glsl: Raise a link error for non-SSO ES programs with a TES but no TCS.
[mesa.git] / src / compiler / glsl / linker.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file linker.cpp
26 * GLSL linker implementation
27 *
28 * Given a set of shaders that are to be linked to generate a final program,
29 * there are three distinct stages.
30 *
31 * In the first stage shaders are partitioned into groups based on the shader
32 * type. All shaders of a particular type (e.g., vertex shaders) are linked
33 * together.
34 *
35 * - Undefined references in each shader are resolve to definitions in
36 * another shader.
37 * - Types and qualifiers of uniforms, outputs, and global variables defined
38 * in multiple shaders with the same name are verified to be the same.
39 * - Initializers for uniforms and global variables defined
40 * in multiple shaders with the same name are verified to be the same.
41 *
42 * The result, in the terminology of the GLSL spec, is a set of shader
43 * executables for each processing unit.
44 *
45 * After the first stage is complete, a series of semantic checks are performed
46 * on each of the shader executables.
47 *
48 * - Each shader executable must define a \c main function.
49 * - Each vertex shader executable must write to \c gl_Position.
50 * - Each fragment shader executable must write to either \c gl_FragData or
51 * \c gl_FragColor.
52 *
53 * In the final stage individual shader executables are linked to create a
54 * complete exectuable.
55 *
56 * - Types of uniforms defined in multiple shader stages with the same name
57 * are verified to be the same.
58 * - Initializers for uniforms defined in multiple shader stages with the
59 * same name are verified to be the same.
60 * - Types and qualifiers of outputs defined in one stage are verified to
61 * be the same as the types and qualifiers of inputs defined with the same
62 * name in a later stage.
63 *
64 * \author Ian Romanick <ian.d.romanick@intel.com>
65 */
66
67 #include <ctype.h>
68 #include "util/strndup.h"
69 #include "main/core.h"
70 #include "glsl_symbol_table.h"
71 #include "glsl_parser_extras.h"
72 #include "ir.h"
73 #include "program.h"
74 #include "program/prog_instruction.h"
75 #include "program/program.h"
76 #include "util/mesa-sha1.h"
77 #include "util/set.h"
78 #include "util/string_to_uint_map.h"
79 #include "linker.h"
80 #include "link_varyings.h"
81 #include "ir_optimization.h"
82 #include "ir_rvalue_visitor.h"
83 #include "ir_uniform.h"
84 #include "builtin_functions.h"
85 #include "shader_cache.h"
86
87 #include "main/shaderobj.h"
88 #include "main/enums.h"
89
90
91 namespace {
92
93 /**
94 * Visitor that determines whether or not a variable is ever written.
95 */
96 class find_assignment_visitor : public ir_hierarchical_visitor {
97 public:
98 find_assignment_visitor(const char *name)
99 : name(name), found(false)
100 {
101 /* empty */
102 }
103
104 virtual ir_visitor_status visit_enter(ir_assignment *ir)
105 {
106 ir_variable *const var = ir->lhs->variable_referenced();
107
108 if (strcmp(name, var->name) == 0) {
109 found = true;
110 return visit_stop;
111 }
112
113 return visit_continue_with_parent;
114 }
115
116 virtual ir_visitor_status visit_enter(ir_call *ir)
117 {
118 foreach_two_lists(formal_node, &ir->callee->parameters,
119 actual_node, &ir->actual_parameters) {
120 ir_rvalue *param_rval = (ir_rvalue *) actual_node;
121 ir_variable *sig_param = (ir_variable *) formal_node;
122
123 if (sig_param->data.mode == ir_var_function_out ||
124 sig_param->data.mode == ir_var_function_inout) {
125 ir_variable *var = param_rval->variable_referenced();
126 if (var && strcmp(name, var->name) == 0) {
127 found = true;
128 return visit_stop;
129 }
130 }
131 }
132
133 if (ir->return_deref != NULL) {
134 ir_variable *const var = ir->return_deref->variable_referenced();
135
136 if (strcmp(name, var->name) == 0) {
137 found = true;
138 return visit_stop;
139 }
140 }
141
142 return visit_continue_with_parent;
143 }
144
145 bool variable_found()
146 {
147 return found;
148 }
149
150 private:
151 const char *name; /**< Find writes to a variable with this name. */
152 bool found; /**< Was a write to the variable found? */
153 };
154
155
156 /**
157 * Visitor that determines whether or not a variable is ever read.
158 */
159 class find_deref_visitor : public ir_hierarchical_visitor {
160 public:
161 find_deref_visitor(const char *name)
162 : name(name), found(false)
163 {
164 /* empty */
165 }
166
167 virtual ir_visitor_status visit(ir_dereference_variable *ir)
168 {
169 if (strcmp(this->name, ir->var->name) == 0) {
170 this->found = true;
171 return visit_stop;
172 }
173
174 return visit_continue;
175 }
176
177 bool variable_found() const
178 {
179 return this->found;
180 }
181
182 private:
183 const char *name; /**< Find writes to a variable with this name. */
184 bool found; /**< Was a write to the variable found? */
185 };
186
187
188 /**
189 * A visitor helper that provides methods for updating the types of
190 * ir_dereferences. Classes that update variable types (say, updating
191 * array sizes) will want to use this so that dereference types stay in sync.
192 */
193 class deref_type_updater : public ir_hierarchical_visitor {
194 public:
195 virtual ir_visitor_status visit(ir_dereference_variable *ir)
196 {
197 ir->type = ir->var->type;
198 return visit_continue;
199 }
200
201 virtual ir_visitor_status visit_leave(ir_dereference_array *ir)
202 {
203 const glsl_type *const vt = ir->array->type;
204 if (vt->is_array())
205 ir->type = vt->fields.array;
206 return visit_continue;
207 }
208
209 virtual ir_visitor_status visit_leave(ir_dereference_record *ir)
210 {
211 for (unsigned i = 0; i < ir->record->type->length; i++) {
212 const struct glsl_struct_field *field =
213 &ir->record->type->fields.structure[i];
214 if (strcmp(field->name, ir->field) == 0) {
215 ir->type = field->type;
216 break;
217 }
218 }
219 return visit_continue;
220 }
221 };
222
223
224 class array_resize_visitor : public deref_type_updater {
225 public:
226 unsigned num_vertices;
227 gl_shader_program *prog;
228 gl_shader_stage stage;
229
230 array_resize_visitor(unsigned num_vertices,
231 gl_shader_program *prog,
232 gl_shader_stage stage)
233 {
234 this->num_vertices = num_vertices;
235 this->prog = prog;
236 this->stage = stage;
237 }
238
239 virtual ~array_resize_visitor()
240 {
241 /* empty */
242 }
243
244 virtual ir_visitor_status visit(ir_variable *var)
245 {
246 if (!var->type->is_array() || var->data.mode != ir_var_shader_in ||
247 var->data.patch)
248 return visit_continue;
249
250 unsigned size = var->type->length;
251
252 if (stage == MESA_SHADER_GEOMETRY) {
253 /* Generate a link error if the shader has declared this array with
254 * an incorrect size.
255 */
256 if (!var->data.implicit_sized_array &&
257 size && size != this->num_vertices) {
258 linker_error(this->prog, "size of array %s declared as %u, "
259 "but number of input vertices is %u\n",
260 var->name, size, this->num_vertices);
261 return visit_continue;
262 }
263
264 /* Generate a link error if the shader attempts to access an input
265 * array using an index too large for its actual size assigned at
266 * link time.
267 */
268 if (var->data.max_array_access >= (int)this->num_vertices) {
269 linker_error(this->prog, "%s shader accesses element %i of "
270 "%s, but only %i input vertices\n",
271 _mesa_shader_stage_to_string(this->stage),
272 var->data.max_array_access, var->name, this->num_vertices);
273 return visit_continue;
274 }
275 }
276
277 var->type = glsl_type::get_array_instance(var->type->fields.array,
278 this->num_vertices);
279 var->data.max_array_access = this->num_vertices - 1;
280
281 return visit_continue;
282 }
283 };
284
285 /**
286 * Visitor that determines the highest stream id to which a (geometry) shader
287 * emits vertices. It also checks whether End{Stream}Primitive is ever called.
288 */
289 class find_emit_vertex_visitor : public ir_hierarchical_visitor {
290 public:
291 find_emit_vertex_visitor(int max_allowed)
292 : max_stream_allowed(max_allowed),
293 invalid_stream_id(0),
294 invalid_stream_id_from_emit_vertex(false),
295 end_primitive_found(false),
296 uses_non_zero_stream(false)
297 {
298 /* empty */
299 }
300
301 virtual ir_visitor_status visit_leave(ir_emit_vertex *ir)
302 {
303 int stream_id = ir->stream_id();
304
305 if (stream_id < 0) {
306 invalid_stream_id = stream_id;
307 invalid_stream_id_from_emit_vertex = true;
308 return visit_stop;
309 }
310
311 if (stream_id > max_stream_allowed) {
312 invalid_stream_id = stream_id;
313 invalid_stream_id_from_emit_vertex = true;
314 return visit_stop;
315 }
316
317 if (stream_id != 0)
318 uses_non_zero_stream = true;
319
320 return visit_continue;
321 }
322
323 virtual ir_visitor_status visit_leave(ir_end_primitive *ir)
324 {
325 end_primitive_found = true;
326
327 int stream_id = ir->stream_id();
328
329 if (stream_id < 0) {
330 invalid_stream_id = stream_id;
331 invalid_stream_id_from_emit_vertex = false;
332 return visit_stop;
333 }
334
335 if (stream_id > max_stream_allowed) {
336 invalid_stream_id = stream_id;
337 invalid_stream_id_from_emit_vertex = false;
338 return visit_stop;
339 }
340
341 if (stream_id != 0)
342 uses_non_zero_stream = true;
343
344 return visit_continue;
345 }
346
347 bool error()
348 {
349 return invalid_stream_id != 0;
350 }
351
352 const char *error_func()
353 {
354 return invalid_stream_id_from_emit_vertex ?
355 "EmitStreamVertex" : "EndStreamPrimitive";
356 }
357
358 int error_stream()
359 {
360 return invalid_stream_id;
361 }
362
363 bool uses_streams()
364 {
365 return uses_non_zero_stream;
366 }
367
368 bool uses_end_primitive()
369 {
370 return end_primitive_found;
371 }
372
373 private:
374 int max_stream_allowed;
375 int invalid_stream_id;
376 bool invalid_stream_id_from_emit_vertex;
377 bool end_primitive_found;
378 bool uses_non_zero_stream;
379 };
380
381 /* Class that finds array derefs and check if indexes are dynamic. */
382 class dynamic_sampler_array_indexing_visitor : public ir_hierarchical_visitor
383 {
384 public:
385 dynamic_sampler_array_indexing_visitor() :
386 dynamic_sampler_array_indexing(false)
387 {
388 }
389
390 ir_visitor_status visit_enter(ir_dereference_array *ir)
391 {
392 if (!ir->variable_referenced())
393 return visit_continue;
394
395 if (!ir->variable_referenced()->type->contains_sampler())
396 return visit_continue;
397
398 if (!ir->array_index->constant_expression_value()) {
399 dynamic_sampler_array_indexing = true;
400 return visit_stop;
401 }
402 return visit_continue;
403 }
404
405 bool uses_dynamic_sampler_array_indexing()
406 {
407 return dynamic_sampler_array_indexing;
408 }
409
410 private:
411 bool dynamic_sampler_array_indexing;
412 };
413
414 } /* anonymous namespace */
415
416 void
417 linker_error(gl_shader_program *prog, const char *fmt, ...)
418 {
419 va_list ap;
420
421 ralloc_strcat(&prog->data->InfoLog, "error: ");
422 va_start(ap, fmt);
423 ralloc_vasprintf_append(&prog->data->InfoLog, fmt, ap);
424 va_end(ap);
425
426 prog->data->LinkStatus = linking_failure;
427 }
428
429
430 void
431 linker_warning(gl_shader_program *prog, const char *fmt, ...)
432 {
433 va_list ap;
434
435 ralloc_strcat(&prog->data->InfoLog, "warning: ");
436 va_start(ap, fmt);
437 ralloc_vasprintf_append(&prog->data->InfoLog, fmt, ap);
438 va_end(ap);
439
440 }
441
442
443 /**
444 * Given a string identifying a program resource, break it into a base name
445 * and an optional array index in square brackets.
446 *
447 * If an array index is present, \c out_base_name_end is set to point to the
448 * "[" that precedes the array index, and the array index itself is returned
449 * as a long.
450 *
451 * If no array index is present (or if the array index is negative or
452 * mal-formed), \c out_base_name_end, is set to point to the null terminator
453 * at the end of the input string, and -1 is returned.
454 *
455 * Only the final array index is parsed; if the string contains other array
456 * indices (or structure field accesses), they are left in the base name.
457 *
458 * No attempt is made to check that the base name is properly formed;
459 * typically the caller will look up the base name in a hash table, so
460 * ill-formed base names simply turn into hash table lookup failures.
461 */
462 long
463 parse_program_resource_name(const GLchar *name,
464 const GLchar **out_base_name_end)
465 {
466 /* Section 7.3.1 ("Program Interfaces") of the OpenGL 4.3 spec says:
467 *
468 * "When an integer array element or block instance number is part of
469 * the name string, it will be specified in decimal form without a "+"
470 * or "-" sign or any extra leading zeroes. Additionally, the name
471 * string will not include white space anywhere in the string."
472 */
473
474 const size_t len = strlen(name);
475 *out_base_name_end = name + len;
476
477 if (len == 0 || name[len-1] != ']')
478 return -1;
479
480 /* Walk backwards over the string looking for a non-digit character. This
481 * had better be the opening bracket for an array index.
482 *
483 * Initially, i specifies the location of the ']'. Since the string may
484 * contain only the ']' charcater, walk backwards very carefully.
485 */
486 unsigned i;
487 for (i = len - 1; (i > 0) && isdigit(name[i-1]); --i)
488 /* empty */ ;
489
490 if ((i == 0) || name[i-1] != '[')
491 return -1;
492
493 long array_index = strtol(&name[i], NULL, 10);
494 if (array_index < 0)
495 return -1;
496
497 /* Check for leading zero */
498 if (name[i] == '0' && name[i+1] != ']')
499 return -1;
500
501 *out_base_name_end = name + (i - 1);
502 return array_index;
503 }
504
505
506 void
507 link_invalidate_variable_locations(exec_list *ir)
508 {
509 foreach_in_list(ir_instruction, node, ir) {
510 ir_variable *const var = node->as_variable();
511
512 if (var == NULL)
513 continue;
514
515 /* Only assign locations for variables that lack an explicit location.
516 * Explicit locations are set for all built-in variables, generic vertex
517 * shader inputs (via layout(location=...)), and generic fragment shader
518 * outputs (also via layout(location=...)).
519 */
520 if (!var->data.explicit_location) {
521 var->data.location = -1;
522 var->data.location_frac = 0;
523 }
524
525 /* ir_variable::is_unmatched_generic_inout is used by the linker while
526 * connecting outputs from one stage to inputs of the next stage.
527 */
528 if (var->data.explicit_location &&
529 var->data.location < VARYING_SLOT_VAR0) {
530 var->data.is_unmatched_generic_inout = 0;
531 } else {
532 var->data.is_unmatched_generic_inout = 1;
533 }
534 }
535 }
536
537
538 /**
539 * Set clip_distance_array_size based and cull_distance_array_size on the given
540 * shader.
541 *
542 * Also check for errors based on incorrect usage of gl_ClipVertex and
543 * gl_ClipDistance and gl_CullDistance.
544 * Additionally test whether the arrays gl_ClipDistance and gl_CullDistance
545 * exceed the maximum size defined by gl_MaxCombinedClipAndCullDistances.
546 *
547 * Return false if an error was reported.
548 */
549 static void
550 analyze_clip_cull_usage(struct gl_shader_program *prog,
551 struct gl_linked_shader *shader,
552 struct gl_context *ctx,
553 GLuint *clip_distance_array_size,
554 GLuint *cull_distance_array_size)
555 {
556 *clip_distance_array_size = 0;
557 *cull_distance_array_size = 0;
558
559 if (prog->data->Version >= (prog->IsES ? 300 : 130)) {
560 /* From section 7.1 (Vertex Shader Special Variables) of the
561 * GLSL 1.30 spec:
562 *
563 * "It is an error for a shader to statically write both
564 * gl_ClipVertex and gl_ClipDistance."
565 *
566 * This does not apply to GLSL ES shaders, since GLSL ES defines neither
567 * gl_ClipVertex nor gl_ClipDistance. However with
568 * GL_EXT_clip_cull_distance, this functionality is exposed in ES 3.0.
569 */
570 find_assignment_visitor clip_distance("gl_ClipDistance");
571 find_assignment_visitor cull_distance("gl_CullDistance");
572
573 clip_distance.run(shader->ir);
574 cull_distance.run(shader->ir);
575
576 /* From the ARB_cull_distance spec:
577 *
578 * It is a compile-time or link-time error for the set of shaders forming
579 * a program to statically read or write both gl_ClipVertex and either
580 * gl_ClipDistance or gl_CullDistance.
581 *
582 * This does not apply to GLSL ES shaders, since GLSL ES doesn't define
583 * gl_ClipVertex.
584 */
585 if (!prog->IsES) {
586 find_assignment_visitor clip_vertex("gl_ClipVertex");
587
588 clip_vertex.run(shader->ir);
589
590 if (clip_vertex.variable_found() && clip_distance.variable_found()) {
591 linker_error(prog, "%s shader writes to both `gl_ClipVertex' "
592 "and `gl_ClipDistance'\n",
593 _mesa_shader_stage_to_string(shader->Stage));
594 return;
595 }
596 if (clip_vertex.variable_found() && cull_distance.variable_found()) {
597 linker_error(prog, "%s shader writes to both `gl_ClipVertex' "
598 "and `gl_CullDistance'\n",
599 _mesa_shader_stage_to_string(shader->Stage));
600 return;
601 }
602 }
603
604 if (clip_distance.variable_found()) {
605 ir_variable *clip_distance_var =
606 shader->symbols->get_variable("gl_ClipDistance");
607 assert(clip_distance_var);
608 *clip_distance_array_size = clip_distance_var->type->length;
609 }
610 if (cull_distance.variable_found()) {
611 ir_variable *cull_distance_var =
612 shader->symbols->get_variable("gl_CullDistance");
613 assert(cull_distance_var);
614 *cull_distance_array_size = cull_distance_var->type->length;
615 }
616 /* From the ARB_cull_distance spec:
617 *
618 * It is a compile-time or link-time error for the set of shaders forming
619 * a program to have the sum of the sizes of the gl_ClipDistance and
620 * gl_CullDistance arrays to be larger than
621 * gl_MaxCombinedClipAndCullDistances.
622 */
623 if ((*clip_distance_array_size + *cull_distance_array_size) >
624 ctx->Const.MaxClipPlanes) {
625 linker_error(prog, "%s shader: the combined size of "
626 "'gl_ClipDistance' and 'gl_CullDistance' size cannot "
627 "be larger than "
628 "gl_MaxCombinedClipAndCullDistances (%u)",
629 _mesa_shader_stage_to_string(shader->Stage),
630 ctx->Const.MaxClipPlanes);
631 }
632 }
633 }
634
635
636 /**
637 * Verify that a vertex shader executable meets all semantic requirements.
638 *
639 * Also sets info.clip_distance_array_size and
640 * info.cull_distance_array_size as a side effect.
641 *
642 * \param shader Vertex shader executable to be verified
643 */
644 void
645 validate_vertex_shader_executable(struct gl_shader_program *prog,
646 struct gl_linked_shader *shader,
647 struct gl_context *ctx)
648 {
649 if (shader == NULL)
650 return;
651
652 /* From the GLSL 1.10 spec, page 48:
653 *
654 * "The variable gl_Position is available only in the vertex
655 * language and is intended for writing the homogeneous vertex
656 * position. All executions of a well-formed vertex shader
657 * executable must write a value into this variable. [...] The
658 * variable gl_Position is available only in the vertex
659 * language and is intended for writing the homogeneous vertex
660 * position. All executions of a well-formed vertex shader
661 * executable must write a value into this variable."
662 *
663 * while in GLSL 1.40 this text is changed to:
664 *
665 * "The variable gl_Position is available only in the vertex
666 * language and is intended for writing the homogeneous vertex
667 * position. It can be written at any time during shader
668 * execution. It may also be read back by a vertex shader
669 * after being written. This value will be used by primitive
670 * assembly, clipping, culling, and other fixed functionality
671 * operations, if present, that operate on primitives after
672 * vertex processing has occurred. Its value is undefined if
673 * the vertex shader executable does not write gl_Position."
674 *
675 * All GLSL ES Versions are similar to GLSL 1.40--failing to write to
676 * gl_Position is not an error.
677 */
678 if (prog->data->Version < (prog->IsES ? 300 : 140)) {
679 find_assignment_visitor find("gl_Position");
680 find.run(shader->ir);
681 if (!find.variable_found()) {
682 if (prog->IsES) {
683 linker_warning(prog,
684 "vertex shader does not write to `gl_Position'. "
685 "Its value is undefined. \n");
686 } else {
687 linker_error(prog,
688 "vertex shader does not write to `gl_Position'. \n");
689 }
690 return;
691 }
692 }
693
694 analyze_clip_cull_usage(prog, shader, ctx,
695 &shader->Program->info.clip_distance_array_size,
696 &shader->Program->info.cull_distance_array_size);
697 }
698
699 void
700 validate_tess_eval_shader_executable(struct gl_shader_program *prog,
701 struct gl_linked_shader *shader,
702 struct gl_context *ctx)
703 {
704 if (shader == NULL)
705 return;
706
707 analyze_clip_cull_usage(prog, shader, ctx,
708 &shader->Program->info.clip_distance_array_size,
709 &shader->Program->info.cull_distance_array_size);
710 }
711
712
713 /**
714 * Verify that a fragment shader executable meets all semantic requirements
715 *
716 * \param shader Fragment shader executable to be verified
717 */
718 void
719 validate_fragment_shader_executable(struct gl_shader_program *prog,
720 struct gl_linked_shader *shader)
721 {
722 if (shader == NULL)
723 return;
724
725 find_assignment_visitor frag_color("gl_FragColor");
726 find_assignment_visitor frag_data("gl_FragData");
727
728 frag_color.run(shader->ir);
729 frag_data.run(shader->ir);
730
731 if (frag_color.variable_found() && frag_data.variable_found()) {
732 linker_error(prog, "fragment shader writes to both "
733 "`gl_FragColor' and `gl_FragData'\n");
734 }
735 }
736
737 /**
738 * Verify that a geometry shader executable meets all semantic requirements
739 *
740 * Also sets prog->Geom.VerticesIn, and info.clip_distance_array_sizeand
741 * info.cull_distance_array_size as a side effect.
742 *
743 * \param shader Geometry shader executable to be verified
744 */
745 void
746 validate_geometry_shader_executable(struct gl_shader_program *prog,
747 struct gl_linked_shader *shader,
748 struct gl_context *ctx)
749 {
750 if (shader == NULL)
751 return;
752
753 unsigned num_vertices =
754 vertices_per_prim(shader->Program->info.gs.input_primitive);
755 prog->Geom.VerticesIn = num_vertices;
756
757 analyze_clip_cull_usage(prog, shader, ctx,
758 &shader->Program->info.clip_distance_array_size,
759 &shader->Program->info.cull_distance_array_size);
760 }
761
762 /**
763 * Check if geometry shaders emit to non-zero streams and do corresponding
764 * validations.
765 */
766 static void
767 validate_geometry_shader_emissions(struct gl_context *ctx,
768 struct gl_shader_program *prog)
769 {
770 struct gl_linked_shader *sh = prog->_LinkedShaders[MESA_SHADER_GEOMETRY];
771
772 if (sh != NULL) {
773 find_emit_vertex_visitor emit_vertex(ctx->Const.MaxVertexStreams - 1);
774 emit_vertex.run(sh->ir);
775 if (emit_vertex.error()) {
776 linker_error(prog, "Invalid call %s(%d). Accepted values for the "
777 "stream parameter are in the range [0, %d].\n",
778 emit_vertex.error_func(),
779 emit_vertex.error_stream(),
780 ctx->Const.MaxVertexStreams - 1);
781 }
782 prog->Geom.UsesStreams = emit_vertex.uses_streams();
783 prog->Geom.UsesEndPrimitive = emit_vertex.uses_end_primitive();
784
785 /* From the ARB_gpu_shader5 spec:
786 *
787 * "Multiple vertex streams are supported only if the output primitive
788 * type is declared to be "points". A program will fail to link if it
789 * contains a geometry shader calling EmitStreamVertex() or
790 * EndStreamPrimitive() if its output primitive type is not "points".
791 *
792 * However, in the same spec:
793 *
794 * "The function EmitVertex() is equivalent to calling EmitStreamVertex()
795 * with <stream> set to zero."
796 *
797 * And:
798 *
799 * "The function EndPrimitive() is equivalent to calling
800 * EndStreamPrimitive() with <stream> set to zero."
801 *
802 * Since we can call EmitVertex() and EndPrimitive() when we output
803 * primitives other than points, calling EmitStreamVertex(0) or
804 * EmitEndPrimitive(0) should not produce errors. This it also what Nvidia
805 * does. Currently we only set prog->Geom.UsesStreams to TRUE when
806 * EmitStreamVertex() or EmitEndPrimitive() are called with a non-zero
807 * stream.
808 */
809 if (prog->Geom.UsesStreams &&
810 sh->Program->info.gs.output_primitive != GL_POINTS) {
811 linker_error(prog, "EmitStreamVertex(n) and EndStreamPrimitive(n) "
812 "with n>0 requires point output\n");
813 }
814 }
815 }
816
817 bool
818 validate_intrastage_arrays(struct gl_shader_program *prog,
819 ir_variable *const var,
820 ir_variable *const existing)
821 {
822 /* Consider the types to be "the same" if both types are arrays
823 * of the same type and one of the arrays is implicitly sized.
824 * In addition, set the type of the linked variable to the
825 * explicitly sized array.
826 */
827 if (var->type->is_array() && existing->type->is_array()) {
828 if ((var->type->fields.array == existing->type->fields.array) &&
829 ((var->type->length == 0)|| (existing->type->length == 0))) {
830 if (var->type->length != 0) {
831 if ((int)var->type->length <= existing->data.max_array_access) {
832 linker_error(prog, "%s `%s' declared as type "
833 "`%s' but outermost dimension has an index"
834 " of `%i'\n",
835 mode_string(var),
836 var->name, var->type->name,
837 existing->data.max_array_access);
838 }
839 existing->type = var->type;
840 return true;
841 } else if (existing->type->length != 0) {
842 if((int)existing->type->length <= var->data.max_array_access &&
843 !existing->data.from_ssbo_unsized_array) {
844 linker_error(prog, "%s `%s' declared as type "
845 "`%s' but outermost dimension has an index"
846 " of `%i'\n",
847 mode_string(var),
848 var->name, existing->type->name,
849 var->data.max_array_access);
850 }
851 return true;
852 }
853 } else {
854 /* The arrays of structs could have different glsl_type pointers but
855 * they are actually the same type. Use record_compare() to check that.
856 */
857 if (existing->type->fields.array->is_record() &&
858 var->type->fields.array->is_record() &&
859 existing->type->fields.array->record_compare(var->type->fields.array))
860 return true;
861 }
862 }
863 return false;
864 }
865
866
867 /**
868 * Perform validation of global variables used across multiple shaders
869 */
870 void
871 cross_validate_globals(struct gl_shader_program *prog,
872 struct exec_list *ir, glsl_symbol_table *variables,
873 bool uniforms_only)
874 {
875 foreach_in_list(ir_instruction, node, ir) {
876 ir_variable *const var = node->as_variable();
877
878 if (var == NULL)
879 continue;
880
881 if (uniforms_only && (var->data.mode != ir_var_uniform && var->data.mode != ir_var_shader_storage))
882 continue;
883
884 /* don't cross validate subroutine uniforms */
885 if (var->type->contains_subroutine())
886 continue;
887
888 /* Don't cross validate temporaries that are at global scope. These
889 * will eventually get pulled into the shaders 'main'.
890 */
891 if (var->data.mode == ir_var_temporary)
892 continue;
893
894 /* If a global with this name has already been seen, verify that the
895 * new instance has the same type. In addition, if the globals have
896 * initializers, the values of the initializers must be the same.
897 */
898 ir_variable *const existing = variables->get_variable(var->name);
899 if (existing != NULL) {
900 /* Check if types match. Interface blocks have some special
901 * rules so we handle those elsewhere.
902 */
903 if (var->type != existing->type &&
904 !var->is_interface_instance()) {
905 if (!validate_intrastage_arrays(prog, var, existing)) {
906 if (var->type->is_record() && existing->type->is_record()
907 && existing->type->record_compare(var->type)) {
908 existing->type = var->type;
909 } else {
910 /* If it is an unsized array in a Shader Storage Block,
911 * two different shaders can access to different elements.
912 * Because of that, they might be converted to different
913 * sized arrays, then check that they are compatible but
914 * ignore the array size.
915 */
916 if (!(var->data.mode == ir_var_shader_storage &&
917 var->data.from_ssbo_unsized_array &&
918 existing->data.mode == ir_var_shader_storage &&
919 existing->data.from_ssbo_unsized_array &&
920 var->type->gl_type == existing->type->gl_type)) {
921 linker_error(prog, "%s `%s' declared as type "
922 "`%s' and type `%s'\n",
923 mode_string(var),
924 var->name, var->type->name,
925 existing->type->name);
926 return;
927 }
928 }
929 }
930 }
931
932 if (var->data.explicit_location) {
933 if (existing->data.explicit_location
934 && (var->data.location != existing->data.location)) {
935 linker_error(prog, "explicit locations for %s "
936 "`%s' have differing values\n",
937 mode_string(var), var->name);
938 return;
939 }
940
941 if (var->data.location_frac != existing->data.location_frac) {
942 linker_error(prog, "explicit components for %s `%s' have "
943 "differing values\n", mode_string(var), var->name);
944 return;
945 }
946
947 existing->data.location = var->data.location;
948 existing->data.explicit_location = true;
949 } else {
950 /* Check if uniform with implicit location was marked explicit
951 * by earlier shader stage. If so, mark it explicit in this stage
952 * too to make sure later processing does not treat it as
953 * implicit one.
954 */
955 if (existing->data.explicit_location) {
956 var->data.location = existing->data.location;
957 var->data.explicit_location = true;
958 }
959 }
960
961 /* From the GLSL 4.20 specification:
962 * "A link error will result if two compilation units in a program
963 * specify different integer-constant bindings for the same
964 * opaque-uniform name. However, it is not an error to specify a
965 * binding on some but not all declarations for the same name"
966 */
967 if (var->data.explicit_binding) {
968 if (existing->data.explicit_binding &&
969 var->data.binding != existing->data.binding) {
970 linker_error(prog, "explicit bindings for %s "
971 "`%s' have differing values\n",
972 mode_string(var), var->name);
973 return;
974 }
975
976 existing->data.binding = var->data.binding;
977 existing->data.explicit_binding = true;
978 }
979
980 if (var->type->contains_atomic() &&
981 var->data.offset != existing->data.offset) {
982 linker_error(prog, "offset specifications for %s "
983 "`%s' have differing values\n",
984 mode_string(var), var->name);
985 return;
986 }
987
988 /* Validate layout qualifiers for gl_FragDepth.
989 *
990 * From the AMD/ARB_conservative_depth specs:
991 *
992 * "If gl_FragDepth is redeclared in any fragment shader in a
993 * program, it must be redeclared in all fragment shaders in
994 * that program that have static assignments to
995 * gl_FragDepth. All redeclarations of gl_FragDepth in all
996 * fragment shaders in a single program must have the same set
997 * of qualifiers."
998 */
999 if (strcmp(var->name, "gl_FragDepth") == 0) {
1000 bool layout_declared = var->data.depth_layout != ir_depth_layout_none;
1001 bool layout_differs =
1002 var->data.depth_layout != existing->data.depth_layout;
1003
1004 if (layout_declared && layout_differs) {
1005 linker_error(prog,
1006 "All redeclarations of gl_FragDepth in all "
1007 "fragment shaders in a single program must have "
1008 "the same set of qualifiers.\n");
1009 }
1010
1011 if (var->data.used && layout_differs) {
1012 linker_error(prog,
1013 "If gl_FragDepth is redeclared with a layout "
1014 "qualifier in any fragment shader, it must be "
1015 "redeclared with the same layout qualifier in "
1016 "all fragment shaders that have assignments to "
1017 "gl_FragDepth\n");
1018 }
1019 }
1020
1021 /* Page 35 (page 41 of the PDF) of the GLSL 4.20 spec says:
1022 *
1023 * "If a shared global has multiple initializers, the
1024 * initializers must all be constant expressions, and they
1025 * must all have the same value. Otherwise, a link error will
1026 * result. (A shared global having only one initializer does
1027 * not require that initializer to be a constant expression.)"
1028 *
1029 * Previous to 4.20 the GLSL spec simply said that initializers
1030 * must have the same value. In this case of non-constant
1031 * initializers, this was impossible to determine. As a result,
1032 * no vendor actually implemented that behavior. The 4.20
1033 * behavior matches the implemented behavior of at least one other
1034 * vendor, so we'll implement that for all GLSL versions.
1035 */
1036 if (var->constant_initializer != NULL) {
1037 if (existing->constant_initializer != NULL) {
1038 if (!var->constant_initializer->has_value(existing->constant_initializer)) {
1039 linker_error(prog, "initializers for %s "
1040 "`%s' have differing values\n",
1041 mode_string(var), var->name);
1042 return;
1043 }
1044 } else {
1045 /* If the first-seen instance of a particular uniform did
1046 * not have an initializer but a later instance does,
1047 * replace the former with the later.
1048 */
1049 variables->replace_variable(existing->name, var);
1050 }
1051 }
1052
1053 if (var->data.has_initializer) {
1054 if (existing->data.has_initializer
1055 && (var->constant_initializer == NULL
1056 || existing->constant_initializer == NULL)) {
1057 linker_error(prog,
1058 "shared global variable `%s' has multiple "
1059 "non-constant initializers.\n",
1060 var->name);
1061 return;
1062 }
1063 }
1064
1065 if (existing->data.invariant != var->data.invariant) {
1066 linker_error(prog, "declarations for %s `%s' have "
1067 "mismatching invariant qualifiers\n",
1068 mode_string(var), var->name);
1069 return;
1070 }
1071 if (existing->data.centroid != var->data.centroid) {
1072 linker_error(prog, "declarations for %s `%s' have "
1073 "mismatching centroid qualifiers\n",
1074 mode_string(var), var->name);
1075 return;
1076 }
1077 if (existing->data.sample != var->data.sample) {
1078 linker_error(prog, "declarations for %s `%s` have "
1079 "mismatching sample qualifiers\n",
1080 mode_string(var), var->name);
1081 return;
1082 }
1083 if (existing->data.image_format != var->data.image_format) {
1084 linker_error(prog, "declarations for %s `%s` have "
1085 "mismatching image format qualifiers\n",
1086 mode_string(var), var->name);
1087 return;
1088 }
1089
1090 /* Only in GLSL ES 3.10, the precision qualifier should not match
1091 * between block members defined in matched block names within a
1092 * shader interface.
1093 *
1094 * In GLSL ES 3.00 and ES 3.20, precision qualifier for each block
1095 * member should match.
1096 */
1097 if (prog->IsES && (prog->data->Version != 310 ||
1098 !var->get_interface_type()) &&
1099 existing->data.precision != var->data.precision) {
1100 linker_error(prog, "declarations for %s `%s` have "
1101 "mismatching precision qualifiers\n",
1102 mode_string(var), var->name);
1103 return;
1104 }
1105 } else
1106 variables->add_variable(var);
1107 }
1108 }
1109
1110
1111 /**
1112 * Perform validation of uniforms used across multiple shader stages
1113 */
1114 void
1115 cross_validate_uniforms(struct gl_shader_program *prog)
1116 {
1117 glsl_symbol_table variables;
1118 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1119 if (prog->_LinkedShaders[i] == NULL)
1120 continue;
1121
1122 cross_validate_globals(prog, prog->_LinkedShaders[i]->ir, &variables,
1123 true);
1124 }
1125 }
1126
1127 /**
1128 * Accumulates the array of buffer blocks and checks that all definitions of
1129 * blocks agree on their contents.
1130 */
1131 static bool
1132 interstage_cross_validate_uniform_blocks(struct gl_shader_program *prog,
1133 bool validate_ssbo)
1134 {
1135 int *InterfaceBlockStageIndex[MESA_SHADER_STAGES];
1136 struct gl_uniform_block *blks = NULL;
1137 unsigned *num_blks = validate_ssbo ? &prog->data->NumShaderStorageBlocks :
1138 &prog->data->NumUniformBlocks;
1139
1140 unsigned max_num_buffer_blocks = 0;
1141 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1142 if (prog->_LinkedShaders[i]) {
1143 if (validate_ssbo) {
1144 max_num_buffer_blocks +=
1145 prog->_LinkedShaders[i]->Program->info.num_ssbos;
1146 } else {
1147 max_num_buffer_blocks +=
1148 prog->_LinkedShaders[i]->Program->info.num_ubos;
1149 }
1150 }
1151 }
1152
1153 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1154 struct gl_linked_shader *sh = prog->_LinkedShaders[i];
1155
1156 InterfaceBlockStageIndex[i] = new int[max_num_buffer_blocks];
1157 for (unsigned int j = 0; j < max_num_buffer_blocks; j++)
1158 InterfaceBlockStageIndex[i][j] = -1;
1159
1160 if (sh == NULL)
1161 continue;
1162
1163 unsigned sh_num_blocks;
1164 struct gl_uniform_block **sh_blks;
1165 if (validate_ssbo) {
1166 sh_num_blocks = prog->_LinkedShaders[i]->Program->info.num_ssbos;
1167 sh_blks = sh->Program->sh.ShaderStorageBlocks;
1168 } else {
1169 sh_num_blocks = prog->_LinkedShaders[i]->Program->info.num_ubos;
1170 sh_blks = sh->Program->sh.UniformBlocks;
1171 }
1172
1173 for (unsigned int j = 0; j < sh_num_blocks; j++) {
1174 int index = link_cross_validate_uniform_block(prog, &blks, num_blks,
1175 sh_blks[j]);
1176
1177 if (index == -1) {
1178 linker_error(prog, "buffer block `%s' has mismatching "
1179 "definitions\n", sh_blks[j]->Name);
1180
1181 for (unsigned k = 0; k <= i; k++) {
1182 delete[] InterfaceBlockStageIndex[k];
1183 }
1184 return false;
1185 }
1186
1187 InterfaceBlockStageIndex[i][index] = j;
1188 }
1189 }
1190
1191 /* Update per stage block pointers to point to the program list.
1192 * FIXME: We should be able to free the per stage blocks here.
1193 */
1194 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1195 for (unsigned j = 0; j < *num_blks; j++) {
1196 int stage_index = InterfaceBlockStageIndex[i][j];
1197
1198 if (stage_index != -1) {
1199 struct gl_linked_shader *sh = prog->_LinkedShaders[i];
1200
1201 struct gl_uniform_block **sh_blks = validate_ssbo ?
1202 sh->Program->sh.ShaderStorageBlocks :
1203 sh->Program->sh.UniformBlocks;
1204
1205 blks[j].stageref |= sh_blks[stage_index]->stageref;
1206 sh_blks[stage_index] = &blks[j];
1207 }
1208 }
1209 }
1210
1211 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1212 delete[] InterfaceBlockStageIndex[i];
1213 }
1214
1215 if (validate_ssbo)
1216 prog->data->ShaderStorageBlocks = blks;
1217 else
1218 prog->data->UniformBlocks = blks;
1219
1220 return true;
1221 }
1222
1223
1224 /**
1225 * Populates a shaders symbol table with all global declarations
1226 */
1227 static void
1228 populate_symbol_table(gl_linked_shader *sh)
1229 {
1230 sh->symbols = new(sh) glsl_symbol_table;
1231
1232 foreach_in_list(ir_instruction, inst, sh->ir) {
1233 ir_variable *var;
1234 ir_function *func;
1235
1236 if ((func = inst->as_function()) != NULL) {
1237 sh->symbols->add_function(func);
1238 } else if ((var = inst->as_variable()) != NULL) {
1239 if (var->data.mode != ir_var_temporary)
1240 sh->symbols->add_variable(var);
1241 }
1242 }
1243 }
1244
1245
1246 /**
1247 * Remap variables referenced in an instruction tree
1248 *
1249 * This is used when instruction trees are cloned from one shader and placed in
1250 * another. These trees will contain references to \c ir_variable nodes that
1251 * do not exist in the target shader. This function finds these \c ir_variable
1252 * references and replaces the references with matching variables in the target
1253 * shader.
1254 *
1255 * If there is no matching variable in the target shader, a clone of the
1256 * \c ir_variable is made and added to the target shader. The new variable is
1257 * added to \b both the instruction stream and the symbol table.
1258 *
1259 * \param inst IR tree that is to be processed.
1260 * \param symbols Symbol table containing global scope symbols in the
1261 * linked shader.
1262 * \param instructions Instruction stream where new variable declarations
1263 * should be added.
1264 */
1265 void
1266 remap_variables(ir_instruction *inst, struct gl_linked_shader *target,
1267 hash_table *temps)
1268 {
1269 class remap_visitor : public ir_hierarchical_visitor {
1270 public:
1271 remap_visitor(struct gl_linked_shader *target, hash_table *temps)
1272 {
1273 this->target = target;
1274 this->symbols = target->symbols;
1275 this->instructions = target->ir;
1276 this->temps = temps;
1277 }
1278
1279 virtual ir_visitor_status visit(ir_dereference_variable *ir)
1280 {
1281 if (ir->var->data.mode == ir_var_temporary) {
1282 hash_entry *entry = _mesa_hash_table_search(temps, ir->var);
1283 ir_variable *var = entry ? (ir_variable *) entry->data : NULL;
1284
1285 assert(var != NULL);
1286 ir->var = var;
1287 return visit_continue;
1288 }
1289
1290 ir_variable *const existing =
1291 this->symbols->get_variable(ir->var->name);
1292 if (existing != NULL)
1293 ir->var = existing;
1294 else {
1295 ir_variable *copy = ir->var->clone(this->target, NULL);
1296
1297 this->symbols->add_variable(copy);
1298 this->instructions->push_head(copy);
1299 ir->var = copy;
1300 }
1301
1302 return visit_continue;
1303 }
1304
1305 private:
1306 struct gl_linked_shader *target;
1307 glsl_symbol_table *symbols;
1308 exec_list *instructions;
1309 hash_table *temps;
1310 };
1311
1312 remap_visitor v(target, temps);
1313
1314 inst->accept(&v);
1315 }
1316
1317
1318 /**
1319 * Move non-declarations from one instruction stream to another
1320 *
1321 * The intended usage pattern of this function is to pass the pointer to the
1322 * head sentinel of a list (i.e., a pointer to the list cast to an \c exec_node
1323 * pointer) for \c last and \c false for \c make_copies on the first
1324 * call. Successive calls pass the return value of the previous call for
1325 * \c last and \c true for \c make_copies.
1326 *
1327 * \param instructions Source instruction stream
1328 * \param last Instruction after which new instructions should be
1329 * inserted in the target instruction stream
1330 * \param make_copies Flag selecting whether instructions in \c instructions
1331 * should be copied (via \c ir_instruction::clone) into the
1332 * target list or moved.
1333 *
1334 * \return
1335 * The new "last" instruction in the target instruction stream. This pointer
1336 * is suitable for use as the \c last parameter of a later call to this
1337 * function.
1338 */
1339 exec_node *
1340 move_non_declarations(exec_list *instructions, exec_node *last,
1341 bool make_copies, gl_linked_shader *target)
1342 {
1343 hash_table *temps = NULL;
1344
1345 if (make_copies)
1346 temps = _mesa_hash_table_create(NULL, _mesa_hash_pointer,
1347 _mesa_key_pointer_equal);
1348
1349 foreach_in_list_safe(ir_instruction, inst, instructions) {
1350 if (inst->as_function())
1351 continue;
1352
1353 ir_variable *var = inst->as_variable();
1354 if ((var != NULL) && (var->data.mode != ir_var_temporary))
1355 continue;
1356
1357 assert(inst->as_assignment()
1358 || inst->as_call()
1359 || inst->as_if() /* for initializers with the ?: operator */
1360 || ((var != NULL) && (var->data.mode == ir_var_temporary)));
1361
1362 if (make_copies) {
1363 inst = inst->clone(target, NULL);
1364
1365 if (var != NULL)
1366 _mesa_hash_table_insert(temps, var, inst);
1367 else
1368 remap_variables(inst, target, temps);
1369 } else {
1370 inst->remove();
1371 }
1372
1373 last->insert_after(inst);
1374 last = inst;
1375 }
1376
1377 if (make_copies)
1378 _mesa_hash_table_destroy(temps, NULL);
1379
1380 return last;
1381 }
1382
1383
1384 /**
1385 * This class is only used in link_intrastage_shaders() below but declaring
1386 * it inside that function leads to compiler warnings with some versions of
1387 * gcc.
1388 */
1389 class array_sizing_visitor : public deref_type_updater {
1390 public:
1391 array_sizing_visitor()
1392 : mem_ctx(ralloc_context(NULL)),
1393 unnamed_interfaces(_mesa_hash_table_create(NULL, _mesa_hash_pointer,
1394 _mesa_key_pointer_equal))
1395 {
1396 }
1397
1398 ~array_sizing_visitor()
1399 {
1400 _mesa_hash_table_destroy(this->unnamed_interfaces, NULL);
1401 ralloc_free(this->mem_ctx);
1402 }
1403
1404 virtual ir_visitor_status visit(ir_variable *var)
1405 {
1406 const glsl_type *type_without_array;
1407 bool implicit_sized_array = var->data.implicit_sized_array;
1408 fixup_type(&var->type, var->data.max_array_access,
1409 var->data.from_ssbo_unsized_array,
1410 &implicit_sized_array);
1411 var->data.implicit_sized_array = implicit_sized_array;
1412 type_without_array = var->type->without_array();
1413 if (var->type->is_interface()) {
1414 if (interface_contains_unsized_arrays(var->type)) {
1415 const glsl_type *new_type =
1416 resize_interface_members(var->type,
1417 var->get_max_ifc_array_access(),
1418 var->is_in_shader_storage_block());
1419 var->type = new_type;
1420 var->change_interface_type(new_type);
1421 }
1422 } else if (type_without_array->is_interface()) {
1423 if (interface_contains_unsized_arrays(type_without_array)) {
1424 const glsl_type *new_type =
1425 resize_interface_members(type_without_array,
1426 var->get_max_ifc_array_access(),
1427 var->is_in_shader_storage_block());
1428 var->change_interface_type(new_type);
1429 var->type = update_interface_members_array(var->type, new_type);
1430 }
1431 } else if (const glsl_type *ifc_type = var->get_interface_type()) {
1432 /* Store a pointer to the variable in the unnamed_interfaces
1433 * hashtable.
1434 */
1435 hash_entry *entry =
1436 _mesa_hash_table_search(this->unnamed_interfaces,
1437 ifc_type);
1438
1439 ir_variable **interface_vars = entry ? (ir_variable **) entry->data : NULL;
1440
1441 if (interface_vars == NULL) {
1442 interface_vars = rzalloc_array(mem_ctx, ir_variable *,
1443 ifc_type->length);
1444 _mesa_hash_table_insert(this->unnamed_interfaces, ifc_type,
1445 interface_vars);
1446 }
1447 unsigned index = ifc_type->field_index(var->name);
1448 assert(index < ifc_type->length);
1449 assert(interface_vars[index] == NULL);
1450 interface_vars[index] = var;
1451 }
1452 return visit_continue;
1453 }
1454
1455 /**
1456 * For each unnamed interface block that was discovered while running the
1457 * visitor, adjust the interface type to reflect the newly assigned array
1458 * sizes, and fix up the ir_variable nodes to point to the new interface
1459 * type.
1460 */
1461 void fixup_unnamed_interface_types()
1462 {
1463 hash_table_call_foreach(this->unnamed_interfaces,
1464 fixup_unnamed_interface_type, NULL);
1465 }
1466
1467 private:
1468 /**
1469 * If the type pointed to by \c type represents an unsized array, replace
1470 * it with a sized array whose size is determined by max_array_access.
1471 */
1472 static void fixup_type(const glsl_type **type, unsigned max_array_access,
1473 bool from_ssbo_unsized_array, bool *implicit_sized)
1474 {
1475 if (!from_ssbo_unsized_array && (*type)->is_unsized_array()) {
1476 *type = glsl_type::get_array_instance((*type)->fields.array,
1477 max_array_access + 1);
1478 *implicit_sized = true;
1479 assert(*type != NULL);
1480 }
1481 }
1482
1483 static const glsl_type *
1484 update_interface_members_array(const glsl_type *type,
1485 const glsl_type *new_interface_type)
1486 {
1487 const glsl_type *element_type = type->fields.array;
1488 if (element_type->is_array()) {
1489 const glsl_type *new_array_type =
1490 update_interface_members_array(element_type, new_interface_type);
1491 return glsl_type::get_array_instance(new_array_type, type->length);
1492 } else {
1493 return glsl_type::get_array_instance(new_interface_type,
1494 type->length);
1495 }
1496 }
1497
1498 /**
1499 * Determine whether the given interface type contains unsized arrays (if
1500 * it doesn't, array_sizing_visitor doesn't need to process it).
1501 */
1502 static bool interface_contains_unsized_arrays(const glsl_type *type)
1503 {
1504 for (unsigned i = 0; i < type->length; i++) {
1505 const glsl_type *elem_type = type->fields.structure[i].type;
1506 if (elem_type->is_unsized_array())
1507 return true;
1508 }
1509 return false;
1510 }
1511
1512 /**
1513 * Create a new interface type based on the given type, with unsized arrays
1514 * replaced by sized arrays whose size is determined by
1515 * max_ifc_array_access.
1516 */
1517 static const glsl_type *
1518 resize_interface_members(const glsl_type *type,
1519 const int *max_ifc_array_access,
1520 bool is_ssbo)
1521 {
1522 unsigned num_fields = type->length;
1523 glsl_struct_field *fields = new glsl_struct_field[num_fields];
1524 memcpy(fields, type->fields.structure,
1525 num_fields * sizeof(*fields));
1526 for (unsigned i = 0; i < num_fields; i++) {
1527 bool implicit_sized_array = fields[i].implicit_sized_array;
1528 /* If SSBO last member is unsized array, we don't replace it by a sized
1529 * array.
1530 */
1531 if (is_ssbo && i == (num_fields - 1))
1532 fixup_type(&fields[i].type, max_ifc_array_access[i],
1533 true, &implicit_sized_array);
1534 else
1535 fixup_type(&fields[i].type, max_ifc_array_access[i],
1536 false, &implicit_sized_array);
1537 fields[i].implicit_sized_array = implicit_sized_array;
1538 }
1539 glsl_interface_packing packing =
1540 (glsl_interface_packing) type->interface_packing;
1541 bool row_major = (bool) type->interface_row_major;
1542 const glsl_type *new_ifc_type =
1543 glsl_type::get_interface_instance(fields, num_fields,
1544 packing, row_major, type->name);
1545 delete [] fields;
1546 return new_ifc_type;
1547 }
1548
1549 static void fixup_unnamed_interface_type(const void *key, void *data,
1550 void *)
1551 {
1552 const glsl_type *ifc_type = (const glsl_type *) key;
1553 ir_variable **interface_vars = (ir_variable **) data;
1554 unsigned num_fields = ifc_type->length;
1555 glsl_struct_field *fields = new glsl_struct_field[num_fields];
1556 memcpy(fields, ifc_type->fields.structure,
1557 num_fields * sizeof(*fields));
1558 bool interface_type_changed = false;
1559 for (unsigned i = 0; i < num_fields; i++) {
1560 if (interface_vars[i] != NULL &&
1561 fields[i].type != interface_vars[i]->type) {
1562 fields[i].type = interface_vars[i]->type;
1563 interface_type_changed = true;
1564 }
1565 }
1566 if (!interface_type_changed) {
1567 delete [] fields;
1568 return;
1569 }
1570 glsl_interface_packing packing =
1571 (glsl_interface_packing) ifc_type->interface_packing;
1572 bool row_major = (bool) ifc_type->interface_row_major;
1573 const glsl_type *new_ifc_type =
1574 glsl_type::get_interface_instance(fields, num_fields, packing,
1575 row_major, ifc_type->name);
1576 delete [] fields;
1577 for (unsigned i = 0; i < num_fields; i++) {
1578 if (interface_vars[i] != NULL)
1579 interface_vars[i]->change_interface_type(new_ifc_type);
1580 }
1581 }
1582
1583 /**
1584 * Memory context used to allocate the data in \c unnamed_interfaces.
1585 */
1586 void *mem_ctx;
1587
1588 /**
1589 * Hash table from const glsl_type * to an array of ir_variable *'s
1590 * pointing to the ir_variables constituting each unnamed interface block.
1591 */
1592 hash_table *unnamed_interfaces;
1593 };
1594
1595 static bool
1596 validate_xfb_buffer_stride(struct gl_context *ctx, unsigned idx,
1597 struct gl_shader_program *prog)
1598 {
1599 /* We will validate doubles at a later stage */
1600 if (prog->TransformFeedback.BufferStride[idx] % 4) {
1601 linker_error(prog, "invalid qualifier xfb_stride=%d must be a "
1602 "multiple of 4 or if its applied to a type that is "
1603 "or contains a double a multiple of 8.",
1604 prog->TransformFeedback.BufferStride[idx]);
1605 return false;
1606 }
1607
1608 if (prog->TransformFeedback.BufferStride[idx] / 4 >
1609 ctx->Const.MaxTransformFeedbackInterleavedComponents) {
1610 linker_error(prog, "The MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS "
1611 "limit has been exceeded.");
1612 return false;
1613 }
1614
1615 return true;
1616 }
1617
1618 /**
1619 * Check for conflicting xfb_stride default qualifiers and store buffer stride
1620 * for later use.
1621 */
1622 static void
1623 link_xfb_stride_layout_qualifiers(struct gl_context *ctx,
1624 struct gl_shader_program *prog,
1625 struct gl_linked_shader *linked_shader,
1626 struct gl_shader **shader_list,
1627 unsigned num_shaders)
1628 {
1629 for (unsigned i = 0; i < MAX_FEEDBACK_BUFFERS; i++) {
1630 prog->TransformFeedback.BufferStride[i] = 0;
1631 }
1632
1633 for (unsigned i = 0; i < num_shaders; i++) {
1634 struct gl_shader *shader = shader_list[i];
1635
1636 for (unsigned j = 0; j < MAX_FEEDBACK_BUFFERS; j++) {
1637 if (shader->TransformFeedbackBufferStride[j]) {
1638 if (prog->TransformFeedback.BufferStride[j] == 0) {
1639 prog->TransformFeedback.BufferStride[j] =
1640 shader->TransformFeedbackBufferStride[j];
1641 if (!validate_xfb_buffer_stride(ctx, j, prog))
1642 return;
1643 } else if (prog->TransformFeedback.BufferStride[j] !=
1644 shader->TransformFeedbackBufferStride[j]){
1645 linker_error(prog,
1646 "intrastage shaders defined with conflicting "
1647 "xfb_stride for buffer %d (%d and %d)\n", j,
1648 prog->TransformFeedback.BufferStride[j],
1649 shader->TransformFeedbackBufferStride[j]);
1650 return;
1651 }
1652 }
1653 }
1654 }
1655 }
1656
1657 /**
1658 * Performs the cross-validation of tessellation control shader vertices and
1659 * layout qualifiers for the attached tessellation control shaders,
1660 * and propagates them to the linked TCS and linked shader program.
1661 */
1662 static void
1663 link_tcs_out_layout_qualifiers(struct gl_shader_program *prog,
1664 struct gl_program *gl_prog,
1665 struct gl_shader **shader_list,
1666 unsigned num_shaders)
1667 {
1668 if (gl_prog->info.stage != MESA_SHADER_TESS_CTRL)
1669 return;
1670
1671 gl_prog->info.tess.tcs_vertices_out = 0;
1672
1673 /* From the GLSL 4.0 spec (chapter 4.3.8.2):
1674 *
1675 * "All tessellation control shader layout declarations in a program
1676 * must specify the same output patch vertex count. There must be at
1677 * least one layout qualifier specifying an output patch vertex count
1678 * in any program containing tessellation control shaders; however,
1679 * such a declaration is not required in all tessellation control
1680 * shaders."
1681 */
1682
1683 for (unsigned i = 0; i < num_shaders; i++) {
1684 struct gl_shader *shader = shader_list[i];
1685
1686 if (shader->info.TessCtrl.VerticesOut != 0) {
1687 if (gl_prog->info.tess.tcs_vertices_out != 0 &&
1688 gl_prog->info.tess.tcs_vertices_out !=
1689 (unsigned) shader->info.TessCtrl.VerticesOut) {
1690 linker_error(prog, "tessellation control shader defined with "
1691 "conflicting output vertex count (%d and %d)\n",
1692 gl_prog->info.tess.tcs_vertices_out,
1693 shader->info.TessCtrl.VerticesOut);
1694 return;
1695 }
1696 gl_prog->info.tess.tcs_vertices_out =
1697 shader->info.TessCtrl.VerticesOut;
1698 }
1699 }
1700
1701 /* Just do the intrastage -> interstage propagation right now,
1702 * since we already know we're in the right type of shader program
1703 * for doing it.
1704 */
1705 if (gl_prog->info.tess.tcs_vertices_out == 0) {
1706 linker_error(prog, "tessellation control shader didn't declare "
1707 "vertices out layout qualifier\n");
1708 return;
1709 }
1710 }
1711
1712
1713 /**
1714 * Performs the cross-validation of tessellation evaluation shader
1715 * primitive type, vertex spacing, ordering and point_mode layout qualifiers
1716 * for the attached tessellation evaluation shaders, and propagates them
1717 * to the linked TES and linked shader program.
1718 */
1719 static void
1720 link_tes_in_layout_qualifiers(struct gl_shader_program *prog,
1721 struct gl_program *gl_prog,
1722 struct gl_shader **shader_list,
1723 unsigned num_shaders)
1724 {
1725 if (gl_prog->info.stage != MESA_SHADER_TESS_EVAL)
1726 return;
1727
1728 int point_mode = -1;
1729 unsigned vertex_order = 0;
1730
1731 gl_prog->info.tess.primitive_mode = PRIM_UNKNOWN;
1732 gl_prog->info.tess.spacing = TESS_SPACING_UNSPECIFIED;
1733
1734 /* From the GLSL 4.0 spec (chapter 4.3.8.1):
1735 *
1736 * "At least one tessellation evaluation shader (compilation unit) in
1737 * a program must declare a primitive mode in its input layout.
1738 * Declaration vertex spacing, ordering, and point mode identifiers is
1739 * optional. It is not required that all tessellation evaluation
1740 * shaders in a program declare a primitive mode. If spacing or
1741 * vertex ordering declarations are omitted, the tessellation
1742 * primitive generator will use equal spacing or counter-clockwise
1743 * vertex ordering, respectively. If a point mode declaration is
1744 * omitted, the tessellation primitive generator will produce lines or
1745 * triangles according to the primitive mode."
1746 */
1747
1748 for (unsigned i = 0; i < num_shaders; i++) {
1749 struct gl_shader *shader = shader_list[i];
1750
1751 if (shader->info.TessEval.PrimitiveMode != PRIM_UNKNOWN) {
1752 if (gl_prog->info.tess.primitive_mode != PRIM_UNKNOWN &&
1753 gl_prog->info.tess.primitive_mode !=
1754 shader->info.TessEval.PrimitiveMode) {
1755 linker_error(prog, "tessellation evaluation shader defined with "
1756 "conflicting input primitive modes.\n");
1757 return;
1758 }
1759 gl_prog->info.tess.primitive_mode =
1760 shader->info.TessEval.PrimitiveMode;
1761 }
1762
1763 if (shader->info.TessEval.Spacing != 0) {
1764 if (gl_prog->info.tess.spacing != 0 && gl_prog->info.tess.spacing !=
1765 shader->info.TessEval.Spacing) {
1766 linker_error(prog, "tessellation evaluation shader defined with "
1767 "conflicting vertex spacing.\n");
1768 return;
1769 }
1770 gl_prog->info.tess.spacing = shader->info.TessEval.Spacing;
1771 }
1772
1773 if (shader->info.TessEval.VertexOrder != 0) {
1774 if (vertex_order != 0 &&
1775 vertex_order != shader->info.TessEval.VertexOrder) {
1776 linker_error(prog, "tessellation evaluation shader defined with "
1777 "conflicting ordering.\n");
1778 return;
1779 }
1780 vertex_order = shader->info.TessEval.VertexOrder;
1781 }
1782
1783 if (shader->info.TessEval.PointMode != -1) {
1784 if (point_mode != -1 &&
1785 point_mode != shader->info.TessEval.PointMode) {
1786 linker_error(prog, "tessellation evaluation shader defined with "
1787 "conflicting point modes.\n");
1788 return;
1789 }
1790 point_mode = shader->info.TessEval.PointMode;
1791 }
1792
1793 }
1794
1795 /* Just do the intrastage -> interstage propagation right now,
1796 * since we already know we're in the right type of shader program
1797 * for doing it.
1798 */
1799 if (gl_prog->info.tess.primitive_mode == PRIM_UNKNOWN) {
1800 linker_error(prog,
1801 "tessellation evaluation shader didn't declare input "
1802 "primitive modes.\n");
1803 return;
1804 }
1805
1806 if (gl_prog->info.tess.spacing == TESS_SPACING_UNSPECIFIED)
1807 gl_prog->info.tess.spacing = TESS_SPACING_EQUAL;
1808
1809 if (vertex_order == 0 || vertex_order == GL_CCW)
1810 gl_prog->info.tess.ccw = true;
1811 else
1812 gl_prog->info.tess.ccw = false;
1813
1814
1815 if (point_mode == -1 || point_mode == GL_FALSE)
1816 gl_prog->info.tess.point_mode = false;
1817 else
1818 gl_prog->info.tess.point_mode = true;
1819 }
1820
1821
1822 /**
1823 * Performs the cross-validation of layout qualifiers specified in
1824 * redeclaration of gl_FragCoord for the attached fragment shaders,
1825 * and propagates them to the linked FS and linked shader program.
1826 */
1827 static void
1828 link_fs_inout_layout_qualifiers(struct gl_shader_program *prog,
1829 struct gl_linked_shader *linked_shader,
1830 struct gl_shader **shader_list,
1831 unsigned num_shaders)
1832 {
1833 bool redeclares_gl_fragcoord = false;
1834 bool uses_gl_fragcoord = false;
1835 bool origin_upper_left = false;
1836 bool pixel_center_integer = false;
1837
1838 if (linked_shader->Stage != MESA_SHADER_FRAGMENT ||
1839 (prog->data->Version < 150 &&
1840 !prog->ARB_fragment_coord_conventions_enable))
1841 return;
1842
1843 for (unsigned i = 0; i < num_shaders; i++) {
1844 struct gl_shader *shader = shader_list[i];
1845 /* From the GLSL 1.50 spec, page 39:
1846 *
1847 * "If gl_FragCoord is redeclared in any fragment shader in a program,
1848 * it must be redeclared in all the fragment shaders in that program
1849 * that have a static use gl_FragCoord."
1850 */
1851 if ((redeclares_gl_fragcoord && !shader->redeclares_gl_fragcoord &&
1852 shader->uses_gl_fragcoord)
1853 || (shader->redeclares_gl_fragcoord && !redeclares_gl_fragcoord &&
1854 uses_gl_fragcoord)) {
1855 linker_error(prog, "fragment shader defined with conflicting "
1856 "layout qualifiers for gl_FragCoord\n");
1857 }
1858
1859 /* From the GLSL 1.50 spec, page 39:
1860 *
1861 * "All redeclarations of gl_FragCoord in all fragment shaders in a
1862 * single program must have the same set of qualifiers."
1863 */
1864 if (redeclares_gl_fragcoord && shader->redeclares_gl_fragcoord &&
1865 (shader->origin_upper_left != origin_upper_left ||
1866 shader->pixel_center_integer != pixel_center_integer)) {
1867 linker_error(prog, "fragment shader defined with conflicting "
1868 "layout qualifiers for gl_FragCoord\n");
1869 }
1870
1871 /* Update the linked shader state. Note that uses_gl_fragcoord should
1872 * accumulate the results. The other values should replace. If there
1873 * are multiple redeclarations, all the fields except uses_gl_fragcoord
1874 * are already known to be the same.
1875 */
1876 if (shader->redeclares_gl_fragcoord || shader->uses_gl_fragcoord) {
1877 redeclares_gl_fragcoord = shader->redeclares_gl_fragcoord;
1878 uses_gl_fragcoord |= shader->uses_gl_fragcoord;
1879 origin_upper_left = shader->origin_upper_left;
1880 pixel_center_integer = shader->pixel_center_integer;
1881 }
1882
1883 linked_shader->Program->info.fs.early_fragment_tests |=
1884 shader->EarlyFragmentTests || shader->PostDepthCoverage;
1885 linked_shader->Program->info.fs.inner_coverage |= shader->InnerCoverage;
1886 linked_shader->Program->info.fs.post_depth_coverage |=
1887 shader->PostDepthCoverage;
1888
1889 linked_shader->Program->sh.fs.BlendSupport |= shader->BlendSupport;
1890 }
1891 }
1892
1893 /**
1894 * Performs the cross-validation of geometry shader max_vertices and
1895 * primitive type layout qualifiers for the attached geometry shaders,
1896 * and propagates them to the linked GS and linked shader program.
1897 */
1898 static void
1899 link_gs_inout_layout_qualifiers(struct gl_shader_program *prog,
1900 struct gl_program *gl_prog,
1901 struct gl_shader **shader_list,
1902 unsigned num_shaders)
1903 {
1904 /* No in/out qualifiers defined for anything but GLSL 1.50+
1905 * geometry shaders so far.
1906 */
1907 if (gl_prog->info.stage != MESA_SHADER_GEOMETRY ||
1908 prog->data->Version < 150)
1909 return;
1910
1911 int vertices_out = -1;
1912
1913 gl_prog->info.gs.invocations = 0;
1914 gl_prog->info.gs.input_primitive = PRIM_UNKNOWN;
1915 gl_prog->info.gs.output_primitive = PRIM_UNKNOWN;
1916
1917 /* From the GLSL 1.50 spec, page 46:
1918 *
1919 * "All geometry shader output layout declarations in a program
1920 * must declare the same layout and same value for
1921 * max_vertices. There must be at least one geometry output
1922 * layout declaration somewhere in a program, but not all
1923 * geometry shaders (compilation units) are required to
1924 * declare it."
1925 */
1926
1927 for (unsigned i = 0; i < num_shaders; i++) {
1928 struct gl_shader *shader = shader_list[i];
1929
1930 if (shader->info.Geom.InputType != PRIM_UNKNOWN) {
1931 if (gl_prog->info.gs.input_primitive != PRIM_UNKNOWN &&
1932 gl_prog->info.gs.input_primitive !=
1933 shader->info.Geom.InputType) {
1934 linker_error(prog, "geometry shader defined with conflicting "
1935 "input types\n");
1936 return;
1937 }
1938 gl_prog->info.gs.input_primitive = shader->info.Geom.InputType;
1939 }
1940
1941 if (shader->info.Geom.OutputType != PRIM_UNKNOWN) {
1942 if (gl_prog->info.gs.output_primitive != PRIM_UNKNOWN &&
1943 gl_prog->info.gs.output_primitive !=
1944 shader->info.Geom.OutputType) {
1945 linker_error(prog, "geometry shader defined with conflicting "
1946 "output types\n");
1947 return;
1948 }
1949 gl_prog->info.gs.output_primitive = shader->info.Geom.OutputType;
1950 }
1951
1952 if (shader->info.Geom.VerticesOut != -1) {
1953 if (vertices_out != -1 &&
1954 vertices_out != shader->info.Geom.VerticesOut) {
1955 linker_error(prog, "geometry shader defined with conflicting "
1956 "output vertex count (%d and %d)\n",
1957 vertices_out, shader->info.Geom.VerticesOut);
1958 return;
1959 }
1960 vertices_out = shader->info.Geom.VerticesOut;
1961 }
1962
1963 if (shader->info.Geom.Invocations != 0) {
1964 if (gl_prog->info.gs.invocations != 0 &&
1965 gl_prog->info.gs.invocations !=
1966 (unsigned) shader->info.Geom.Invocations) {
1967 linker_error(prog, "geometry shader defined with conflicting "
1968 "invocation count (%d and %d)\n",
1969 gl_prog->info.gs.invocations,
1970 shader->info.Geom.Invocations);
1971 return;
1972 }
1973 gl_prog->info.gs.invocations = shader->info.Geom.Invocations;
1974 }
1975 }
1976
1977 /* Just do the intrastage -> interstage propagation right now,
1978 * since we already know we're in the right type of shader program
1979 * for doing it.
1980 */
1981 if (gl_prog->info.gs.input_primitive == PRIM_UNKNOWN) {
1982 linker_error(prog,
1983 "geometry shader didn't declare primitive input type\n");
1984 return;
1985 }
1986
1987 if (gl_prog->info.gs.output_primitive == PRIM_UNKNOWN) {
1988 linker_error(prog,
1989 "geometry shader didn't declare primitive output type\n");
1990 return;
1991 }
1992
1993 if (vertices_out == -1) {
1994 linker_error(prog,
1995 "geometry shader didn't declare max_vertices\n");
1996 return;
1997 } else {
1998 gl_prog->info.gs.vertices_out = vertices_out;
1999 }
2000
2001 if (gl_prog->info.gs.invocations == 0)
2002 gl_prog->info.gs.invocations = 1;
2003 }
2004
2005
2006 /**
2007 * Perform cross-validation of compute shader local_size_{x,y,z} layout
2008 * qualifiers for the attached compute shaders, and propagate them to the
2009 * linked CS and linked shader program.
2010 */
2011 static void
2012 link_cs_input_layout_qualifiers(struct gl_shader_program *prog,
2013 struct gl_program *gl_prog,
2014 struct gl_shader **shader_list,
2015 unsigned num_shaders)
2016 {
2017 /* This function is called for all shader stages, but it only has an effect
2018 * for compute shaders.
2019 */
2020 if (gl_prog->info.stage != MESA_SHADER_COMPUTE)
2021 return;
2022
2023 for (int i = 0; i < 3; i++)
2024 gl_prog->info.cs.local_size[i] = 0;
2025
2026 gl_prog->info.cs.local_size_variable = false;
2027
2028 /* From the ARB_compute_shader spec, in the section describing local size
2029 * declarations:
2030 *
2031 * If multiple compute shaders attached to a single program object
2032 * declare local work-group size, the declarations must be identical;
2033 * otherwise a link-time error results. Furthermore, if a program
2034 * object contains any compute shaders, at least one must contain an
2035 * input layout qualifier specifying the local work sizes of the
2036 * program, or a link-time error will occur.
2037 */
2038 for (unsigned sh = 0; sh < num_shaders; sh++) {
2039 struct gl_shader *shader = shader_list[sh];
2040
2041 if (shader->info.Comp.LocalSize[0] != 0) {
2042 if (gl_prog->info.cs.local_size[0] != 0) {
2043 for (int i = 0; i < 3; i++) {
2044 if (gl_prog->info.cs.local_size[i] !=
2045 shader->info.Comp.LocalSize[i]) {
2046 linker_error(prog, "compute shader defined with conflicting "
2047 "local sizes\n");
2048 return;
2049 }
2050 }
2051 }
2052 for (int i = 0; i < 3; i++) {
2053 gl_prog->info.cs.local_size[i] =
2054 shader->info.Comp.LocalSize[i];
2055 }
2056 } else if (shader->info.Comp.LocalSizeVariable) {
2057 if (gl_prog->info.cs.local_size[0] != 0) {
2058 /* The ARB_compute_variable_group_size spec says:
2059 *
2060 * If one compute shader attached to a program declares a
2061 * variable local group size and a second compute shader
2062 * attached to the same program declares a fixed local group
2063 * size, a link-time error results.
2064 */
2065 linker_error(prog, "compute shader defined with both fixed and "
2066 "variable local group size\n");
2067 return;
2068 }
2069 gl_prog->info.cs.local_size_variable = true;
2070 }
2071 }
2072
2073 /* Just do the intrastage -> interstage propagation right now,
2074 * since we already know we're in the right type of shader program
2075 * for doing it.
2076 */
2077 if (gl_prog->info.cs.local_size[0] == 0 &&
2078 !gl_prog->info.cs.local_size_variable) {
2079 linker_error(prog, "compute shader must contain a fixed or a variable "
2080 "local group size\n");
2081 return;
2082 }
2083 }
2084
2085
2086 /**
2087 * Combine a group of shaders for a single stage to generate a linked shader
2088 *
2089 * \note
2090 * If this function is supplied a single shader, it is cloned, and the new
2091 * shader is returned.
2092 */
2093 struct gl_linked_shader *
2094 link_intrastage_shaders(void *mem_ctx,
2095 struct gl_context *ctx,
2096 struct gl_shader_program *prog,
2097 struct gl_shader **shader_list,
2098 unsigned num_shaders,
2099 bool allow_missing_main)
2100 {
2101 struct gl_uniform_block *ubo_blocks = NULL;
2102 struct gl_uniform_block *ssbo_blocks = NULL;
2103 unsigned num_ubo_blocks = 0;
2104 unsigned num_ssbo_blocks = 0;
2105
2106 /* Check that global variables defined in multiple shaders are consistent.
2107 */
2108 glsl_symbol_table variables;
2109 for (unsigned i = 0; i < num_shaders; i++) {
2110 if (shader_list[i] == NULL)
2111 continue;
2112 cross_validate_globals(prog, shader_list[i]->ir, &variables, false);
2113 }
2114
2115 if (!prog->data->LinkStatus)
2116 return NULL;
2117
2118 /* Check that interface blocks defined in multiple shaders are consistent.
2119 */
2120 validate_intrastage_interface_blocks(prog, (const gl_shader **)shader_list,
2121 num_shaders);
2122 if (!prog->data->LinkStatus)
2123 return NULL;
2124
2125 /* Check that there is only a single definition of each function signature
2126 * across all shaders.
2127 */
2128 for (unsigned i = 0; i < (num_shaders - 1); i++) {
2129 foreach_in_list(ir_instruction, node, shader_list[i]->ir) {
2130 ir_function *const f = node->as_function();
2131
2132 if (f == NULL)
2133 continue;
2134
2135 for (unsigned j = i + 1; j < num_shaders; j++) {
2136 ir_function *const other =
2137 shader_list[j]->symbols->get_function(f->name);
2138
2139 /* If the other shader has no function (and therefore no function
2140 * signatures) with the same name, skip to the next shader.
2141 */
2142 if (other == NULL)
2143 continue;
2144
2145 foreach_in_list(ir_function_signature, sig, &f->signatures) {
2146 if (!sig->is_defined)
2147 continue;
2148
2149 ir_function_signature *other_sig =
2150 other->exact_matching_signature(NULL, &sig->parameters);
2151
2152 if (other_sig != NULL && other_sig->is_defined) {
2153 linker_error(prog, "function `%s' is multiply defined\n",
2154 f->name);
2155 return NULL;
2156 }
2157 }
2158 }
2159 }
2160 }
2161
2162 /* Find the shader that defines main, and make a clone of it.
2163 *
2164 * Starting with the clone, search for undefined references. If one is
2165 * found, find the shader that defines it. Clone the reference and add
2166 * it to the shader. Repeat until there are no undefined references or
2167 * until a reference cannot be resolved.
2168 */
2169 gl_shader *main = NULL;
2170 for (unsigned i = 0; i < num_shaders; i++) {
2171 if (_mesa_get_main_function_signature(shader_list[i]->symbols)) {
2172 main = shader_list[i];
2173 break;
2174 }
2175 }
2176
2177 if (main == NULL && allow_missing_main)
2178 main = shader_list[0];
2179
2180 if (main == NULL) {
2181 linker_error(prog, "%s shader lacks `main'\n",
2182 _mesa_shader_stage_to_string(shader_list[0]->Stage));
2183 return NULL;
2184 }
2185
2186 gl_linked_shader *linked = rzalloc(NULL, struct gl_linked_shader);
2187 linked->Stage = shader_list[0]->Stage;
2188
2189 /* Create program and attach it to the linked shader */
2190 struct gl_program *gl_prog =
2191 ctx->Driver.NewProgram(ctx,
2192 _mesa_shader_stage_to_program(shader_list[0]->Stage),
2193 prog->Name, false);
2194 if (!gl_prog) {
2195 prog->data->LinkStatus = linking_failure;
2196 _mesa_delete_linked_shader(ctx, linked);
2197 return NULL;
2198 }
2199
2200 if (!prog->data->cache_fallback)
2201 _mesa_reference_shader_program_data(ctx, &gl_prog->sh.data, prog->data);
2202
2203 /* Don't use _mesa_reference_program() just take ownership */
2204 linked->Program = gl_prog;
2205
2206 linked->ir = new(linked) exec_list;
2207 clone_ir_list(mem_ctx, linked->ir, main->ir);
2208
2209 link_fs_inout_layout_qualifiers(prog, linked, shader_list, num_shaders);
2210 link_tcs_out_layout_qualifiers(prog, gl_prog, shader_list, num_shaders);
2211 link_tes_in_layout_qualifiers(prog, gl_prog, shader_list, num_shaders);
2212 link_gs_inout_layout_qualifiers(prog, gl_prog, shader_list, num_shaders);
2213 link_cs_input_layout_qualifiers(prog, gl_prog, shader_list, num_shaders);
2214 link_xfb_stride_layout_qualifiers(ctx, prog, linked, shader_list,
2215 num_shaders);
2216
2217 populate_symbol_table(linked);
2218
2219 /* The pointer to the main function in the final linked shader (i.e., the
2220 * copy of the original shader that contained the main function).
2221 */
2222 ir_function_signature *const main_sig =
2223 _mesa_get_main_function_signature(linked->symbols);
2224
2225 /* Move any instructions other than variable declarations or function
2226 * declarations into main.
2227 */
2228 if (main_sig != NULL) {
2229 exec_node *insertion_point =
2230 move_non_declarations(linked->ir, (exec_node *) &main_sig->body, false,
2231 linked);
2232
2233 for (unsigned i = 0; i < num_shaders; i++) {
2234 if (shader_list[i] == main)
2235 continue;
2236
2237 insertion_point = move_non_declarations(shader_list[i]->ir,
2238 insertion_point, true, linked);
2239 }
2240 }
2241
2242 if (!link_function_calls(prog, linked, shader_list, num_shaders)) {
2243 _mesa_delete_linked_shader(ctx, linked);
2244 return NULL;
2245 }
2246
2247 /* Make a pass over all variable declarations to ensure that arrays with
2248 * unspecified sizes have a size specified. The size is inferred from the
2249 * max_array_access field.
2250 */
2251 array_sizing_visitor v;
2252 v.run(linked->ir);
2253 v.fixup_unnamed_interface_types();
2254
2255 if (!prog->data->cache_fallback) {
2256 /* Link up uniform blocks defined within this stage. */
2257 link_uniform_blocks(mem_ctx, ctx, prog, linked, &ubo_blocks,
2258 &num_ubo_blocks, &ssbo_blocks, &num_ssbo_blocks);
2259
2260 if (!prog->data->LinkStatus) {
2261 _mesa_delete_linked_shader(ctx, linked);
2262 return NULL;
2263 }
2264
2265 /* Copy ubo blocks to linked shader list */
2266 linked->Program->sh.UniformBlocks =
2267 ralloc_array(linked, gl_uniform_block *, num_ubo_blocks);
2268 ralloc_steal(linked, ubo_blocks);
2269 for (unsigned i = 0; i < num_ubo_blocks; i++) {
2270 linked->Program->sh.UniformBlocks[i] = &ubo_blocks[i];
2271 }
2272 linked->Program->info.num_ubos = num_ubo_blocks;
2273
2274 /* Copy ssbo blocks to linked shader list */
2275 linked->Program->sh.ShaderStorageBlocks =
2276 ralloc_array(linked, gl_uniform_block *, num_ssbo_blocks);
2277 ralloc_steal(linked, ssbo_blocks);
2278 for (unsigned i = 0; i < num_ssbo_blocks; i++) {
2279 linked->Program->sh.ShaderStorageBlocks[i] = &ssbo_blocks[i];
2280 }
2281 linked->Program->info.num_ssbos = num_ssbo_blocks;
2282 }
2283
2284 /* At this point linked should contain all of the linked IR, so
2285 * validate it to make sure nothing went wrong.
2286 */
2287 validate_ir_tree(linked->ir);
2288
2289 /* Set the size of geometry shader input arrays */
2290 if (linked->Stage == MESA_SHADER_GEOMETRY) {
2291 unsigned num_vertices =
2292 vertices_per_prim(gl_prog->info.gs.input_primitive);
2293 array_resize_visitor input_resize_visitor(num_vertices, prog,
2294 MESA_SHADER_GEOMETRY);
2295 foreach_in_list(ir_instruction, ir, linked->ir) {
2296 ir->accept(&input_resize_visitor);
2297 }
2298 }
2299
2300 if (ctx->Const.VertexID_is_zero_based)
2301 lower_vertex_id(linked);
2302
2303 #ifdef DEBUG
2304 /* Compute the source checksum. */
2305 linked->SourceChecksum = 0;
2306 for (unsigned i = 0; i < num_shaders; i++) {
2307 if (shader_list[i] == NULL)
2308 continue;
2309 linked->SourceChecksum ^= shader_list[i]->SourceChecksum;
2310 }
2311 #endif
2312
2313 return linked;
2314 }
2315
2316 /**
2317 * Update the sizes of linked shader uniform arrays to the maximum
2318 * array index used.
2319 *
2320 * From page 81 (page 95 of the PDF) of the OpenGL 2.1 spec:
2321 *
2322 * If one or more elements of an array are active,
2323 * GetActiveUniform will return the name of the array in name,
2324 * subject to the restrictions listed above. The type of the array
2325 * is returned in type. The size parameter contains the highest
2326 * array element index used, plus one. The compiler or linker
2327 * determines the highest index used. There will be only one
2328 * active uniform reported by the GL per uniform array.
2329
2330 */
2331 static void
2332 update_array_sizes(struct gl_shader_program *prog)
2333 {
2334 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
2335 if (prog->_LinkedShaders[i] == NULL)
2336 continue;
2337
2338 bool types_were_updated = false;
2339
2340 foreach_in_list(ir_instruction, node, prog->_LinkedShaders[i]->ir) {
2341 ir_variable *const var = node->as_variable();
2342
2343 if ((var == NULL) || (var->data.mode != ir_var_uniform) ||
2344 !var->type->is_array())
2345 continue;
2346
2347 /* GL_ARB_uniform_buffer_object says that std140 uniforms
2348 * will not be eliminated. Since we always do std140, just
2349 * don't resize arrays in UBOs.
2350 *
2351 * Atomic counters are supposed to get deterministic
2352 * locations assigned based on the declaration ordering and
2353 * sizes, array compaction would mess that up.
2354 *
2355 * Subroutine uniforms are not removed.
2356 */
2357 if (var->is_in_buffer_block() || var->type->contains_atomic() ||
2358 var->type->contains_subroutine() || var->constant_initializer)
2359 continue;
2360
2361 int size = var->data.max_array_access;
2362 for (unsigned j = 0; j < MESA_SHADER_STAGES; j++) {
2363 if (prog->_LinkedShaders[j] == NULL)
2364 continue;
2365
2366 foreach_in_list(ir_instruction, node2, prog->_LinkedShaders[j]->ir) {
2367 ir_variable *other_var = node2->as_variable();
2368 if (!other_var)
2369 continue;
2370
2371 if (strcmp(var->name, other_var->name) == 0 &&
2372 other_var->data.max_array_access > size) {
2373 size = other_var->data.max_array_access;
2374 }
2375 }
2376 }
2377
2378 if (size + 1 != (int)var->type->length) {
2379 /* If this is a built-in uniform (i.e., it's backed by some
2380 * fixed-function state), adjust the number of state slots to
2381 * match the new array size. The number of slots per array entry
2382 * is not known. It seems safe to assume that the total number of
2383 * slots is an integer multiple of the number of array elements.
2384 * Determine the number of slots per array element by dividing by
2385 * the old (total) size.
2386 */
2387 const unsigned num_slots = var->get_num_state_slots();
2388 if (num_slots > 0) {
2389 var->set_num_state_slots((size + 1)
2390 * (num_slots / var->type->length));
2391 }
2392
2393 var->type = glsl_type::get_array_instance(var->type->fields.array,
2394 size + 1);
2395 types_were_updated = true;
2396 }
2397 }
2398
2399 /* Update the types of dereferences in case we changed any. */
2400 if (types_were_updated) {
2401 deref_type_updater v;
2402 v.run(prog->_LinkedShaders[i]->ir);
2403 }
2404 }
2405 }
2406
2407 /**
2408 * Resize tessellation evaluation per-vertex inputs to the size of
2409 * tessellation control per-vertex outputs.
2410 */
2411 static void
2412 resize_tes_inputs(struct gl_context *ctx,
2413 struct gl_shader_program *prog)
2414 {
2415 if (prog->_LinkedShaders[MESA_SHADER_TESS_EVAL] == NULL)
2416 return;
2417
2418 gl_linked_shader *const tcs = prog->_LinkedShaders[MESA_SHADER_TESS_CTRL];
2419 gl_linked_shader *const tes = prog->_LinkedShaders[MESA_SHADER_TESS_EVAL];
2420
2421 /* If no control shader is present, then the TES inputs are statically
2422 * sized to MaxPatchVertices; the actual size of the arrays won't be
2423 * known until draw time.
2424 */
2425 const int num_vertices = tcs
2426 ? tcs->Program->info.tess.tcs_vertices_out
2427 : ctx->Const.MaxPatchVertices;
2428
2429 array_resize_visitor input_resize_visitor(num_vertices, prog,
2430 MESA_SHADER_TESS_EVAL);
2431 foreach_in_list(ir_instruction, ir, tes->ir) {
2432 ir->accept(&input_resize_visitor);
2433 }
2434
2435 if (tcs || ctx->Const.LowerTESPatchVerticesIn) {
2436 /* Convert the gl_PatchVerticesIn system value into a constant, since
2437 * the value is known at this point.
2438 */
2439 foreach_in_list(ir_instruction, ir, tes->ir) {
2440 ir_variable *var = ir->as_variable();
2441 if (var && var->data.mode == ir_var_system_value &&
2442 var->data.location == SYSTEM_VALUE_VERTICES_IN) {
2443 void *mem_ctx = ralloc_parent(var);
2444 var->data.location = 0;
2445 var->data.explicit_location = false;
2446 if (tcs) {
2447 var->data.mode = ir_var_auto;
2448 var->constant_value = new(mem_ctx) ir_constant(num_vertices);
2449 } else {
2450 var->data.mode = ir_var_uniform;
2451 var->data.how_declared = ir_var_hidden;
2452 var->allocate_state_slots(1);
2453 ir_state_slot *slot0 = &var->get_state_slots()[0];
2454 slot0->swizzle = SWIZZLE_XXXX;
2455 slot0->tokens[0] = STATE_INTERNAL;
2456 slot0->tokens[1] = STATE_TES_PATCH_VERTICES_IN;
2457 for (int i = 2; i < STATE_LENGTH; i++)
2458 slot0->tokens[i] = 0;
2459 }
2460 }
2461 }
2462 }
2463 }
2464
2465 /**
2466 * Find a contiguous set of available bits in a bitmask.
2467 *
2468 * \param used_mask Bits representing used (1) and unused (0) locations
2469 * \param needed_count Number of contiguous bits needed.
2470 *
2471 * \return
2472 * Base location of the available bits on success or -1 on failure.
2473 */
2474 int
2475 find_available_slots(unsigned used_mask, unsigned needed_count)
2476 {
2477 unsigned needed_mask = (1 << needed_count) - 1;
2478 const int max_bit_to_test = (8 * sizeof(used_mask)) - needed_count;
2479
2480 /* The comparison to 32 is redundant, but without it GCC emits "warning:
2481 * cannot optimize possibly infinite loops" for the loop below.
2482 */
2483 if ((needed_count == 0) || (max_bit_to_test < 0) || (max_bit_to_test > 32))
2484 return -1;
2485
2486 for (int i = 0; i <= max_bit_to_test; i++) {
2487 if ((needed_mask & ~used_mask) == needed_mask)
2488 return i;
2489
2490 needed_mask <<= 1;
2491 }
2492
2493 return -1;
2494 }
2495
2496
2497 /**
2498 * Assign locations for either VS inputs or FS outputs
2499 *
2500 * \param mem_ctx Temporary ralloc context used for linking
2501 * \param prog Shader program whose variables need locations assigned
2502 * \param constants Driver specific constant values for the program.
2503 * \param target_index Selector for the program target to receive location
2504 * assignmnets. Must be either \c MESA_SHADER_VERTEX or
2505 * \c MESA_SHADER_FRAGMENT.
2506 *
2507 * \return
2508 * If locations are successfully assigned, true is returned. Otherwise an
2509 * error is emitted to the shader link log and false is returned.
2510 */
2511 bool
2512 assign_attribute_or_color_locations(void *mem_ctx,
2513 gl_shader_program *prog,
2514 struct gl_constants *constants,
2515 unsigned target_index)
2516 {
2517 /* Maximum number of generic locations. This corresponds to either the
2518 * maximum number of draw buffers or the maximum number of generic
2519 * attributes.
2520 */
2521 unsigned max_index = (target_index == MESA_SHADER_VERTEX) ?
2522 constants->Program[target_index].MaxAttribs :
2523 MAX2(constants->MaxDrawBuffers, constants->MaxDualSourceDrawBuffers);
2524
2525 /* Mark invalid locations as being used.
2526 */
2527 unsigned used_locations = (max_index >= 32)
2528 ? ~0 : ~((1 << max_index) - 1);
2529 unsigned double_storage_locations = 0;
2530
2531 assert((target_index == MESA_SHADER_VERTEX)
2532 || (target_index == MESA_SHADER_FRAGMENT));
2533
2534 gl_linked_shader *const sh = prog->_LinkedShaders[target_index];
2535 if (sh == NULL)
2536 return true;
2537
2538 /* Operate in a total of four passes.
2539 *
2540 * 1. Invalidate the location assignments for all vertex shader inputs.
2541 *
2542 * 2. Assign locations for inputs that have user-defined (via
2543 * glBindVertexAttribLocation) locations and outputs that have
2544 * user-defined locations (via glBindFragDataLocation).
2545 *
2546 * 3. Sort the attributes without assigned locations by number of slots
2547 * required in decreasing order. Fragmentation caused by attribute
2548 * locations assigned by the application may prevent large attributes
2549 * from having enough contiguous space.
2550 *
2551 * 4. Assign locations to any inputs without assigned locations.
2552 */
2553
2554 const int generic_base = (target_index == MESA_SHADER_VERTEX)
2555 ? (int) VERT_ATTRIB_GENERIC0 : (int) FRAG_RESULT_DATA0;
2556
2557 const enum ir_variable_mode direction =
2558 (target_index == MESA_SHADER_VERTEX)
2559 ? ir_var_shader_in : ir_var_shader_out;
2560
2561
2562 /* Temporary storage for the set of attributes that need locations assigned.
2563 */
2564 struct temp_attr {
2565 unsigned slots;
2566 ir_variable *var;
2567
2568 /* Used below in the call to qsort. */
2569 static int compare(const void *a, const void *b)
2570 {
2571 const temp_attr *const l = (const temp_attr *) a;
2572 const temp_attr *const r = (const temp_attr *) b;
2573
2574 /* Reversed because we want a descending order sort below. */
2575 return r->slots - l->slots;
2576 }
2577 } to_assign[32];
2578 assert(max_index <= 32);
2579
2580 /* Temporary array for the set of attributes that have locations assigned.
2581 */
2582 ir_variable *assigned[16];
2583
2584 unsigned num_attr = 0;
2585 unsigned assigned_attr = 0;
2586
2587 foreach_in_list(ir_instruction, node, sh->ir) {
2588 ir_variable *const var = node->as_variable();
2589
2590 if ((var == NULL) || (var->data.mode != (unsigned) direction))
2591 continue;
2592
2593 if (var->data.explicit_location) {
2594 var->data.is_unmatched_generic_inout = 0;
2595 if ((var->data.location >= (int)(max_index + generic_base))
2596 || (var->data.location < 0)) {
2597 linker_error(prog,
2598 "invalid explicit location %d specified for `%s'\n",
2599 (var->data.location < 0)
2600 ? var->data.location
2601 : var->data.location - generic_base,
2602 var->name);
2603 return false;
2604 }
2605 } else if (target_index == MESA_SHADER_VERTEX) {
2606 unsigned binding;
2607
2608 if (prog->AttributeBindings->get(binding, var->name)) {
2609 assert(binding >= VERT_ATTRIB_GENERIC0);
2610 var->data.location = binding;
2611 var->data.is_unmatched_generic_inout = 0;
2612 }
2613 } else if (target_index == MESA_SHADER_FRAGMENT) {
2614 unsigned binding;
2615 unsigned index;
2616 const char *name = var->name;
2617 const glsl_type *type = var->type;
2618
2619 while (type) {
2620 /* Check if there's a binding for the variable name */
2621 if (prog->FragDataBindings->get(binding, name)) {
2622 assert(binding >= FRAG_RESULT_DATA0);
2623 var->data.location = binding;
2624 var->data.is_unmatched_generic_inout = 0;
2625
2626 if (prog->FragDataIndexBindings->get(index, name)) {
2627 var->data.index = index;
2628 }
2629 break;
2630 }
2631
2632 /* If not, but it's an array type, look for name[0] */
2633 if (type->is_array()) {
2634 name = ralloc_asprintf(mem_ctx, "%s[0]", name);
2635 type = type->fields.array;
2636 continue;
2637 }
2638
2639 break;
2640 }
2641 }
2642
2643 if (strcmp(var->name, "gl_LastFragData") == 0)
2644 continue;
2645
2646 /* From GL4.5 core spec, section 15.2 (Shader Execution):
2647 *
2648 * "Output binding assignments will cause LinkProgram to fail:
2649 * ...
2650 * If the program has an active output assigned to a location greater
2651 * than or equal to the value of MAX_DUAL_SOURCE_DRAW_BUFFERS and has
2652 * an active output assigned an index greater than or equal to one;"
2653 */
2654 if (target_index == MESA_SHADER_FRAGMENT && var->data.index >= 1 &&
2655 var->data.location - generic_base >=
2656 (int) constants->MaxDualSourceDrawBuffers) {
2657 linker_error(prog,
2658 "output location %d >= GL_MAX_DUAL_SOURCE_DRAW_BUFFERS "
2659 "with index %u for %s\n",
2660 var->data.location - generic_base, var->data.index,
2661 var->name);
2662 return false;
2663 }
2664
2665 const unsigned slots = var->type->count_attribute_slots(target_index == MESA_SHADER_VERTEX);
2666
2667 /* If the variable is not a built-in and has a location statically
2668 * assigned in the shader (presumably via a layout qualifier), make sure
2669 * that it doesn't collide with other assigned locations. Otherwise,
2670 * add it to the list of variables that need linker-assigned locations.
2671 */
2672 if (var->data.location != -1) {
2673 if (var->data.location >= generic_base && var->data.index < 1) {
2674 /* From page 61 of the OpenGL 4.0 spec:
2675 *
2676 * "LinkProgram will fail if the attribute bindings assigned
2677 * by BindAttribLocation do not leave not enough space to
2678 * assign a location for an active matrix attribute or an
2679 * active attribute array, both of which require multiple
2680 * contiguous generic attributes."
2681 *
2682 * I think above text prohibits the aliasing of explicit and
2683 * automatic assignments. But, aliasing is allowed in manual
2684 * assignments of attribute locations. See below comments for
2685 * the details.
2686 *
2687 * From OpenGL 4.0 spec, page 61:
2688 *
2689 * "It is possible for an application to bind more than one
2690 * attribute name to the same location. This is referred to as
2691 * aliasing. This will only work if only one of the aliased
2692 * attributes is active in the executable program, or if no
2693 * path through the shader consumes more than one attribute of
2694 * a set of attributes aliased to the same location. A link
2695 * error can occur if the linker determines that every path
2696 * through the shader consumes multiple aliased attributes,
2697 * but implementations are not required to generate an error
2698 * in this case."
2699 *
2700 * From GLSL 4.30 spec, page 54:
2701 *
2702 * "A program will fail to link if any two non-vertex shader
2703 * input variables are assigned to the same location. For
2704 * vertex shaders, multiple input variables may be assigned
2705 * to the same location using either layout qualifiers or via
2706 * the OpenGL API. However, such aliasing is intended only to
2707 * support vertex shaders where each execution path accesses
2708 * at most one input per each location. Implementations are
2709 * permitted, but not required, to generate link-time errors
2710 * if they detect that every path through the vertex shader
2711 * executable accesses multiple inputs assigned to any single
2712 * location. For all shader types, a program will fail to link
2713 * if explicit location assignments leave the linker unable
2714 * to find space for other variables without explicit
2715 * assignments."
2716 *
2717 * From OpenGL ES 3.0 spec, page 56:
2718 *
2719 * "Binding more than one attribute name to the same location
2720 * is referred to as aliasing, and is not permitted in OpenGL
2721 * ES Shading Language 3.00 vertex shaders. LinkProgram will
2722 * fail when this condition exists. However, aliasing is
2723 * possible in OpenGL ES Shading Language 1.00 vertex shaders.
2724 * This will only work if only one of the aliased attributes
2725 * is active in the executable program, or if no path through
2726 * the shader consumes more than one attribute of a set of
2727 * attributes aliased to the same location. A link error can
2728 * occur if the linker determines that every path through the
2729 * shader consumes multiple aliased attributes, but implemen-
2730 * tations are not required to generate an error in this case."
2731 *
2732 * After looking at above references from OpenGL, OpenGL ES and
2733 * GLSL specifications, we allow aliasing of vertex input variables
2734 * in: OpenGL 2.0 (and above) and OpenGL ES 2.0.
2735 *
2736 * NOTE: This is not required by the spec but its worth mentioning
2737 * here that we're not doing anything to make sure that no path
2738 * through the vertex shader executable accesses multiple inputs
2739 * assigned to any single location.
2740 */
2741
2742 /* Mask representing the contiguous slots that will be used by
2743 * this attribute.
2744 */
2745 const unsigned attr = var->data.location - generic_base;
2746 const unsigned use_mask = (1 << slots) - 1;
2747 const char *const string = (target_index == MESA_SHADER_VERTEX)
2748 ? "vertex shader input" : "fragment shader output";
2749
2750 /* Generate a link error if the requested locations for this
2751 * attribute exceed the maximum allowed attribute location.
2752 */
2753 if (attr + slots > max_index) {
2754 linker_error(prog,
2755 "insufficient contiguous locations "
2756 "available for %s `%s' %d %d %d\n", string,
2757 var->name, used_locations, use_mask, attr);
2758 return false;
2759 }
2760
2761 /* Generate a link error if the set of bits requested for this
2762 * attribute overlaps any previously allocated bits.
2763 */
2764 if ((~(use_mask << attr) & used_locations) != used_locations) {
2765 if (target_index == MESA_SHADER_FRAGMENT && !prog->IsES) {
2766 /* From section 4.4.2 (Output Layout Qualifiers) of the GLSL
2767 * 4.40 spec:
2768 *
2769 * "Additionally, for fragment shader outputs, if two
2770 * variables are placed within the same location, they
2771 * must have the same underlying type (floating-point or
2772 * integer). No component aliasing of output variables or
2773 * members is allowed.
2774 */
2775 for (unsigned i = 0; i < assigned_attr; i++) {
2776 unsigned assigned_slots =
2777 assigned[i]->type->count_attribute_slots(false);
2778 unsigned assig_attr =
2779 assigned[i]->data.location - generic_base;
2780 unsigned assigned_use_mask = (1 << assigned_slots) - 1;
2781
2782 if ((assigned_use_mask << assig_attr) &
2783 (use_mask << attr)) {
2784
2785 const glsl_type *assigned_type =
2786 assigned[i]->type->without_array();
2787 const glsl_type *type = var->type->without_array();
2788 if (assigned_type->base_type != type->base_type) {
2789 linker_error(prog, "types do not match for aliased"
2790 " %ss %s and %s\n", string,
2791 assigned[i]->name, var->name);
2792 return false;
2793 }
2794
2795 unsigned assigned_component_mask =
2796 ((1 << assigned_type->vector_elements) - 1) <<
2797 assigned[i]->data.location_frac;
2798 unsigned component_mask =
2799 ((1 << type->vector_elements) - 1) <<
2800 var->data.location_frac;
2801 if (assigned_component_mask & component_mask) {
2802 linker_error(prog, "overlapping component is "
2803 "assigned to %ss %s and %s "
2804 "(component=%d)\n",
2805 string, assigned[i]->name, var->name,
2806 var->data.location_frac);
2807 return false;
2808 }
2809 }
2810 }
2811 } else if (target_index == MESA_SHADER_FRAGMENT ||
2812 (prog->IsES && prog->data->Version >= 300)) {
2813 linker_error(prog, "overlapping location is assigned "
2814 "to %s `%s' %d %d %d\n", string, var->name,
2815 used_locations, use_mask, attr);
2816 return false;
2817 } else {
2818 linker_warning(prog, "overlapping location is assigned "
2819 "to %s `%s' %d %d %d\n", string, var->name,
2820 used_locations, use_mask, attr);
2821 }
2822 }
2823
2824 used_locations |= (use_mask << attr);
2825
2826 /* From the GL 4.5 core spec, section 11.1.1 (Vertex Attributes):
2827 *
2828 * "A program with more than the value of MAX_VERTEX_ATTRIBS
2829 * active attribute variables may fail to link, unless
2830 * device-dependent optimizations are able to make the program
2831 * fit within available hardware resources. For the purposes
2832 * of this test, attribute variables of the type dvec3, dvec4,
2833 * dmat2x3, dmat2x4, dmat3, dmat3x4, dmat4x3, and dmat4 may
2834 * count as consuming twice as many attributes as equivalent
2835 * single-precision types. While these types use the same number
2836 * of generic attributes as their single-precision equivalents,
2837 * implementations are permitted to consume two single-precision
2838 * vectors of internal storage for each three- or four-component
2839 * double-precision vector."
2840 *
2841 * Mark this attribute slot as taking up twice as much space
2842 * so we can count it properly against limits. According to
2843 * issue (3) of the GL_ARB_vertex_attrib_64bit behavior, this
2844 * is optional behavior, but it seems preferable.
2845 */
2846 if (var->type->without_array()->is_dual_slot())
2847 double_storage_locations |= (use_mask << attr);
2848 }
2849
2850 assigned[assigned_attr] = var;
2851 assigned_attr++;
2852
2853 continue;
2854 }
2855
2856 if (num_attr >= max_index) {
2857 linker_error(prog, "too many %s (max %u)",
2858 target_index == MESA_SHADER_VERTEX ?
2859 "vertex shader inputs" : "fragment shader outputs",
2860 max_index);
2861 return false;
2862 }
2863 to_assign[num_attr].slots = slots;
2864 to_assign[num_attr].var = var;
2865 num_attr++;
2866 }
2867
2868 if (target_index == MESA_SHADER_VERTEX) {
2869 unsigned total_attribs_size =
2870 _mesa_bitcount(used_locations & ((1 << max_index) - 1)) +
2871 _mesa_bitcount(double_storage_locations);
2872 if (total_attribs_size > max_index) {
2873 linker_error(prog,
2874 "attempt to use %d vertex attribute slots only %d available ",
2875 total_attribs_size, max_index);
2876 return false;
2877 }
2878 }
2879
2880 /* If all of the attributes were assigned locations by the application (or
2881 * are built-in attributes with fixed locations), return early. This should
2882 * be the common case.
2883 */
2884 if (num_attr == 0)
2885 return true;
2886
2887 qsort(to_assign, num_attr, sizeof(to_assign[0]), temp_attr::compare);
2888
2889 if (target_index == MESA_SHADER_VERTEX) {
2890 /* VERT_ATTRIB_GENERIC0 is a pseudo-alias for VERT_ATTRIB_POS. It can
2891 * only be explicitly assigned by via glBindAttribLocation. Mark it as
2892 * reserved to prevent it from being automatically allocated below.
2893 */
2894 find_deref_visitor find("gl_Vertex");
2895 find.run(sh->ir);
2896 if (find.variable_found())
2897 used_locations |= (1 << 0);
2898 }
2899
2900 for (unsigned i = 0; i < num_attr; i++) {
2901 /* Mask representing the contiguous slots that will be used by this
2902 * attribute.
2903 */
2904 const unsigned use_mask = (1 << to_assign[i].slots) - 1;
2905
2906 int location = find_available_slots(used_locations, to_assign[i].slots);
2907
2908 if (location < 0) {
2909 const char *const string = (target_index == MESA_SHADER_VERTEX)
2910 ? "vertex shader input" : "fragment shader output";
2911
2912 linker_error(prog,
2913 "insufficient contiguous locations "
2914 "available for %s `%s'\n",
2915 string, to_assign[i].var->name);
2916 return false;
2917 }
2918
2919 to_assign[i].var->data.location = generic_base + location;
2920 to_assign[i].var->data.is_unmatched_generic_inout = 0;
2921 used_locations |= (use_mask << location);
2922
2923 if (to_assign[i].var->type->without_array()->is_dual_slot())
2924 double_storage_locations |= (use_mask << location);
2925 }
2926
2927 /* Now that we have all the locations, from the GL 4.5 core spec, section
2928 * 11.1.1 (Vertex Attributes), dvec3, dvec4, dmat2x3, dmat2x4, dmat3,
2929 * dmat3x4, dmat4x3, and dmat4 count as consuming twice as many attributes
2930 * as equivalent single-precision types.
2931 */
2932 if (target_index == MESA_SHADER_VERTEX) {
2933 unsigned total_attribs_size =
2934 _mesa_bitcount(used_locations & ((1 << max_index) - 1)) +
2935 _mesa_bitcount(double_storage_locations);
2936 if (total_attribs_size > max_index) {
2937 linker_error(prog,
2938 "attempt to use %d vertex attribute slots only %d available ",
2939 total_attribs_size, max_index);
2940 return false;
2941 }
2942 }
2943
2944 return true;
2945 }
2946
2947 /**
2948 * Match explicit locations of outputs to inputs and deactivate the
2949 * unmatch flag if found so we don't optimise them away.
2950 */
2951 static void
2952 match_explicit_outputs_to_inputs(gl_linked_shader *producer,
2953 gl_linked_shader *consumer)
2954 {
2955 glsl_symbol_table parameters;
2956 ir_variable *explicit_locations[MAX_VARYINGS_INCL_PATCH][4] =
2957 { {NULL, NULL} };
2958
2959 /* Find all shader outputs in the "producer" stage.
2960 */
2961 foreach_in_list(ir_instruction, node, producer->ir) {
2962 ir_variable *const var = node->as_variable();
2963
2964 if ((var == NULL) || (var->data.mode != ir_var_shader_out))
2965 continue;
2966
2967 if (var->data.explicit_location &&
2968 var->data.location >= VARYING_SLOT_VAR0) {
2969 const unsigned idx = var->data.location - VARYING_SLOT_VAR0;
2970 if (explicit_locations[idx][var->data.location_frac] == NULL)
2971 explicit_locations[idx][var->data.location_frac] = var;
2972 }
2973 }
2974
2975 /* Match inputs to outputs */
2976 foreach_in_list(ir_instruction, node, consumer->ir) {
2977 ir_variable *const input = node->as_variable();
2978
2979 if ((input == NULL) || (input->data.mode != ir_var_shader_in))
2980 continue;
2981
2982 ir_variable *output = NULL;
2983 if (input->data.explicit_location
2984 && input->data.location >= VARYING_SLOT_VAR0) {
2985 output = explicit_locations[input->data.location - VARYING_SLOT_VAR0]
2986 [input->data.location_frac];
2987
2988 if (output != NULL){
2989 input->data.is_unmatched_generic_inout = 0;
2990 output->data.is_unmatched_generic_inout = 0;
2991 }
2992 }
2993 }
2994 }
2995
2996 /**
2997 * Store the gl_FragDepth layout in the gl_shader_program struct.
2998 */
2999 static void
3000 store_fragdepth_layout(struct gl_shader_program *prog)
3001 {
3002 if (prog->_LinkedShaders[MESA_SHADER_FRAGMENT] == NULL) {
3003 return;
3004 }
3005
3006 struct exec_list *ir = prog->_LinkedShaders[MESA_SHADER_FRAGMENT]->ir;
3007
3008 /* We don't look up the gl_FragDepth symbol directly because if
3009 * gl_FragDepth is not used in the shader, it's removed from the IR.
3010 * However, the symbol won't be removed from the symbol table.
3011 *
3012 * We're only interested in the cases where the variable is NOT removed
3013 * from the IR.
3014 */
3015 foreach_in_list(ir_instruction, node, ir) {
3016 ir_variable *const var = node->as_variable();
3017
3018 if (var == NULL || var->data.mode != ir_var_shader_out) {
3019 continue;
3020 }
3021
3022 if (strcmp(var->name, "gl_FragDepth") == 0) {
3023 switch (var->data.depth_layout) {
3024 case ir_depth_layout_none:
3025 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_NONE;
3026 return;
3027 case ir_depth_layout_any:
3028 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_ANY;
3029 return;
3030 case ir_depth_layout_greater:
3031 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_GREATER;
3032 return;
3033 case ir_depth_layout_less:
3034 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_LESS;
3035 return;
3036 case ir_depth_layout_unchanged:
3037 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_UNCHANGED;
3038 return;
3039 default:
3040 assert(0);
3041 return;
3042 }
3043 }
3044 }
3045 }
3046
3047 /**
3048 * Validate the resources used by a program versus the implementation limits
3049 */
3050 static void
3051 check_resources(struct gl_context *ctx, struct gl_shader_program *prog)
3052 {
3053 unsigned total_uniform_blocks = 0;
3054 unsigned total_shader_storage_blocks = 0;
3055
3056 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3057 struct gl_linked_shader *sh = prog->_LinkedShaders[i];
3058
3059 if (sh == NULL)
3060 continue;
3061
3062 if (sh->Program->info.num_textures >
3063 ctx->Const.Program[i].MaxTextureImageUnits) {
3064 linker_error(prog, "Too many %s shader texture samplers\n",
3065 _mesa_shader_stage_to_string(i));
3066 }
3067
3068 if (sh->num_uniform_components >
3069 ctx->Const.Program[i].MaxUniformComponents) {
3070 if (ctx->Const.GLSLSkipStrictMaxUniformLimitCheck) {
3071 linker_warning(prog, "Too many %s shader default uniform block "
3072 "components, but the driver will try to optimize "
3073 "them out; this is non-portable out-of-spec "
3074 "behavior\n",
3075 _mesa_shader_stage_to_string(i));
3076 } else {
3077 linker_error(prog, "Too many %s shader default uniform block "
3078 "components\n",
3079 _mesa_shader_stage_to_string(i));
3080 }
3081 }
3082
3083 if (sh->num_combined_uniform_components >
3084 ctx->Const.Program[i].MaxCombinedUniformComponents) {
3085 if (ctx->Const.GLSLSkipStrictMaxUniformLimitCheck) {
3086 linker_warning(prog, "Too many %s shader uniform components, "
3087 "but the driver will try to optimize them out; "
3088 "this is non-portable out-of-spec behavior\n",
3089 _mesa_shader_stage_to_string(i));
3090 } else {
3091 linker_error(prog, "Too many %s shader uniform components\n",
3092 _mesa_shader_stage_to_string(i));
3093 }
3094 }
3095
3096 total_shader_storage_blocks += sh->Program->info.num_ssbos;
3097 total_uniform_blocks += sh->Program->info.num_ubos;
3098
3099 const unsigned max_uniform_blocks =
3100 ctx->Const.Program[i].MaxUniformBlocks;
3101 if (max_uniform_blocks < sh->Program->info.num_ubos) {
3102 linker_error(prog, "Too many %s uniform blocks (%d/%d)\n",
3103 _mesa_shader_stage_to_string(i),
3104 sh->Program->info.num_ubos, max_uniform_blocks);
3105 }
3106
3107 const unsigned max_shader_storage_blocks =
3108 ctx->Const.Program[i].MaxShaderStorageBlocks;
3109 if (max_shader_storage_blocks < sh->Program->info.num_ssbos) {
3110 linker_error(prog, "Too many %s shader storage blocks (%d/%d)\n",
3111 _mesa_shader_stage_to_string(i),
3112 sh->Program->info.num_ssbos, max_shader_storage_blocks);
3113 }
3114 }
3115
3116 if (total_uniform_blocks > ctx->Const.MaxCombinedUniformBlocks) {
3117 linker_error(prog, "Too many combined uniform blocks (%d/%d)\n",
3118 total_uniform_blocks, ctx->Const.MaxCombinedUniformBlocks);
3119 }
3120
3121 if (total_shader_storage_blocks > ctx->Const.MaxCombinedShaderStorageBlocks) {
3122 linker_error(prog, "Too many combined shader storage blocks (%d/%d)\n",
3123 total_shader_storage_blocks,
3124 ctx->Const.MaxCombinedShaderStorageBlocks);
3125 }
3126
3127 for (unsigned i = 0; i < prog->data->NumUniformBlocks; i++) {
3128 if (prog->data->UniformBlocks[i].UniformBufferSize >
3129 ctx->Const.MaxUniformBlockSize) {
3130 linker_error(prog, "Uniform block %s too big (%d/%d)\n",
3131 prog->data->UniformBlocks[i].Name,
3132 prog->data->UniformBlocks[i].UniformBufferSize,
3133 ctx->Const.MaxUniformBlockSize);
3134 }
3135 }
3136
3137 for (unsigned i = 0; i < prog->data->NumShaderStorageBlocks; i++) {
3138 if (prog->data->ShaderStorageBlocks[i].UniformBufferSize >
3139 ctx->Const.MaxShaderStorageBlockSize) {
3140 linker_error(prog, "Shader storage block %s too big (%d/%d)\n",
3141 prog->data->ShaderStorageBlocks[i].Name,
3142 prog->data->ShaderStorageBlocks[i].UniformBufferSize,
3143 ctx->Const.MaxShaderStorageBlockSize);
3144 }
3145 }
3146 }
3147
3148 static void
3149 link_calculate_subroutine_compat(struct gl_shader_program *prog)
3150 {
3151 unsigned mask = prog->data->linked_stages;
3152 while (mask) {
3153 const int i = u_bit_scan(&mask);
3154 struct gl_program *p = prog->_LinkedShaders[i]->Program;
3155
3156 for (unsigned j = 0; j < p->sh.NumSubroutineUniformRemapTable; j++) {
3157 if (p->sh.SubroutineUniformRemapTable[j] == INACTIVE_UNIFORM_EXPLICIT_LOCATION)
3158 continue;
3159
3160 struct gl_uniform_storage *uni = p->sh.SubroutineUniformRemapTable[j];
3161
3162 if (!uni)
3163 continue;
3164
3165 int count = 0;
3166 if (p->sh.NumSubroutineFunctions == 0) {
3167 linker_error(prog, "subroutine uniform %s defined but no valid functions found\n", uni->type->name);
3168 continue;
3169 }
3170 for (unsigned f = 0; f < p->sh.NumSubroutineFunctions; f++) {
3171 struct gl_subroutine_function *fn = &p->sh.SubroutineFunctions[f];
3172 for (int k = 0; k < fn->num_compat_types; k++) {
3173 if (fn->types[k] == uni->type) {
3174 count++;
3175 break;
3176 }
3177 }
3178 }
3179 uni->num_compatible_subroutines = count;
3180 }
3181 }
3182 }
3183
3184 static void
3185 check_subroutine_resources(struct gl_shader_program *prog)
3186 {
3187 unsigned mask = prog->data->linked_stages;
3188 while (mask) {
3189 const int i = u_bit_scan(&mask);
3190 struct gl_program *p = prog->_LinkedShaders[i]->Program;
3191
3192 if (p->sh.NumSubroutineUniformRemapTable > MAX_SUBROUTINE_UNIFORM_LOCATIONS) {
3193 linker_error(prog, "Too many %s shader subroutine uniforms\n",
3194 _mesa_shader_stage_to_string(i));
3195 }
3196 }
3197 }
3198 /**
3199 * Validate shader image resources.
3200 */
3201 static void
3202 check_image_resources(struct gl_context *ctx, struct gl_shader_program *prog)
3203 {
3204 unsigned total_image_units = 0;
3205 unsigned fragment_outputs = 0;
3206 unsigned total_shader_storage_blocks = 0;
3207
3208 if (!ctx->Extensions.ARB_shader_image_load_store)
3209 return;
3210
3211 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3212 struct gl_linked_shader *sh = prog->_LinkedShaders[i];
3213
3214 if (sh) {
3215 if (sh->Program->info.num_images > ctx->Const.Program[i].MaxImageUniforms)
3216 linker_error(prog, "Too many %s shader image uniforms (%u > %u)\n",
3217 _mesa_shader_stage_to_string(i),
3218 sh->Program->info.num_images,
3219 ctx->Const.Program[i].MaxImageUniforms);
3220
3221 total_image_units += sh->Program->info.num_images;
3222 total_shader_storage_blocks += sh->Program->info.num_ssbos;
3223
3224 if (i == MESA_SHADER_FRAGMENT) {
3225 foreach_in_list(ir_instruction, node, sh->ir) {
3226 ir_variable *var = node->as_variable();
3227 if (var && var->data.mode == ir_var_shader_out)
3228 /* since there are no double fs outputs - pass false */
3229 fragment_outputs += var->type->count_attribute_slots(false);
3230 }
3231 }
3232 }
3233 }
3234
3235 if (total_image_units > ctx->Const.MaxCombinedImageUniforms)
3236 linker_error(prog, "Too many combined image uniforms\n");
3237
3238 if (total_image_units + fragment_outputs + total_shader_storage_blocks >
3239 ctx->Const.MaxCombinedShaderOutputResources)
3240 linker_error(prog, "Too many combined image uniforms, shader storage "
3241 " buffers and fragment outputs\n");
3242 }
3243
3244
3245 /**
3246 * Initializes explicit location slots to INACTIVE_UNIFORM_EXPLICIT_LOCATION
3247 * for a variable, checks for overlaps between other uniforms using explicit
3248 * locations.
3249 */
3250 static int
3251 reserve_explicit_locations(struct gl_shader_program *prog,
3252 string_to_uint_map *map, ir_variable *var)
3253 {
3254 unsigned slots = var->type->uniform_locations();
3255 unsigned max_loc = var->data.location + slots - 1;
3256 unsigned return_value = slots;
3257
3258 /* Resize remap table if locations do not fit in the current one. */
3259 if (max_loc + 1 > prog->NumUniformRemapTable) {
3260 prog->UniformRemapTable =
3261 reralloc(prog, prog->UniformRemapTable,
3262 gl_uniform_storage *,
3263 max_loc + 1);
3264
3265 if (!prog->UniformRemapTable) {
3266 linker_error(prog, "Out of memory during linking.\n");
3267 return -1;
3268 }
3269
3270 /* Initialize allocated space. */
3271 for (unsigned i = prog->NumUniformRemapTable; i < max_loc + 1; i++)
3272 prog->UniformRemapTable[i] = NULL;
3273
3274 prog->NumUniformRemapTable = max_loc + 1;
3275 }
3276
3277 for (unsigned i = 0; i < slots; i++) {
3278 unsigned loc = var->data.location + i;
3279
3280 /* Check if location is already used. */
3281 if (prog->UniformRemapTable[loc] == INACTIVE_UNIFORM_EXPLICIT_LOCATION) {
3282
3283 /* Possibly same uniform from a different stage, this is ok. */
3284 unsigned hash_loc;
3285 if (map->get(hash_loc, var->name) && hash_loc == loc - i) {
3286 return_value = 0;
3287 continue;
3288 }
3289
3290 /* ARB_explicit_uniform_location specification states:
3291 *
3292 * "No two default-block uniform variables in the program can have
3293 * the same location, even if they are unused, otherwise a compiler
3294 * or linker error will be generated."
3295 */
3296 linker_error(prog,
3297 "location qualifier for uniform %s overlaps "
3298 "previously used location\n",
3299 var->name);
3300 return -1;
3301 }
3302
3303 /* Initialize location as inactive before optimization
3304 * rounds and location assignment.
3305 */
3306 prog->UniformRemapTable[loc] = INACTIVE_UNIFORM_EXPLICIT_LOCATION;
3307 }
3308
3309 /* Note, base location used for arrays. */
3310 map->put(var->data.location, var->name);
3311
3312 return return_value;
3313 }
3314
3315 static bool
3316 reserve_subroutine_explicit_locations(struct gl_shader_program *prog,
3317 struct gl_program *p,
3318 ir_variable *var)
3319 {
3320 unsigned slots = var->type->uniform_locations();
3321 unsigned max_loc = var->data.location + slots - 1;
3322
3323 /* Resize remap table if locations do not fit in the current one. */
3324 if (max_loc + 1 > p->sh.NumSubroutineUniformRemapTable) {
3325 p->sh.SubroutineUniformRemapTable =
3326 reralloc(p, p->sh.SubroutineUniformRemapTable,
3327 gl_uniform_storage *,
3328 max_loc + 1);
3329
3330 if (!p->sh.SubroutineUniformRemapTable) {
3331 linker_error(prog, "Out of memory during linking.\n");
3332 return false;
3333 }
3334
3335 /* Initialize allocated space. */
3336 for (unsigned i = p->sh.NumSubroutineUniformRemapTable; i < max_loc + 1; i++)
3337 p->sh.SubroutineUniformRemapTable[i] = NULL;
3338
3339 p->sh.NumSubroutineUniformRemapTable = max_loc + 1;
3340 }
3341
3342 for (unsigned i = 0; i < slots; i++) {
3343 unsigned loc = var->data.location + i;
3344
3345 /* Check if location is already used. */
3346 if (p->sh.SubroutineUniformRemapTable[loc] == INACTIVE_UNIFORM_EXPLICIT_LOCATION) {
3347
3348 /* ARB_explicit_uniform_location specification states:
3349 * "No two subroutine uniform variables can have the same location
3350 * in the same shader stage, otherwise a compiler or linker error
3351 * will be generated."
3352 */
3353 linker_error(prog,
3354 "location qualifier for uniform %s overlaps "
3355 "previously used location\n",
3356 var->name);
3357 return false;
3358 }
3359
3360 /* Initialize location as inactive before optimization
3361 * rounds and location assignment.
3362 */
3363 p->sh.SubroutineUniformRemapTable[loc] = INACTIVE_UNIFORM_EXPLICIT_LOCATION;
3364 }
3365
3366 return true;
3367 }
3368 /**
3369 * Check and reserve all explicit uniform locations, called before
3370 * any optimizations happen to handle also inactive uniforms and
3371 * inactive array elements that may get trimmed away.
3372 */
3373 static void
3374 check_explicit_uniform_locations(struct gl_context *ctx,
3375 struct gl_shader_program *prog)
3376 {
3377 prog->NumExplicitUniformLocations = 0;
3378
3379 if (!ctx->Extensions.ARB_explicit_uniform_location)
3380 return;
3381
3382 /* This map is used to detect if overlapping explicit locations
3383 * occur with the same uniform (from different stage) or a different one.
3384 */
3385 string_to_uint_map *uniform_map = new string_to_uint_map;
3386
3387 if (!uniform_map) {
3388 linker_error(prog, "Out of memory during linking.\n");
3389 return;
3390 }
3391
3392 unsigned entries_total = 0;
3393 unsigned mask = prog->data->linked_stages;
3394 while (mask) {
3395 const int i = u_bit_scan(&mask);
3396 struct gl_program *p = prog->_LinkedShaders[i]->Program;
3397
3398 foreach_in_list(ir_instruction, node, prog->_LinkedShaders[i]->ir) {
3399 ir_variable *var = node->as_variable();
3400 if (!var || var->data.mode != ir_var_uniform)
3401 continue;
3402
3403 if (var->data.explicit_location) {
3404 bool ret = false;
3405 if (var->type->without_array()->is_subroutine())
3406 ret = reserve_subroutine_explicit_locations(prog, p, var);
3407 else {
3408 int slots = reserve_explicit_locations(prog, uniform_map,
3409 var);
3410 if (slots != -1) {
3411 ret = true;
3412 entries_total += slots;
3413 }
3414 }
3415 if (!ret) {
3416 delete uniform_map;
3417 return;
3418 }
3419 }
3420 }
3421 }
3422
3423 struct empty_uniform_block *current_block = NULL;
3424
3425 for (unsigned i = 0; i < prog->NumUniformRemapTable; i++) {
3426 /* We found empty space in UniformRemapTable. */
3427 if (prog->UniformRemapTable[i] == NULL) {
3428 /* We've found the beginning of a new continous block of empty slots */
3429 if (!current_block || current_block->start + current_block->slots != i) {
3430 current_block = rzalloc(prog, struct empty_uniform_block);
3431 current_block->start = i;
3432 exec_list_push_tail(&prog->EmptyUniformLocations,
3433 &current_block->link);
3434 }
3435
3436 /* The current block continues, so we simply increment its slots */
3437 current_block->slots++;
3438 }
3439 }
3440
3441 delete uniform_map;
3442 prog->NumExplicitUniformLocations = entries_total;
3443 }
3444
3445 static bool
3446 should_add_buffer_variable(struct gl_shader_program *shProg,
3447 GLenum type, const char *name)
3448 {
3449 bool found_interface = false;
3450 unsigned block_name_len = 0;
3451 const char *block_name_dot = strchr(name, '.');
3452
3453 /* These rules only apply to buffer variables. So we return
3454 * true for the rest of types.
3455 */
3456 if (type != GL_BUFFER_VARIABLE)
3457 return true;
3458
3459 for (unsigned i = 0; i < shProg->data->NumShaderStorageBlocks; i++) {
3460 const char *block_name = shProg->data->ShaderStorageBlocks[i].Name;
3461 block_name_len = strlen(block_name);
3462
3463 const char *block_square_bracket = strchr(block_name, '[');
3464 if (block_square_bracket) {
3465 /* The block is part of an array of named interfaces,
3466 * for the name comparison we ignore the "[x]" part.
3467 */
3468 block_name_len -= strlen(block_square_bracket);
3469 }
3470
3471 if (block_name_dot) {
3472 /* Check if the variable name starts with the interface
3473 * name. The interface name (if present) should have the
3474 * length than the interface block name we are comparing to.
3475 */
3476 unsigned len = strlen(name) - strlen(block_name_dot);
3477 if (len != block_name_len)
3478 continue;
3479 }
3480
3481 if (strncmp(block_name, name, block_name_len) == 0) {
3482 found_interface = true;
3483 break;
3484 }
3485 }
3486
3487 /* We remove the interface name from the buffer variable name,
3488 * including the dot that follows it.
3489 */
3490 if (found_interface)
3491 name = name + block_name_len + 1;
3492
3493 /* The ARB_program_interface_query spec says:
3494 *
3495 * "For an active shader storage block member declared as an array, an
3496 * entry will be generated only for the first array element, regardless
3497 * of its type. For arrays of aggregate types, the enumeration rules
3498 * are applied recursively for the single enumerated array element."
3499 */
3500 const char *struct_first_dot = strchr(name, '.');
3501 const char *first_square_bracket = strchr(name, '[');
3502
3503 /* The buffer variable is on top level and it is not an array */
3504 if (!first_square_bracket) {
3505 return true;
3506 /* The shader storage block member is a struct, then generate the entry */
3507 } else if (struct_first_dot && struct_first_dot < first_square_bracket) {
3508 return true;
3509 } else {
3510 /* Shader storage block member is an array, only generate an entry for the
3511 * first array element.
3512 */
3513 if (strncmp(first_square_bracket, "[0]", 3) == 0)
3514 return true;
3515 }
3516
3517 return false;
3518 }
3519
3520 static bool
3521 add_program_resource(struct gl_shader_program *prog,
3522 struct set *resource_set,
3523 GLenum type, const void *data, uint8_t stages)
3524 {
3525 assert(data);
3526
3527 /* If resource already exists, do not add it again. */
3528 if (_mesa_set_search(resource_set, data))
3529 return true;
3530
3531 prog->data->ProgramResourceList =
3532 reralloc(prog,
3533 prog->data->ProgramResourceList,
3534 gl_program_resource,
3535 prog->data->NumProgramResourceList + 1);
3536
3537 if (!prog->data->ProgramResourceList) {
3538 linker_error(prog, "Out of memory during linking.\n");
3539 return false;
3540 }
3541
3542 struct gl_program_resource *res =
3543 &prog->data->ProgramResourceList[prog->data->NumProgramResourceList];
3544
3545 res->Type = type;
3546 res->Data = data;
3547 res->StageReferences = stages;
3548
3549 prog->data->NumProgramResourceList++;
3550
3551 _mesa_set_add(resource_set, data);
3552
3553 return true;
3554 }
3555
3556 /* Function checks if a variable var is a packed varying and
3557 * if given name is part of packed varying's list.
3558 *
3559 * If a variable is a packed varying, it has a name like
3560 * 'packed:a,b,c' where a, b and c are separate variables.
3561 */
3562 static bool
3563 included_in_packed_varying(ir_variable *var, const char *name)
3564 {
3565 if (strncmp(var->name, "packed:", 7) != 0)
3566 return false;
3567
3568 char *list = strdup(var->name + 7);
3569 assert(list);
3570
3571 bool found = false;
3572 char *saveptr;
3573 char *token = strtok_r(list, ",", &saveptr);
3574 while (token) {
3575 if (strcmp(token, name) == 0) {
3576 found = true;
3577 break;
3578 }
3579 token = strtok_r(NULL, ",", &saveptr);
3580 }
3581 free(list);
3582 return found;
3583 }
3584
3585 /**
3586 * Function builds a stage reference bitmask from variable name.
3587 */
3588 static uint8_t
3589 build_stageref(struct gl_shader_program *shProg, const char *name,
3590 unsigned mode)
3591 {
3592 uint8_t stages = 0;
3593
3594 /* Note, that we assume MAX 8 stages, if there will be more stages, type
3595 * used for reference mask in gl_program_resource will need to be changed.
3596 */
3597 assert(MESA_SHADER_STAGES < 8);
3598
3599 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3600 struct gl_linked_shader *sh = shProg->_LinkedShaders[i];
3601 if (!sh)
3602 continue;
3603
3604 /* Shader symbol table may contain variables that have
3605 * been optimized away. Search IR for the variable instead.
3606 */
3607 foreach_in_list(ir_instruction, node, sh->ir) {
3608 ir_variable *var = node->as_variable();
3609 if (var) {
3610 unsigned baselen = strlen(var->name);
3611
3612 if (included_in_packed_varying(var, name)) {
3613 stages |= (1 << i);
3614 break;
3615 }
3616
3617 /* Type needs to match if specified, otherwise we might
3618 * pick a variable with same name but different interface.
3619 */
3620 if (var->data.mode != mode)
3621 continue;
3622
3623 if (strncmp(var->name, name, baselen) == 0) {
3624 /* Check for exact name matches but also check for arrays and
3625 * structs.
3626 */
3627 if (name[baselen] == '\0' ||
3628 name[baselen] == '[' ||
3629 name[baselen] == '.') {
3630 stages |= (1 << i);
3631 break;
3632 }
3633 }
3634 }
3635 }
3636 }
3637 return stages;
3638 }
3639
3640 /**
3641 * Create gl_shader_variable from ir_variable class.
3642 */
3643 static gl_shader_variable *
3644 create_shader_variable(struct gl_shader_program *shProg,
3645 const ir_variable *in,
3646 const char *name, const glsl_type *type,
3647 const glsl_type *interface_type,
3648 bool use_implicit_location, int location,
3649 const glsl_type *outermost_struct_type)
3650 {
3651 gl_shader_variable *out = ralloc(shProg, struct gl_shader_variable);
3652 if (!out)
3653 return NULL;
3654
3655 /* Since gl_VertexID may be lowered to gl_VertexIDMESA, but applications
3656 * expect to see gl_VertexID in the program resource list. Pretend.
3657 */
3658 if (in->data.mode == ir_var_system_value &&
3659 in->data.location == SYSTEM_VALUE_VERTEX_ID_ZERO_BASE) {
3660 out->name = ralloc_strdup(shProg, "gl_VertexID");
3661 } else if ((in->data.mode == ir_var_shader_out &&
3662 in->data.location == VARYING_SLOT_TESS_LEVEL_OUTER) ||
3663 (in->data.mode == ir_var_system_value &&
3664 in->data.location == SYSTEM_VALUE_TESS_LEVEL_OUTER)) {
3665 out->name = ralloc_strdup(shProg, "gl_TessLevelOuter");
3666 type = glsl_type::get_array_instance(glsl_type::float_type, 4);
3667 } else if ((in->data.mode == ir_var_shader_out &&
3668 in->data.location == VARYING_SLOT_TESS_LEVEL_INNER) ||
3669 (in->data.mode == ir_var_system_value &&
3670 in->data.location == SYSTEM_VALUE_TESS_LEVEL_INNER)) {
3671 out->name = ralloc_strdup(shProg, "gl_TessLevelInner");
3672 type = glsl_type::get_array_instance(glsl_type::float_type, 2);
3673 } else {
3674 out->name = ralloc_strdup(shProg, name);
3675 }
3676
3677 if (!out->name)
3678 return NULL;
3679
3680 /* The ARB_program_interface_query spec says:
3681 *
3682 * "Not all active variables are assigned valid locations; the
3683 * following variables will have an effective location of -1:
3684 *
3685 * * uniforms declared as atomic counters;
3686 *
3687 * * members of a uniform block;
3688 *
3689 * * built-in inputs, outputs, and uniforms (starting with "gl_"); and
3690 *
3691 * * inputs or outputs not declared with a "location" layout
3692 * qualifier, except for vertex shader inputs and fragment shader
3693 * outputs."
3694 */
3695 if (in->type->base_type == GLSL_TYPE_ATOMIC_UINT ||
3696 is_gl_identifier(in->name) ||
3697 !(in->data.explicit_location || use_implicit_location)) {
3698 out->location = -1;
3699 } else {
3700 out->location = location;
3701 }
3702
3703 out->type = type;
3704 out->outermost_struct_type = outermost_struct_type;
3705 out->interface_type = interface_type;
3706 out->component = in->data.location_frac;
3707 out->index = in->data.index;
3708 out->patch = in->data.patch;
3709 out->mode = in->data.mode;
3710 out->interpolation = in->data.interpolation;
3711 out->explicit_location = in->data.explicit_location;
3712 out->precision = in->data.precision;
3713
3714 return out;
3715 }
3716
3717 static bool
3718 add_shader_variable(const struct gl_context *ctx,
3719 struct gl_shader_program *shProg,
3720 struct set *resource_set,
3721 unsigned stage_mask,
3722 GLenum programInterface, ir_variable *var,
3723 const char *name, const glsl_type *type,
3724 bool use_implicit_location, int location,
3725 const glsl_type *outermost_struct_type = NULL)
3726 {
3727 const glsl_type *interface_type = var->get_interface_type();
3728
3729 if (outermost_struct_type == NULL) {
3730 if (var->data.from_named_ifc_block) {
3731 const char *interface_name = interface_type->name;
3732
3733 if (interface_type->is_array()) {
3734 /* Issue #16 of the ARB_program_interface_query spec says:
3735 *
3736 * "* If a variable is a member of an interface block without an
3737 * instance name, it is enumerated using just the variable name.
3738 *
3739 * * If a variable is a member of an interface block with an
3740 * instance name, it is enumerated as "BlockName.Member", where
3741 * "BlockName" is the name of the interface block (not the
3742 * instance name) and "Member" is the name of the variable."
3743 *
3744 * In particular, it indicates that it should be "BlockName",
3745 * not "BlockName[array length]". The conformance suite and
3746 * dEQP both require this behavior.
3747 *
3748 * Here, we unwrap the extra array level added by named interface
3749 * block array lowering so we have the correct variable type. We
3750 * also unwrap the interface type when constructing the name.
3751 *
3752 * We leave interface_type the same so that ES 3.x SSO pipeline
3753 * validation can enforce the rules requiring array length to
3754 * match on interface blocks.
3755 */
3756 type = type->fields.array;
3757
3758 interface_name = interface_type->fields.array->name;
3759 }
3760
3761 name = ralloc_asprintf(shProg, "%s.%s", interface_name, name);
3762 }
3763 }
3764
3765 switch (type->base_type) {
3766 case GLSL_TYPE_STRUCT: {
3767 /* The ARB_program_interface_query spec says:
3768 *
3769 * "For an active variable declared as a structure, a separate entry
3770 * will be generated for each active structure member. The name of
3771 * each entry is formed by concatenating the name of the structure,
3772 * the "." character, and the name of the structure member. If a
3773 * structure member to enumerate is itself a structure or array,
3774 * these enumeration rules are applied recursively."
3775 */
3776 if (outermost_struct_type == NULL)
3777 outermost_struct_type = type;
3778
3779 unsigned field_location = location;
3780 for (unsigned i = 0; i < type->length; i++) {
3781 const struct glsl_struct_field *field = &type->fields.structure[i];
3782 char *field_name = ralloc_asprintf(shProg, "%s.%s", name, field->name);
3783 if (!add_shader_variable(ctx, shProg, resource_set,
3784 stage_mask, programInterface,
3785 var, field_name, field->type,
3786 use_implicit_location, field_location,
3787 outermost_struct_type))
3788 return false;
3789
3790 field_location += field->type->count_attribute_slots(false);
3791 }
3792 return true;
3793 }
3794
3795 default: {
3796 /* The ARB_program_interface_query spec says:
3797 *
3798 * "For an active variable declared as a single instance of a basic
3799 * type, a single entry will be generated, using the variable name
3800 * from the shader source."
3801 */
3802 gl_shader_variable *sha_v =
3803 create_shader_variable(shProg, var, name, type, interface_type,
3804 use_implicit_location, location,
3805 outermost_struct_type);
3806 if (!sha_v)
3807 return false;
3808
3809 return add_program_resource(shProg, resource_set,
3810 programInterface, sha_v, stage_mask);
3811 }
3812 }
3813 }
3814
3815 static bool
3816 add_interface_variables(const struct gl_context *ctx,
3817 struct gl_shader_program *shProg,
3818 struct set *resource_set,
3819 unsigned stage, GLenum programInterface)
3820 {
3821 exec_list *ir = shProg->_LinkedShaders[stage]->ir;
3822
3823 foreach_in_list(ir_instruction, node, ir) {
3824 ir_variable *var = node->as_variable();
3825
3826 if (!var || var->data.how_declared == ir_var_hidden)
3827 continue;
3828
3829 int loc_bias;
3830
3831 switch (var->data.mode) {
3832 case ir_var_system_value:
3833 case ir_var_shader_in:
3834 if (programInterface != GL_PROGRAM_INPUT)
3835 continue;
3836 loc_bias = (stage == MESA_SHADER_VERTEX) ? int(VERT_ATTRIB_GENERIC0)
3837 : int(VARYING_SLOT_VAR0);
3838 break;
3839 case ir_var_shader_out:
3840 if (programInterface != GL_PROGRAM_OUTPUT)
3841 continue;
3842 loc_bias = (stage == MESA_SHADER_FRAGMENT) ? int(FRAG_RESULT_DATA0)
3843 : int(VARYING_SLOT_VAR0);
3844 break;
3845 default:
3846 continue;
3847 };
3848
3849 if (var->data.patch)
3850 loc_bias = int(VARYING_SLOT_PATCH0);
3851
3852 /* Skip packed varyings, packed varyings are handled separately
3853 * by add_packed_varyings.
3854 */
3855 if (strncmp(var->name, "packed:", 7) == 0)
3856 continue;
3857
3858 /* Skip fragdata arrays, these are handled separately
3859 * by add_fragdata_arrays.
3860 */
3861 if (strncmp(var->name, "gl_out_FragData", 15) == 0)
3862 continue;
3863
3864 const bool vs_input_or_fs_output =
3865 (stage == MESA_SHADER_VERTEX && var->data.mode == ir_var_shader_in) ||
3866 (stage == MESA_SHADER_FRAGMENT && var->data.mode == ir_var_shader_out);
3867
3868 if (!add_shader_variable(ctx, shProg, resource_set,
3869 1 << stage, programInterface,
3870 var, var->name, var->type, vs_input_or_fs_output,
3871 var->data.location - loc_bias))
3872 return false;
3873 }
3874 return true;
3875 }
3876
3877 static bool
3878 add_packed_varyings(const struct gl_context *ctx,
3879 struct gl_shader_program *shProg,
3880 struct set *resource_set,
3881 int stage, GLenum type)
3882 {
3883 struct gl_linked_shader *sh = shProg->_LinkedShaders[stage];
3884 GLenum iface;
3885
3886 if (!sh || !sh->packed_varyings)
3887 return true;
3888
3889 foreach_in_list(ir_instruction, node, sh->packed_varyings) {
3890 ir_variable *var = node->as_variable();
3891 if (var) {
3892 switch (var->data.mode) {
3893 case ir_var_shader_in:
3894 iface = GL_PROGRAM_INPUT;
3895 break;
3896 case ir_var_shader_out:
3897 iface = GL_PROGRAM_OUTPUT;
3898 break;
3899 default:
3900 unreachable("unexpected type");
3901 }
3902
3903 if (type == iface) {
3904 const int stage_mask =
3905 build_stageref(shProg, var->name, var->data.mode);
3906 if (!add_shader_variable(ctx, shProg, resource_set,
3907 stage_mask,
3908 iface, var, var->name, var->type, false,
3909 var->data.location - VARYING_SLOT_VAR0))
3910 return false;
3911 }
3912 }
3913 }
3914 return true;
3915 }
3916
3917 static bool
3918 add_fragdata_arrays(const struct gl_context *ctx,
3919 struct gl_shader_program *shProg,
3920 struct set *resource_set)
3921 {
3922 struct gl_linked_shader *sh = shProg->_LinkedShaders[MESA_SHADER_FRAGMENT];
3923
3924 if (!sh || !sh->fragdata_arrays)
3925 return true;
3926
3927 foreach_in_list(ir_instruction, node, sh->fragdata_arrays) {
3928 ir_variable *var = node->as_variable();
3929 if (var) {
3930 assert(var->data.mode == ir_var_shader_out);
3931
3932 if (!add_shader_variable(ctx, shProg, resource_set,
3933 1 << MESA_SHADER_FRAGMENT,
3934 GL_PROGRAM_OUTPUT, var, var->name, var->type,
3935 true, var->data.location - FRAG_RESULT_DATA0))
3936 return false;
3937 }
3938 }
3939 return true;
3940 }
3941
3942 static char*
3943 get_top_level_name(const char *name)
3944 {
3945 const char *first_dot = strchr(name, '.');
3946 const char *first_square_bracket = strchr(name, '[');
3947 int name_size = 0;
3948
3949 /* The ARB_program_interface_query spec says:
3950 *
3951 * "For the property TOP_LEVEL_ARRAY_SIZE, a single integer identifying
3952 * the number of active array elements of the top-level shader storage
3953 * block member containing to the active variable is written to
3954 * <params>. If the top-level block member is not declared as an
3955 * array, the value one is written to <params>. If the top-level block
3956 * member is an array with no declared size, the value zero is written
3957 * to <params>."
3958 */
3959
3960 /* The buffer variable is on top level.*/
3961 if (!first_square_bracket && !first_dot)
3962 name_size = strlen(name);
3963 else if ((!first_square_bracket ||
3964 (first_dot && first_dot < first_square_bracket)))
3965 name_size = first_dot - name;
3966 else
3967 name_size = first_square_bracket - name;
3968
3969 return strndup(name, name_size);
3970 }
3971
3972 static char*
3973 get_var_name(const char *name)
3974 {
3975 const char *first_dot = strchr(name, '.');
3976
3977 if (!first_dot)
3978 return strdup(name);
3979
3980 return strndup(first_dot+1, strlen(first_dot) - 1);
3981 }
3982
3983 static bool
3984 is_top_level_shader_storage_block_member(const char* name,
3985 const char* interface_name,
3986 const char* field_name)
3987 {
3988 bool result = false;
3989
3990 /* If the given variable is already a top-level shader storage
3991 * block member, then return array_size = 1.
3992 * We could have two possibilities: if we have an instanced
3993 * shader storage block or not instanced.
3994 *
3995 * For the first, we check create a name as it was in top level and
3996 * compare it with the real name. If they are the same, then
3997 * the variable is already at top-level.
3998 *
3999 * Full instanced name is: interface name + '.' + var name +
4000 * NULL character
4001 */
4002 int name_length = strlen(interface_name) + 1 + strlen(field_name) + 1;
4003 char *full_instanced_name = (char *) calloc(name_length, sizeof(char));
4004 if (!full_instanced_name) {
4005 fprintf(stderr, "%s: Cannot allocate space for name\n", __func__);
4006 return false;
4007 }
4008
4009 snprintf(full_instanced_name, name_length, "%s.%s",
4010 interface_name, field_name);
4011
4012 /* Check if its top-level shader storage block member of an
4013 * instanced interface block, or of a unnamed interface block.
4014 */
4015 if (strcmp(name, full_instanced_name) == 0 ||
4016 strcmp(name, field_name) == 0)
4017 result = true;
4018
4019 free(full_instanced_name);
4020 return result;
4021 }
4022
4023 static int
4024 get_array_size(struct gl_uniform_storage *uni, const glsl_struct_field *field,
4025 char *interface_name, char *var_name)
4026 {
4027 /* The ARB_program_interface_query spec says:
4028 *
4029 * "For the property TOP_LEVEL_ARRAY_SIZE, a single integer identifying
4030 * the number of active array elements of the top-level shader storage
4031 * block member containing to the active variable is written to
4032 * <params>. If the top-level block member is not declared as an
4033 * array, the value one is written to <params>. If the top-level block
4034 * member is an array with no declared size, the value zero is written
4035 * to <params>."
4036 */
4037 if (is_top_level_shader_storage_block_member(uni->name,
4038 interface_name,
4039 var_name))
4040 return 1;
4041 else if (field->type->is_unsized_array())
4042 return 0;
4043 else if (field->type->is_array())
4044 return field->type->length;
4045
4046 return 1;
4047 }
4048
4049 static int
4050 get_array_stride(struct gl_uniform_storage *uni, const glsl_type *interface,
4051 const glsl_struct_field *field, char *interface_name,
4052 char *var_name)
4053 {
4054 /* The ARB_program_interface_query spec says:
4055 *
4056 * "For the property TOP_LEVEL_ARRAY_STRIDE, a single integer
4057 * identifying the stride between array elements of the top-level
4058 * shader storage block member containing the active variable is
4059 * written to <params>. For top-level block members declared as
4060 * arrays, the value written is the difference, in basic machine units,
4061 * between the offsets of the active variable for consecutive elements
4062 * in the top-level array. For top-level block members not declared as
4063 * an array, zero is written to <params>."
4064 */
4065 if (field->type->is_array()) {
4066 const enum glsl_matrix_layout matrix_layout =
4067 glsl_matrix_layout(field->matrix_layout);
4068 bool row_major = matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR;
4069 const glsl_type *array_type = field->type->fields.array;
4070
4071 if (is_top_level_shader_storage_block_member(uni->name,
4072 interface_name,
4073 var_name))
4074 return 0;
4075
4076 if (interface->interface_packing != GLSL_INTERFACE_PACKING_STD430) {
4077 if (array_type->is_record() || array_type->is_array())
4078 return glsl_align(array_type->std140_size(row_major), 16);
4079 else
4080 return MAX2(array_type->std140_base_alignment(row_major), 16);
4081 } else {
4082 return array_type->std430_array_stride(row_major);
4083 }
4084 }
4085 return 0;
4086 }
4087
4088 static void
4089 calculate_array_size_and_stride(struct gl_shader_program *shProg,
4090 struct gl_uniform_storage *uni)
4091 {
4092 int block_index = uni->block_index;
4093 int array_size = -1;
4094 int array_stride = -1;
4095 char *var_name = get_top_level_name(uni->name);
4096 char *interface_name =
4097 get_top_level_name(uni->is_shader_storage ?
4098 shProg->data->ShaderStorageBlocks[block_index].Name :
4099 shProg->data->UniformBlocks[block_index].Name);
4100
4101 if (strcmp(var_name, interface_name) == 0) {
4102 /* Deal with instanced array of SSBOs */
4103 char *temp_name = get_var_name(uni->name);
4104 if (!temp_name) {
4105 linker_error(shProg, "Out of memory during linking.\n");
4106 goto write_top_level_array_size_and_stride;
4107 }
4108 free(var_name);
4109 var_name = get_top_level_name(temp_name);
4110 free(temp_name);
4111 if (!var_name) {
4112 linker_error(shProg, "Out of memory during linking.\n");
4113 goto write_top_level_array_size_and_stride;
4114 }
4115 }
4116
4117 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4118 const gl_linked_shader *sh = shProg->_LinkedShaders[i];
4119 if (sh == NULL)
4120 continue;
4121
4122 foreach_in_list(ir_instruction, node, sh->ir) {
4123 ir_variable *var = node->as_variable();
4124 if (!var || !var->get_interface_type() ||
4125 var->data.mode != ir_var_shader_storage)
4126 continue;
4127
4128 const glsl_type *interface = var->get_interface_type();
4129
4130 if (strcmp(interface_name, interface->name) != 0)
4131 continue;
4132
4133 for (unsigned i = 0; i < interface->length; i++) {
4134 const glsl_struct_field *field = &interface->fields.structure[i];
4135 if (strcmp(field->name, var_name) != 0)
4136 continue;
4137
4138 array_stride = get_array_stride(uni, interface, field,
4139 interface_name, var_name);
4140 array_size = get_array_size(uni, field, interface_name, var_name);
4141 goto write_top_level_array_size_and_stride;
4142 }
4143 }
4144 }
4145 write_top_level_array_size_and_stride:
4146 free(interface_name);
4147 free(var_name);
4148 uni->top_level_array_stride = array_stride;
4149 uni->top_level_array_size = array_size;
4150 }
4151
4152 /**
4153 * Builds up a list of program resources that point to existing
4154 * resource data.
4155 */
4156 void
4157 build_program_resource_list(struct gl_context *ctx,
4158 struct gl_shader_program *shProg)
4159 {
4160 /* Rebuild resource list. */
4161 if (shProg->data->ProgramResourceList) {
4162 ralloc_free(shProg->data->ProgramResourceList);
4163 shProg->data->ProgramResourceList = NULL;
4164 shProg->data->NumProgramResourceList = 0;
4165 }
4166
4167 int input_stage = MESA_SHADER_STAGES, output_stage = 0;
4168
4169 /* Determine first input and final output stage. These are used to
4170 * detect which variables should be enumerated in the resource list
4171 * for GL_PROGRAM_INPUT and GL_PROGRAM_OUTPUT.
4172 */
4173 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4174 if (!shProg->_LinkedShaders[i])
4175 continue;
4176 if (input_stage == MESA_SHADER_STAGES)
4177 input_stage = i;
4178 output_stage = i;
4179 }
4180
4181 /* Empty shader, no resources. */
4182 if (input_stage == MESA_SHADER_STAGES && output_stage == 0)
4183 return;
4184
4185 struct set *resource_set = _mesa_set_create(NULL,
4186 _mesa_hash_pointer,
4187 _mesa_key_pointer_equal);
4188
4189 /* Program interface needs to expose varyings in case of SSO. */
4190 if (shProg->SeparateShader) {
4191 if (!add_packed_varyings(ctx, shProg, resource_set,
4192 input_stage, GL_PROGRAM_INPUT))
4193 return;
4194
4195 if (!add_packed_varyings(ctx, shProg, resource_set,
4196 output_stage, GL_PROGRAM_OUTPUT))
4197 return;
4198 }
4199
4200 if (!add_fragdata_arrays(ctx, shProg, resource_set))
4201 return;
4202
4203 /* Add inputs and outputs to the resource list. */
4204 if (!add_interface_variables(ctx, shProg, resource_set,
4205 input_stage, GL_PROGRAM_INPUT))
4206 return;
4207
4208 if (!add_interface_variables(ctx, shProg, resource_set,
4209 output_stage, GL_PROGRAM_OUTPUT))
4210 return;
4211
4212 if (shProg->last_vert_prog) {
4213 struct gl_transform_feedback_info *linked_xfb =
4214 shProg->last_vert_prog->sh.LinkedTransformFeedback;
4215
4216 /* Add transform feedback varyings. */
4217 if (linked_xfb->NumVarying > 0) {
4218 for (int i = 0; i < linked_xfb->NumVarying; i++) {
4219 if (!add_program_resource(shProg, resource_set,
4220 GL_TRANSFORM_FEEDBACK_VARYING,
4221 &linked_xfb->Varyings[i], 0))
4222 return;
4223 }
4224 }
4225
4226 /* Add transform feedback buffers. */
4227 for (unsigned i = 0; i < ctx->Const.MaxTransformFeedbackBuffers; i++) {
4228 if ((linked_xfb->ActiveBuffers >> i) & 1) {
4229 linked_xfb->Buffers[i].Binding = i;
4230 if (!add_program_resource(shProg, resource_set,
4231 GL_TRANSFORM_FEEDBACK_BUFFER,
4232 &linked_xfb->Buffers[i], 0))
4233 return;
4234 }
4235 }
4236 }
4237
4238 /* Add uniforms from uniform storage. */
4239 for (unsigned i = 0; i < shProg->data->NumUniformStorage; i++) {
4240 /* Do not add uniforms internally used by Mesa. */
4241 if (shProg->data->UniformStorage[i].hidden)
4242 continue;
4243
4244 uint8_t stageref =
4245 build_stageref(shProg, shProg->data->UniformStorage[i].name,
4246 ir_var_uniform);
4247
4248 /* Add stagereferences for uniforms in a uniform block. */
4249 bool is_shader_storage =
4250 shProg->data->UniformStorage[i].is_shader_storage;
4251 int block_index = shProg->data->UniformStorage[i].block_index;
4252 if (block_index != -1) {
4253 stageref |= is_shader_storage ?
4254 shProg->data->ShaderStorageBlocks[block_index].stageref :
4255 shProg->data->UniformBlocks[block_index].stageref;
4256 }
4257
4258 GLenum type = is_shader_storage ? GL_BUFFER_VARIABLE : GL_UNIFORM;
4259 if (!should_add_buffer_variable(shProg, type,
4260 shProg->data->UniformStorage[i].name))
4261 continue;
4262
4263 if (is_shader_storage) {
4264 calculate_array_size_and_stride(shProg,
4265 &shProg->data->UniformStorage[i]);
4266 }
4267
4268 if (!add_program_resource(shProg, resource_set, type,
4269 &shProg->data->UniformStorage[i], stageref))
4270 return;
4271 }
4272
4273 /* Add program uniform blocks. */
4274 for (unsigned i = 0; i < shProg->data->NumUniformBlocks; i++) {
4275 if (!add_program_resource(shProg, resource_set, GL_UNIFORM_BLOCK,
4276 &shProg->data->UniformBlocks[i], 0))
4277 return;
4278 }
4279
4280 /* Add program shader storage blocks. */
4281 for (unsigned i = 0; i < shProg->data->NumShaderStorageBlocks; i++) {
4282 if (!add_program_resource(shProg, resource_set, GL_SHADER_STORAGE_BLOCK,
4283 &shProg->data->ShaderStorageBlocks[i], 0))
4284 return;
4285 }
4286
4287 /* Add atomic counter buffers. */
4288 for (unsigned i = 0; i < shProg->data->NumAtomicBuffers; i++) {
4289 if (!add_program_resource(shProg, resource_set, GL_ATOMIC_COUNTER_BUFFER,
4290 &shProg->data->AtomicBuffers[i], 0))
4291 return;
4292 }
4293
4294 for (unsigned i = 0; i < shProg->data->NumUniformStorage; i++) {
4295 GLenum type;
4296 if (!shProg->data->UniformStorage[i].hidden)
4297 continue;
4298
4299 for (int j = MESA_SHADER_VERTEX; j < MESA_SHADER_STAGES; j++) {
4300 if (!shProg->data->UniformStorage[i].opaque[j].active ||
4301 !shProg->data->UniformStorage[i].type->is_subroutine())
4302 continue;
4303
4304 type = _mesa_shader_stage_to_subroutine_uniform((gl_shader_stage)j);
4305 /* add shader subroutines */
4306 if (!add_program_resource(shProg, resource_set,
4307 type, &shProg->data->UniformStorage[i], 0))
4308 return;
4309 }
4310 }
4311
4312 unsigned mask = shProg->data->linked_stages;
4313 while (mask) {
4314 const int i = u_bit_scan(&mask);
4315 struct gl_program *p = shProg->_LinkedShaders[i]->Program;
4316
4317 GLuint type = _mesa_shader_stage_to_subroutine((gl_shader_stage)i);
4318 for (unsigned j = 0; j < p->sh.NumSubroutineFunctions; j++) {
4319 if (!add_program_resource(shProg, resource_set,
4320 type, &p->sh.SubroutineFunctions[j], 0))
4321 return;
4322 }
4323 }
4324
4325 _mesa_set_destroy(resource_set, NULL);
4326 }
4327
4328 /**
4329 * This check is done to make sure we allow only constant expression
4330 * indexing and "constant-index-expression" (indexing with an expression
4331 * that includes loop induction variable).
4332 */
4333 static bool
4334 validate_sampler_array_indexing(struct gl_context *ctx,
4335 struct gl_shader_program *prog)
4336 {
4337 dynamic_sampler_array_indexing_visitor v;
4338 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4339 if (prog->_LinkedShaders[i] == NULL)
4340 continue;
4341
4342 bool no_dynamic_indexing =
4343 ctx->Const.ShaderCompilerOptions[i].EmitNoIndirectSampler;
4344
4345 /* Search for array derefs in shader. */
4346 v.run(prog->_LinkedShaders[i]->ir);
4347 if (v.uses_dynamic_sampler_array_indexing()) {
4348 const char *msg = "sampler arrays indexed with non-constant "
4349 "expressions is forbidden in GLSL %s %u";
4350 /* Backend has indicated that it has no dynamic indexing support. */
4351 if (no_dynamic_indexing) {
4352 linker_error(prog, msg, prog->IsES ? "ES" : "",
4353 prog->data->Version);
4354 return false;
4355 } else {
4356 linker_warning(prog, msg, prog->IsES ? "ES" : "",
4357 prog->data->Version);
4358 }
4359 }
4360 }
4361 return true;
4362 }
4363
4364 static void
4365 link_assign_subroutine_types(struct gl_shader_program *prog)
4366 {
4367 unsigned mask = prog->data->linked_stages;
4368 while (mask) {
4369 const int i = u_bit_scan(&mask);
4370 gl_program *p = prog->_LinkedShaders[i]->Program;
4371
4372 p->sh.MaxSubroutineFunctionIndex = 0;
4373 foreach_in_list(ir_instruction, node, prog->_LinkedShaders[i]->ir) {
4374 ir_function *fn = node->as_function();
4375 if (!fn)
4376 continue;
4377
4378 if (fn->is_subroutine)
4379 p->sh.NumSubroutineUniformTypes++;
4380
4381 if (!fn->num_subroutine_types)
4382 continue;
4383
4384 /* these should have been calculated earlier. */
4385 assert(fn->subroutine_index != -1);
4386 if (p->sh.NumSubroutineFunctions + 1 > MAX_SUBROUTINES) {
4387 linker_error(prog, "Too many subroutine functions declared.\n");
4388 return;
4389 }
4390 p->sh.SubroutineFunctions = reralloc(p, p->sh.SubroutineFunctions,
4391 struct gl_subroutine_function,
4392 p->sh.NumSubroutineFunctions + 1);
4393 p->sh.SubroutineFunctions[p->sh.NumSubroutineFunctions].name = ralloc_strdup(p, fn->name);
4394 p->sh.SubroutineFunctions[p->sh.NumSubroutineFunctions].num_compat_types = fn->num_subroutine_types;
4395 p->sh.SubroutineFunctions[p->sh.NumSubroutineFunctions].types =
4396 ralloc_array(p, const struct glsl_type *,
4397 fn->num_subroutine_types);
4398
4399 /* From Section 4.4.4(Subroutine Function Layout Qualifiers) of the
4400 * GLSL 4.5 spec:
4401 *
4402 * "Each subroutine with an index qualifier in the shader must be
4403 * given a unique index, otherwise a compile or link error will be
4404 * generated."
4405 */
4406 for (unsigned j = 0; j < p->sh.NumSubroutineFunctions; j++) {
4407 if (p->sh.SubroutineFunctions[j].index != -1 &&
4408 p->sh.SubroutineFunctions[j].index == fn->subroutine_index) {
4409 linker_error(prog, "each subroutine index qualifier in the "
4410 "shader must be unique\n");
4411 return;
4412 }
4413 }
4414 p->sh.SubroutineFunctions[p->sh.NumSubroutineFunctions].index =
4415 fn->subroutine_index;
4416
4417 if (fn->subroutine_index > (int)p->sh.MaxSubroutineFunctionIndex)
4418 p->sh.MaxSubroutineFunctionIndex = fn->subroutine_index;
4419
4420 for (int j = 0; j < fn->num_subroutine_types; j++)
4421 p->sh.SubroutineFunctions[p->sh.NumSubroutineFunctions].types[j] = fn->subroutine_types[j];
4422 p->sh.NumSubroutineFunctions++;
4423 }
4424 }
4425 }
4426
4427 static void
4428 set_always_active_io(exec_list *ir, ir_variable_mode io_mode)
4429 {
4430 assert(io_mode == ir_var_shader_in || io_mode == ir_var_shader_out);
4431
4432 foreach_in_list(ir_instruction, node, ir) {
4433 ir_variable *const var = node->as_variable();
4434
4435 if (var == NULL || var->data.mode != io_mode)
4436 continue;
4437
4438 /* Don't set always active on builtins that haven't been redeclared */
4439 if (var->data.how_declared == ir_var_declared_implicitly)
4440 continue;
4441
4442 var->data.always_active_io = true;
4443 }
4444 }
4445
4446 /**
4447 * When separate shader programs are enabled, only input/outputs between
4448 * the stages of a multi-stage separate program can be safely removed
4449 * from the shader interface. Other inputs/outputs must remain active.
4450 */
4451 static void
4452 disable_varying_optimizations_for_sso(struct gl_shader_program *prog)
4453 {
4454 unsigned first, last;
4455 assert(prog->SeparateShader);
4456
4457 first = MESA_SHADER_STAGES;
4458 last = 0;
4459
4460 /* Determine first and last stage. Excluding the compute stage */
4461 for (unsigned i = 0; i < MESA_SHADER_COMPUTE; i++) {
4462 if (!prog->_LinkedShaders[i])
4463 continue;
4464 if (first == MESA_SHADER_STAGES)
4465 first = i;
4466 last = i;
4467 }
4468
4469 if (first == MESA_SHADER_STAGES)
4470 return;
4471
4472 for (unsigned stage = 0; stage < MESA_SHADER_STAGES; stage++) {
4473 gl_linked_shader *sh = prog->_LinkedShaders[stage];
4474 if (!sh)
4475 continue;
4476
4477 if (first == last) {
4478 /* For a single shader program only allow inputs to the vertex shader
4479 * and outputs from the fragment shader to be removed.
4480 */
4481 if (stage != MESA_SHADER_VERTEX)
4482 set_always_active_io(sh->ir, ir_var_shader_in);
4483 if (stage != MESA_SHADER_FRAGMENT)
4484 set_always_active_io(sh->ir, ir_var_shader_out);
4485 } else {
4486 /* For multi-stage separate shader programs only allow inputs and
4487 * outputs between the shader stages to be removed as well as inputs
4488 * to the vertex shader and outputs from the fragment shader.
4489 */
4490 if (stage == first && stage != MESA_SHADER_VERTEX)
4491 set_always_active_io(sh->ir, ir_var_shader_in);
4492 else if (stage == last && stage != MESA_SHADER_FRAGMENT)
4493 set_always_active_io(sh->ir, ir_var_shader_out);
4494 }
4495 }
4496 }
4497
4498 static void
4499 link_and_validate_uniforms(struct gl_context *ctx,
4500 struct gl_shader_program *prog)
4501 {
4502 update_array_sizes(prog);
4503 link_assign_uniform_locations(prog, ctx);
4504
4505 if (!prog->data->cache_fallback) {
4506 link_assign_atomic_counter_resources(ctx, prog);
4507 link_calculate_subroutine_compat(prog);
4508 check_resources(ctx, prog);
4509 check_subroutine_resources(prog);
4510 check_image_resources(ctx, prog);
4511 link_check_atomic_counter_resources(ctx, prog);
4512 }
4513 }
4514
4515 static bool
4516 link_varyings_and_uniforms(unsigned first, unsigned last,
4517 struct gl_context *ctx,
4518 struct gl_shader_program *prog, void *mem_ctx)
4519 {
4520 /* Mark all generic shader inputs and outputs as unpaired. */
4521 for (unsigned i = MESA_SHADER_VERTEX; i <= MESA_SHADER_FRAGMENT; i++) {
4522 if (prog->_LinkedShaders[i] != NULL) {
4523 link_invalidate_variable_locations(prog->_LinkedShaders[i]->ir);
4524 }
4525 }
4526
4527 unsigned prev = first;
4528 for (unsigned i = prev + 1; i <= MESA_SHADER_FRAGMENT; i++) {
4529 if (prog->_LinkedShaders[i] == NULL)
4530 continue;
4531
4532 match_explicit_outputs_to_inputs(prog->_LinkedShaders[prev],
4533 prog->_LinkedShaders[i]);
4534 prev = i;
4535 }
4536
4537 if (!assign_attribute_or_color_locations(mem_ctx, prog, &ctx->Const,
4538 MESA_SHADER_VERTEX)) {
4539 return false;
4540 }
4541
4542 if (!assign_attribute_or_color_locations(mem_ctx, prog, &ctx->Const,
4543 MESA_SHADER_FRAGMENT)) {
4544 return false;
4545 }
4546
4547 prog->last_vert_prog = NULL;
4548 for (int i = MESA_SHADER_GEOMETRY; i >= MESA_SHADER_VERTEX; i--) {
4549 if (prog->_LinkedShaders[i] == NULL)
4550 continue;
4551
4552 prog->last_vert_prog = prog->_LinkedShaders[i]->Program;
4553 break;
4554 }
4555
4556 if (!link_varyings(prog, first, last, ctx, mem_ctx))
4557 return false;
4558
4559 link_and_validate_uniforms(ctx, prog);
4560
4561 if (!prog->data->LinkStatus)
4562 return false;
4563
4564 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4565 if (prog->_LinkedShaders[i] == NULL)
4566 continue;
4567
4568 const struct gl_shader_compiler_options *options =
4569 &ctx->Const.ShaderCompilerOptions[i];
4570
4571 if (options->LowerBufferInterfaceBlocks)
4572 lower_ubo_reference(prog->_LinkedShaders[i],
4573 options->ClampBlockIndicesToArrayBounds);
4574
4575 if (i == MESA_SHADER_COMPUTE)
4576 lower_shared_reference(prog->_LinkedShaders[i],
4577 &prog->Comp.SharedSize);
4578
4579 lower_vector_derefs(prog->_LinkedShaders[i]);
4580 do_vec_index_to_swizzle(prog->_LinkedShaders[i]->ir);
4581 }
4582
4583 return true;
4584 }
4585
4586 static void
4587 linker_optimisation_loop(struct gl_context *ctx, exec_list *ir,
4588 unsigned stage)
4589 {
4590 if (ctx->Const.GLSLOptimizeConservatively) {
4591 /* Run it just once. */
4592 do_common_optimization(ir, true, false,
4593 &ctx->Const.ShaderCompilerOptions[stage],
4594 ctx->Const.NativeIntegers);
4595 } else {
4596 /* Repeat it until it stops making changes. */
4597 while (do_common_optimization(ir, true, false,
4598 &ctx->Const.ShaderCompilerOptions[stage],
4599 ctx->Const.NativeIntegers))
4600 ;
4601 }
4602 }
4603
4604 void
4605 link_shaders(struct gl_context *ctx, struct gl_shader_program *prog)
4606 {
4607 prog->data->LinkStatus = linking_success; /* All error paths will set this to false */
4608 prog->data->Validated = false;
4609
4610 /* Section 7.3 (Program Objects) of the OpenGL 4.5 Core Profile spec says:
4611 *
4612 * "Linking can fail for a variety of reasons as specified in the
4613 * OpenGL Shading Language Specification, as well as any of the
4614 * following reasons:
4615 *
4616 * - No shader objects are attached to program."
4617 *
4618 * The Compatibility Profile specification does not list the error. In
4619 * Compatibility Profile missing shader stages are replaced by
4620 * fixed-function. This applies to the case where all stages are
4621 * missing.
4622 */
4623 if (prog->NumShaders == 0) {
4624 if (ctx->API != API_OPENGL_COMPAT)
4625 linker_error(prog, "no shaders attached to the program\n");
4626 return;
4627 }
4628
4629 #ifdef ENABLE_SHADER_CACHE
4630 /* If transform feedback used on the program then compile all shaders. */
4631 bool skip_cache = false;
4632 if (prog->TransformFeedback.NumVarying > 0) {
4633 for (unsigned i = 0; i < prog->NumShaders; i++) {
4634 if (prog->Shaders[i]->ir) {
4635 continue;
4636 }
4637 _mesa_glsl_compile_shader(ctx, prog->Shaders[i], false, false, true);
4638 }
4639 skip_cache = true;
4640 }
4641
4642 if (!skip_cache && shader_cache_read_program_metadata(ctx, prog))
4643 return;
4644 #endif
4645
4646 void *mem_ctx = ralloc_context(NULL); // temporary linker context
4647
4648 prog->ARB_fragment_coord_conventions_enable = false;
4649
4650 /* Separate the shaders into groups based on their type.
4651 */
4652 struct gl_shader **shader_list[MESA_SHADER_STAGES];
4653 unsigned num_shaders[MESA_SHADER_STAGES];
4654
4655 for (int i = 0; i < MESA_SHADER_STAGES; i++) {
4656 shader_list[i] = (struct gl_shader **)
4657 calloc(prog->NumShaders, sizeof(struct gl_shader *));
4658 num_shaders[i] = 0;
4659 }
4660
4661 unsigned min_version = UINT_MAX;
4662 unsigned max_version = 0;
4663 for (unsigned i = 0; i < prog->NumShaders; i++) {
4664 min_version = MIN2(min_version, prog->Shaders[i]->Version);
4665 max_version = MAX2(max_version, prog->Shaders[i]->Version);
4666
4667 if (prog->Shaders[i]->IsES != prog->Shaders[0]->IsES) {
4668 linker_error(prog, "all shaders must use same shading "
4669 "language version\n");
4670 goto done;
4671 }
4672
4673 if (prog->Shaders[i]->ARB_fragment_coord_conventions_enable) {
4674 prog->ARB_fragment_coord_conventions_enable = true;
4675 }
4676
4677 gl_shader_stage shader_type = prog->Shaders[i]->Stage;
4678 shader_list[shader_type][num_shaders[shader_type]] = prog->Shaders[i];
4679 num_shaders[shader_type]++;
4680 }
4681
4682 /* In desktop GLSL, different shader versions may be linked together. In
4683 * GLSL ES, all shader versions must be the same.
4684 */
4685 if (prog->Shaders[0]->IsES && min_version != max_version) {
4686 linker_error(prog, "all shaders must use same shading "
4687 "language version\n");
4688 goto done;
4689 }
4690
4691 prog->data->Version = max_version;
4692 prog->IsES = prog->Shaders[0]->IsES;
4693
4694 /* Some shaders have to be linked with some other shaders present.
4695 */
4696 if (!prog->SeparateShader) {
4697 if (num_shaders[MESA_SHADER_GEOMETRY] > 0 &&
4698 num_shaders[MESA_SHADER_VERTEX] == 0) {
4699 linker_error(prog, "Geometry shader must be linked with "
4700 "vertex shader\n");
4701 goto done;
4702 }
4703 if (num_shaders[MESA_SHADER_TESS_EVAL] > 0 &&
4704 num_shaders[MESA_SHADER_VERTEX] == 0) {
4705 linker_error(prog, "Tessellation evaluation shader must be linked "
4706 "with vertex shader\n");
4707 goto done;
4708 }
4709 if (num_shaders[MESA_SHADER_TESS_CTRL] > 0 &&
4710 num_shaders[MESA_SHADER_VERTEX] == 0) {
4711 linker_error(prog, "Tessellation control shader must be linked with "
4712 "vertex shader\n");
4713 goto done;
4714 }
4715
4716 /* Section 7.3 of the OpenGL ES 3.2 specification says:
4717 *
4718 * "Linking can fail for [...] any of the following reasons:
4719 *
4720 * * program contains an object to form a tessellation control
4721 * shader [...] and [...] the program is not separable and
4722 * contains no object to form a tessellation evaluation shader"
4723 *
4724 * The OpenGL spec is contradictory. It allows linking without a tess
4725 * eval shader, but that can only be used with transform feedback and
4726 * rasterization disabled. However, transform feedback isn't allowed
4727 * with GL_PATCHES, so it can't be used.
4728 *
4729 * More investigation showed that the idea of transform feedback after
4730 * a tess control shader was dropped, because some hw vendors couldn't
4731 * support tessellation without a tess eval shader, but the linker
4732 * section wasn't updated to reflect that.
4733 *
4734 * All specifications (ARB_tessellation_shader, GL 4.0-4.5) have this
4735 * spec bug.
4736 *
4737 * Do what's reasonable and always require a tess eval shader if a tess
4738 * control shader is present.
4739 */
4740 if (num_shaders[MESA_SHADER_TESS_CTRL] > 0 &&
4741 num_shaders[MESA_SHADER_TESS_EVAL] == 0) {
4742 linker_error(prog, "Tessellation control shader must be linked with "
4743 "tessellation evaluation shader\n");
4744 goto done;
4745 }
4746
4747 if (prog->IsES) {
4748 if (num_shaders[MESA_SHADER_TESS_EVAL] > 0 &&
4749 num_shaders[MESA_SHADER_TESS_CTRL] == 0) {
4750 linker_error(prog, "GLSL ES requires non-separable programs "
4751 "containing a tessellation evaluation shader to also "
4752 "be linked with a tessellation control shader\n");
4753 goto done;
4754 }
4755 }
4756 }
4757
4758 /* Compute shaders have additional restrictions. */
4759 if (num_shaders[MESA_SHADER_COMPUTE] > 0 &&
4760 num_shaders[MESA_SHADER_COMPUTE] != prog->NumShaders) {
4761 linker_error(prog, "Compute shaders may not be linked with any other "
4762 "type of shader\n");
4763 }
4764
4765 /* Link all shaders for a particular stage and validate the result.
4766 */
4767 for (int stage = 0; stage < MESA_SHADER_STAGES; stage++) {
4768 if (num_shaders[stage] > 0) {
4769 gl_linked_shader *const sh =
4770 link_intrastage_shaders(mem_ctx, ctx, prog, shader_list[stage],
4771 num_shaders[stage], false);
4772
4773 if (!prog->data->LinkStatus) {
4774 if (sh)
4775 _mesa_delete_linked_shader(ctx, sh);
4776 goto done;
4777 }
4778
4779 switch (stage) {
4780 case MESA_SHADER_VERTEX:
4781 validate_vertex_shader_executable(prog, sh, ctx);
4782 break;
4783 case MESA_SHADER_TESS_CTRL:
4784 /* nothing to be done */
4785 break;
4786 case MESA_SHADER_TESS_EVAL:
4787 validate_tess_eval_shader_executable(prog, sh, ctx);
4788 break;
4789 case MESA_SHADER_GEOMETRY:
4790 validate_geometry_shader_executable(prog, sh, ctx);
4791 break;
4792 case MESA_SHADER_FRAGMENT:
4793 validate_fragment_shader_executable(prog, sh);
4794 break;
4795 }
4796 if (!prog->data->LinkStatus) {
4797 if (sh)
4798 _mesa_delete_linked_shader(ctx, sh);
4799 goto done;
4800 }
4801
4802 prog->_LinkedShaders[stage] = sh;
4803 prog->data->linked_stages |= 1 << stage;
4804 }
4805 }
4806
4807 /* Here begins the inter-stage linking phase. Some initial validation is
4808 * performed, then locations are assigned for uniforms, attributes, and
4809 * varyings.
4810 */
4811 cross_validate_uniforms(prog);
4812 if (!prog->data->LinkStatus)
4813 goto done;
4814
4815 unsigned first, last, prev;
4816
4817 first = MESA_SHADER_STAGES;
4818 last = 0;
4819
4820 /* Determine first and last stage. */
4821 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4822 if (!prog->_LinkedShaders[i])
4823 continue;
4824 if (first == MESA_SHADER_STAGES)
4825 first = i;
4826 last = i;
4827 }
4828
4829 if (!prog->data->cache_fallback) {
4830 check_explicit_uniform_locations(ctx, prog);
4831 link_assign_subroutine_types(prog);
4832 }
4833
4834 if (!prog->data->LinkStatus)
4835 goto done;
4836
4837 resize_tes_inputs(ctx, prog);
4838
4839 /* Validate the inputs of each stage with the output of the preceding
4840 * stage.
4841 */
4842 prev = first;
4843 for (unsigned i = prev + 1; i <= MESA_SHADER_FRAGMENT; i++) {
4844 if (prog->_LinkedShaders[i] == NULL)
4845 continue;
4846
4847 validate_interstage_inout_blocks(prog, prog->_LinkedShaders[prev],
4848 prog->_LinkedShaders[i]);
4849 if (!prog->data->LinkStatus)
4850 goto done;
4851
4852 cross_validate_outputs_to_inputs(prog,
4853 prog->_LinkedShaders[prev],
4854 prog->_LinkedShaders[i]);
4855 if (!prog->data->LinkStatus)
4856 goto done;
4857
4858 prev = i;
4859 }
4860
4861 /* Cross-validate uniform blocks between shader stages */
4862 validate_interstage_uniform_blocks(prog, prog->_LinkedShaders);
4863 if (!prog->data->LinkStatus)
4864 goto done;
4865
4866 for (unsigned int i = 0; i < MESA_SHADER_STAGES; i++) {
4867 if (prog->_LinkedShaders[i] != NULL)
4868 lower_named_interface_blocks(mem_ctx, prog->_LinkedShaders[i]);
4869 }
4870
4871 /* Implement the GLSL 1.30+ rule for discard vs infinite loops Do
4872 * it before optimization because we want most of the checks to get
4873 * dropped thanks to constant propagation.
4874 *
4875 * This rule also applies to GLSL ES 3.00.
4876 */
4877 if (max_version >= (prog->IsES ? 300 : 130)) {
4878 struct gl_linked_shader *sh = prog->_LinkedShaders[MESA_SHADER_FRAGMENT];
4879 if (sh) {
4880 lower_discard_flow(sh->ir);
4881 }
4882 }
4883
4884 if (prog->SeparateShader)
4885 disable_varying_optimizations_for_sso(prog);
4886
4887 if (!prog->data->cache_fallback) {
4888 /* Process UBOs */
4889 if (!interstage_cross_validate_uniform_blocks(prog, false))
4890 goto done;
4891
4892 /* Process SSBOs */
4893 if (!interstage_cross_validate_uniform_blocks(prog, true))
4894 goto done;
4895 }
4896
4897 /* Do common optimization before assigning storage for attributes,
4898 * uniforms, and varyings. Later optimization could possibly make
4899 * some of that unused.
4900 */
4901 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4902 if (prog->_LinkedShaders[i] == NULL)
4903 continue;
4904
4905 detect_recursion_linked(prog, prog->_LinkedShaders[i]->ir);
4906 if (!prog->data->LinkStatus)
4907 goto done;
4908
4909 if (ctx->Const.ShaderCompilerOptions[i].LowerCombinedClipCullDistance) {
4910 lower_clip_cull_distance(prog, prog->_LinkedShaders[i]);
4911 }
4912
4913 if (ctx->Const.LowerTessLevel) {
4914 lower_tess_level(prog->_LinkedShaders[i]);
4915 }
4916
4917 /* Call opts before lowering const arrays to uniforms so we can const
4918 * propagate any elements accessed directly.
4919 */
4920 linker_optimisation_loop(ctx, prog->_LinkedShaders[i]->ir, i);
4921
4922 /* Call opts after lowering const arrays to copy propagate things. */
4923 if (lower_const_arrays_to_uniforms(prog->_LinkedShaders[i]->ir, i))
4924 linker_optimisation_loop(ctx, prog->_LinkedShaders[i]->ir, i);
4925
4926 propagate_invariance(prog->_LinkedShaders[i]->ir);
4927 }
4928
4929 /* Validation for special cases where we allow sampler array indexing
4930 * with loop induction variable. This check emits a warning or error
4931 * depending if backend can handle dynamic indexing.
4932 */
4933 if ((!prog->IsES && prog->data->Version < 130) ||
4934 (prog->IsES && prog->data->Version < 300)) {
4935 if (!validate_sampler_array_indexing(ctx, prog))
4936 goto done;
4937 }
4938
4939 /* Check and validate stream emissions in geometry shaders */
4940 validate_geometry_shader_emissions(ctx, prog);
4941
4942 store_fragdepth_layout(prog);
4943
4944 if(!link_varyings_and_uniforms(first, last, ctx, prog, mem_ctx))
4945 goto done;
4946
4947 /* OpenGL ES < 3.1 requires that a vertex shader and a fragment shader both
4948 * be present in a linked program. GL_ARB_ES2_compatibility doesn't say
4949 * anything about shader linking when one of the shaders (vertex or
4950 * fragment shader) is absent. So, the extension shouldn't change the
4951 * behavior specified in GLSL specification.
4952 *
4953 * From OpenGL ES 3.1 specification (7.3 Program Objects):
4954 * "Linking can fail for a variety of reasons as specified in the
4955 * OpenGL ES Shading Language Specification, as well as any of the
4956 * following reasons:
4957 *
4958 * ...
4959 *
4960 * * program contains objects to form either a vertex shader or
4961 * fragment shader, and program is not separable, and does not
4962 * contain objects to form both a vertex shader and fragment
4963 * shader."
4964 *
4965 * However, the only scenario in 3.1+ where we don't require them both is
4966 * when we have a compute shader. For example:
4967 *
4968 * - No shaders is a link error.
4969 * - Geom or Tess without a Vertex shader is a link error which means we
4970 * always require a Vertex shader and hence a Fragment shader.
4971 * - Finally a Compute shader linked with any other stage is a link error.
4972 */
4973 if (!prog->SeparateShader && ctx->API == API_OPENGLES2 &&
4974 num_shaders[MESA_SHADER_COMPUTE] == 0) {
4975 if (prog->_LinkedShaders[MESA_SHADER_VERTEX] == NULL) {
4976 linker_error(prog, "program lacks a vertex shader\n");
4977 } else if (prog->_LinkedShaders[MESA_SHADER_FRAGMENT] == NULL) {
4978 linker_error(prog, "program lacks a fragment shader\n");
4979 }
4980 }
4981
4982 done:
4983 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4984 free(shader_list[i]);
4985 if (prog->_LinkedShaders[i] == NULL)
4986 continue;
4987
4988 /* Do a final validation step to make sure that the IR wasn't
4989 * invalidated by any modifications performed after intrastage linking.
4990 */
4991 validate_ir_tree(prog->_LinkedShaders[i]->ir);
4992
4993 /* Retain any live IR, but trash the rest. */
4994 reparent_ir(prog->_LinkedShaders[i]->ir, prog->_LinkedShaders[i]->ir);
4995
4996 /* The symbol table in the linked shaders may contain references to
4997 * variables that were removed (e.g., unused uniforms). Since it may
4998 * contain junk, there is no possible valid use. Delete it and set the
4999 * pointer to NULL.
5000 */
5001 delete prog->_LinkedShaders[i]->symbols;
5002 prog->_LinkedShaders[i]->symbols = NULL;
5003 }
5004
5005 ralloc_free(mem_ctx);
5006 }