_FragDepth is not used in the shader, it's removed from the IR.
3098 * However, the symbol won't be removed from the symbol table.
3099 *
3100 * We're only interested in the cases where the variable is NOT removed
3101 * from the IR.
3102 */
3103 foreach_in_list(ir_instruction, node, ir) {
3104 ir_variable *const var = node->as_variable();
3105
3106 if (var == NULL || var->data.mode != ir_var_shader_out) {
3107 continue;
3108 }
3109
3110 if (strcmp(var->name, "gl_FragDepth") == 0) {
3111 switch (var->data.depth_layout) {
3112 case ir_depth_layout_none:
3113 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_NONE;
3114 return;
3115 case ir_depth_layout_any:
3116 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_ANY;
3117 return;
3118 case ir_depth_layout_greater:
3119 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_GREATER;
3120 return;
3121 case ir_depth_layout_less:
3122 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_LESS;
3123 return;
3124 case ir_depth_layout_unchanged:
3125 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_UNCHANGED;
3126 return;
3127 default:
3128 assert(0);
3129 return;
3130 }
3131 }
3132 }
3133 }
3134
3135 /**
3136 * Validate the resources used by a program versus the implementation limits
3137 */
3138 static void
3139 check_resources(struct gl_context *ctx, struct gl_shader_program *prog)
3140 {
3141 unsigned total_uniform_blocks = 0;
3142 unsigned total_shader_storage_blocks = 0;
3143
3144 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3145 struct gl_linked_shader *sh = prog->_LinkedShaders[i];
3146
3147 if (sh == NULL)
3148 continue;
3149
3150 if (sh->Program->info.num_textures >
3151 ctx->Const.Program[i].MaxTextureImageUnits) {
3152 linker_error(prog, "Too many %s shader texture samplers\n",
3153 _mesa_shader_stage_to_string(i));
3154 }
3155
3156 if (sh->num_uniform_components >
3157 ctx->Const.Program[i].MaxUniformComponents) {
3158 if (ctx->Const.GLSLSkipStrictMaxUniformLimitCheck) {
3159 linker_warning(prog, "Too many %s shader default uniform block "
3160 "components, but the driver will try to optimize "
3161 "them out; this is non-portable out-of-spec "
3162 "behavior\n",
3163 _mesa_shader_stage_to_string(i));
3164 } else {
3165 linker_error(prog, "Too many %s shader default uniform block "
3166 "components\n",
3167 _mesa_shader_stage_to_string(i));
3168 }
3169 }
3170
3171 if (sh->num_combined_uniform_components >
3172 ctx->Const.Program[i].MaxCombinedUniformComponents) {
3173 if (ctx->Const.GLSLSkipStrictMaxUniformLimitCheck) {
3174 linker_warning(prog, "Too many %s shader uniform components, "
3175 "but the driver will try to optimize them out; "
3176 "this is non-portable out-of-spec behavior\n",
3177 _mesa_shader_stage_to_string(i));
3178 } else {
3179 linker_error(prog, "Too many %s shader uniform components\n",
3180 _mesa_shader_stage_to_string(i));
3181 }
3182 }
3183
3184 total_shader_storage_blocks += sh->Program->info.num_ssbos;
3185 total_uniform_blocks += sh->Program->info.num_ubos;
3186
3187 const unsigned max_uniform_blocks =
3188 ctx->Const.Program[i].MaxUniformBlocks;
3189 if (max_uniform_blocks < sh->Program->info.num_ubos) {
3190 linker_error(prog, "Too many %s uniform blocks (%d/%d)\n",
3191 _mesa_shader_stage_to_string(i),
3192 sh->Program->info.num_ubos, max_uniform_blocks);
3193 }
3194
3195 const unsigned max_shader_storage_blocks =
3196 ctx->Const.Program[i].MaxShaderStorageBlocks;
3197 if (max_shader_storage_blocks < sh->Program->info.num_ssbos) {
3198 linker_error(prog, "Too many %s shader storage blocks (%d/%d)\n",
3199 _mesa_shader_stage_to_string(i),
3200 sh->Program->info.num_ssbos, max_shader_storage_blocks);
3201 }
3202 }
3203
3204 if (total_uniform_blocks > ctx->Const.MaxCombinedUniformBlocks) {
3205 linker_error(prog, "Too many combined uniform blocks (%d/%d)\n",
3206 total_uniform_blocks, ctx->Const.MaxCombinedUniformBlocks);
3207 }
3208
3209 if (total_shader_storage_blocks > ctx->Const.MaxCombinedShaderStorageBlocks) {
3210 linker_error(prog, "Too many combined shader storage blocks (%d/%d)\n",
3211 total_shader_storage_blocks,
3212 ctx->Const.MaxCombinedShaderStorageBlocks);
3213 }
3214
3215 for (unsigned i = 0; i < prog->data->NumUniformBlocks; i++) {
3216 if (prog->data->UniformBlocks[i].UniformBufferSize >
3217 ctx->Const.MaxUniformBlockSize) {
3218 linker_error(prog, "Uniform block %s too big (%d/%d)\n",
3219 prog->data->UniformBlocks[i].Name,
3220 prog->data->UniformBlocks[i].UniformBufferSize,
3221 ctx->Const.MaxUniformBlockSize);
3222 }
3223 }
3224
3225 for (unsigned i = 0; i < prog->data->NumShaderStorageBlocks; i++) {
3226 if (prog->data->ShaderStorageBlocks[i].UniformBufferSize >
3227 ctx->Const.MaxShaderStorageBlockSize) {
3228 linker_error(prog, "Shader storage block %s too big (%d/%d)\n",
3229 prog->data->ShaderStorageBlocks[i].Name,
3230 prog->data->ShaderStorageBlocks[i].UniformBufferSize,
3231 ctx->Const.MaxShaderStorageBlockSize);
3232 }
3233 }
3234 }
3235
3236 static void
3237 link_calculate_subroutine_compat(struct gl_shader_program *prog)
3238 {
3239 unsigned mask = prog->data->linked_stages;
3240 while (mask) {
3241 const int i = u_bit_scan(&mask);
3242 struct gl_program *p = prog->_LinkedShaders[i]->Program;
3243
3244 for (unsigned j = 0; j < p->sh.NumSubroutineUniformRemapTable; j++) {
3245 if (p->sh.SubroutineUniformRemapTable[j] == INACTIVE_UNIFORM_EXPLICIT_LOCATION)
3246 continue;
3247
3248 struct gl_uniform_storage *uni = p->sh.SubroutineUniformRemapTable[j];
3249
3250 if (!uni)
3251 continue;
3252
3253 int count = 0;
3254 if (p->sh.NumSubroutineFunctions == 0) {
3255 linker_error(prog, "subroutine uniform %s defined but no valid functions found\n", uni->type->name);
3256 continue;
3257 }
3258 for (unsigned f = 0; f < p->sh.NumSubroutineFunctions; f++) {
3259 struct gl_subroutine_function *fn = &p->sh.SubroutineFunctions[f];
3260 for (int k = 0; k < fn->num_compat_types; k++) {
3261 if (fn->types[k] == uni->type) {
3262 count++;
3263 break;
3264 }
3265 }
3266 }
3267 uni->num_compatible_subroutines = count;
3268 }
3269 }
3270 }
3271
3272 static void
3273 check_subroutine_resources(struct gl_shader_program *prog)
3274 {
3275 unsigned mask = prog->data->linked_stages;
3276 while (mask) {
3277 const int i = u_bit_scan(&mask);
3278 struct gl_program *p = prog->_LinkedShaders[i]->Program;
3279
3280 if (p->sh.NumSubroutineUniformRemapTable > MAX_SUBROUTINE_UNIFORM_LOCATIONS) {
3281 linker_error(prog, "Too many %s shader subroutine uniforms\n",
3282 _mesa_shader_stage_to_string(i));
3283 }
3284 }
3285 }
3286 /**
3287 * Validate shader image resources.
3288 */
3289 static void
3290 check_image_resources(struct gl_context *ctx, struct gl_shader_program *prog)
3291 {
3292 unsigned total_image_units = 0;
3293 unsigned fragment_outputs = 0;
3294 unsigned total_shader_storage_blocks = 0;
3295
3296 if (!ctx->Extensions.ARB_shader_image_load_store)
3297 return;
3298
3299 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3300 struct gl_linked_shader *sh = prog->_LinkedShaders[i];
3301
3302 if (sh) {
3303 if (sh->Program->info.num_images > ctx->Const.Program[i].MaxImageUniforms)
3304 linker_error(prog, "Too many %s shader image uniforms (%u > %u)\n",
3305 _mesa_shader_stage_to_string(i),
3306 sh->Program->info.num_images,
3307 ctx->Const.Program[i].MaxImageUniforms);
3308
3309 total_image_units += sh->Program->info.num_images;
3310 total_shader_storage_blocks += sh->Program->info.num_ssbos;
3311
3312 if (i == MESA_SHADER_FRAGMENT) {
3313 foreach_in_list(ir_instruction, node, sh->ir) {
3314 ir_variable *var = node->as_variable();
3315 if (var && var->data.mode == ir_var_shader_out)
3316 /* since there are no double fs outputs - pass false */
3317 fragment_outputs += var->type->count_attribute_slots(false);
3318 }
3319 }
3320 }
3321 }
3322
3323 if (total_image_units > ctx->Const.MaxCombinedImageUniforms)
3324 linker_error(prog, "Too many combined image uniforms\n");
3325
3326 if (total_image_units + fragment_outputs + total_shader_storage_blocks >
3327 ctx->Const.MaxCombinedShaderOutputResources)
3328 linker_error(prog, "Too many combined image uniforms, shader storage "
3329 " buffers and fragment outputs\n");
3330 }
3331
3332
3333 /**
3334 * Initializes explicit location slots to INACTIVE_UNIFORM_EXPLICIT_LOCATION
3335 * for a variable, checks for overlaps between other uniforms using explicit
3336 * locations.
3337 */
3338 static int
3339 reserve_explicit_locations(struct gl_shader_program *prog,
3340 string_to_uint_map *map, ir_variable *var)
3341 {
3342 unsigned slots = var->type->uniform_locations();
3343 unsigned max_loc = var->data.location + slots - 1;
3344 unsigned return_value = slots;
3345
3346 /* Resize remap table if locations do not fit in the current one. */
3347 if (max_loc + 1 > prog->NumUniformRemapTable) {
3348 prog->UniformRemapTable =
3349 reralloc(prog, prog->UniformRemapTable,
3350 gl_uniform_storage *,
3351 max_loc + 1);
3352
3353 if (!prog->UniformRemapTable) {
3354 linker_error(prog, "Out of memory during linking.\n");
3355 return -1;
3356 }
3357
3358 /* Initialize allocated space. */
3359 for (unsigned i = prog->NumUniformRemapTable; i < max_loc + 1; i++)
3360 prog->UniformRemapTable[i] = NULL;
3361
3362 prog->NumUniformRemapTable = max_loc + 1;
3363 }
3364
3365 for (unsigned i = 0; i < slots; i++) {
3366 unsigned loc = var->data.location + i;
3367
3368 /* Check if location is already used. */
3369 if (prog->UniformRemapTable[loc] == INACTIVE_UNIFORM_EXPLICIT_LOCATION) {
3370
3371 /* Possibly same uniform from a different stage, this is ok. */
3372 unsigned hash_loc;
3373 if (map->get(hash_loc, var->name) && hash_loc == loc - i) {
3374 return_value = 0;
3375 continue;
3376 }
3377
3378 /* ARB_explicit_uniform_location specification states:
3379 *
3380 * "No two default-block uniform variables in the program can have
3381 * the same location, even if they are unused, otherwise a compiler
3382 * or linker error will be generated."
3383 */
3384 linker_error(prog,
3385 "location qualifier for uniform %s overlaps "
3386 "previously used location\n",
3387 var->name);
3388 return -1;
3389 }
3390
3391 /* Initialize location as inactive before optimization
3392 * rounds and location assignment.
3393 */
3394 prog->UniformRemapTable[loc] = INACTIVE_UNIFORM_EXPLICIT_LOCATION;
3395 }
3396
3397 /* Note, base location used for arrays. */
3398 map->put(var->data.location, var->name);
3399
3400 return return_value;
3401 }
3402
3403 static bool
3404 reserve_subroutine_explicit_locations(struct gl_shader_program *prog,
3405 struct gl_program *p,
3406 ir_variable *var)
3407 {
3408 unsigned slots = var->type->uniform_locations();
3409 unsigned max_loc = var->data.location + slots - 1;
3410
3411 /* Resize remap table if locations do not fit in the current one. */
3412 if (max_loc + 1 > p->sh.NumSubroutineUniformRemapTable) {
3413 p->sh.SubroutineUniformRemapTable =
3414 reralloc(p, p->sh.SubroutineUniformRemapTable,
3415 gl_uniform_storage *,
3416 max_loc + 1);
3417
3418 if (!p->sh.SubroutineUniformRemapTable) {
3419 linker_error(prog, "Out of memory during linking.\n");
3420 return false;
3421 }
3422
3423 /* Initialize allocated space. */
3424 for (unsigned i = p->sh.NumSubroutineUniformRemapTable; i < max_loc + 1; i++)
3425 p->sh.SubroutineUniformRemapTable[i] = NULL;
3426
3427 p->sh.NumSubroutineUniformRemapTable = max_loc + 1;
3428 }
3429
3430 for (unsigned i = 0; i < slots; i++) {
3431 unsigned loc = var->data.location + i;
3432
3433 /* Check if location is already used. */
3434 if (p->sh.SubroutineUniformRemapTable[loc] == INACTIVE_UNIFORM_EXPLICIT_LOCATION) {
3435
3436 /* ARB_explicit_uniform_location specification states:
3437 * "No two subroutine uniform variables can have the same location
3438 * in the same shader stage, otherwise a compiler or linker error
3439 * will be generated."
3440 */
3441 linker_error(prog,
3442 "location qualifier for uniform %s overlaps "
3443 "previously used location\n",
3444 var->name);
3445 return false;
3446 }
3447
3448 /* Initialize location as inactive before optimization
3449 * rounds and location assignment.
3450 */
3451 p->sh.SubroutineUniformRemapTable[loc] = INACTIVE_UNIFORM_EXPLICIT_LOCATION;
3452 }
3453
3454 return true;
3455 }
3456 /**
3457 * Check and reserve all explicit uniform locations, called before
3458 * any optimizations happen to handle also inactive uniforms and
3459 * inactive array elements that may get trimmed away.
3460 */
3461 static void
3462 check_explicit_uniform_locations(struct gl_context *ctx,
3463 struct gl_shader_program *prog)
3464 {
3465 prog->NumExplicitUniformLocations = 0;
3466
3467 if (!ctx->Extensions.ARB_explicit_uniform_location)
3468 return;
3469
3470 /* This map is used to detect if overlapping explicit locations
3471 * occur with the same uniform (from different stage) or a different one.
3472 */
3473 string_to_uint_map *uniform_map = new string_to_uint_map;
3474
3475 if (!uniform_map) {
3476 linker_error(prog, "Out of memory during linking.\n");
3477 return;
3478 }
3479
3480 unsigned entries_total = 0;
3481 unsigned mask = prog->data->linked_stages;
3482 while (mask) {
3483 const int i = u_bit_scan(&mask);
3484 struct gl_program *p = prog->_LinkedShaders[i]->Program;
3485
3486 foreach_in_list(ir_instruction, node, prog->_LinkedShaders[i]->ir) {
3487 ir_variable *var = node->as_variable();
3488 if (!var || var->data.mode != ir_var_uniform)
3489 continue;
3490
3491 if (var->data.explicit_location) {
3492 bool ret = false;
3493 if (var->type->without_array()->is_subroutine())
3494 ret = reserve_subroutine_explicit_locations(prog, p, var);
3495 else {
3496 int slots = reserve_explicit_locations(prog, uniform_map,
3497 var);
3498 if (slots != -1) {
3499 ret = true;
3500 entries_total += slots;
3501 }
3502 }
3503 if (!ret) {
3504 delete uniform_map;
3505 return;
3506 }
3507 }
3508 }
3509 }
3510
3511 struct empty_uniform_block *current_block = NULL;
3512
3513 for (unsigned i = 0; i < prog->NumUniformRemapTable; i++) {
3514 /* We found empty space in UniformRemapTable. */
3515 if (prog->UniformRemapTable[i] == NULL) {
3516 /* We've found the beginning of a new continous block of empty slots */
3517 if (!current_block || current_block->start + current_block->slots != i) {
3518 current_block = rzalloc(prog, struct empty_uniform_block);
3519 current_block->start = i;
3520 exec_list_push_tail(&prog->EmptyUniformLocations,
3521 &current_block->link);
3522 }
3523
3524 /* The current block continues, so we simply increment its slots */
3525 current_block->slots++;
3526 }
3527 }
3528
3529 delete uniform_map;
3530 prog->NumExplicitUniformLocations = entries_total;
3531 }
3532
3533 static bool
3534 should_add_buffer_variable(struct gl_shader_program *shProg,
3535 GLenum type, const char *name)
3536 {
3537 bool found_interface = false;
3538 unsigned block_name_len = 0;
3539 const char *block_name_dot = strchr(name, '.');
3540
3541 /* These rules only apply to buffer variables. So we return
3542 * true for the rest of types.
3543 */
3544 if (type != GL_BUFFER_VARIABLE)
3545 return true;
3546
3547 for (unsigned i = 0; i < shProg->data->NumShaderStorageBlocks; i++) {
3548 const char *block_name = shProg->data->ShaderStorageBlocks[i].Name;
3549 block_name_len = strlen(block_name);
3550
3551 const char *block_square_bracket = strchr(block_name, '[');
3552 if (block_square_bracket) {
3553 /* The block is part of an array of named interfaces,
3554 * for the name comparison we ignore the "[x]" part.
3555 */
3556 block_name_len -= strlen(block_square_bracket);
3557 }
3558
3559 if (block_name_dot) {
3560 /* Check if the variable name starts with the interface
3561 * name. The interface name (if present) should have the
3562 * length than the interface block name we are comparing to.
3563 */
3564 unsigned len = strlen(name) - strlen(block_name_dot);
3565 if (len != block_name_len)
3566 continue;
3567 }
3568
3569 if (strncmp(block_name, name, block_name_len) == 0) {
3570 found_interface = true;
3571 break;
3572 }
3573 }
3574
3575 /* We remove the interface name from the buffer variable name,
3576 * including the dot that follows it.
3577 */
3578 if (found_interface)
3579 name = name + block_name_len + 1;
3580
3581 /* The ARB_program_interface_query spec says:
3582 *
3583 * "For an active shader storage block member declared as an array, an
3584 * entry will be generated only for the first array element, regardless
3585 * of its type. For arrays of aggregate types, the enumeration rules
3586 * are applied recursively for the single enumerated array element."
3587 */
3588 const char *struct_first_dot = strchr(name, '.');
3589 const char *first_square_bracket = strchr(name, '[');
3590
3591 /* The buffer variable is on top level and it is not an array */
3592 if (!first_square_bracket) {
3593 return true;
3594 /* The shader storage block member is a struct, then generate the entry */
3595 } else if (struct_first_dot && struct_first_dot < first_square_bracket) {
3596 return true;
3597 } else {
3598 /* Shader storage block member is an array, only generate an entry for the
3599 * first array element.
3600 */
3601 if (strncmp(first_square_bracket, "[0]", 3) == 0)
3602 return true;
3603 }
3604
3605 return false;
3606 }
3607
3608 static bool
3609 add_program_resource(struct gl_shader_program *prog,
3610 struct set *resource_set,
3611 GLenum type, const void *data, uint8_t stages)
3612 {
3613 assert(data);
3614
3615 /* If resource already exists, do not add it again. */
3616 if (_mesa_set_search(resource_set, data))
3617 return true;
3618
3619 prog->data->ProgramResourceList =
3620 reralloc(prog,
3621 prog->data->ProgramResourceList,
3622 gl_program_resource,
3623 prog->data->NumProgramResourceList + 1);
3624
3625 if (!prog->data->ProgramResourceList) {
3626 linker_error(prog, "Out of memory during linking.\n");
3627 return false;
3628 }
3629
3630 struct gl_program_resource *res =
3631 &prog->data->ProgramResourceList[prog->data->NumProgramResourceList];
3632
3633 res->Type = type;
3634 res->Data = data;
3635 res->StageReferences = stages;
3636
3637 prog->data->NumProgramResourceList++;
3638
3639 _mesa_set_add(resource_set, data);
3640
3641 return true;
3642 }
3643
3644 /* Function checks if a variable var is a packed varying and
3645 * if given name is part of packed varying's list.
3646 *
3647 * If a variable is a packed varying, it has a name like
3648 * 'packed:a,b,c' where a, b and c are separate variables.
3649 */
3650 static bool
3651 included_in_packed_varying(ir_variable *var, const char *name)
3652 {
3653 if (strncmp(var->name, "packed:", 7) != 0)
3654 return false;
3655
3656 char *list = strdup(var->name + 7);
3657 assert(list);
3658
3659 bool found = false;
3660 char *saveptr;
3661 char *token = strtok_r(list, ",", &saveptr);
3662 while (token) {
3663 if (strcmp(token, name) == 0) {
3664 found = true;
3665 break;
3666 }
3667 token = strtok_r(NULL, ",", &saveptr);
3668 }
3669 free(list);
3670 return found;
3671 }
3672
3673 /**
3674 * Function builds a stage reference bitmask from variable name.
3675 */
3676 static uint8_t
3677 build_stageref(struct gl_shader_program *shProg, const char *name,
3678 unsigned mode)
3679 {
3680 uint8_t stages = 0;
3681
3682 /* Note, that we assume MAX 8 stages, if there will be more stages, type
3683 * used for reference mask in gl_program_resource will need to be changed.
3684 */
3685 assert(MESA_SHADER_STAGES < 8);
3686
3687 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3688 struct gl_linked_shader *sh = shProg->_LinkedShaders[i];
3689 if (!sh)
3690 continue;
3691
3692 /* Shader symbol table may contain variables that have
3693 * been optimized away. Search IR for the variable instead.
3694 */
3695 foreach_in_list(ir_instruction, node, sh->ir) {
3696 ir_variable *var = node->as_variable();
3697 if (var) {
3698 unsigned baselen = strlen(var->name);
3699
3700 if (included_in_packed_varying(var, name)) {
3701 stages |= (1 << i);
3702 break;
3703 }
3704
3705 /* Type needs to match if specified, otherwise we might
3706 * pick a variable with same name but different interface.
3707 */
3708 if (var->data.mode != mode)
3709 continue;
3710
3711 if (strncmp(var->name, name, baselen) == 0) {
3712 /* Check for exact name matches but also check for arrays and
3713 * structs.
3714 */
3715 if (name[baselen] == '\0' ||
3716 name[baselen] == '[' ||
3717 name[baselen] == '.') {
3718 stages |= (1 << i);
3719 break;
3720 }
3721 }
3722 }
3723 }
3724 }
3725 return stages;
3726 }
3727
3728 /**
3729 * Create gl_shader_variable from ir_variable class.
3730 */
3731 static gl_shader_variable *
3732 create_shader_variable(struct gl_shader_program *shProg,
3733 const ir_variable *in,
3734 const char *name, const glsl_type *type,
3735 const glsl_type *interface_type,
3736 bool use_implicit_location, int location,
3737 const glsl_type *outermost_struct_type)
3738 {
3739 /* Allocate zero-initialized memory to ensure that bitfield padding
3740 * is zero.
3741 */
3742 gl_shader_variable *out = rzalloc(shProg, struct gl_shader_variable);
3743 if (!out)
3744 return NULL;
3745
3746 /* Since gl_VertexID may be lowered to gl_VertexIDMESA, but applications
3747 * expect to see gl_VertexID in the program resource list. Pretend.
3748 */
3749 if (in->data.mode == ir_var_system_value &&
3750 in->data.location == SYSTEM_VALUE_VERTEX_ID_ZERO_BASE) {
3751 out->name = ralloc_strdup(shProg, "gl_VertexID");
3752 } else if ((in->data.mode == ir_var_shader_out &&
3753 in->data.location == VARYING_SLOT_TESS_LEVEL_OUTER) ||
3754 (in->data.mode == ir_var_system_value &&
3755 in->data.location == SYSTEM_VALUE_TESS_LEVEL_OUTER)) {
3756 out->name = ralloc_strdup(shProg, "gl_TessLevelOuter");
3757 type = glsl_type::get_array_instance(glsl_type::float_type, 4);
3758 } else if ((in->data.mode == ir_var_shader_out &&
3759 in->data.location == VARYING_SLOT_TESS_LEVEL_INNER) ||
3760 (in->data.mode == ir_var_system_value &&
3761 in->data.location == SYSTEM_VALUE_TESS_LEVEL_INNER)) {
3762 out->name = ralloc_strdup(shProg, "gl_TessLevelInner");
3763 type = glsl_type::get_array_instance(glsl_type::float_type, 2);
3764 } else {
3765 out->name = ralloc_strdup(shProg, name);
3766 }
3767
3768 if (!out->name)
3769 return NULL;
3770
3771 /* The ARB_program_interface_query spec says:
3772 *
3773 * "Not all active variables are assigned valid locations; the
3774 * following variables will have an effective location of -1:
3775 *
3776 * * uniforms declared as atomic counters;
3777 *
3778 * * members of a uniform block;
3779 *
3780 * * built-in inputs, outputs, and uniforms (starting with "gl_"); and
3781 *
3782 * * inputs or outputs not declared with a "location" layout
3783 * qualifier, except for vertex shader inputs and fragment shader
3784 * outputs."
3785 */
3786 if (in->type->is_atomic_uint() || is_gl_identifier(in->name) ||
3787 !(in->data.explicit_location || use_implicit_location)) {
3788 out->location = -1;
3789 } else {
3790 out->location = location;
3791 }
3792
3793 out->type = type;
3794 out->outermost_struct_type = outermost_struct_type;
3795 out->interface_type = interface_type;
3796 out->component = in->data.location_frac;
3797 out->index = in->data.index;
3798 out->patch = in->data.patch;
3799 out->mode = in->data.mode;
3800 out->interpolation = in->data.interpolation;
3801 out->explicit_location = in->data.explicit_location;
3802 out->precision = in->data.precision;
3803
3804 return out;
3805 }
3806
3807 static bool
3808 add_shader_variable(const struct gl_context *ctx,
3809 struct gl_shader_program *shProg,
3810 struct set *resource_set,
3811 unsigned stage_mask,
3812 GLenum programInterface, ir_variable *var,
3813 const char *name, const glsl_type *type,
3814 bool use_implicit_location, int location,
3815 const glsl_type *outermost_struct_type = NULL)
3816 {
3817 const glsl_type *interface_type = var->get_interface_type();
3818
3819 if (outermost_struct_type == NULL) {
3820 if (var->data.from_named_ifc_block) {
3821 const char *interface_name = interface_type->name;
3822
3823 if (interface_type->is_array()) {
3824 /* Issue #16 of the ARB_program_interface_query spec says:
3825 *
3826 * "* If a variable is a member of an interface block without an
3827 * instance name, it is enumerated using just the variable name.
3828 *
3829 * * If a variable is a member of an interface block with an
3830 * instance name, it is enumerated as "BlockName.Member", where
3831 * "BlockName" is the name of the interface block (not the
3832 * instance name) and "Member" is the name of the variable."
3833 *
3834 * In particular, it indicates that it should be "BlockName",
3835 * not "BlockName[array length]". The conformance suite and
3836 * dEQP both require this behavior.
3837 *
3838 * Here, we unwrap the extra array level added by named interface
3839 * block array lowering so we have the correct variable type. We
3840 * also unwrap the interface type when constructing the name.
3841 *
3842 * We leave interface_type the same so that ES 3.x SSO pipeline
3843 * validation can enforce the rules requiring array length to
3844 * match on interface blocks.
3845 */
3846 type = type->fields.array;
3847
3848 interface_name = interface_type->fields.array->name;
3849 }
3850
3851 name = ralloc_asprintf(shProg, "%s.%s", interface_name, name);
3852 }
3853 }
3854
3855 switch (type->base_type) {
3856 case GLSL_TYPE_STRUCT: {
3857 /* The ARB_program_interface_query spec says:
3858 *
3859 * "For an active variable declared as a structure, a separate entry
3860 * will be generated for each active structure member. The name of
3861 * each entry is formed by concatenating the name of the structure,
3862 * the "." character, and the name of the structure member. If a
3863 * structure member to enumerate is itself a structure or array,
3864 * these enumeration rules are applied recursively."
3865 */
3866 if (outermost_struct_type == NULL)
3867 outermost_struct_type = type;
3868
3869 unsigned field_location = location;
3870 for (unsigned i = 0; i < type->length; i++) {
3871 const struct glsl_struct_field *field = &type->fields.structure[i];
3872 char *field_name = ralloc_asprintf(shProg, "%s.%s", name, field->name);
3873 if (!add_shader_variable(ctx, shProg, resource_set,
3874 stage_mask, programInterface,
3875 var, field_name, field->type,
3876 use_implicit_location, field_location,
3877 outermost_struct_type))
3878 return false;
3879
3880 field_location += field->type->count_attribute_slots(false);
3881 }
3882 return true;
3883 }
3884
3885 default: {
3886 /* The ARB_program_interface_query spec says:
3887 *
3888 * "For an active variable declared as a single instance of a basic
3889 * type, a single entry will be generated, using the variable name
3890 * from the shader source."
3891 */
3892 gl_shader_variable *sha_v =
3893 create_shader_variable(shProg, var, name, type, interface_type,
3894 use_implicit_location, location,
3895 outermost_struct_type);
3896 if (!sha_v)
3897 return false;
3898
3899 return add_program_resource(shProg, resource_set,
3900 programInterface, sha_v, stage_mask);
3901 }
3902 }
3903 }
3904
3905 static bool
3906 add_interface_variables(const struct gl_context *ctx,
3907 struct gl_shader_program *shProg,
3908 struct set *resource_set,
3909 unsigned stage, GLenum programInterface)
3910 {
3911 exec_list *ir = shProg->_LinkedShaders[stage]->ir;
3912
3913 foreach_in_list(ir_instruction, node, ir) {
3914 ir_variable *var = node->as_variable();
3915
3916 if (!var || var->data.how_declared == ir_var_hidden)
3917 continue;
3918
3919 int loc_bias;
3920
3921 switch (var->data.mode) {
3922 case ir_var_system_value:
3923 case ir_var_shader_in:
3924 if (programInterface != GL_PROGRAM_INPUT)
3925 continue;
3926 loc_bias = (stage == MESA_SHADER_VERTEX) ? int(VERT_ATTRIB_GENERIC0)
3927 : int(VARYING_SLOT_VAR0);
3928 break;
3929 case ir_var_shader_out:
3930 if (programInterface != GL_PROGRAM_OUTPUT)
3931 continue;
3932 loc_bias = (stage == MESA_SHADER_FRAGMENT) ? int(FRAG_RESULT_DATA0)
3933 : int(VARYING_SLOT_VAR0);
3934 break;
3935 default:
3936 continue;
3937 };
3938
3939 if (var->data.patch)
3940 loc_bias = int(VARYING_SLOT_PATCH0);
3941
3942 /* Skip packed varyings, packed varyings are handled separately
3943 * by add_packed_varyings.
3944 */
3945 if (strncmp(var->name, "packed:", 7) == 0)
3946 continue;
3947
3948 /* Skip fragdata arrays, these are handled separately
3949 * by add_fragdata_arrays.
3950 */
3951 if (strncmp(var->name, "gl_out_FragData", 15) == 0)
3952 continue;
3953
3954 const bool vs_input_or_fs_output =
3955 (stage == MESA_SHADER_VERTEX && var->data.mode == ir_var_shader_in) ||
3956 (stage == MESA_SHADER_FRAGMENT && var->data.mode == ir_var_shader_out);
3957
3958 if (!add_shader_variable(ctx, shProg, resource_set,
3959 1 << stage, programInterface,
3960 var, var->name, var->type, vs_input_or_fs_output,
3961 var->data.location - loc_bias))
3962 return false;
3963 }
3964 return true;
3965 }
3966
3967 static bool
3968 add_packed_varyings(const struct gl_context *ctx,
3969 struct gl_shader_program *shProg,
3970 struct set *resource_set,
3971 int stage, GLenum type)
3972 {
3973 struct gl_linked_shader *sh = shProg->_LinkedShaders[stage];
3974 GLenum iface;
3975
3976 if (!sh || !sh->packed_varyings)
3977 return true;
3978
3979 foreach_in_list(ir_instruction, node, sh->packed_varyings) {
3980 ir_variable *var = node->as_variable();
3981 if (var) {
3982 switch (var->data.mode) {
3983 case ir_var_shader_in:
3984 iface = GL_PROGRAM_INPUT;
3985 break;
3986 case ir_var_shader_out:
3987 iface = GL_PROGRAM_OUTPUT;
3988 break;
3989 default:
3990 unreachable("unexpected type");
3991 }
3992
3993 if (type == iface) {
3994 const int stage_mask =
3995 build_stageref(shProg, var->name, var->data.mode);
3996 if (!add_shader_variable(ctx, shProg, resource_set,
3997 stage_mask,
3998 iface, var, var->name, var->type, false,
3999 var->data.location - VARYING_SLOT_VAR0))
4000 return false;
4001 }
4002 }
4003 }
4004 return true;
4005 }
4006
4007 static bool
4008 add_fragdata_arrays(const struct gl_context *ctx,
4009 struct gl_shader_program *shProg,
4010 struct set *resource_set)
4011 {
4012 struct gl_linked_shader *sh = shProg->_LinkedShaders[MESA_SHADER_FRAGMENT];
4013
4014 if (!sh || !sh->fragdata_arrays)
4015 return true;
4016
4017 foreach_in_list(ir_instruction, node, sh->fragdata_arrays) {
4018 ir_variable *var = node->as_variable();
4019 if (var) {
4020 assert(var->data.mode == ir_var_shader_out);
4021
4022 if (!add_shader_variable(ctx, shProg, resource_set,
4023 1 << MESA_SHADER_FRAGMENT,
4024 GL_PROGRAM_OUTPUT, var, var->name, var->type,
4025 true, var->data.location - FRAG_RESULT_DATA0))
4026 return false;
4027 }
4028 }
4029 return true;
4030 }
4031
4032 static char*
4033 get_top_level_name(const char *name)
4034 {
4035 const char *first_dot = strchr(name, '.');
4036 const char *first_square_bracket = strchr(name, '[');
4037 int name_size = 0;
4038
4039 /* The ARB_program_interface_query spec says:
4040 *
4041 * "For the property TOP_LEVEL_ARRAY_SIZE, a single integer identifying
4042 * the number of active array elements of the top-level shader storage
4043 * block member containing to the active variable is written to
4044 * <params>. If the top-level block member is not declared as an
4045 * array, the value one is written to <params>. If the top-level block
4046 * member is an array with no declared size, the value zero is written
4047 * to <params>."
4048 */
4049
4050 /* The buffer variable is on top level.*/
4051 if (!first_square_bracket && !first_dot)
4052 name_size = strlen(name);
4053 else if ((!first_square_bracket ||
4054 (first_dot && first_dot < first_square_bracket)))
4055 name_size = first_dot - name;
4056 else
4057 name_size = first_square_bracket - name;
4058
4059 return strndup(name, name_size);
4060 }
4061
4062 static char*
4063 get_var_name(const char *name)
4064 {
4065 const char *first_dot = strchr(name, '.');
4066
4067 if (!first_dot)
4068 return strdup(name);
4069
4070 return strndup(first_dot+1, strlen(first_dot) - 1);
4071 }
4072
4073 static bool
4074 is_top_level_shader_storage_block_member(const char* name,
4075 const char* interface_name,
4076 const char* field_name)
4077 {
4078 bool result = false;
4079
4080 /* If the given variable is already a top-level shader storage
4081 * block member, then return array_size = 1.
4082 * We could have two possibilities: if we have an instanced
4083 * shader storage block or not instanced.
4084 *
4085 * For the first, we check create a name as it was in top level and
4086 * compare it with the real name. If they are the same, then
4087 * the variable is already at top-level.
4088 *
4089 * Full instanced name is: interface name + '.' + var name +
4090 * NULL character
4091 */
4092 int name_length = strlen(interface_name) + 1 + strlen(field_name) + 1;
4093 char *full_instanced_name = (char *) calloc(name_length, sizeof(char));
4094 if (!full_instanced_name) {
4095 fprintf(stderr, "%s: Cannot allocate space for name\n", __func__);
4096 return false;
4097 }
4098
4099 snprintf(full_instanced_name, name_length, "%s.%s",
4100 interface_name, field_name);
4101
4102 /* Check if its top-level shader storage block member of an
4103 * instanced interface block, or of a unnamed interface block.
4104 */
4105 if (strcmp(name, full_instanced_name) == 0 ||
4106 strcmp(name, field_name) == 0)
4107 result = true;
4108
4109 free(full_instanced_name);
4110 return result;
4111 }
4112
4113 static int
4114 get_array_size(struct gl_uniform_storage *uni, const glsl_struct_field *field,
4115 char *interface_name, char *var_name)
4116 {
4117 /* The ARB_program_interface_query spec says:
4118 *
4119 * "For the property TOP_LEVEL_ARRAY_SIZE, a single integer identifying
4120 * the number of active array elements of the top-level shader storage
4121 * block member containing to the active variable is written to
4122 * <params>. If the top-level block member is not declared as an
4123 * array, the value one is written to <params>. If the top-level block
4124 * member is an array with no declared size, the value zero is written
4125 * to <params>."
4126 */
4127 if (is_top_level_shader_storage_block_member(uni->name,
4128 interface_name,
4129 var_name))
4130 return 1;
4131 else if (field->type->is_unsized_array())
4132 return 0;
4133 else if (field->type->is_array())
4134 return field->type->length;
4135
4136 return 1;
4137 }
4138
4139 static int
4140 get_array_stride(struct gl_context *ctx, struct gl_uniform_storage *uni,
4141 const glsl_type *interface, const glsl_struct_field *field,
4142 char *interface_name, char *var_name)
4143 {
4144 /* The ARB_program_interface_query spec says:
4145 *
4146 * "For the property TOP_LEVEL_ARRAY_STRIDE, a single integer
4147 * identifying the stride between array elements of the top-level
4148 * shader storage block member containing the active variable is
4149 * written to <params>. For top-level block members declared as
4150 * arrays, the value written is the difference, in basic machine units,
4151 * between the offsets of the active variable for consecutive elements
4152 * in the top-level array. For top-level block members not declared as
4153 * an array, zero is written to <params>."
4154 */
4155 if (field->type->is_array()) {
4156 const enum glsl_matrix_layout matrix_layout =
4157 glsl_matrix_layout(field->matrix_layout);
4158 bool row_major = matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR;
4159 const glsl_type *array_type = field->type->fields.array;
4160
4161 if (is_top_level_shader_storage_block_member(uni->name,
4162 interface_name,
4163 var_name))
4164 return 0;
4165
4166 if (GLSL_INTERFACE_PACKING_STD140 ==
4167 interface->
4168 get_internal_ifc_packing(ctx->Const.UseSTD430AsDefaultPacking)) {
4169 if (array_type->is_record() || array_type->is_array())
4170 return glsl_align(array_type->std140_size(row_major), 16);
4171 else
4172 return MAX2(array_type->std140_base_alignment(row_major), 16);
4173 } else {
4174 return array_type->std430_array_stride(row_major);
4175 }
4176 }
4177 return 0;
4178 }
4179
4180 static void
4181 calculate_array_size_and_stride(struct gl_context *ctx,
4182 struct gl_shader_program *shProg,
4183 struct gl_uniform_storage *uni)
4184 {
4185 int block_index = uni->block_index;
4186 int array_size = -1;
4187 int array_stride = -1;
4188 char *var_name = get_top_level_name(uni->name);
4189 char *interface_name =
4190 get_top_level_name(uni->is_shader_storage ?
4191 shProg->data->ShaderStorageBlocks[block_index].Name :
4192 shProg->data->UniformBlocks[block_index].Name);
4193
4194 if (strcmp(var_name, interface_name) == 0) {
4195 /* Deal with instanced array of SSBOs */
4196 char *temp_name = get_var_name(uni->name);
4197 if (!temp_name) {
4198 linker_error(shProg, "Out of memory during linking.\n");
4199 goto write_top_level_array_size_and_stride;
4200 }
4201 free(var_name);
4202 var_name = get_top_level_name(temp_name);
4203 free(temp_name);
4204 if (!var_name) {
4205 linker_error(shProg, "Out of memory during linking.\n");
4206 goto write_top_level_array_size_and_stride;
4207 }
4208 }
4209
4210 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4211 const gl_linked_shader *sh = shProg->_LinkedShaders[i];
4212 if (sh == NULL)
4213 continue;
4214
4215 foreach_in_list(ir_instruction, node, sh->ir) {
4216 ir_variable *var = node->as_variable();
4217 if (!var || !var->get_interface_type() ||
4218 var->data.mode != ir_var_shader_storage)
4219 continue;
4220
4221 const glsl_type *interface = var->get_interface_type();
4222
4223 if (strcmp(interface_name, interface->name) != 0)
4224 continue;
4225
4226 for (unsigned i = 0; i < interface->length; i++) {
4227 const glsl_struct_field *field = &interface->fields.structure[i];
4228 if (strcmp(field->name, var_name) != 0)
4229 continue;
4230
4231 array_stride = get_array_stride(ctx, uni, interface, field,
4232 interface_name, var_name);
4233 array_size = get_array_size(uni, field, interface_name, var_name);
4234 goto write_top_level_array_size_and_stride;
4235 }
4236 }
4237 }
4238 write_top_level_array_size_and_stride:
4239 free(interface_name);
4240 free(var_name);
4241 uni->top_level_array_stride = array_stride;
4242 uni->top_level_array_size = array_size;
4243 }
4244
4245 /**
4246 * Builds up a list of program resources that point to existing
4247 * resource data.
4248 */
4249 void
4250 build_program_resource_list(struct gl_context *ctx,
4251 struct gl_shader_program *shProg)
4252 {
4253 /* Rebuild resource list. */
4254 if (shProg->data->ProgramResourceList) {
4255 ralloc_free(shProg->data->ProgramResourceList);
4256 shProg->data->ProgramResourceList = NULL;
4257 shProg->data->NumProgramResourceList = 0;
4258 }
4259
4260 int input_stage = MESA_SHADER_STAGES, output_stage = 0;
4261
4262 /* Determine first input and final output stage. These are used to
4263 * detect which variables should be enumerated in the resource list
4264 * for GL_PROGRAM_INPUT and GL_PROGRAM_OUTPUT.
4265 */
4266 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4267 if (!shProg->_LinkedShaders[i])
4268 continue;
4269 if (input_stage == MESA_SHADER_STAGES)
4270 input_stage = i;
4271 output_stage = i;
4272 }
4273
4274 /* Empty shader, no resources. */
4275 if (input_stage == MESA_SHADER_STAGES && output_stage == 0)
4276 return;
4277
4278 struct set *resource_set = _mesa_set_create(NULL,
4279 _mesa_hash_pointer,
4280 _mesa_key_pointer_equal);
4281
4282 /* Program interface needs to expose varyings in case of SSO. */
4283 if (shProg->SeparateShader) {
4284 if (!add_packed_varyings(ctx, shProg, resource_set,
4285 input_stage, GL_PROGRAM_INPUT))
4286 return;
4287
4288 if (!add_packed_varyings(ctx, shProg, resource_set,
4289 output_stage, GL_PROGRAM_OUTPUT))
4290 return;
4291 }
4292
4293 if (!add_fragdata_arrays(ctx, shProg, resource_set))
4294 return;
4295
4296 /* Add inputs and outputs to the resource list. */
4297 if (!add_interface_variables(ctx, shProg, resource_set,
4298 input_stage, GL_PROGRAM_INPUT))
4299 return;
4300
4301 if (!add_interface_variables(ctx, shProg, resource_set,
4302 output_stage, GL_PROGRAM_OUTPUT))
4303 return;
4304
4305 if (shProg->last_vert_prog) {
4306 struct gl_transform_feedback_info *linked_xfb =
4307 shProg->last_vert_prog->sh.LinkedTransformFeedback;
4308
4309 /* Add transform feedback varyings. */
4310 if (linked_xfb->NumVarying > 0) {
4311 for (int i = 0; i < linked_xfb->NumVarying; i++) {
4312 if (!add_program_resource(shProg, resource_set,
4313 GL_TRANSFORM_FEEDBACK_VARYING,
4314 &linked_xfb->Varyings[i], 0))
4315 return;
4316 }
4317 }
4318
4319 /* Add transform feedback buffers. */
4320 for (unsigned i = 0; i < ctx->Const.MaxTransformFeedbackBuffers; i++) {
4321 if ((linked_xfb->ActiveBuffers >> i) & 1) {
4322 linked_xfb->Buffers[i].Binding = i;
4323 if (!add_program_resource(shProg, resource_set,
4324 GL_TRANSFORM_FEEDBACK_BUFFER,
4325 &linked_xfb->Buffers[i], 0))
4326 return;
4327 }
4328 }
4329 }
4330
4331 /* Add uniforms from uniform storage. */
4332 for (unsigned i = 0; i < shProg->data->NumUniformStorage; i++) {
4333 /* Do not add uniforms internally used by Mesa. */
4334 if (shProg->data->UniformStorage[i].hidden)
4335 continue;
4336
4337 uint8_t stageref =
4338 build_stageref(shProg, shProg->data->UniformStorage[i].name,
4339 ir_var_uniform);
4340
4341 /* Add stagereferences for uniforms in a uniform block. */
4342 bool is_shader_storage =
4343 shProg->data->UniformStorage[i].is_shader_storage;
4344 int block_index = shProg->data->UniformStorage[i].block_index;
4345 if (block_index != -1) {
4346 stageref |= is_shader_storage ?
4347 shProg->data->ShaderStorageBlocks[block_index].stageref :
4348 shProg->data->UniformBlocks[block_index].stageref;
4349 }
4350
4351 GLenum type = is_shader_storage ? GL_BUFFER_VARIABLE : GL_UNIFORM;
4352 if (!should_add_buffer_variable(shProg, type,
4353 shProg->data->UniformStorage[i].name))
4354 continue;
4355
4356 if (is_shader_storage) {
4357 calculate_array_size_and_stride(ctx, shProg,
4358 &shProg->data->UniformStorage[i]);
4359 }
4360
4361 if (!add_program_resource(shProg, resource_set, type,
4362 &shProg->data->UniformStorage[i], stageref))
4363 return;
4364 }
4365
4366 /* Add program uniform blocks. */
4367 for (unsigned i = 0; i < shProg->data->NumUniformBlocks; i++) {
4368 if (!add_program_resource(shProg, resource_set, GL_UNIFORM_BLOCK,
4369 &shProg->data->UniformBlocks[i], 0))
4370 return;
4371 }
4372
4373 /* Add program shader storage blocks. */
4374 for (unsigned i = 0; i < shProg->data->NumShaderStorageBlocks; i++) {
4375 if (!add_program_resource(shProg, resource_set, GL_SHADER_STORAGE_BLOCK,
4376 &shProg->data->ShaderStorageBlocks[i], 0))
4377 return;
4378 }
4379
4380 /* Add atomic counter buffers. */
4381 for (unsigned i = 0; i < shProg->data->NumAtomicBuffers; i++) {
4382 if (!add_program_resource(shProg, resource_set, GL_ATOMIC_COUNTER_BUFFER,
4383 &shProg->data->AtomicBuffers[i], 0))
4384 return;
4385 }
4386
4387 for (unsigned i = 0; i < shProg->data->NumUniformStorage; i++) {
4388 GLenum type;
4389 if (!shProg->data->UniformStorage[i].hidden)
4390 continue;
4391
4392 for (int j = MESA_SHADER_VERTEX; j < MESA_SHADER_STAGES; j++) {
4393 if (!shProg->data->UniformStorage[i].opaque[j].active ||
4394 !shProg->data->UniformStorage[i].type->is_subroutine())
4395 continue;
4396
4397 type = _mesa_shader_stage_to_subroutine_uniform((gl_shader_stage)j);
4398 /* add shader subroutines */
4399 if (!add_program_resource(shProg, resource_set,
4400 type, &shProg->data->UniformStorage[i], 0))
4401 return;
4402 }
4403 }
4404
4405 unsigned mask = shProg->data->linked_stages;
4406 while (mask) {
4407 const int i = u_bit_scan(&mask);
4408 struct gl_program *p = shProg->_LinkedShaders[i]->Program;
4409
4410 GLuint type = _mesa_shader_stage_to_subroutine((gl_shader_stage)i);
4411 for (unsigned j = 0; j < p->sh.NumSubroutineFunctions; j++) {
4412 if (!add_program_resource(shProg, resource_set,
4413 type, &p->sh.SubroutineFunctions[j], 0))
4414 return;
4415 }
4416 }
4417
4418 _mesa_set_destroy(resource_set, NULL);
4419 }
4420
4421 /**
4422 * This check is done to make sure we allow only constant expression
4423 * indexing and "constant-index-expression" (indexing with an expression
4424 * that includes loop induction variable).
4425 */
4426 static bool
4427 validate_sampler_array_indexing(struct gl_context *ctx,
4428 struct gl_shader_program *prog)
4429 {
4430 dynamic_sampler_array_indexing_visitor v;
4431 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4432 if (prog->_LinkedShaders[i] == NULL)
4433 continue;
4434
4435 bool no_dynamic_indexing =
4436 ctx->Const.ShaderCompilerOptions[i].EmitNoIndirectSampler;
4437
4438 /* Search for array derefs in shader. */
4439 v.run(prog->_LinkedShaders[i]->ir);
4440 if (v.uses_dynamic_sampler_array_indexing()) {
4441 const char *msg = "sampler arrays indexed with non-constant "
4442 "expressions is forbidden in GLSL %s %u";
4443 /* Backend has indicated that it has no dynamic indexing support. */
4444 if (no_dynamic_indexing) {
4445 linker_error(prog, msg, prog->IsES ? "ES" : "",
4446 prog->data->Version);
4447 return false;
4448 } else {
4449 linker_warning(prog, msg, prog->IsES ? "ES" : "",
4450 prog->data->Version);
4451 }
4452 }
4453 }
4454 return true;
4455 }
4456
4457 static void
4458 link_assign_subroutine_types(struct gl_shader_program *prog)
4459 {
4460 unsigned mask = prog->data->linked_stages;
4461 while (mask) {
4462 const int i = u_bit_scan(&mask);
4463 gl_program *p = prog->_LinkedShaders[i]->Program;
4464
4465 p->sh.MaxSubroutineFunctionIndex = 0;
4466 foreach_in_list(ir_instruction, node, prog->_LinkedShaders[i]->ir) {
4467 ir_function *fn = node->as_function();
4468 if (!fn)
4469 continue;
4470
4471 if (fn->is_subroutine)
4472 p->sh.NumSubroutineUniformTypes++;
4473
4474 if (!fn->num_subroutine_types)
4475 continue;
4476
4477 /* these should have been calculated earlier. */
4478 assert(fn->subroutine_index != -1);
4479 if (p->sh.NumSubroutineFunctions + 1 > MAX_SUBROUTINES) {
4480 linker_error(prog, "Too many subroutine functions declared.\n");
4481 return;
4482 }
4483 p->sh.SubroutineFunctions = reralloc(p, p->sh.SubroutineFunctions,
4484 struct gl_subroutine_function,
4485 p->sh.NumSubroutineFunctions + 1);
4486 p->sh.SubroutineFunctions[p->sh.NumSubroutineFunctions].name = ralloc_strdup(p, fn->name);
4487 p->sh.SubroutineFunctions[p->sh.NumSubroutineFunctions].num_compat_types = fn->num_subroutine_types;
4488 p->sh.SubroutineFunctions[p->sh.NumSubroutineFunctions].types =
4489 ralloc_array(p, const struct glsl_type *,
4490 fn->num_subroutine_types);
4491
4492 /* From Section 4.4.4(Subroutine Function Layout Qualifiers) of the
4493 * GLSL 4.5 spec:
4494 *
4495 * "Each subroutine with an index qualifier in the shader must be
4496 * given a unique index, otherwise a compile or link error will be
4497 * generated."
4498 */
4499 for (unsigned j = 0; j < p->sh.NumSubroutineFunctions; j++) {
4500 if (p->sh.SubroutineFunctions[j].index != -1 &&
4501 p->sh.SubroutineFunctions[j].index == fn->subroutine_index) {
4502 linker_error(prog, "each subroutine index qualifier in the "
4503 "shader must be unique\n");
4504 return;
4505 }
4506 }
4507 p->sh.SubroutineFunctions[p->sh.NumSubroutineFunctions].index =
4508 fn->subroutine_index;
4509
4510 if (fn->subroutine_index > (int)p->sh.MaxSubroutineFunctionIndex)
4511 p->sh.MaxSubroutineFunctionIndex = fn->subroutine_index;
4512
4513 for (int j = 0; j < fn->num_subroutine_types; j++)
4514 p->sh.SubroutineFunctions[p->sh.NumSubroutineFunctions].types[j] = fn->subroutine_types[j];
4515 p->sh.NumSubroutineFunctions++;
4516 }
4517 }
4518 }
4519
4520 static void
4521 set_always_active_io(exec_list *ir, ir_variable_mode io_mode)
4522 {
4523 assert(io_mode == ir_var_shader_in || io_mode == ir_var_shader_out);
4524
4525 foreach_in_list(ir_instruction, node, ir) {
4526 ir_variable *const var = node->as_variable();
4527
4528 if (var == NULL || var->data.mode != io_mode)
4529 continue;
4530
4531 /* Don't set always active on builtins that haven't been redeclared */
4532 if (var->data.how_declared == ir_var_declared_implicitly)
4533 continue;
4534
4535 var->data.always_active_io = true;
4536 }
4537 }
4538
4539 /**
4540 * When separate shader programs are enabled, only input/outputs between
4541 * the stages of a multi-stage separate program can be safely removed
4542 * from the shader interface. Other inputs/outputs must remain active.
4543 */
4544 static void
4545 disable_varying_optimizations_for_sso(struct gl_shader_program *prog)
4546 {
4547 unsigned first, last;
4548 assert(prog->SeparateShader);
4549
4550 first = MESA_SHADER_STAGES;
4551 last = 0;
4552
4553 /* Determine first and last stage. Excluding the compute stage */
4554 for (unsigned i = 0; i < MESA_SHADER_COMPUTE; i++) {
4555 if (!prog->_LinkedShaders[i])
4556 continue;
4557 if (first == MESA_SHADER_STAGES)
4558 first = i;
4559 last = i;
4560 }
4561
4562 if (first == MESA_SHADER_STAGES)
4563 return;
4564
4565 for (unsigned stage = 0; stage < MESA_SHADER_STAGES; stage++) {
4566 gl_linked_shader *sh = prog->_LinkedShaders[stage];
4567 if (!sh)
4568 continue;
4569
4570 /* Prevent the removal of inputs to the first and outputs from the last
4571 * stage, unless they are the initial pipeline inputs or final pipeline
4572 * outputs, respectively.
4573 *
4574 * The removal of IO between shaders in the same program is always
4575 * allowed.
4576 */
4577 if (stage == first && stage != MESA_SHADER_VERTEX)
4578 set_always_active_io(sh->ir, ir_var_shader_in);
4579 if (stage == last && stage != MESA_SHADER_FRAGMENT)
4580 set_always_active_io(sh->ir, ir_var_shader_out);
4581 }
4582 }
4583
4584 static void
4585 link_and_validate_uniforms(struct gl_context *ctx,
4586 struct gl_shader_program *prog)
4587 {
4588 update_array_sizes(prog);
4589 link_assign_uniform_locations(prog, ctx);
4590
4591 if (!prog->data->cache_fallback) {
4592 link_assign_atomic_counter_resources(ctx, prog);
4593 link_calculate_subroutine_compat(prog);
4594 check_resources(ctx, prog);
4595 check_subroutine_resources(prog);
4596 check_image_resources(ctx, prog);
4597 link_check_atomic_counter_resources(ctx, prog);
4598 }
4599 }
4600
4601 static bool
4602 link_varyings_and_uniforms(unsigned first, unsigned last,
4603 struct gl_context *ctx,
4604 struct gl_shader_program *prog, void *mem_ctx)
4605 {
4606 /* Mark all generic shader inputs and outputs as unpaired. */
4607 for (unsigned i = MESA_SHADER_VERTEX; i <= MESA_SHADER_FRAGMENT; i++) {
4608 if (prog->_LinkedShaders[i] != NULL) {
4609 link_invalidate_variable_locations(prog->_LinkedShaders[i]->ir);
4610 }
4611 }
4612
4613 unsigned prev = first;
4614 for (unsigned i = prev + 1; i <= MESA_SHADER_FRAGMENT; i++) {
4615 if (prog->_LinkedShaders[i] == NULL)
4616 continue;
4617
4618 match_explicit_outputs_to_inputs(prog->_LinkedShaders[prev],
4619 prog->_LinkedShaders[i]);
4620 prev = i;
4621 }
4622
4623 if (!assign_attribute_or_color_locations(mem_ctx, prog, &ctx->Const,
4624 MESA_SHADER_VERTEX)) {
4625 return false;
4626 }
4627
4628 if (!assign_attribute_or_color_locations(mem_ctx, prog, &ctx->Const,
4629 MESA_SHADER_FRAGMENT)) {
4630 return false;
4631 }
4632
4633 prog->last_vert_prog = NULL;
4634 for (int i = MESA_SHADER_GEOMETRY; i >= MESA_SHADER_VERTEX; i--) {
4635 if (prog->_LinkedShaders[i] == NULL)
4636 continue;
4637
4638 prog->last_vert_prog = prog->_LinkedShaders[i]->Program;
4639 break;
4640 }
4641
4642 if (!link_varyings(prog, first, last, ctx, mem_ctx))
4643 return false;
4644
4645 link_and_validate_uniforms(ctx, prog);
4646
4647 if (!prog->data->LinkStatus)
4648 return false;
4649
4650 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4651 if (prog->_LinkedShaders[i] == NULL)
4652 continue;
4653
4654 const struct gl_shader_compiler_options *options =
4655 &ctx->Const.ShaderCompilerOptions[i];
4656
4657 if (options->LowerBufferInterfaceBlocks)
4658 lower_ubo_reference(prog->_LinkedShaders[i],
4659 options->ClampBlockIndicesToArrayBounds,
4660 ctx->Const.UseSTD430AsDefaultPacking);
4661
4662 if (i == MESA_SHADER_COMPUTE)
4663 lower_shared_reference(ctx, prog, prog->_LinkedShaders[i]);
4664
4665 lower_vector_derefs(prog->_LinkedShaders[i]);
4666 do_vec_index_to_swizzle(prog->_LinkedShaders[i]->ir);
4667 }
4668
4669 return true;
4670 }
4671
4672 static void
4673 linker_optimisation_loop(struct gl_context *ctx, exec_list *ir,
4674 unsigned stage)
4675 {
4676 if (ctx->Const.GLSLOptimizeConservatively) {
4677 /* Run it just once. */
4678 do_common_optimization(ir, true, false,
4679 &ctx->Const.ShaderCompilerOptions[stage],
4680 ctx->Const.NativeIntegers);
4681 } else {
4682 /* Repeat it until it stops making changes. */
4683 while (do_common_optimization(ir, true, false,
4684 &ctx->Const.ShaderCompilerOptions[stage],
4685 ctx->Const.NativeIntegers))
4686 ;
4687 }
4688 }
4689
4690 void
4691 link_shaders(struct gl_context *ctx, struct gl_shader_program *prog)
4692 {
4693 prog->data->LinkStatus = linking_success; /* All error paths will set this to false */
4694 prog->data->Validated = false;
4695
4696 /* Section 7.3 (Program Objects) of the OpenGL 4.5 Core Profile spec says:
4697 *
4698 * "Linking can fail for a variety of reasons as specified in the
4699 * OpenGL Shading Language Specification, as well as any of the
4700 * following reasons:
4701 *
4702 * - No shader objects are attached to program."
4703 *
4704 * The Compatibility Profile specification does not list the error. In
4705 * Compatibility Profile missing shader stages are replaced by
4706 * fixed-function. This applies to the case where all stages are
4707 * missing.
4708 */
4709 if (prog->NumShaders == 0) {
4710 if (ctx->API != API_OPENGL_COMPAT)
4711 linker_error(prog, "no shaders attached to the program\n");
4712 return;
4713 }
4714
4715 #ifdef ENABLE_SHADER_CACHE
4716 /* If transform feedback used on the program then compile all shaders. */
4717 bool skip_cache = false;
4718 if (prog->TransformFeedback.NumVarying > 0) {
4719 for (unsigned i = 0; i < prog->NumShaders; i++) {
4720 _mesa_glsl_compile_shader(ctx, prog->Shaders[i], false, false, true);
4721 }
4722 skip_cache = true;
4723 }
4724
4725 if (!skip_cache && shader_cache_read_program_metadata(ctx, prog))
4726 return;
4727 #endif
4728
4729 void *mem_ctx = ralloc_context(NULL); // temporary linker context
4730
4731 prog->ARB_fragment_coord_conventions_enable = false;
4732
4733 /* Separate the shaders into groups based on their type.
4734 */
4735 struct gl_shader **shader_list[MESA_SHADER_STAGES];
4736 unsigned num_shaders[MESA_SHADER_STAGES];
4737
4738 for (int i = 0; i < MESA_SHADER_STAGES; i++) {
4739 shader_list[i] = (struct gl_shader **)
4740 calloc(prog->NumShaders, sizeof(struct gl_shader *));
4741 num_shaders[i] = 0;
4742 }
4743
4744 unsigned min_version = UINT_MAX;
4745 unsigned max_version = 0;
4746 for (unsigned i = 0; i < prog->NumShaders; i++) {
4747 min_version = MIN2(min_version, prog->Shaders[i]->Version);
4748 max_version = MAX2(max_version, prog->Shaders[i]->Version);
4749
4750 if (prog->Shaders[i]->IsES != prog->Shaders[0]->IsES) {
4751 linker_error(prog, "all shaders must use same shading "
4752 "language version\n");
4753 goto done;
4754 }
4755
4756 if (prog->Shaders[i]->ARB_fragment_coord_conventions_enable) {
4757 prog->ARB_fragment_coord_conventions_enable = true;
4758 }
4759
4760 gl_shader_stage shader_type = prog->Shaders[i]->Stage;
4761 shader_list[shader_type][num_shaders[shader_type]] = prog->Shaders[i];
4762 num_shaders[shader_type]++;
4763 }
4764
4765 /* In desktop GLSL, different shader versions may be linked together. In
4766 * GLSL ES, all shader versions must be the same.
4767 */
4768 if (prog->Shaders[0]->IsES && min_version != max_version) {
4769 linker_error(prog, "all shaders must use same shading "
4770 "language version\n");
4771 goto done;
4772 }
4773
4774 prog->data->Version = max_version;
4775 prog->IsES = prog->Shaders[0]->IsES;
4776
4777 /* Some shaders have to be linked with some other shaders present.
4778 */
4779 if (!prog->SeparateShader) {
4780 if (num_shaders[MESA_SHADER_GEOMETRY] > 0 &&
4781 num_shaders[MESA_SHADER_VERTEX] == 0) {
4782 linker_error(prog, "Geometry shader must be linked with "
4783 "vertex shader\n");
4784 goto done;
4785 }
4786 if (num_shaders[MESA_SHADER_TESS_EVAL] > 0 &&
4787 num_shaders[MESA_SHADER_VERTEX] == 0) {
4788 linker_error(prog, "Tessellation evaluation shader must be linked "
4789 "with vertex shader\n");
4790 goto done;
4791 }
4792 if (num_shaders[MESA_SHADER_TESS_CTRL] > 0 &&
4793 num_shaders[MESA_SHADER_VERTEX] == 0) {
4794 linker_error(prog, "Tessellation control shader must be linked with "
4795 "vertex shader\n");
4796 goto done;
4797 }
4798
4799 /* Section 7.3 of the OpenGL ES 3.2 specification says:
4800 *
4801 * "Linking can fail for [...] any of the following reasons:
4802 *
4803 * * program contains an object to form a tessellation control
4804 * shader [...] and [...] the program is not separable and
4805 * contains no object to form a tessellation evaluation shader"
4806 *
4807 * The OpenGL spec is contradictory. It allows linking without a tess
4808 * eval shader, but that can only be used with transform feedback and
4809 * rasterization disabled. However, transform feedback isn't allowed
4810 * with GL_PATCHES, so it can't be used.
4811 *
4812 * More investigation showed that the idea of transform feedback after
4813 * a tess control shader was dropped, because some hw vendors couldn't
4814 * support tessellation without a tess eval shader, but the linker
4815 * section wasn't updated to reflect that.
4816 *
4817 * All specifications (ARB_tessellation_shader, GL 4.0-4.5) have this
4818 * spec bug.
4819 *
4820 * Do what's reasonable and always require a tess eval shader if a tess
4821 * control shader is present.
4822 */
4823 if (num_shaders[MESA_SHADER_TESS_CTRL] > 0 &&
4824 num_shaders[MESA_SHADER_TESS_EVAL] == 0) {
4825 linker_error(prog, "Tessellation control shader must be linked with "
4826 "tessellation evaluation shader\n");
4827 goto done;
4828 }
4829
4830 if (prog->IsES) {
4831 if (num_shaders[MESA_SHADER_TESS_EVAL] > 0 &&
4832 num_shaders[MESA_SHADER_TESS_CTRL] == 0) {
4833 linker_error(prog, "GLSL ES requires non-separable programs "
4834 "containing a tessellation evaluation shader to also "
4835 "be linked with a tessellation control shader\n");
4836 goto done;
4837 }
4838 }
4839 }
4840
4841 /* Compute shaders have additional restrictions. */
4842 if (num_shaders[MESA_SHADER_COMPUTE] > 0 &&
4843 num_shaders[MESA_SHADER_COMPUTE] != prog->NumShaders) {
4844 linker_error(prog, "Compute shaders may not be linked with any other "
4845 "type of shader\n");
4846 }
4847
4848 /* Link all shaders for a particular stage and validate the result.
4849 */
4850 for (int stage = 0; stage < MESA_SHADER_STAGES; stage++) {
4851 if (num_shaders[stage] > 0) {
4852 gl_linked_shader *const sh =
4853 link_intrastage_shaders(mem_ctx, ctx, prog, shader_list[stage],
4854 num_shaders[stage], false);
4855
4856 if (!prog->data->LinkStatus) {
4857 if (sh)
4858 _mesa_delete_linked_shader(ctx, sh);
4859 goto done;
4860 }
4861
4862 switch (stage) {
4863 case MESA_SHADER_VERTEX:
4864 validate_vertex_shader_executable(prog, sh, ctx);
4865 break;
4866 case MESA_SHADER_TESS_CTRL:
4867 /* nothing to be done */
4868 break;
4869 case MESA_SHADER_TESS_EVAL:
4870 validate_tess_eval_shader_executable(prog, sh, ctx);
4871 break;
4872 case MESA_SHADER_GEOMETRY:
4873 validate_geometry_shader_executable(prog, sh, ctx);
4874 break;
4875 case MESA_SHADER_FRAGMENT:
4876 validate_fragment_shader_executable(prog, sh);
4877 break;
4878 }
4879 if (!prog->data->LinkStatus) {
4880 if (sh)
4881 _mesa_delete_linked_shader(ctx, sh);
4882 goto done;
4883 }
4884
4885 prog->_LinkedShaders[stage] = sh;
4886 prog->data->linked_stages |= 1 << stage;
4887 }
4888 }
4889
4890 /* Here begins the inter-stage linking phase. Some initial validation is
4891 * performed, then locations are assigned for uniforms, attributes, and
4892 * varyings.
4893 */
4894 cross_validate_uniforms(prog);
4895 if (!prog->data->LinkStatus)
4896 goto done;
4897
4898 unsigned first, last, prev;
4899
4900 first = MESA_SHADER_STAGES;
4901 last = 0;
4902
4903 /* Determine first and last stage. */
4904 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4905 if (!prog->_LinkedShaders[i])
4906 continue;
4907 if (first == MESA_SHADER_STAGES)
4908 first = i;
4909 last = i;
4910 }
4911
4912 if (!prog->data->cache_fallback) {
4913 check_explicit_uniform_locations(ctx, prog);
4914 link_assign_subroutine_types(prog);
4915 }
4916
4917 if (!prog->data->LinkStatus)
4918 goto done;
4919
4920 resize_tes_inputs(ctx, prog);
4921
4922 /* Validate the inputs of each stage with the output of the preceding
4923 * stage.
4924 */
4925 prev = first;
4926 for (unsigned i = prev + 1; i <= MESA_SHADER_FRAGMENT; i++) {
4927 if (prog->_LinkedShaders[i] == NULL)
4928 continue;
4929
4930 validate_interstage_inout_blocks(prog, prog->_LinkedShaders[prev],
4931 prog->_LinkedShaders[i]);
4932 if (!prog->data->LinkStatus)
4933 goto done;
4934
4935 cross_validate_outputs_to_inputs(ctx, prog,
4936 prog->_LinkedShaders[prev],
4937 prog->_LinkedShaders[i]);
4938 if (!prog->data->LinkStatus)
4939 goto done;
4940
4941 prev = i;
4942 }
4943
4944 /* The cross validation of outputs/inputs above validates explicit locations
4945 * but for SSO programs we need to do this also for the inputs in the
4946 * first stage and outputs of the last stage included in the program, since
4947 * there is no cross validation for these.
4948 */
4949 if (prog->SeparateShader)
4950 validate_sso_explicit_locations(ctx, prog,
4951 (gl_shader_stage) first,
4952 (gl_shader_stage) last);
4953
4954 /* Cross-validate uniform blocks between shader stages */
4955 validate_interstage_uniform_blocks(prog, prog->_LinkedShaders);
4956 if (!prog->data->LinkStatus)
4957 goto done;
4958
4959 for (unsigned int i = 0; i < MESA_SHADER_STAGES; i++) {
4960 if (prog->_LinkedShaders[i] != NULL)
4961 lower_named_interface_blocks(mem_ctx, prog->_LinkedShaders[i]);
4962 }
4963
4964 /* Implement the GLSL 1.30+ rule for discard vs infinite loops Do
4965 * it before optimization because we want most of the checks to get
4966 * dropped thanks to constant propagation.
4967 *
4968 * This rule also applies to GLSL ES 3.00.
4969 */
4970 if (max_version >= (prog->IsES ? 300 : 130)) {
4971 struct gl_linked_shader *sh = prog->_LinkedShaders[MESA_SHADER_FRAGMENT];
4972 if (sh) {
4973 lower_discard_flow(sh->ir);
4974 }
4975 }
4976
4977 if (prog->SeparateShader)
4978 disable_varying_optimizations_for_sso(prog);
4979
4980 if (!prog->data->cache_fallback) {
4981 /* Process UBOs */
4982 if (!interstage_cross_validate_uniform_blocks(prog, false))
4983 goto done;
4984
4985 /* Process SSBOs */
4986 if (!interstage_cross_validate_uniform_blocks(prog, true))
4987 goto done;
4988 }
4989
4990 /* Do common optimization before assigning storage for attributes,
4991 * uniforms, and varyings. Later optimization could possibly make
4992 * some of that unused.
4993 */
4994 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4995 if (prog->_LinkedShaders[i] == NULL)
4996 continue;
4997
4998 detect_recursion_linked(prog, prog->_LinkedShaders[i]->ir);
4999 if (!prog->data->LinkStatus)
5000 goto done;
5001
5002 if (ctx->Const.ShaderCompilerOptions[i].LowerCombinedClipCullDistance) {
5003 lower_clip_cull_distance(prog, prog->_LinkedShaders[i]);
5004 }
5005
5006 if (ctx->Const.LowerTessLevel) {
5007 lower_tess_level(prog->_LinkedShaders[i]);
5008 }
5009
5010 /* Call opts before lowering const arrays to uniforms so we can const
5011 * propagate any elements accessed directly.
5012 */
5013 linker_optimisation_loop(ctx, prog->_LinkedShaders[i]->ir, i);
5014
5015 /* Call opts after lowering const arrays to copy propagate things. */
5016 if (lower_const_arrays_to_uniforms(prog->_LinkedShaders[i]->ir, i))
5017 linker_optimisation_loop(ctx, prog->_LinkedShaders[i]->ir, i);
5018
5019 propagate_invariance(prog->_LinkedShaders[i]->ir);
5020 }
5021
5022 /* Validation for special cases where we allow sampler array indexing
5023 * with loop induction variable. This check emits a warning or error
5024 * depending if backend can handle dynamic indexing.
5025 */
5026 if ((!prog->IsES && prog->data->Version < 130) ||
5027 (prog->IsES && prog->data->Version < 300)) {
5028 if (!validate_sampler_array_indexing(ctx, prog))
5029 goto done;
5030 }
5031
5032 /* Check and validate stream emissions in geometry shaders */
5033 validate_geometry_shader_emissions(ctx, prog);
5034
5035 store_fragdepth_layout(prog);
5036
5037 if(!link_varyings_and_uniforms(first, last, ctx, prog, mem_ctx))
5038 goto done;
5039
5040 /* OpenGL ES < 3.1 requires that a vertex shader and a fragment shader both
5041 * be present in a linked program. GL_ARB_ES2_compatibility doesn't say
5042 * anything about shader linking when one of the shaders (vertex or
5043 * fragment shader) is absent. So, the extension shouldn't change the
5044 * behavior specified in GLSL specification.
5045 *
5046 * From OpenGL ES 3.1 specification (7.3 Program Objects):
5047 * "Linking can fail for a variety of reasons as specified in the
5048 * OpenGL ES Shading Language Specification, as well as any of the
5049 * following reasons:
5050 *
5051 * ...
5052 *
5053 * * program contains objects to form either a vertex shader or
5054 * fragment shader, and program is not separable, and does not
5055 * contain objects to form both a vertex shader and fragment
5056 * shader."
5057 *
5058 * However, the only scenario in 3.1+ where we don't require them both is
5059 * when we have a compute shader. For example:
5060 *
5061 * - No shaders is a link error.
5062 * - Geom or Tess without a Vertex shader is a link error which means we
5063 * always require a Vertex shader and hence a Fragment shader.
5064 * - Finally a Compute shader linked with any other stage is a link error.
5065 */
5066 if (!prog->SeparateShader && ctx->API == API_OPENGLES2 &&
5067 num_shaders[MESA_SHADER_COMPUTE] == 0) {
5068 if (prog->_LinkedShaders[MESA_SHADER_VERTEX] == NULL) {
5069 linker_error(prog, "program lacks a vertex shader\n");
5070 } else if (prog->_LinkedShaders[MESA_SHADER_FRAGMENT] == NULL) {
5071 linker_error(prog, "program lacks a fragment shader\n");
5072 }
5073 }
5074
5075 done:
5076 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
5077 free(shader_list[i]);
5078 if (prog->_LinkedShaders[i] == NULL)
5079 continue;
5080
5081 /* Do a final validation step to make sure that the IR wasn't
5082 * invalidated by any modifications performed after intrastage linking.
5083 */
5084 validate_ir_tree(prog->_LinkedShaders[i]->ir);
5085
5086 /* Retain any live IR, but trash the rest. */
5087 reparent_ir(prog->_LinkedShaders[i]->ir, prog->_LinkedShaders[i]->ir);
5088
5089 /* The symbol table in the linked shaders may contain references to
5090 * variables that were removed (e.g., unused uniforms). Since it may
5091 * contain junk, there is no possible valid use. Delete it and set the
5092 * pointer to NULL.
5093 */
5094 delete prog->_LinkedShaders[i]->symbols;
5095 prog->_LinkedShaders[i]->symbols = NULL;
5096 }
5097
5098 ralloc_free(mem_ctx);
5099 }