st/mesa/glsl: change xfb_program field to last_vert_prog
[mesa.git] / src / compiler / glsl / linker.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file linker.cpp
26 * GLSL linker implementation
27 *
28 * Given a set of shaders that are to be linked to generate a final program,
29 * there are three distinct stages.
30 *
31 * In the first stage shaders are partitioned into groups based on the shader
32 * type. All shaders of a particular type (e.g., vertex shaders) are linked
33 * together.
34 *
35 * - Undefined references in each shader are resolve to definitions in
36 * another shader.
37 * - Types and qualifiers of uniforms, outputs, and global variables defined
38 * in multiple shaders with the same name are verified to be the same.
39 * - Initializers for uniforms and global variables defined
40 * in multiple shaders with the same name are verified to be the same.
41 *
42 * The result, in the terminology of the GLSL spec, is a set of shader
43 * executables for each processing unit.
44 *
45 * After the first stage is complete, a series of semantic checks are performed
46 * on each of the shader executables.
47 *
48 * - Each shader executable must define a \c main function.
49 * - Each vertex shader executable must write to \c gl_Position.
50 * - Each fragment shader executable must write to either \c gl_FragData or
51 * \c gl_FragColor.
52 *
53 * In the final stage individual shader executables are linked to create a
54 * complete exectuable.
55 *
56 * - Types of uniforms defined in multiple shader stages with the same name
57 * are verified to be the same.
58 * - Initializers for uniforms defined in multiple shader stages with the
59 * same name are verified to be the same.
60 * - Types and qualifiers of outputs defined in one stage are verified to
61 * be the same as the types and qualifiers of inputs defined with the same
62 * name in a later stage.
63 *
64 * \author Ian Romanick <ian.d.romanick@intel.com>
65 */
66
67 #include <ctype.h>
68 #include "util/strndup.h"
69 #include "main/core.h"
70 #include "glsl_symbol_table.h"
71 #include "glsl_parser_extras.h"
72 #include "ir.h"
73 #include "program.h"
74 #include "program/prog_instruction.h"
75 #include "program/program.h"
76 #include "util/set.h"
77 #include "util/string_to_uint_map.h"
78 #include "linker.h"
79 #include "link_varyings.h"
80 #include "ir_optimization.h"
81 #include "ir_rvalue_visitor.h"
82 #include "ir_uniform.h"
83 #include "builtin_functions.h"
84
85 #include "main/shaderobj.h"
86 #include "main/enums.h"
87
88
89 namespace {
90
91 /**
92 * Visitor that determines whether or not a variable is ever written.
93 */
94 class find_assignment_visitor : public ir_hierarchical_visitor {
95 public:
96 find_assignment_visitor(const char *name)
97 : name(name), found(false)
98 {
99 /* empty */
100 }
101
102 virtual ir_visitor_status visit_enter(ir_assignment *ir)
103 {
104 ir_variable *const var = ir->lhs->variable_referenced();
105
106 if (strcmp(name, var->name) == 0) {
107 found = true;
108 return visit_stop;
109 }
110
111 return visit_continue_with_parent;
112 }
113
114 virtual ir_visitor_status visit_enter(ir_call *ir)
115 {
116 foreach_two_lists(formal_node, &ir->callee->parameters,
117 actual_node, &ir->actual_parameters) {
118 ir_rvalue *param_rval = (ir_rvalue *) actual_node;
119 ir_variable *sig_param = (ir_variable *) formal_node;
120
121 if (sig_param->data.mode == ir_var_function_out ||
122 sig_param->data.mode == ir_var_function_inout) {
123 ir_variable *var = param_rval->variable_referenced();
124 if (var && strcmp(name, var->name) == 0) {
125 found = true;
126 return visit_stop;
127 }
128 }
129 }
130
131 if (ir->return_deref != NULL) {
132 ir_variable *const var = ir->return_deref->variable_referenced();
133
134 if (strcmp(name, var->name) == 0) {
135 found = true;
136 return visit_stop;
137 }
138 }
139
140 return visit_continue_with_parent;
141 }
142
143 bool variable_found()
144 {
145 return found;
146 }
147
148 private:
149 const char *name; /**< Find writes to a variable with this name. */
150 bool found; /**< Was a write to the variable found? */
151 };
152
153
154 /**
155 * Visitor that determines whether or not a variable is ever read.
156 */
157 class find_deref_visitor : public ir_hierarchical_visitor {
158 public:
159 find_deref_visitor(const char *name)
160 : name(name), found(false)
161 {
162 /* empty */
163 }
164
165 virtual ir_visitor_status visit(ir_dereference_variable *ir)
166 {
167 if (strcmp(this->name, ir->var->name) == 0) {
168 this->found = true;
169 return visit_stop;
170 }
171
172 return visit_continue;
173 }
174
175 bool variable_found() const
176 {
177 return this->found;
178 }
179
180 private:
181 const char *name; /**< Find writes to a variable with this name. */
182 bool found; /**< Was a write to the variable found? */
183 };
184
185
186 /**
187 * A visitor helper that provides methods for updating the types of
188 * ir_dereferences. Classes that update variable types (say, updating
189 * array sizes) will want to use this so that dereference types stay in sync.
190 */
191 class deref_type_updater : public ir_hierarchical_visitor {
192 public:
193 virtual ir_visitor_status visit(ir_dereference_variable *ir)
194 {
195 ir->type = ir->var->type;
196 return visit_continue;
197 }
198
199 virtual ir_visitor_status visit_leave(ir_dereference_array *ir)
200 {
201 const glsl_type *const vt = ir->array->type;
202 if (vt->is_array())
203 ir->type = vt->fields.array;
204 return visit_continue;
205 }
206
207 virtual ir_visitor_status visit_leave(ir_dereference_record *ir)
208 {
209 for (unsigned i = 0; i < ir->record->type->length; i++) {
210 const struct glsl_struct_field *field =
211 &ir->record->type->fields.structure[i];
212 if (strcmp(field->name, ir->field) == 0) {
213 ir->type = field->type;
214 break;
215 }
216 }
217 return visit_continue;
218 }
219 };
220
221
222 class array_resize_visitor : public deref_type_updater {
223 public:
224 unsigned num_vertices;
225 gl_shader_program *prog;
226 gl_shader_stage stage;
227
228 array_resize_visitor(unsigned num_vertices,
229 gl_shader_program *prog,
230 gl_shader_stage stage)
231 {
232 this->num_vertices = num_vertices;
233 this->prog = prog;
234 this->stage = stage;
235 }
236
237 virtual ~array_resize_visitor()
238 {
239 /* empty */
240 }
241
242 virtual ir_visitor_status visit(ir_variable *var)
243 {
244 if (!var->type->is_array() || var->data.mode != ir_var_shader_in ||
245 var->data.patch)
246 return visit_continue;
247
248 unsigned size = var->type->length;
249
250 if (stage == MESA_SHADER_GEOMETRY) {
251 /* Generate a link error if the shader has declared this array with
252 * an incorrect size.
253 */
254 if (!var->data.implicit_sized_array &&
255 size && size != this->num_vertices) {
256 linker_error(this->prog, "size of array %s declared as %u, "
257 "but number of input vertices is %u\n",
258 var->name, size, this->num_vertices);
259 return visit_continue;
260 }
261
262 /* Generate a link error if the shader attempts to access an input
263 * array using an index too large for its actual size assigned at
264 * link time.
265 */
266 if (var->data.max_array_access >= (int)this->num_vertices) {
267 linker_error(this->prog, "%s shader accesses element %i of "
268 "%s, but only %i input vertices\n",
269 _mesa_shader_stage_to_string(this->stage),
270 var->data.max_array_access, var->name, this->num_vertices);
271 return visit_continue;
272 }
273 }
274
275 var->type = glsl_type::get_array_instance(var->type->fields.array,
276 this->num_vertices);
277 var->data.max_array_access = this->num_vertices - 1;
278
279 return visit_continue;
280 }
281 };
282
283 /**
284 * Visitor that determines the highest stream id to which a (geometry) shader
285 * emits vertices. It also checks whether End{Stream}Primitive is ever called.
286 */
287 class find_emit_vertex_visitor : public ir_hierarchical_visitor {
288 public:
289 find_emit_vertex_visitor(int max_allowed)
290 : max_stream_allowed(max_allowed),
291 invalid_stream_id(0),
292 invalid_stream_id_from_emit_vertex(false),
293 end_primitive_found(false),
294 uses_non_zero_stream(false)
295 {
296 /* empty */
297 }
298
299 virtual ir_visitor_status visit_leave(ir_emit_vertex *ir)
300 {
301 int stream_id = ir->stream_id();
302
303 if (stream_id < 0) {
304 invalid_stream_id = stream_id;
305 invalid_stream_id_from_emit_vertex = true;
306 return visit_stop;
307 }
308
309 if (stream_id > max_stream_allowed) {
310 invalid_stream_id = stream_id;
311 invalid_stream_id_from_emit_vertex = true;
312 return visit_stop;
313 }
314
315 if (stream_id != 0)
316 uses_non_zero_stream = true;
317
318 return visit_continue;
319 }
320
321 virtual ir_visitor_status visit_leave(ir_end_primitive *ir)
322 {
323 end_primitive_found = true;
324
325 int stream_id = ir->stream_id();
326
327 if (stream_id < 0) {
328 invalid_stream_id = stream_id;
329 invalid_stream_id_from_emit_vertex = false;
330 return visit_stop;
331 }
332
333 if (stream_id > max_stream_allowed) {
334 invalid_stream_id = stream_id;
335 invalid_stream_id_from_emit_vertex = false;
336 return visit_stop;
337 }
338
339 if (stream_id != 0)
340 uses_non_zero_stream = true;
341
342 return visit_continue;
343 }
344
345 bool error()
346 {
347 return invalid_stream_id != 0;
348 }
349
350 const char *error_func()
351 {
352 return invalid_stream_id_from_emit_vertex ?
353 "EmitStreamVertex" : "EndStreamPrimitive";
354 }
355
356 int error_stream()
357 {
358 return invalid_stream_id;
359 }
360
361 bool uses_streams()
362 {
363 return uses_non_zero_stream;
364 }
365
366 bool uses_end_primitive()
367 {
368 return end_primitive_found;
369 }
370
371 private:
372 int max_stream_allowed;
373 int invalid_stream_id;
374 bool invalid_stream_id_from_emit_vertex;
375 bool end_primitive_found;
376 bool uses_non_zero_stream;
377 };
378
379 /* Class that finds array derefs and check if indexes are dynamic. */
380 class dynamic_sampler_array_indexing_visitor : public ir_hierarchical_visitor
381 {
382 public:
383 dynamic_sampler_array_indexing_visitor() :
384 dynamic_sampler_array_indexing(false)
385 {
386 }
387
388 ir_visitor_status visit_enter(ir_dereference_array *ir)
389 {
390 if (!ir->variable_referenced())
391 return visit_continue;
392
393 if (!ir->variable_referenced()->type->contains_sampler())
394 return visit_continue;
395
396 if (!ir->array_index->constant_expression_value()) {
397 dynamic_sampler_array_indexing = true;
398 return visit_stop;
399 }
400 return visit_continue;
401 }
402
403 bool uses_dynamic_sampler_array_indexing()
404 {
405 return dynamic_sampler_array_indexing;
406 }
407
408 private:
409 bool dynamic_sampler_array_indexing;
410 };
411
412 } /* anonymous namespace */
413
414 void
415 linker_error(gl_shader_program *prog, const char *fmt, ...)
416 {
417 va_list ap;
418
419 ralloc_strcat(&prog->data->InfoLog, "error: ");
420 va_start(ap, fmt);
421 ralloc_vasprintf_append(&prog->data->InfoLog, fmt, ap);
422 va_end(ap);
423
424 prog->data->LinkStatus = false;
425 }
426
427
428 void
429 linker_warning(gl_shader_program *prog, const char *fmt, ...)
430 {
431 va_list ap;
432
433 ralloc_strcat(&prog->data->InfoLog, "warning: ");
434 va_start(ap, fmt);
435 ralloc_vasprintf_append(&prog->data->InfoLog, fmt, ap);
436 va_end(ap);
437
438 }
439
440
441 /**
442 * Given a string identifying a program resource, break it into a base name
443 * and an optional array index in square brackets.
444 *
445 * If an array index is present, \c out_base_name_end is set to point to the
446 * "[" that precedes the array index, and the array index itself is returned
447 * as a long.
448 *
449 * If no array index is present (or if the array index is negative or
450 * mal-formed), \c out_base_name_end, is set to point to the null terminator
451 * at the end of the input string, and -1 is returned.
452 *
453 * Only the final array index is parsed; if the string contains other array
454 * indices (or structure field accesses), they are left in the base name.
455 *
456 * No attempt is made to check that the base name is properly formed;
457 * typically the caller will look up the base name in a hash table, so
458 * ill-formed base names simply turn into hash table lookup failures.
459 */
460 long
461 parse_program_resource_name(const GLchar *name,
462 const GLchar **out_base_name_end)
463 {
464 /* Section 7.3.1 ("Program Interfaces") of the OpenGL 4.3 spec says:
465 *
466 * "When an integer array element or block instance number is part of
467 * the name string, it will be specified in decimal form without a "+"
468 * or "-" sign or any extra leading zeroes. Additionally, the name
469 * string will not include white space anywhere in the string."
470 */
471
472 const size_t len = strlen(name);
473 *out_base_name_end = name + len;
474
475 if (len == 0 || name[len-1] != ']')
476 return -1;
477
478 /* Walk backwards over the string looking for a non-digit character. This
479 * had better be the opening bracket for an array index.
480 *
481 * Initially, i specifies the location of the ']'. Since the string may
482 * contain only the ']' charcater, walk backwards very carefully.
483 */
484 unsigned i;
485 for (i = len - 1; (i > 0) && isdigit(name[i-1]); --i)
486 /* empty */ ;
487
488 if ((i == 0) || name[i-1] != '[')
489 return -1;
490
491 long array_index = strtol(&name[i], NULL, 10);
492 if (array_index < 0)
493 return -1;
494
495 /* Check for leading zero */
496 if (name[i] == '0' && name[i+1] != ']')
497 return -1;
498
499 *out_base_name_end = name + (i - 1);
500 return array_index;
501 }
502
503
504 void
505 link_invalidate_variable_locations(exec_list *ir)
506 {
507 foreach_in_list(ir_instruction, node, ir) {
508 ir_variable *const var = node->as_variable();
509
510 if (var == NULL)
511 continue;
512
513 /* Only assign locations for variables that lack an explicit location.
514 * Explicit locations are set for all built-in variables, generic vertex
515 * shader inputs (via layout(location=...)), and generic fragment shader
516 * outputs (also via layout(location=...)).
517 */
518 if (!var->data.explicit_location) {
519 var->data.location = -1;
520 var->data.location_frac = 0;
521 }
522
523 /* ir_variable::is_unmatched_generic_inout is used by the linker while
524 * connecting outputs from one stage to inputs of the next stage.
525 */
526 if (var->data.explicit_location &&
527 var->data.location < VARYING_SLOT_VAR0) {
528 var->data.is_unmatched_generic_inout = 0;
529 } else {
530 var->data.is_unmatched_generic_inout = 1;
531 }
532 }
533 }
534
535
536 /**
537 * Set clip_distance_array_size based and cull_distance_array_size on the given
538 * shader.
539 *
540 * Also check for errors based on incorrect usage of gl_ClipVertex and
541 * gl_ClipDistance and gl_CullDistance.
542 * Additionally test whether the arrays gl_ClipDistance and gl_CullDistance
543 * exceed the maximum size defined by gl_MaxCombinedClipAndCullDistances.
544 *
545 * Return false if an error was reported.
546 */
547 static void
548 analyze_clip_cull_usage(struct gl_shader_program *prog,
549 struct gl_linked_shader *shader,
550 struct gl_context *ctx,
551 GLuint *clip_distance_array_size,
552 GLuint *cull_distance_array_size)
553 {
554 *clip_distance_array_size = 0;
555 *cull_distance_array_size = 0;
556
557 if (prog->data->Version >= (prog->IsES ? 300 : 130)) {
558 /* From section 7.1 (Vertex Shader Special Variables) of the
559 * GLSL 1.30 spec:
560 *
561 * "It is an error for a shader to statically write both
562 * gl_ClipVertex and gl_ClipDistance."
563 *
564 * This does not apply to GLSL ES shaders, since GLSL ES defines neither
565 * gl_ClipVertex nor gl_ClipDistance. However with
566 * GL_EXT_clip_cull_distance, this functionality is exposed in ES 3.0.
567 */
568 find_assignment_visitor clip_distance("gl_ClipDistance");
569 find_assignment_visitor cull_distance("gl_CullDistance");
570
571 clip_distance.run(shader->ir);
572 cull_distance.run(shader->ir);
573
574 /* From the ARB_cull_distance spec:
575 *
576 * It is a compile-time or link-time error for the set of shaders forming
577 * a program to statically read or write both gl_ClipVertex and either
578 * gl_ClipDistance or gl_CullDistance.
579 *
580 * This does not apply to GLSL ES shaders, since GLSL ES doesn't define
581 * gl_ClipVertex.
582 */
583 if (!prog->IsES) {
584 find_assignment_visitor clip_vertex("gl_ClipVertex");
585
586 clip_vertex.run(shader->ir);
587
588 if (clip_vertex.variable_found() && clip_distance.variable_found()) {
589 linker_error(prog, "%s shader writes to both `gl_ClipVertex' "
590 "and `gl_ClipDistance'\n",
591 _mesa_shader_stage_to_string(shader->Stage));
592 return;
593 }
594 if (clip_vertex.variable_found() && cull_distance.variable_found()) {
595 linker_error(prog, "%s shader writes to both `gl_ClipVertex' "
596 "and `gl_CullDistance'\n",
597 _mesa_shader_stage_to_string(shader->Stage));
598 return;
599 }
600 }
601
602 if (clip_distance.variable_found()) {
603 ir_variable *clip_distance_var =
604 shader->symbols->get_variable("gl_ClipDistance");
605 assert(clip_distance_var);
606 *clip_distance_array_size = clip_distance_var->type->length;
607 }
608 if (cull_distance.variable_found()) {
609 ir_variable *cull_distance_var =
610 shader->symbols->get_variable("gl_CullDistance");
611 assert(cull_distance_var);
612 *cull_distance_array_size = cull_distance_var->type->length;
613 }
614 /* From the ARB_cull_distance spec:
615 *
616 * It is a compile-time or link-time error for the set of shaders forming
617 * a program to have the sum of the sizes of the gl_ClipDistance and
618 * gl_CullDistance arrays to be larger than
619 * gl_MaxCombinedClipAndCullDistances.
620 */
621 if ((*clip_distance_array_size + *cull_distance_array_size) >
622 ctx->Const.MaxClipPlanes) {
623 linker_error(prog, "%s shader: the combined size of "
624 "'gl_ClipDistance' and 'gl_CullDistance' size cannot "
625 "be larger than "
626 "gl_MaxCombinedClipAndCullDistances (%u)",
627 _mesa_shader_stage_to_string(shader->Stage),
628 ctx->Const.MaxClipPlanes);
629 }
630 }
631 }
632
633
634 /**
635 * Verify that a vertex shader executable meets all semantic requirements.
636 *
637 * Also sets prog->Vert.ClipDistanceArraySize and
638 * prog->Vert.CullDistanceArraySize as a side effect.
639 *
640 * \param shader Vertex shader executable to be verified
641 */
642 void
643 validate_vertex_shader_executable(struct gl_shader_program *prog,
644 struct gl_linked_shader *shader,
645 struct gl_context *ctx)
646 {
647 if (shader == NULL)
648 return;
649
650 /* From the GLSL 1.10 spec, page 48:
651 *
652 * "The variable gl_Position is available only in the vertex
653 * language and is intended for writing the homogeneous vertex
654 * position. All executions of a well-formed vertex shader
655 * executable must write a value into this variable. [...] The
656 * variable gl_Position is available only in the vertex
657 * language and is intended for writing the homogeneous vertex
658 * position. All executions of a well-formed vertex shader
659 * executable must write a value into this variable."
660 *
661 * while in GLSL 1.40 this text is changed to:
662 *
663 * "The variable gl_Position is available only in the vertex
664 * language and is intended for writing the homogeneous vertex
665 * position. It can be written at any time during shader
666 * execution. It may also be read back by a vertex shader
667 * after being written. This value will be used by primitive
668 * assembly, clipping, culling, and other fixed functionality
669 * operations, if present, that operate on primitives after
670 * vertex processing has occurred. Its value is undefined if
671 * the vertex shader executable does not write gl_Position."
672 *
673 * All GLSL ES Versions are similar to GLSL 1.40--failing to write to
674 * gl_Position is not an error.
675 */
676 if (prog->data->Version < (prog->IsES ? 300 : 140)) {
677 find_assignment_visitor find("gl_Position");
678 find.run(shader->ir);
679 if (!find.variable_found()) {
680 if (prog->IsES) {
681 linker_warning(prog,
682 "vertex shader does not write to `gl_Position'. "
683 "Its value is undefined. \n");
684 } else {
685 linker_error(prog,
686 "vertex shader does not write to `gl_Position'. \n");
687 }
688 return;
689 }
690 }
691
692 analyze_clip_cull_usage(prog, shader, ctx,
693 &prog->Vert.ClipDistanceArraySize,
694 &prog->Vert.CullDistanceArraySize);
695 }
696
697 void
698 validate_tess_eval_shader_executable(struct gl_shader_program *prog,
699 struct gl_linked_shader *shader,
700 struct gl_context *ctx)
701 {
702 if (shader == NULL)
703 return;
704
705 analyze_clip_cull_usage(prog, shader, ctx,
706 &prog->TessEval.ClipDistanceArraySize,
707 &prog->TessEval.CullDistanceArraySize);
708 }
709
710
711 /**
712 * Verify that a fragment shader executable meets all semantic requirements
713 *
714 * \param shader Fragment shader executable to be verified
715 */
716 void
717 validate_fragment_shader_executable(struct gl_shader_program *prog,
718 struct gl_linked_shader *shader)
719 {
720 if (shader == NULL)
721 return;
722
723 find_assignment_visitor frag_color("gl_FragColor");
724 find_assignment_visitor frag_data("gl_FragData");
725
726 frag_color.run(shader->ir);
727 frag_data.run(shader->ir);
728
729 if (frag_color.variable_found() && frag_data.variable_found()) {
730 linker_error(prog, "fragment shader writes to both "
731 "`gl_FragColor' and `gl_FragData'\n");
732 }
733 }
734
735 /**
736 * Verify that a geometry shader executable meets all semantic requirements
737 *
738 * Also sets prog->Geom.VerticesIn, and prog->Geom.ClipDistanceArraySize and
739 * prog->Geom.CullDistanceArraySize as a side effect.
740 *
741 * \param shader Geometry shader executable to be verified
742 */
743 void
744 validate_geometry_shader_executable(struct gl_shader_program *prog,
745 struct gl_linked_shader *shader,
746 struct gl_context *ctx)
747 {
748 if (shader == NULL)
749 return;
750
751 unsigned num_vertices = vertices_per_prim(shader->info.Geom.InputType);
752 prog->Geom.VerticesIn = num_vertices;
753
754 analyze_clip_cull_usage(prog, shader, ctx,
755 &prog->Geom.ClipDistanceArraySize,
756 &prog->Geom.CullDistanceArraySize);
757 }
758
759 /**
760 * Check if geometry shaders emit to non-zero streams and do corresponding
761 * validations.
762 */
763 static void
764 validate_geometry_shader_emissions(struct gl_context *ctx,
765 struct gl_shader_program *prog)
766 {
767 struct gl_linked_shader *sh = prog->_LinkedShaders[MESA_SHADER_GEOMETRY];
768
769 if (sh != NULL) {
770 find_emit_vertex_visitor emit_vertex(ctx->Const.MaxVertexStreams - 1);
771 emit_vertex.run(sh->ir);
772 if (emit_vertex.error()) {
773 linker_error(prog, "Invalid call %s(%d). Accepted values for the "
774 "stream parameter are in the range [0, %d].\n",
775 emit_vertex.error_func(),
776 emit_vertex.error_stream(),
777 ctx->Const.MaxVertexStreams - 1);
778 }
779 prog->Geom.UsesStreams = emit_vertex.uses_streams();
780 prog->Geom.UsesEndPrimitive = emit_vertex.uses_end_primitive();
781
782 /* From the ARB_gpu_shader5 spec:
783 *
784 * "Multiple vertex streams are supported only if the output primitive
785 * type is declared to be "points". A program will fail to link if it
786 * contains a geometry shader calling EmitStreamVertex() or
787 * EndStreamPrimitive() if its output primitive type is not "points".
788 *
789 * However, in the same spec:
790 *
791 * "The function EmitVertex() is equivalent to calling EmitStreamVertex()
792 * with <stream> set to zero."
793 *
794 * And:
795 *
796 * "The function EndPrimitive() is equivalent to calling
797 * EndStreamPrimitive() with <stream> set to zero."
798 *
799 * Since we can call EmitVertex() and EndPrimitive() when we output
800 * primitives other than points, calling EmitStreamVertex(0) or
801 * EmitEndPrimitive(0) should not produce errors. This it also what Nvidia
802 * does. Currently we only set prog->Geom.UsesStreams to TRUE when
803 * EmitStreamVertex() or EmitEndPrimitive() are called with a non-zero
804 * stream.
805 */
806 if (prog->Geom.UsesStreams && sh->info.Geom.OutputType != GL_POINTS) {
807 linker_error(prog, "EmitStreamVertex(n) and EndStreamPrimitive(n) "
808 "with n>0 requires point output\n");
809 }
810 }
811 }
812
813 bool
814 validate_intrastage_arrays(struct gl_shader_program *prog,
815 ir_variable *const var,
816 ir_variable *const existing)
817 {
818 /* Consider the types to be "the same" if both types are arrays
819 * of the same type and one of the arrays is implicitly sized.
820 * In addition, set the type of the linked variable to the
821 * explicitly sized array.
822 */
823 if (var->type->is_array() && existing->type->is_array()) {
824 if ((var->type->fields.array == existing->type->fields.array) &&
825 ((var->type->length == 0)|| (existing->type->length == 0))) {
826 if (var->type->length != 0) {
827 if ((int)var->type->length <= existing->data.max_array_access) {
828 linker_error(prog, "%s `%s' declared as type "
829 "`%s' but outermost dimension has an index"
830 " of `%i'\n",
831 mode_string(var),
832 var->name, var->type->name,
833 existing->data.max_array_access);
834 }
835 existing->type = var->type;
836 return true;
837 } else if (existing->type->length != 0) {
838 if((int)existing->type->length <= var->data.max_array_access &&
839 !existing->data.from_ssbo_unsized_array) {
840 linker_error(prog, "%s `%s' declared as type "
841 "`%s' but outermost dimension has an index"
842 " of `%i'\n",
843 mode_string(var),
844 var->name, existing->type->name,
845 var->data.max_array_access);
846 }
847 return true;
848 }
849 } else {
850 /* The arrays of structs could have different glsl_type pointers but
851 * they are actually the same type. Use record_compare() to check that.
852 */
853 if (existing->type->fields.array->is_record() &&
854 var->type->fields.array->is_record() &&
855 existing->type->fields.array->record_compare(var->type->fields.array))
856 return true;
857 }
858 }
859 return false;
860 }
861
862
863 /**
864 * Perform validation of global variables used across multiple shaders
865 */
866 void
867 cross_validate_globals(struct gl_shader_program *prog,
868 struct exec_list *ir, glsl_symbol_table *variables,
869 bool uniforms_only)
870 {
871 foreach_in_list(ir_instruction, node, ir) {
872 ir_variable *const var = node->as_variable();
873
874 if (var == NULL)
875 continue;
876
877 if (uniforms_only && (var->data.mode != ir_var_uniform && var->data.mode != ir_var_shader_storage))
878 continue;
879
880 /* don't cross validate subroutine uniforms */
881 if (var->type->contains_subroutine())
882 continue;
883
884 /* Don't cross validate temporaries that are at global scope. These
885 * will eventually get pulled into the shaders 'main'.
886 */
887 if (var->data.mode == ir_var_temporary)
888 continue;
889
890 /* If a global with this name has already been seen, verify that the
891 * new instance has the same type. In addition, if the globals have
892 * initializers, the values of the initializers must be the same.
893 */
894 ir_variable *const existing = variables->get_variable(var->name);
895 if (existing != NULL) {
896 /* Check if types match. Interface blocks have some special
897 * rules so we handle those elsewhere.
898 */
899 if (var->type != existing->type &&
900 !var->is_interface_instance()) {
901 if (!validate_intrastage_arrays(prog, var, existing)) {
902 if (var->type->is_record() && existing->type->is_record()
903 && existing->type->record_compare(var->type)) {
904 existing->type = var->type;
905 } else {
906 /* If it is an unsized array in a Shader Storage Block,
907 * two different shaders can access to different elements.
908 * Because of that, they might be converted to different
909 * sized arrays, then check that they are compatible but
910 * ignore the array size.
911 */
912 if (!(var->data.mode == ir_var_shader_storage &&
913 var->data.from_ssbo_unsized_array &&
914 existing->data.mode == ir_var_shader_storage &&
915 existing->data.from_ssbo_unsized_array &&
916 var->type->gl_type == existing->type->gl_type)) {
917 linker_error(prog, "%s `%s' declared as type "
918 "`%s' and type `%s'\n",
919 mode_string(var),
920 var->name, var->type->name,
921 existing->type->name);
922 return;
923 }
924 }
925 }
926 }
927
928 if (var->data.explicit_location) {
929 if (existing->data.explicit_location
930 && (var->data.location != existing->data.location)) {
931 linker_error(prog, "explicit locations for %s "
932 "`%s' have differing values\n",
933 mode_string(var), var->name);
934 return;
935 }
936
937 if (var->data.location_frac != existing->data.location_frac) {
938 linker_error(prog, "explicit components for %s `%s' have "
939 "differing values\n", mode_string(var), var->name);
940 return;
941 }
942
943 existing->data.location = var->data.location;
944 existing->data.explicit_location = true;
945 } else {
946 /* Check if uniform with implicit location was marked explicit
947 * by earlier shader stage. If so, mark it explicit in this stage
948 * too to make sure later processing does not treat it as
949 * implicit one.
950 */
951 if (existing->data.explicit_location) {
952 var->data.location = existing->data.location;
953 var->data.explicit_location = true;
954 }
955 }
956
957 /* From the GLSL 4.20 specification:
958 * "A link error will result if two compilation units in a program
959 * specify different integer-constant bindings for the same
960 * opaque-uniform name. However, it is not an error to specify a
961 * binding on some but not all declarations for the same name"
962 */
963 if (var->data.explicit_binding) {
964 if (existing->data.explicit_binding &&
965 var->data.binding != existing->data.binding) {
966 linker_error(prog, "explicit bindings for %s "
967 "`%s' have differing values\n",
968 mode_string(var), var->name);
969 return;
970 }
971
972 existing->data.binding = var->data.binding;
973 existing->data.explicit_binding = true;
974 }
975
976 if (var->type->contains_atomic() &&
977 var->data.offset != existing->data.offset) {
978 linker_error(prog, "offset specifications for %s "
979 "`%s' have differing values\n",
980 mode_string(var), var->name);
981 return;
982 }
983
984 /* Validate layout qualifiers for gl_FragDepth.
985 *
986 * From the AMD/ARB_conservative_depth specs:
987 *
988 * "If gl_FragDepth is redeclared in any fragment shader in a
989 * program, it must be redeclared in all fragment shaders in
990 * that program that have static assignments to
991 * gl_FragDepth. All redeclarations of gl_FragDepth in all
992 * fragment shaders in a single program must have the same set
993 * of qualifiers."
994 */
995 if (strcmp(var->name, "gl_FragDepth") == 0) {
996 bool layout_declared = var->data.depth_layout != ir_depth_layout_none;
997 bool layout_differs =
998 var->data.depth_layout != existing->data.depth_layout;
999
1000 if (layout_declared && layout_differs) {
1001 linker_error(prog,
1002 "All redeclarations of gl_FragDepth in all "
1003 "fragment shaders in a single program must have "
1004 "the same set of qualifiers.\n");
1005 }
1006
1007 if (var->data.used && layout_differs) {
1008 linker_error(prog,
1009 "If gl_FragDepth is redeclared with a layout "
1010 "qualifier in any fragment shader, it must be "
1011 "redeclared with the same layout qualifier in "
1012 "all fragment shaders that have assignments to "
1013 "gl_FragDepth\n");
1014 }
1015 }
1016
1017 /* Page 35 (page 41 of the PDF) of the GLSL 4.20 spec says:
1018 *
1019 * "If a shared global has multiple initializers, the
1020 * initializers must all be constant expressions, and they
1021 * must all have the same value. Otherwise, a link error will
1022 * result. (A shared global having only one initializer does
1023 * not require that initializer to be a constant expression.)"
1024 *
1025 * Previous to 4.20 the GLSL spec simply said that initializers
1026 * must have the same value. In this case of non-constant
1027 * initializers, this was impossible to determine. As a result,
1028 * no vendor actually implemented that behavior. The 4.20
1029 * behavior matches the implemented behavior of at least one other
1030 * vendor, so we'll implement that for all GLSL versions.
1031 */
1032 if (var->constant_initializer != NULL) {
1033 if (existing->constant_initializer != NULL) {
1034 if (!var->constant_initializer->has_value(existing->constant_initializer)) {
1035 linker_error(prog, "initializers for %s "
1036 "`%s' have differing values\n",
1037 mode_string(var), var->name);
1038 return;
1039 }
1040 } else {
1041 /* If the first-seen instance of a particular uniform did
1042 * not have an initializer but a later instance does,
1043 * replace the former with the later.
1044 */
1045 variables->replace_variable(existing->name, var);
1046 }
1047 }
1048
1049 if (var->data.has_initializer) {
1050 if (existing->data.has_initializer
1051 && (var->constant_initializer == NULL
1052 || existing->constant_initializer == NULL)) {
1053 linker_error(prog,
1054 "shared global variable `%s' has multiple "
1055 "non-constant initializers.\n",
1056 var->name);
1057 return;
1058 }
1059 }
1060
1061 if (existing->data.invariant != var->data.invariant) {
1062 linker_error(prog, "declarations for %s `%s' have "
1063 "mismatching invariant qualifiers\n",
1064 mode_string(var), var->name);
1065 return;
1066 }
1067 if (existing->data.centroid != var->data.centroid) {
1068 linker_error(prog, "declarations for %s `%s' have "
1069 "mismatching centroid qualifiers\n",
1070 mode_string(var), var->name);
1071 return;
1072 }
1073 if (existing->data.sample != var->data.sample) {
1074 linker_error(prog, "declarations for %s `%s` have "
1075 "mismatching sample qualifiers\n",
1076 mode_string(var), var->name);
1077 return;
1078 }
1079 if (existing->data.image_format != var->data.image_format) {
1080 linker_error(prog, "declarations for %s `%s` have "
1081 "mismatching image format qualifiers\n",
1082 mode_string(var), var->name);
1083 return;
1084 }
1085
1086 /* Only in GLSL ES 3.10, the precision qualifier should not match
1087 * between block members defined in matched block names within a
1088 * shader interface.
1089 *
1090 * In GLSL ES 3.00 and ES 3.20, precision qualifier for each block
1091 * member should match.
1092 */
1093 if (prog->IsES && (prog->data->Version != 310 ||
1094 !var->get_interface_type()) &&
1095 existing->data.precision != var->data.precision) {
1096 linker_error(prog, "declarations for %s `%s` have "
1097 "mismatching precision qualifiers\n",
1098 mode_string(var), var->name);
1099 return;
1100 }
1101 } else
1102 variables->add_variable(var);
1103 }
1104 }
1105
1106
1107 /**
1108 * Perform validation of uniforms used across multiple shader stages
1109 */
1110 void
1111 cross_validate_uniforms(struct gl_shader_program *prog)
1112 {
1113 glsl_symbol_table variables;
1114 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1115 if (prog->_LinkedShaders[i] == NULL)
1116 continue;
1117
1118 cross_validate_globals(prog, prog->_LinkedShaders[i]->ir, &variables,
1119 true);
1120 }
1121 }
1122
1123 /**
1124 * Accumulates the array of buffer blocks and checks that all definitions of
1125 * blocks agree on their contents.
1126 */
1127 static bool
1128 interstage_cross_validate_uniform_blocks(struct gl_shader_program *prog,
1129 bool validate_ssbo)
1130 {
1131 int *InterfaceBlockStageIndex[MESA_SHADER_STAGES];
1132 struct gl_uniform_block *blks = NULL;
1133 unsigned *num_blks = validate_ssbo ? &prog->data->NumShaderStorageBlocks :
1134 &prog->data->NumUniformBlocks;
1135
1136 unsigned max_num_buffer_blocks = 0;
1137 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1138 if (prog->_LinkedShaders[i]) {
1139 if (validate_ssbo) {
1140 max_num_buffer_blocks +=
1141 prog->_LinkedShaders[i]->Program->info.num_ssbos;
1142 } else {
1143 max_num_buffer_blocks +=
1144 prog->_LinkedShaders[i]->Program->info.num_ubos;
1145 }
1146 }
1147 }
1148
1149 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1150 struct gl_linked_shader *sh = prog->_LinkedShaders[i];
1151
1152 InterfaceBlockStageIndex[i] = new int[max_num_buffer_blocks];
1153 for (unsigned int j = 0; j < max_num_buffer_blocks; j++)
1154 InterfaceBlockStageIndex[i][j] = -1;
1155
1156 if (sh == NULL)
1157 continue;
1158
1159 unsigned sh_num_blocks;
1160 struct gl_uniform_block **sh_blks;
1161 if (validate_ssbo) {
1162 sh_num_blocks = prog->_LinkedShaders[i]->Program->info.num_ssbos;
1163 sh_blks = sh->Program->sh.ShaderStorageBlocks;
1164 } else {
1165 sh_num_blocks = prog->_LinkedShaders[i]->Program->info.num_ubos;
1166 sh_blks = sh->Program->sh.UniformBlocks;
1167 }
1168
1169 for (unsigned int j = 0; j < sh_num_blocks; j++) {
1170 int index = link_cross_validate_uniform_block(prog, &blks, num_blks,
1171 sh_blks[j]);
1172
1173 if (index == -1) {
1174 linker_error(prog, "buffer block `%s' has mismatching "
1175 "definitions\n", sh_blks[j]->Name);
1176
1177 for (unsigned k = 0; k <= i; k++) {
1178 delete[] InterfaceBlockStageIndex[k];
1179 }
1180 return false;
1181 }
1182
1183 InterfaceBlockStageIndex[i][index] = j;
1184 }
1185 }
1186
1187 /* Update per stage block pointers to point to the program list.
1188 * FIXME: We should be able to free the per stage blocks here.
1189 */
1190 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1191 for (unsigned j = 0; j < *num_blks; j++) {
1192 int stage_index = InterfaceBlockStageIndex[i][j];
1193
1194 if (stage_index != -1) {
1195 struct gl_linked_shader *sh = prog->_LinkedShaders[i];
1196
1197 struct gl_uniform_block **sh_blks = validate_ssbo ?
1198 sh->Program->sh.ShaderStorageBlocks :
1199 sh->Program->sh.UniformBlocks;
1200
1201 blks[j].stageref |= sh_blks[stage_index]->stageref;
1202 sh_blks[stage_index] = &blks[j];
1203 }
1204 }
1205 }
1206
1207 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1208 delete[] InterfaceBlockStageIndex[i];
1209 }
1210
1211 if (validate_ssbo)
1212 prog->data->ShaderStorageBlocks = blks;
1213 else
1214 prog->data->UniformBlocks = blks;
1215
1216 return true;
1217 }
1218
1219
1220 /**
1221 * Populates a shaders symbol table with all global declarations
1222 */
1223 static void
1224 populate_symbol_table(gl_linked_shader *sh)
1225 {
1226 sh->symbols = new(sh) glsl_symbol_table;
1227
1228 foreach_in_list(ir_instruction, inst, sh->ir) {
1229 ir_variable *var;
1230 ir_function *func;
1231
1232 if ((func = inst->as_function()) != NULL) {
1233 sh->symbols->add_function(func);
1234 } else if ((var = inst->as_variable()) != NULL) {
1235 if (var->data.mode != ir_var_temporary)
1236 sh->symbols->add_variable(var);
1237 }
1238 }
1239 }
1240
1241
1242 /**
1243 * Remap variables referenced in an instruction tree
1244 *
1245 * This is used when instruction trees are cloned from one shader and placed in
1246 * another. These trees will contain references to \c ir_variable nodes that
1247 * do not exist in the target shader. This function finds these \c ir_variable
1248 * references and replaces the references with matching variables in the target
1249 * shader.
1250 *
1251 * If there is no matching variable in the target shader, a clone of the
1252 * \c ir_variable is made and added to the target shader. The new variable is
1253 * added to \b both the instruction stream and the symbol table.
1254 *
1255 * \param inst IR tree that is to be processed.
1256 * \param symbols Symbol table containing global scope symbols in the
1257 * linked shader.
1258 * \param instructions Instruction stream where new variable declarations
1259 * should be added.
1260 */
1261 void
1262 remap_variables(ir_instruction *inst, struct gl_linked_shader *target,
1263 hash_table *temps)
1264 {
1265 class remap_visitor : public ir_hierarchical_visitor {
1266 public:
1267 remap_visitor(struct gl_linked_shader *target, hash_table *temps)
1268 {
1269 this->target = target;
1270 this->symbols = target->symbols;
1271 this->instructions = target->ir;
1272 this->temps = temps;
1273 }
1274
1275 virtual ir_visitor_status visit(ir_dereference_variable *ir)
1276 {
1277 if (ir->var->data.mode == ir_var_temporary) {
1278 hash_entry *entry = _mesa_hash_table_search(temps, ir->var);
1279 ir_variable *var = entry ? (ir_variable *) entry->data : NULL;
1280
1281 assert(var != NULL);
1282 ir->var = var;
1283 return visit_continue;
1284 }
1285
1286 ir_variable *const existing =
1287 this->symbols->get_variable(ir->var->name);
1288 if (existing != NULL)
1289 ir->var = existing;
1290 else {
1291 ir_variable *copy = ir->var->clone(this->target, NULL);
1292
1293 this->symbols->add_variable(copy);
1294 this->instructions->push_head(copy);
1295 ir->var = copy;
1296 }
1297
1298 return visit_continue;
1299 }
1300
1301 private:
1302 struct gl_linked_shader *target;
1303 glsl_symbol_table *symbols;
1304 exec_list *instructions;
1305 hash_table *temps;
1306 };
1307
1308 remap_visitor v(target, temps);
1309
1310 inst->accept(&v);
1311 }
1312
1313
1314 /**
1315 * Move non-declarations from one instruction stream to another
1316 *
1317 * The intended usage pattern of this function is to pass the pointer to the
1318 * head sentinel of a list (i.e., a pointer to the list cast to an \c exec_node
1319 * pointer) for \c last and \c false for \c make_copies on the first
1320 * call. Successive calls pass the return value of the previous call for
1321 * \c last and \c true for \c make_copies.
1322 *
1323 * \param instructions Source instruction stream
1324 * \param last Instruction after which new instructions should be
1325 * inserted in the target instruction stream
1326 * \param make_copies Flag selecting whether instructions in \c instructions
1327 * should be copied (via \c ir_instruction::clone) into the
1328 * target list or moved.
1329 *
1330 * \return
1331 * The new "last" instruction in the target instruction stream. This pointer
1332 * is suitable for use as the \c last parameter of a later call to this
1333 * function.
1334 */
1335 exec_node *
1336 move_non_declarations(exec_list *instructions, exec_node *last,
1337 bool make_copies, gl_linked_shader *target)
1338 {
1339 hash_table *temps = NULL;
1340
1341 if (make_copies)
1342 temps = _mesa_hash_table_create(NULL, _mesa_hash_pointer,
1343 _mesa_key_pointer_equal);
1344
1345 foreach_in_list_safe(ir_instruction, inst, instructions) {
1346 if (inst->as_function())
1347 continue;
1348
1349 ir_variable *var = inst->as_variable();
1350 if ((var != NULL) && (var->data.mode != ir_var_temporary))
1351 continue;
1352
1353 assert(inst->as_assignment()
1354 || inst->as_call()
1355 || inst->as_if() /* for initializers with the ?: operator */
1356 || ((var != NULL) && (var->data.mode == ir_var_temporary)));
1357
1358 if (make_copies) {
1359 inst = inst->clone(target, NULL);
1360
1361 if (var != NULL)
1362 _mesa_hash_table_insert(temps, var, inst);
1363 else
1364 remap_variables(inst, target, temps);
1365 } else {
1366 inst->remove();
1367 }
1368
1369 last->insert_after(inst);
1370 last = inst;
1371 }
1372
1373 if (make_copies)
1374 _mesa_hash_table_destroy(temps, NULL);
1375
1376 return last;
1377 }
1378
1379
1380 /**
1381 * This class is only used in link_intrastage_shaders() below but declaring
1382 * it inside that function leads to compiler warnings with some versions of
1383 * gcc.
1384 */
1385 class array_sizing_visitor : public deref_type_updater {
1386 public:
1387 array_sizing_visitor()
1388 : mem_ctx(ralloc_context(NULL)),
1389 unnamed_interfaces(_mesa_hash_table_create(NULL, _mesa_hash_pointer,
1390 _mesa_key_pointer_equal))
1391 {
1392 }
1393
1394 ~array_sizing_visitor()
1395 {
1396 _mesa_hash_table_destroy(this->unnamed_interfaces, NULL);
1397 ralloc_free(this->mem_ctx);
1398 }
1399
1400 virtual ir_visitor_status visit(ir_variable *var)
1401 {
1402 const glsl_type *type_without_array;
1403 bool implicit_sized_array = var->data.implicit_sized_array;
1404 fixup_type(&var->type, var->data.max_array_access,
1405 var->data.from_ssbo_unsized_array,
1406 &implicit_sized_array);
1407 var->data.implicit_sized_array = implicit_sized_array;
1408 type_without_array = var->type->without_array();
1409 if (var->type->is_interface()) {
1410 if (interface_contains_unsized_arrays(var->type)) {
1411 const glsl_type *new_type =
1412 resize_interface_members(var->type,
1413 var->get_max_ifc_array_access(),
1414 var->is_in_shader_storage_block());
1415 var->type = new_type;
1416 var->change_interface_type(new_type);
1417 }
1418 } else if (type_without_array->is_interface()) {
1419 if (interface_contains_unsized_arrays(type_without_array)) {
1420 const glsl_type *new_type =
1421 resize_interface_members(type_without_array,
1422 var->get_max_ifc_array_access(),
1423 var->is_in_shader_storage_block());
1424 var->change_interface_type(new_type);
1425 var->type = update_interface_members_array(var->type, new_type);
1426 }
1427 } else if (const glsl_type *ifc_type = var->get_interface_type()) {
1428 /* Store a pointer to the variable in the unnamed_interfaces
1429 * hashtable.
1430 */
1431 hash_entry *entry =
1432 _mesa_hash_table_search(this->unnamed_interfaces,
1433 ifc_type);
1434
1435 ir_variable **interface_vars = entry ? (ir_variable **) entry->data : NULL;
1436
1437 if (interface_vars == NULL) {
1438 interface_vars = rzalloc_array(mem_ctx, ir_variable *,
1439 ifc_type->length);
1440 _mesa_hash_table_insert(this->unnamed_interfaces, ifc_type,
1441 interface_vars);
1442 }
1443 unsigned index = ifc_type->field_index(var->name);
1444 assert(index < ifc_type->length);
1445 assert(interface_vars[index] == NULL);
1446 interface_vars[index] = var;
1447 }
1448 return visit_continue;
1449 }
1450
1451 /**
1452 * For each unnamed interface block that was discovered while running the
1453 * visitor, adjust the interface type to reflect the newly assigned array
1454 * sizes, and fix up the ir_variable nodes to point to the new interface
1455 * type.
1456 */
1457 void fixup_unnamed_interface_types()
1458 {
1459 hash_table_call_foreach(this->unnamed_interfaces,
1460 fixup_unnamed_interface_type, NULL);
1461 }
1462
1463 private:
1464 /**
1465 * If the type pointed to by \c type represents an unsized array, replace
1466 * it with a sized array whose size is determined by max_array_access.
1467 */
1468 static void fixup_type(const glsl_type **type, unsigned max_array_access,
1469 bool from_ssbo_unsized_array, bool *implicit_sized)
1470 {
1471 if (!from_ssbo_unsized_array && (*type)->is_unsized_array()) {
1472 *type = glsl_type::get_array_instance((*type)->fields.array,
1473 max_array_access + 1);
1474 *implicit_sized = true;
1475 assert(*type != NULL);
1476 }
1477 }
1478
1479 static const glsl_type *
1480 update_interface_members_array(const glsl_type *type,
1481 const glsl_type *new_interface_type)
1482 {
1483 const glsl_type *element_type = type->fields.array;
1484 if (element_type->is_array()) {
1485 const glsl_type *new_array_type =
1486 update_interface_members_array(element_type, new_interface_type);
1487 return glsl_type::get_array_instance(new_array_type, type->length);
1488 } else {
1489 return glsl_type::get_array_instance(new_interface_type,
1490 type->length);
1491 }
1492 }
1493
1494 /**
1495 * Determine whether the given interface type contains unsized arrays (if
1496 * it doesn't, array_sizing_visitor doesn't need to process it).
1497 */
1498 static bool interface_contains_unsized_arrays(const glsl_type *type)
1499 {
1500 for (unsigned i = 0; i < type->length; i++) {
1501 const glsl_type *elem_type = type->fields.structure[i].type;
1502 if (elem_type->is_unsized_array())
1503 return true;
1504 }
1505 return false;
1506 }
1507
1508 /**
1509 * Create a new interface type based on the given type, with unsized arrays
1510 * replaced by sized arrays whose size is determined by
1511 * max_ifc_array_access.
1512 */
1513 static const glsl_type *
1514 resize_interface_members(const glsl_type *type,
1515 const int *max_ifc_array_access,
1516 bool is_ssbo)
1517 {
1518 unsigned num_fields = type->length;
1519 glsl_struct_field *fields = new glsl_struct_field[num_fields];
1520 memcpy(fields, type->fields.structure,
1521 num_fields * sizeof(*fields));
1522 for (unsigned i = 0; i < num_fields; i++) {
1523 bool implicit_sized_array = fields[i].implicit_sized_array;
1524 /* If SSBO last member is unsized array, we don't replace it by a sized
1525 * array.
1526 */
1527 if (is_ssbo && i == (num_fields - 1))
1528 fixup_type(&fields[i].type, max_ifc_array_access[i],
1529 true, &implicit_sized_array);
1530 else
1531 fixup_type(&fields[i].type, max_ifc_array_access[i],
1532 false, &implicit_sized_array);
1533 fields[i].implicit_sized_array = implicit_sized_array;
1534 }
1535 glsl_interface_packing packing =
1536 (glsl_interface_packing) type->interface_packing;
1537 bool row_major = (bool) type->interface_row_major;
1538 const glsl_type *new_ifc_type =
1539 glsl_type::get_interface_instance(fields, num_fields,
1540 packing, row_major, type->name);
1541 delete [] fields;
1542 return new_ifc_type;
1543 }
1544
1545 static void fixup_unnamed_interface_type(const void *key, void *data,
1546 void *)
1547 {
1548 const glsl_type *ifc_type = (const glsl_type *) key;
1549 ir_variable **interface_vars = (ir_variable **) data;
1550 unsigned num_fields = ifc_type->length;
1551 glsl_struct_field *fields = new glsl_struct_field[num_fields];
1552 memcpy(fields, ifc_type->fields.structure,
1553 num_fields * sizeof(*fields));
1554 bool interface_type_changed = false;
1555 for (unsigned i = 0; i < num_fields; i++) {
1556 if (interface_vars[i] != NULL &&
1557 fields[i].type != interface_vars[i]->type) {
1558 fields[i].type = interface_vars[i]->type;
1559 interface_type_changed = true;
1560 }
1561 }
1562 if (!interface_type_changed) {
1563 delete [] fields;
1564 return;
1565 }
1566 glsl_interface_packing packing =
1567 (glsl_interface_packing) ifc_type->interface_packing;
1568 bool row_major = (bool) ifc_type->interface_row_major;
1569 const glsl_type *new_ifc_type =
1570 glsl_type::get_interface_instance(fields, num_fields, packing,
1571 row_major, ifc_type->name);
1572 delete [] fields;
1573 for (unsigned i = 0; i < num_fields; i++) {
1574 if (interface_vars[i] != NULL)
1575 interface_vars[i]->change_interface_type(new_ifc_type);
1576 }
1577 }
1578
1579 /**
1580 * Memory context used to allocate the data in \c unnamed_interfaces.
1581 */
1582 void *mem_ctx;
1583
1584 /**
1585 * Hash table from const glsl_type * to an array of ir_variable *'s
1586 * pointing to the ir_variables constituting each unnamed interface block.
1587 */
1588 hash_table *unnamed_interfaces;
1589 };
1590
1591 static bool
1592 validate_xfb_buffer_stride(struct gl_context *ctx, unsigned idx,
1593 struct gl_shader_program *prog)
1594 {
1595 /* We will validate doubles at a later stage */
1596 if (prog->TransformFeedback.BufferStride[idx] % 4) {
1597 linker_error(prog, "invalid qualifier xfb_stride=%d must be a "
1598 "multiple of 4 or if its applied to a type that is "
1599 "or contains a double a multiple of 8.",
1600 prog->TransformFeedback.BufferStride[idx]);
1601 return false;
1602 }
1603
1604 if (prog->TransformFeedback.BufferStride[idx] / 4 >
1605 ctx->Const.MaxTransformFeedbackInterleavedComponents) {
1606 linker_error(prog, "The MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS "
1607 "limit has been exceeded.");
1608 return false;
1609 }
1610
1611 return true;
1612 }
1613
1614 /**
1615 * Check for conflicting xfb_stride default qualifiers and store buffer stride
1616 * for later use.
1617 */
1618 static void
1619 link_xfb_stride_layout_qualifiers(struct gl_context *ctx,
1620 struct gl_shader_program *prog,
1621 struct gl_linked_shader *linked_shader,
1622 struct gl_shader **shader_list,
1623 unsigned num_shaders)
1624 {
1625 for (unsigned i = 0; i < MAX_FEEDBACK_BUFFERS; i++) {
1626 prog->TransformFeedback.BufferStride[i] = 0;
1627 }
1628
1629 for (unsigned i = 0; i < num_shaders; i++) {
1630 struct gl_shader *shader = shader_list[i];
1631
1632 for (unsigned j = 0; j < MAX_FEEDBACK_BUFFERS; j++) {
1633 if (shader->TransformFeedbackBufferStride[j]) {
1634 if (prog->TransformFeedback.BufferStride[j] == 0) {
1635 prog->TransformFeedback.BufferStride[j] =
1636 shader->TransformFeedbackBufferStride[j];
1637 if (!validate_xfb_buffer_stride(ctx, j, prog))
1638 return;
1639 } else if (prog->TransformFeedback.BufferStride[j] !=
1640 shader->TransformFeedbackBufferStride[j]){
1641 linker_error(prog,
1642 "intrastage shaders defined with conflicting "
1643 "xfb_stride for buffer %d (%d and %d)\n", j,
1644 prog->TransformFeedback.BufferStride[j],
1645 shader->TransformFeedbackBufferStride[j]);
1646 return;
1647 }
1648 }
1649 }
1650 }
1651 }
1652
1653 /**
1654 * Performs the cross-validation of tessellation control shader vertices and
1655 * layout qualifiers for the attached tessellation control shaders,
1656 * and propagates them to the linked TCS and linked shader program.
1657 */
1658 static void
1659 link_tcs_out_layout_qualifiers(struct gl_shader_program *prog,
1660 struct gl_program *gl_prog,
1661 struct gl_shader **shader_list,
1662 unsigned num_shaders)
1663 {
1664 if (gl_prog->info.stage != MESA_SHADER_TESS_CTRL)
1665 return;
1666
1667 gl_prog->info.tess.tcs_vertices_out = 0;
1668
1669 /* From the GLSL 4.0 spec (chapter 4.3.8.2):
1670 *
1671 * "All tessellation control shader layout declarations in a program
1672 * must specify the same output patch vertex count. There must be at
1673 * least one layout qualifier specifying an output patch vertex count
1674 * in any program containing tessellation control shaders; however,
1675 * such a declaration is not required in all tessellation control
1676 * shaders."
1677 */
1678
1679 for (unsigned i = 0; i < num_shaders; i++) {
1680 struct gl_shader *shader = shader_list[i];
1681
1682 if (shader->info.TessCtrl.VerticesOut != 0) {
1683 if (gl_prog->info.tess.tcs_vertices_out != 0 &&
1684 gl_prog->info.tess.tcs_vertices_out !=
1685 (unsigned) shader->info.TessCtrl.VerticesOut) {
1686 linker_error(prog, "tessellation control shader defined with "
1687 "conflicting output vertex count (%d and %d)\n",
1688 gl_prog->info.tess.tcs_vertices_out,
1689 shader->info.TessCtrl.VerticesOut);
1690 return;
1691 }
1692 gl_prog->info.tess.tcs_vertices_out =
1693 shader->info.TessCtrl.VerticesOut;
1694 }
1695 }
1696
1697 /* Just do the intrastage -> interstage propagation right now,
1698 * since we already know we're in the right type of shader program
1699 * for doing it.
1700 */
1701 if (gl_prog->info.tess.tcs_vertices_out == 0) {
1702 linker_error(prog, "tessellation control shader didn't declare "
1703 "vertices out layout qualifier\n");
1704 return;
1705 }
1706 }
1707
1708
1709 /**
1710 * Performs the cross-validation of tessellation evaluation shader
1711 * primitive type, vertex spacing, ordering and point_mode layout qualifiers
1712 * for the attached tessellation evaluation shaders, and propagates them
1713 * to the linked TES and linked shader program.
1714 */
1715 static void
1716 link_tes_in_layout_qualifiers(struct gl_shader_program *prog,
1717 struct gl_linked_shader *linked_shader,
1718 struct gl_shader **shader_list,
1719 unsigned num_shaders)
1720 {
1721 linked_shader->info.TessEval.PrimitiveMode = PRIM_UNKNOWN;
1722 linked_shader->info.TessEval.Spacing = TESS_SPACING_UNSPECIFIED;
1723 linked_shader->info.TessEval.VertexOrder = 0;
1724 linked_shader->info.TessEval.PointMode = -1;
1725
1726 if (linked_shader->Stage != MESA_SHADER_TESS_EVAL)
1727 return;
1728
1729 /* From the GLSL 4.0 spec (chapter 4.3.8.1):
1730 *
1731 * "At least one tessellation evaluation shader (compilation unit) in
1732 * a program must declare a primitive mode in its input layout.
1733 * Declaration vertex spacing, ordering, and point mode identifiers is
1734 * optional. It is not required that all tessellation evaluation
1735 * shaders in a program declare a primitive mode. If spacing or
1736 * vertex ordering declarations are omitted, the tessellation
1737 * primitive generator will use equal spacing or counter-clockwise
1738 * vertex ordering, respectively. If a point mode declaration is
1739 * omitted, the tessellation primitive generator will produce lines or
1740 * triangles according to the primitive mode."
1741 */
1742
1743 for (unsigned i = 0; i < num_shaders; i++) {
1744 struct gl_shader *shader = shader_list[i];
1745
1746 if (shader->info.TessEval.PrimitiveMode != PRIM_UNKNOWN) {
1747 if (linked_shader->info.TessEval.PrimitiveMode != PRIM_UNKNOWN &&
1748 linked_shader->info.TessEval.PrimitiveMode !=
1749 shader->info.TessEval.PrimitiveMode) {
1750 linker_error(prog, "tessellation evaluation shader defined with "
1751 "conflicting input primitive modes.\n");
1752 return;
1753 }
1754 linked_shader->info.TessEval.PrimitiveMode = shader->info.TessEval.PrimitiveMode;
1755 }
1756
1757 if (shader->info.TessEval.Spacing != 0) {
1758 if (linked_shader->info.TessEval.Spacing != 0 &&
1759 linked_shader->info.TessEval.Spacing !=
1760 shader->info.TessEval.Spacing) {
1761 linker_error(prog, "tessellation evaluation shader defined with "
1762 "conflicting vertex spacing.\n");
1763 return;
1764 }
1765 linked_shader->info.TessEval.Spacing = shader->info.TessEval.Spacing;
1766 }
1767
1768 if (shader->info.TessEval.VertexOrder != 0) {
1769 if (linked_shader->info.TessEval.VertexOrder != 0 &&
1770 linked_shader->info.TessEval.VertexOrder !=
1771 shader->info.TessEval.VertexOrder) {
1772 linker_error(prog, "tessellation evaluation shader defined with "
1773 "conflicting ordering.\n");
1774 return;
1775 }
1776 linked_shader->info.TessEval.VertexOrder =
1777 shader->info.TessEval.VertexOrder;
1778 }
1779
1780 if (shader->info.TessEval.PointMode != -1) {
1781 if (linked_shader->info.TessEval.PointMode != -1 &&
1782 linked_shader->info.TessEval.PointMode !=
1783 shader->info.TessEval.PointMode) {
1784 linker_error(prog, "tessellation evaluation shader defined with "
1785 "conflicting point modes.\n");
1786 return;
1787 }
1788 linked_shader->info.TessEval.PointMode =
1789 shader->info.TessEval.PointMode;
1790 }
1791
1792 }
1793
1794 /* Just do the intrastage -> interstage propagation right now,
1795 * since we already know we're in the right type of shader program
1796 * for doing it.
1797 */
1798 if (linked_shader->info.TessEval.PrimitiveMode == PRIM_UNKNOWN) {
1799 linker_error(prog,
1800 "tessellation evaluation shader didn't declare input "
1801 "primitive modes.\n");
1802 return;
1803 }
1804
1805 if (linked_shader->info.TessEval.Spacing == TESS_SPACING_UNSPECIFIED)
1806 linked_shader->info.TessEval.Spacing = TESS_SPACING_EQUAL;
1807
1808 if (linked_shader->info.TessEval.VertexOrder == 0)
1809 linked_shader->info.TessEval.VertexOrder = GL_CCW;
1810
1811 if (linked_shader->info.TessEval.PointMode == -1)
1812 linked_shader->info.TessEval.PointMode = GL_FALSE;
1813 }
1814
1815
1816 /**
1817 * Performs the cross-validation of layout qualifiers specified in
1818 * redeclaration of gl_FragCoord for the attached fragment shaders,
1819 * and propagates them to the linked FS and linked shader program.
1820 */
1821 static void
1822 link_fs_inout_layout_qualifiers(struct gl_shader_program *prog,
1823 struct gl_linked_shader *linked_shader,
1824 struct gl_shader **shader_list,
1825 unsigned num_shaders)
1826 {
1827 bool redeclares_gl_fragcoord = false;
1828 bool uses_gl_fragcoord = false;
1829 bool origin_upper_left = false;
1830 bool pixel_center_integer = false;
1831
1832 if (linked_shader->Stage != MESA_SHADER_FRAGMENT ||
1833 (prog->data->Version < 150 &&
1834 !prog->ARB_fragment_coord_conventions_enable))
1835 return;
1836
1837 for (unsigned i = 0; i < num_shaders; i++) {
1838 struct gl_shader *shader = shader_list[i];
1839 /* From the GLSL 1.50 spec, page 39:
1840 *
1841 * "If gl_FragCoord is redeclared in any fragment shader in a program,
1842 * it must be redeclared in all the fragment shaders in that program
1843 * that have a static use gl_FragCoord."
1844 */
1845 if ((redeclares_gl_fragcoord && !shader->redeclares_gl_fragcoord &&
1846 shader->uses_gl_fragcoord)
1847 || (shader->redeclares_gl_fragcoord && !redeclares_gl_fragcoord &&
1848 uses_gl_fragcoord)) {
1849 linker_error(prog, "fragment shader defined with conflicting "
1850 "layout qualifiers for gl_FragCoord\n");
1851 }
1852
1853 /* From the GLSL 1.50 spec, page 39:
1854 *
1855 * "All redeclarations of gl_FragCoord in all fragment shaders in a
1856 * single program must have the same set of qualifiers."
1857 */
1858 if (redeclares_gl_fragcoord && shader->redeclares_gl_fragcoord &&
1859 (shader->origin_upper_left != origin_upper_left ||
1860 shader->pixel_center_integer != pixel_center_integer)) {
1861 linker_error(prog, "fragment shader defined with conflicting "
1862 "layout qualifiers for gl_FragCoord\n");
1863 }
1864
1865 /* Update the linked shader state. Note that uses_gl_fragcoord should
1866 * accumulate the results. The other values should replace. If there
1867 * are multiple redeclarations, all the fields except uses_gl_fragcoord
1868 * are already known to be the same.
1869 */
1870 if (shader->redeclares_gl_fragcoord || shader->uses_gl_fragcoord) {
1871 redeclares_gl_fragcoord = shader->redeclares_gl_fragcoord;
1872 uses_gl_fragcoord |= shader->uses_gl_fragcoord;
1873 origin_upper_left = shader->origin_upper_left;
1874 pixel_center_integer = shader->pixel_center_integer;
1875 }
1876
1877 linked_shader->Program->info.fs.early_fragment_tests |=
1878 shader->EarlyFragmentTests;
1879 linked_shader->Program->info.fs.inner_coverage |= shader->InnerCoverage;
1880 linked_shader->Program->info.fs.post_depth_coverage |=
1881 shader->PostDepthCoverage;
1882
1883 linked_shader->Program->sh.fs.BlendSupport |= shader->BlendSupport;
1884 }
1885 }
1886
1887 /**
1888 * Performs the cross-validation of geometry shader max_vertices and
1889 * primitive type layout qualifiers for the attached geometry shaders,
1890 * and propagates them to the linked GS and linked shader program.
1891 */
1892 static void
1893 link_gs_inout_layout_qualifiers(struct gl_shader_program *prog,
1894 struct gl_linked_shader *linked_shader,
1895 struct gl_shader **shader_list,
1896 unsigned num_shaders)
1897 {
1898 linked_shader->info.Geom.VerticesOut = -1;
1899 linked_shader->info.Geom.Invocations = 0;
1900 linked_shader->info.Geom.InputType = PRIM_UNKNOWN;
1901 linked_shader->info.Geom.OutputType = PRIM_UNKNOWN;
1902
1903 /* No in/out qualifiers defined for anything but GLSL 1.50+
1904 * geometry shaders so far.
1905 */
1906 if (linked_shader->Stage != MESA_SHADER_GEOMETRY ||
1907 prog->data->Version < 150)
1908 return;
1909
1910 /* From the GLSL 1.50 spec, page 46:
1911 *
1912 * "All geometry shader output layout declarations in a program
1913 * must declare the same layout and same value for
1914 * max_vertices. There must be at least one geometry output
1915 * layout declaration somewhere in a program, but not all
1916 * geometry shaders (compilation units) are required to
1917 * declare it."
1918 */
1919
1920 for (unsigned i = 0; i < num_shaders; i++) {
1921 struct gl_shader *shader = shader_list[i];
1922
1923 if (shader->info.Geom.InputType != PRIM_UNKNOWN) {
1924 if (linked_shader->info.Geom.InputType != PRIM_UNKNOWN &&
1925 linked_shader->info.Geom.InputType !=
1926 shader->info.Geom.InputType) {
1927 linker_error(prog, "geometry shader defined with conflicting "
1928 "input types\n");
1929 return;
1930 }
1931 linked_shader->info.Geom.InputType = shader->info.Geom.InputType;
1932 }
1933
1934 if (shader->info.Geom.OutputType != PRIM_UNKNOWN) {
1935 if (linked_shader->info.Geom.OutputType != PRIM_UNKNOWN &&
1936 linked_shader->info.Geom.OutputType !=
1937 shader->info.Geom.OutputType) {
1938 linker_error(prog, "geometry shader defined with conflicting "
1939 "output types\n");
1940 return;
1941 }
1942 linked_shader->info.Geom.OutputType = shader->info.Geom.OutputType;
1943 }
1944
1945 if (shader->info.Geom.VerticesOut != -1) {
1946 if (linked_shader->info.Geom.VerticesOut != -1 &&
1947 linked_shader->info.Geom.VerticesOut !=
1948 shader->info.Geom.VerticesOut) {
1949 linker_error(prog, "geometry shader defined with conflicting "
1950 "output vertex count (%d and %d)\n",
1951 linked_shader->info.Geom.VerticesOut,
1952 shader->info.Geom.VerticesOut);
1953 return;
1954 }
1955 linked_shader->info.Geom.VerticesOut = shader->info.Geom.VerticesOut;
1956 }
1957
1958 if (shader->info.Geom.Invocations != 0) {
1959 if (linked_shader->info.Geom.Invocations != 0 &&
1960 linked_shader->info.Geom.Invocations !=
1961 shader->info.Geom.Invocations) {
1962 linker_error(prog, "geometry shader defined with conflicting "
1963 "invocation count (%d and %d)\n",
1964 linked_shader->info.Geom.Invocations,
1965 shader->info.Geom.Invocations);
1966 return;
1967 }
1968 linked_shader->info.Geom.Invocations = shader->info.Geom.Invocations;
1969 }
1970 }
1971
1972 /* Just do the intrastage -> interstage propagation right now,
1973 * since we already know we're in the right type of shader program
1974 * for doing it.
1975 */
1976 if (linked_shader->info.Geom.InputType == PRIM_UNKNOWN) {
1977 linker_error(prog,
1978 "geometry shader didn't declare primitive input type\n");
1979 return;
1980 }
1981
1982 if (linked_shader->info.Geom.OutputType == PRIM_UNKNOWN) {
1983 linker_error(prog,
1984 "geometry shader didn't declare primitive output type\n");
1985 return;
1986 }
1987
1988 if (linked_shader->info.Geom.VerticesOut == -1) {
1989 linker_error(prog,
1990 "geometry shader didn't declare max_vertices\n");
1991 return;
1992 }
1993
1994 if (linked_shader->info.Geom.Invocations == 0)
1995 linked_shader->info.Geom.Invocations = 1;
1996 }
1997
1998
1999 /**
2000 * Perform cross-validation of compute shader local_size_{x,y,z} layout
2001 * qualifiers for the attached compute shaders, and propagate them to the
2002 * linked CS and linked shader program.
2003 */
2004 static void
2005 link_cs_input_layout_qualifiers(struct gl_shader_program *prog,
2006 struct gl_linked_shader *linked_shader,
2007 struct gl_shader **shader_list,
2008 unsigned num_shaders)
2009 {
2010 for (int i = 0; i < 3; i++)
2011 linked_shader->info.Comp.LocalSize[i] = 0;
2012
2013 linked_shader->info.Comp.LocalSizeVariable = false;
2014
2015 /* This function is called for all shader stages, but it only has an effect
2016 * for compute shaders.
2017 */
2018 if (linked_shader->Stage != MESA_SHADER_COMPUTE)
2019 return;
2020
2021 /* From the ARB_compute_shader spec, in the section describing local size
2022 * declarations:
2023 *
2024 * If multiple compute shaders attached to a single program object
2025 * declare local work-group size, the declarations must be identical;
2026 * otherwise a link-time error results. Furthermore, if a program
2027 * object contains any compute shaders, at least one must contain an
2028 * input layout qualifier specifying the local work sizes of the
2029 * program, or a link-time error will occur.
2030 */
2031 for (unsigned sh = 0; sh < num_shaders; sh++) {
2032 struct gl_shader *shader = shader_list[sh];
2033
2034 if (shader->info.Comp.LocalSize[0] != 0) {
2035 if (linked_shader->info.Comp.LocalSize[0] != 0) {
2036 for (int i = 0; i < 3; i++) {
2037 if (linked_shader->info.Comp.LocalSize[i] !=
2038 shader->info.Comp.LocalSize[i]) {
2039 linker_error(prog, "compute shader defined with conflicting "
2040 "local sizes\n");
2041 return;
2042 }
2043 }
2044 }
2045 for (int i = 0; i < 3; i++) {
2046 linked_shader->info.Comp.LocalSize[i] =
2047 shader->info.Comp.LocalSize[i];
2048 }
2049 } else if (shader->info.Comp.LocalSizeVariable) {
2050 if (linked_shader->info.Comp.LocalSize[0] != 0) {
2051 /* The ARB_compute_variable_group_size spec says:
2052 *
2053 * If one compute shader attached to a program declares a
2054 * variable local group size and a second compute shader
2055 * attached to the same program declares a fixed local group
2056 * size, a link-time error results.
2057 */
2058 linker_error(prog, "compute shader defined with both fixed and "
2059 "variable local group size\n");
2060 return;
2061 }
2062 linked_shader->info.Comp.LocalSizeVariable = true;
2063 }
2064 }
2065
2066 /* Just do the intrastage -> interstage propagation right now,
2067 * since we already know we're in the right type of shader program
2068 * for doing it.
2069 */
2070 if (linked_shader->info.Comp.LocalSize[0] == 0 &&
2071 !linked_shader->info.Comp.LocalSizeVariable) {
2072 linker_error(prog, "compute shader must contain a fixed or a variable "
2073 "local group size\n");
2074 return;
2075 }
2076 for (int i = 0; i < 3; i++)
2077 prog->Comp.LocalSize[i] = linked_shader->info.Comp.LocalSize[i];
2078
2079 prog->Comp.LocalSizeVariable =
2080 linked_shader->info.Comp.LocalSizeVariable;
2081 }
2082
2083
2084 /**
2085 * Combine a group of shaders for a single stage to generate a linked shader
2086 *
2087 * \note
2088 * If this function is supplied a single shader, it is cloned, and the new
2089 * shader is returned.
2090 */
2091 struct gl_linked_shader *
2092 link_intrastage_shaders(void *mem_ctx,
2093 struct gl_context *ctx,
2094 struct gl_shader_program *prog,
2095 struct gl_shader **shader_list,
2096 unsigned num_shaders,
2097 bool allow_missing_main)
2098 {
2099 struct gl_uniform_block *ubo_blocks = NULL;
2100 struct gl_uniform_block *ssbo_blocks = NULL;
2101 unsigned num_ubo_blocks = 0;
2102 unsigned num_ssbo_blocks = 0;
2103
2104 /* Check that global variables defined in multiple shaders are consistent.
2105 */
2106 glsl_symbol_table variables;
2107 for (unsigned i = 0; i < num_shaders; i++) {
2108 if (shader_list[i] == NULL)
2109 continue;
2110 cross_validate_globals(prog, shader_list[i]->ir, &variables, false);
2111 }
2112
2113 if (!prog->data->LinkStatus)
2114 return NULL;
2115
2116 /* Check that interface blocks defined in multiple shaders are consistent.
2117 */
2118 validate_intrastage_interface_blocks(prog, (const gl_shader **)shader_list,
2119 num_shaders);
2120 if (!prog->data->LinkStatus)
2121 return NULL;
2122
2123 /* Check that there is only a single definition of each function signature
2124 * across all shaders.
2125 */
2126 for (unsigned i = 0; i < (num_shaders - 1); i++) {
2127 foreach_in_list(ir_instruction, node, shader_list[i]->ir) {
2128 ir_function *const f = node->as_function();
2129
2130 if (f == NULL)
2131 continue;
2132
2133 for (unsigned j = i + 1; j < num_shaders; j++) {
2134 ir_function *const other =
2135 shader_list[j]->symbols->get_function(f->name);
2136
2137 /* If the other shader has no function (and therefore no function
2138 * signatures) with the same name, skip to the next shader.
2139 */
2140 if (other == NULL)
2141 continue;
2142
2143 foreach_in_list(ir_function_signature, sig, &f->signatures) {
2144 if (!sig->is_defined)
2145 continue;
2146
2147 ir_function_signature *other_sig =
2148 other->exact_matching_signature(NULL, &sig->parameters);
2149
2150 if (other_sig != NULL && other_sig->is_defined) {
2151 linker_error(prog, "function `%s' is multiply defined\n",
2152 f->name);
2153 return NULL;
2154 }
2155 }
2156 }
2157 }
2158 }
2159
2160 /* Find the shader that defines main, and make a clone of it.
2161 *
2162 * Starting with the clone, search for undefined references. If one is
2163 * found, find the shader that defines it. Clone the reference and add
2164 * it to the shader. Repeat until there are no undefined references or
2165 * until a reference cannot be resolved.
2166 */
2167 gl_shader *main = NULL;
2168 for (unsigned i = 0; i < num_shaders; i++) {
2169 if (_mesa_get_main_function_signature(shader_list[i]->symbols)) {
2170 main = shader_list[i];
2171 break;
2172 }
2173 }
2174
2175 if (main == NULL && allow_missing_main)
2176 main = shader_list[0];
2177
2178 if (main == NULL) {
2179 linker_error(prog, "%s shader lacks `main'\n",
2180 _mesa_shader_stage_to_string(shader_list[0]->Stage));
2181 return NULL;
2182 }
2183
2184 gl_linked_shader *linked = rzalloc(NULL, struct gl_linked_shader);
2185 linked->Stage = shader_list[0]->Stage;
2186
2187 /* Create program and attach it to the linked shader */
2188 struct gl_program *gl_prog =
2189 ctx->Driver.NewProgram(ctx,
2190 _mesa_shader_stage_to_program(shader_list[0]->Stage),
2191 prog->Name, false);
2192 if (!gl_prog) {
2193 prog->data->LinkStatus = false;
2194 _mesa_delete_linked_shader(ctx, linked);
2195 return NULL;
2196 }
2197
2198 _mesa_reference_shader_program_data(ctx, &gl_prog->sh.data, prog->data);
2199
2200 /* Don't use _mesa_reference_program() just take ownership */
2201 linked->Program = gl_prog;
2202
2203 linked->ir = new(linked) exec_list;
2204 clone_ir_list(mem_ctx, linked->ir, main->ir);
2205
2206 link_fs_inout_layout_qualifiers(prog, linked, shader_list, num_shaders);
2207 link_tcs_out_layout_qualifiers(prog, gl_prog, shader_list, num_shaders);
2208 link_tes_in_layout_qualifiers(prog, linked, shader_list, num_shaders);
2209 link_gs_inout_layout_qualifiers(prog, linked, shader_list, num_shaders);
2210 link_cs_input_layout_qualifiers(prog, linked, shader_list, num_shaders);
2211 link_xfb_stride_layout_qualifiers(ctx, prog, linked, shader_list,
2212 num_shaders);
2213
2214 populate_symbol_table(linked);
2215
2216 /* The pointer to the main function in the final linked shader (i.e., the
2217 * copy of the original shader that contained the main function).
2218 */
2219 ir_function_signature *const main_sig =
2220 _mesa_get_main_function_signature(linked->symbols);
2221
2222 /* Move any instructions other than variable declarations or function
2223 * declarations into main.
2224 */
2225 if (main_sig != NULL) {
2226 exec_node *insertion_point =
2227 move_non_declarations(linked->ir, (exec_node *) &main_sig->body, false,
2228 linked);
2229
2230 for (unsigned i = 0; i < num_shaders; i++) {
2231 if (shader_list[i] == main)
2232 continue;
2233
2234 insertion_point = move_non_declarations(shader_list[i]->ir,
2235 insertion_point, true, linked);
2236 }
2237 }
2238
2239 if (!link_function_calls(prog, linked, shader_list, num_shaders)) {
2240 _mesa_delete_linked_shader(ctx, linked);
2241 return NULL;
2242 }
2243
2244 /* Make a pass over all variable declarations to ensure that arrays with
2245 * unspecified sizes have a size specified. The size is inferred from the
2246 * max_array_access field.
2247 */
2248 array_sizing_visitor v;
2249 v.run(linked->ir);
2250 v.fixup_unnamed_interface_types();
2251
2252 /* Link up uniform blocks defined within this stage. */
2253 link_uniform_blocks(mem_ctx, ctx, prog, linked, &ubo_blocks,
2254 &num_ubo_blocks, &ssbo_blocks, &num_ssbo_blocks);
2255
2256 if (!prog->data->LinkStatus) {
2257 _mesa_delete_linked_shader(ctx, linked);
2258 return NULL;
2259 }
2260
2261 /* Copy ubo blocks to linked shader list */
2262 linked->Program->sh.UniformBlocks =
2263 ralloc_array(linked, gl_uniform_block *, num_ubo_blocks);
2264 ralloc_steal(linked, ubo_blocks);
2265 for (unsigned i = 0; i < num_ubo_blocks; i++) {
2266 linked->Program->sh.UniformBlocks[i] = &ubo_blocks[i];
2267 }
2268 linked->Program->info.num_ubos = num_ubo_blocks;
2269
2270 /* Copy ssbo blocks to linked shader list */
2271 linked->Program->sh.ShaderStorageBlocks =
2272 ralloc_array(linked, gl_uniform_block *, num_ssbo_blocks);
2273 ralloc_steal(linked, ssbo_blocks);
2274 for (unsigned i = 0; i < num_ssbo_blocks; i++) {
2275 linked->Program->sh.ShaderStorageBlocks[i] = &ssbo_blocks[i];
2276 }
2277 linked->Program->info.num_ssbos = num_ssbo_blocks;
2278
2279 /* At this point linked should contain all of the linked IR, so
2280 * validate it to make sure nothing went wrong.
2281 */
2282 validate_ir_tree(linked->ir);
2283
2284 /* Set the size of geometry shader input arrays */
2285 if (linked->Stage == MESA_SHADER_GEOMETRY) {
2286 unsigned num_vertices = vertices_per_prim(linked->info.Geom.InputType);
2287 array_resize_visitor input_resize_visitor(num_vertices, prog,
2288 MESA_SHADER_GEOMETRY);
2289 foreach_in_list(ir_instruction, ir, linked->ir) {
2290 ir->accept(&input_resize_visitor);
2291 }
2292 }
2293
2294 if (ctx->Const.VertexID_is_zero_based)
2295 lower_vertex_id(linked);
2296
2297 #ifdef DEBUG
2298 /* Compute the source checksum. */
2299 linked->SourceChecksum = 0;
2300 for (unsigned i = 0; i < num_shaders; i++) {
2301 if (shader_list[i] == NULL)
2302 continue;
2303 linked->SourceChecksum ^= shader_list[i]->SourceChecksum;
2304 }
2305 #endif
2306
2307 return linked;
2308 }
2309
2310 /**
2311 * Update the sizes of linked shader uniform arrays to the maximum
2312 * array index used.
2313 *
2314 * From page 81 (page 95 of the PDF) of the OpenGL 2.1 spec:
2315 *
2316 * If one or more elements of an array are active,
2317 * GetActiveUniform will return the name of the array in name,
2318 * subject to the restrictions listed above. The type of the array
2319 * is returned in type. The size parameter contains the highest
2320 * array element index used, plus one. The compiler or linker
2321 * determines the highest index used. There will be only one
2322 * active uniform reported by the GL per uniform array.
2323
2324 */
2325 static void
2326 update_array_sizes(struct gl_shader_program *prog)
2327 {
2328 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
2329 if (prog->_LinkedShaders[i] == NULL)
2330 continue;
2331
2332 bool types_were_updated = false;
2333
2334 foreach_in_list(ir_instruction, node, prog->_LinkedShaders[i]->ir) {
2335 ir_variable *const var = node->as_variable();
2336
2337 if ((var == NULL) || (var->data.mode != ir_var_uniform) ||
2338 !var->type->is_array())
2339 continue;
2340
2341 /* GL_ARB_uniform_buffer_object says that std140 uniforms
2342 * will not be eliminated. Since we always do std140, just
2343 * don't resize arrays in UBOs.
2344 *
2345 * Atomic counters are supposed to get deterministic
2346 * locations assigned based on the declaration ordering and
2347 * sizes, array compaction would mess that up.
2348 *
2349 * Subroutine uniforms are not removed.
2350 */
2351 if (var->is_in_buffer_block() || var->type->contains_atomic() ||
2352 var->type->contains_subroutine() || var->constant_initializer)
2353 continue;
2354
2355 int size = var->data.max_array_access;
2356 for (unsigned j = 0; j < MESA_SHADER_STAGES; j++) {
2357 if (prog->_LinkedShaders[j] == NULL)
2358 continue;
2359
2360 foreach_in_list(ir_instruction, node2, prog->_LinkedShaders[j]->ir) {
2361 ir_variable *other_var = node2->as_variable();
2362 if (!other_var)
2363 continue;
2364
2365 if (strcmp(var->name, other_var->name) == 0 &&
2366 other_var->data.max_array_access > size) {
2367 size = other_var->data.max_array_access;
2368 }
2369 }
2370 }
2371
2372 if (size + 1 != (int)var->type->length) {
2373 /* If this is a built-in uniform (i.e., it's backed by some
2374 * fixed-function state), adjust the number of state slots to
2375 * match the new array size. The number of slots per array entry
2376 * is not known. It seems safe to assume that the total number of
2377 * slots is an integer multiple of the number of array elements.
2378 * Determine the number of slots per array element by dividing by
2379 * the old (total) size.
2380 */
2381 const unsigned num_slots = var->get_num_state_slots();
2382 if (num_slots > 0) {
2383 var->set_num_state_slots((size + 1)
2384 * (num_slots / var->type->length));
2385 }
2386
2387 var->type = glsl_type::get_array_instance(var->type->fields.array,
2388 size + 1);
2389 types_were_updated = true;
2390 }
2391 }
2392
2393 /* Update the types of dereferences in case we changed any. */
2394 if (types_were_updated) {
2395 deref_type_updater v;
2396 v.run(prog->_LinkedShaders[i]->ir);
2397 }
2398 }
2399 }
2400
2401 /**
2402 * Resize tessellation evaluation per-vertex inputs to the size of
2403 * tessellation control per-vertex outputs.
2404 */
2405 static void
2406 resize_tes_inputs(struct gl_context *ctx,
2407 struct gl_shader_program *prog)
2408 {
2409 if (prog->_LinkedShaders[MESA_SHADER_TESS_EVAL] == NULL)
2410 return;
2411
2412 gl_linked_shader *const tcs = prog->_LinkedShaders[MESA_SHADER_TESS_CTRL];
2413 gl_linked_shader *const tes = prog->_LinkedShaders[MESA_SHADER_TESS_EVAL];
2414
2415 /* If no control shader is present, then the TES inputs are statically
2416 * sized to MaxPatchVertices; the actual size of the arrays won't be
2417 * known until draw time.
2418 */
2419 const int num_vertices = tcs
2420 ? tcs->Program->info.tess.tcs_vertices_out
2421 : ctx->Const.MaxPatchVertices;
2422
2423 array_resize_visitor input_resize_visitor(num_vertices, prog,
2424 MESA_SHADER_TESS_EVAL);
2425 foreach_in_list(ir_instruction, ir, tes->ir) {
2426 ir->accept(&input_resize_visitor);
2427 }
2428
2429 if (tcs || ctx->Const.LowerTESPatchVerticesIn) {
2430 /* Convert the gl_PatchVerticesIn system value into a constant, since
2431 * the value is known at this point.
2432 */
2433 foreach_in_list(ir_instruction, ir, tes->ir) {
2434 ir_variable *var = ir->as_variable();
2435 if (var && var->data.mode == ir_var_system_value &&
2436 var->data.location == SYSTEM_VALUE_VERTICES_IN) {
2437 void *mem_ctx = ralloc_parent(var);
2438 var->data.location = 0;
2439 var->data.explicit_location = false;
2440 if (tcs) {
2441 var->data.mode = ir_var_auto;
2442 var->constant_value = new(mem_ctx) ir_constant(num_vertices);
2443 } else {
2444 var->data.mode = ir_var_uniform;
2445 var->data.how_declared = ir_var_hidden;
2446 var->allocate_state_slots(1);
2447 ir_state_slot *slot0 = &var->get_state_slots()[0];
2448 slot0->swizzle = SWIZZLE_XXXX;
2449 slot0->tokens[0] = STATE_INTERNAL;
2450 slot0->tokens[1] = STATE_TES_PATCH_VERTICES_IN;
2451 for (int i = 2; i < STATE_LENGTH; i++)
2452 slot0->tokens[i] = 0;
2453 }
2454 }
2455 }
2456 }
2457 }
2458
2459 /**
2460 * Find a contiguous set of available bits in a bitmask.
2461 *
2462 * \param used_mask Bits representing used (1) and unused (0) locations
2463 * \param needed_count Number of contiguous bits needed.
2464 *
2465 * \return
2466 * Base location of the available bits on success or -1 on failure.
2467 */
2468 int
2469 find_available_slots(unsigned used_mask, unsigned needed_count)
2470 {
2471 unsigned needed_mask = (1 << needed_count) - 1;
2472 const int max_bit_to_test = (8 * sizeof(used_mask)) - needed_count;
2473
2474 /* The comparison to 32 is redundant, but without it GCC emits "warning:
2475 * cannot optimize possibly infinite loops" for the loop below.
2476 */
2477 if ((needed_count == 0) || (max_bit_to_test < 0) || (max_bit_to_test > 32))
2478 return -1;
2479
2480 for (int i = 0; i <= max_bit_to_test; i++) {
2481 if ((needed_mask & ~used_mask) == needed_mask)
2482 return i;
2483
2484 needed_mask <<= 1;
2485 }
2486
2487 return -1;
2488 }
2489
2490
2491 /**
2492 * Assign locations for either VS inputs or FS outputs
2493 *
2494 * \param mem_ctx Temporary ralloc context used for linking
2495 * \param prog Shader program whose variables need locations assigned
2496 * \param constants Driver specific constant values for the program.
2497 * \param target_index Selector for the program target to receive location
2498 * assignmnets. Must be either \c MESA_SHADER_VERTEX or
2499 * \c MESA_SHADER_FRAGMENT.
2500 *
2501 * \return
2502 * If locations are successfully assigned, true is returned. Otherwise an
2503 * error is emitted to the shader link log and false is returned.
2504 */
2505 bool
2506 assign_attribute_or_color_locations(void *mem_ctx,
2507 gl_shader_program *prog,
2508 struct gl_constants *constants,
2509 unsigned target_index)
2510 {
2511 /* Maximum number of generic locations. This corresponds to either the
2512 * maximum number of draw buffers or the maximum number of generic
2513 * attributes.
2514 */
2515 unsigned max_index = (target_index == MESA_SHADER_VERTEX) ?
2516 constants->Program[target_index].MaxAttribs :
2517 MAX2(constants->MaxDrawBuffers, constants->MaxDualSourceDrawBuffers);
2518
2519 /* Mark invalid locations as being used.
2520 */
2521 unsigned used_locations = (max_index >= 32)
2522 ? ~0 : ~((1 << max_index) - 1);
2523 unsigned double_storage_locations = 0;
2524
2525 assert((target_index == MESA_SHADER_VERTEX)
2526 || (target_index == MESA_SHADER_FRAGMENT));
2527
2528 gl_linked_shader *const sh = prog->_LinkedShaders[target_index];
2529 if (sh == NULL)
2530 return true;
2531
2532 /* Operate in a total of four passes.
2533 *
2534 * 1. Invalidate the location assignments for all vertex shader inputs.
2535 *
2536 * 2. Assign locations for inputs that have user-defined (via
2537 * glBindVertexAttribLocation) locations and outputs that have
2538 * user-defined locations (via glBindFragDataLocation).
2539 *
2540 * 3. Sort the attributes without assigned locations by number of slots
2541 * required in decreasing order. Fragmentation caused by attribute
2542 * locations assigned by the application may prevent large attributes
2543 * from having enough contiguous space.
2544 *
2545 * 4. Assign locations to any inputs without assigned locations.
2546 */
2547
2548 const int generic_base = (target_index == MESA_SHADER_VERTEX)
2549 ? (int) VERT_ATTRIB_GENERIC0 : (int) FRAG_RESULT_DATA0;
2550
2551 const enum ir_variable_mode direction =
2552 (target_index == MESA_SHADER_VERTEX)
2553 ? ir_var_shader_in : ir_var_shader_out;
2554
2555
2556 /* Temporary storage for the set of attributes that need locations assigned.
2557 */
2558 struct temp_attr {
2559 unsigned slots;
2560 ir_variable *var;
2561
2562 /* Used below in the call to qsort. */
2563 static int compare(const void *a, const void *b)
2564 {
2565 const temp_attr *const l = (const temp_attr *) a;
2566 const temp_attr *const r = (const temp_attr *) b;
2567
2568 /* Reversed because we want a descending order sort below. */
2569 return r->slots - l->slots;
2570 }
2571 } to_assign[32];
2572 assert(max_index <= 32);
2573
2574 /* Temporary array for the set of attributes that have locations assigned.
2575 */
2576 ir_variable *assigned[16];
2577
2578 unsigned num_attr = 0;
2579 unsigned assigned_attr = 0;
2580
2581 foreach_in_list(ir_instruction, node, sh->ir) {
2582 ir_variable *const var = node->as_variable();
2583
2584 if ((var == NULL) || (var->data.mode != (unsigned) direction))
2585 continue;
2586
2587 if (var->data.explicit_location) {
2588 var->data.is_unmatched_generic_inout = 0;
2589 if ((var->data.location >= (int)(max_index + generic_base))
2590 || (var->data.location < 0)) {
2591 linker_error(prog,
2592 "invalid explicit location %d specified for `%s'\n",
2593 (var->data.location < 0)
2594 ? var->data.location
2595 : var->data.location - generic_base,
2596 var->name);
2597 return false;
2598 }
2599 } else if (target_index == MESA_SHADER_VERTEX) {
2600 unsigned binding;
2601
2602 if (prog->AttributeBindings->get(binding, var->name)) {
2603 assert(binding >= VERT_ATTRIB_GENERIC0);
2604 var->data.location = binding;
2605 var->data.is_unmatched_generic_inout = 0;
2606 }
2607 } else if (target_index == MESA_SHADER_FRAGMENT) {
2608 unsigned binding;
2609 unsigned index;
2610 const char *name = var->name;
2611 const glsl_type *type = var->type;
2612
2613 while (type) {
2614 /* Check if there's a binding for the variable name */
2615 if (prog->FragDataBindings->get(binding, name)) {
2616 assert(binding >= FRAG_RESULT_DATA0);
2617 var->data.location = binding;
2618 var->data.is_unmatched_generic_inout = 0;
2619
2620 if (prog->FragDataIndexBindings->get(index, name)) {
2621 var->data.index = index;
2622 }
2623 break;
2624 }
2625
2626 /* If not, but it's an array type, look for name[0] */
2627 if (type->is_array()) {
2628 name = ralloc_asprintf(mem_ctx, "%s[0]", name);
2629 type = type->fields.array;
2630 continue;
2631 }
2632
2633 break;
2634 }
2635 }
2636
2637 if (strcmp(var->name, "gl_LastFragData") == 0)
2638 continue;
2639
2640 /* From GL4.5 core spec, section 15.2 (Shader Execution):
2641 *
2642 * "Output binding assignments will cause LinkProgram to fail:
2643 * ...
2644 * If the program has an active output assigned to a location greater
2645 * than or equal to the value of MAX_DUAL_SOURCE_DRAW_BUFFERS and has
2646 * an active output assigned an index greater than or equal to one;"
2647 */
2648 if (target_index == MESA_SHADER_FRAGMENT && var->data.index >= 1 &&
2649 var->data.location - generic_base >=
2650 (int) constants->MaxDualSourceDrawBuffers) {
2651 linker_error(prog,
2652 "output location %d >= GL_MAX_DUAL_SOURCE_DRAW_BUFFERS "
2653 "with index %u for %s\n",
2654 var->data.location - generic_base, var->data.index,
2655 var->name);
2656 return false;
2657 }
2658
2659 const unsigned slots = var->type->count_attribute_slots(target_index == MESA_SHADER_VERTEX);
2660
2661 /* If the variable is not a built-in and has a location statically
2662 * assigned in the shader (presumably via a layout qualifier), make sure
2663 * that it doesn't collide with other assigned locations. Otherwise,
2664 * add it to the list of variables that need linker-assigned locations.
2665 */
2666 if (var->data.location != -1) {
2667 if (var->data.location >= generic_base && var->data.index < 1) {
2668 /* From page 61 of the OpenGL 4.0 spec:
2669 *
2670 * "LinkProgram will fail if the attribute bindings assigned
2671 * by BindAttribLocation do not leave not enough space to
2672 * assign a location for an active matrix attribute or an
2673 * active attribute array, both of which require multiple
2674 * contiguous generic attributes."
2675 *
2676 * I think above text prohibits the aliasing of explicit and
2677 * automatic assignments. But, aliasing is allowed in manual
2678 * assignments of attribute locations. See below comments for
2679 * the details.
2680 *
2681 * From OpenGL 4.0 spec, page 61:
2682 *
2683 * "It is possible for an application to bind more than one
2684 * attribute name to the same location. This is referred to as
2685 * aliasing. This will only work if only one of the aliased
2686 * attributes is active in the executable program, or if no
2687 * path through the shader consumes more than one attribute of
2688 * a set of attributes aliased to the same location. A link
2689 * error can occur if the linker determines that every path
2690 * through the shader consumes multiple aliased attributes,
2691 * but implementations are not required to generate an error
2692 * in this case."
2693 *
2694 * From GLSL 4.30 spec, page 54:
2695 *
2696 * "A program will fail to link if any two non-vertex shader
2697 * input variables are assigned to the same location. For
2698 * vertex shaders, multiple input variables may be assigned
2699 * to the same location using either layout qualifiers or via
2700 * the OpenGL API. However, such aliasing is intended only to
2701 * support vertex shaders where each execution path accesses
2702 * at most one input per each location. Implementations are
2703 * permitted, but not required, to generate link-time errors
2704 * if they detect that every path through the vertex shader
2705 * executable accesses multiple inputs assigned to any single
2706 * location. For all shader types, a program will fail to link
2707 * if explicit location assignments leave the linker unable
2708 * to find space for other variables without explicit
2709 * assignments."
2710 *
2711 * From OpenGL ES 3.0 spec, page 56:
2712 *
2713 * "Binding more than one attribute name to the same location
2714 * is referred to as aliasing, and is not permitted in OpenGL
2715 * ES Shading Language 3.00 vertex shaders. LinkProgram will
2716 * fail when this condition exists. However, aliasing is
2717 * possible in OpenGL ES Shading Language 1.00 vertex shaders.
2718 * This will only work if only one of the aliased attributes
2719 * is active in the executable program, or if no path through
2720 * the shader consumes more than one attribute of a set of
2721 * attributes aliased to the same location. A link error can
2722 * occur if the linker determines that every path through the
2723 * shader consumes multiple aliased attributes, but implemen-
2724 * tations are not required to generate an error in this case."
2725 *
2726 * After looking at above references from OpenGL, OpenGL ES and
2727 * GLSL specifications, we allow aliasing of vertex input variables
2728 * in: OpenGL 2.0 (and above) and OpenGL ES 2.0.
2729 *
2730 * NOTE: This is not required by the spec but its worth mentioning
2731 * here that we're not doing anything to make sure that no path
2732 * through the vertex shader executable accesses multiple inputs
2733 * assigned to any single location.
2734 */
2735
2736 /* Mask representing the contiguous slots that will be used by
2737 * this attribute.
2738 */
2739 const unsigned attr = var->data.location - generic_base;
2740 const unsigned use_mask = (1 << slots) - 1;
2741 const char *const string = (target_index == MESA_SHADER_VERTEX)
2742 ? "vertex shader input" : "fragment shader output";
2743
2744 /* Generate a link error if the requested locations for this
2745 * attribute exceed the maximum allowed attribute location.
2746 */
2747 if (attr + slots > max_index) {
2748 linker_error(prog,
2749 "insufficient contiguous locations "
2750 "available for %s `%s' %d %d %d\n", string,
2751 var->name, used_locations, use_mask, attr);
2752 return false;
2753 }
2754
2755 /* Generate a link error if the set of bits requested for this
2756 * attribute overlaps any previously allocated bits.
2757 */
2758 if ((~(use_mask << attr) & used_locations) != used_locations) {
2759 if (target_index == MESA_SHADER_FRAGMENT && !prog->IsES) {
2760 /* From section 4.4.2 (Output Layout Qualifiers) of the GLSL
2761 * 4.40 spec:
2762 *
2763 * "Additionally, for fragment shader outputs, if two
2764 * variables are placed within the same location, they
2765 * must have the same underlying type (floating-point or
2766 * integer). No component aliasing of output variables or
2767 * members is allowed.
2768 */
2769 for (unsigned i = 0; i < assigned_attr; i++) {
2770 unsigned assigned_slots =
2771 assigned[i]->type->count_attribute_slots(false);
2772 unsigned assig_attr =
2773 assigned[i]->data.location - generic_base;
2774 unsigned assigned_use_mask = (1 << assigned_slots) - 1;
2775
2776 if ((assigned_use_mask << assig_attr) &
2777 (use_mask << attr)) {
2778
2779 const glsl_type *assigned_type =
2780 assigned[i]->type->without_array();
2781 const glsl_type *type = var->type->without_array();
2782 if (assigned_type->base_type != type->base_type) {
2783 linker_error(prog, "types do not match for aliased"
2784 " %ss %s and %s\n", string,
2785 assigned[i]->name, var->name);
2786 return false;
2787 }
2788
2789 unsigned assigned_component_mask =
2790 ((1 << assigned_type->vector_elements) - 1) <<
2791 assigned[i]->data.location_frac;
2792 unsigned component_mask =
2793 ((1 << type->vector_elements) - 1) <<
2794 var->data.location_frac;
2795 if (assigned_component_mask & component_mask) {
2796 linker_error(prog, "overlapping component is "
2797 "assigned to %ss %s and %s "
2798 "(component=%d)\n",
2799 string, assigned[i]->name, var->name,
2800 var->data.location_frac);
2801 return false;
2802 }
2803 }
2804 }
2805 } else if (target_index == MESA_SHADER_FRAGMENT ||
2806 (prog->IsES && prog->data->Version >= 300)) {
2807 linker_error(prog, "overlapping location is assigned "
2808 "to %s `%s' %d %d %d\n", string, var->name,
2809 used_locations, use_mask, attr);
2810 return false;
2811 } else {
2812 linker_warning(prog, "overlapping location is assigned "
2813 "to %s `%s' %d %d %d\n", string, var->name,
2814 used_locations, use_mask, attr);
2815 }
2816 }
2817
2818 used_locations |= (use_mask << attr);
2819
2820 /* From the GL 4.5 core spec, section 11.1.1 (Vertex Attributes):
2821 *
2822 * "A program with more than the value of MAX_VERTEX_ATTRIBS
2823 * active attribute variables may fail to link, unless
2824 * device-dependent optimizations are able to make the program
2825 * fit within available hardware resources. For the purposes
2826 * of this test, attribute variables of the type dvec3, dvec4,
2827 * dmat2x3, dmat2x4, dmat3, dmat3x4, dmat4x3, and dmat4 may
2828 * count as consuming twice as many attributes as equivalent
2829 * single-precision types. While these types use the same number
2830 * of generic attributes as their single-precision equivalents,
2831 * implementations are permitted to consume two single-precision
2832 * vectors of internal storage for each three- or four-component
2833 * double-precision vector."
2834 *
2835 * Mark this attribute slot as taking up twice as much space
2836 * so we can count it properly against limits. According to
2837 * issue (3) of the GL_ARB_vertex_attrib_64bit behavior, this
2838 * is optional behavior, but it seems preferable.
2839 */
2840 if (var->type->without_array()->is_dual_slot())
2841 double_storage_locations |= (use_mask << attr);
2842 }
2843
2844 assigned[assigned_attr] = var;
2845 assigned_attr++;
2846
2847 continue;
2848 }
2849
2850 if (num_attr >= max_index) {
2851 linker_error(prog, "too many %s (max %u)",
2852 target_index == MESA_SHADER_VERTEX ?
2853 "vertex shader inputs" : "fragment shader outputs",
2854 max_index);
2855 return false;
2856 }
2857 to_assign[num_attr].slots = slots;
2858 to_assign[num_attr].var = var;
2859 num_attr++;
2860 }
2861
2862 if (target_index == MESA_SHADER_VERTEX) {
2863 unsigned total_attribs_size =
2864 _mesa_bitcount(used_locations & ((1 << max_index) - 1)) +
2865 _mesa_bitcount(double_storage_locations);
2866 if (total_attribs_size > max_index) {
2867 linker_error(prog,
2868 "attempt to use %d vertex attribute slots only %d available ",
2869 total_attribs_size, max_index);
2870 return false;
2871 }
2872 }
2873
2874 /* If all of the attributes were assigned locations by the application (or
2875 * are built-in attributes with fixed locations), return early. This should
2876 * be the common case.
2877 */
2878 if (num_attr == 0)
2879 return true;
2880
2881 qsort(to_assign, num_attr, sizeof(to_assign[0]), temp_attr::compare);
2882
2883 if (target_index == MESA_SHADER_VERTEX) {
2884 /* VERT_ATTRIB_GENERIC0 is a pseudo-alias for VERT_ATTRIB_POS. It can
2885 * only be explicitly assigned by via glBindAttribLocation. Mark it as
2886 * reserved to prevent it from being automatically allocated below.
2887 */
2888 find_deref_visitor find("gl_Vertex");
2889 find.run(sh->ir);
2890 if (find.variable_found())
2891 used_locations |= (1 << 0);
2892 }
2893
2894 for (unsigned i = 0; i < num_attr; i++) {
2895 /* Mask representing the contiguous slots that will be used by this
2896 * attribute.
2897 */
2898 const unsigned use_mask = (1 << to_assign[i].slots) - 1;
2899
2900 int location = find_available_slots(used_locations, to_assign[i].slots);
2901
2902 if (location < 0) {
2903 const char *const string = (target_index == MESA_SHADER_VERTEX)
2904 ? "vertex shader input" : "fragment shader output";
2905
2906 linker_error(prog,
2907 "insufficient contiguous locations "
2908 "available for %s `%s'\n",
2909 string, to_assign[i].var->name);
2910 return false;
2911 }
2912
2913 to_assign[i].var->data.location = generic_base + location;
2914 to_assign[i].var->data.is_unmatched_generic_inout = 0;
2915 used_locations |= (use_mask << location);
2916
2917 if (to_assign[i].var->type->without_array()->is_dual_slot())
2918 double_storage_locations |= (use_mask << location);
2919 }
2920
2921 /* Now that we have all the locations, from the GL 4.5 core spec, section
2922 * 11.1.1 (Vertex Attributes), dvec3, dvec4, dmat2x3, dmat2x4, dmat3,
2923 * dmat3x4, dmat4x3, and dmat4 count as consuming twice as many attributes
2924 * as equivalent single-precision types.
2925 */
2926 if (target_index == MESA_SHADER_VERTEX) {
2927 unsigned total_attribs_size =
2928 _mesa_bitcount(used_locations & ((1 << max_index) - 1)) +
2929 _mesa_bitcount(double_storage_locations);
2930 if (total_attribs_size > max_index) {
2931 linker_error(prog,
2932 "attempt to use %d vertex attribute slots only %d available ",
2933 total_attribs_size, max_index);
2934 return false;
2935 }
2936 }
2937
2938 return true;
2939 }
2940
2941 /**
2942 * Match explicit locations of outputs to inputs and deactivate the
2943 * unmatch flag if found so we don't optimise them away.
2944 */
2945 static void
2946 match_explicit_outputs_to_inputs(gl_linked_shader *producer,
2947 gl_linked_shader *consumer)
2948 {
2949 glsl_symbol_table parameters;
2950 ir_variable *explicit_locations[MAX_VARYINGS_INCL_PATCH][4] =
2951 { {NULL, NULL} };
2952
2953 /* Find all shader outputs in the "producer" stage.
2954 */
2955 foreach_in_list(ir_instruction, node, producer->ir) {
2956 ir_variable *const var = node->as_variable();
2957
2958 if ((var == NULL) || (var->data.mode != ir_var_shader_out))
2959 continue;
2960
2961 if (var->data.explicit_location &&
2962 var->data.location >= VARYING_SLOT_VAR0) {
2963 const unsigned idx = var->data.location - VARYING_SLOT_VAR0;
2964 if (explicit_locations[idx][var->data.location_frac] == NULL)
2965 explicit_locations[idx][var->data.location_frac] = var;
2966 }
2967 }
2968
2969 /* Match inputs to outputs */
2970 foreach_in_list(ir_instruction, node, consumer->ir) {
2971 ir_variable *const input = node->as_variable();
2972
2973 if ((input == NULL) || (input->data.mode != ir_var_shader_in))
2974 continue;
2975
2976 ir_variable *output = NULL;
2977 if (input->data.explicit_location
2978 && input->data.location >= VARYING_SLOT_VAR0) {
2979 output = explicit_locations[input->data.location - VARYING_SLOT_VAR0]
2980 [input->data.location_frac];
2981
2982 if (output != NULL){
2983 input->data.is_unmatched_generic_inout = 0;
2984 output->data.is_unmatched_generic_inout = 0;
2985 }
2986 }
2987 }
2988 }
2989
2990 /**
2991 * Store the gl_FragDepth layout in the gl_shader_program struct.
2992 */
2993 static void
2994 store_fragdepth_layout(struct gl_shader_program *prog)
2995 {
2996 if (prog->_LinkedShaders[MESA_SHADER_FRAGMENT] == NULL) {
2997 return;
2998 }
2999
3000 struct exec_list *ir = prog->_LinkedShaders[MESA_SHADER_FRAGMENT]->ir;
3001
3002 /* We don't look up the gl_FragDepth symbol directly because if
3003 * gl_FragDepth is not used in the shader, it's removed from the IR.
3004 * However, the symbol won't be removed from the symbol table.
3005 *
3006 * We're only interested in the cases where the variable is NOT removed
3007 * from the IR.
3008 */
3009 foreach_in_list(ir_instruction, node, ir) {
3010 ir_variable *const var = node->as_variable();
3011
3012 if (var == NULL || var->data.mode != ir_var_shader_out) {
3013 continue;
3014 }
3015
3016 if (strcmp(var->name, "gl_FragDepth") == 0) {
3017 switch (var->data.depth_layout) {
3018 case ir_depth_layout_none:
3019 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_NONE;
3020 return;
3021 case ir_depth_layout_any:
3022 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_ANY;
3023 return;
3024 case ir_depth_layout_greater:
3025 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_GREATER;
3026 return;
3027 case ir_depth_layout_less:
3028 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_LESS;
3029 return;
3030 case ir_depth_layout_unchanged:
3031 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_UNCHANGED;
3032 return;
3033 default:
3034 assert(0);
3035 return;
3036 }
3037 }
3038 }
3039 }
3040
3041 /**
3042 * Validate the resources used by a program versus the implementation limits
3043 */
3044 static void
3045 check_resources(struct gl_context *ctx, struct gl_shader_program *prog)
3046 {
3047 unsigned total_uniform_blocks = 0;
3048 unsigned total_shader_storage_blocks = 0;
3049
3050 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3051 struct gl_linked_shader *sh = prog->_LinkedShaders[i];
3052
3053 if (sh == NULL)
3054 continue;
3055
3056 if (sh->Program->info.num_textures >
3057 ctx->Const.Program[i].MaxTextureImageUnits) {
3058 linker_error(prog, "Too many %s shader texture samplers\n",
3059 _mesa_shader_stage_to_string(i));
3060 }
3061
3062 if (sh->num_uniform_components >
3063 ctx->Const.Program[i].MaxUniformComponents) {
3064 if (ctx->Const.GLSLSkipStrictMaxUniformLimitCheck) {
3065 linker_warning(prog, "Too many %s shader default uniform block "
3066 "components, but the driver will try to optimize "
3067 "them out; this is non-portable out-of-spec "
3068 "behavior\n",
3069 _mesa_shader_stage_to_string(i));
3070 } else {
3071 linker_error(prog, "Too many %s shader default uniform block "
3072 "components\n",
3073 _mesa_shader_stage_to_string(i));
3074 }
3075 }
3076
3077 if (sh->num_combined_uniform_components >
3078 ctx->Const.Program[i].MaxCombinedUniformComponents) {
3079 if (ctx->Const.GLSLSkipStrictMaxUniformLimitCheck) {
3080 linker_warning(prog, "Too many %s shader uniform components, "
3081 "but the driver will try to optimize them out; "
3082 "this is non-portable out-of-spec behavior\n",
3083 _mesa_shader_stage_to_string(i));
3084 } else {
3085 linker_error(prog, "Too many %s shader uniform components\n",
3086 _mesa_shader_stage_to_string(i));
3087 }
3088 }
3089
3090 total_shader_storage_blocks += sh->Program->info.num_ssbos;
3091 total_uniform_blocks += sh->Program->info.num_ubos;
3092
3093 const unsigned max_uniform_blocks =
3094 ctx->Const.Program[i].MaxUniformBlocks;
3095 if (max_uniform_blocks < sh->Program->info.num_ubos) {
3096 linker_error(prog, "Too many %s uniform blocks (%d/%d)\n",
3097 _mesa_shader_stage_to_string(i),
3098 sh->Program->info.num_ubos, max_uniform_blocks);
3099 }
3100
3101 const unsigned max_shader_storage_blocks =
3102 ctx->Const.Program[i].MaxShaderStorageBlocks;
3103 if (max_shader_storage_blocks < sh->Program->info.num_ssbos) {
3104 linker_error(prog, "Too many %s shader storage blocks (%d/%d)\n",
3105 _mesa_shader_stage_to_string(i),
3106 sh->Program->info.num_ssbos, max_shader_storage_blocks);
3107 }
3108 }
3109
3110 if (total_uniform_blocks > ctx->Const.MaxCombinedUniformBlocks) {
3111 linker_error(prog, "Too many combined uniform blocks (%d/%d)\n",
3112 total_uniform_blocks, ctx->Const.MaxCombinedUniformBlocks);
3113 }
3114
3115 if (total_shader_storage_blocks > ctx->Const.MaxCombinedShaderStorageBlocks) {
3116 linker_error(prog, "Too many combined shader storage blocks (%d/%d)\n",
3117 total_shader_storage_blocks,
3118 ctx->Const.MaxCombinedShaderStorageBlocks);
3119 }
3120
3121 for (unsigned i = 0; i < prog->data->NumUniformBlocks; i++) {
3122 if (prog->data->UniformBlocks[i].UniformBufferSize >
3123 ctx->Const.MaxUniformBlockSize) {
3124 linker_error(prog, "Uniform block %s too big (%d/%d)\n",
3125 prog->data->UniformBlocks[i].Name,
3126 prog->data->UniformBlocks[i].UniformBufferSize,
3127 ctx->Const.MaxUniformBlockSize);
3128 }
3129 }
3130
3131 for (unsigned i = 0; i < prog->data->NumShaderStorageBlocks; i++) {
3132 if (prog->data->ShaderStorageBlocks[i].UniformBufferSize >
3133 ctx->Const.MaxShaderStorageBlockSize) {
3134 linker_error(prog, "Shader storage block %s too big (%d/%d)\n",
3135 prog->data->ShaderStorageBlocks[i].Name,
3136 prog->data->ShaderStorageBlocks[i].UniformBufferSize,
3137 ctx->Const.MaxShaderStorageBlockSize);
3138 }
3139 }
3140 }
3141
3142 static void
3143 link_calculate_subroutine_compat(struct gl_shader_program *prog)
3144 {
3145 unsigned mask = prog->data->linked_stages;
3146 while (mask) {
3147 const int i = u_bit_scan(&mask);
3148 struct gl_program *p = prog->_LinkedShaders[i]->Program;
3149
3150 for (unsigned j = 0; j < p->sh.NumSubroutineUniformRemapTable; j++) {
3151 if (p->sh.SubroutineUniformRemapTable[j] == INACTIVE_UNIFORM_EXPLICIT_LOCATION)
3152 continue;
3153
3154 struct gl_uniform_storage *uni = p->sh.SubroutineUniformRemapTable[j];
3155
3156 if (!uni)
3157 continue;
3158
3159 int count = 0;
3160 if (p->sh.NumSubroutineFunctions == 0) {
3161 linker_error(prog, "subroutine uniform %s defined but no valid functions found\n", uni->type->name);
3162 continue;
3163 }
3164 for (unsigned f = 0; f < p->sh.NumSubroutineFunctions; f++) {
3165 struct gl_subroutine_function *fn = &p->sh.SubroutineFunctions[f];
3166 for (int k = 0; k < fn->num_compat_types; k++) {
3167 if (fn->types[k] == uni->type) {
3168 count++;
3169 break;
3170 }
3171 }
3172 }
3173 uni->num_compatible_subroutines = count;
3174 }
3175 }
3176 }
3177
3178 static void
3179 check_subroutine_resources(struct gl_shader_program *prog)
3180 {
3181 unsigned mask = prog->data->linked_stages;
3182 while (mask) {
3183 const int i = u_bit_scan(&mask);
3184 struct gl_program *p = prog->_LinkedShaders[i]->Program;
3185
3186 if (p->sh.NumSubroutineUniformRemapTable > MAX_SUBROUTINE_UNIFORM_LOCATIONS) {
3187 linker_error(prog, "Too many %s shader subroutine uniforms\n",
3188 _mesa_shader_stage_to_string(i));
3189 }
3190 }
3191 }
3192 /**
3193 * Validate shader image resources.
3194 */
3195 static void
3196 check_image_resources(struct gl_context *ctx, struct gl_shader_program *prog)
3197 {
3198 unsigned total_image_units = 0;
3199 unsigned fragment_outputs = 0;
3200 unsigned total_shader_storage_blocks = 0;
3201
3202 if (!ctx->Extensions.ARB_shader_image_load_store)
3203 return;
3204
3205 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3206 struct gl_linked_shader *sh = prog->_LinkedShaders[i];
3207
3208 if (sh) {
3209 if (sh->Program->info.num_images > ctx->Const.Program[i].MaxImageUniforms)
3210 linker_error(prog, "Too many %s shader image uniforms (%u > %u)\n",
3211 _mesa_shader_stage_to_string(i),
3212 sh->Program->info.num_images,
3213 ctx->Const.Program[i].MaxImageUniforms);
3214
3215 total_image_units += sh->Program->info.num_images;
3216 total_shader_storage_blocks += sh->Program->info.num_ssbos;
3217
3218 if (i == MESA_SHADER_FRAGMENT) {
3219 foreach_in_list(ir_instruction, node, sh->ir) {
3220 ir_variable *var = node->as_variable();
3221 if (var && var->data.mode == ir_var_shader_out)
3222 /* since there are no double fs outputs - pass false */
3223 fragment_outputs += var->type->count_attribute_slots(false);
3224 }
3225 }
3226 }
3227 }
3228
3229 if (total_image_units > ctx->Const.MaxCombinedImageUniforms)
3230 linker_error(prog, "Too many combined image uniforms\n");
3231
3232 if (total_image_units + fragment_outputs + total_shader_storage_blocks >
3233 ctx->Const.MaxCombinedShaderOutputResources)
3234 linker_error(prog, "Too many combined image uniforms, shader storage "
3235 " buffers and fragment outputs\n");
3236 }
3237
3238
3239 /**
3240 * Initializes explicit location slots to INACTIVE_UNIFORM_EXPLICIT_LOCATION
3241 * for a variable, checks for overlaps between other uniforms using explicit
3242 * locations.
3243 */
3244 static int
3245 reserve_explicit_locations(struct gl_shader_program *prog,
3246 string_to_uint_map *map, ir_variable *var)
3247 {
3248 unsigned slots = var->type->uniform_locations();
3249 unsigned max_loc = var->data.location + slots - 1;
3250 unsigned return_value = slots;
3251
3252 /* Resize remap table if locations do not fit in the current one. */
3253 if (max_loc + 1 > prog->NumUniformRemapTable) {
3254 prog->UniformRemapTable =
3255 reralloc(prog, prog->UniformRemapTable,
3256 gl_uniform_storage *,
3257 max_loc + 1);
3258
3259 if (!prog->UniformRemapTable) {
3260 linker_error(prog, "Out of memory during linking.\n");
3261 return -1;
3262 }
3263
3264 /* Initialize allocated space. */
3265 for (unsigned i = prog->NumUniformRemapTable; i < max_loc + 1; i++)
3266 prog->UniformRemapTable[i] = NULL;
3267
3268 prog->NumUniformRemapTable = max_loc + 1;
3269 }
3270
3271 for (unsigned i = 0; i < slots; i++) {
3272 unsigned loc = var->data.location + i;
3273
3274 /* Check if location is already used. */
3275 if (prog->UniformRemapTable[loc] == INACTIVE_UNIFORM_EXPLICIT_LOCATION) {
3276
3277 /* Possibly same uniform from a different stage, this is ok. */
3278 unsigned hash_loc;
3279 if (map->get(hash_loc, var->name) && hash_loc == loc - i) {
3280 return_value = 0;
3281 continue;
3282 }
3283
3284 /* ARB_explicit_uniform_location specification states:
3285 *
3286 * "No two default-block uniform variables in the program can have
3287 * the same location, even if they are unused, otherwise a compiler
3288 * or linker error will be generated."
3289 */
3290 linker_error(prog,
3291 "location qualifier for uniform %s overlaps "
3292 "previously used location\n",
3293 var->name);
3294 return -1;
3295 }
3296
3297 /* Initialize location as inactive before optimization
3298 * rounds and location assignment.
3299 */
3300 prog->UniformRemapTable[loc] = INACTIVE_UNIFORM_EXPLICIT_LOCATION;
3301 }
3302
3303 /* Note, base location used for arrays. */
3304 map->put(var->data.location, var->name);
3305
3306 return return_value;
3307 }
3308
3309 static bool
3310 reserve_subroutine_explicit_locations(struct gl_shader_program *prog,
3311 struct gl_program *p,
3312 ir_variable *var)
3313 {
3314 unsigned slots = var->type->uniform_locations();
3315 unsigned max_loc = var->data.location + slots - 1;
3316
3317 /* Resize remap table if locations do not fit in the current one. */
3318 if (max_loc + 1 > p->sh.NumSubroutineUniformRemapTable) {
3319 p->sh.SubroutineUniformRemapTable =
3320 reralloc(p, p->sh.SubroutineUniformRemapTable,
3321 gl_uniform_storage *,
3322 max_loc + 1);
3323
3324 if (!p->sh.SubroutineUniformRemapTable) {
3325 linker_error(prog, "Out of memory during linking.\n");
3326 return false;
3327 }
3328
3329 /* Initialize allocated space. */
3330 for (unsigned i = p->sh.NumSubroutineUniformRemapTable; i < max_loc + 1; i++)
3331 p->sh.SubroutineUniformRemapTable[i] = NULL;
3332
3333 p->sh.NumSubroutineUniformRemapTable = max_loc + 1;
3334 }
3335
3336 for (unsigned i = 0; i < slots; i++) {
3337 unsigned loc = var->data.location + i;
3338
3339 /* Check if location is already used. */
3340 if (p->sh.SubroutineUniformRemapTable[loc] == INACTIVE_UNIFORM_EXPLICIT_LOCATION) {
3341
3342 /* ARB_explicit_uniform_location specification states:
3343 * "No two subroutine uniform variables can have the same location
3344 * in the same shader stage, otherwise a compiler or linker error
3345 * will be generated."
3346 */
3347 linker_error(prog,
3348 "location qualifier for uniform %s overlaps "
3349 "previously used location\n",
3350 var->name);
3351 return false;
3352 }
3353
3354 /* Initialize location as inactive before optimization
3355 * rounds and location assignment.
3356 */
3357 p->sh.SubroutineUniformRemapTable[loc] = INACTIVE_UNIFORM_EXPLICIT_LOCATION;
3358 }
3359
3360 return true;
3361 }
3362 /**
3363 * Check and reserve all explicit uniform locations, called before
3364 * any optimizations happen to handle also inactive uniforms and
3365 * inactive array elements that may get trimmed away.
3366 */
3367 static void
3368 check_explicit_uniform_locations(struct gl_context *ctx,
3369 struct gl_shader_program *prog)
3370 {
3371 prog->NumExplicitUniformLocations = 0;
3372
3373 if (!ctx->Extensions.ARB_explicit_uniform_location)
3374 return;
3375
3376 /* This map is used to detect if overlapping explicit locations
3377 * occur with the same uniform (from different stage) or a different one.
3378 */
3379 string_to_uint_map *uniform_map = new string_to_uint_map;
3380
3381 if (!uniform_map) {
3382 linker_error(prog, "Out of memory during linking.\n");
3383 return;
3384 }
3385
3386 unsigned entries_total = 0;
3387 unsigned mask = prog->data->linked_stages;
3388 while (mask) {
3389 const int i = u_bit_scan(&mask);
3390 struct gl_program *p = prog->_LinkedShaders[i]->Program;
3391
3392 foreach_in_list(ir_instruction, node, prog->_LinkedShaders[i]->ir) {
3393 ir_variable *var = node->as_variable();
3394 if (!var || var->data.mode != ir_var_uniform)
3395 continue;
3396
3397 if (var->data.explicit_location) {
3398 bool ret = false;
3399 if (var->type->without_array()->is_subroutine())
3400 ret = reserve_subroutine_explicit_locations(prog, p, var);
3401 else {
3402 int slots = reserve_explicit_locations(prog, uniform_map,
3403 var);
3404 if (slots != -1) {
3405 ret = true;
3406 entries_total += slots;
3407 }
3408 }
3409 if (!ret) {
3410 delete uniform_map;
3411 return;
3412 }
3413 }
3414 }
3415 }
3416
3417 struct empty_uniform_block *current_block = NULL;
3418
3419 for (unsigned i = 0; i < prog->NumUniformRemapTable; i++) {
3420 /* We found empty space in UniformRemapTable. */
3421 if (prog->UniformRemapTable[i] == NULL) {
3422 /* We've found the beginning of a new continous block of empty slots */
3423 if (!current_block || current_block->start + current_block->slots != i) {
3424 current_block = rzalloc(prog, struct empty_uniform_block);
3425 current_block->start = i;
3426 exec_list_push_tail(&prog->EmptyUniformLocations,
3427 &current_block->link);
3428 }
3429
3430 /* The current block continues, so we simply increment its slots */
3431 current_block->slots++;
3432 }
3433 }
3434
3435 delete uniform_map;
3436 prog->NumExplicitUniformLocations = entries_total;
3437 }
3438
3439 static bool
3440 should_add_buffer_variable(struct gl_shader_program *shProg,
3441 GLenum type, const char *name)
3442 {
3443 bool found_interface = false;
3444 unsigned block_name_len = 0;
3445 const char *block_name_dot = strchr(name, '.');
3446
3447 /* These rules only apply to buffer variables. So we return
3448 * true for the rest of types.
3449 */
3450 if (type != GL_BUFFER_VARIABLE)
3451 return true;
3452
3453 for (unsigned i = 0; i < shProg->data->NumShaderStorageBlocks; i++) {
3454 const char *block_name = shProg->data->ShaderStorageBlocks[i].Name;
3455 block_name_len = strlen(block_name);
3456
3457 const char *block_square_bracket = strchr(block_name, '[');
3458 if (block_square_bracket) {
3459 /* The block is part of an array of named interfaces,
3460 * for the name comparison we ignore the "[x]" part.
3461 */
3462 block_name_len -= strlen(block_square_bracket);
3463 }
3464
3465 if (block_name_dot) {
3466 /* Check if the variable name starts with the interface
3467 * name. The interface name (if present) should have the
3468 * length than the interface block name we are comparing to.
3469 */
3470 unsigned len = strlen(name) - strlen(block_name_dot);
3471 if (len != block_name_len)
3472 continue;
3473 }
3474
3475 if (strncmp(block_name, name, block_name_len) == 0) {
3476 found_interface = true;
3477 break;
3478 }
3479 }
3480
3481 /* We remove the interface name from the buffer variable name,
3482 * including the dot that follows it.
3483 */
3484 if (found_interface)
3485 name = name + block_name_len + 1;
3486
3487 /* The ARB_program_interface_query spec says:
3488 *
3489 * "For an active shader storage block member declared as an array, an
3490 * entry will be generated only for the first array element, regardless
3491 * of its type. For arrays of aggregate types, the enumeration rules
3492 * are applied recursively for the single enumerated array element."
3493 */
3494 const char *struct_first_dot = strchr(name, '.');
3495 const char *first_square_bracket = strchr(name, '[');
3496
3497 /* The buffer variable is on top level and it is not an array */
3498 if (!first_square_bracket) {
3499 return true;
3500 /* The shader storage block member is a struct, then generate the entry */
3501 } else if (struct_first_dot && struct_first_dot < first_square_bracket) {
3502 return true;
3503 } else {
3504 /* Shader storage block member is an array, only generate an entry for the
3505 * first array element.
3506 */
3507 if (strncmp(first_square_bracket, "[0]", 3) == 0)
3508 return true;
3509 }
3510
3511 return false;
3512 }
3513
3514 static bool
3515 add_program_resource(struct gl_shader_program *prog,
3516 struct set *resource_set,
3517 GLenum type, const void *data, uint8_t stages)
3518 {
3519 assert(data);
3520
3521 /* If resource already exists, do not add it again. */
3522 if (_mesa_set_search(resource_set, data))
3523 return true;
3524
3525 prog->data->ProgramResourceList =
3526 reralloc(prog,
3527 prog->data->ProgramResourceList,
3528 gl_program_resource,
3529 prog->data->NumProgramResourceList + 1);
3530
3531 if (!prog->data->ProgramResourceList) {
3532 linker_error(prog, "Out of memory during linking.\n");
3533 return false;
3534 }
3535
3536 struct gl_program_resource *res =
3537 &prog->data->ProgramResourceList[prog->data->NumProgramResourceList];
3538
3539 res->Type = type;
3540 res->Data = data;
3541 res->StageReferences = stages;
3542
3543 prog->data->NumProgramResourceList++;
3544
3545 _mesa_set_add(resource_set, data);
3546
3547 return true;
3548 }
3549
3550 /* Function checks if a variable var is a packed varying and
3551 * if given name is part of packed varying's list.
3552 *
3553 * If a variable is a packed varying, it has a name like
3554 * 'packed:a,b,c' where a, b and c are separate variables.
3555 */
3556 static bool
3557 included_in_packed_varying(ir_variable *var, const char *name)
3558 {
3559 if (strncmp(var->name, "packed:", 7) != 0)
3560 return false;
3561
3562 char *list = strdup(var->name + 7);
3563 assert(list);
3564
3565 bool found = false;
3566 char *saveptr;
3567 char *token = strtok_r(list, ",", &saveptr);
3568 while (token) {
3569 if (strcmp(token, name) == 0) {
3570 found = true;
3571 break;
3572 }
3573 token = strtok_r(NULL, ",", &saveptr);
3574 }
3575 free(list);
3576 return found;
3577 }
3578
3579 /**
3580 * Function builds a stage reference bitmask from variable name.
3581 */
3582 static uint8_t
3583 build_stageref(struct gl_shader_program *shProg, const char *name,
3584 unsigned mode)
3585 {
3586 uint8_t stages = 0;
3587
3588 /* Note, that we assume MAX 8 stages, if there will be more stages, type
3589 * used for reference mask in gl_program_resource will need to be changed.
3590 */
3591 assert(MESA_SHADER_STAGES < 8);
3592
3593 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3594 struct gl_linked_shader *sh = shProg->_LinkedShaders[i];
3595 if (!sh)
3596 continue;
3597
3598 /* Shader symbol table may contain variables that have
3599 * been optimized away. Search IR for the variable instead.
3600 */
3601 foreach_in_list(ir_instruction, node, sh->ir) {
3602 ir_variable *var = node->as_variable();
3603 if (var) {
3604 unsigned baselen = strlen(var->name);
3605
3606 if (included_in_packed_varying(var, name)) {
3607 stages |= (1 << i);
3608 break;
3609 }
3610
3611 /* Type needs to match if specified, otherwise we might
3612 * pick a variable with same name but different interface.
3613 */
3614 if (var->data.mode != mode)
3615 continue;
3616
3617 if (strncmp(var->name, name, baselen) == 0) {
3618 /* Check for exact name matches but also check for arrays and
3619 * structs.
3620 */
3621 if (name[baselen] == '\0' ||
3622 name[baselen] == '[' ||
3623 name[baselen] == '.') {
3624 stages |= (1 << i);
3625 break;
3626 }
3627 }
3628 }
3629 }
3630 }
3631 return stages;
3632 }
3633
3634 /**
3635 * Create gl_shader_variable from ir_variable class.
3636 */
3637 static gl_shader_variable *
3638 create_shader_variable(struct gl_shader_program *shProg,
3639 const ir_variable *in,
3640 const char *name, const glsl_type *type,
3641 const glsl_type *interface_type,
3642 bool use_implicit_location, int location,
3643 const glsl_type *outermost_struct_type)
3644 {
3645 gl_shader_variable *out = ralloc(shProg, struct gl_shader_variable);
3646 if (!out)
3647 return NULL;
3648
3649 /* Since gl_VertexID may be lowered to gl_VertexIDMESA, but applications
3650 * expect to see gl_VertexID in the program resource list. Pretend.
3651 */
3652 if (in->data.mode == ir_var_system_value &&
3653 in->data.location == SYSTEM_VALUE_VERTEX_ID_ZERO_BASE) {
3654 out->name = ralloc_strdup(shProg, "gl_VertexID");
3655 } else if ((in->data.mode == ir_var_shader_out &&
3656 in->data.location == VARYING_SLOT_TESS_LEVEL_OUTER) ||
3657 (in->data.mode == ir_var_system_value &&
3658 in->data.location == SYSTEM_VALUE_TESS_LEVEL_OUTER)) {
3659 out->name = ralloc_strdup(shProg, "gl_TessLevelOuter");
3660 type = glsl_type::get_array_instance(glsl_type::float_type, 4);
3661 } else if ((in->data.mode == ir_var_shader_out &&
3662 in->data.location == VARYING_SLOT_TESS_LEVEL_INNER) ||
3663 (in->data.mode == ir_var_system_value &&
3664 in->data.location == SYSTEM_VALUE_TESS_LEVEL_INNER)) {
3665 out->name = ralloc_strdup(shProg, "gl_TessLevelInner");
3666 type = glsl_type::get_array_instance(glsl_type::float_type, 2);
3667 } else {
3668 out->name = ralloc_strdup(shProg, name);
3669 }
3670
3671 if (!out->name)
3672 return NULL;
3673
3674 /* The ARB_program_interface_query spec says:
3675 *
3676 * "Not all active variables are assigned valid locations; the
3677 * following variables will have an effective location of -1:
3678 *
3679 * * uniforms declared as atomic counters;
3680 *
3681 * * members of a uniform block;
3682 *
3683 * * built-in inputs, outputs, and uniforms (starting with "gl_"); and
3684 *
3685 * * inputs or outputs not declared with a "location" layout
3686 * qualifier, except for vertex shader inputs and fragment shader
3687 * outputs."
3688 */
3689 if (in->type->base_type == GLSL_TYPE_ATOMIC_UINT ||
3690 is_gl_identifier(in->name) ||
3691 !(in->data.explicit_location || use_implicit_location)) {
3692 out->location = -1;
3693 } else {
3694 out->location = location;
3695 }
3696
3697 out->type = type;
3698 out->outermost_struct_type = outermost_struct_type;
3699 out->interface_type = interface_type;
3700 out->component = in->data.location_frac;
3701 out->index = in->data.index;
3702 out->patch = in->data.patch;
3703 out->mode = in->data.mode;
3704 out->interpolation = in->data.interpolation;
3705 out->explicit_location = in->data.explicit_location;
3706 out->precision = in->data.precision;
3707
3708 return out;
3709 }
3710
3711 static const glsl_type *
3712 resize_to_max_patch_vertices(const struct gl_context *ctx,
3713 const glsl_type *type)
3714 {
3715 if (!type)
3716 return NULL;
3717
3718 return glsl_type::get_array_instance(type->fields.array,
3719 ctx->Const.MaxPatchVertices);
3720 }
3721
3722 static bool
3723 add_shader_variable(const struct gl_context *ctx,
3724 struct gl_shader_program *shProg,
3725 struct set *resource_set,
3726 unsigned stage_mask,
3727 GLenum programInterface, ir_variable *var,
3728 const char *name, const glsl_type *type,
3729 bool use_implicit_location, int location,
3730 const glsl_type *outermost_struct_type = NULL)
3731 {
3732 const glsl_type *interface_type = var->get_interface_type();
3733
3734 if (outermost_struct_type == NULL) {
3735 /* Unsized (non-patch) TCS output/TES input arrays are implicitly
3736 * sized to gl_MaxPatchVertices. Internally, we shrink them to a
3737 * smaller size.
3738 *
3739 * This can cause trouble with SSO programs. Since the TCS declares
3740 * the number of output vertices, we can always shrink TCS output
3741 * arrays. However, the TES might not be linked with a TCS, in
3742 * which case it won't know the size of the patch. In other words,
3743 * the TCS and TES may disagree on the (smaller) array sizes. This
3744 * can result in the resource names differing across stages, causing
3745 * SSO validation failures and other cascading issues.
3746 *
3747 * Expanding the array size to the full gl_MaxPatchVertices fixes
3748 * these issues. It's also what program interface queries expect,
3749 * as that is the official size of the array.
3750 */
3751 if (var->data.tess_varying_implicit_sized_array) {
3752 type = resize_to_max_patch_vertices(ctx, type);
3753 interface_type = resize_to_max_patch_vertices(ctx, interface_type);
3754 }
3755
3756 if (var->data.from_named_ifc_block) {
3757 const char *interface_name = interface_type->name;
3758
3759 if (interface_type->is_array()) {
3760 /* Issue #16 of the ARB_program_interface_query spec says:
3761 *
3762 * "* If a variable is a member of an interface block without an
3763 * instance name, it is enumerated using just the variable name.
3764 *
3765 * * If a variable is a member of an interface block with an
3766 * instance name, it is enumerated as "BlockName.Member", where
3767 * "BlockName" is the name of the interface block (not the
3768 * instance name) and "Member" is the name of the variable."
3769 *
3770 * In particular, it indicates that it should be "BlockName",
3771 * not "BlockName[array length]". The conformance suite and
3772 * dEQP both require this behavior.
3773 *
3774 * Here, we unwrap the extra array level added by named interface
3775 * block array lowering so we have the correct variable type. We
3776 * also unwrap the interface type when constructing the name.
3777 *
3778 * We leave interface_type the same so that ES 3.x SSO pipeline
3779 * validation can enforce the rules requiring array length to
3780 * match on interface blocks.
3781 */
3782 type = type->fields.array;
3783
3784 interface_name = interface_type->fields.array->name;
3785 }
3786
3787 name = ralloc_asprintf(shProg, "%s.%s", interface_name, name);
3788 }
3789 }
3790
3791 switch (type->base_type) {
3792 case GLSL_TYPE_STRUCT: {
3793 /* The ARB_program_interface_query spec says:
3794 *
3795 * "For an active variable declared as a structure, a separate entry
3796 * will be generated for each active structure member. The name of
3797 * each entry is formed by concatenating the name of the structure,
3798 * the "." character, and the name of the structure member. If a
3799 * structure member to enumerate is itself a structure or array,
3800 * these enumeration rules are applied recursively."
3801 */
3802 if (outermost_struct_type == NULL)
3803 outermost_struct_type = type;
3804
3805 unsigned field_location = location;
3806 for (unsigned i = 0; i < type->length; i++) {
3807 const struct glsl_struct_field *field = &type->fields.structure[i];
3808 char *field_name = ralloc_asprintf(shProg, "%s.%s", name, field->name);
3809 if (!add_shader_variable(ctx, shProg, resource_set,
3810 stage_mask, programInterface,
3811 var, field_name, field->type,
3812 use_implicit_location, field_location,
3813 outermost_struct_type))
3814 return false;
3815
3816 field_location += field->type->count_attribute_slots(false);
3817 }
3818 return true;
3819 }
3820
3821 default: {
3822 /* The ARB_program_interface_query spec says:
3823 *
3824 * "For an active variable declared as a single instance of a basic
3825 * type, a single entry will be generated, using the variable name
3826 * from the shader source."
3827 */
3828 gl_shader_variable *sha_v =
3829 create_shader_variable(shProg, var, name, type, interface_type,
3830 use_implicit_location, location,
3831 outermost_struct_type);
3832 if (!sha_v)
3833 return false;
3834
3835 return add_program_resource(shProg, resource_set,
3836 programInterface, sha_v, stage_mask);
3837 }
3838 }
3839 }
3840
3841 static bool
3842 add_interface_variables(const struct gl_context *ctx,
3843 struct gl_shader_program *shProg,
3844 struct set *resource_set,
3845 unsigned stage, GLenum programInterface)
3846 {
3847 exec_list *ir = shProg->_LinkedShaders[stage]->ir;
3848
3849 foreach_in_list(ir_instruction, node, ir) {
3850 ir_variable *var = node->as_variable();
3851
3852 if (!var || var->data.how_declared == ir_var_hidden)
3853 continue;
3854
3855 int loc_bias;
3856
3857 switch (var->data.mode) {
3858 case ir_var_system_value:
3859 case ir_var_shader_in:
3860 if (programInterface != GL_PROGRAM_INPUT)
3861 continue;
3862 loc_bias = (stage == MESA_SHADER_VERTEX) ? int(VERT_ATTRIB_GENERIC0)
3863 : int(VARYING_SLOT_VAR0);
3864 break;
3865 case ir_var_shader_out:
3866 if (programInterface != GL_PROGRAM_OUTPUT)
3867 continue;
3868 loc_bias = (stage == MESA_SHADER_FRAGMENT) ? int(FRAG_RESULT_DATA0)
3869 : int(VARYING_SLOT_VAR0);
3870 break;
3871 default:
3872 continue;
3873 };
3874
3875 if (var->data.patch)
3876 loc_bias = int(VARYING_SLOT_PATCH0);
3877
3878 /* Skip packed varyings, packed varyings are handled separately
3879 * by add_packed_varyings.
3880 */
3881 if (strncmp(var->name, "packed:", 7) == 0)
3882 continue;
3883
3884 /* Skip fragdata arrays, these are handled separately
3885 * by add_fragdata_arrays.
3886 */
3887 if (strncmp(var->name, "gl_out_FragData", 15) == 0)
3888 continue;
3889
3890 const bool vs_input_or_fs_output =
3891 (stage == MESA_SHADER_VERTEX && var->data.mode == ir_var_shader_in) ||
3892 (stage == MESA_SHADER_FRAGMENT && var->data.mode == ir_var_shader_out);
3893
3894 if (!add_shader_variable(ctx, shProg, resource_set,
3895 1 << stage, programInterface,
3896 var, var->name, var->type, vs_input_or_fs_output,
3897 var->data.location - loc_bias))
3898 return false;
3899 }
3900 return true;
3901 }
3902
3903 static bool
3904 add_packed_varyings(const struct gl_context *ctx,
3905 struct gl_shader_program *shProg,
3906 struct set *resource_set,
3907 int stage, GLenum type)
3908 {
3909 struct gl_linked_shader *sh = shProg->_LinkedShaders[stage];
3910 GLenum iface;
3911
3912 if (!sh || !sh->packed_varyings)
3913 return true;
3914
3915 foreach_in_list(ir_instruction, node, sh->packed_varyings) {
3916 ir_variable *var = node->as_variable();
3917 if (var) {
3918 switch (var->data.mode) {
3919 case ir_var_shader_in:
3920 iface = GL_PROGRAM_INPUT;
3921 break;
3922 case ir_var_shader_out:
3923 iface = GL_PROGRAM_OUTPUT;
3924 break;
3925 default:
3926 unreachable("unexpected type");
3927 }
3928
3929 if (type == iface) {
3930 const int stage_mask =
3931 build_stageref(shProg, var->name, var->data.mode);
3932 if (!add_shader_variable(ctx, shProg, resource_set,
3933 stage_mask,
3934 iface, var, var->name, var->type, false,
3935 var->data.location - VARYING_SLOT_VAR0))
3936 return false;
3937 }
3938 }
3939 }
3940 return true;
3941 }
3942
3943 static bool
3944 add_fragdata_arrays(const struct gl_context *ctx,
3945 struct gl_shader_program *shProg,
3946 struct set *resource_set)
3947 {
3948 struct gl_linked_shader *sh = shProg->_LinkedShaders[MESA_SHADER_FRAGMENT];
3949
3950 if (!sh || !sh->fragdata_arrays)
3951 return true;
3952
3953 foreach_in_list(ir_instruction, node, sh->fragdata_arrays) {
3954 ir_variable *var = node->as_variable();
3955 if (var) {
3956 assert(var->data.mode == ir_var_shader_out);
3957
3958 if (!add_shader_variable(ctx, shProg, resource_set,
3959 1 << MESA_SHADER_FRAGMENT,
3960 GL_PROGRAM_OUTPUT, var, var->name, var->type,
3961 true, var->data.location - FRAG_RESULT_DATA0))
3962 return false;
3963 }
3964 }
3965 return true;
3966 }
3967
3968 static char*
3969 get_top_level_name(const char *name)
3970 {
3971 const char *first_dot = strchr(name, '.');
3972 const char *first_square_bracket = strchr(name, '[');
3973 int name_size = 0;
3974
3975 /* The ARB_program_interface_query spec says:
3976 *
3977 * "For the property TOP_LEVEL_ARRAY_SIZE, a single integer identifying
3978 * the number of active array elements of the top-level shader storage
3979 * block member containing to the active variable is written to
3980 * <params>. If the top-level block member is not declared as an
3981 * array, the value one is written to <params>. If the top-level block
3982 * member is an array with no declared size, the value zero is written
3983 * to <params>."
3984 */
3985
3986 /* The buffer variable is on top level.*/
3987 if (!first_square_bracket && !first_dot)
3988 name_size = strlen(name);
3989 else if ((!first_square_bracket ||
3990 (first_dot && first_dot < first_square_bracket)))
3991 name_size = first_dot - name;
3992 else
3993 name_size = first_square_bracket - name;
3994
3995 return strndup(name, name_size);
3996 }
3997
3998 static char*
3999 get_var_name(const char *name)
4000 {
4001 const char *first_dot = strchr(name, '.');
4002
4003 if (!first_dot)
4004 return strdup(name);
4005
4006 return strndup(first_dot+1, strlen(first_dot) - 1);
4007 }
4008
4009 static bool
4010 is_top_level_shader_storage_block_member(const char* name,
4011 const char* interface_name,
4012 const char* field_name)
4013 {
4014 bool result = false;
4015
4016 /* If the given variable is already a top-level shader storage
4017 * block member, then return array_size = 1.
4018 * We could have two possibilities: if we have an instanced
4019 * shader storage block or not instanced.
4020 *
4021 * For the first, we check create a name as it was in top level and
4022 * compare it with the real name. If they are the same, then
4023 * the variable is already at top-level.
4024 *
4025 * Full instanced name is: interface name + '.' + var name +
4026 * NULL character
4027 */
4028 int name_length = strlen(interface_name) + 1 + strlen(field_name) + 1;
4029 char *full_instanced_name = (char *) calloc(name_length, sizeof(char));
4030 if (!full_instanced_name) {
4031 fprintf(stderr, "%s: Cannot allocate space for name\n", __func__);
4032 return false;
4033 }
4034
4035 snprintf(full_instanced_name, name_length, "%s.%s",
4036 interface_name, field_name);
4037
4038 /* Check if its top-level shader storage block member of an
4039 * instanced interface block, or of a unnamed interface block.
4040 */
4041 if (strcmp(name, full_instanced_name) == 0 ||
4042 strcmp(name, field_name) == 0)
4043 result = true;
4044
4045 free(full_instanced_name);
4046 return result;
4047 }
4048
4049 static int
4050 get_array_size(struct gl_uniform_storage *uni, const glsl_struct_field *field,
4051 char *interface_name, char *var_name)
4052 {
4053 /* The ARB_program_interface_query spec says:
4054 *
4055 * "For the property TOP_LEVEL_ARRAY_SIZE, a single integer identifying
4056 * the number of active array elements of the top-level shader storage
4057 * block member containing to the active variable is written to
4058 * <params>. If the top-level block member is not declared as an
4059 * array, the value one is written to <params>. If the top-level block
4060 * member is an array with no declared size, the value zero is written
4061 * to <params>."
4062 */
4063 if (is_top_level_shader_storage_block_member(uni->name,
4064 interface_name,
4065 var_name))
4066 return 1;
4067 else if (field->type->is_unsized_array())
4068 return 0;
4069 else if (field->type->is_array())
4070 return field->type->length;
4071
4072 return 1;
4073 }
4074
4075 static int
4076 get_array_stride(struct gl_uniform_storage *uni, const glsl_type *interface,
4077 const glsl_struct_field *field, char *interface_name,
4078 char *var_name)
4079 {
4080 /* The ARB_program_interface_query spec says:
4081 *
4082 * "For the property TOP_LEVEL_ARRAY_STRIDE, a single integer
4083 * identifying the stride between array elements of the top-level
4084 * shader storage block member containing the active variable is
4085 * written to <params>. For top-level block members declared as
4086 * arrays, the value written is the difference, in basic machine units,
4087 * between the offsets of the active variable for consecutive elements
4088 * in the top-level array. For top-level block members not declared as
4089 * an array, zero is written to <params>."
4090 */
4091 if (field->type->is_array()) {
4092 const enum glsl_matrix_layout matrix_layout =
4093 glsl_matrix_layout(field->matrix_layout);
4094 bool row_major = matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR;
4095 const glsl_type *array_type = field->type->fields.array;
4096
4097 if (is_top_level_shader_storage_block_member(uni->name,
4098 interface_name,
4099 var_name))
4100 return 0;
4101
4102 if (interface->interface_packing != GLSL_INTERFACE_PACKING_STD430) {
4103 if (array_type->is_record() || array_type->is_array())
4104 return glsl_align(array_type->std140_size(row_major), 16);
4105 else
4106 return MAX2(array_type->std140_base_alignment(row_major), 16);
4107 } else {
4108 return array_type->std430_array_stride(row_major);
4109 }
4110 }
4111 return 0;
4112 }
4113
4114 static void
4115 calculate_array_size_and_stride(struct gl_shader_program *shProg,
4116 struct gl_uniform_storage *uni)
4117 {
4118 int block_index = uni->block_index;
4119 int array_size = -1;
4120 int array_stride = -1;
4121 char *var_name = get_top_level_name(uni->name);
4122 char *interface_name =
4123 get_top_level_name(uni->is_shader_storage ?
4124 shProg->data->ShaderStorageBlocks[block_index].Name :
4125 shProg->data->UniformBlocks[block_index].Name);
4126
4127 if (strcmp(var_name, interface_name) == 0) {
4128 /* Deal with instanced array of SSBOs */
4129 char *temp_name = get_var_name(uni->name);
4130 if (!temp_name) {
4131 linker_error(shProg, "Out of memory during linking.\n");
4132 goto write_top_level_array_size_and_stride;
4133 }
4134 free(var_name);
4135 var_name = get_top_level_name(temp_name);
4136 free(temp_name);
4137 if (!var_name) {
4138 linker_error(shProg, "Out of memory during linking.\n");
4139 goto write_top_level_array_size_and_stride;
4140 }
4141 }
4142
4143 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4144 const gl_linked_shader *sh = shProg->_LinkedShaders[i];
4145 if (sh == NULL)
4146 continue;
4147
4148 foreach_in_list(ir_instruction, node, sh->ir) {
4149 ir_variable *var = node->as_variable();
4150 if (!var || !var->get_interface_type() ||
4151 var->data.mode != ir_var_shader_storage)
4152 continue;
4153
4154 const glsl_type *interface = var->get_interface_type();
4155
4156 if (strcmp(interface_name, interface->name) != 0)
4157 continue;
4158
4159 for (unsigned i = 0; i < interface->length; i++) {
4160 const glsl_struct_field *field = &interface->fields.structure[i];
4161 if (strcmp(field->name, var_name) != 0)
4162 continue;
4163
4164 array_stride = get_array_stride(uni, interface, field,
4165 interface_name, var_name);
4166 array_size = get_array_size(uni, field, interface_name, var_name);
4167 goto write_top_level_array_size_and_stride;
4168 }
4169 }
4170 }
4171 write_top_level_array_size_and_stride:
4172 free(interface_name);
4173 free(var_name);
4174 uni->top_level_array_stride = array_stride;
4175 uni->top_level_array_size = array_size;
4176 }
4177
4178 /**
4179 * Builds up a list of program resources that point to existing
4180 * resource data.
4181 */
4182 void
4183 build_program_resource_list(struct gl_context *ctx,
4184 struct gl_shader_program *shProg)
4185 {
4186 /* Rebuild resource list. */
4187 if (shProg->data->ProgramResourceList) {
4188 ralloc_free(shProg->data->ProgramResourceList);
4189 shProg->data->ProgramResourceList = NULL;
4190 shProg->data->NumProgramResourceList = 0;
4191 }
4192
4193 int input_stage = MESA_SHADER_STAGES, output_stage = 0;
4194
4195 /* Determine first input and final output stage. These are used to
4196 * detect which variables should be enumerated in the resource list
4197 * for GL_PROGRAM_INPUT and GL_PROGRAM_OUTPUT.
4198 */
4199 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4200 if (!shProg->_LinkedShaders[i])
4201 continue;
4202 if (input_stage == MESA_SHADER_STAGES)
4203 input_stage = i;
4204 output_stage = i;
4205 }
4206
4207 /* Empty shader, no resources. */
4208 if (input_stage == MESA_SHADER_STAGES && output_stage == 0)
4209 return;
4210
4211 struct set *resource_set = _mesa_set_create(NULL,
4212 _mesa_hash_pointer,
4213 _mesa_key_pointer_equal);
4214
4215 /* Program interface needs to expose varyings in case of SSO. */
4216 if (shProg->SeparateShader) {
4217 if (!add_packed_varyings(ctx, shProg, resource_set,
4218 input_stage, GL_PROGRAM_INPUT))
4219 return;
4220
4221 if (!add_packed_varyings(ctx, shProg, resource_set,
4222 output_stage, GL_PROGRAM_OUTPUT))
4223 return;
4224 }
4225
4226 if (!add_fragdata_arrays(ctx, shProg, resource_set))
4227 return;
4228
4229 /* Add inputs and outputs to the resource list. */
4230 if (!add_interface_variables(ctx, shProg, resource_set,
4231 input_stage, GL_PROGRAM_INPUT))
4232 return;
4233
4234 if (!add_interface_variables(ctx, shProg, resource_set,
4235 output_stage, GL_PROGRAM_OUTPUT))
4236 return;
4237
4238 if (shProg->last_vert_prog) {
4239 struct gl_transform_feedback_info *linked_xfb =
4240 shProg->last_vert_prog->sh.LinkedTransformFeedback;
4241
4242 /* Add transform feedback varyings. */
4243 if (linked_xfb->NumVarying > 0) {
4244 for (int i = 0; i < linked_xfb->NumVarying; i++) {
4245 if (!add_program_resource(shProg, resource_set,
4246 GL_TRANSFORM_FEEDBACK_VARYING,
4247 &linked_xfb->Varyings[i], 0))
4248 return;
4249 }
4250 }
4251
4252 /* Add transform feedback buffers. */
4253 for (unsigned i = 0; i < ctx->Const.MaxTransformFeedbackBuffers; i++) {
4254 if ((linked_xfb->ActiveBuffers >> i) & 1) {
4255 linked_xfb->Buffers[i].Binding = i;
4256 if (!add_program_resource(shProg, resource_set,
4257 GL_TRANSFORM_FEEDBACK_BUFFER,
4258 &linked_xfb->Buffers[i], 0))
4259 return;
4260 }
4261 }
4262 }
4263
4264 /* Add uniforms from uniform storage. */
4265 for (unsigned i = 0; i < shProg->data->NumUniformStorage; i++) {
4266 /* Do not add uniforms internally used by Mesa. */
4267 if (shProg->data->UniformStorage[i].hidden)
4268 continue;
4269
4270 uint8_t stageref =
4271 build_stageref(shProg, shProg->data->UniformStorage[i].name,
4272 ir_var_uniform);
4273
4274 /* Add stagereferences for uniforms in a uniform block. */
4275 bool is_shader_storage =
4276 shProg->data->UniformStorage[i].is_shader_storage;
4277 int block_index = shProg->data->UniformStorage[i].block_index;
4278 if (block_index != -1) {
4279 stageref |= is_shader_storage ?
4280 shProg->data->ShaderStorageBlocks[block_index].stageref :
4281 shProg->data->UniformBlocks[block_index].stageref;
4282 }
4283
4284 GLenum type = is_shader_storage ? GL_BUFFER_VARIABLE : GL_UNIFORM;
4285 if (!should_add_buffer_variable(shProg, type,
4286 shProg->data->UniformStorage[i].name))
4287 continue;
4288
4289 if (is_shader_storage) {
4290 calculate_array_size_and_stride(shProg,
4291 &shProg->data->UniformStorage[i]);
4292 }
4293
4294 if (!add_program_resource(shProg, resource_set, type,
4295 &shProg->data->UniformStorage[i], stageref))
4296 return;
4297 }
4298
4299 /* Add program uniform blocks. */
4300 for (unsigned i = 0; i < shProg->data->NumUniformBlocks; i++) {
4301 if (!add_program_resource(shProg, resource_set, GL_UNIFORM_BLOCK,
4302 &shProg->data->UniformBlocks[i], 0))
4303 return;
4304 }
4305
4306 /* Add program shader storage blocks. */
4307 for (unsigned i = 0; i < shProg->data->NumShaderStorageBlocks; i++) {
4308 if (!add_program_resource(shProg, resource_set, GL_SHADER_STORAGE_BLOCK,
4309 &shProg->data->ShaderStorageBlocks[i], 0))
4310 return;
4311 }
4312
4313 /* Add atomic counter buffers. */
4314 for (unsigned i = 0; i < shProg->data->NumAtomicBuffers; i++) {
4315 if (!add_program_resource(shProg, resource_set, GL_ATOMIC_COUNTER_BUFFER,
4316 &shProg->data->AtomicBuffers[i], 0))
4317 return;
4318 }
4319
4320 for (unsigned i = 0; i < shProg->data->NumUniformStorage; i++) {
4321 GLenum type;
4322 if (!shProg->data->UniformStorage[i].hidden)
4323 continue;
4324
4325 for (int j = MESA_SHADER_VERTEX; j < MESA_SHADER_STAGES; j++) {
4326 if (!shProg->data->UniformStorage[i].opaque[j].active ||
4327 !shProg->data->UniformStorage[i].type->is_subroutine())
4328 continue;
4329
4330 type = _mesa_shader_stage_to_subroutine_uniform((gl_shader_stage)j);
4331 /* add shader subroutines */
4332 if (!add_program_resource(shProg, resource_set,
4333 type, &shProg->data->UniformStorage[i], 0))
4334 return;
4335 }
4336 }
4337
4338 unsigned mask = shProg->data->linked_stages;
4339 while (mask) {
4340 const int i = u_bit_scan(&mask);
4341 struct gl_program *p = shProg->_LinkedShaders[i]->Program;
4342
4343 GLuint type = _mesa_shader_stage_to_subroutine((gl_shader_stage)i);
4344 for (unsigned j = 0; j < p->sh.NumSubroutineFunctions; j++) {
4345 if (!add_program_resource(shProg, resource_set,
4346 type, &p->sh.SubroutineFunctions[j], 0))
4347 return;
4348 }
4349 }
4350
4351 _mesa_set_destroy(resource_set, NULL);
4352 }
4353
4354 /**
4355 * This check is done to make sure we allow only constant expression
4356 * indexing and "constant-index-expression" (indexing with an expression
4357 * that includes loop induction variable).
4358 */
4359 static bool
4360 validate_sampler_array_indexing(struct gl_context *ctx,
4361 struct gl_shader_program *prog)
4362 {
4363 dynamic_sampler_array_indexing_visitor v;
4364 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4365 if (prog->_LinkedShaders[i] == NULL)
4366 continue;
4367
4368 bool no_dynamic_indexing =
4369 ctx->Const.ShaderCompilerOptions[i].EmitNoIndirectSampler;
4370
4371 /* Search for array derefs in shader. */
4372 v.run(prog->_LinkedShaders[i]->ir);
4373 if (v.uses_dynamic_sampler_array_indexing()) {
4374 const char *msg = "sampler arrays indexed with non-constant "
4375 "expressions is forbidden in GLSL %s %u";
4376 /* Backend has indicated that it has no dynamic indexing support. */
4377 if (no_dynamic_indexing) {
4378 linker_error(prog, msg, prog->IsES ? "ES" : "",
4379 prog->data->Version);
4380 return false;
4381 } else {
4382 linker_warning(prog, msg, prog->IsES ? "ES" : "",
4383 prog->data->Version);
4384 }
4385 }
4386 }
4387 return true;
4388 }
4389
4390 static void
4391 link_assign_subroutine_types(struct gl_shader_program *prog)
4392 {
4393 unsigned mask = prog->data->linked_stages;
4394 while (mask) {
4395 const int i = u_bit_scan(&mask);
4396 gl_program *p = prog->_LinkedShaders[i]->Program;
4397
4398 p->sh.MaxSubroutineFunctionIndex = 0;
4399 foreach_in_list(ir_instruction, node, prog->_LinkedShaders[i]->ir) {
4400 ir_function *fn = node->as_function();
4401 if (!fn)
4402 continue;
4403
4404 if (fn->is_subroutine)
4405 p->sh.NumSubroutineUniformTypes++;
4406
4407 if (!fn->num_subroutine_types)
4408 continue;
4409
4410 /* these should have been calculated earlier. */
4411 assert(fn->subroutine_index != -1);
4412 if (p->sh.NumSubroutineFunctions + 1 > MAX_SUBROUTINES) {
4413 linker_error(prog, "Too many subroutine functions declared.\n");
4414 return;
4415 }
4416 p->sh.SubroutineFunctions = reralloc(p, p->sh.SubroutineFunctions,
4417 struct gl_subroutine_function,
4418 p->sh.NumSubroutineFunctions + 1);
4419 p->sh.SubroutineFunctions[p->sh.NumSubroutineFunctions].name = ralloc_strdup(p, fn->name);
4420 p->sh.SubroutineFunctions[p->sh.NumSubroutineFunctions].num_compat_types = fn->num_subroutine_types;
4421 p->sh.SubroutineFunctions[p->sh.NumSubroutineFunctions].types =
4422 ralloc_array(p, const struct glsl_type *,
4423 fn->num_subroutine_types);
4424
4425 /* From Section 4.4.4(Subroutine Function Layout Qualifiers) of the
4426 * GLSL 4.5 spec:
4427 *
4428 * "Each subroutine with an index qualifier in the shader must be
4429 * given a unique index, otherwise a compile or link error will be
4430 * generated."
4431 */
4432 for (unsigned j = 0; j < p->sh.NumSubroutineFunctions; j++) {
4433 if (p->sh.SubroutineFunctions[j].index != -1 &&
4434 p->sh.SubroutineFunctions[j].index == fn->subroutine_index) {
4435 linker_error(prog, "each subroutine index qualifier in the "
4436 "shader must be unique\n");
4437 return;
4438 }
4439 }
4440 p->sh.SubroutineFunctions[p->sh.NumSubroutineFunctions].index =
4441 fn->subroutine_index;
4442
4443 if (fn->subroutine_index > (int)p->sh.MaxSubroutineFunctionIndex)
4444 p->sh.MaxSubroutineFunctionIndex = fn->subroutine_index;
4445
4446 for (int j = 0; j < fn->num_subroutine_types; j++)
4447 p->sh.SubroutineFunctions[p->sh.NumSubroutineFunctions].types[j] = fn->subroutine_types[j];
4448 p->sh.NumSubroutineFunctions++;
4449 }
4450 }
4451 }
4452
4453 static void
4454 set_always_active_io(exec_list *ir, ir_variable_mode io_mode)
4455 {
4456 assert(io_mode == ir_var_shader_in || io_mode == ir_var_shader_out);
4457
4458 foreach_in_list(ir_instruction, node, ir) {
4459 ir_variable *const var = node->as_variable();
4460
4461 if (var == NULL || var->data.mode != io_mode)
4462 continue;
4463
4464 /* Don't set always active on builtins that haven't been redeclared */
4465 if (var->data.how_declared == ir_var_declared_implicitly)
4466 continue;
4467
4468 var->data.always_active_io = true;
4469 }
4470 }
4471
4472 /**
4473 * When separate shader programs are enabled, only input/outputs between
4474 * the stages of a multi-stage separate program can be safely removed
4475 * from the shader interface. Other inputs/outputs must remain active.
4476 */
4477 static void
4478 disable_varying_optimizations_for_sso(struct gl_shader_program *prog)
4479 {
4480 unsigned first, last;
4481 assert(prog->SeparateShader);
4482
4483 first = MESA_SHADER_STAGES;
4484 last = 0;
4485
4486 /* Determine first and last stage. Excluding the compute stage */
4487 for (unsigned i = 0; i < MESA_SHADER_COMPUTE; i++) {
4488 if (!prog->_LinkedShaders[i])
4489 continue;
4490 if (first == MESA_SHADER_STAGES)
4491 first = i;
4492 last = i;
4493 }
4494
4495 if (first == MESA_SHADER_STAGES)
4496 return;
4497
4498 for (unsigned stage = 0; stage < MESA_SHADER_STAGES; stage++) {
4499 gl_linked_shader *sh = prog->_LinkedShaders[stage];
4500 if (!sh)
4501 continue;
4502
4503 if (first == last) {
4504 /* For a single shader program only allow inputs to the vertex shader
4505 * and outputs from the fragment shader to be removed.
4506 */
4507 if (stage != MESA_SHADER_VERTEX)
4508 set_always_active_io(sh->ir, ir_var_shader_in);
4509 if (stage != MESA_SHADER_FRAGMENT)
4510 set_always_active_io(sh->ir, ir_var_shader_out);
4511 } else {
4512 /* For multi-stage separate shader programs only allow inputs and
4513 * outputs between the shader stages to be removed as well as inputs
4514 * to the vertex shader and outputs from the fragment shader.
4515 */
4516 if (stage == first && stage != MESA_SHADER_VERTEX)
4517 set_always_active_io(sh->ir, ir_var_shader_in);
4518 else if (stage == last && stage != MESA_SHADER_FRAGMENT)
4519 set_always_active_io(sh->ir, ir_var_shader_out);
4520 }
4521 }
4522 }
4523
4524 static void
4525 link_and_validate_uniforms(struct gl_context *ctx,
4526 struct gl_shader_program *prog)
4527 {
4528 update_array_sizes(prog);
4529 link_assign_uniform_locations(prog, ctx);
4530
4531 link_assign_atomic_counter_resources(ctx, prog);
4532 link_calculate_subroutine_compat(prog);
4533 check_resources(ctx, prog);
4534 check_subroutine_resources(prog);
4535 check_image_resources(ctx, prog);
4536 link_check_atomic_counter_resources(ctx, prog);
4537 }
4538
4539 static bool
4540 link_varyings_and_uniforms(unsigned first, unsigned last,
4541 struct gl_context *ctx,
4542 struct gl_shader_program *prog, void *mem_ctx)
4543 {
4544 /* Mark all generic shader inputs and outputs as unpaired. */
4545 for (unsigned i = MESA_SHADER_VERTEX; i <= MESA_SHADER_FRAGMENT; i++) {
4546 if (prog->_LinkedShaders[i] != NULL) {
4547 link_invalidate_variable_locations(prog->_LinkedShaders[i]->ir);
4548 }
4549 }
4550
4551 unsigned prev = first;
4552 for (unsigned i = prev + 1; i <= MESA_SHADER_FRAGMENT; i++) {
4553 if (prog->_LinkedShaders[i] == NULL)
4554 continue;
4555
4556 match_explicit_outputs_to_inputs(prog->_LinkedShaders[prev],
4557 prog->_LinkedShaders[i]);
4558 prev = i;
4559 }
4560
4561 if (!assign_attribute_or_color_locations(mem_ctx, prog, &ctx->Const,
4562 MESA_SHADER_VERTEX)) {
4563 return false;
4564 }
4565
4566 if (!assign_attribute_or_color_locations(mem_ctx, prog, &ctx->Const,
4567 MESA_SHADER_FRAGMENT)) {
4568 return false;
4569 }
4570
4571 prog->last_vert_prog = NULL;
4572 for (int i = MESA_SHADER_GEOMETRY; i >= MESA_SHADER_VERTEX; i--) {
4573 if (prog->_LinkedShaders[i] == NULL)
4574 continue;
4575
4576 prog->last_vert_prog = prog->_LinkedShaders[i]->Program;
4577 break;
4578 }
4579
4580 if (!link_varyings(prog, first, last, ctx, mem_ctx))
4581 return false;
4582
4583 link_and_validate_uniforms(ctx, prog);
4584
4585 if (!prog->data->LinkStatus)
4586 return false;
4587
4588 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4589 if (prog->_LinkedShaders[i] == NULL)
4590 continue;
4591
4592 const struct gl_shader_compiler_options *options =
4593 &ctx->Const.ShaderCompilerOptions[i];
4594
4595 if (options->LowerBufferInterfaceBlocks)
4596 lower_ubo_reference(prog->_LinkedShaders[i],
4597 options->ClampBlockIndicesToArrayBounds);
4598
4599 if (i == MESA_SHADER_COMPUTE)
4600 lower_shared_reference(prog->_LinkedShaders[i],
4601 &prog->Comp.SharedSize);
4602
4603 lower_vector_derefs(prog->_LinkedShaders[i]);
4604 do_vec_index_to_swizzle(prog->_LinkedShaders[i]->ir);
4605 }
4606
4607 return true;
4608 }
4609
4610 void
4611 link_shaders(struct gl_context *ctx, struct gl_shader_program *prog)
4612 {
4613 prog->data->LinkStatus = true; /* All error paths will set this to false */
4614 prog->data->Validated = false;
4615
4616 /* Section 7.3 (Program Objects) of the OpenGL 4.5 Core Profile spec says:
4617 *
4618 * "Linking can fail for a variety of reasons as specified in the
4619 * OpenGL Shading Language Specification, as well as any of the
4620 * following reasons:
4621 *
4622 * - No shader objects are attached to program."
4623 *
4624 * The Compatibility Profile specification does not list the error. In
4625 * Compatibility Profile missing shader stages are replaced by
4626 * fixed-function. This applies to the case where all stages are
4627 * missing.
4628 */
4629 if (prog->NumShaders == 0) {
4630 if (ctx->API != API_OPENGL_COMPAT)
4631 linker_error(prog, "no shaders attached to the program\n");
4632 return;
4633 }
4634
4635 void *mem_ctx = ralloc_context(NULL); // temporary linker context
4636
4637 prog->ARB_fragment_coord_conventions_enable = false;
4638
4639 /* Separate the shaders into groups based on their type.
4640 */
4641 struct gl_shader **shader_list[MESA_SHADER_STAGES];
4642 unsigned num_shaders[MESA_SHADER_STAGES];
4643
4644 for (int i = 0; i < MESA_SHADER_STAGES; i++) {
4645 shader_list[i] = (struct gl_shader **)
4646 calloc(prog->NumShaders, sizeof(struct gl_shader *));
4647 num_shaders[i] = 0;
4648 }
4649
4650 unsigned min_version = UINT_MAX;
4651 unsigned max_version = 0;
4652 for (unsigned i = 0; i < prog->NumShaders; i++) {
4653 min_version = MIN2(min_version, prog->Shaders[i]->Version);
4654 max_version = MAX2(max_version, prog->Shaders[i]->Version);
4655
4656 if (prog->Shaders[i]->IsES != prog->Shaders[0]->IsES) {
4657 linker_error(prog, "all shaders must use same shading "
4658 "language version\n");
4659 goto done;
4660 }
4661
4662 if (prog->Shaders[i]->ARB_fragment_coord_conventions_enable) {
4663 prog->ARB_fragment_coord_conventions_enable = true;
4664 }
4665
4666 gl_shader_stage shader_type = prog->Shaders[i]->Stage;
4667 shader_list[shader_type][num_shaders[shader_type]] = prog->Shaders[i];
4668 num_shaders[shader_type]++;
4669 }
4670
4671 /* In desktop GLSL, different shader versions may be linked together. In
4672 * GLSL ES, all shader versions must be the same.
4673 */
4674 if (prog->Shaders[0]->IsES && min_version != max_version) {
4675 linker_error(prog, "all shaders must use same shading "
4676 "language version\n");
4677 goto done;
4678 }
4679
4680 prog->data->Version = max_version;
4681 prog->IsES = prog->Shaders[0]->IsES;
4682
4683 /* Some shaders have to be linked with some other shaders present.
4684 */
4685 if (!prog->SeparateShader) {
4686 if (num_shaders[MESA_SHADER_GEOMETRY] > 0 &&
4687 num_shaders[MESA_SHADER_VERTEX] == 0) {
4688 linker_error(prog, "Geometry shader must be linked with "
4689 "vertex shader\n");
4690 goto done;
4691 }
4692 if (num_shaders[MESA_SHADER_TESS_EVAL] > 0 &&
4693 num_shaders[MESA_SHADER_VERTEX] == 0) {
4694 linker_error(prog, "Tessellation evaluation shader must be linked "
4695 "with vertex shader\n");
4696 goto done;
4697 }
4698 if (num_shaders[MESA_SHADER_TESS_CTRL] > 0 &&
4699 num_shaders[MESA_SHADER_VERTEX] == 0) {
4700 linker_error(prog, "Tessellation control shader must be linked with "
4701 "vertex shader\n");
4702 goto done;
4703 }
4704
4705 /* The spec is self-contradictory here. It allows linking without a tess
4706 * eval shader, but that can only be used with transform feedback and
4707 * rasterization disabled. However, transform feedback isn't allowed
4708 * with GL_PATCHES, so it can't be used.
4709 *
4710 * More investigation showed that the idea of transform feedback after
4711 * a tess control shader was dropped, because some hw vendors couldn't
4712 * support tessellation without a tess eval shader, but the linker
4713 * section wasn't updated to reflect that.
4714 *
4715 * All specifications (ARB_tessellation_shader, GL 4.0-4.5) have this
4716 * spec bug.
4717 *
4718 * Do what's reasonable and always require a tess eval shader if a tess
4719 * control shader is present.
4720 */
4721 if (num_shaders[MESA_SHADER_TESS_CTRL] > 0 &&
4722 num_shaders[MESA_SHADER_TESS_EVAL] == 0) {
4723 linker_error(prog, "Tessellation control shader must be linked with "
4724 "tessellation evaluation shader\n");
4725 goto done;
4726 }
4727 }
4728
4729 /* Compute shaders have additional restrictions. */
4730 if (num_shaders[MESA_SHADER_COMPUTE] > 0 &&
4731 num_shaders[MESA_SHADER_COMPUTE] != prog->NumShaders) {
4732 linker_error(prog, "Compute shaders may not be linked with any other "
4733 "type of shader\n");
4734 }
4735
4736 /* Link all shaders for a particular stage and validate the result.
4737 */
4738 for (int stage = 0; stage < MESA_SHADER_STAGES; stage++) {
4739 if (num_shaders[stage] > 0) {
4740 gl_linked_shader *const sh =
4741 link_intrastage_shaders(mem_ctx, ctx, prog, shader_list[stage],
4742 num_shaders[stage], false);
4743
4744 if (!prog->data->LinkStatus) {
4745 if (sh)
4746 _mesa_delete_linked_shader(ctx, sh);
4747 goto done;
4748 }
4749
4750 switch (stage) {
4751 case MESA_SHADER_VERTEX:
4752 validate_vertex_shader_executable(prog, sh, ctx);
4753 break;
4754 case MESA_SHADER_TESS_CTRL:
4755 /* nothing to be done */
4756 break;
4757 case MESA_SHADER_TESS_EVAL:
4758 validate_tess_eval_shader_executable(prog, sh, ctx);
4759 break;
4760 case MESA_SHADER_GEOMETRY:
4761 validate_geometry_shader_executable(prog, sh, ctx);
4762 break;
4763 case MESA_SHADER_FRAGMENT:
4764 validate_fragment_shader_executable(prog, sh);
4765 break;
4766 }
4767 if (!prog->data->LinkStatus) {
4768 if (sh)
4769 _mesa_delete_linked_shader(ctx, sh);
4770 goto done;
4771 }
4772
4773 prog->_LinkedShaders[stage] = sh;
4774 prog->data->linked_stages |= 1 << stage;
4775 }
4776 }
4777
4778 if (num_shaders[MESA_SHADER_GEOMETRY] > 0) {
4779 prog->LastClipDistanceArraySize = prog->Geom.ClipDistanceArraySize;
4780 prog->LastCullDistanceArraySize = prog->Geom.CullDistanceArraySize;
4781 } else if (num_shaders[MESA_SHADER_TESS_EVAL] > 0) {
4782 prog->LastClipDistanceArraySize = prog->TessEval.ClipDistanceArraySize;
4783 prog->LastCullDistanceArraySize = prog->TessEval.CullDistanceArraySize;
4784 } else if (num_shaders[MESA_SHADER_VERTEX] > 0) {
4785 prog->LastClipDistanceArraySize = prog->Vert.ClipDistanceArraySize;
4786 prog->LastCullDistanceArraySize = prog->Vert.CullDistanceArraySize;
4787 } else {
4788 prog->LastClipDistanceArraySize = 0; /* Not used */
4789 prog->LastCullDistanceArraySize = 0; /* Not used */
4790 }
4791
4792 /* Here begins the inter-stage linking phase. Some initial validation is
4793 * performed, then locations are assigned for uniforms, attributes, and
4794 * varyings.
4795 */
4796 cross_validate_uniforms(prog);
4797 if (!prog->data->LinkStatus)
4798 goto done;
4799
4800 unsigned first, last, prev;
4801
4802 first = MESA_SHADER_STAGES;
4803 last = 0;
4804
4805 /* Determine first and last stage. */
4806 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4807 if (!prog->_LinkedShaders[i])
4808 continue;
4809 if (first == MESA_SHADER_STAGES)
4810 first = i;
4811 last = i;
4812 }
4813
4814 check_explicit_uniform_locations(ctx, prog);
4815 link_assign_subroutine_types(prog);
4816
4817 if (!prog->data->LinkStatus)
4818 goto done;
4819
4820 resize_tes_inputs(ctx, prog);
4821
4822 /* Validate the inputs of each stage with the output of the preceding
4823 * stage.
4824 */
4825 prev = first;
4826 for (unsigned i = prev + 1; i <= MESA_SHADER_FRAGMENT; i++) {
4827 if (prog->_LinkedShaders[i] == NULL)
4828 continue;
4829
4830 validate_interstage_inout_blocks(prog, prog->_LinkedShaders[prev],
4831 prog->_LinkedShaders[i]);
4832 if (!prog->data->LinkStatus)
4833 goto done;
4834
4835 cross_validate_outputs_to_inputs(prog,
4836 prog->_LinkedShaders[prev],
4837 prog->_LinkedShaders[i]);
4838 if (!prog->data->LinkStatus)
4839 goto done;
4840
4841 prev = i;
4842 }
4843
4844 /* Cross-validate uniform blocks between shader stages */
4845 validate_interstage_uniform_blocks(prog, prog->_LinkedShaders);
4846 if (!prog->data->LinkStatus)
4847 goto done;
4848
4849 for (unsigned int i = 0; i < MESA_SHADER_STAGES; i++) {
4850 if (prog->_LinkedShaders[i] != NULL)
4851 lower_named_interface_blocks(mem_ctx, prog->_LinkedShaders[i]);
4852 }
4853
4854 /* Implement the GLSL 1.30+ rule for discard vs infinite loops Do
4855 * it before optimization because we want most of the checks to get
4856 * dropped thanks to constant propagation.
4857 *
4858 * This rule also applies to GLSL ES 3.00.
4859 */
4860 if (max_version >= (prog->IsES ? 300 : 130)) {
4861 struct gl_linked_shader *sh = prog->_LinkedShaders[MESA_SHADER_FRAGMENT];
4862 if (sh) {
4863 lower_discard_flow(sh->ir);
4864 }
4865 }
4866
4867 if (prog->SeparateShader)
4868 disable_varying_optimizations_for_sso(prog);
4869
4870 /* Process UBOs */
4871 if (!interstage_cross_validate_uniform_blocks(prog, false))
4872 goto done;
4873
4874 /* Process SSBOs */
4875 if (!interstage_cross_validate_uniform_blocks(prog, true))
4876 goto done;
4877
4878 /* Do common optimization before assigning storage for attributes,
4879 * uniforms, and varyings. Later optimization could possibly make
4880 * some of that unused.
4881 */
4882 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4883 if (prog->_LinkedShaders[i] == NULL)
4884 continue;
4885
4886 detect_recursion_linked(prog, prog->_LinkedShaders[i]->ir);
4887 if (!prog->data->LinkStatus)
4888 goto done;
4889
4890 if (ctx->Const.ShaderCompilerOptions[i].LowerCombinedClipCullDistance) {
4891 lower_clip_cull_distance(prog, prog->_LinkedShaders[i]);
4892 }
4893
4894 if (ctx->Const.LowerTessLevel) {
4895 lower_tess_level(prog->_LinkedShaders[i]);
4896 }
4897
4898 if (ctx->Const.GLSLOptimizeConservatively) {
4899 /* Run it just once. */
4900 do_common_optimization(prog->_LinkedShaders[i]->ir, true, false,
4901 &ctx->Const.ShaderCompilerOptions[i],
4902 ctx->Const.NativeIntegers);
4903 } else {
4904 /* Repeat it until it stops making changes. */
4905 while (do_common_optimization(prog->_LinkedShaders[i]->ir, true, false,
4906 &ctx->Const.ShaderCompilerOptions[i],
4907 ctx->Const.NativeIntegers))
4908 ;
4909 }
4910
4911 lower_const_arrays_to_uniforms(prog->_LinkedShaders[i]->ir, i);
4912 propagate_invariance(prog->_LinkedShaders[i]->ir);
4913 }
4914
4915 /* Validation for special cases where we allow sampler array indexing
4916 * with loop induction variable. This check emits a warning or error
4917 * depending if backend can handle dynamic indexing.
4918 */
4919 if ((!prog->IsES && prog->data->Version < 130) ||
4920 (prog->IsES && prog->data->Version < 300)) {
4921 if (!validate_sampler_array_indexing(ctx, prog))
4922 goto done;
4923 }
4924
4925 /* Check and validate stream emissions in geometry shaders */
4926 validate_geometry_shader_emissions(ctx, prog);
4927
4928 store_fragdepth_layout(prog);
4929
4930 if(!link_varyings_and_uniforms(first, last, ctx, prog, mem_ctx))
4931 goto done;
4932
4933 /* OpenGL ES < 3.1 requires that a vertex shader and a fragment shader both
4934 * be present in a linked program. GL_ARB_ES2_compatibility doesn't say
4935 * anything about shader linking when one of the shaders (vertex or
4936 * fragment shader) is absent. So, the extension shouldn't change the
4937 * behavior specified in GLSL specification.
4938 *
4939 * From OpenGL ES 3.1 specification (7.3 Program Objects):
4940 * "Linking can fail for a variety of reasons as specified in the
4941 * OpenGL ES Shading Language Specification, as well as any of the
4942 * following reasons:
4943 *
4944 * ...
4945 *
4946 * * program contains objects to form either a vertex shader or
4947 * fragment shader, and program is not separable, and does not
4948 * contain objects to form both a vertex shader and fragment
4949 * shader."
4950 *
4951 * However, the only scenario in 3.1+ where we don't require them both is
4952 * when we have a compute shader. For example:
4953 *
4954 * - No shaders is a link error.
4955 * - Geom or Tess without a Vertex shader is a link error which means we
4956 * always require a Vertex shader and hence a Fragment shader.
4957 * - Finally a Compute shader linked with any other stage is a link error.
4958 */
4959 if (!prog->SeparateShader && ctx->API == API_OPENGLES2 &&
4960 num_shaders[MESA_SHADER_COMPUTE] == 0) {
4961 if (prog->_LinkedShaders[MESA_SHADER_VERTEX] == NULL) {
4962 linker_error(prog, "program lacks a vertex shader\n");
4963 } else if (prog->_LinkedShaders[MESA_SHADER_FRAGMENT] == NULL) {
4964 linker_error(prog, "program lacks a fragment shader\n");
4965 }
4966 }
4967
4968 done:
4969 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4970 free(shader_list[i]);
4971 if (prog->_LinkedShaders[i] == NULL)
4972 continue;
4973
4974 /* Do a final validation step to make sure that the IR wasn't
4975 * invalidated by any modifications performed after intrastage linking.
4976 */
4977 validate_ir_tree(prog->_LinkedShaders[i]->ir);
4978
4979 /* Retain any live IR, but trash the rest. */
4980 reparent_ir(prog->_LinkedShaders[i]->ir, prog->_LinkedShaders[i]->ir);
4981
4982 /* The symbol table in the linked shaders may contain references to
4983 * variables that were removed (e.g., unused uniforms). Since it may
4984 * contain junk, there is no possible valid use. Delete it and set the
4985 * pointer to NULL.
4986 */
4987 delete prog->_LinkedShaders[i]->symbols;
4988 prog->_LinkedShaders[i]->symbols = NULL;
4989 }
4990
4991 ralloc_free(mem_ctx);
4992 }