glsl: Update a comment about link errors for TCS && !TES.
[mesa.git] / src / compiler / glsl / linker.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file linker.cpp
26 * GLSL linker implementation
27 *
28 * Given a set of shaders that are to be linked to generate a final program,
29 * there are three distinct stages.
30 *
31 * In the first stage shaders are partitioned into groups based on the shader
32 * type. All shaders of a particular type (e.g., vertex shaders) are linked
33 * together.
34 *
35 * - Undefined references in each shader are resolve to definitions in
36 * another shader.
37 * - Types and qualifiers of uniforms, outputs, and global variables defined
38 * in multiple shaders with the same name are verified to be the same.
39 * - Initializers for uniforms and global variables defined
40 * in multiple shaders with the same name are verified to be the same.
41 *
42 * The result, in the terminology of the GLSL spec, is a set of shader
43 * executables for each processing unit.
44 *
45 * After the first stage is complete, a series of semantic checks are performed
46 * on each of the shader executables.
47 *
48 * - Each shader executable must define a \c main function.
49 * - Each vertex shader executable must write to \c gl_Position.
50 * - Each fragment shader executable must write to either \c gl_FragData or
51 * \c gl_FragColor.
52 *
53 * In the final stage individual shader executables are linked to create a
54 * complete exectuable.
55 *
56 * - Types of uniforms defined in multiple shader stages with the same name
57 * are verified to be the same.
58 * - Initializers for uniforms defined in multiple shader stages with the
59 * same name are verified to be the same.
60 * - Types and qualifiers of outputs defined in one stage are verified to
61 * be the same as the types and qualifiers of inputs defined with the same
62 * name in a later stage.
63 *
64 * \author Ian Romanick <ian.d.romanick@intel.com>
65 */
66
67 #include <ctype.h>
68 #include "util/strndup.h"
69 #include "main/core.h"
70 #include "glsl_symbol_table.h"
71 #include "glsl_parser_extras.h"
72 #include "ir.h"
73 #include "program.h"
74 #include "program/prog_instruction.h"
75 #include "program/program.h"
76 #include "util/set.h"
77 #include "util/string_to_uint_map.h"
78 #include "linker.h"
79 #include "link_varyings.h"
80 #include "ir_optimization.h"
81 #include "ir_rvalue_visitor.h"
82 #include "ir_uniform.h"
83 #include "builtin_functions.h"
84
85 #include "main/shaderobj.h"
86 #include "main/enums.h"
87
88
89 namespace {
90
91 /**
92 * Visitor that determines whether or not a variable is ever written.
93 */
94 class find_assignment_visitor : public ir_hierarchical_visitor {
95 public:
96 find_assignment_visitor(const char *name)
97 : name(name), found(false)
98 {
99 /* empty */
100 }
101
102 virtual ir_visitor_status visit_enter(ir_assignment *ir)
103 {
104 ir_variable *const var = ir->lhs->variable_referenced();
105
106 if (strcmp(name, var->name) == 0) {
107 found = true;
108 return visit_stop;
109 }
110
111 return visit_continue_with_parent;
112 }
113
114 virtual ir_visitor_status visit_enter(ir_call *ir)
115 {
116 foreach_two_lists(formal_node, &ir->callee->parameters,
117 actual_node, &ir->actual_parameters) {
118 ir_rvalue *param_rval = (ir_rvalue *) actual_node;
119 ir_variable *sig_param = (ir_variable *) formal_node;
120
121 if (sig_param->data.mode == ir_var_function_out ||
122 sig_param->data.mode == ir_var_function_inout) {
123 ir_variable *var = param_rval->variable_referenced();
124 if (var && strcmp(name, var->name) == 0) {
125 found = true;
126 return visit_stop;
127 }
128 }
129 }
130
131 if (ir->return_deref != NULL) {
132 ir_variable *const var = ir->return_deref->variable_referenced();
133
134 if (strcmp(name, var->name) == 0) {
135 found = true;
136 return visit_stop;
137 }
138 }
139
140 return visit_continue_with_parent;
141 }
142
143 bool variable_found()
144 {
145 return found;
146 }
147
148 private:
149 const char *name; /**< Find writes to a variable with this name. */
150 bool found; /**< Was a write to the variable found? */
151 };
152
153
154 /**
155 * Visitor that determines whether or not a variable is ever read.
156 */
157 class find_deref_visitor : public ir_hierarchical_visitor {
158 public:
159 find_deref_visitor(const char *name)
160 : name(name), found(false)
161 {
162 /* empty */
163 }
164
165 virtual ir_visitor_status visit(ir_dereference_variable *ir)
166 {
167 if (strcmp(this->name, ir->var->name) == 0) {
168 this->found = true;
169 return visit_stop;
170 }
171
172 return visit_continue;
173 }
174
175 bool variable_found() const
176 {
177 return this->found;
178 }
179
180 private:
181 const char *name; /**< Find writes to a variable with this name. */
182 bool found; /**< Was a write to the variable found? */
183 };
184
185
186 /**
187 * A visitor helper that provides methods for updating the types of
188 * ir_dereferences. Classes that update variable types (say, updating
189 * array sizes) will want to use this so that dereference types stay in sync.
190 */
191 class deref_type_updater : public ir_hierarchical_visitor {
192 public:
193 virtual ir_visitor_status visit(ir_dereference_variable *ir)
194 {
195 ir->type = ir->var->type;
196 return visit_continue;
197 }
198
199 virtual ir_visitor_status visit_leave(ir_dereference_array *ir)
200 {
201 const glsl_type *const vt = ir->array->type;
202 if (vt->is_array())
203 ir->type = vt->fields.array;
204 return visit_continue;
205 }
206
207 virtual ir_visitor_status visit_leave(ir_dereference_record *ir)
208 {
209 for (unsigned i = 0; i < ir->record->type->length; i++) {
210 const struct glsl_struct_field *field =
211 &ir->record->type->fields.structure[i];
212 if (strcmp(field->name, ir->field) == 0) {
213 ir->type = field->type;
214 break;
215 }
216 }
217 return visit_continue;
218 }
219 };
220
221
222 class array_resize_visitor : public deref_type_updater {
223 public:
224 unsigned num_vertices;
225 gl_shader_program *prog;
226 gl_shader_stage stage;
227
228 array_resize_visitor(unsigned num_vertices,
229 gl_shader_program *prog,
230 gl_shader_stage stage)
231 {
232 this->num_vertices = num_vertices;
233 this->prog = prog;
234 this->stage = stage;
235 }
236
237 virtual ~array_resize_visitor()
238 {
239 /* empty */
240 }
241
242 virtual ir_visitor_status visit(ir_variable *var)
243 {
244 if (!var->type->is_array() || var->data.mode != ir_var_shader_in ||
245 var->data.patch)
246 return visit_continue;
247
248 unsigned size = var->type->length;
249
250 if (stage == MESA_SHADER_GEOMETRY) {
251 /* Generate a link error if the shader has declared this array with
252 * an incorrect size.
253 */
254 if (!var->data.implicit_sized_array &&
255 size && size != this->num_vertices) {
256 linker_error(this->prog, "size of array %s declared as %u, "
257 "but number of input vertices is %u\n",
258 var->name, size, this->num_vertices);
259 return visit_continue;
260 }
261
262 /* Generate a link error if the shader attempts to access an input
263 * array using an index too large for its actual size assigned at
264 * link time.
265 */
266 if (var->data.max_array_access >= (int)this->num_vertices) {
267 linker_error(this->prog, "%s shader accesses element %i of "
268 "%s, but only %i input vertices\n",
269 _mesa_shader_stage_to_string(this->stage),
270 var->data.max_array_access, var->name, this->num_vertices);
271 return visit_continue;
272 }
273 }
274
275 var->type = glsl_type::get_array_instance(var->type->fields.array,
276 this->num_vertices);
277 var->data.max_array_access = this->num_vertices - 1;
278
279 return visit_continue;
280 }
281 };
282
283 /**
284 * Visitor that determines the highest stream id to which a (geometry) shader
285 * emits vertices. It also checks whether End{Stream}Primitive is ever called.
286 */
287 class find_emit_vertex_visitor : public ir_hierarchical_visitor {
288 public:
289 find_emit_vertex_visitor(int max_allowed)
290 : max_stream_allowed(max_allowed),
291 invalid_stream_id(0),
292 invalid_stream_id_from_emit_vertex(false),
293 end_primitive_found(false),
294 uses_non_zero_stream(false)
295 {
296 /* empty */
297 }
298
299 virtual ir_visitor_status visit_leave(ir_emit_vertex *ir)
300 {
301 int stream_id = ir->stream_id();
302
303 if (stream_id < 0) {
304 invalid_stream_id = stream_id;
305 invalid_stream_id_from_emit_vertex = true;
306 return visit_stop;
307 }
308
309 if (stream_id > max_stream_allowed) {
310 invalid_stream_id = stream_id;
311 invalid_stream_id_from_emit_vertex = true;
312 return visit_stop;
313 }
314
315 if (stream_id != 0)
316 uses_non_zero_stream = true;
317
318 return visit_continue;
319 }
320
321 virtual ir_visitor_status visit_leave(ir_end_primitive *ir)
322 {
323 end_primitive_found = true;
324
325 int stream_id = ir->stream_id();
326
327 if (stream_id < 0) {
328 invalid_stream_id = stream_id;
329 invalid_stream_id_from_emit_vertex = false;
330 return visit_stop;
331 }
332
333 if (stream_id > max_stream_allowed) {
334 invalid_stream_id = stream_id;
335 invalid_stream_id_from_emit_vertex = false;
336 return visit_stop;
337 }
338
339 if (stream_id != 0)
340 uses_non_zero_stream = true;
341
342 return visit_continue;
343 }
344
345 bool error()
346 {
347 return invalid_stream_id != 0;
348 }
349
350 const char *error_func()
351 {
352 return invalid_stream_id_from_emit_vertex ?
353 "EmitStreamVertex" : "EndStreamPrimitive";
354 }
355
356 int error_stream()
357 {
358 return invalid_stream_id;
359 }
360
361 bool uses_streams()
362 {
363 return uses_non_zero_stream;
364 }
365
366 bool uses_end_primitive()
367 {
368 return end_primitive_found;
369 }
370
371 private:
372 int max_stream_allowed;
373 int invalid_stream_id;
374 bool invalid_stream_id_from_emit_vertex;
375 bool end_primitive_found;
376 bool uses_non_zero_stream;
377 };
378
379 /* Class that finds array derefs and check if indexes are dynamic. */
380 class dynamic_sampler_array_indexing_visitor : public ir_hierarchical_visitor
381 {
382 public:
383 dynamic_sampler_array_indexing_visitor() :
384 dynamic_sampler_array_indexing(false)
385 {
386 }
387
388 ir_visitor_status visit_enter(ir_dereference_array *ir)
389 {
390 if (!ir->variable_referenced())
391 return visit_continue;
392
393 if (!ir->variable_referenced()->type->contains_sampler())
394 return visit_continue;
395
396 if (!ir->array_index->constant_expression_value()) {
397 dynamic_sampler_array_indexing = true;
398 return visit_stop;
399 }
400 return visit_continue;
401 }
402
403 bool uses_dynamic_sampler_array_indexing()
404 {
405 return dynamic_sampler_array_indexing;
406 }
407
408 private:
409 bool dynamic_sampler_array_indexing;
410 };
411
412 } /* anonymous namespace */
413
414 void
415 linker_error(gl_shader_program *prog, const char *fmt, ...)
416 {
417 va_list ap;
418
419 ralloc_strcat(&prog->data->InfoLog, "error: ");
420 va_start(ap, fmt);
421 ralloc_vasprintf_append(&prog->data->InfoLog, fmt, ap);
422 va_end(ap);
423
424 prog->data->LinkStatus = linking_failure;
425 }
426
427
428 void
429 linker_warning(gl_shader_program *prog, const char *fmt, ...)
430 {
431 va_list ap;
432
433 ralloc_strcat(&prog->data->InfoLog, "warning: ");
434 va_start(ap, fmt);
435 ralloc_vasprintf_append(&prog->data->InfoLog, fmt, ap);
436 va_end(ap);
437
438 }
439
440
441 /**
442 * Given a string identifying a program resource, break it into a base name
443 * and an optional array index in square brackets.
444 *
445 * If an array index is present, \c out_base_name_end is set to point to the
446 * "[" that precedes the array index, and the array index itself is returned
447 * as a long.
448 *
449 * If no array index is present (or if the array index is negative or
450 * mal-formed), \c out_base_name_end, is set to point to the null terminator
451 * at the end of the input string, and -1 is returned.
452 *
453 * Only the final array index is parsed; if the string contains other array
454 * indices (or structure field accesses), they are left in the base name.
455 *
456 * No attempt is made to check that the base name is properly formed;
457 * typically the caller will look up the base name in a hash table, so
458 * ill-formed base names simply turn into hash table lookup failures.
459 */
460 long
461 parse_program_resource_name(const GLchar *name,
462 const GLchar **out_base_name_end)
463 {
464 /* Section 7.3.1 ("Program Interfaces") of the OpenGL 4.3 spec says:
465 *
466 * "When an integer array element or block instance number is part of
467 * the name string, it will be specified in decimal form without a "+"
468 * or "-" sign or any extra leading zeroes. Additionally, the name
469 * string will not include white space anywhere in the string."
470 */
471
472 const size_t len = strlen(name);
473 *out_base_name_end = name + len;
474
475 if (len == 0 || name[len-1] != ']')
476 return -1;
477
478 /* Walk backwards over the string looking for a non-digit character. This
479 * had better be the opening bracket for an array index.
480 *
481 * Initially, i specifies the location of the ']'. Since the string may
482 * contain only the ']' charcater, walk backwards very carefully.
483 */
484 unsigned i;
485 for (i = len - 1; (i > 0) && isdigit(name[i-1]); --i)
486 /* empty */ ;
487
488 if ((i == 0) || name[i-1] != '[')
489 return -1;
490
491 long array_index = strtol(&name[i], NULL, 10);
492 if (array_index < 0)
493 return -1;
494
495 /* Check for leading zero */
496 if (name[i] == '0' && name[i+1] != ']')
497 return -1;
498
499 *out_base_name_end = name + (i - 1);
500 return array_index;
501 }
502
503
504 void
505 link_invalidate_variable_locations(exec_list *ir)
506 {
507 foreach_in_list(ir_instruction, node, ir) {
508 ir_variable *const var = node->as_variable();
509
510 if (var == NULL)
511 continue;
512
513 /* Only assign locations for variables that lack an explicit location.
514 * Explicit locations are set for all built-in variables, generic vertex
515 * shader inputs (via layout(location=...)), and generic fragment shader
516 * outputs (also via layout(location=...)).
517 */
518 if (!var->data.explicit_location) {
519 var->data.location = -1;
520 var->data.location_frac = 0;
521 }
522
523 /* ir_variable::is_unmatched_generic_inout is used by the linker while
524 * connecting outputs from one stage to inputs of the next stage.
525 */
526 if (var->data.explicit_location &&
527 var->data.location < VARYING_SLOT_VAR0) {
528 var->data.is_unmatched_generic_inout = 0;
529 } else {
530 var->data.is_unmatched_generic_inout = 1;
531 }
532 }
533 }
534
535
536 /**
537 * Set clip_distance_array_size based and cull_distance_array_size on the given
538 * shader.
539 *
540 * Also check for errors based on incorrect usage of gl_ClipVertex and
541 * gl_ClipDistance and gl_CullDistance.
542 * Additionally test whether the arrays gl_ClipDistance and gl_CullDistance
543 * exceed the maximum size defined by gl_MaxCombinedClipAndCullDistances.
544 *
545 * Return false if an error was reported.
546 */
547 static void
548 analyze_clip_cull_usage(struct gl_shader_program *prog,
549 struct gl_linked_shader *shader,
550 struct gl_context *ctx,
551 GLuint *clip_distance_array_size,
552 GLuint *cull_distance_array_size)
553 {
554 *clip_distance_array_size = 0;
555 *cull_distance_array_size = 0;
556
557 if (prog->data->Version >= (prog->IsES ? 300 : 130)) {
558 /* From section 7.1 (Vertex Shader Special Variables) of the
559 * GLSL 1.30 spec:
560 *
561 * "It is an error for a shader to statically write both
562 * gl_ClipVertex and gl_ClipDistance."
563 *
564 * This does not apply to GLSL ES shaders, since GLSL ES defines neither
565 * gl_ClipVertex nor gl_ClipDistance. However with
566 * GL_EXT_clip_cull_distance, this functionality is exposed in ES 3.0.
567 */
568 find_assignment_visitor clip_distance("gl_ClipDistance");
569 find_assignment_visitor cull_distance("gl_CullDistance");
570
571 clip_distance.run(shader->ir);
572 cull_distance.run(shader->ir);
573
574 /* From the ARB_cull_distance spec:
575 *
576 * It is a compile-time or link-time error for the set of shaders forming
577 * a program to statically read or write both gl_ClipVertex and either
578 * gl_ClipDistance or gl_CullDistance.
579 *
580 * This does not apply to GLSL ES shaders, since GLSL ES doesn't define
581 * gl_ClipVertex.
582 */
583 if (!prog->IsES) {
584 find_assignment_visitor clip_vertex("gl_ClipVertex");
585
586 clip_vertex.run(shader->ir);
587
588 if (clip_vertex.variable_found() && clip_distance.variable_found()) {
589 linker_error(prog, "%s shader writes to both `gl_ClipVertex' "
590 "and `gl_ClipDistance'\n",
591 _mesa_shader_stage_to_string(shader->Stage));
592 return;
593 }
594 if (clip_vertex.variable_found() && cull_distance.variable_found()) {
595 linker_error(prog, "%s shader writes to both `gl_ClipVertex' "
596 "and `gl_CullDistance'\n",
597 _mesa_shader_stage_to_string(shader->Stage));
598 return;
599 }
600 }
601
602 if (clip_distance.variable_found()) {
603 ir_variable *clip_distance_var =
604 shader->symbols->get_variable("gl_ClipDistance");
605 assert(clip_distance_var);
606 *clip_distance_array_size = clip_distance_var->type->length;
607 }
608 if (cull_distance.variable_found()) {
609 ir_variable *cull_distance_var =
610 shader->symbols->get_variable("gl_CullDistance");
611 assert(cull_distance_var);
612 *cull_distance_array_size = cull_distance_var->type->length;
613 }
614 /* From the ARB_cull_distance spec:
615 *
616 * It is a compile-time or link-time error for the set of shaders forming
617 * a program to have the sum of the sizes of the gl_ClipDistance and
618 * gl_CullDistance arrays to be larger than
619 * gl_MaxCombinedClipAndCullDistances.
620 */
621 if ((*clip_distance_array_size + *cull_distance_array_size) >
622 ctx->Const.MaxClipPlanes) {
623 linker_error(prog, "%s shader: the combined size of "
624 "'gl_ClipDistance' and 'gl_CullDistance' size cannot "
625 "be larger than "
626 "gl_MaxCombinedClipAndCullDistances (%u)",
627 _mesa_shader_stage_to_string(shader->Stage),
628 ctx->Const.MaxClipPlanes);
629 }
630 }
631 }
632
633
634 /**
635 * Verify that a vertex shader executable meets all semantic requirements.
636 *
637 * Also sets info.clip_distance_array_size and
638 * info.cull_distance_array_size as a side effect.
639 *
640 * \param shader Vertex shader executable to be verified
641 */
642 void
643 validate_vertex_shader_executable(struct gl_shader_program *prog,
644 struct gl_linked_shader *shader,
645 struct gl_context *ctx)
646 {
647 if (shader == NULL)
648 return;
649
650 /* From the GLSL 1.10 spec, page 48:
651 *
652 * "The variable gl_Position is available only in the vertex
653 * language and is intended for writing the homogeneous vertex
654 * position. All executions of a well-formed vertex shader
655 * executable must write a value into this variable. [...] The
656 * variable gl_Position is available only in the vertex
657 * language and is intended for writing the homogeneous vertex
658 * position. All executions of a well-formed vertex shader
659 * executable must write a value into this variable."
660 *
661 * while in GLSL 1.40 this text is changed to:
662 *
663 * "The variable gl_Position is available only in the vertex
664 * language and is intended for writing the homogeneous vertex
665 * position. It can be written at any time during shader
666 * execution. It may also be read back by a vertex shader
667 * after being written. This value will be used by primitive
668 * assembly, clipping, culling, and other fixed functionality
669 * operations, if present, that operate on primitives after
670 * vertex processing has occurred. Its value is undefined if
671 * the vertex shader executable does not write gl_Position."
672 *
673 * All GLSL ES Versions are similar to GLSL 1.40--failing to write to
674 * gl_Position is not an error.
675 */
676 if (prog->data->Version < (prog->IsES ? 300 : 140)) {
677 find_assignment_visitor find("gl_Position");
678 find.run(shader->ir);
679 if (!find.variable_found()) {
680 if (prog->IsES) {
681 linker_warning(prog,
682 "vertex shader does not write to `gl_Position'. "
683 "Its value is undefined. \n");
684 } else {
685 linker_error(prog,
686 "vertex shader does not write to `gl_Position'. \n");
687 }
688 return;
689 }
690 }
691
692 analyze_clip_cull_usage(prog, shader, ctx,
693 &shader->Program->info.clip_distance_array_size,
694 &shader->Program->info.cull_distance_array_size);
695 }
696
697 void
698 validate_tess_eval_shader_executable(struct gl_shader_program *prog,
699 struct gl_linked_shader *shader,
700 struct gl_context *ctx)
701 {
702 if (shader == NULL)
703 return;
704
705 analyze_clip_cull_usage(prog, shader, ctx,
706 &shader->Program->info.clip_distance_array_size,
707 &shader->Program->info.cull_distance_array_size);
708 }
709
710
711 /**
712 * Verify that a fragment shader executable meets all semantic requirements
713 *
714 * \param shader Fragment shader executable to be verified
715 */
716 void
717 validate_fragment_shader_executable(struct gl_shader_program *prog,
718 struct gl_linked_shader *shader)
719 {
720 if (shader == NULL)
721 return;
722
723 find_assignment_visitor frag_color("gl_FragColor");
724 find_assignment_visitor frag_data("gl_FragData");
725
726 frag_color.run(shader->ir);
727 frag_data.run(shader->ir);
728
729 if (frag_color.variable_found() && frag_data.variable_found()) {
730 linker_error(prog, "fragment shader writes to both "
731 "`gl_FragColor' and `gl_FragData'\n");
732 }
733 }
734
735 /**
736 * Verify that a geometry shader executable meets all semantic requirements
737 *
738 * Also sets prog->Geom.VerticesIn, and info.clip_distance_array_sizeand
739 * info.cull_distance_array_size as a side effect.
740 *
741 * \param shader Geometry shader executable to be verified
742 */
743 void
744 validate_geometry_shader_executable(struct gl_shader_program *prog,
745 struct gl_linked_shader *shader,
746 struct gl_context *ctx)
747 {
748 if (shader == NULL)
749 return;
750
751 unsigned num_vertices =
752 vertices_per_prim(shader->Program->info.gs.input_primitive);
753 prog->Geom.VerticesIn = num_vertices;
754
755 analyze_clip_cull_usage(prog, shader, ctx,
756 &shader->Program->info.clip_distance_array_size,
757 &shader->Program->info.cull_distance_array_size);
758 }
759
760 /**
761 * Check if geometry shaders emit to non-zero streams and do corresponding
762 * validations.
763 */
764 static void
765 validate_geometry_shader_emissions(struct gl_context *ctx,
766 struct gl_shader_program *prog)
767 {
768 struct gl_linked_shader *sh = prog->_LinkedShaders[MESA_SHADER_GEOMETRY];
769
770 if (sh != NULL) {
771 find_emit_vertex_visitor emit_vertex(ctx->Const.MaxVertexStreams - 1);
772 emit_vertex.run(sh->ir);
773 if (emit_vertex.error()) {
774 linker_error(prog, "Invalid call %s(%d). Accepted values for the "
775 "stream parameter are in the range [0, %d].\n",
776 emit_vertex.error_func(),
777 emit_vertex.error_stream(),
778 ctx->Const.MaxVertexStreams - 1);
779 }
780 prog->Geom.UsesStreams = emit_vertex.uses_streams();
781 prog->Geom.UsesEndPrimitive = emit_vertex.uses_end_primitive();
782
783 /* From the ARB_gpu_shader5 spec:
784 *
785 * "Multiple vertex streams are supported only if the output primitive
786 * type is declared to be "points". A program will fail to link if it
787 * contains a geometry shader calling EmitStreamVertex() or
788 * EndStreamPrimitive() if its output primitive type is not "points".
789 *
790 * However, in the same spec:
791 *
792 * "The function EmitVertex() is equivalent to calling EmitStreamVertex()
793 * with <stream> set to zero."
794 *
795 * And:
796 *
797 * "The function EndPrimitive() is equivalent to calling
798 * EndStreamPrimitive() with <stream> set to zero."
799 *
800 * Since we can call EmitVertex() and EndPrimitive() when we output
801 * primitives other than points, calling EmitStreamVertex(0) or
802 * EmitEndPrimitive(0) should not produce errors. This it also what Nvidia
803 * does. Currently we only set prog->Geom.UsesStreams to TRUE when
804 * EmitStreamVertex() or EmitEndPrimitive() are called with a non-zero
805 * stream.
806 */
807 if (prog->Geom.UsesStreams &&
808 sh->Program->info.gs.output_primitive != GL_POINTS) {
809 linker_error(prog, "EmitStreamVertex(n) and EndStreamPrimitive(n) "
810 "with n>0 requires point output\n");
811 }
812 }
813 }
814
815 bool
816 validate_intrastage_arrays(struct gl_shader_program *prog,
817 ir_variable *const var,
818 ir_variable *const existing)
819 {
820 /* Consider the types to be "the same" if both types are arrays
821 * of the same type and one of the arrays is implicitly sized.
822 * In addition, set the type of the linked variable to the
823 * explicitly sized array.
824 */
825 if (var->type->is_array() && existing->type->is_array()) {
826 if ((var->type->fields.array == existing->type->fields.array) &&
827 ((var->type->length == 0)|| (existing->type->length == 0))) {
828 if (var->type->length != 0) {
829 if ((int)var->type->length <= existing->data.max_array_access) {
830 linker_error(prog, "%s `%s' declared as type "
831 "`%s' but outermost dimension has an index"
832 " of `%i'\n",
833 mode_string(var),
834 var->name, var->type->name,
835 existing->data.max_array_access);
836 }
837 existing->type = var->type;
838 return true;
839 } else if (existing->type->length != 0) {
840 if((int)existing->type->length <= var->data.max_array_access &&
841 !existing->data.from_ssbo_unsized_array) {
842 linker_error(prog, "%s `%s' declared as type "
843 "`%s' but outermost dimension has an index"
844 " of `%i'\n",
845 mode_string(var),
846 var->name, existing->type->name,
847 var->data.max_array_access);
848 }
849 return true;
850 }
851 } else {
852 /* The arrays of structs could have different glsl_type pointers but
853 * they are actually the same type. Use record_compare() to check that.
854 */
855 if (existing->type->fields.array->is_record() &&
856 var->type->fields.array->is_record() &&
857 existing->type->fields.array->record_compare(var->type->fields.array))
858 return true;
859 }
860 }
861 return false;
862 }
863
864
865 /**
866 * Perform validation of global variables used across multiple shaders
867 */
868 void
869 cross_validate_globals(struct gl_shader_program *prog,
870 struct exec_list *ir, glsl_symbol_table *variables,
871 bool uniforms_only)
872 {
873 foreach_in_list(ir_instruction, node, ir) {
874 ir_variable *const var = node->as_variable();
875
876 if (var == NULL)
877 continue;
878
879 if (uniforms_only && (var->data.mode != ir_var_uniform && var->data.mode != ir_var_shader_storage))
880 continue;
881
882 /* don't cross validate subroutine uniforms */
883 if (var->type->contains_subroutine())
884 continue;
885
886 /* Don't cross validate temporaries that are at global scope. These
887 * will eventually get pulled into the shaders 'main'.
888 */
889 if (var->data.mode == ir_var_temporary)
890 continue;
891
892 /* If a global with this name has already been seen, verify that the
893 * new instance has the same type. In addition, if the globals have
894 * initializers, the values of the initializers must be the same.
895 */
896 ir_variable *const existing = variables->get_variable(var->name);
897 if (existing != NULL) {
898 /* Check if types match. Interface blocks have some special
899 * rules so we handle those elsewhere.
900 */
901 if (var->type != existing->type &&
902 !var->is_interface_instance()) {
903 if (!validate_intrastage_arrays(prog, var, existing)) {
904 if (var->type->is_record() && existing->type->is_record()
905 && existing->type->record_compare(var->type)) {
906 existing->type = var->type;
907 } else {
908 /* If it is an unsized array in a Shader Storage Block,
909 * two different shaders can access to different elements.
910 * Because of that, they might be converted to different
911 * sized arrays, then check that they are compatible but
912 * ignore the array size.
913 */
914 if (!(var->data.mode == ir_var_shader_storage &&
915 var->data.from_ssbo_unsized_array &&
916 existing->data.mode == ir_var_shader_storage &&
917 existing->data.from_ssbo_unsized_array &&
918 var->type->gl_type == existing->type->gl_type)) {
919 linker_error(prog, "%s `%s' declared as type "
920 "`%s' and type `%s'\n",
921 mode_string(var),
922 var->name, var->type->name,
923 existing->type->name);
924 return;
925 }
926 }
927 }
928 }
929
930 if (var->data.explicit_location) {
931 if (existing->data.explicit_location
932 && (var->data.location != existing->data.location)) {
933 linker_error(prog, "explicit locations for %s "
934 "`%s' have differing values\n",
935 mode_string(var), var->name);
936 return;
937 }
938
939 if (var->data.location_frac != existing->data.location_frac) {
940 linker_error(prog, "explicit components for %s `%s' have "
941 "differing values\n", mode_string(var), var->name);
942 return;
943 }
944
945 existing->data.location = var->data.location;
946 existing->data.explicit_location = true;
947 } else {
948 /* Check if uniform with implicit location was marked explicit
949 * by earlier shader stage. If so, mark it explicit in this stage
950 * too to make sure later processing does not treat it as
951 * implicit one.
952 */
953 if (existing->data.explicit_location) {
954 var->data.location = existing->data.location;
955 var->data.explicit_location = true;
956 }
957 }
958
959 /* From the GLSL 4.20 specification:
960 * "A link error will result if two compilation units in a program
961 * specify different integer-constant bindings for the same
962 * opaque-uniform name. However, it is not an error to specify a
963 * binding on some but not all declarations for the same name"
964 */
965 if (var->data.explicit_binding) {
966 if (existing->data.explicit_binding &&
967 var->data.binding != existing->data.binding) {
968 linker_error(prog, "explicit bindings for %s "
969 "`%s' have differing values\n",
970 mode_string(var), var->name);
971 return;
972 }
973
974 existing->data.binding = var->data.binding;
975 existing->data.explicit_binding = true;
976 }
977
978 if (var->type->contains_atomic() &&
979 var->data.offset != existing->data.offset) {
980 linker_error(prog, "offset specifications for %s "
981 "`%s' have differing values\n",
982 mode_string(var), var->name);
983 return;
984 }
985
986 /* Validate layout qualifiers for gl_FragDepth.
987 *
988 * From the AMD/ARB_conservative_depth specs:
989 *
990 * "If gl_FragDepth is redeclared in any fragment shader in a
991 * program, it must be redeclared in all fragment shaders in
992 * that program that have static assignments to
993 * gl_FragDepth. All redeclarations of gl_FragDepth in all
994 * fragment shaders in a single program must have the same set
995 * of qualifiers."
996 */
997 if (strcmp(var->name, "gl_FragDepth") == 0) {
998 bool layout_declared = var->data.depth_layout != ir_depth_layout_none;
999 bool layout_differs =
1000 var->data.depth_layout != existing->data.depth_layout;
1001
1002 if (layout_declared && layout_differs) {
1003 linker_error(prog,
1004 "All redeclarations of gl_FragDepth in all "
1005 "fragment shaders in a single program must have "
1006 "the same set of qualifiers.\n");
1007 }
1008
1009 if (var->data.used && layout_differs) {
1010 linker_error(prog,
1011 "If gl_FragDepth is redeclared with a layout "
1012 "qualifier in any fragment shader, it must be "
1013 "redeclared with the same layout qualifier in "
1014 "all fragment shaders that have assignments to "
1015 "gl_FragDepth\n");
1016 }
1017 }
1018
1019 /* Page 35 (page 41 of the PDF) of the GLSL 4.20 spec says:
1020 *
1021 * "If a shared global has multiple initializers, the
1022 * initializers must all be constant expressions, and they
1023 * must all have the same value. Otherwise, a link error will
1024 * result. (A shared global having only one initializer does
1025 * not require that initializer to be a constant expression.)"
1026 *
1027 * Previous to 4.20 the GLSL spec simply said that initializers
1028 * must have the same value. In this case of non-constant
1029 * initializers, this was impossible to determine. As a result,
1030 * no vendor actually implemented that behavior. The 4.20
1031 * behavior matches the implemented behavior of at least one other
1032 * vendor, so we'll implement that for all GLSL versions.
1033 */
1034 if (var->constant_initializer != NULL) {
1035 if (existing->constant_initializer != NULL) {
1036 if (!var->constant_initializer->has_value(existing->constant_initializer)) {
1037 linker_error(prog, "initializers for %s "
1038 "`%s' have differing values\n",
1039 mode_string(var), var->name);
1040 return;
1041 }
1042 } else {
1043 /* If the first-seen instance of a particular uniform did
1044 * not have an initializer but a later instance does,
1045 * replace the former with the later.
1046 */
1047 variables->replace_variable(existing->name, var);
1048 }
1049 }
1050
1051 if (var->data.has_initializer) {
1052 if (existing->data.has_initializer
1053 && (var->constant_initializer == NULL
1054 || existing->constant_initializer == NULL)) {
1055 linker_error(prog,
1056 "shared global variable `%s' has multiple "
1057 "non-constant initializers.\n",
1058 var->name);
1059 return;
1060 }
1061 }
1062
1063 if (existing->data.invariant != var->data.invariant) {
1064 linker_error(prog, "declarations for %s `%s' have "
1065 "mismatching invariant qualifiers\n",
1066 mode_string(var), var->name);
1067 return;
1068 }
1069 if (existing->data.centroid != var->data.centroid) {
1070 linker_error(prog, "declarations for %s `%s' have "
1071 "mismatching centroid qualifiers\n",
1072 mode_string(var), var->name);
1073 return;
1074 }
1075 if (existing->data.sample != var->data.sample) {
1076 linker_error(prog, "declarations for %s `%s` have "
1077 "mismatching sample qualifiers\n",
1078 mode_string(var), var->name);
1079 return;
1080 }
1081 if (existing->data.image_format != var->data.image_format) {
1082 linker_error(prog, "declarations for %s `%s` have "
1083 "mismatching image format qualifiers\n",
1084 mode_string(var), var->name);
1085 return;
1086 }
1087
1088 /* Only in GLSL ES 3.10, the precision qualifier should not match
1089 * between block members defined in matched block names within a
1090 * shader interface.
1091 *
1092 * In GLSL ES 3.00 and ES 3.20, precision qualifier for each block
1093 * member should match.
1094 */
1095 if (prog->IsES && (prog->data->Version != 310 ||
1096 !var->get_interface_type()) &&
1097 existing->data.precision != var->data.precision) {
1098 linker_error(prog, "declarations for %s `%s` have "
1099 "mismatching precision qualifiers\n",
1100 mode_string(var), var->name);
1101 return;
1102 }
1103 } else
1104 variables->add_variable(var);
1105 }
1106 }
1107
1108
1109 /**
1110 * Perform validation of uniforms used across multiple shader stages
1111 */
1112 void
1113 cross_validate_uniforms(struct gl_shader_program *prog)
1114 {
1115 glsl_symbol_table variables;
1116 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1117 if (prog->_LinkedShaders[i] == NULL)
1118 continue;
1119
1120 cross_validate_globals(prog, prog->_LinkedShaders[i]->ir, &variables,
1121 true);
1122 }
1123 }
1124
1125 /**
1126 * Accumulates the array of buffer blocks and checks that all definitions of
1127 * blocks agree on their contents.
1128 */
1129 static bool
1130 interstage_cross_validate_uniform_blocks(struct gl_shader_program *prog,
1131 bool validate_ssbo)
1132 {
1133 int *InterfaceBlockStageIndex[MESA_SHADER_STAGES];
1134 struct gl_uniform_block *blks = NULL;
1135 unsigned *num_blks = validate_ssbo ? &prog->data->NumShaderStorageBlocks :
1136 &prog->data->NumUniformBlocks;
1137
1138 unsigned max_num_buffer_blocks = 0;
1139 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1140 if (prog->_LinkedShaders[i]) {
1141 if (validate_ssbo) {
1142 max_num_buffer_blocks +=
1143 prog->_LinkedShaders[i]->Program->info.num_ssbos;
1144 } else {
1145 max_num_buffer_blocks +=
1146 prog->_LinkedShaders[i]->Program->info.num_ubos;
1147 }
1148 }
1149 }
1150
1151 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1152 struct gl_linked_shader *sh = prog->_LinkedShaders[i];
1153
1154 InterfaceBlockStageIndex[i] = new int[max_num_buffer_blocks];
1155 for (unsigned int j = 0; j < max_num_buffer_blocks; j++)
1156 InterfaceBlockStageIndex[i][j] = -1;
1157
1158 if (sh == NULL)
1159 continue;
1160
1161 unsigned sh_num_blocks;
1162 struct gl_uniform_block **sh_blks;
1163 if (validate_ssbo) {
1164 sh_num_blocks = prog->_LinkedShaders[i]->Program->info.num_ssbos;
1165 sh_blks = sh->Program->sh.ShaderStorageBlocks;
1166 } else {
1167 sh_num_blocks = prog->_LinkedShaders[i]->Program->info.num_ubos;
1168 sh_blks = sh->Program->sh.UniformBlocks;
1169 }
1170
1171 for (unsigned int j = 0; j < sh_num_blocks; j++) {
1172 int index = link_cross_validate_uniform_block(prog, &blks, num_blks,
1173 sh_blks[j]);
1174
1175 if (index == -1) {
1176 linker_error(prog, "buffer block `%s' has mismatching "
1177 "definitions\n", sh_blks[j]->Name);
1178
1179 for (unsigned k = 0; k <= i; k++) {
1180 delete[] InterfaceBlockStageIndex[k];
1181 }
1182 return false;
1183 }
1184
1185 InterfaceBlockStageIndex[i][index] = j;
1186 }
1187 }
1188
1189 /* Update per stage block pointers to point to the program list.
1190 * FIXME: We should be able to free the per stage blocks here.
1191 */
1192 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1193 for (unsigned j = 0; j < *num_blks; j++) {
1194 int stage_index = InterfaceBlockStageIndex[i][j];
1195
1196 if (stage_index != -1) {
1197 struct gl_linked_shader *sh = prog->_LinkedShaders[i];
1198
1199 struct gl_uniform_block **sh_blks = validate_ssbo ?
1200 sh->Program->sh.ShaderStorageBlocks :
1201 sh->Program->sh.UniformBlocks;
1202
1203 blks[j].stageref |= sh_blks[stage_index]->stageref;
1204 sh_blks[stage_index] = &blks[j];
1205 }
1206 }
1207 }
1208
1209 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1210 delete[] InterfaceBlockStageIndex[i];
1211 }
1212
1213 if (validate_ssbo)
1214 prog->data->ShaderStorageBlocks = blks;
1215 else
1216 prog->data->UniformBlocks = blks;
1217
1218 return true;
1219 }
1220
1221
1222 /**
1223 * Populates a shaders symbol table with all global declarations
1224 */
1225 static void
1226 populate_symbol_table(gl_linked_shader *sh)
1227 {
1228 sh->symbols = new(sh) glsl_symbol_table;
1229
1230 foreach_in_list(ir_instruction, inst, sh->ir) {
1231 ir_variable *var;
1232 ir_function *func;
1233
1234 if ((func = inst->as_function()) != NULL) {
1235 sh->symbols->add_function(func);
1236 } else if ((var = inst->as_variable()) != NULL) {
1237 if (var->data.mode != ir_var_temporary)
1238 sh->symbols->add_variable(var);
1239 }
1240 }
1241 }
1242
1243
1244 /**
1245 * Remap variables referenced in an instruction tree
1246 *
1247 * This is used when instruction trees are cloned from one shader and placed in
1248 * another. These trees will contain references to \c ir_variable nodes that
1249 * do not exist in the target shader. This function finds these \c ir_variable
1250 * references and replaces the references with matching variables in the target
1251 * shader.
1252 *
1253 * If there is no matching variable in the target shader, a clone of the
1254 * \c ir_variable is made and added to the target shader. The new variable is
1255 * added to \b both the instruction stream and the symbol table.
1256 *
1257 * \param inst IR tree that is to be processed.
1258 * \param symbols Symbol table containing global scope symbols in the
1259 * linked shader.
1260 * \param instructions Instruction stream where new variable declarations
1261 * should be added.
1262 */
1263 void
1264 remap_variables(ir_instruction *inst, struct gl_linked_shader *target,
1265 hash_table *temps)
1266 {
1267 class remap_visitor : public ir_hierarchical_visitor {
1268 public:
1269 remap_visitor(struct gl_linked_shader *target, hash_table *temps)
1270 {
1271 this->target = target;
1272 this->symbols = target->symbols;
1273 this->instructions = target->ir;
1274 this->temps = temps;
1275 }
1276
1277 virtual ir_visitor_status visit(ir_dereference_variable *ir)
1278 {
1279 if (ir->var->data.mode == ir_var_temporary) {
1280 hash_entry *entry = _mesa_hash_table_search(temps, ir->var);
1281 ir_variable *var = entry ? (ir_variable *) entry->data : NULL;
1282
1283 assert(var != NULL);
1284 ir->var = var;
1285 return visit_continue;
1286 }
1287
1288 ir_variable *const existing =
1289 this->symbols->get_variable(ir->var->name);
1290 if (existing != NULL)
1291 ir->var = existing;
1292 else {
1293 ir_variable *copy = ir->var->clone(this->target, NULL);
1294
1295 this->symbols->add_variable(copy);
1296 this->instructions->push_head(copy);
1297 ir->var = copy;
1298 }
1299
1300 return visit_continue;
1301 }
1302
1303 private:
1304 struct gl_linked_shader *target;
1305 glsl_symbol_table *symbols;
1306 exec_list *instructions;
1307 hash_table *temps;
1308 };
1309
1310 remap_visitor v(target, temps);
1311
1312 inst->accept(&v);
1313 }
1314
1315
1316 /**
1317 * Move non-declarations from one instruction stream to another
1318 *
1319 * The intended usage pattern of this function is to pass the pointer to the
1320 * head sentinel of a list (i.e., a pointer to the list cast to an \c exec_node
1321 * pointer) for \c last and \c false for \c make_copies on the first
1322 * call. Successive calls pass the return value of the previous call for
1323 * \c last and \c true for \c make_copies.
1324 *
1325 * \param instructions Source instruction stream
1326 * \param last Instruction after which new instructions should be
1327 * inserted in the target instruction stream
1328 * \param make_copies Flag selecting whether instructions in \c instructions
1329 * should be copied (via \c ir_instruction::clone) into the
1330 * target list or moved.
1331 *
1332 * \return
1333 * The new "last" instruction in the target instruction stream. This pointer
1334 * is suitable for use as the \c last parameter of a later call to this
1335 * function.
1336 */
1337 exec_node *
1338 move_non_declarations(exec_list *instructions, exec_node *last,
1339 bool make_copies, gl_linked_shader *target)
1340 {
1341 hash_table *temps = NULL;
1342
1343 if (make_copies)
1344 temps = _mesa_hash_table_create(NULL, _mesa_hash_pointer,
1345 _mesa_key_pointer_equal);
1346
1347 foreach_in_list_safe(ir_instruction, inst, instructions) {
1348 if (inst->as_function())
1349 continue;
1350
1351 ir_variable *var = inst->as_variable();
1352 if ((var != NULL) && (var->data.mode != ir_var_temporary))
1353 continue;
1354
1355 assert(inst->as_assignment()
1356 || inst->as_call()
1357 || inst->as_if() /* for initializers with the ?: operator */
1358 || ((var != NULL) && (var->data.mode == ir_var_temporary)));
1359
1360 if (make_copies) {
1361 inst = inst->clone(target, NULL);
1362
1363 if (var != NULL)
1364 _mesa_hash_table_insert(temps, var, inst);
1365 else
1366 remap_variables(inst, target, temps);
1367 } else {
1368 inst->remove();
1369 }
1370
1371 last->insert_after(inst);
1372 last = inst;
1373 }
1374
1375 if (make_copies)
1376 _mesa_hash_table_destroy(temps, NULL);
1377
1378 return last;
1379 }
1380
1381
1382 /**
1383 * This class is only used in link_intrastage_shaders() below but declaring
1384 * it inside that function leads to compiler warnings with some versions of
1385 * gcc.
1386 */
1387 class array_sizing_visitor : public deref_type_updater {
1388 public:
1389 array_sizing_visitor()
1390 : mem_ctx(ralloc_context(NULL)),
1391 unnamed_interfaces(_mesa_hash_table_create(NULL, _mesa_hash_pointer,
1392 _mesa_key_pointer_equal))
1393 {
1394 }
1395
1396 ~array_sizing_visitor()
1397 {
1398 _mesa_hash_table_destroy(this->unnamed_interfaces, NULL);
1399 ralloc_free(this->mem_ctx);
1400 }
1401
1402 virtual ir_visitor_status visit(ir_variable *var)
1403 {
1404 const glsl_type *type_without_array;
1405 bool implicit_sized_array = var->data.implicit_sized_array;
1406 fixup_type(&var->type, var->data.max_array_access,
1407 var->data.from_ssbo_unsized_array,
1408 &implicit_sized_array);
1409 var->data.implicit_sized_array = implicit_sized_array;
1410 type_without_array = var->type->without_array();
1411 if (var->type->is_interface()) {
1412 if (interface_contains_unsized_arrays(var->type)) {
1413 const glsl_type *new_type =
1414 resize_interface_members(var->type,
1415 var->get_max_ifc_array_access(),
1416 var->is_in_shader_storage_block());
1417 var->type = new_type;
1418 var->change_interface_type(new_type);
1419 }
1420 } else if (type_without_array->is_interface()) {
1421 if (interface_contains_unsized_arrays(type_without_array)) {
1422 const glsl_type *new_type =
1423 resize_interface_members(type_without_array,
1424 var->get_max_ifc_array_access(),
1425 var->is_in_shader_storage_block());
1426 var->change_interface_type(new_type);
1427 var->type = update_interface_members_array(var->type, new_type);
1428 }
1429 } else if (const glsl_type *ifc_type = var->get_interface_type()) {
1430 /* Store a pointer to the variable in the unnamed_interfaces
1431 * hashtable.
1432 */
1433 hash_entry *entry =
1434 _mesa_hash_table_search(this->unnamed_interfaces,
1435 ifc_type);
1436
1437 ir_variable **interface_vars = entry ? (ir_variable **) entry->data : NULL;
1438
1439 if (interface_vars == NULL) {
1440 interface_vars = rzalloc_array(mem_ctx, ir_variable *,
1441 ifc_type->length);
1442 _mesa_hash_table_insert(this->unnamed_interfaces, ifc_type,
1443 interface_vars);
1444 }
1445 unsigned index = ifc_type->field_index(var->name);
1446 assert(index < ifc_type->length);
1447 assert(interface_vars[index] == NULL);
1448 interface_vars[index] = var;
1449 }
1450 return visit_continue;
1451 }
1452
1453 /**
1454 * For each unnamed interface block that was discovered while running the
1455 * visitor, adjust the interface type to reflect the newly assigned array
1456 * sizes, and fix up the ir_variable nodes to point to the new interface
1457 * type.
1458 */
1459 void fixup_unnamed_interface_types()
1460 {
1461 hash_table_call_foreach(this->unnamed_interfaces,
1462 fixup_unnamed_interface_type, NULL);
1463 }
1464
1465 private:
1466 /**
1467 * If the type pointed to by \c type represents an unsized array, replace
1468 * it with a sized array whose size is determined by max_array_access.
1469 */
1470 static void fixup_type(const glsl_type **type, unsigned max_array_access,
1471 bool from_ssbo_unsized_array, bool *implicit_sized)
1472 {
1473 if (!from_ssbo_unsized_array && (*type)->is_unsized_array()) {
1474 *type = glsl_type::get_array_instance((*type)->fields.array,
1475 max_array_access + 1);
1476 *implicit_sized = true;
1477 assert(*type != NULL);
1478 }
1479 }
1480
1481 static const glsl_type *
1482 update_interface_members_array(const glsl_type *type,
1483 const glsl_type *new_interface_type)
1484 {
1485 const glsl_type *element_type = type->fields.array;
1486 if (element_type->is_array()) {
1487 const glsl_type *new_array_type =
1488 update_interface_members_array(element_type, new_interface_type);
1489 return glsl_type::get_array_instance(new_array_type, type->length);
1490 } else {
1491 return glsl_type::get_array_instance(new_interface_type,
1492 type->length);
1493 }
1494 }
1495
1496 /**
1497 * Determine whether the given interface type contains unsized arrays (if
1498 * it doesn't, array_sizing_visitor doesn't need to process it).
1499 */
1500 static bool interface_contains_unsized_arrays(const glsl_type *type)
1501 {
1502 for (unsigned i = 0; i < type->length; i++) {
1503 const glsl_type *elem_type = type->fields.structure[i].type;
1504 if (elem_type->is_unsized_array())
1505 return true;
1506 }
1507 return false;
1508 }
1509
1510 /**
1511 * Create a new interface type based on the given type, with unsized arrays
1512 * replaced by sized arrays whose size is determined by
1513 * max_ifc_array_access.
1514 */
1515 static const glsl_type *
1516 resize_interface_members(const glsl_type *type,
1517 const int *max_ifc_array_access,
1518 bool is_ssbo)
1519 {
1520 unsigned num_fields = type->length;
1521 glsl_struct_field *fields = new glsl_struct_field[num_fields];
1522 memcpy(fields, type->fields.structure,
1523 num_fields * sizeof(*fields));
1524 for (unsigned i = 0; i < num_fields; i++) {
1525 bool implicit_sized_array = fields[i].implicit_sized_array;
1526 /* If SSBO last member is unsized array, we don't replace it by a sized
1527 * array.
1528 */
1529 if (is_ssbo && i == (num_fields - 1))
1530 fixup_type(&fields[i].type, max_ifc_array_access[i],
1531 true, &implicit_sized_array);
1532 else
1533 fixup_type(&fields[i].type, max_ifc_array_access[i],
1534 false, &implicit_sized_array);
1535 fields[i].implicit_sized_array = implicit_sized_array;
1536 }
1537 glsl_interface_packing packing =
1538 (glsl_interface_packing) type->interface_packing;
1539 bool row_major = (bool) type->interface_row_major;
1540 const glsl_type *new_ifc_type =
1541 glsl_type::get_interface_instance(fields, num_fields,
1542 packing, row_major, type->name);
1543 delete [] fields;
1544 return new_ifc_type;
1545 }
1546
1547 static void fixup_unnamed_interface_type(const void *key, void *data,
1548 void *)
1549 {
1550 const glsl_type *ifc_type = (const glsl_type *) key;
1551 ir_variable **interface_vars = (ir_variable **) data;
1552 unsigned num_fields = ifc_type->length;
1553 glsl_struct_field *fields = new glsl_struct_field[num_fields];
1554 memcpy(fields, ifc_type->fields.structure,
1555 num_fields * sizeof(*fields));
1556 bool interface_type_changed = false;
1557 for (unsigned i = 0; i < num_fields; i++) {
1558 if (interface_vars[i] != NULL &&
1559 fields[i].type != interface_vars[i]->type) {
1560 fields[i].type = interface_vars[i]->type;
1561 interface_type_changed = true;
1562 }
1563 }
1564 if (!interface_type_changed) {
1565 delete [] fields;
1566 return;
1567 }
1568 glsl_interface_packing packing =
1569 (glsl_interface_packing) ifc_type->interface_packing;
1570 bool row_major = (bool) ifc_type->interface_row_major;
1571 const glsl_type *new_ifc_type =
1572 glsl_type::get_interface_instance(fields, num_fields, packing,
1573 row_major, ifc_type->name);
1574 delete [] fields;
1575 for (unsigned i = 0; i < num_fields; i++) {
1576 if (interface_vars[i] != NULL)
1577 interface_vars[i]->change_interface_type(new_ifc_type);
1578 }
1579 }
1580
1581 /**
1582 * Memory context used to allocate the data in \c unnamed_interfaces.
1583 */
1584 void *mem_ctx;
1585
1586 /**
1587 * Hash table from const glsl_type * to an array of ir_variable *'s
1588 * pointing to the ir_variables constituting each unnamed interface block.
1589 */
1590 hash_table *unnamed_interfaces;
1591 };
1592
1593 static bool
1594 validate_xfb_buffer_stride(struct gl_context *ctx, unsigned idx,
1595 struct gl_shader_program *prog)
1596 {
1597 /* We will validate doubles at a later stage */
1598 if (prog->TransformFeedback.BufferStride[idx] % 4) {
1599 linker_error(prog, "invalid qualifier xfb_stride=%d must be a "
1600 "multiple of 4 or if its applied to a type that is "
1601 "or contains a double a multiple of 8.",
1602 prog->TransformFeedback.BufferStride[idx]);
1603 return false;
1604 }
1605
1606 if (prog->TransformFeedback.BufferStride[idx] / 4 >
1607 ctx->Const.MaxTransformFeedbackInterleavedComponents) {
1608 linker_error(prog, "The MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS "
1609 "limit has been exceeded.");
1610 return false;
1611 }
1612
1613 return true;
1614 }
1615
1616 /**
1617 * Check for conflicting xfb_stride default qualifiers and store buffer stride
1618 * for later use.
1619 */
1620 static void
1621 link_xfb_stride_layout_qualifiers(struct gl_context *ctx,
1622 struct gl_shader_program *prog,
1623 struct gl_linked_shader *linked_shader,
1624 struct gl_shader **shader_list,
1625 unsigned num_shaders)
1626 {
1627 for (unsigned i = 0; i < MAX_FEEDBACK_BUFFERS; i++) {
1628 prog->TransformFeedback.BufferStride[i] = 0;
1629 }
1630
1631 for (unsigned i = 0; i < num_shaders; i++) {
1632 struct gl_shader *shader = shader_list[i];
1633
1634 for (unsigned j = 0; j < MAX_FEEDBACK_BUFFERS; j++) {
1635 if (shader->TransformFeedbackBufferStride[j]) {
1636 if (prog->TransformFeedback.BufferStride[j] == 0) {
1637 prog->TransformFeedback.BufferStride[j] =
1638 shader->TransformFeedbackBufferStride[j];
1639 if (!validate_xfb_buffer_stride(ctx, j, prog))
1640 return;
1641 } else if (prog->TransformFeedback.BufferStride[j] !=
1642 shader->TransformFeedbackBufferStride[j]){
1643 linker_error(prog,
1644 "intrastage shaders defined with conflicting "
1645 "xfb_stride for buffer %d (%d and %d)\n", j,
1646 prog->TransformFeedback.BufferStride[j],
1647 shader->TransformFeedbackBufferStride[j]);
1648 return;
1649 }
1650 }
1651 }
1652 }
1653 }
1654
1655 /**
1656 * Performs the cross-validation of tessellation control shader vertices and
1657 * layout qualifiers for the attached tessellation control shaders,
1658 * and propagates them to the linked TCS and linked shader program.
1659 */
1660 static void
1661 link_tcs_out_layout_qualifiers(struct gl_shader_program *prog,
1662 struct gl_program *gl_prog,
1663 struct gl_shader **shader_list,
1664 unsigned num_shaders)
1665 {
1666 if (gl_prog->info.stage != MESA_SHADER_TESS_CTRL)
1667 return;
1668
1669 gl_prog->info.tess.tcs_vertices_out = 0;
1670
1671 /* From the GLSL 4.0 spec (chapter 4.3.8.2):
1672 *
1673 * "All tessellation control shader layout declarations in a program
1674 * must specify the same output patch vertex count. There must be at
1675 * least one layout qualifier specifying an output patch vertex count
1676 * in any program containing tessellation control shaders; however,
1677 * such a declaration is not required in all tessellation control
1678 * shaders."
1679 */
1680
1681 for (unsigned i = 0; i < num_shaders; i++) {
1682 struct gl_shader *shader = shader_list[i];
1683
1684 if (shader->info.TessCtrl.VerticesOut != 0) {
1685 if (gl_prog->info.tess.tcs_vertices_out != 0 &&
1686 gl_prog->info.tess.tcs_vertices_out !=
1687 (unsigned) shader->info.TessCtrl.VerticesOut) {
1688 linker_error(prog, "tessellation control shader defined with "
1689 "conflicting output vertex count (%d and %d)\n",
1690 gl_prog->info.tess.tcs_vertices_out,
1691 shader->info.TessCtrl.VerticesOut);
1692 return;
1693 }
1694 gl_prog->info.tess.tcs_vertices_out =
1695 shader->info.TessCtrl.VerticesOut;
1696 }
1697 }
1698
1699 /* Just do the intrastage -> interstage propagation right now,
1700 * since we already know we're in the right type of shader program
1701 * for doing it.
1702 */
1703 if (gl_prog->info.tess.tcs_vertices_out == 0) {
1704 linker_error(prog, "tessellation control shader didn't declare "
1705 "vertices out layout qualifier\n");
1706 return;
1707 }
1708 }
1709
1710
1711 /**
1712 * Performs the cross-validation of tessellation evaluation shader
1713 * primitive type, vertex spacing, ordering and point_mode layout qualifiers
1714 * for the attached tessellation evaluation shaders, and propagates them
1715 * to the linked TES and linked shader program.
1716 */
1717 static void
1718 link_tes_in_layout_qualifiers(struct gl_shader_program *prog,
1719 struct gl_program *gl_prog,
1720 struct gl_shader **shader_list,
1721 unsigned num_shaders)
1722 {
1723 if (gl_prog->info.stage != MESA_SHADER_TESS_EVAL)
1724 return;
1725
1726 int point_mode = -1;
1727 unsigned vertex_order = 0;
1728
1729 gl_prog->info.tess.primitive_mode = PRIM_UNKNOWN;
1730 gl_prog->info.tess.spacing = TESS_SPACING_UNSPECIFIED;
1731
1732 /* From the GLSL 4.0 spec (chapter 4.3.8.1):
1733 *
1734 * "At least one tessellation evaluation shader (compilation unit) in
1735 * a program must declare a primitive mode in its input layout.
1736 * Declaration vertex spacing, ordering, and point mode identifiers is
1737 * optional. It is not required that all tessellation evaluation
1738 * shaders in a program declare a primitive mode. If spacing or
1739 * vertex ordering declarations are omitted, the tessellation
1740 * primitive generator will use equal spacing or counter-clockwise
1741 * vertex ordering, respectively. If a point mode declaration is
1742 * omitted, the tessellation primitive generator will produce lines or
1743 * triangles according to the primitive mode."
1744 */
1745
1746 for (unsigned i = 0; i < num_shaders; i++) {
1747 struct gl_shader *shader = shader_list[i];
1748
1749 if (shader->info.TessEval.PrimitiveMode != PRIM_UNKNOWN) {
1750 if (gl_prog->info.tess.primitive_mode != PRIM_UNKNOWN &&
1751 gl_prog->info.tess.primitive_mode !=
1752 shader->info.TessEval.PrimitiveMode) {
1753 linker_error(prog, "tessellation evaluation shader defined with "
1754 "conflicting input primitive modes.\n");
1755 return;
1756 }
1757 gl_prog->info.tess.primitive_mode =
1758 shader->info.TessEval.PrimitiveMode;
1759 }
1760
1761 if (shader->info.TessEval.Spacing != 0) {
1762 if (gl_prog->info.tess.spacing != 0 && gl_prog->info.tess.spacing !=
1763 shader->info.TessEval.Spacing) {
1764 linker_error(prog, "tessellation evaluation shader defined with "
1765 "conflicting vertex spacing.\n");
1766 return;
1767 }
1768 gl_prog->info.tess.spacing = shader->info.TessEval.Spacing;
1769 }
1770
1771 if (shader->info.TessEval.VertexOrder != 0) {
1772 if (vertex_order != 0 &&
1773 vertex_order != shader->info.TessEval.VertexOrder) {
1774 linker_error(prog, "tessellation evaluation shader defined with "
1775 "conflicting ordering.\n");
1776 return;
1777 }
1778 vertex_order = shader->info.TessEval.VertexOrder;
1779 }
1780
1781 if (shader->info.TessEval.PointMode != -1) {
1782 if (point_mode != -1 &&
1783 point_mode != shader->info.TessEval.PointMode) {
1784 linker_error(prog, "tessellation evaluation shader defined with "
1785 "conflicting point modes.\n");
1786 return;
1787 }
1788 point_mode = shader->info.TessEval.PointMode;
1789 }
1790
1791 }
1792
1793 /* Just do the intrastage -> interstage propagation right now,
1794 * since we already know we're in the right type of shader program
1795 * for doing it.
1796 */
1797 if (gl_prog->info.tess.primitive_mode == PRIM_UNKNOWN) {
1798 linker_error(prog,
1799 "tessellation evaluation shader didn't declare input "
1800 "primitive modes.\n");
1801 return;
1802 }
1803
1804 if (gl_prog->info.tess.spacing == TESS_SPACING_UNSPECIFIED)
1805 gl_prog->info.tess.spacing = TESS_SPACING_EQUAL;
1806
1807 if (vertex_order == 0 || vertex_order == GL_CCW)
1808 gl_prog->info.tess.ccw = true;
1809 else
1810 gl_prog->info.tess.ccw = false;
1811
1812
1813 if (point_mode == -1 || point_mode == GL_FALSE)
1814 gl_prog->info.tess.point_mode = false;
1815 else
1816 gl_prog->info.tess.point_mode = true;
1817 }
1818
1819
1820 /**
1821 * Performs the cross-validation of layout qualifiers specified in
1822 * redeclaration of gl_FragCoord for the attached fragment shaders,
1823 * and propagates them to the linked FS and linked shader program.
1824 */
1825 static void
1826 link_fs_inout_layout_qualifiers(struct gl_shader_program *prog,
1827 struct gl_linked_shader *linked_shader,
1828 struct gl_shader **shader_list,
1829 unsigned num_shaders)
1830 {
1831 bool redeclares_gl_fragcoord = false;
1832 bool uses_gl_fragcoord = false;
1833 bool origin_upper_left = false;
1834 bool pixel_center_integer = false;
1835
1836 if (linked_shader->Stage != MESA_SHADER_FRAGMENT ||
1837 (prog->data->Version < 150 &&
1838 !prog->ARB_fragment_coord_conventions_enable))
1839 return;
1840
1841 for (unsigned i = 0; i < num_shaders; i++) {
1842 struct gl_shader *shader = shader_list[i];
1843 /* From the GLSL 1.50 spec, page 39:
1844 *
1845 * "If gl_FragCoord is redeclared in any fragment shader in a program,
1846 * it must be redeclared in all the fragment shaders in that program
1847 * that have a static use gl_FragCoord."
1848 */
1849 if ((redeclares_gl_fragcoord && !shader->redeclares_gl_fragcoord &&
1850 shader->uses_gl_fragcoord)
1851 || (shader->redeclares_gl_fragcoord && !redeclares_gl_fragcoord &&
1852 uses_gl_fragcoord)) {
1853 linker_error(prog, "fragment shader defined with conflicting "
1854 "layout qualifiers for gl_FragCoord\n");
1855 }
1856
1857 /* From the GLSL 1.50 spec, page 39:
1858 *
1859 * "All redeclarations of gl_FragCoord in all fragment shaders in a
1860 * single program must have the same set of qualifiers."
1861 */
1862 if (redeclares_gl_fragcoord && shader->redeclares_gl_fragcoord &&
1863 (shader->origin_upper_left != origin_upper_left ||
1864 shader->pixel_center_integer != pixel_center_integer)) {
1865 linker_error(prog, "fragment shader defined with conflicting "
1866 "layout qualifiers for gl_FragCoord\n");
1867 }
1868
1869 /* Update the linked shader state. Note that uses_gl_fragcoord should
1870 * accumulate the results. The other values should replace. If there
1871 * are multiple redeclarations, all the fields except uses_gl_fragcoord
1872 * are already known to be the same.
1873 */
1874 if (shader->redeclares_gl_fragcoord || shader->uses_gl_fragcoord) {
1875 redeclares_gl_fragcoord = shader->redeclares_gl_fragcoord;
1876 uses_gl_fragcoord |= shader->uses_gl_fragcoord;
1877 origin_upper_left = shader->origin_upper_left;
1878 pixel_center_integer = shader->pixel_center_integer;
1879 }
1880
1881 linked_shader->Program->info.fs.early_fragment_tests |=
1882 shader->EarlyFragmentTests;
1883 linked_shader->Program->info.fs.inner_coverage |= shader->InnerCoverage;
1884 linked_shader->Program->info.fs.post_depth_coverage |=
1885 shader->PostDepthCoverage;
1886
1887 linked_shader->Program->sh.fs.BlendSupport |= shader->BlendSupport;
1888 }
1889 }
1890
1891 /**
1892 * Performs the cross-validation of geometry shader max_vertices and
1893 * primitive type layout qualifiers for the attached geometry shaders,
1894 * and propagates them to the linked GS and linked shader program.
1895 */
1896 static void
1897 link_gs_inout_layout_qualifiers(struct gl_shader_program *prog,
1898 struct gl_program *gl_prog,
1899 struct gl_shader **shader_list,
1900 unsigned num_shaders)
1901 {
1902 /* No in/out qualifiers defined for anything but GLSL 1.50+
1903 * geometry shaders so far.
1904 */
1905 if (gl_prog->info.stage != MESA_SHADER_GEOMETRY ||
1906 prog->data->Version < 150)
1907 return;
1908
1909 int vertices_out = -1;
1910
1911 gl_prog->info.gs.invocations = 0;
1912 gl_prog->info.gs.input_primitive = PRIM_UNKNOWN;
1913 gl_prog->info.gs.output_primitive = PRIM_UNKNOWN;
1914
1915 /* From the GLSL 1.50 spec, page 46:
1916 *
1917 * "All geometry shader output layout declarations in a program
1918 * must declare the same layout and same value for
1919 * max_vertices. There must be at least one geometry output
1920 * layout declaration somewhere in a program, but not all
1921 * geometry shaders (compilation units) are required to
1922 * declare it."
1923 */
1924
1925 for (unsigned i = 0; i < num_shaders; i++) {
1926 struct gl_shader *shader = shader_list[i];
1927
1928 if (shader->info.Geom.InputType != PRIM_UNKNOWN) {
1929 if (gl_prog->info.gs.input_primitive != PRIM_UNKNOWN &&
1930 gl_prog->info.gs.input_primitive !=
1931 shader->info.Geom.InputType) {
1932 linker_error(prog, "geometry shader defined with conflicting "
1933 "input types\n");
1934 return;
1935 }
1936 gl_prog->info.gs.input_primitive = shader->info.Geom.InputType;
1937 }
1938
1939 if (shader->info.Geom.OutputType != PRIM_UNKNOWN) {
1940 if (gl_prog->info.gs.output_primitive != PRIM_UNKNOWN &&
1941 gl_prog->info.gs.output_primitive !=
1942 shader->info.Geom.OutputType) {
1943 linker_error(prog, "geometry shader defined with conflicting "
1944 "output types\n");
1945 return;
1946 }
1947 gl_prog->info.gs.output_primitive = shader->info.Geom.OutputType;
1948 }
1949
1950 if (shader->info.Geom.VerticesOut != -1) {
1951 if (vertices_out != -1 &&
1952 vertices_out != shader->info.Geom.VerticesOut) {
1953 linker_error(prog, "geometry shader defined with conflicting "
1954 "output vertex count (%d and %d)\n",
1955 vertices_out, shader->info.Geom.VerticesOut);
1956 return;
1957 }
1958 vertices_out = shader->info.Geom.VerticesOut;
1959 }
1960
1961 if (shader->info.Geom.Invocations != 0) {
1962 if (gl_prog->info.gs.invocations != 0 &&
1963 gl_prog->info.gs.invocations !=
1964 (unsigned) shader->info.Geom.Invocations) {
1965 linker_error(prog, "geometry shader defined with conflicting "
1966 "invocation count (%d and %d)\n",
1967 gl_prog->info.gs.invocations,
1968 shader->info.Geom.Invocations);
1969 return;
1970 }
1971 gl_prog->info.gs.invocations = shader->info.Geom.Invocations;
1972 }
1973 }
1974
1975 /* Just do the intrastage -> interstage propagation right now,
1976 * since we already know we're in the right type of shader program
1977 * for doing it.
1978 */
1979 if (gl_prog->info.gs.input_primitive == PRIM_UNKNOWN) {
1980 linker_error(prog,
1981 "geometry shader didn't declare primitive input type\n");
1982 return;
1983 }
1984
1985 if (gl_prog->info.gs.output_primitive == PRIM_UNKNOWN) {
1986 linker_error(prog,
1987 "geometry shader didn't declare primitive output type\n");
1988 return;
1989 }
1990
1991 if (vertices_out == -1) {
1992 linker_error(prog,
1993 "geometry shader didn't declare max_vertices\n");
1994 return;
1995 } else {
1996 gl_prog->info.gs.vertices_out = vertices_out;
1997 }
1998
1999 if (gl_prog->info.gs.invocations == 0)
2000 gl_prog->info.gs.invocations = 1;
2001 }
2002
2003
2004 /**
2005 * Perform cross-validation of compute shader local_size_{x,y,z} layout
2006 * qualifiers for the attached compute shaders, and propagate them to the
2007 * linked CS and linked shader program.
2008 */
2009 static void
2010 link_cs_input_layout_qualifiers(struct gl_shader_program *prog,
2011 struct gl_program *gl_prog,
2012 struct gl_shader **shader_list,
2013 unsigned num_shaders)
2014 {
2015 /* This function is called for all shader stages, but it only has an effect
2016 * for compute shaders.
2017 */
2018 if (gl_prog->info.stage != MESA_SHADER_COMPUTE)
2019 return;
2020
2021 for (int i = 0; i < 3; i++)
2022 gl_prog->info.cs.local_size[i] = 0;
2023
2024 gl_prog->info.cs.local_size_variable = false;
2025
2026 /* From the ARB_compute_shader spec, in the section describing local size
2027 * declarations:
2028 *
2029 * If multiple compute shaders attached to a single program object
2030 * declare local work-group size, the declarations must be identical;
2031 * otherwise a link-time error results. Furthermore, if a program
2032 * object contains any compute shaders, at least one must contain an
2033 * input layout qualifier specifying the local work sizes of the
2034 * program, or a link-time error will occur.
2035 */
2036 for (unsigned sh = 0; sh < num_shaders; sh++) {
2037 struct gl_shader *shader = shader_list[sh];
2038
2039 if (shader->info.Comp.LocalSize[0] != 0) {
2040 if (gl_prog->info.cs.local_size[0] != 0) {
2041 for (int i = 0; i < 3; i++) {
2042 if (gl_prog->info.cs.local_size[i] !=
2043 shader->info.Comp.LocalSize[i]) {
2044 linker_error(prog, "compute shader defined with conflicting "
2045 "local sizes\n");
2046 return;
2047 }
2048 }
2049 }
2050 for (int i = 0; i < 3; i++) {
2051 gl_prog->info.cs.local_size[i] =
2052 shader->info.Comp.LocalSize[i];
2053 }
2054 } else if (shader->info.Comp.LocalSizeVariable) {
2055 if (gl_prog->info.cs.local_size[0] != 0) {
2056 /* The ARB_compute_variable_group_size spec says:
2057 *
2058 * If one compute shader attached to a program declares a
2059 * variable local group size and a second compute shader
2060 * attached to the same program declares a fixed local group
2061 * size, a link-time error results.
2062 */
2063 linker_error(prog, "compute shader defined with both fixed and "
2064 "variable local group size\n");
2065 return;
2066 }
2067 gl_prog->info.cs.local_size_variable = true;
2068 }
2069 }
2070
2071 /* Just do the intrastage -> interstage propagation right now,
2072 * since we already know we're in the right type of shader program
2073 * for doing it.
2074 */
2075 if (gl_prog->info.cs.local_size[0] == 0 &&
2076 !gl_prog->info.cs.local_size_variable) {
2077 linker_error(prog, "compute shader must contain a fixed or a variable "
2078 "local group size\n");
2079 return;
2080 }
2081 }
2082
2083
2084 /**
2085 * Combine a group of shaders for a single stage to generate a linked shader
2086 *
2087 * \note
2088 * If this function is supplied a single shader, it is cloned, and the new
2089 * shader is returned.
2090 */
2091 struct gl_linked_shader *
2092 link_intrastage_shaders(void *mem_ctx,
2093 struct gl_context *ctx,
2094 struct gl_shader_program *prog,
2095 struct gl_shader **shader_list,
2096 unsigned num_shaders,
2097 bool allow_missing_main)
2098 {
2099 struct gl_uniform_block *ubo_blocks = NULL;
2100 struct gl_uniform_block *ssbo_blocks = NULL;
2101 unsigned num_ubo_blocks = 0;
2102 unsigned num_ssbo_blocks = 0;
2103
2104 /* Check that global variables defined in multiple shaders are consistent.
2105 */
2106 glsl_symbol_table variables;
2107 for (unsigned i = 0; i < num_shaders; i++) {
2108 if (shader_list[i] == NULL)
2109 continue;
2110 cross_validate_globals(prog, shader_list[i]->ir, &variables, false);
2111 }
2112
2113 if (!prog->data->LinkStatus)
2114 return NULL;
2115
2116 /* Check that interface blocks defined in multiple shaders are consistent.
2117 */
2118 validate_intrastage_interface_blocks(prog, (const gl_shader **)shader_list,
2119 num_shaders);
2120 if (!prog->data->LinkStatus)
2121 return NULL;
2122
2123 /* Check that there is only a single definition of each function signature
2124 * across all shaders.
2125 */
2126 for (unsigned i = 0; i < (num_shaders - 1); i++) {
2127 foreach_in_list(ir_instruction, node, shader_list[i]->ir) {
2128 ir_function *const f = node->as_function();
2129
2130 if (f == NULL)
2131 continue;
2132
2133 for (unsigned j = i + 1; j < num_shaders; j++) {
2134 ir_function *const other =
2135 shader_list[j]->symbols->get_function(f->name);
2136
2137 /* If the other shader has no function (and therefore no function
2138 * signatures) with the same name, skip to the next shader.
2139 */
2140 if (other == NULL)
2141 continue;
2142
2143 foreach_in_list(ir_function_signature, sig, &f->signatures) {
2144 if (!sig->is_defined)
2145 continue;
2146
2147 ir_function_signature *other_sig =
2148 other->exact_matching_signature(NULL, &sig->parameters);
2149
2150 if (other_sig != NULL && other_sig->is_defined) {
2151 linker_error(prog, "function `%s' is multiply defined\n",
2152 f->name);
2153 return NULL;
2154 }
2155 }
2156 }
2157 }
2158 }
2159
2160 /* Find the shader that defines main, and make a clone of it.
2161 *
2162 * Starting with the clone, search for undefined references. If one is
2163 * found, find the shader that defines it. Clone the reference and add
2164 * it to the shader. Repeat until there are no undefined references or
2165 * until a reference cannot be resolved.
2166 */
2167 gl_shader *main = NULL;
2168 for (unsigned i = 0; i < num_shaders; i++) {
2169 if (_mesa_get_main_function_signature(shader_list[i]->symbols)) {
2170 main = shader_list[i];
2171 break;
2172 }
2173 }
2174
2175 if (main == NULL && allow_missing_main)
2176 main = shader_list[0];
2177
2178 if (main == NULL) {
2179 linker_error(prog, "%s shader lacks `main'\n",
2180 _mesa_shader_stage_to_string(shader_list[0]->Stage));
2181 return NULL;
2182 }
2183
2184 gl_linked_shader *linked = rzalloc(NULL, struct gl_linked_shader);
2185 linked->Stage = shader_list[0]->Stage;
2186
2187 /* Create program and attach it to the linked shader */
2188 struct gl_program *gl_prog =
2189 ctx->Driver.NewProgram(ctx,
2190 _mesa_shader_stage_to_program(shader_list[0]->Stage),
2191 prog->Name, false);
2192 if (!gl_prog) {
2193 prog->data->LinkStatus = linking_failure;
2194 _mesa_delete_linked_shader(ctx, linked);
2195 return NULL;
2196 }
2197
2198 _mesa_reference_shader_program_data(ctx, &gl_prog->sh.data, prog->data);
2199
2200 /* Don't use _mesa_reference_program() just take ownership */
2201 linked->Program = gl_prog;
2202
2203 linked->ir = new(linked) exec_list;
2204 clone_ir_list(mem_ctx, linked->ir, main->ir);
2205
2206 link_fs_inout_layout_qualifiers(prog, linked, shader_list, num_shaders);
2207 link_tcs_out_layout_qualifiers(prog, gl_prog, shader_list, num_shaders);
2208 link_tes_in_layout_qualifiers(prog, gl_prog, shader_list, num_shaders);
2209 link_gs_inout_layout_qualifiers(prog, gl_prog, shader_list, num_shaders);
2210 link_cs_input_layout_qualifiers(prog, gl_prog, shader_list, num_shaders);
2211 link_xfb_stride_layout_qualifiers(ctx, prog, linked, shader_list,
2212 num_shaders);
2213
2214 populate_symbol_table(linked);
2215
2216 /* The pointer to the main function in the final linked shader (i.e., the
2217 * copy of the original shader that contained the main function).
2218 */
2219 ir_function_signature *const main_sig =
2220 _mesa_get_main_function_signature(linked->symbols);
2221
2222 /* Move any instructions other than variable declarations or function
2223 * declarations into main.
2224 */
2225 if (main_sig != NULL) {
2226 exec_node *insertion_point =
2227 move_non_declarations(linked->ir, (exec_node *) &main_sig->body, false,
2228 linked);
2229
2230 for (unsigned i = 0; i < num_shaders; i++) {
2231 if (shader_list[i] == main)
2232 continue;
2233
2234 insertion_point = move_non_declarations(shader_list[i]->ir,
2235 insertion_point, true, linked);
2236 }
2237 }
2238
2239 if (!link_function_calls(prog, linked, shader_list, num_shaders)) {
2240 _mesa_delete_linked_shader(ctx, linked);
2241 return NULL;
2242 }
2243
2244 /* Make a pass over all variable declarations to ensure that arrays with
2245 * unspecified sizes have a size specified. The size is inferred from the
2246 * max_array_access field.
2247 */
2248 array_sizing_visitor v;
2249 v.run(linked->ir);
2250 v.fixup_unnamed_interface_types();
2251
2252 /* Link up uniform blocks defined within this stage. */
2253 link_uniform_blocks(mem_ctx, ctx, prog, linked, &ubo_blocks,
2254 &num_ubo_blocks, &ssbo_blocks, &num_ssbo_blocks);
2255
2256 if (!prog->data->LinkStatus) {
2257 _mesa_delete_linked_shader(ctx, linked);
2258 return NULL;
2259 }
2260
2261 /* Copy ubo blocks to linked shader list */
2262 linked->Program->sh.UniformBlocks =
2263 ralloc_array(linked, gl_uniform_block *, num_ubo_blocks);
2264 ralloc_steal(linked, ubo_blocks);
2265 for (unsigned i = 0; i < num_ubo_blocks; i++) {
2266 linked->Program->sh.UniformBlocks[i] = &ubo_blocks[i];
2267 }
2268 linked->Program->info.num_ubos = num_ubo_blocks;
2269
2270 /* Copy ssbo blocks to linked shader list */
2271 linked->Program->sh.ShaderStorageBlocks =
2272 ralloc_array(linked, gl_uniform_block *, num_ssbo_blocks);
2273 ralloc_steal(linked, ssbo_blocks);
2274 for (unsigned i = 0; i < num_ssbo_blocks; i++) {
2275 linked->Program->sh.ShaderStorageBlocks[i] = &ssbo_blocks[i];
2276 }
2277 linked->Program->info.num_ssbos = num_ssbo_blocks;
2278
2279 /* At this point linked should contain all of the linked IR, so
2280 * validate it to make sure nothing went wrong.
2281 */
2282 validate_ir_tree(linked->ir);
2283
2284 /* Set the size of geometry shader input arrays */
2285 if (linked->Stage == MESA_SHADER_GEOMETRY) {
2286 unsigned num_vertices =
2287 vertices_per_prim(gl_prog->info.gs.input_primitive);
2288 array_resize_visitor input_resize_visitor(num_vertices, prog,
2289 MESA_SHADER_GEOMETRY);
2290 foreach_in_list(ir_instruction, ir, linked->ir) {
2291 ir->accept(&input_resize_visitor);
2292 }
2293 }
2294
2295 if (ctx->Const.VertexID_is_zero_based)
2296 lower_vertex_id(linked);
2297
2298 #ifdef DEBUG
2299 /* Compute the source checksum. */
2300 linked->SourceChecksum = 0;
2301 for (unsigned i = 0; i < num_shaders; i++) {
2302 if (shader_list[i] == NULL)
2303 continue;
2304 linked->SourceChecksum ^= shader_list[i]->SourceChecksum;
2305 }
2306 #endif
2307
2308 return linked;
2309 }
2310
2311 /**
2312 * Update the sizes of linked shader uniform arrays to the maximum
2313 * array index used.
2314 *
2315 * From page 81 (page 95 of the PDF) of the OpenGL 2.1 spec:
2316 *
2317 * If one or more elements of an array are active,
2318 * GetActiveUniform will return the name of the array in name,
2319 * subject to the restrictions listed above. The type of the array
2320 * is returned in type. The size parameter contains the highest
2321 * array element index used, plus one. The compiler or linker
2322 * determines the highest index used. There will be only one
2323 * active uniform reported by the GL per uniform array.
2324
2325 */
2326 static void
2327 update_array_sizes(struct gl_shader_program *prog)
2328 {
2329 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
2330 if (prog->_LinkedShaders[i] == NULL)
2331 continue;
2332
2333 bool types_were_updated = false;
2334
2335 foreach_in_list(ir_instruction, node, prog->_LinkedShaders[i]->ir) {
2336 ir_variable *const var = node->as_variable();
2337
2338 if ((var == NULL) || (var->data.mode != ir_var_uniform) ||
2339 !var->type->is_array())
2340 continue;
2341
2342 /* GL_ARB_uniform_buffer_object says that std140 uniforms
2343 * will not be eliminated. Since we always do std140, just
2344 * don't resize arrays in UBOs.
2345 *
2346 * Atomic counters are supposed to get deterministic
2347 * locations assigned based on the declaration ordering and
2348 * sizes, array compaction would mess that up.
2349 *
2350 * Subroutine uniforms are not removed.
2351 */
2352 if (var->is_in_buffer_block() || var->type->contains_atomic() ||
2353 var->type->contains_subroutine() || var->constant_initializer)
2354 continue;
2355
2356 int size = var->data.max_array_access;
2357 for (unsigned j = 0; j < MESA_SHADER_STAGES; j++) {
2358 if (prog->_LinkedShaders[j] == NULL)
2359 continue;
2360
2361 foreach_in_list(ir_instruction, node2, prog->_LinkedShaders[j]->ir) {
2362 ir_variable *other_var = node2->as_variable();
2363 if (!other_var)
2364 continue;
2365
2366 if (strcmp(var->name, other_var->name) == 0 &&
2367 other_var->data.max_array_access > size) {
2368 size = other_var->data.max_array_access;
2369 }
2370 }
2371 }
2372
2373 if (size + 1 != (int)var->type->length) {
2374 /* If this is a built-in uniform (i.e., it's backed by some
2375 * fixed-function state), adjust the number of state slots to
2376 * match the new array size. The number of slots per array entry
2377 * is not known. It seems safe to assume that the total number of
2378 * slots is an integer multiple of the number of array elements.
2379 * Determine the number of slots per array element by dividing by
2380 * the old (total) size.
2381 */
2382 const unsigned num_slots = var->get_num_state_slots();
2383 if (num_slots > 0) {
2384 var->set_num_state_slots((size + 1)
2385 * (num_slots / var->type->length));
2386 }
2387
2388 var->type = glsl_type::get_array_instance(var->type->fields.array,
2389 size + 1);
2390 types_were_updated = true;
2391 }
2392 }
2393
2394 /* Update the types of dereferences in case we changed any. */
2395 if (types_were_updated) {
2396 deref_type_updater v;
2397 v.run(prog->_LinkedShaders[i]->ir);
2398 }
2399 }
2400 }
2401
2402 /**
2403 * Resize tessellation evaluation per-vertex inputs to the size of
2404 * tessellation control per-vertex outputs.
2405 */
2406 static void
2407 resize_tes_inputs(struct gl_context *ctx,
2408 struct gl_shader_program *prog)
2409 {
2410 if (prog->_LinkedShaders[MESA_SHADER_TESS_EVAL] == NULL)
2411 return;
2412
2413 gl_linked_shader *const tcs = prog->_LinkedShaders[MESA_SHADER_TESS_CTRL];
2414 gl_linked_shader *const tes = prog->_LinkedShaders[MESA_SHADER_TESS_EVAL];
2415
2416 /* If no control shader is present, then the TES inputs are statically
2417 * sized to MaxPatchVertices; the actual size of the arrays won't be
2418 * known until draw time.
2419 */
2420 const int num_vertices = tcs
2421 ? tcs->Program->info.tess.tcs_vertices_out
2422 : ctx->Const.MaxPatchVertices;
2423
2424 array_resize_visitor input_resize_visitor(num_vertices, prog,
2425 MESA_SHADER_TESS_EVAL);
2426 foreach_in_list(ir_instruction, ir, tes->ir) {
2427 ir->accept(&input_resize_visitor);
2428 }
2429
2430 if (tcs || ctx->Const.LowerTESPatchVerticesIn) {
2431 /* Convert the gl_PatchVerticesIn system value into a constant, since
2432 * the value is known at this point.
2433 */
2434 foreach_in_list(ir_instruction, ir, tes->ir) {
2435 ir_variable *var = ir->as_variable();
2436 if (var && var->data.mode == ir_var_system_value &&
2437 var->data.location == SYSTEM_VALUE_VERTICES_IN) {
2438 void *mem_ctx = ralloc_parent(var);
2439 var->data.location = 0;
2440 var->data.explicit_location = false;
2441 if (tcs) {
2442 var->data.mode = ir_var_auto;
2443 var->constant_value = new(mem_ctx) ir_constant(num_vertices);
2444 } else {
2445 var->data.mode = ir_var_uniform;
2446 var->data.how_declared = ir_var_hidden;
2447 var->allocate_state_slots(1);
2448 ir_state_slot *slot0 = &var->get_state_slots()[0];
2449 slot0->swizzle = SWIZZLE_XXXX;
2450 slot0->tokens[0] = STATE_INTERNAL;
2451 slot0->tokens[1] = STATE_TES_PATCH_VERTICES_IN;
2452 for (int i = 2; i < STATE_LENGTH; i++)
2453 slot0->tokens[i] = 0;
2454 }
2455 }
2456 }
2457 }
2458 }
2459
2460 /**
2461 * Find a contiguous set of available bits in a bitmask.
2462 *
2463 * \param used_mask Bits representing used (1) and unused (0) locations
2464 * \param needed_count Number of contiguous bits needed.
2465 *
2466 * \return
2467 * Base location of the available bits on success or -1 on failure.
2468 */
2469 int
2470 find_available_slots(unsigned used_mask, unsigned needed_count)
2471 {
2472 unsigned needed_mask = (1 << needed_count) - 1;
2473 const int max_bit_to_test = (8 * sizeof(used_mask)) - needed_count;
2474
2475 /* The comparison to 32 is redundant, but without it GCC emits "warning:
2476 * cannot optimize possibly infinite loops" for the loop below.
2477 */
2478 if ((needed_count == 0) || (max_bit_to_test < 0) || (max_bit_to_test > 32))
2479 return -1;
2480
2481 for (int i = 0; i <= max_bit_to_test; i++) {
2482 if ((needed_mask & ~used_mask) == needed_mask)
2483 return i;
2484
2485 needed_mask <<= 1;
2486 }
2487
2488 return -1;
2489 }
2490
2491
2492 /**
2493 * Assign locations for either VS inputs or FS outputs
2494 *
2495 * \param mem_ctx Temporary ralloc context used for linking
2496 * \param prog Shader program whose variables need locations assigned
2497 * \param constants Driver specific constant values for the program.
2498 * \param target_index Selector for the program target to receive location
2499 * assignmnets. Must be either \c MESA_SHADER_VERTEX or
2500 * \c MESA_SHADER_FRAGMENT.
2501 *
2502 * \return
2503 * If locations are successfully assigned, true is returned. Otherwise an
2504 * error is emitted to the shader link log and false is returned.
2505 */
2506 bool
2507 assign_attribute_or_color_locations(void *mem_ctx,
2508 gl_shader_program *prog,
2509 struct gl_constants *constants,
2510 unsigned target_index)
2511 {
2512 /* Maximum number of generic locations. This corresponds to either the
2513 * maximum number of draw buffers or the maximum number of generic
2514 * attributes.
2515 */
2516 unsigned max_index = (target_index == MESA_SHADER_VERTEX) ?
2517 constants->Program[target_index].MaxAttribs :
2518 MAX2(constants->MaxDrawBuffers, constants->MaxDualSourceDrawBuffers);
2519
2520 /* Mark invalid locations as being used.
2521 */
2522 unsigned used_locations = (max_index >= 32)
2523 ? ~0 : ~((1 << max_index) - 1);
2524 unsigned double_storage_locations = 0;
2525
2526 assert((target_index == MESA_SHADER_VERTEX)
2527 || (target_index == MESA_SHADER_FRAGMENT));
2528
2529 gl_linked_shader *const sh = prog->_LinkedShaders[target_index];
2530 if (sh == NULL)
2531 return true;
2532
2533 /* Operate in a total of four passes.
2534 *
2535 * 1. Invalidate the location assignments for all vertex shader inputs.
2536 *
2537 * 2. Assign locations for inputs that have user-defined (via
2538 * glBindVertexAttribLocation) locations and outputs that have
2539 * user-defined locations (via glBindFragDataLocation).
2540 *
2541 * 3. Sort the attributes without assigned locations by number of slots
2542 * required in decreasing order. Fragmentation caused by attribute
2543 * locations assigned by the application may prevent large attributes
2544 * from having enough contiguous space.
2545 *
2546 * 4. Assign locations to any inputs without assigned locations.
2547 */
2548
2549 const int generic_base = (target_index == MESA_SHADER_VERTEX)
2550 ? (int) VERT_ATTRIB_GENERIC0 : (int) FRAG_RESULT_DATA0;
2551
2552 const enum ir_variable_mode direction =
2553 (target_index == MESA_SHADER_VERTEX)
2554 ? ir_var_shader_in : ir_var_shader_out;
2555
2556
2557 /* Temporary storage for the set of attributes that need locations assigned.
2558 */
2559 struct temp_attr {
2560 unsigned slots;
2561 ir_variable *var;
2562
2563 /* Used below in the call to qsort. */
2564 static int compare(const void *a, const void *b)
2565 {
2566 const temp_attr *const l = (const temp_attr *) a;
2567 const temp_attr *const r = (const temp_attr *) b;
2568
2569 /* Reversed because we want a descending order sort below. */
2570 return r->slots - l->slots;
2571 }
2572 } to_assign[32];
2573 assert(max_index <= 32);
2574
2575 /* Temporary array for the set of attributes that have locations assigned.
2576 */
2577 ir_variable *assigned[16];
2578
2579 unsigned num_attr = 0;
2580 unsigned assigned_attr = 0;
2581
2582 foreach_in_list(ir_instruction, node, sh->ir) {
2583 ir_variable *const var = node->as_variable();
2584
2585 if ((var == NULL) || (var->data.mode != (unsigned) direction))
2586 continue;
2587
2588 if (var->data.explicit_location) {
2589 var->data.is_unmatched_generic_inout = 0;
2590 if ((var->data.location >= (int)(max_index + generic_base))
2591 || (var->data.location < 0)) {
2592 linker_error(prog,
2593 "invalid explicit location %d specified for `%s'\n",
2594 (var->data.location < 0)
2595 ? var->data.location
2596 : var->data.location - generic_base,
2597 var->name);
2598 return false;
2599 }
2600 } else if (target_index == MESA_SHADER_VERTEX) {
2601 unsigned binding;
2602
2603 if (prog->AttributeBindings->get(binding, var->name)) {
2604 assert(binding >= VERT_ATTRIB_GENERIC0);
2605 var->data.location = binding;
2606 var->data.is_unmatched_generic_inout = 0;
2607 }
2608 } else if (target_index == MESA_SHADER_FRAGMENT) {
2609 unsigned binding;
2610 unsigned index;
2611 const char *name = var->name;
2612 const glsl_type *type = var->type;
2613
2614 while (type) {
2615 /* Check if there's a binding for the variable name */
2616 if (prog->FragDataBindings->get(binding, name)) {
2617 assert(binding >= FRAG_RESULT_DATA0);
2618 var->data.location = binding;
2619 var->data.is_unmatched_generic_inout = 0;
2620
2621 if (prog->FragDataIndexBindings->get(index, name)) {
2622 var->data.index = index;
2623 }
2624 break;
2625 }
2626
2627 /* If not, but it's an array type, look for name[0] */
2628 if (type->is_array()) {
2629 name = ralloc_asprintf(mem_ctx, "%s[0]", name);
2630 type = type->fields.array;
2631 continue;
2632 }
2633
2634 break;
2635 }
2636 }
2637
2638 if (strcmp(var->name, "gl_LastFragData") == 0)
2639 continue;
2640
2641 /* From GL4.5 core spec, section 15.2 (Shader Execution):
2642 *
2643 * "Output binding assignments will cause LinkProgram to fail:
2644 * ...
2645 * If the program has an active output assigned to a location greater
2646 * than or equal to the value of MAX_DUAL_SOURCE_DRAW_BUFFERS and has
2647 * an active output assigned an index greater than or equal to one;"
2648 */
2649 if (target_index == MESA_SHADER_FRAGMENT && var->data.index >= 1 &&
2650 var->data.location - generic_base >=
2651 (int) constants->MaxDualSourceDrawBuffers) {
2652 linker_error(prog,
2653 "output location %d >= GL_MAX_DUAL_SOURCE_DRAW_BUFFERS "
2654 "with index %u for %s\n",
2655 var->data.location - generic_base, var->data.index,
2656 var->name);
2657 return false;
2658 }
2659
2660 const unsigned slots = var->type->count_attribute_slots(target_index == MESA_SHADER_VERTEX);
2661
2662 /* If the variable is not a built-in and has a location statically
2663 * assigned in the shader (presumably via a layout qualifier), make sure
2664 * that it doesn't collide with other assigned locations. Otherwise,
2665 * add it to the list of variables that need linker-assigned locations.
2666 */
2667 if (var->data.location != -1) {
2668 if (var->data.location >= generic_base && var->data.index < 1) {
2669 /* From page 61 of the OpenGL 4.0 spec:
2670 *
2671 * "LinkProgram will fail if the attribute bindings assigned
2672 * by BindAttribLocation do not leave not enough space to
2673 * assign a location for an active matrix attribute or an
2674 * active attribute array, both of which require multiple
2675 * contiguous generic attributes."
2676 *
2677 * I think above text prohibits the aliasing of explicit and
2678 * automatic assignments. But, aliasing is allowed in manual
2679 * assignments of attribute locations. See below comments for
2680 * the details.
2681 *
2682 * From OpenGL 4.0 spec, page 61:
2683 *
2684 * "It is possible for an application to bind more than one
2685 * attribute name to the same location. This is referred to as
2686 * aliasing. This will only work if only one of the aliased
2687 * attributes is active in the executable program, or if no
2688 * path through the shader consumes more than one attribute of
2689 * a set of attributes aliased to the same location. A link
2690 * error can occur if the linker determines that every path
2691 * through the shader consumes multiple aliased attributes,
2692 * but implementations are not required to generate an error
2693 * in this case."
2694 *
2695 * From GLSL 4.30 spec, page 54:
2696 *
2697 * "A program will fail to link if any two non-vertex shader
2698 * input variables are assigned to the same location. For
2699 * vertex shaders, multiple input variables may be assigned
2700 * to the same location using either layout qualifiers or via
2701 * the OpenGL API. However, such aliasing is intended only to
2702 * support vertex shaders where each execution path accesses
2703 * at most one input per each location. Implementations are
2704 * permitted, but not required, to generate link-time errors
2705 * if they detect that every path through the vertex shader
2706 * executable accesses multiple inputs assigned to any single
2707 * location. For all shader types, a program will fail to link
2708 * if explicit location assignments leave the linker unable
2709 * to find space for other variables without explicit
2710 * assignments."
2711 *
2712 * From OpenGL ES 3.0 spec, page 56:
2713 *
2714 * "Binding more than one attribute name to the same location
2715 * is referred to as aliasing, and is not permitted in OpenGL
2716 * ES Shading Language 3.00 vertex shaders. LinkProgram will
2717 * fail when this condition exists. However, aliasing is
2718 * possible in OpenGL ES Shading Language 1.00 vertex shaders.
2719 * This will only work if only one of the aliased attributes
2720 * is active in the executable program, or if no path through
2721 * the shader consumes more than one attribute of a set of
2722 * attributes aliased to the same location. A link error can
2723 * occur if the linker determines that every path through the
2724 * shader consumes multiple aliased attributes, but implemen-
2725 * tations are not required to generate an error in this case."
2726 *
2727 * After looking at above references from OpenGL, OpenGL ES and
2728 * GLSL specifications, we allow aliasing of vertex input variables
2729 * in: OpenGL 2.0 (and above) and OpenGL ES 2.0.
2730 *
2731 * NOTE: This is not required by the spec but its worth mentioning
2732 * here that we're not doing anything to make sure that no path
2733 * through the vertex shader executable accesses multiple inputs
2734 * assigned to any single location.
2735 */
2736
2737 /* Mask representing the contiguous slots that will be used by
2738 * this attribute.
2739 */
2740 const unsigned attr = var->data.location - generic_base;
2741 const unsigned use_mask = (1 << slots) - 1;
2742 const char *const string = (target_index == MESA_SHADER_VERTEX)
2743 ? "vertex shader input" : "fragment shader output";
2744
2745 /* Generate a link error if the requested locations for this
2746 * attribute exceed the maximum allowed attribute location.
2747 */
2748 if (attr + slots > max_index) {
2749 linker_error(prog,
2750 "insufficient contiguous locations "
2751 "available for %s `%s' %d %d %d\n", string,
2752 var->name, used_locations, use_mask, attr);
2753 return false;
2754 }
2755
2756 /* Generate a link error if the set of bits requested for this
2757 * attribute overlaps any previously allocated bits.
2758 */
2759 if ((~(use_mask << attr) & used_locations) != used_locations) {
2760 if (target_index == MESA_SHADER_FRAGMENT && !prog->IsES) {
2761 /* From section 4.4.2 (Output Layout Qualifiers) of the GLSL
2762 * 4.40 spec:
2763 *
2764 * "Additionally, for fragment shader outputs, if two
2765 * variables are placed within the same location, they
2766 * must have the same underlying type (floating-point or
2767 * integer). No component aliasing of output variables or
2768 * members is allowed.
2769 */
2770 for (unsigned i = 0; i < assigned_attr; i++) {
2771 unsigned assigned_slots =
2772 assigned[i]->type->count_attribute_slots(false);
2773 unsigned assig_attr =
2774 assigned[i]->data.location - generic_base;
2775 unsigned assigned_use_mask = (1 << assigned_slots) - 1;
2776
2777 if ((assigned_use_mask << assig_attr) &
2778 (use_mask << attr)) {
2779
2780 const glsl_type *assigned_type =
2781 assigned[i]->type->without_array();
2782 const glsl_type *type = var->type->without_array();
2783 if (assigned_type->base_type != type->base_type) {
2784 linker_error(prog, "types do not match for aliased"
2785 " %ss %s and %s\n", string,
2786 assigned[i]->name, var->name);
2787 return false;
2788 }
2789
2790 unsigned assigned_component_mask =
2791 ((1 << assigned_type->vector_elements) - 1) <<
2792 assigned[i]->data.location_frac;
2793 unsigned component_mask =
2794 ((1 << type->vector_elements) - 1) <<
2795 var->data.location_frac;
2796 if (assigned_component_mask & component_mask) {
2797 linker_error(prog, "overlapping component is "
2798 "assigned to %ss %s and %s "
2799 "(component=%d)\n",
2800 string, assigned[i]->name, var->name,
2801 var->data.location_frac);
2802 return false;
2803 }
2804 }
2805 }
2806 } else if (target_index == MESA_SHADER_FRAGMENT ||
2807 (prog->IsES && prog->data->Version >= 300)) {
2808 linker_error(prog, "overlapping location is assigned "
2809 "to %s `%s' %d %d %d\n", string, var->name,
2810 used_locations, use_mask, attr);
2811 return false;
2812 } else {
2813 linker_warning(prog, "overlapping location is assigned "
2814 "to %s `%s' %d %d %d\n", string, var->name,
2815 used_locations, use_mask, attr);
2816 }
2817 }
2818
2819 used_locations |= (use_mask << attr);
2820
2821 /* From the GL 4.5 core spec, section 11.1.1 (Vertex Attributes):
2822 *
2823 * "A program with more than the value of MAX_VERTEX_ATTRIBS
2824 * active attribute variables may fail to link, unless
2825 * device-dependent optimizations are able to make the program
2826 * fit within available hardware resources. For the purposes
2827 * of this test, attribute variables of the type dvec3, dvec4,
2828 * dmat2x3, dmat2x4, dmat3, dmat3x4, dmat4x3, and dmat4 may
2829 * count as consuming twice as many attributes as equivalent
2830 * single-precision types. While these types use the same number
2831 * of generic attributes as their single-precision equivalents,
2832 * implementations are permitted to consume two single-precision
2833 * vectors of internal storage for each three- or four-component
2834 * double-precision vector."
2835 *
2836 * Mark this attribute slot as taking up twice as much space
2837 * so we can count it properly against limits. According to
2838 * issue (3) of the GL_ARB_vertex_attrib_64bit behavior, this
2839 * is optional behavior, but it seems preferable.
2840 */
2841 if (var->type->without_array()->is_dual_slot())
2842 double_storage_locations |= (use_mask << attr);
2843 }
2844
2845 assigned[assigned_attr] = var;
2846 assigned_attr++;
2847
2848 continue;
2849 }
2850
2851 if (num_attr >= max_index) {
2852 linker_error(prog, "too many %s (max %u)",
2853 target_index == MESA_SHADER_VERTEX ?
2854 "vertex shader inputs" : "fragment shader outputs",
2855 max_index);
2856 return false;
2857 }
2858 to_assign[num_attr].slots = slots;
2859 to_assign[num_attr].var = var;
2860 num_attr++;
2861 }
2862
2863 if (target_index == MESA_SHADER_VERTEX) {
2864 unsigned total_attribs_size =
2865 _mesa_bitcount(used_locations & ((1 << max_index) - 1)) +
2866 _mesa_bitcount(double_storage_locations);
2867 if (total_attribs_size > max_index) {
2868 linker_error(prog,
2869 "attempt to use %d vertex attribute slots only %d available ",
2870 total_attribs_size, max_index);
2871 return false;
2872 }
2873 }
2874
2875 /* If all of the attributes were assigned locations by the application (or
2876 * are built-in attributes with fixed locations), return early. This should
2877 * be the common case.
2878 */
2879 if (num_attr == 0)
2880 return true;
2881
2882 qsort(to_assign, num_attr, sizeof(to_assign[0]), temp_attr::compare);
2883
2884 if (target_index == MESA_SHADER_VERTEX) {
2885 /* VERT_ATTRIB_GENERIC0 is a pseudo-alias for VERT_ATTRIB_POS. It can
2886 * only be explicitly assigned by via glBindAttribLocation. Mark it as
2887 * reserved to prevent it from being automatically allocated below.
2888 */
2889 find_deref_visitor find("gl_Vertex");
2890 find.run(sh->ir);
2891 if (find.variable_found())
2892 used_locations |= (1 << 0);
2893 }
2894
2895 for (unsigned i = 0; i < num_attr; i++) {
2896 /* Mask representing the contiguous slots that will be used by this
2897 * attribute.
2898 */
2899 const unsigned use_mask = (1 << to_assign[i].slots) - 1;
2900
2901 int location = find_available_slots(used_locations, to_assign[i].slots);
2902
2903 if (location < 0) {
2904 const char *const string = (target_index == MESA_SHADER_VERTEX)
2905 ? "vertex shader input" : "fragment shader output";
2906
2907 linker_error(prog,
2908 "insufficient contiguous locations "
2909 "available for %s `%s'\n",
2910 string, to_assign[i].var->name);
2911 return false;
2912 }
2913
2914 to_assign[i].var->data.location = generic_base + location;
2915 to_assign[i].var->data.is_unmatched_generic_inout = 0;
2916 used_locations |= (use_mask << location);
2917
2918 if (to_assign[i].var->type->without_array()->is_dual_slot())
2919 double_storage_locations |= (use_mask << location);
2920 }
2921
2922 /* Now that we have all the locations, from the GL 4.5 core spec, section
2923 * 11.1.1 (Vertex Attributes), dvec3, dvec4, dmat2x3, dmat2x4, dmat3,
2924 * dmat3x4, dmat4x3, and dmat4 count as consuming twice as many attributes
2925 * as equivalent single-precision types.
2926 */
2927 if (target_index == MESA_SHADER_VERTEX) {
2928 unsigned total_attribs_size =
2929 _mesa_bitcount(used_locations & ((1 << max_index) - 1)) +
2930 _mesa_bitcount(double_storage_locations);
2931 if (total_attribs_size > max_index) {
2932 linker_error(prog,
2933 "attempt to use %d vertex attribute slots only %d available ",
2934 total_attribs_size, max_index);
2935 return false;
2936 }
2937 }
2938
2939 return true;
2940 }
2941
2942 /**
2943 * Match explicit locations of outputs to inputs and deactivate the
2944 * unmatch flag if found so we don't optimise them away.
2945 */
2946 static void
2947 match_explicit_outputs_to_inputs(gl_linked_shader *producer,
2948 gl_linked_shader *consumer)
2949 {
2950 glsl_symbol_table parameters;
2951 ir_variable *explicit_locations[MAX_VARYINGS_INCL_PATCH][4] =
2952 { {NULL, NULL} };
2953
2954 /* Find all shader outputs in the "producer" stage.
2955 */
2956 foreach_in_list(ir_instruction, node, producer->ir) {
2957 ir_variable *const var = node->as_variable();
2958
2959 if ((var == NULL) || (var->data.mode != ir_var_shader_out))
2960 continue;
2961
2962 if (var->data.explicit_location &&
2963 var->data.location >= VARYING_SLOT_VAR0) {
2964 const unsigned idx = var->data.location - VARYING_SLOT_VAR0;
2965 if (explicit_locations[idx][var->data.location_frac] == NULL)
2966 explicit_locations[idx][var->data.location_frac] = var;
2967 }
2968 }
2969
2970 /* Match inputs to outputs */
2971 foreach_in_list(ir_instruction, node, consumer->ir) {
2972 ir_variable *const input = node->as_variable();
2973
2974 if ((input == NULL) || (input->data.mode != ir_var_shader_in))
2975 continue;
2976
2977 ir_variable *output = NULL;
2978 if (input->data.explicit_location
2979 && input->data.location >= VARYING_SLOT_VAR0) {
2980 output = explicit_locations[input->data.location - VARYING_SLOT_VAR0]
2981 [input->data.location_frac];
2982
2983 if (output != NULL){
2984 input->data.is_unmatched_generic_inout = 0;
2985 output->data.is_unmatched_generic_inout = 0;
2986 }
2987 }
2988 }
2989 }
2990
2991 /**
2992 * Store the gl_FragDepth layout in the gl_shader_program struct.
2993 */
2994 static void
2995 store_fragdepth_layout(struct gl_shader_program *prog)
2996 {
2997 if (prog->_LinkedShaders[MESA_SHADER_FRAGMENT] == NULL) {
2998 return;
2999 }
3000
3001 struct exec_list *ir = prog->_LinkedShaders[MESA_SHADER_FRAGMENT]->ir;
3002
3003 /* We don't look up the gl_FragDepth symbol directly because if
3004 * gl_FragDepth is not used in the shader, it's removed from the IR.
3005 * However, the symbol won't be removed from the symbol table.
3006 *
3007 * We're only interested in the cases where the variable is NOT removed
3008 * from the IR.
3009 */
3010 foreach_in_list(ir_instruction, node, ir) {
3011 ir_variable *const var = node->as_variable();
3012
3013 if (var == NULL || var->data.mode != ir_var_shader_out) {
3014 continue;
3015 }
3016
3017 if (strcmp(var->name, "gl_FragDepth") == 0) {
3018 switch (var->data.depth_layout) {
3019 case ir_depth_layout_none:
3020 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_NONE;
3021 return;
3022 case ir_depth_layout_any:
3023 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_ANY;
3024 return;
3025 case ir_depth_layout_greater:
3026 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_GREATER;
3027 return;
3028 case ir_depth_layout_less:
3029 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_LESS;
3030 return;
3031 case ir_depth_layout_unchanged:
3032 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_UNCHANGED;
3033 return;
3034 default:
3035 assert(0);
3036 return;
3037 }
3038 }
3039 }
3040 }
3041
3042 /**
3043 * Validate the resources used by a program versus the implementation limits
3044 */
3045 static void
3046 check_resources(struct gl_context *ctx, struct gl_shader_program *prog)
3047 {
3048 unsigned total_uniform_blocks = 0;
3049 unsigned total_shader_storage_blocks = 0;
3050
3051 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3052 struct gl_linked_shader *sh = prog->_LinkedShaders[i];
3053
3054 if (sh == NULL)
3055 continue;
3056
3057 if (sh->Program->info.num_textures >
3058 ctx->Const.Program[i].MaxTextureImageUnits) {
3059 linker_error(prog, "Too many %s shader texture samplers\n",
3060 _mesa_shader_stage_to_string(i));
3061 }
3062
3063 if (sh->num_uniform_components >
3064 ctx->Const.Program[i].MaxUniformComponents) {
3065 if (ctx->Const.GLSLSkipStrictMaxUniformLimitCheck) {
3066 linker_warning(prog, "Too many %s shader default uniform block "
3067 "components, but the driver will try to optimize "
3068 "them out; this is non-portable out-of-spec "
3069 "behavior\n",
3070 _mesa_shader_stage_to_string(i));
3071 } else {
3072 linker_error(prog, "Too many %s shader default uniform block "
3073 "components\n",
3074 _mesa_shader_stage_to_string(i));
3075 }
3076 }
3077
3078 if (sh->num_combined_uniform_components >
3079 ctx->Const.Program[i].MaxCombinedUniformComponents) {
3080 if (ctx->Const.GLSLSkipStrictMaxUniformLimitCheck) {
3081 linker_warning(prog, "Too many %s shader uniform components, "
3082 "but the driver will try to optimize them out; "
3083 "this is non-portable out-of-spec behavior\n",
3084 _mesa_shader_stage_to_string(i));
3085 } else {
3086 linker_error(prog, "Too many %s shader uniform components\n",
3087 _mesa_shader_stage_to_string(i));
3088 }
3089 }
3090
3091 total_shader_storage_blocks += sh->Program->info.num_ssbos;
3092 total_uniform_blocks += sh->Program->info.num_ubos;
3093
3094 const unsigned max_uniform_blocks =
3095 ctx->Const.Program[i].MaxUniformBlocks;
3096 if (max_uniform_blocks < sh->Program->info.num_ubos) {
3097 linker_error(prog, "Too many %s uniform blocks (%d/%d)\n",
3098 _mesa_shader_stage_to_string(i),
3099 sh->Program->info.num_ubos, max_uniform_blocks);
3100 }
3101
3102 const unsigned max_shader_storage_blocks =
3103 ctx->Const.Program[i].MaxShaderStorageBlocks;
3104 if (max_shader_storage_blocks < sh->Program->info.num_ssbos) {
3105 linker_error(prog, "Too many %s shader storage blocks (%d/%d)\n",
3106 _mesa_shader_stage_to_string(i),
3107 sh->Program->info.num_ssbos, max_shader_storage_blocks);
3108 }
3109 }
3110
3111 if (total_uniform_blocks > ctx->Const.MaxCombinedUniformBlocks) {
3112 linker_error(prog, "Too many combined uniform blocks (%d/%d)\n",
3113 total_uniform_blocks, ctx->Const.MaxCombinedUniformBlocks);
3114 }
3115
3116 if (total_shader_storage_blocks > ctx->Const.MaxCombinedShaderStorageBlocks) {
3117 linker_error(prog, "Too many combined shader storage blocks (%d/%d)\n",
3118 total_shader_storage_blocks,
3119 ctx->Const.MaxCombinedShaderStorageBlocks);
3120 }
3121
3122 for (unsigned i = 0; i < prog->data->NumUniformBlocks; i++) {
3123 if (prog->data->UniformBlocks[i].UniformBufferSize >
3124 ctx->Const.MaxUniformBlockSize) {
3125 linker_error(prog, "Uniform block %s too big (%d/%d)\n",
3126 prog->data->UniformBlocks[i].Name,
3127 prog->data->UniformBlocks[i].UniformBufferSize,
3128 ctx->Const.MaxUniformBlockSize);
3129 }
3130 }
3131
3132 for (unsigned i = 0; i < prog->data->NumShaderStorageBlocks; i++) {
3133 if (prog->data->ShaderStorageBlocks[i].UniformBufferSize >
3134 ctx->Const.MaxShaderStorageBlockSize) {
3135 linker_error(prog, "Shader storage block %s too big (%d/%d)\n",
3136 prog->data->ShaderStorageBlocks[i].Name,
3137 prog->data->ShaderStorageBlocks[i].UniformBufferSize,
3138 ctx->Const.MaxShaderStorageBlockSize);
3139 }
3140 }
3141 }
3142
3143 static void
3144 link_calculate_subroutine_compat(struct gl_shader_program *prog)
3145 {
3146 unsigned mask = prog->data->linked_stages;
3147 while (mask) {
3148 const int i = u_bit_scan(&mask);
3149 struct gl_program *p = prog->_LinkedShaders[i]->Program;
3150
3151 for (unsigned j = 0; j < p->sh.NumSubroutineUniformRemapTable; j++) {
3152 if (p->sh.SubroutineUniformRemapTable[j] == INACTIVE_UNIFORM_EXPLICIT_LOCATION)
3153 continue;
3154
3155 struct gl_uniform_storage *uni = p->sh.SubroutineUniformRemapTable[j];
3156
3157 if (!uni)
3158 continue;
3159
3160 int count = 0;
3161 if (p->sh.NumSubroutineFunctions == 0) {
3162 linker_error(prog, "subroutine uniform %s defined but no valid functions found\n", uni->type->name);
3163 continue;
3164 }
3165 for (unsigned f = 0; f < p->sh.NumSubroutineFunctions; f++) {
3166 struct gl_subroutine_function *fn = &p->sh.SubroutineFunctions[f];
3167 for (int k = 0; k < fn->num_compat_types; k++) {
3168 if (fn->types[k] == uni->type) {
3169 count++;
3170 break;
3171 }
3172 }
3173 }
3174 uni->num_compatible_subroutines = count;
3175 }
3176 }
3177 }
3178
3179 static void
3180 check_subroutine_resources(struct gl_shader_program *prog)
3181 {
3182 unsigned mask = prog->data->linked_stages;
3183 while (mask) {
3184 const int i = u_bit_scan(&mask);
3185 struct gl_program *p = prog->_LinkedShaders[i]->Program;
3186
3187 if (p->sh.NumSubroutineUniformRemapTable > MAX_SUBROUTINE_UNIFORM_LOCATIONS) {
3188 linker_error(prog, "Too many %s shader subroutine uniforms\n",
3189 _mesa_shader_stage_to_string(i));
3190 }
3191 }
3192 }
3193 /**
3194 * Validate shader image resources.
3195 */
3196 static void
3197 check_image_resources(struct gl_context *ctx, struct gl_shader_program *prog)
3198 {
3199 unsigned total_image_units = 0;
3200 unsigned fragment_outputs = 0;
3201 unsigned total_shader_storage_blocks = 0;
3202
3203 if (!ctx->Extensions.ARB_shader_image_load_store)
3204 return;
3205
3206 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3207 struct gl_linked_shader *sh = prog->_LinkedShaders[i];
3208
3209 if (sh) {
3210 if (sh->Program->info.num_images > ctx->Const.Program[i].MaxImageUniforms)
3211 linker_error(prog, "Too many %s shader image uniforms (%u > %u)\n",
3212 _mesa_shader_stage_to_string(i),
3213 sh->Program->info.num_images,
3214 ctx->Const.Program[i].MaxImageUniforms);
3215
3216 total_image_units += sh->Program->info.num_images;
3217 total_shader_storage_blocks += sh->Program->info.num_ssbos;
3218
3219 if (i == MESA_SHADER_FRAGMENT) {
3220 foreach_in_list(ir_instruction, node, sh->ir) {
3221 ir_variable *var = node->as_variable();
3222 if (var && var->data.mode == ir_var_shader_out)
3223 /* since there are no double fs outputs - pass false */
3224 fragment_outputs += var->type->count_attribute_slots(false);
3225 }
3226 }
3227 }
3228 }
3229
3230 if (total_image_units > ctx->Const.MaxCombinedImageUniforms)
3231 linker_error(prog, "Too many combined image uniforms\n");
3232
3233 if (total_image_units + fragment_outputs + total_shader_storage_blocks >
3234 ctx->Const.MaxCombinedShaderOutputResources)
3235 linker_error(prog, "Too many combined image uniforms, shader storage "
3236 " buffers and fragment outputs\n");
3237 }
3238
3239
3240 /**
3241 * Initializes explicit location slots to INACTIVE_UNIFORM_EXPLICIT_LOCATION
3242 * for a variable, checks for overlaps between other uniforms using explicit
3243 * locations.
3244 */
3245 static int
3246 reserve_explicit_locations(struct gl_shader_program *prog,
3247 string_to_uint_map *map, ir_variable *var)
3248 {
3249 unsigned slots = var->type->uniform_locations();
3250 unsigned max_loc = var->data.location + slots - 1;
3251 unsigned return_value = slots;
3252
3253 /* Resize remap table if locations do not fit in the current one. */
3254 if (max_loc + 1 > prog->NumUniformRemapTable) {
3255 prog->UniformRemapTable =
3256 reralloc(prog, prog->UniformRemapTable,
3257 gl_uniform_storage *,
3258 max_loc + 1);
3259
3260 if (!prog->UniformRemapTable) {
3261 linker_error(prog, "Out of memory during linking.\n");
3262 return -1;
3263 }
3264
3265 /* Initialize allocated space. */
3266 for (unsigned i = prog->NumUniformRemapTable; i < max_loc + 1; i++)
3267 prog->UniformRemapTable[i] = NULL;
3268
3269 prog->NumUniformRemapTable = max_loc + 1;
3270 }
3271
3272 for (unsigned i = 0; i < slots; i++) {
3273 unsigned loc = var->data.location + i;
3274
3275 /* Check if location is already used. */
3276 if (prog->UniformRemapTable[loc] == INACTIVE_UNIFORM_EXPLICIT_LOCATION) {
3277
3278 /* Possibly same uniform from a different stage, this is ok. */
3279 unsigned hash_loc;
3280 if (map->get(hash_loc, var->name) && hash_loc == loc - i) {
3281 return_value = 0;
3282 continue;
3283 }
3284
3285 /* ARB_explicit_uniform_location specification states:
3286 *
3287 * "No two default-block uniform variables in the program can have
3288 * the same location, even if they are unused, otherwise a compiler
3289 * or linker error will be generated."
3290 */
3291 linker_error(prog,
3292 "location qualifier for uniform %s overlaps "
3293 "previously used location\n",
3294 var->name);
3295 return -1;
3296 }
3297
3298 /* Initialize location as inactive before optimization
3299 * rounds and location assignment.
3300 */
3301 prog->UniformRemapTable[loc] = INACTIVE_UNIFORM_EXPLICIT_LOCATION;
3302 }
3303
3304 /* Note, base location used for arrays. */
3305 map->put(var->data.location, var->name);
3306
3307 return return_value;
3308 }
3309
3310 static bool
3311 reserve_subroutine_explicit_locations(struct gl_shader_program *prog,
3312 struct gl_program *p,
3313 ir_variable *var)
3314 {
3315 unsigned slots = var->type->uniform_locations();
3316 unsigned max_loc = var->data.location + slots - 1;
3317
3318 /* Resize remap table if locations do not fit in the current one. */
3319 if (max_loc + 1 > p->sh.NumSubroutineUniformRemapTable) {
3320 p->sh.SubroutineUniformRemapTable =
3321 reralloc(p, p->sh.SubroutineUniformRemapTable,
3322 gl_uniform_storage *,
3323 max_loc + 1);
3324
3325 if (!p->sh.SubroutineUniformRemapTable) {
3326 linker_error(prog, "Out of memory during linking.\n");
3327 return false;
3328 }
3329
3330 /* Initialize allocated space. */
3331 for (unsigned i = p->sh.NumSubroutineUniformRemapTable; i < max_loc + 1; i++)
3332 p->sh.SubroutineUniformRemapTable[i] = NULL;
3333
3334 p->sh.NumSubroutineUniformRemapTable = max_loc + 1;
3335 }
3336
3337 for (unsigned i = 0; i < slots; i++) {
3338 unsigned loc = var->data.location + i;
3339
3340 /* Check if location is already used. */
3341 if (p->sh.SubroutineUniformRemapTable[loc] == INACTIVE_UNIFORM_EXPLICIT_LOCATION) {
3342
3343 /* ARB_explicit_uniform_location specification states:
3344 * "No two subroutine uniform variables can have the same location
3345 * in the same shader stage, otherwise a compiler or linker error
3346 * will be generated."
3347 */
3348 linker_error(prog,
3349 "location qualifier for uniform %s overlaps "
3350 "previously used location\n",
3351 var->name);
3352 return false;
3353 }
3354
3355 /* Initialize location as inactive before optimization
3356 * rounds and location assignment.
3357 */
3358 p->sh.SubroutineUniformRemapTable[loc] = INACTIVE_UNIFORM_EXPLICIT_LOCATION;
3359 }
3360
3361 return true;
3362 }
3363 /**
3364 * Check and reserve all explicit uniform locations, called before
3365 * any optimizations happen to handle also inactive uniforms and
3366 * inactive array elements that may get trimmed away.
3367 */
3368 static void
3369 check_explicit_uniform_locations(struct gl_context *ctx,
3370 struct gl_shader_program *prog)
3371 {
3372 prog->NumExplicitUniformLocations = 0;
3373
3374 if (!ctx->Extensions.ARB_explicit_uniform_location)
3375 return;
3376
3377 /* This map is used to detect if overlapping explicit locations
3378 * occur with the same uniform (from different stage) or a different one.
3379 */
3380 string_to_uint_map *uniform_map = new string_to_uint_map;
3381
3382 if (!uniform_map) {
3383 linker_error(prog, "Out of memory during linking.\n");
3384 return;
3385 }
3386
3387 unsigned entries_total = 0;
3388 unsigned mask = prog->data->linked_stages;
3389 while (mask) {
3390 const int i = u_bit_scan(&mask);
3391 struct gl_program *p = prog->_LinkedShaders[i]->Program;
3392
3393 foreach_in_list(ir_instruction, node, prog->_LinkedShaders[i]->ir) {
3394 ir_variable *var = node->as_variable();
3395 if (!var || var->data.mode != ir_var_uniform)
3396 continue;
3397
3398 if (var->data.explicit_location) {
3399 bool ret = false;
3400 if (var->type->without_array()->is_subroutine())
3401 ret = reserve_subroutine_explicit_locations(prog, p, var);
3402 else {
3403 int slots = reserve_explicit_locations(prog, uniform_map,
3404 var);
3405 if (slots != -1) {
3406 ret = true;
3407 entries_total += slots;
3408 }
3409 }
3410 if (!ret) {
3411 delete uniform_map;
3412 return;
3413 }
3414 }
3415 }
3416 }
3417
3418 struct empty_uniform_block *current_block = NULL;
3419
3420 for (unsigned i = 0; i < prog->NumUniformRemapTable; i++) {
3421 /* We found empty space in UniformRemapTable. */
3422 if (prog->UniformRemapTable[i] == NULL) {
3423 /* We've found the beginning of a new continous block of empty slots */
3424 if (!current_block || current_block->start + current_block->slots != i) {
3425 current_block = rzalloc(prog, struct empty_uniform_block);
3426 current_block->start = i;
3427 exec_list_push_tail(&prog->EmptyUniformLocations,
3428 &current_block->link);
3429 }
3430
3431 /* The current block continues, so we simply increment its slots */
3432 current_block->slots++;
3433 }
3434 }
3435
3436 delete uniform_map;
3437 prog->NumExplicitUniformLocations = entries_total;
3438 }
3439
3440 static bool
3441 should_add_buffer_variable(struct gl_shader_program *shProg,
3442 GLenum type, const char *name)
3443 {
3444 bool found_interface = false;
3445 unsigned block_name_len = 0;
3446 const char *block_name_dot = strchr(name, '.');
3447
3448 /* These rules only apply to buffer variables. So we return
3449 * true for the rest of types.
3450 */
3451 if (type != GL_BUFFER_VARIABLE)
3452 return true;
3453
3454 for (unsigned i = 0; i < shProg->data->NumShaderStorageBlocks; i++) {
3455 const char *block_name = shProg->data->ShaderStorageBlocks[i].Name;
3456 block_name_len = strlen(block_name);
3457
3458 const char *block_square_bracket = strchr(block_name, '[');
3459 if (block_square_bracket) {
3460 /* The block is part of an array of named interfaces,
3461 * for the name comparison we ignore the "[x]" part.
3462 */
3463 block_name_len -= strlen(block_square_bracket);
3464 }
3465
3466 if (block_name_dot) {
3467 /* Check if the variable name starts with the interface
3468 * name. The interface name (if present) should have the
3469 * length than the interface block name we are comparing to.
3470 */
3471 unsigned len = strlen(name) - strlen(block_name_dot);
3472 if (len != block_name_len)
3473 continue;
3474 }
3475
3476 if (strncmp(block_name, name, block_name_len) == 0) {
3477 found_interface = true;
3478 break;
3479 }
3480 }
3481
3482 /* We remove the interface name from the buffer variable name,
3483 * including the dot that follows it.
3484 */
3485 if (found_interface)
3486 name = name + block_name_len + 1;
3487
3488 /* The ARB_program_interface_query spec says:
3489 *
3490 * "For an active shader storage block member declared as an array, an
3491 * entry will be generated only for the first array element, regardless
3492 * of its type. For arrays of aggregate types, the enumeration rules
3493 * are applied recursively for the single enumerated array element."
3494 */
3495 const char *struct_first_dot = strchr(name, '.');
3496 const char *first_square_bracket = strchr(name, '[');
3497
3498 /* The buffer variable is on top level and it is not an array */
3499 if (!first_square_bracket) {
3500 return true;
3501 /* The shader storage block member is a struct, then generate the entry */
3502 } else if (struct_first_dot && struct_first_dot < first_square_bracket) {
3503 return true;
3504 } else {
3505 /* Shader storage block member is an array, only generate an entry for the
3506 * first array element.
3507 */
3508 if (strncmp(first_square_bracket, "[0]", 3) == 0)
3509 return true;
3510 }
3511
3512 return false;
3513 }
3514
3515 static bool
3516 add_program_resource(struct gl_shader_program *prog,
3517 struct set *resource_set,
3518 GLenum type, const void *data, uint8_t stages)
3519 {
3520 assert(data);
3521
3522 /* If resource already exists, do not add it again. */
3523 if (_mesa_set_search(resource_set, data))
3524 return true;
3525
3526 prog->data->ProgramResourceList =
3527 reralloc(prog,
3528 prog->data->ProgramResourceList,
3529 gl_program_resource,
3530 prog->data->NumProgramResourceList + 1);
3531
3532 if (!prog->data->ProgramResourceList) {
3533 linker_error(prog, "Out of memory during linking.\n");
3534 return false;
3535 }
3536
3537 struct gl_program_resource *res =
3538 &prog->data->ProgramResourceList[prog->data->NumProgramResourceList];
3539
3540 res->Type = type;
3541 res->Data = data;
3542 res->StageReferences = stages;
3543
3544 prog->data->NumProgramResourceList++;
3545
3546 _mesa_set_add(resource_set, data);
3547
3548 return true;
3549 }
3550
3551 /* Function checks if a variable var is a packed varying and
3552 * if given name is part of packed varying's list.
3553 *
3554 * If a variable is a packed varying, it has a name like
3555 * 'packed:a,b,c' where a, b and c are separate variables.
3556 */
3557 static bool
3558 included_in_packed_varying(ir_variable *var, const char *name)
3559 {
3560 if (strncmp(var->name, "packed:", 7) != 0)
3561 return false;
3562
3563 char *list = strdup(var->name + 7);
3564 assert(list);
3565
3566 bool found = false;
3567 char *saveptr;
3568 char *token = strtok_r(list, ",", &saveptr);
3569 while (token) {
3570 if (strcmp(token, name) == 0) {
3571 found = true;
3572 break;
3573 }
3574 token = strtok_r(NULL, ",", &saveptr);
3575 }
3576 free(list);
3577 return found;
3578 }
3579
3580 /**
3581 * Function builds a stage reference bitmask from variable name.
3582 */
3583 static uint8_t
3584 build_stageref(struct gl_shader_program *shProg, const char *name,
3585 unsigned mode)
3586 {
3587 uint8_t stages = 0;
3588
3589 /* Note, that we assume MAX 8 stages, if there will be more stages, type
3590 * used for reference mask in gl_program_resource will need to be changed.
3591 */
3592 assert(MESA_SHADER_STAGES < 8);
3593
3594 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3595 struct gl_linked_shader *sh = shProg->_LinkedShaders[i];
3596 if (!sh)
3597 continue;
3598
3599 /* Shader symbol table may contain variables that have
3600 * been optimized away. Search IR for the variable instead.
3601 */
3602 foreach_in_list(ir_instruction, node, sh->ir) {
3603 ir_variable *var = node->as_variable();
3604 if (var) {
3605 unsigned baselen = strlen(var->name);
3606
3607 if (included_in_packed_varying(var, name)) {
3608 stages |= (1 << i);
3609 break;
3610 }
3611
3612 /* Type needs to match if specified, otherwise we might
3613 * pick a variable with same name but different interface.
3614 */
3615 if (var->data.mode != mode)
3616 continue;
3617
3618 if (strncmp(var->name, name, baselen) == 0) {
3619 /* Check for exact name matches but also check for arrays and
3620 * structs.
3621 */
3622 if (name[baselen] == '\0' ||
3623 name[baselen] == '[' ||
3624 name[baselen] == '.') {
3625 stages |= (1 << i);
3626 break;
3627 }
3628 }
3629 }
3630 }
3631 }
3632 return stages;
3633 }
3634
3635 /**
3636 * Create gl_shader_variable from ir_variable class.
3637 */
3638 static gl_shader_variable *
3639 create_shader_variable(struct gl_shader_program *shProg,
3640 const ir_variable *in,
3641 const char *name, const glsl_type *type,
3642 const glsl_type *interface_type,
3643 bool use_implicit_location, int location,
3644 const glsl_type *outermost_struct_type)
3645 {
3646 gl_shader_variable *out = ralloc(shProg, struct gl_shader_variable);
3647 if (!out)
3648 return NULL;
3649
3650 /* Since gl_VertexID may be lowered to gl_VertexIDMESA, but applications
3651 * expect to see gl_VertexID in the program resource list. Pretend.
3652 */
3653 if (in->data.mode == ir_var_system_value &&
3654 in->data.location == SYSTEM_VALUE_VERTEX_ID_ZERO_BASE) {
3655 out->name = ralloc_strdup(shProg, "gl_VertexID");
3656 } else if ((in->data.mode == ir_var_shader_out &&
3657 in->data.location == VARYING_SLOT_TESS_LEVEL_OUTER) ||
3658 (in->data.mode == ir_var_system_value &&
3659 in->data.location == SYSTEM_VALUE_TESS_LEVEL_OUTER)) {
3660 out->name = ralloc_strdup(shProg, "gl_TessLevelOuter");
3661 type = glsl_type::get_array_instance(glsl_type::float_type, 4);
3662 } else if ((in->data.mode == ir_var_shader_out &&
3663 in->data.location == VARYING_SLOT_TESS_LEVEL_INNER) ||
3664 (in->data.mode == ir_var_system_value &&
3665 in->data.location == SYSTEM_VALUE_TESS_LEVEL_INNER)) {
3666 out->name = ralloc_strdup(shProg, "gl_TessLevelInner");
3667 type = glsl_type::get_array_instance(glsl_type::float_type, 2);
3668 } else {
3669 out->name = ralloc_strdup(shProg, name);
3670 }
3671
3672 if (!out->name)
3673 return NULL;
3674
3675 /* The ARB_program_interface_query spec says:
3676 *
3677 * "Not all active variables are assigned valid locations; the
3678 * following variables will have an effective location of -1:
3679 *
3680 * * uniforms declared as atomic counters;
3681 *
3682 * * members of a uniform block;
3683 *
3684 * * built-in inputs, outputs, and uniforms (starting with "gl_"); and
3685 *
3686 * * inputs or outputs not declared with a "location" layout
3687 * qualifier, except for vertex shader inputs and fragment shader
3688 * outputs."
3689 */
3690 if (in->type->base_type == GLSL_TYPE_ATOMIC_UINT ||
3691 is_gl_identifier(in->name) ||
3692 !(in->data.explicit_location || use_implicit_location)) {
3693 out->location = -1;
3694 } else {
3695 out->location = location;
3696 }
3697
3698 out->type = type;
3699 out->outermost_struct_type = outermost_struct_type;
3700 out->interface_type = interface_type;
3701 out->component = in->data.location_frac;
3702 out->index = in->data.index;
3703 out->patch = in->data.patch;
3704 out->mode = in->data.mode;
3705 out->interpolation = in->data.interpolation;
3706 out->explicit_location = in->data.explicit_location;
3707 out->precision = in->data.precision;
3708
3709 return out;
3710 }
3711
3712 static const glsl_type *
3713 resize_to_max_patch_vertices(const struct gl_context *ctx,
3714 const glsl_type *type)
3715 {
3716 if (!type)
3717 return NULL;
3718
3719 return glsl_type::get_array_instance(type->fields.array,
3720 ctx->Const.MaxPatchVertices);
3721 }
3722
3723 static bool
3724 add_shader_variable(const struct gl_context *ctx,
3725 struct gl_shader_program *shProg,
3726 struct set *resource_set,
3727 unsigned stage_mask,
3728 GLenum programInterface, ir_variable *var,
3729 const char *name, const glsl_type *type,
3730 bool use_implicit_location, int location,
3731 const glsl_type *outermost_struct_type = NULL)
3732 {
3733 const glsl_type *interface_type = var->get_interface_type();
3734
3735 if (outermost_struct_type == NULL) {
3736 /* Unsized (non-patch) TCS output/TES input arrays are implicitly
3737 * sized to gl_MaxPatchVertices. Internally, we shrink them to a
3738 * smaller size.
3739 *
3740 * This can cause trouble with SSO programs. Since the TCS declares
3741 * the number of output vertices, we can always shrink TCS output
3742 * arrays. However, the TES might not be linked with a TCS, in
3743 * which case it won't know the size of the patch. In other words,
3744 * the TCS and TES may disagree on the (smaller) array sizes. This
3745 * can result in the resource names differing across stages, causing
3746 * SSO validation failures and other cascading issues.
3747 *
3748 * Expanding the array size to the full gl_MaxPatchVertices fixes
3749 * these issues. It's also what program interface queries expect,
3750 * as that is the official size of the array.
3751 */
3752 if (var->data.tess_varying_implicit_sized_array) {
3753 type = resize_to_max_patch_vertices(ctx, type);
3754 interface_type = resize_to_max_patch_vertices(ctx, interface_type);
3755 }
3756
3757 if (var->data.from_named_ifc_block) {
3758 const char *interface_name = interface_type->name;
3759
3760 if (interface_type->is_array()) {
3761 /* Issue #16 of the ARB_program_interface_query spec says:
3762 *
3763 * "* If a variable is a member of an interface block without an
3764 * instance name, it is enumerated using just the variable name.
3765 *
3766 * * If a variable is a member of an interface block with an
3767 * instance name, it is enumerated as "BlockName.Member", where
3768 * "BlockName" is the name of the interface block (not the
3769 * instance name) and "Member" is the name of the variable."
3770 *
3771 * In particular, it indicates that it should be "BlockName",
3772 * not "BlockName[array length]". The conformance suite and
3773 * dEQP both require this behavior.
3774 *
3775 * Here, we unwrap the extra array level added by named interface
3776 * block array lowering so we have the correct variable type. We
3777 * also unwrap the interface type when constructing the name.
3778 *
3779 * We leave interface_type the same so that ES 3.x SSO pipeline
3780 * validation can enforce the rules requiring array length to
3781 * match on interface blocks.
3782 */
3783 type = type->fields.array;
3784
3785 interface_name = interface_type->fields.array->name;
3786 }
3787
3788 name = ralloc_asprintf(shProg, "%s.%s", interface_name, name);
3789 }
3790 }
3791
3792 switch (type->base_type) {
3793 case GLSL_TYPE_STRUCT: {
3794 /* The ARB_program_interface_query spec says:
3795 *
3796 * "For an active variable declared as a structure, a separate entry
3797 * will be generated for each active structure member. The name of
3798 * each entry is formed by concatenating the name of the structure,
3799 * the "." character, and the name of the structure member. If a
3800 * structure member to enumerate is itself a structure or array,
3801 * these enumeration rules are applied recursively."
3802 */
3803 if (outermost_struct_type == NULL)
3804 outermost_struct_type = type;
3805
3806 unsigned field_location = location;
3807 for (unsigned i = 0; i < type->length; i++) {
3808 const struct glsl_struct_field *field = &type->fields.structure[i];
3809 char *field_name = ralloc_asprintf(shProg, "%s.%s", name, field->name);
3810 if (!add_shader_variable(ctx, shProg, resource_set,
3811 stage_mask, programInterface,
3812 var, field_name, field->type,
3813 use_implicit_location, field_location,
3814 outermost_struct_type))
3815 return false;
3816
3817 field_location += field->type->count_attribute_slots(false);
3818 }
3819 return true;
3820 }
3821
3822 default: {
3823 /* The ARB_program_interface_query spec says:
3824 *
3825 * "For an active variable declared as a single instance of a basic
3826 * type, a single entry will be generated, using the variable name
3827 * from the shader source."
3828 */
3829 gl_shader_variable *sha_v =
3830 create_shader_variable(shProg, var, name, type, interface_type,
3831 use_implicit_location, location,
3832 outermost_struct_type);
3833 if (!sha_v)
3834 return false;
3835
3836 return add_program_resource(shProg, resource_set,
3837 programInterface, sha_v, stage_mask);
3838 }
3839 }
3840 }
3841
3842 static bool
3843 add_interface_variables(const struct gl_context *ctx,
3844 struct gl_shader_program *shProg,
3845 struct set *resource_set,
3846 unsigned stage, GLenum programInterface)
3847 {
3848 exec_list *ir = shProg->_LinkedShaders[stage]->ir;
3849
3850 foreach_in_list(ir_instruction, node, ir) {
3851 ir_variable *var = node->as_variable();
3852
3853 if (!var || var->data.how_declared == ir_var_hidden)
3854 continue;
3855
3856 int loc_bias;
3857
3858 switch (var->data.mode) {
3859 case ir_var_system_value:
3860 case ir_var_shader_in:
3861 if (programInterface != GL_PROGRAM_INPUT)
3862 continue;
3863 loc_bias = (stage == MESA_SHADER_VERTEX) ? int(VERT_ATTRIB_GENERIC0)
3864 : int(VARYING_SLOT_VAR0);
3865 break;
3866 case ir_var_shader_out:
3867 if (programInterface != GL_PROGRAM_OUTPUT)
3868 continue;
3869 loc_bias = (stage == MESA_SHADER_FRAGMENT) ? int(FRAG_RESULT_DATA0)
3870 : int(VARYING_SLOT_VAR0);
3871 break;
3872 default:
3873 continue;
3874 };
3875
3876 if (var->data.patch)
3877 loc_bias = int(VARYING_SLOT_PATCH0);
3878
3879 /* Skip packed varyings, packed varyings are handled separately
3880 * by add_packed_varyings.
3881 */
3882 if (strncmp(var->name, "packed:", 7) == 0)
3883 continue;
3884
3885 /* Skip fragdata arrays, these are handled separately
3886 * by add_fragdata_arrays.
3887 */
3888 if (strncmp(var->name, "gl_out_FragData", 15) == 0)
3889 continue;
3890
3891 const bool vs_input_or_fs_output =
3892 (stage == MESA_SHADER_VERTEX && var->data.mode == ir_var_shader_in) ||
3893 (stage == MESA_SHADER_FRAGMENT && var->data.mode == ir_var_shader_out);
3894
3895 if (!add_shader_variable(ctx, shProg, resource_set,
3896 1 << stage, programInterface,
3897 var, var->name, var->type, vs_input_or_fs_output,
3898 var->data.location - loc_bias))
3899 return false;
3900 }
3901 return true;
3902 }
3903
3904 static bool
3905 add_packed_varyings(const struct gl_context *ctx,
3906 struct gl_shader_program *shProg,
3907 struct set *resource_set,
3908 int stage, GLenum type)
3909 {
3910 struct gl_linked_shader *sh = shProg->_LinkedShaders[stage];
3911 GLenum iface;
3912
3913 if (!sh || !sh->packed_varyings)
3914 return true;
3915
3916 foreach_in_list(ir_instruction, node, sh->packed_varyings) {
3917 ir_variable *var = node->as_variable();
3918 if (var) {
3919 switch (var->data.mode) {
3920 case ir_var_shader_in:
3921 iface = GL_PROGRAM_INPUT;
3922 break;
3923 case ir_var_shader_out:
3924 iface = GL_PROGRAM_OUTPUT;
3925 break;
3926 default:
3927 unreachable("unexpected type");
3928 }
3929
3930 if (type == iface) {
3931 const int stage_mask =
3932 build_stageref(shProg, var->name, var->data.mode);
3933 if (!add_shader_variable(ctx, shProg, resource_set,
3934 stage_mask,
3935 iface, var, var->name, var->type, false,
3936 var->data.location - VARYING_SLOT_VAR0))
3937 return false;
3938 }
3939 }
3940 }
3941 return true;
3942 }
3943
3944 static bool
3945 add_fragdata_arrays(const struct gl_context *ctx,
3946 struct gl_shader_program *shProg,
3947 struct set *resource_set)
3948 {
3949 struct gl_linked_shader *sh = shProg->_LinkedShaders[MESA_SHADER_FRAGMENT];
3950
3951 if (!sh || !sh->fragdata_arrays)
3952 return true;
3953
3954 foreach_in_list(ir_instruction, node, sh->fragdata_arrays) {
3955 ir_variable *var = node->as_variable();
3956 if (var) {
3957 assert(var->data.mode == ir_var_shader_out);
3958
3959 if (!add_shader_variable(ctx, shProg, resource_set,
3960 1 << MESA_SHADER_FRAGMENT,
3961 GL_PROGRAM_OUTPUT, var, var->name, var->type,
3962 true, var->data.location - FRAG_RESULT_DATA0))
3963 return false;
3964 }
3965 }
3966 return true;
3967 }
3968
3969 static char*
3970 get_top_level_name(const char *name)
3971 {
3972 const char *first_dot = strchr(name, '.');
3973 const char *first_square_bracket = strchr(name, '[');
3974 int name_size = 0;
3975
3976 /* The ARB_program_interface_query spec says:
3977 *
3978 * "For the property TOP_LEVEL_ARRAY_SIZE, a single integer identifying
3979 * the number of active array elements of the top-level shader storage
3980 * block member containing to the active variable is written to
3981 * <params>. If the top-level block member is not declared as an
3982 * array, the value one is written to <params>. If the top-level block
3983 * member is an array with no declared size, the value zero is written
3984 * to <params>."
3985 */
3986
3987 /* The buffer variable is on top level.*/
3988 if (!first_square_bracket && !first_dot)
3989 name_size = strlen(name);
3990 else if ((!first_square_bracket ||
3991 (first_dot && first_dot < first_square_bracket)))
3992 name_size = first_dot - name;
3993 else
3994 name_size = first_square_bracket - name;
3995
3996 return strndup(name, name_size);
3997 }
3998
3999 static char*
4000 get_var_name(const char *name)
4001 {
4002 const char *first_dot = strchr(name, '.');
4003
4004 if (!first_dot)
4005 return strdup(name);
4006
4007 return strndup(first_dot+1, strlen(first_dot) - 1);
4008 }
4009
4010 static bool
4011 is_top_level_shader_storage_block_member(const char* name,
4012 const char* interface_name,
4013 const char* field_name)
4014 {
4015 bool result = false;
4016
4017 /* If the given variable is already a top-level shader storage
4018 * block member, then return array_size = 1.
4019 * We could have two possibilities: if we have an instanced
4020 * shader storage block or not instanced.
4021 *
4022 * For the first, we check create a name as it was in top level and
4023 * compare it with the real name. If they are the same, then
4024 * the variable is already at top-level.
4025 *
4026 * Full instanced name is: interface name + '.' + var name +
4027 * NULL character
4028 */
4029 int name_length = strlen(interface_name) + 1 + strlen(field_name) + 1;
4030 char *full_instanced_name = (char *) calloc(name_length, sizeof(char));
4031 if (!full_instanced_name) {
4032 fprintf(stderr, "%s: Cannot allocate space for name\n", __func__);
4033 return false;
4034 }
4035
4036 snprintf(full_instanced_name, name_length, "%s.%s",
4037 interface_name, field_name);
4038
4039 /* Check if its top-level shader storage block member of an
4040 * instanced interface block, or of a unnamed interface block.
4041 */
4042 if (strcmp(name, full_instanced_name) == 0 ||
4043 strcmp(name, field_name) == 0)
4044 result = true;
4045
4046 free(full_instanced_name);
4047 return result;
4048 }
4049
4050 static int
4051 get_array_size(struct gl_uniform_storage *uni, const glsl_struct_field *field,
4052 char *interface_name, char *var_name)
4053 {
4054 /* The ARB_program_interface_query spec says:
4055 *
4056 * "For the property TOP_LEVEL_ARRAY_SIZE, a single integer identifying
4057 * the number of active array elements of the top-level shader storage
4058 * block member containing to the active variable is written to
4059 * <params>. If the top-level block member is not declared as an
4060 * array, the value one is written to <params>. If the top-level block
4061 * member is an array with no declared size, the value zero is written
4062 * to <params>."
4063 */
4064 if (is_top_level_shader_storage_block_member(uni->name,
4065 interface_name,
4066 var_name))
4067 return 1;
4068 else if (field->type->is_unsized_array())
4069 return 0;
4070 else if (field->type->is_array())
4071 return field->type->length;
4072
4073 return 1;
4074 }
4075
4076 static int
4077 get_array_stride(struct gl_uniform_storage *uni, const glsl_type *interface,
4078 const glsl_struct_field *field, char *interface_name,
4079 char *var_name)
4080 {
4081 /* The ARB_program_interface_query spec says:
4082 *
4083 * "For the property TOP_LEVEL_ARRAY_STRIDE, a single integer
4084 * identifying the stride between array elements of the top-level
4085 * shader storage block member containing the active variable is
4086 * written to <params>. For top-level block members declared as
4087 * arrays, the value written is the difference, in basic machine units,
4088 * between the offsets of the active variable for consecutive elements
4089 * in the top-level array. For top-level block members not declared as
4090 * an array, zero is written to <params>."
4091 */
4092 if (field->type->is_array()) {
4093 const enum glsl_matrix_layout matrix_layout =
4094 glsl_matrix_layout(field->matrix_layout);
4095 bool row_major = matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR;
4096 const glsl_type *array_type = field->type->fields.array;
4097
4098 if (is_top_level_shader_storage_block_member(uni->name,
4099 interface_name,
4100 var_name))
4101 return 0;
4102
4103 if (interface->interface_packing != GLSL_INTERFACE_PACKING_STD430) {
4104 if (array_type->is_record() || array_type->is_array())
4105 return glsl_align(array_type->std140_size(row_major), 16);
4106 else
4107 return MAX2(array_type->std140_base_alignment(row_major), 16);
4108 } else {
4109 return array_type->std430_array_stride(row_major);
4110 }
4111 }
4112 return 0;
4113 }
4114
4115 static void
4116 calculate_array_size_and_stride(struct gl_shader_program *shProg,
4117 struct gl_uniform_storage *uni)
4118 {
4119 int block_index = uni->block_index;
4120 int array_size = -1;
4121 int array_stride = -1;
4122 char *var_name = get_top_level_name(uni->name);
4123 char *interface_name =
4124 get_top_level_name(uni->is_shader_storage ?
4125 shProg->data->ShaderStorageBlocks[block_index].Name :
4126 shProg->data->UniformBlocks[block_index].Name);
4127
4128 if (strcmp(var_name, interface_name) == 0) {
4129 /* Deal with instanced array of SSBOs */
4130 char *temp_name = get_var_name(uni->name);
4131 if (!temp_name) {
4132 linker_error(shProg, "Out of memory during linking.\n");
4133 goto write_top_level_array_size_and_stride;
4134 }
4135 free(var_name);
4136 var_name = get_top_level_name(temp_name);
4137 free(temp_name);
4138 if (!var_name) {
4139 linker_error(shProg, "Out of memory during linking.\n");
4140 goto write_top_level_array_size_and_stride;
4141 }
4142 }
4143
4144 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4145 const gl_linked_shader *sh = shProg->_LinkedShaders[i];
4146 if (sh == NULL)
4147 continue;
4148
4149 foreach_in_list(ir_instruction, node, sh->ir) {
4150 ir_variable *var = node->as_variable();
4151 if (!var || !var->get_interface_type() ||
4152 var->data.mode != ir_var_shader_storage)
4153 continue;
4154
4155 const glsl_type *interface = var->get_interface_type();
4156
4157 if (strcmp(interface_name, interface->name) != 0)
4158 continue;
4159
4160 for (unsigned i = 0; i < interface->length; i++) {
4161 const glsl_struct_field *field = &interface->fields.structure[i];
4162 if (strcmp(field->name, var_name) != 0)
4163 continue;
4164
4165 array_stride = get_array_stride(uni, interface, field,
4166 interface_name, var_name);
4167 array_size = get_array_size(uni, field, interface_name, var_name);
4168 goto write_top_level_array_size_and_stride;
4169 }
4170 }
4171 }
4172 write_top_level_array_size_and_stride:
4173 free(interface_name);
4174 free(var_name);
4175 uni->top_level_array_stride = array_stride;
4176 uni->top_level_array_size = array_size;
4177 }
4178
4179 /**
4180 * Builds up a list of program resources that point to existing
4181 * resource data.
4182 */
4183 void
4184 build_program_resource_list(struct gl_context *ctx,
4185 struct gl_shader_program *shProg)
4186 {
4187 /* Rebuild resource list. */
4188 if (shProg->data->ProgramResourceList) {
4189 ralloc_free(shProg->data->ProgramResourceList);
4190 shProg->data->ProgramResourceList = NULL;
4191 shProg->data->NumProgramResourceList = 0;
4192 }
4193
4194 int input_stage = MESA_SHADER_STAGES, output_stage = 0;
4195
4196 /* Determine first input and final output stage. These are used to
4197 * detect which variables should be enumerated in the resource list
4198 * for GL_PROGRAM_INPUT and GL_PROGRAM_OUTPUT.
4199 */
4200 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4201 if (!shProg->_LinkedShaders[i])
4202 continue;
4203 if (input_stage == MESA_SHADER_STAGES)
4204 input_stage = i;
4205 output_stage = i;
4206 }
4207
4208 /* Empty shader, no resources. */
4209 if (input_stage == MESA_SHADER_STAGES && output_stage == 0)
4210 return;
4211
4212 struct set *resource_set = _mesa_set_create(NULL,
4213 _mesa_hash_pointer,
4214 _mesa_key_pointer_equal);
4215
4216 /* Program interface needs to expose varyings in case of SSO. */
4217 if (shProg->SeparateShader) {
4218 if (!add_packed_varyings(ctx, shProg, resource_set,
4219 input_stage, GL_PROGRAM_INPUT))
4220 return;
4221
4222 if (!add_packed_varyings(ctx, shProg, resource_set,
4223 output_stage, GL_PROGRAM_OUTPUT))
4224 return;
4225 }
4226
4227 if (!add_fragdata_arrays(ctx, shProg, resource_set))
4228 return;
4229
4230 /* Add inputs and outputs to the resource list. */
4231 if (!add_interface_variables(ctx, shProg, resource_set,
4232 input_stage, GL_PROGRAM_INPUT))
4233 return;
4234
4235 if (!add_interface_variables(ctx, shProg, resource_set,
4236 output_stage, GL_PROGRAM_OUTPUT))
4237 return;
4238
4239 if (shProg->last_vert_prog) {
4240 struct gl_transform_feedback_info *linked_xfb =
4241 shProg->last_vert_prog->sh.LinkedTransformFeedback;
4242
4243 /* Add transform feedback varyings. */
4244 if (linked_xfb->NumVarying > 0) {
4245 for (int i = 0; i < linked_xfb->NumVarying; i++) {
4246 if (!add_program_resource(shProg, resource_set,
4247 GL_TRANSFORM_FEEDBACK_VARYING,
4248 &linked_xfb->Varyings[i], 0))
4249 return;
4250 }
4251 }
4252
4253 /* Add transform feedback buffers. */
4254 for (unsigned i = 0; i < ctx->Const.MaxTransformFeedbackBuffers; i++) {
4255 if ((linked_xfb->ActiveBuffers >> i) & 1) {
4256 linked_xfb->Buffers[i].Binding = i;
4257 if (!add_program_resource(shProg, resource_set,
4258 GL_TRANSFORM_FEEDBACK_BUFFER,
4259 &linked_xfb->Buffers[i], 0))
4260 return;
4261 }
4262 }
4263 }
4264
4265 /* Add uniforms from uniform storage. */
4266 for (unsigned i = 0; i < shProg->data->NumUniformStorage; i++) {
4267 /* Do not add uniforms internally used by Mesa. */
4268 if (shProg->data->UniformStorage[i].hidden)
4269 continue;
4270
4271 uint8_t stageref =
4272 build_stageref(shProg, shProg->data->UniformStorage[i].name,
4273 ir_var_uniform);
4274
4275 /* Add stagereferences for uniforms in a uniform block. */
4276 bool is_shader_storage =
4277 shProg->data->UniformStorage[i].is_shader_storage;
4278 int block_index = shProg->data->UniformStorage[i].block_index;
4279 if (block_index != -1) {
4280 stageref |= is_shader_storage ?
4281 shProg->data->ShaderStorageBlocks[block_index].stageref :
4282 shProg->data->UniformBlocks[block_index].stageref;
4283 }
4284
4285 GLenum type = is_shader_storage ? GL_BUFFER_VARIABLE : GL_UNIFORM;
4286 if (!should_add_buffer_variable(shProg, type,
4287 shProg->data->UniformStorage[i].name))
4288 continue;
4289
4290 if (is_shader_storage) {
4291 calculate_array_size_and_stride(shProg,
4292 &shProg->data->UniformStorage[i]);
4293 }
4294
4295 if (!add_program_resource(shProg, resource_set, type,
4296 &shProg->data->UniformStorage[i], stageref))
4297 return;
4298 }
4299
4300 /* Add program uniform blocks. */
4301 for (unsigned i = 0; i < shProg->data->NumUniformBlocks; i++) {
4302 if (!add_program_resource(shProg, resource_set, GL_UNIFORM_BLOCK,
4303 &shProg->data->UniformBlocks[i], 0))
4304 return;
4305 }
4306
4307 /* Add program shader storage blocks. */
4308 for (unsigned i = 0; i < shProg->data->NumShaderStorageBlocks; i++) {
4309 if (!add_program_resource(shProg, resource_set, GL_SHADER_STORAGE_BLOCK,
4310 &shProg->data->ShaderStorageBlocks[i], 0))
4311 return;
4312 }
4313
4314 /* Add atomic counter buffers. */
4315 for (unsigned i = 0; i < shProg->data->NumAtomicBuffers; i++) {
4316 if (!add_program_resource(shProg, resource_set, GL_ATOMIC_COUNTER_BUFFER,
4317 &shProg->data->AtomicBuffers[i], 0))
4318 return;
4319 }
4320
4321 for (unsigned i = 0; i < shProg->data->NumUniformStorage; i++) {
4322 GLenum type;
4323 if (!shProg->data->UniformStorage[i].hidden)
4324 continue;
4325
4326 for (int j = MESA_SHADER_VERTEX; j < MESA_SHADER_STAGES; j++) {
4327 if (!shProg->data->UniformStorage[i].opaque[j].active ||
4328 !shProg->data->UniformStorage[i].type->is_subroutine())
4329 continue;
4330
4331 type = _mesa_shader_stage_to_subroutine_uniform((gl_shader_stage)j);
4332 /* add shader subroutines */
4333 if (!add_program_resource(shProg, resource_set,
4334 type, &shProg->data->UniformStorage[i], 0))
4335 return;
4336 }
4337 }
4338
4339 unsigned mask = shProg->data->linked_stages;
4340 while (mask) {
4341 const int i = u_bit_scan(&mask);
4342 struct gl_program *p = shProg->_LinkedShaders[i]->Program;
4343
4344 GLuint type = _mesa_shader_stage_to_subroutine((gl_shader_stage)i);
4345 for (unsigned j = 0; j < p->sh.NumSubroutineFunctions; j++) {
4346 if (!add_program_resource(shProg, resource_set,
4347 type, &p->sh.SubroutineFunctions[j], 0))
4348 return;
4349 }
4350 }
4351
4352 _mesa_set_destroy(resource_set, NULL);
4353 }
4354
4355 /**
4356 * This check is done to make sure we allow only constant expression
4357 * indexing and "constant-index-expression" (indexing with an expression
4358 * that includes loop induction variable).
4359 */
4360 static bool
4361 validate_sampler_array_indexing(struct gl_context *ctx,
4362 struct gl_shader_program *prog)
4363 {
4364 dynamic_sampler_array_indexing_visitor v;
4365 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4366 if (prog->_LinkedShaders[i] == NULL)
4367 continue;
4368
4369 bool no_dynamic_indexing =
4370 ctx->Const.ShaderCompilerOptions[i].EmitNoIndirectSampler;
4371
4372 /* Search for array derefs in shader. */
4373 v.run(prog->_LinkedShaders[i]->ir);
4374 if (v.uses_dynamic_sampler_array_indexing()) {
4375 const char *msg = "sampler arrays indexed with non-constant "
4376 "expressions is forbidden in GLSL %s %u";
4377 /* Backend has indicated that it has no dynamic indexing support. */
4378 if (no_dynamic_indexing) {
4379 linker_error(prog, msg, prog->IsES ? "ES" : "",
4380 prog->data->Version);
4381 return false;
4382 } else {
4383 linker_warning(prog, msg, prog->IsES ? "ES" : "",
4384 prog->data->Version);
4385 }
4386 }
4387 }
4388 return true;
4389 }
4390
4391 static void
4392 link_assign_subroutine_types(struct gl_shader_program *prog)
4393 {
4394 unsigned mask = prog->data->linked_stages;
4395 while (mask) {
4396 const int i = u_bit_scan(&mask);
4397 gl_program *p = prog->_LinkedShaders[i]->Program;
4398
4399 p->sh.MaxSubroutineFunctionIndex = 0;
4400 foreach_in_list(ir_instruction, node, prog->_LinkedShaders[i]->ir) {
4401 ir_function *fn = node->as_function();
4402 if (!fn)
4403 continue;
4404
4405 if (fn->is_subroutine)
4406 p->sh.NumSubroutineUniformTypes++;
4407
4408 if (!fn->num_subroutine_types)
4409 continue;
4410
4411 /* these should have been calculated earlier. */
4412 assert(fn->subroutine_index != -1);
4413 if (p->sh.NumSubroutineFunctions + 1 > MAX_SUBROUTINES) {
4414 linker_error(prog, "Too many subroutine functions declared.\n");
4415 return;
4416 }
4417 p->sh.SubroutineFunctions = reralloc(p, p->sh.SubroutineFunctions,
4418 struct gl_subroutine_function,
4419 p->sh.NumSubroutineFunctions + 1);
4420 p->sh.SubroutineFunctions[p->sh.NumSubroutineFunctions].name = ralloc_strdup(p, fn->name);
4421 p->sh.SubroutineFunctions[p->sh.NumSubroutineFunctions].num_compat_types = fn->num_subroutine_types;
4422 p->sh.SubroutineFunctions[p->sh.NumSubroutineFunctions].types =
4423 ralloc_array(p, const struct glsl_type *,
4424 fn->num_subroutine_types);
4425
4426 /* From Section 4.4.4(Subroutine Function Layout Qualifiers) of the
4427 * GLSL 4.5 spec:
4428 *
4429 * "Each subroutine with an index qualifier in the shader must be
4430 * given a unique index, otherwise a compile or link error will be
4431 * generated."
4432 */
4433 for (unsigned j = 0; j < p->sh.NumSubroutineFunctions; j++) {
4434 if (p->sh.SubroutineFunctions[j].index != -1 &&
4435 p->sh.SubroutineFunctions[j].index == fn->subroutine_index) {
4436 linker_error(prog, "each subroutine index qualifier in the "
4437 "shader must be unique\n");
4438 return;
4439 }
4440 }
4441 p->sh.SubroutineFunctions[p->sh.NumSubroutineFunctions].index =
4442 fn->subroutine_index;
4443
4444 if (fn->subroutine_index > (int)p->sh.MaxSubroutineFunctionIndex)
4445 p->sh.MaxSubroutineFunctionIndex = fn->subroutine_index;
4446
4447 for (int j = 0; j < fn->num_subroutine_types; j++)
4448 p->sh.SubroutineFunctions[p->sh.NumSubroutineFunctions].types[j] = fn->subroutine_types[j];
4449 p->sh.NumSubroutineFunctions++;
4450 }
4451 }
4452 }
4453
4454 static void
4455 set_always_active_io(exec_list *ir, ir_variable_mode io_mode)
4456 {
4457 assert(io_mode == ir_var_shader_in || io_mode == ir_var_shader_out);
4458
4459 foreach_in_list(ir_instruction, node, ir) {
4460 ir_variable *const var = node->as_variable();
4461
4462 if (var == NULL || var->data.mode != io_mode)
4463 continue;
4464
4465 /* Don't set always active on builtins that haven't been redeclared */
4466 if (var->data.how_declared == ir_var_declared_implicitly)
4467 continue;
4468
4469 var->data.always_active_io = true;
4470 }
4471 }
4472
4473 /**
4474 * When separate shader programs are enabled, only input/outputs between
4475 * the stages of a multi-stage separate program can be safely removed
4476 * from the shader interface. Other inputs/outputs must remain active.
4477 */
4478 static void
4479 disable_varying_optimizations_for_sso(struct gl_shader_program *prog)
4480 {
4481 unsigned first, last;
4482 assert(prog->SeparateShader);
4483
4484 first = MESA_SHADER_STAGES;
4485 last = 0;
4486
4487 /* Determine first and last stage. Excluding the compute stage */
4488 for (unsigned i = 0; i < MESA_SHADER_COMPUTE; i++) {
4489 if (!prog->_LinkedShaders[i])
4490 continue;
4491 if (first == MESA_SHADER_STAGES)
4492 first = i;
4493 last = i;
4494 }
4495
4496 if (first == MESA_SHADER_STAGES)
4497 return;
4498
4499 for (unsigned stage = 0; stage < MESA_SHADER_STAGES; stage++) {
4500 gl_linked_shader *sh = prog->_LinkedShaders[stage];
4501 if (!sh)
4502 continue;
4503
4504 if (first == last) {
4505 /* For a single shader program only allow inputs to the vertex shader
4506 * and outputs from the fragment shader to be removed.
4507 */
4508 if (stage != MESA_SHADER_VERTEX)
4509 set_always_active_io(sh->ir, ir_var_shader_in);
4510 if (stage != MESA_SHADER_FRAGMENT)
4511 set_always_active_io(sh->ir, ir_var_shader_out);
4512 } else {
4513 /* For multi-stage separate shader programs only allow inputs and
4514 * outputs between the shader stages to be removed as well as inputs
4515 * to the vertex shader and outputs from the fragment shader.
4516 */
4517 if (stage == first && stage != MESA_SHADER_VERTEX)
4518 set_always_active_io(sh->ir, ir_var_shader_in);
4519 else if (stage == last && stage != MESA_SHADER_FRAGMENT)
4520 set_always_active_io(sh->ir, ir_var_shader_out);
4521 }
4522 }
4523 }
4524
4525 static void
4526 link_and_validate_uniforms(struct gl_context *ctx,
4527 struct gl_shader_program *prog)
4528 {
4529 update_array_sizes(prog);
4530 link_assign_uniform_locations(prog, ctx);
4531
4532 link_assign_atomic_counter_resources(ctx, prog);
4533 link_calculate_subroutine_compat(prog);
4534 check_resources(ctx, prog);
4535 check_subroutine_resources(prog);
4536 check_image_resources(ctx, prog);
4537 link_check_atomic_counter_resources(ctx, prog);
4538 }
4539
4540 static bool
4541 link_varyings_and_uniforms(unsigned first, unsigned last,
4542 struct gl_context *ctx,
4543 struct gl_shader_program *prog, void *mem_ctx)
4544 {
4545 /* Mark all generic shader inputs and outputs as unpaired. */
4546 for (unsigned i = MESA_SHADER_VERTEX; i <= MESA_SHADER_FRAGMENT; i++) {
4547 if (prog->_LinkedShaders[i] != NULL) {
4548 link_invalidate_variable_locations(prog->_LinkedShaders[i]->ir);
4549 }
4550 }
4551
4552 unsigned prev = first;
4553 for (unsigned i = prev + 1; i <= MESA_SHADER_FRAGMENT; i++) {
4554 if (prog->_LinkedShaders[i] == NULL)
4555 continue;
4556
4557 match_explicit_outputs_to_inputs(prog->_LinkedShaders[prev],
4558 prog->_LinkedShaders[i]);
4559 prev = i;
4560 }
4561
4562 if (!assign_attribute_or_color_locations(mem_ctx, prog, &ctx->Const,
4563 MESA_SHADER_VERTEX)) {
4564 return false;
4565 }
4566
4567 if (!assign_attribute_or_color_locations(mem_ctx, prog, &ctx->Const,
4568 MESA_SHADER_FRAGMENT)) {
4569 return false;
4570 }
4571
4572 prog->last_vert_prog = NULL;
4573 for (int i = MESA_SHADER_GEOMETRY; i >= MESA_SHADER_VERTEX; i--) {
4574 if (prog->_LinkedShaders[i] == NULL)
4575 continue;
4576
4577 prog->last_vert_prog = prog->_LinkedShaders[i]->Program;
4578 break;
4579 }
4580
4581 if (!link_varyings(prog, first, last, ctx, mem_ctx))
4582 return false;
4583
4584 link_and_validate_uniforms(ctx, prog);
4585
4586 if (!prog->data->LinkStatus)
4587 return false;
4588
4589 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4590 if (prog->_LinkedShaders[i] == NULL)
4591 continue;
4592
4593 const struct gl_shader_compiler_options *options =
4594 &ctx->Const.ShaderCompilerOptions[i];
4595
4596 if (options->LowerBufferInterfaceBlocks)
4597 lower_ubo_reference(prog->_LinkedShaders[i],
4598 options->ClampBlockIndicesToArrayBounds);
4599
4600 if (i == MESA_SHADER_COMPUTE)
4601 lower_shared_reference(prog->_LinkedShaders[i],
4602 &prog->Comp.SharedSize);
4603
4604 lower_vector_derefs(prog->_LinkedShaders[i]);
4605 do_vec_index_to_swizzle(prog->_LinkedShaders[i]->ir);
4606 }
4607
4608 return true;
4609 }
4610
4611 static void
4612 linker_optimisation_loop(struct gl_context *ctx, exec_list *ir,
4613 unsigned stage)
4614 {
4615 if (ctx->Const.GLSLOptimizeConservatively) {
4616 /* Run it just once. */
4617 do_common_optimization(ir, true, false,
4618 &ctx->Const.ShaderCompilerOptions[stage],
4619 ctx->Const.NativeIntegers);
4620 } else {
4621 /* Repeat it until it stops making changes. */
4622 while (do_common_optimization(ir, true, false,
4623 &ctx->Const.ShaderCompilerOptions[stage],
4624 ctx->Const.NativeIntegers))
4625 ;
4626 }
4627 }
4628
4629 void
4630 link_shaders(struct gl_context *ctx, struct gl_shader_program *prog)
4631 {
4632 prog->data->LinkStatus = linking_success; /* All error paths will set this to false */
4633 prog->data->Validated = false;
4634
4635 /* Section 7.3 (Program Objects) of the OpenGL 4.5 Core Profile spec says:
4636 *
4637 * "Linking can fail for a variety of reasons as specified in the
4638 * OpenGL Shading Language Specification, as well as any of the
4639 * following reasons:
4640 *
4641 * - No shader objects are attached to program."
4642 *
4643 * The Compatibility Profile specification does not list the error. In
4644 * Compatibility Profile missing shader stages are replaced by
4645 * fixed-function. This applies to the case where all stages are
4646 * missing.
4647 */
4648 if (prog->NumShaders == 0) {
4649 if (ctx->API != API_OPENGL_COMPAT)
4650 linker_error(prog, "no shaders attached to the program\n");
4651 return;
4652 }
4653
4654 void *mem_ctx = ralloc_context(NULL); // temporary linker context
4655
4656 prog->ARB_fragment_coord_conventions_enable = false;
4657
4658 /* Separate the shaders into groups based on their type.
4659 */
4660 struct gl_shader **shader_list[MESA_SHADER_STAGES];
4661 unsigned num_shaders[MESA_SHADER_STAGES];
4662
4663 for (int i = 0; i < MESA_SHADER_STAGES; i++) {
4664 shader_list[i] = (struct gl_shader **)
4665 calloc(prog->NumShaders, sizeof(struct gl_shader *));
4666 num_shaders[i] = 0;
4667 }
4668
4669 unsigned min_version = UINT_MAX;
4670 unsigned max_version = 0;
4671 for (unsigned i = 0; i < prog->NumShaders; i++) {
4672 min_version = MIN2(min_version, prog->Shaders[i]->Version);
4673 max_version = MAX2(max_version, prog->Shaders[i]->Version);
4674
4675 if (prog->Shaders[i]->IsES != prog->Shaders[0]->IsES) {
4676 linker_error(prog, "all shaders must use same shading "
4677 "language version\n");
4678 goto done;
4679 }
4680
4681 if (prog->Shaders[i]->ARB_fragment_coord_conventions_enable) {
4682 prog->ARB_fragment_coord_conventions_enable = true;
4683 }
4684
4685 gl_shader_stage shader_type = prog->Shaders[i]->Stage;
4686 shader_list[shader_type][num_shaders[shader_type]] = prog->Shaders[i];
4687 num_shaders[shader_type]++;
4688 }
4689
4690 /* In desktop GLSL, different shader versions may be linked together. In
4691 * GLSL ES, all shader versions must be the same.
4692 */
4693 if (prog->Shaders[0]->IsES && min_version != max_version) {
4694 linker_error(prog, "all shaders must use same shading "
4695 "language version\n");
4696 goto done;
4697 }
4698
4699 prog->data->Version = max_version;
4700 prog->IsES = prog->Shaders[0]->IsES;
4701
4702 /* Some shaders have to be linked with some other shaders present.
4703 */
4704 if (!prog->SeparateShader) {
4705 if (num_shaders[MESA_SHADER_GEOMETRY] > 0 &&
4706 num_shaders[MESA_SHADER_VERTEX] == 0) {
4707 linker_error(prog, "Geometry shader must be linked with "
4708 "vertex shader\n");
4709 goto done;
4710 }
4711 if (num_shaders[MESA_SHADER_TESS_EVAL] > 0 &&
4712 num_shaders[MESA_SHADER_VERTEX] == 0) {
4713 linker_error(prog, "Tessellation evaluation shader must be linked "
4714 "with vertex shader\n");
4715 goto done;
4716 }
4717 if (num_shaders[MESA_SHADER_TESS_CTRL] > 0 &&
4718 num_shaders[MESA_SHADER_VERTEX] == 0) {
4719 linker_error(prog, "Tessellation control shader must be linked with "
4720 "vertex shader\n");
4721 goto done;
4722 }
4723
4724 /* Section 7.3 of the OpenGL ES 3.2 specification says:
4725 *
4726 * "Linking can fail for [...] any of the following reasons:
4727 *
4728 * * program contains an object to form a tessellation control
4729 * shader [...] and [...] the program is not separable and
4730 * contains no object to form a tessellation evaluation shader"
4731 *
4732 * The OpenGL spec is contradictory. It allows linking without a tess
4733 * eval shader, but that can only be used with transform feedback and
4734 * rasterization disabled. However, transform feedback isn't allowed
4735 * with GL_PATCHES, so it can't be used.
4736 *
4737 * More investigation showed that the idea of transform feedback after
4738 * a tess control shader was dropped, because some hw vendors couldn't
4739 * support tessellation without a tess eval shader, but the linker
4740 * section wasn't updated to reflect that.
4741 *
4742 * All specifications (ARB_tessellation_shader, GL 4.0-4.5) have this
4743 * spec bug.
4744 *
4745 * Do what's reasonable and always require a tess eval shader if a tess
4746 * control shader is present.
4747 */
4748 if (num_shaders[MESA_SHADER_TESS_CTRL] > 0 &&
4749 num_shaders[MESA_SHADER_TESS_EVAL] == 0) {
4750 linker_error(prog, "Tessellation control shader must be linked with "
4751 "tessellation evaluation shader\n");
4752 goto done;
4753 }
4754 }
4755
4756 /* Compute shaders have additional restrictions. */
4757 if (num_shaders[MESA_SHADER_COMPUTE] > 0 &&
4758 num_shaders[MESA_SHADER_COMPUTE] != prog->NumShaders) {
4759 linker_error(prog, "Compute shaders may not be linked with any other "
4760 "type of shader\n");
4761 }
4762
4763 /* Link all shaders for a particular stage and validate the result.
4764 */
4765 for (int stage = 0; stage < MESA_SHADER_STAGES; stage++) {
4766 if (num_shaders[stage] > 0) {
4767 gl_linked_shader *const sh =
4768 link_intrastage_shaders(mem_ctx, ctx, prog, shader_list[stage],
4769 num_shaders[stage], false);
4770
4771 if (!prog->data->LinkStatus) {
4772 if (sh)
4773 _mesa_delete_linked_shader(ctx, sh);
4774 goto done;
4775 }
4776
4777 switch (stage) {
4778 case MESA_SHADER_VERTEX:
4779 validate_vertex_shader_executable(prog, sh, ctx);
4780 break;
4781 case MESA_SHADER_TESS_CTRL:
4782 /* nothing to be done */
4783 break;
4784 case MESA_SHADER_TESS_EVAL:
4785 validate_tess_eval_shader_executable(prog, sh, ctx);
4786 break;
4787 case MESA_SHADER_GEOMETRY:
4788 validate_geometry_shader_executable(prog, sh, ctx);
4789 break;
4790 case MESA_SHADER_FRAGMENT:
4791 validate_fragment_shader_executable(prog, sh);
4792 break;
4793 }
4794 if (!prog->data->LinkStatus) {
4795 if (sh)
4796 _mesa_delete_linked_shader(ctx, sh);
4797 goto done;
4798 }
4799
4800 prog->_LinkedShaders[stage] = sh;
4801 prog->data->linked_stages |= 1 << stage;
4802 }
4803 }
4804
4805 /* Here begins the inter-stage linking phase. Some initial validation is
4806 * performed, then locations are assigned for uniforms, attributes, and
4807 * varyings.
4808 */
4809 cross_validate_uniforms(prog);
4810 if (!prog->data->LinkStatus)
4811 goto done;
4812
4813 unsigned first, last, prev;
4814
4815 first = MESA_SHADER_STAGES;
4816 last = 0;
4817
4818 /* Determine first and last stage. */
4819 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4820 if (!prog->_LinkedShaders[i])
4821 continue;
4822 if (first == MESA_SHADER_STAGES)
4823 first = i;
4824 last = i;
4825 }
4826
4827 check_explicit_uniform_locations(ctx, prog);
4828 link_assign_subroutine_types(prog);
4829
4830 if (!prog->data->LinkStatus)
4831 goto done;
4832
4833 resize_tes_inputs(ctx, prog);
4834
4835 /* Validate the inputs of each stage with the output of the preceding
4836 * stage.
4837 */
4838 prev = first;
4839 for (unsigned i = prev + 1; i <= MESA_SHADER_FRAGMENT; i++) {
4840 if (prog->_LinkedShaders[i] == NULL)
4841 continue;
4842
4843 validate_interstage_inout_blocks(prog, prog->_LinkedShaders[prev],
4844 prog->_LinkedShaders[i]);
4845 if (!prog->data->LinkStatus)
4846 goto done;
4847
4848 cross_validate_outputs_to_inputs(prog,
4849 prog->_LinkedShaders[prev],
4850 prog->_LinkedShaders[i]);
4851 if (!prog->data->LinkStatus)
4852 goto done;
4853
4854 prev = i;
4855 }
4856
4857 /* Cross-validate uniform blocks between shader stages */
4858 validate_interstage_uniform_blocks(prog, prog->_LinkedShaders);
4859 if (!prog->data->LinkStatus)
4860 goto done;
4861
4862 for (unsigned int i = 0; i < MESA_SHADER_STAGES; i++) {
4863 if (prog->_LinkedShaders[i] != NULL)
4864 lower_named_interface_blocks(mem_ctx, prog->_LinkedShaders[i]);
4865 }
4866
4867 /* Implement the GLSL 1.30+ rule for discard vs infinite loops Do
4868 * it before optimization because we want most of the checks to get
4869 * dropped thanks to constant propagation.
4870 *
4871 * This rule also applies to GLSL ES 3.00.
4872 */
4873 if (max_version >= (prog->IsES ? 300 : 130)) {
4874 struct gl_linked_shader *sh = prog->_LinkedShaders[MESA_SHADER_FRAGMENT];
4875 if (sh) {
4876 lower_discard_flow(sh->ir);
4877 }
4878 }
4879
4880 if (prog->SeparateShader)
4881 disable_varying_optimizations_for_sso(prog);
4882
4883 /* Process UBOs */
4884 if (!interstage_cross_validate_uniform_blocks(prog, false))
4885 goto done;
4886
4887 /* Process SSBOs */
4888 if (!interstage_cross_validate_uniform_blocks(prog, true))
4889 goto done;
4890
4891 /* Do common optimization before assigning storage for attributes,
4892 * uniforms, and varyings. Later optimization could possibly make
4893 * some of that unused.
4894 */
4895 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4896 if (prog->_LinkedShaders[i] == NULL)
4897 continue;
4898
4899 detect_recursion_linked(prog, prog->_LinkedShaders[i]->ir);
4900 if (!prog->data->LinkStatus)
4901 goto done;
4902
4903 if (ctx->Const.ShaderCompilerOptions[i].LowerCombinedClipCullDistance) {
4904 lower_clip_cull_distance(prog, prog->_LinkedShaders[i]);
4905 }
4906
4907 if (ctx->Const.LowerTessLevel) {
4908 lower_tess_level(prog->_LinkedShaders[i]);
4909 }
4910
4911 /* Call opts before lowering const arrays to uniforms so we can const
4912 * propagate any elements accessed directly.
4913 */
4914 linker_optimisation_loop(ctx, prog->_LinkedShaders[i]->ir, i);
4915
4916 /* Call opts after lowering const arrays to copy propagate things. */
4917 if (lower_const_arrays_to_uniforms(prog->_LinkedShaders[i]->ir, i))
4918 linker_optimisation_loop(ctx, prog->_LinkedShaders[i]->ir, i);
4919
4920 propagate_invariance(prog->_LinkedShaders[i]->ir);
4921 }
4922
4923 /* Validation for special cases where we allow sampler array indexing
4924 * with loop induction variable. This check emits a warning or error
4925 * depending if backend can handle dynamic indexing.
4926 */
4927 if ((!prog->IsES && prog->data->Version < 130) ||
4928 (prog->IsES && prog->data->Version < 300)) {
4929 if (!validate_sampler_array_indexing(ctx, prog))
4930 goto done;
4931 }
4932
4933 /* Check and validate stream emissions in geometry shaders */
4934 validate_geometry_shader_emissions(ctx, prog);
4935
4936 store_fragdepth_layout(prog);
4937
4938 if(!link_varyings_and_uniforms(first, last, ctx, prog, mem_ctx))
4939 goto done;
4940
4941 /* OpenGL ES < 3.1 requires that a vertex shader and a fragment shader both
4942 * be present in a linked program. GL_ARB_ES2_compatibility doesn't say
4943 * anything about shader linking when one of the shaders (vertex or
4944 * fragment shader) is absent. So, the extension shouldn't change the
4945 * behavior specified in GLSL specification.
4946 *
4947 * From OpenGL ES 3.1 specification (7.3 Program Objects):
4948 * "Linking can fail for a variety of reasons as specified in the
4949 * OpenGL ES Shading Language Specification, as well as any of the
4950 * following reasons:
4951 *
4952 * ...
4953 *
4954 * * program contains objects to form either a vertex shader or
4955 * fragment shader, and program is not separable, and does not
4956 * contain objects to form both a vertex shader and fragment
4957 * shader."
4958 *
4959 * However, the only scenario in 3.1+ where we don't require them both is
4960 * when we have a compute shader. For example:
4961 *
4962 * - No shaders is a link error.
4963 * - Geom or Tess without a Vertex shader is a link error which means we
4964 * always require a Vertex shader and hence a Fragment shader.
4965 * - Finally a Compute shader linked with any other stage is a link error.
4966 */
4967 if (!prog->SeparateShader && ctx->API == API_OPENGLES2 &&
4968 num_shaders[MESA_SHADER_COMPUTE] == 0) {
4969 if (prog->_LinkedShaders[MESA_SHADER_VERTEX] == NULL) {
4970 linker_error(prog, "program lacks a vertex shader\n");
4971 } else if (prog->_LinkedShaders[MESA_SHADER_FRAGMENT] == NULL) {
4972 linker_error(prog, "program lacks a fragment shader\n");
4973 }
4974 }
4975
4976 done:
4977 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4978 free(shader_list[i]);
4979 if (prog->_LinkedShaders[i] == NULL)
4980 continue;
4981
4982 /* Do a final validation step to make sure that the IR wasn't
4983 * invalidated by any modifications performed after intrastage linking.
4984 */
4985 validate_ir_tree(prog->_LinkedShaders[i]->ir);
4986
4987 /* Retain any live IR, but trash the rest. */
4988 reparent_ir(prog->_LinkedShaders[i]->ir, prog->_LinkedShaders[i]->ir);
4989
4990 /* The symbol table in the linked shaders may contain references to
4991 * variables that were removed (e.g., unused uniforms). Since it may
4992 * contain junk, there is no possible valid use. Delete it and set the
4993 * pointer to NULL.
4994 */
4995 delete prog->_LinkedShaders[i]->symbols;
4996 prog->_LinkedShaders[i]->symbols = NULL;
4997 }
4998
4999 ralloc_free(mem_ctx);
5000 }