nir/drawpixels: handle load_color0, load_input, load_interpolated_input
[mesa.git] / src / compiler / glsl / lower_instructions.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file lower_instructions.cpp
26 *
27 * Many GPUs lack native instructions for certain expression operations, and
28 * must replace them with some other expression tree. This pass lowers some
29 * of the most common cases, allowing the lowering code to be implemented once
30 * rather than in each driver backend.
31 *
32 * Currently supported transformations:
33 * - SUB_TO_ADD_NEG
34 * - DIV_TO_MUL_RCP
35 * - INT_DIV_TO_MUL_RCP
36 * - EXP_TO_EXP2
37 * - POW_TO_EXP2
38 * - LOG_TO_LOG2
39 * - MOD_TO_FLOOR
40 * - LDEXP_TO_ARITH
41 * - DFREXP_TO_ARITH
42 * - CARRY_TO_ARITH
43 * - BORROW_TO_ARITH
44 * - SAT_TO_CLAMP
45 * - DOPS_TO_DFRAC
46 *
47 * SUB_TO_ADD_NEG:
48 * ---------------
49 * Breaks an ir_binop_sub expression down to add(op0, neg(op1))
50 *
51 * This simplifies expression reassociation, and for many backends
52 * there is no subtract operation separate from adding the negation.
53 * For backends with native subtract operations, they will probably
54 * want to recognize add(op0, neg(op1)) or the other way around to
55 * produce a subtract anyway.
56 *
57 * FDIV_TO_MUL_RCP, DDIV_TO_MUL_RCP, and INT_DIV_TO_MUL_RCP:
58 * ---------------------------------------------------------
59 * Breaks an ir_binop_div expression down to op0 * (rcp(op1)).
60 *
61 * Many GPUs don't have a divide instruction (945 and 965 included),
62 * but they do have an RCP instruction to compute an approximate
63 * reciprocal. By breaking the operation down, constant reciprocals
64 * can get constant folded.
65 *
66 * FDIV_TO_MUL_RCP only lowers single-precision floating point division;
67 * DDIV_TO_MUL_RCP only lowers double-precision floating point division.
68 * DIV_TO_MUL_RCP is a convenience macro that sets both flags.
69 * INT_DIV_TO_MUL_RCP handles the integer case, converting to and from floating
70 * point so that RCP is possible.
71 *
72 * EXP_TO_EXP2 and LOG_TO_LOG2:
73 * ----------------------------
74 * Many GPUs don't have a base e log or exponent instruction, but they
75 * do have base 2 versions, so this pass converts exp and log to exp2
76 * and log2 operations.
77 *
78 * POW_TO_EXP2:
79 * -----------
80 * Many older GPUs don't have an x**y instruction. For these GPUs, convert
81 * x**y to 2**(y * log2(x)).
82 *
83 * MOD_TO_FLOOR:
84 * -------------
85 * Breaks an ir_binop_mod expression down to (op0 - op1 * floor(op0 / op1))
86 *
87 * Many GPUs don't have a MOD instruction (945 and 965 included), and
88 * if we have to break it down like this anyway, it gives an
89 * opportunity to do things like constant fold the (1.0 / op1) easily.
90 *
91 * Note: before we used to implement this as op1 * fract(op / op1) but this
92 * implementation had significant precision errors.
93 *
94 * LDEXP_TO_ARITH:
95 * -------------
96 * Converts ir_binop_ldexp to arithmetic and bit operations for float sources.
97 *
98 * DFREXP_DLDEXP_TO_ARITH:
99 * ---------------
100 * Converts ir_binop_ldexp, ir_unop_frexp_sig, and ir_unop_frexp_exp to
101 * arithmetic and bit ops for double arguments.
102 *
103 * CARRY_TO_ARITH:
104 * ---------------
105 * Converts ir_carry into (x + y) < x.
106 *
107 * BORROW_TO_ARITH:
108 * ----------------
109 * Converts ir_borrow into (x < y).
110 *
111 * SAT_TO_CLAMP:
112 * -------------
113 * Converts ir_unop_saturate into min(max(x, 0.0), 1.0)
114 *
115 * DOPS_TO_DFRAC:
116 * --------------
117 * Converts double trunc, ceil, floor, round to fract
118 */
119
120 #include "c99_math.h"
121 #include "program/prog_instruction.h" /* for swizzle */
122 #include "compiler/glsl_types.h"
123 #include "ir.h"
124 #include "ir_builder.h"
125 #include "ir_optimization.h"
126
127 using namespace ir_builder;
128
129 namespace {
130
131 class lower_instructions_visitor : public ir_hierarchical_visitor {
132 public:
133 lower_instructions_visitor(unsigned lower)
134 : progress(false), lower(lower) { }
135
136 ir_visitor_status visit_leave(ir_expression *);
137
138 bool progress;
139
140 private:
141 unsigned lower; /** Bitfield of which operations to lower */
142
143 void sub_to_add_neg(ir_expression *);
144 void div_to_mul_rcp(ir_expression *);
145 void int_div_to_mul_rcp(ir_expression *);
146 void mod_to_floor(ir_expression *);
147 void exp_to_exp2(ir_expression *);
148 void pow_to_exp2(ir_expression *);
149 void log_to_log2(ir_expression *);
150 void ldexp_to_arith(ir_expression *);
151 void dldexp_to_arith(ir_expression *);
152 void dfrexp_sig_to_arith(ir_expression *);
153 void dfrexp_exp_to_arith(ir_expression *);
154 void carry_to_arith(ir_expression *);
155 void borrow_to_arith(ir_expression *);
156 void sat_to_clamp(ir_expression *);
157 void double_dot_to_fma(ir_expression *);
158 void double_lrp(ir_expression *);
159 void dceil_to_dfrac(ir_expression *);
160 void dfloor_to_dfrac(ir_expression *);
161 void dround_even_to_dfrac(ir_expression *);
162 void dtrunc_to_dfrac(ir_expression *);
163 void dsign_to_csel(ir_expression *);
164 void bit_count_to_math(ir_expression *);
165 void extract_to_shifts(ir_expression *);
166 void insert_to_shifts(ir_expression *);
167 void reverse_to_shifts(ir_expression *ir);
168 void find_lsb_to_float_cast(ir_expression *ir);
169 void find_msb_to_float_cast(ir_expression *ir);
170 void imul_high_to_mul(ir_expression *ir);
171 void sqrt_to_abs_sqrt(ir_expression *ir);
172 void mul64_to_mul_and_mul_high(ir_expression *ir);
173
174 ir_expression *_carry(operand a, operand b);
175 };
176
177 } /* anonymous namespace */
178
179 /**
180 * Determine if a particular type of lowering should occur
181 */
182 #define lowering(x) (this->lower & x)
183
184 bool
185 lower_instructions(exec_list *instructions, unsigned what_to_lower)
186 {
187 lower_instructions_visitor v(what_to_lower);
188
189 visit_list_elements(&v, instructions);
190 return v.progress;
191 }
192
193 void
194 lower_instructions_visitor::sub_to_add_neg(ir_expression *ir)
195 {
196 ir->operation = ir_binop_add;
197 ir->init_num_operands();
198 ir->operands[1] = new(ir) ir_expression(ir_unop_neg, ir->operands[1]->type,
199 ir->operands[1], NULL);
200 this->progress = true;
201 }
202
203 void
204 lower_instructions_visitor::div_to_mul_rcp(ir_expression *ir)
205 {
206 assert(ir->operands[1]->type->is_float() || ir->operands[1]->type->is_double());
207
208 /* New expression for the 1.0 / op1 */
209 ir_rvalue *expr;
210 expr = new(ir) ir_expression(ir_unop_rcp,
211 ir->operands[1]->type,
212 ir->operands[1]);
213
214 /* op0 / op1 -> op0 * (1.0 / op1) */
215 ir->operation = ir_binop_mul;
216 ir->init_num_operands();
217 ir->operands[1] = expr;
218
219 this->progress = true;
220 }
221
222 void
223 lower_instructions_visitor::int_div_to_mul_rcp(ir_expression *ir)
224 {
225 assert(ir->operands[1]->type->is_integer_32());
226
227 /* Be careful with integer division -- we need to do it as a
228 * float and re-truncate, since rcp(n > 1) of an integer would
229 * just be 0.
230 */
231 ir_rvalue *op0, *op1;
232 const struct glsl_type *vec_type;
233
234 vec_type = glsl_type::get_instance(GLSL_TYPE_FLOAT,
235 ir->operands[1]->type->vector_elements,
236 ir->operands[1]->type->matrix_columns);
237
238 if (ir->operands[1]->type->base_type == GLSL_TYPE_INT)
239 op1 = new(ir) ir_expression(ir_unop_i2f, vec_type, ir->operands[1], NULL);
240 else
241 op1 = new(ir) ir_expression(ir_unop_u2f, vec_type, ir->operands[1], NULL);
242
243 op1 = new(ir) ir_expression(ir_unop_rcp, op1->type, op1, NULL);
244
245 vec_type = glsl_type::get_instance(GLSL_TYPE_FLOAT,
246 ir->operands[0]->type->vector_elements,
247 ir->operands[0]->type->matrix_columns);
248
249 if (ir->operands[0]->type->base_type == GLSL_TYPE_INT)
250 op0 = new(ir) ir_expression(ir_unop_i2f, vec_type, ir->operands[0], NULL);
251 else
252 op0 = new(ir) ir_expression(ir_unop_u2f, vec_type, ir->operands[0], NULL);
253
254 vec_type = glsl_type::get_instance(GLSL_TYPE_FLOAT,
255 ir->type->vector_elements,
256 ir->type->matrix_columns);
257
258 op0 = new(ir) ir_expression(ir_binop_mul, vec_type, op0, op1);
259
260 if (ir->operands[1]->type->base_type == GLSL_TYPE_INT) {
261 ir->operation = ir_unop_f2i;
262 ir->operands[0] = op0;
263 } else {
264 ir->operation = ir_unop_i2u;
265 ir->operands[0] = new(ir) ir_expression(ir_unop_f2i, op0);
266 }
267 ir->init_num_operands();
268 ir->operands[1] = NULL;
269
270 this->progress = true;
271 }
272
273 void
274 lower_instructions_visitor::exp_to_exp2(ir_expression *ir)
275 {
276 ir_constant *log2_e = new(ir) ir_constant(float(M_LOG2E));
277
278 ir->operation = ir_unop_exp2;
279 ir->init_num_operands();
280 ir->operands[0] = new(ir) ir_expression(ir_binop_mul, ir->operands[0]->type,
281 ir->operands[0], log2_e);
282 this->progress = true;
283 }
284
285 void
286 lower_instructions_visitor::pow_to_exp2(ir_expression *ir)
287 {
288 ir_expression *const log2_x =
289 new(ir) ir_expression(ir_unop_log2, ir->operands[0]->type,
290 ir->operands[0]);
291
292 ir->operation = ir_unop_exp2;
293 ir->init_num_operands();
294 ir->operands[0] = new(ir) ir_expression(ir_binop_mul, ir->operands[1]->type,
295 ir->operands[1], log2_x);
296 ir->operands[1] = NULL;
297 this->progress = true;
298 }
299
300 void
301 lower_instructions_visitor::log_to_log2(ir_expression *ir)
302 {
303 ir->operation = ir_binop_mul;
304 ir->init_num_operands();
305 ir->operands[0] = new(ir) ir_expression(ir_unop_log2, ir->operands[0]->type,
306 ir->operands[0], NULL);
307 ir->operands[1] = new(ir) ir_constant(float(1.0 / M_LOG2E));
308 this->progress = true;
309 }
310
311 void
312 lower_instructions_visitor::mod_to_floor(ir_expression *ir)
313 {
314 ir_variable *x = new(ir) ir_variable(ir->operands[0]->type, "mod_x",
315 ir_var_temporary);
316 ir_variable *y = new(ir) ir_variable(ir->operands[1]->type, "mod_y",
317 ir_var_temporary);
318 this->base_ir->insert_before(x);
319 this->base_ir->insert_before(y);
320
321 ir_assignment *const assign_x =
322 new(ir) ir_assignment(new(ir) ir_dereference_variable(x),
323 ir->operands[0]);
324 ir_assignment *const assign_y =
325 new(ir) ir_assignment(new(ir) ir_dereference_variable(y),
326 ir->operands[1]);
327
328 this->base_ir->insert_before(assign_x);
329 this->base_ir->insert_before(assign_y);
330
331 ir_expression *const div_expr =
332 new(ir) ir_expression(ir_binop_div, x->type,
333 new(ir) ir_dereference_variable(x),
334 new(ir) ir_dereference_variable(y));
335
336 /* Don't generate new IR that would need to be lowered in an additional
337 * pass.
338 */
339 if ((lowering(FDIV_TO_MUL_RCP) && ir->type->is_float()) ||
340 (lowering(DDIV_TO_MUL_RCP) && ir->type->is_double()))
341 div_to_mul_rcp(div_expr);
342
343 ir_expression *const floor_expr =
344 new(ir) ir_expression(ir_unop_floor, x->type, div_expr);
345
346 if (lowering(DOPS_TO_DFRAC) && ir->type->is_double())
347 dfloor_to_dfrac(floor_expr);
348
349 ir_expression *const mul_expr =
350 new(ir) ir_expression(ir_binop_mul,
351 new(ir) ir_dereference_variable(y),
352 floor_expr);
353
354 ir->operation = ir_binop_sub;
355 ir->init_num_operands();
356 ir->operands[0] = new(ir) ir_dereference_variable(x);
357 ir->operands[1] = mul_expr;
358 this->progress = true;
359 }
360
361 void
362 lower_instructions_visitor::ldexp_to_arith(ir_expression *ir)
363 {
364 /* Translates
365 * ir_binop_ldexp x exp
366 * into
367 *
368 * extracted_biased_exp = rshift(bitcast_f2i(abs(x)), exp_shift);
369 * resulting_biased_exp = min(extracted_biased_exp + exp, 255);
370 *
371 * if (extracted_biased_exp >= 255)
372 * return x; // +/-inf, NaN
373 *
374 * sign_mantissa = bitcast_f2u(x) & sign_mantissa_mask;
375 *
376 * if (min(resulting_biased_exp, extracted_biased_exp) < 1)
377 * resulting_biased_exp = 0;
378 * if (resulting_biased_exp >= 255 ||
379 * min(resulting_biased_exp, extracted_biased_exp) < 1) {
380 * sign_mantissa &= sign_mask;
381 * }
382 *
383 * return bitcast_u2f(sign_mantissa |
384 * lshift(i2u(resulting_biased_exp), exp_shift));
385 *
386 * which we can't actually implement as such, since the GLSL IR doesn't
387 * have vectorized if-statements. We actually implement it without branches
388 * using conditional-select:
389 *
390 * extracted_biased_exp = rshift(bitcast_f2i(abs(x)), exp_shift);
391 * resulting_biased_exp = min(extracted_biased_exp + exp, 255);
392 *
393 * sign_mantissa = bitcast_f2u(x) & sign_mantissa_mask;
394 *
395 * flush_to_zero = lequal(min(resulting_biased_exp, extracted_biased_exp), 0);
396 * resulting_biased_exp = csel(flush_to_zero, 0, resulting_biased_exp)
397 * zero_mantissa = logic_or(flush_to_zero,
398 * gequal(resulting_biased_exp, 255));
399 * sign_mantissa = csel(zero_mantissa, sign_mantissa & sign_mask, sign_mantissa);
400 *
401 * result = sign_mantissa |
402 * lshift(i2u(resulting_biased_exp), exp_shift));
403 *
404 * return csel(extracted_biased_exp >= 255, x, bitcast_u2f(result));
405 *
406 * The definition of ldexp in the GLSL spec says:
407 *
408 * "If this product is too large to be represented in the
409 * floating-point type, the result is undefined."
410 *
411 * However, the definition of ldexp in the GLSL ES spec does not contain
412 * this sentence, so we do need to handle overflow correctly.
413 *
414 * There is additional language limiting the defined range of exp, but this
415 * is merely to allow implementations that store 2^exp in a temporary
416 * variable.
417 */
418
419 const unsigned vec_elem = ir->type->vector_elements;
420
421 /* Types */
422 const glsl_type *ivec = glsl_type::get_instance(GLSL_TYPE_INT, vec_elem, 1);
423 const glsl_type *uvec = glsl_type::get_instance(GLSL_TYPE_UINT, vec_elem, 1);
424 const glsl_type *bvec = glsl_type::get_instance(GLSL_TYPE_BOOL, vec_elem, 1);
425
426 /* Temporary variables */
427 ir_variable *x = new(ir) ir_variable(ir->type, "x", ir_var_temporary);
428 ir_variable *exp = new(ir) ir_variable(ivec, "exp", ir_var_temporary);
429 ir_variable *result = new(ir) ir_variable(uvec, "result", ir_var_temporary);
430
431 ir_variable *extracted_biased_exp =
432 new(ir) ir_variable(ivec, "extracted_biased_exp", ir_var_temporary);
433 ir_variable *resulting_biased_exp =
434 new(ir) ir_variable(ivec, "resulting_biased_exp", ir_var_temporary);
435
436 ir_variable *sign_mantissa =
437 new(ir) ir_variable(uvec, "sign_mantissa", ir_var_temporary);
438
439 ir_variable *flush_to_zero =
440 new(ir) ir_variable(bvec, "flush_to_zero", ir_var_temporary);
441 ir_variable *zero_mantissa =
442 new(ir) ir_variable(bvec, "zero_mantissa", ir_var_temporary);
443
444 ir_instruction &i = *base_ir;
445
446 /* Copy <x> and <exp> arguments. */
447 i.insert_before(x);
448 i.insert_before(assign(x, ir->operands[0]));
449 i.insert_before(exp);
450 i.insert_before(assign(exp, ir->operands[1]));
451
452 /* Extract the biased exponent from <x>. */
453 i.insert_before(extracted_biased_exp);
454 i.insert_before(assign(extracted_biased_exp,
455 rshift(bitcast_f2i(abs(x)),
456 new(ir) ir_constant(23, vec_elem))));
457
458 /* The definition of ldexp in the GLSL 4.60 spec says:
459 *
460 * "If exp is greater than +128 (single-precision) or +1024
461 * (double-precision), the value returned is undefined. If exp is less
462 * than -126 (single-precision) or -1022 (double-precision), the value
463 * returned may be flushed to zero."
464 *
465 * So we do not have to guard against the possibility of addition overflow,
466 * which could happen when exp is close to INT_MAX. Addition underflow
467 * cannot happen (the worst case is 0 + (-INT_MAX)).
468 */
469 i.insert_before(resulting_biased_exp);
470 i.insert_before(assign(resulting_biased_exp,
471 min2(add(extracted_biased_exp, exp),
472 new(ir) ir_constant(255, vec_elem))));
473
474 i.insert_before(sign_mantissa);
475 i.insert_before(assign(sign_mantissa,
476 bit_and(bitcast_f2u(x),
477 new(ir) ir_constant(0x807fffffu, vec_elem))));
478
479 /* We flush to zero if the original or resulting biased exponent is 0,
480 * indicating a +/-0.0 or subnormal input or output.
481 *
482 * The mantissa is set to 0 if the resulting biased exponent is 255, since
483 * an overflow should produce a +/-inf result.
484 *
485 * Note that NaN inputs are handled separately.
486 */
487 i.insert_before(flush_to_zero);
488 i.insert_before(assign(flush_to_zero,
489 lequal(min2(resulting_biased_exp,
490 extracted_biased_exp),
491 ir_constant::zero(ir, ivec))));
492 i.insert_before(assign(resulting_biased_exp,
493 csel(flush_to_zero,
494 ir_constant::zero(ir, ivec),
495 resulting_biased_exp)));
496
497 i.insert_before(zero_mantissa);
498 i.insert_before(assign(zero_mantissa,
499 logic_or(flush_to_zero,
500 equal(resulting_biased_exp,
501 new(ir) ir_constant(255, vec_elem)))));
502 i.insert_before(assign(sign_mantissa,
503 csel(zero_mantissa,
504 bit_and(sign_mantissa,
505 new(ir) ir_constant(0x80000000u, vec_elem)),
506 sign_mantissa)));
507
508 /* Don't generate new IR that would need to be lowered in an additional
509 * pass.
510 */
511 i.insert_before(result);
512 if (!lowering(INSERT_TO_SHIFTS)) {
513 i.insert_before(assign(result,
514 bitfield_insert(sign_mantissa,
515 i2u(resulting_biased_exp),
516 new(ir) ir_constant(23u, vec_elem),
517 new(ir) ir_constant(8u, vec_elem))));
518 } else {
519 i.insert_before(assign(result,
520 bit_or(sign_mantissa,
521 lshift(i2u(resulting_biased_exp),
522 new(ir) ir_constant(23, vec_elem)))));
523 }
524
525 ir->operation = ir_triop_csel;
526 ir->init_num_operands();
527 ir->operands[0] = gequal(extracted_biased_exp,
528 new(ir) ir_constant(255, vec_elem));
529 ir->operands[1] = new(ir) ir_dereference_variable(x);
530 ir->operands[2] = bitcast_u2f(result);
531
532 this->progress = true;
533 }
534
535 void
536 lower_instructions_visitor::dldexp_to_arith(ir_expression *ir)
537 {
538 /* See ldexp_to_arith for structure. Uses frexp_exp to extract the exponent
539 * from the significand.
540 */
541
542 const unsigned vec_elem = ir->type->vector_elements;
543
544 /* Types */
545 const glsl_type *ivec = glsl_type::get_instance(GLSL_TYPE_INT, vec_elem, 1);
546 const glsl_type *bvec = glsl_type::get_instance(GLSL_TYPE_BOOL, vec_elem, 1);
547
548 /* Constants */
549 ir_constant *zeroi = ir_constant::zero(ir, ivec);
550
551 ir_constant *sign_mask = new(ir) ir_constant(0x80000000u);
552
553 ir_constant *exp_shift = new(ir) ir_constant(20u);
554 ir_constant *exp_width = new(ir) ir_constant(11u);
555 ir_constant *exp_bias = new(ir) ir_constant(1022, vec_elem);
556
557 /* Temporary variables */
558 ir_variable *x = new(ir) ir_variable(ir->type, "x", ir_var_temporary);
559 ir_variable *exp = new(ir) ir_variable(ivec, "exp", ir_var_temporary);
560
561 ir_variable *zero_sign_x = new(ir) ir_variable(ir->type, "zero_sign_x",
562 ir_var_temporary);
563
564 ir_variable *extracted_biased_exp =
565 new(ir) ir_variable(ivec, "extracted_biased_exp", ir_var_temporary);
566 ir_variable *resulting_biased_exp =
567 new(ir) ir_variable(ivec, "resulting_biased_exp", ir_var_temporary);
568
569 ir_variable *is_not_zero_or_underflow =
570 new(ir) ir_variable(bvec, "is_not_zero_or_underflow", ir_var_temporary);
571
572 ir_instruction &i = *base_ir;
573
574 /* Copy <x> and <exp> arguments. */
575 i.insert_before(x);
576 i.insert_before(assign(x, ir->operands[0]));
577 i.insert_before(exp);
578 i.insert_before(assign(exp, ir->operands[1]));
579
580 ir_expression *frexp_exp = expr(ir_unop_frexp_exp, x);
581 if (lowering(DFREXP_DLDEXP_TO_ARITH))
582 dfrexp_exp_to_arith(frexp_exp);
583
584 /* Extract the biased exponent from <x>. */
585 i.insert_before(extracted_biased_exp);
586 i.insert_before(assign(extracted_biased_exp, add(frexp_exp, exp_bias)));
587
588 i.insert_before(resulting_biased_exp);
589 i.insert_before(assign(resulting_biased_exp,
590 add(extracted_biased_exp, exp)));
591
592 /* Test if result is ±0.0, subnormal, or underflow by checking if the
593 * resulting biased exponent would be less than 0x1. If so, the result is
594 * 0.0 with the sign of x. (Actually, invert the conditions so that
595 * immediate values are the second arguments, which is better for i965)
596 * TODO: Implement in a vector fashion.
597 */
598 i.insert_before(zero_sign_x);
599 for (unsigned elem = 0; elem < vec_elem; elem++) {
600 ir_variable *unpacked =
601 new(ir) ir_variable(glsl_type::uvec2_type, "unpacked", ir_var_temporary);
602 i.insert_before(unpacked);
603 i.insert_before(
604 assign(unpacked,
605 expr(ir_unop_unpack_double_2x32, swizzle(x, elem, 1))));
606 i.insert_before(assign(unpacked, bit_and(swizzle_y(unpacked), sign_mask->clone(ir, NULL)),
607 WRITEMASK_Y));
608 i.insert_before(assign(unpacked, ir_constant::zero(ir, glsl_type::uint_type), WRITEMASK_X));
609 i.insert_before(assign(zero_sign_x,
610 expr(ir_unop_pack_double_2x32, unpacked),
611 1 << elem));
612 }
613 i.insert_before(is_not_zero_or_underflow);
614 i.insert_before(assign(is_not_zero_or_underflow,
615 gequal(resulting_biased_exp,
616 new(ir) ir_constant(0x1, vec_elem))));
617 i.insert_before(assign(x, csel(is_not_zero_or_underflow,
618 x, zero_sign_x)));
619 i.insert_before(assign(resulting_biased_exp,
620 csel(is_not_zero_or_underflow,
621 resulting_biased_exp, zeroi)));
622
623 /* We could test for overflows by checking if the resulting biased exponent
624 * would be greater than 0xFE. Turns out we don't need to because the GLSL
625 * spec says:
626 *
627 * "If this product is too large to be represented in the
628 * floating-point type, the result is undefined."
629 */
630
631 ir_rvalue *results[4] = {NULL};
632 for (unsigned elem = 0; elem < vec_elem; elem++) {
633 ir_variable *unpacked =
634 new(ir) ir_variable(glsl_type::uvec2_type, "unpacked", ir_var_temporary);
635 i.insert_before(unpacked);
636 i.insert_before(
637 assign(unpacked,
638 expr(ir_unop_unpack_double_2x32, swizzle(x, elem, 1))));
639
640 ir_expression *bfi = bitfield_insert(
641 swizzle_y(unpacked),
642 i2u(swizzle(resulting_biased_exp, elem, 1)),
643 exp_shift->clone(ir, NULL),
644 exp_width->clone(ir, NULL));
645
646 i.insert_before(assign(unpacked, bfi, WRITEMASK_Y));
647
648 results[elem] = expr(ir_unop_pack_double_2x32, unpacked);
649 }
650
651 ir->operation = ir_quadop_vector;
652 ir->init_num_operands();
653 ir->operands[0] = results[0];
654 ir->operands[1] = results[1];
655 ir->operands[2] = results[2];
656 ir->operands[3] = results[3];
657
658 /* Don't generate new IR that would need to be lowered in an additional
659 * pass.
660 */
661
662 this->progress = true;
663 }
664
665 void
666 lower_instructions_visitor::dfrexp_sig_to_arith(ir_expression *ir)
667 {
668 const unsigned vec_elem = ir->type->vector_elements;
669 const glsl_type *bvec = glsl_type::get_instance(GLSL_TYPE_BOOL, vec_elem, 1);
670
671 /* Double-precision floating-point values are stored as
672 * 1 sign bit;
673 * 11 exponent bits;
674 * 52 mantissa bits.
675 *
676 * We're just extracting the significand here, so we only need to modify
677 * the upper 32-bit uint. Unfortunately we must extract each double
678 * independently as there is no vector version of unpackDouble.
679 */
680
681 ir_instruction &i = *base_ir;
682
683 ir_variable *is_not_zero =
684 new(ir) ir_variable(bvec, "is_not_zero", ir_var_temporary);
685 ir_rvalue *results[4] = {NULL};
686
687 ir_constant *dzero = new(ir) ir_constant(0.0, vec_elem);
688 i.insert_before(is_not_zero);
689 i.insert_before(
690 assign(is_not_zero,
691 nequal(abs(ir->operands[0]->clone(ir, NULL)), dzero)));
692
693 /* TODO: Remake this as more vector-friendly when int64 support is
694 * available.
695 */
696 for (unsigned elem = 0; elem < vec_elem; elem++) {
697 ir_constant *zero = new(ir) ir_constant(0u, 1);
698 ir_constant *sign_mantissa_mask = new(ir) ir_constant(0x800fffffu, 1);
699
700 /* Exponent of double floating-point values in the range [0.5, 1.0). */
701 ir_constant *exponent_value = new(ir) ir_constant(0x3fe00000u, 1);
702
703 ir_variable *bits =
704 new(ir) ir_variable(glsl_type::uint_type, "bits", ir_var_temporary);
705 ir_variable *unpacked =
706 new(ir) ir_variable(glsl_type::uvec2_type, "unpacked", ir_var_temporary);
707
708 ir_rvalue *x = swizzle(ir->operands[0]->clone(ir, NULL), elem, 1);
709
710 i.insert_before(bits);
711 i.insert_before(unpacked);
712 i.insert_before(assign(unpacked, expr(ir_unop_unpack_double_2x32, x)));
713
714 /* Manipulate the high uint to remove the exponent and replace it with
715 * either the default exponent or zero.
716 */
717 i.insert_before(assign(bits, swizzle_y(unpacked)));
718 i.insert_before(assign(bits, bit_and(bits, sign_mantissa_mask)));
719 i.insert_before(assign(bits, bit_or(bits,
720 csel(swizzle(is_not_zero, elem, 1),
721 exponent_value,
722 zero))));
723 i.insert_before(assign(unpacked, bits, WRITEMASK_Y));
724 results[elem] = expr(ir_unop_pack_double_2x32, unpacked);
725 }
726
727 /* Put the dvec back together */
728 ir->operation = ir_quadop_vector;
729 ir->init_num_operands();
730 ir->operands[0] = results[0];
731 ir->operands[1] = results[1];
732 ir->operands[2] = results[2];
733 ir->operands[3] = results[3];
734
735 this->progress = true;
736 }
737
738 void
739 lower_instructions_visitor::dfrexp_exp_to_arith(ir_expression *ir)
740 {
741 const unsigned vec_elem = ir->type->vector_elements;
742 const glsl_type *bvec = glsl_type::get_instance(GLSL_TYPE_BOOL, vec_elem, 1);
743 const glsl_type *uvec = glsl_type::get_instance(GLSL_TYPE_UINT, vec_elem, 1);
744
745 /* Double-precision floating-point values are stored as
746 * 1 sign bit;
747 * 11 exponent bits;
748 * 52 mantissa bits.
749 *
750 * We're just extracting the exponent here, so we only care about the upper
751 * 32-bit uint.
752 */
753
754 ir_instruction &i = *base_ir;
755
756 ir_variable *is_not_zero =
757 new(ir) ir_variable(bvec, "is_not_zero", ir_var_temporary);
758 ir_variable *high_words =
759 new(ir) ir_variable(uvec, "high_words", ir_var_temporary);
760 ir_constant *dzero = new(ir) ir_constant(0.0, vec_elem);
761 ir_constant *izero = new(ir) ir_constant(0, vec_elem);
762
763 ir_rvalue *absval = abs(ir->operands[0]);
764
765 i.insert_before(is_not_zero);
766 i.insert_before(high_words);
767 i.insert_before(assign(is_not_zero, nequal(absval->clone(ir, NULL), dzero)));
768
769 /* Extract all of the upper uints. */
770 for (unsigned elem = 0; elem < vec_elem; elem++) {
771 ir_rvalue *x = swizzle(absval->clone(ir, NULL), elem, 1);
772
773 i.insert_before(assign(high_words,
774 swizzle_y(expr(ir_unop_unpack_double_2x32, x)),
775 1 << elem));
776
777 }
778 ir_constant *exponent_shift = new(ir) ir_constant(20, vec_elem);
779 ir_constant *exponent_bias = new(ir) ir_constant(-1022, vec_elem);
780
781 /* For non-zero inputs, shift the exponent down and apply bias. */
782 ir->operation = ir_triop_csel;
783 ir->init_num_operands();
784 ir->operands[0] = new(ir) ir_dereference_variable(is_not_zero);
785 ir->operands[1] = add(exponent_bias, u2i(rshift(high_words, exponent_shift)));
786 ir->operands[2] = izero;
787
788 this->progress = true;
789 }
790
791 void
792 lower_instructions_visitor::carry_to_arith(ir_expression *ir)
793 {
794 /* Translates
795 * ir_binop_carry x y
796 * into
797 * sum = ir_binop_add x y
798 * bcarry = ir_binop_less sum x
799 * carry = ir_unop_b2i bcarry
800 */
801
802 ir_rvalue *x_clone = ir->operands[0]->clone(ir, NULL);
803 ir->operation = ir_unop_i2u;
804 ir->init_num_operands();
805 ir->operands[0] = b2i(less(add(ir->operands[0], ir->operands[1]), x_clone));
806 ir->operands[1] = NULL;
807
808 this->progress = true;
809 }
810
811 void
812 lower_instructions_visitor::borrow_to_arith(ir_expression *ir)
813 {
814 /* Translates
815 * ir_binop_borrow x y
816 * into
817 * bcarry = ir_binop_less x y
818 * carry = ir_unop_b2i bcarry
819 */
820
821 ir->operation = ir_unop_i2u;
822 ir->init_num_operands();
823 ir->operands[0] = b2i(less(ir->operands[0], ir->operands[1]));
824 ir->operands[1] = NULL;
825
826 this->progress = true;
827 }
828
829 void
830 lower_instructions_visitor::sat_to_clamp(ir_expression *ir)
831 {
832 /* Translates
833 * ir_unop_saturate x
834 * into
835 * ir_binop_min (ir_binop_max(x, 0.0), 1.0)
836 */
837
838 ir->operation = ir_binop_min;
839 ir->init_num_operands();
840 ir->operands[0] = new(ir) ir_expression(ir_binop_max, ir->operands[0]->type,
841 ir->operands[0],
842 new(ir) ir_constant(0.0f));
843 ir->operands[1] = new(ir) ir_constant(1.0f);
844
845 this->progress = true;
846 }
847
848 void
849 lower_instructions_visitor::double_dot_to_fma(ir_expression *ir)
850 {
851 ir_variable *temp = new(ir) ir_variable(ir->operands[0]->type->get_base_type(), "dot_res",
852 ir_var_temporary);
853 this->base_ir->insert_before(temp);
854
855 int nc = ir->operands[0]->type->components();
856 for (int i = nc - 1; i >= 1; i--) {
857 ir_assignment *assig;
858 if (i == (nc - 1)) {
859 assig = assign(temp, mul(swizzle(ir->operands[0]->clone(ir, NULL), i, 1),
860 swizzle(ir->operands[1]->clone(ir, NULL), i, 1)));
861 } else {
862 assig = assign(temp, fma(swizzle(ir->operands[0]->clone(ir, NULL), i, 1),
863 swizzle(ir->operands[1]->clone(ir, NULL), i, 1),
864 temp));
865 }
866 this->base_ir->insert_before(assig);
867 }
868
869 ir->operation = ir_triop_fma;
870 ir->init_num_operands();
871 ir->operands[0] = swizzle(ir->operands[0], 0, 1);
872 ir->operands[1] = swizzle(ir->operands[1], 0, 1);
873 ir->operands[2] = new(ir) ir_dereference_variable(temp);
874
875 this->progress = true;
876
877 }
878
879 void
880 lower_instructions_visitor::double_lrp(ir_expression *ir)
881 {
882 int swizval;
883 ir_rvalue *op0 = ir->operands[0], *op2 = ir->operands[2];
884 ir_constant *one = new(ir) ir_constant(1.0, op2->type->vector_elements);
885
886 switch (op2->type->vector_elements) {
887 case 1:
888 swizval = SWIZZLE_XXXX;
889 break;
890 default:
891 assert(op0->type->vector_elements == op2->type->vector_elements);
892 swizval = SWIZZLE_XYZW;
893 break;
894 }
895
896 ir->operation = ir_triop_fma;
897 ir->init_num_operands();
898 ir->operands[0] = swizzle(op2, swizval, op0->type->vector_elements);
899 ir->operands[2] = mul(sub(one, op2->clone(ir, NULL)), op0);
900
901 this->progress = true;
902 }
903
904 void
905 lower_instructions_visitor::dceil_to_dfrac(ir_expression *ir)
906 {
907 /*
908 * frtemp = frac(x);
909 * temp = sub(x, frtemp);
910 * result = temp + ((frtemp != 0.0) ? 1.0 : 0.0);
911 */
912 ir_instruction &i = *base_ir;
913 ir_constant *zero = new(ir) ir_constant(0.0, ir->operands[0]->type->vector_elements);
914 ir_constant *one = new(ir) ir_constant(1.0, ir->operands[0]->type->vector_elements);
915 ir_variable *frtemp = new(ir) ir_variable(ir->operands[0]->type, "frtemp",
916 ir_var_temporary);
917
918 i.insert_before(frtemp);
919 i.insert_before(assign(frtemp, fract(ir->operands[0])));
920
921 ir->operation = ir_binop_add;
922 ir->init_num_operands();
923 ir->operands[0] = sub(ir->operands[0]->clone(ir, NULL), frtemp);
924 ir->operands[1] = csel(nequal(frtemp, zero), one, zero->clone(ir, NULL));
925
926 this->progress = true;
927 }
928
929 void
930 lower_instructions_visitor::dfloor_to_dfrac(ir_expression *ir)
931 {
932 /*
933 * frtemp = frac(x);
934 * result = sub(x, frtemp);
935 */
936 ir->operation = ir_binop_sub;
937 ir->init_num_operands();
938 ir->operands[1] = fract(ir->operands[0]->clone(ir, NULL));
939
940 this->progress = true;
941 }
942 void
943 lower_instructions_visitor::dround_even_to_dfrac(ir_expression *ir)
944 {
945 /*
946 * insane but works
947 * temp = x + 0.5;
948 * frtemp = frac(temp);
949 * t2 = sub(temp, frtemp);
950 * if (frac(x) == 0.5)
951 * result = frac(t2 * 0.5) == 0 ? t2 : t2 - 1;
952 * else
953 * result = t2;
954
955 */
956 ir_instruction &i = *base_ir;
957 ir_variable *frtemp = new(ir) ir_variable(ir->operands[0]->type, "frtemp",
958 ir_var_temporary);
959 ir_variable *temp = new(ir) ir_variable(ir->operands[0]->type, "temp",
960 ir_var_temporary);
961 ir_variable *t2 = new(ir) ir_variable(ir->operands[0]->type, "t2",
962 ir_var_temporary);
963 ir_constant *p5 = new(ir) ir_constant(0.5, ir->operands[0]->type->vector_elements);
964 ir_constant *one = new(ir) ir_constant(1.0, ir->operands[0]->type->vector_elements);
965 ir_constant *zero = new(ir) ir_constant(0.0, ir->operands[0]->type->vector_elements);
966
967 i.insert_before(temp);
968 i.insert_before(assign(temp, add(ir->operands[0], p5)));
969
970 i.insert_before(frtemp);
971 i.insert_before(assign(frtemp, fract(temp)));
972
973 i.insert_before(t2);
974 i.insert_before(assign(t2, sub(temp, frtemp)));
975
976 ir->operation = ir_triop_csel;
977 ir->init_num_operands();
978 ir->operands[0] = equal(fract(ir->operands[0]->clone(ir, NULL)),
979 p5->clone(ir, NULL));
980 ir->operands[1] = csel(equal(fract(mul(t2, p5->clone(ir, NULL))),
981 zero),
982 t2,
983 sub(t2, one));
984 ir->operands[2] = new(ir) ir_dereference_variable(t2);
985
986 this->progress = true;
987 }
988
989 void
990 lower_instructions_visitor::dtrunc_to_dfrac(ir_expression *ir)
991 {
992 /*
993 * frtemp = frac(x);
994 * temp = sub(x, frtemp);
995 * result = x >= 0 ? temp : temp + (frtemp == 0.0) ? 0 : 1;
996 */
997 ir_rvalue *arg = ir->operands[0];
998 ir_instruction &i = *base_ir;
999
1000 ir_constant *zero = new(ir) ir_constant(0.0, arg->type->vector_elements);
1001 ir_constant *one = new(ir) ir_constant(1.0, arg->type->vector_elements);
1002 ir_variable *frtemp = new(ir) ir_variable(arg->type, "frtemp",
1003 ir_var_temporary);
1004 ir_variable *temp = new(ir) ir_variable(ir->operands[0]->type, "temp",
1005 ir_var_temporary);
1006
1007 i.insert_before(frtemp);
1008 i.insert_before(assign(frtemp, fract(arg)));
1009 i.insert_before(temp);
1010 i.insert_before(assign(temp, sub(arg->clone(ir, NULL), frtemp)));
1011
1012 ir->operation = ir_triop_csel;
1013 ir->init_num_operands();
1014 ir->operands[0] = gequal(arg->clone(ir, NULL), zero);
1015 ir->operands[1] = new (ir) ir_dereference_variable(temp);
1016 ir->operands[2] = add(temp,
1017 csel(equal(frtemp, zero->clone(ir, NULL)),
1018 zero->clone(ir, NULL),
1019 one));
1020
1021 this->progress = true;
1022 }
1023
1024 void
1025 lower_instructions_visitor::dsign_to_csel(ir_expression *ir)
1026 {
1027 /*
1028 * temp = x > 0.0 ? 1.0 : 0.0;
1029 * result = x < 0.0 ? -1.0 : temp;
1030 */
1031 ir_rvalue *arg = ir->operands[0];
1032 ir_constant *zero = new(ir) ir_constant(0.0, arg->type->vector_elements);
1033 ir_constant *one = new(ir) ir_constant(1.0, arg->type->vector_elements);
1034 ir_constant *neg_one = new(ir) ir_constant(-1.0, arg->type->vector_elements);
1035
1036 ir->operation = ir_triop_csel;
1037 ir->init_num_operands();
1038 ir->operands[0] = less(arg->clone(ir, NULL),
1039 zero->clone(ir, NULL));
1040 ir->operands[1] = neg_one;
1041 ir->operands[2] = csel(greater(arg, zero),
1042 one,
1043 zero->clone(ir, NULL));
1044
1045 this->progress = true;
1046 }
1047
1048 void
1049 lower_instructions_visitor::bit_count_to_math(ir_expression *ir)
1050 {
1051 /* For more details, see:
1052 *
1053 * http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetPaallel
1054 */
1055 const unsigned elements = ir->operands[0]->type->vector_elements;
1056 ir_variable *temp = new(ir) ir_variable(glsl_type::uvec(elements), "temp",
1057 ir_var_temporary);
1058 ir_constant *c55555555 = new(ir) ir_constant(0x55555555u);
1059 ir_constant *c33333333 = new(ir) ir_constant(0x33333333u);
1060 ir_constant *c0F0F0F0F = new(ir) ir_constant(0x0F0F0F0Fu);
1061 ir_constant *c01010101 = new(ir) ir_constant(0x01010101u);
1062 ir_constant *c1 = new(ir) ir_constant(1u);
1063 ir_constant *c2 = new(ir) ir_constant(2u);
1064 ir_constant *c4 = new(ir) ir_constant(4u);
1065 ir_constant *c24 = new(ir) ir_constant(24u);
1066
1067 base_ir->insert_before(temp);
1068
1069 if (ir->operands[0]->type->base_type == GLSL_TYPE_UINT) {
1070 base_ir->insert_before(assign(temp, ir->operands[0]));
1071 } else {
1072 assert(ir->operands[0]->type->base_type == GLSL_TYPE_INT);
1073 base_ir->insert_before(assign(temp, i2u(ir->operands[0])));
1074 }
1075
1076 /* temp = temp - ((temp >> 1) & 0x55555555u); */
1077 base_ir->insert_before(assign(temp, sub(temp, bit_and(rshift(temp, c1),
1078 c55555555))));
1079
1080 /* temp = (temp & 0x33333333u) + ((temp >> 2) & 0x33333333u); */
1081 base_ir->insert_before(assign(temp, add(bit_and(temp, c33333333),
1082 bit_and(rshift(temp, c2),
1083 c33333333->clone(ir, NULL)))));
1084
1085 /* int(((temp + (temp >> 4) & 0xF0F0F0Fu) * 0x1010101u) >> 24); */
1086 ir->operation = ir_unop_u2i;
1087 ir->init_num_operands();
1088 ir->operands[0] = rshift(mul(bit_and(add(temp, rshift(temp, c4)), c0F0F0F0F),
1089 c01010101),
1090 c24);
1091
1092 this->progress = true;
1093 }
1094
1095 void
1096 lower_instructions_visitor::extract_to_shifts(ir_expression *ir)
1097 {
1098 ir_variable *bits =
1099 new(ir) ir_variable(ir->operands[0]->type, "bits", ir_var_temporary);
1100
1101 base_ir->insert_before(bits);
1102 base_ir->insert_before(assign(bits, ir->operands[2]));
1103
1104 if (ir->operands[0]->type->base_type == GLSL_TYPE_UINT) {
1105 ir_constant *c1 =
1106 new(ir) ir_constant(1u, ir->operands[0]->type->vector_elements);
1107 ir_constant *c32 =
1108 new(ir) ir_constant(32u, ir->operands[0]->type->vector_elements);
1109 ir_constant *cFFFFFFFF =
1110 new(ir) ir_constant(0xFFFFFFFFu, ir->operands[0]->type->vector_elements);
1111
1112 /* At least some hardware treats (x << y) as (x << (y%32)). This means
1113 * we'd get a mask of 0 when bits is 32. Special case it.
1114 *
1115 * mask = bits == 32 ? 0xffffffff : (1u << bits) - 1u;
1116 */
1117 ir_expression *mask = csel(equal(bits, c32),
1118 cFFFFFFFF,
1119 sub(lshift(c1, bits), c1->clone(ir, NULL)));
1120
1121 /* Section 8.8 (Integer Functions) of the GLSL 4.50 spec says:
1122 *
1123 * If bits is zero, the result will be zero.
1124 *
1125 * Since (1 << 0) - 1 == 0, we don't need to bother with the conditional
1126 * select as in the signed integer case.
1127 *
1128 * (value >> offset) & mask;
1129 */
1130 ir->operation = ir_binop_bit_and;
1131 ir->init_num_operands();
1132 ir->operands[0] = rshift(ir->operands[0], ir->operands[1]);
1133 ir->operands[1] = mask;
1134 ir->operands[2] = NULL;
1135 } else {
1136 ir_constant *c0 =
1137 new(ir) ir_constant(int(0), ir->operands[0]->type->vector_elements);
1138 ir_constant *c32 =
1139 new(ir) ir_constant(int(32), ir->operands[0]->type->vector_elements);
1140 ir_variable *temp =
1141 new(ir) ir_variable(ir->operands[0]->type, "temp", ir_var_temporary);
1142
1143 /* temp = 32 - bits; */
1144 base_ir->insert_before(temp);
1145 base_ir->insert_before(assign(temp, sub(c32, bits)));
1146
1147 /* expr = value << (temp - offset)) >> temp; */
1148 ir_expression *expr =
1149 rshift(lshift(ir->operands[0], sub(temp, ir->operands[1])), temp);
1150
1151 /* Section 8.8 (Integer Functions) of the GLSL 4.50 spec says:
1152 *
1153 * If bits is zero, the result will be zero.
1154 *
1155 * Due to the (x << (y%32)) behavior mentioned before, the (value <<
1156 * (32-0)) doesn't "erase" all of the data as we would like, so finish
1157 * up with:
1158 *
1159 * (bits == 0) ? 0 : e;
1160 */
1161 ir->operation = ir_triop_csel;
1162 ir->init_num_operands();
1163 ir->operands[0] = equal(c0, bits);
1164 ir->operands[1] = c0->clone(ir, NULL);
1165 ir->operands[2] = expr;
1166 }
1167
1168 this->progress = true;
1169 }
1170
1171 void
1172 lower_instructions_visitor::insert_to_shifts(ir_expression *ir)
1173 {
1174 ir_constant *c1;
1175 ir_constant *c32;
1176 ir_constant *cFFFFFFFF;
1177 ir_variable *offset =
1178 new(ir) ir_variable(ir->operands[0]->type, "offset", ir_var_temporary);
1179 ir_variable *bits =
1180 new(ir) ir_variable(ir->operands[0]->type, "bits", ir_var_temporary);
1181 ir_variable *mask =
1182 new(ir) ir_variable(ir->operands[0]->type, "mask", ir_var_temporary);
1183
1184 if (ir->operands[0]->type->base_type == GLSL_TYPE_INT) {
1185 c1 = new(ir) ir_constant(int(1), ir->operands[0]->type->vector_elements);
1186 c32 = new(ir) ir_constant(int(32), ir->operands[0]->type->vector_elements);
1187 cFFFFFFFF = new(ir) ir_constant(int(0xFFFFFFFF), ir->operands[0]->type->vector_elements);
1188 } else {
1189 assert(ir->operands[0]->type->base_type == GLSL_TYPE_UINT);
1190
1191 c1 = new(ir) ir_constant(1u, ir->operands[0]->type->vector_elements);
1192 c32 = new(ir) ir_constant(32u, ir->operands[0]->type->vector_elements);
1193 cFFFFFFFF = new(ir) ir_constant(0xFFFFFFFFu, ir->operands[0]->type->vector_elements);
1194 }
1195
1196 base_ir->insert_before(offset);
1197 base_ir->insert_before(assign(offset, ir->operands[2]));
1198
1199 base_ir->insert_before(bits);
1200 base_ir->insert_before(assign(bits, ir->operands[3]));
1201
1202 /* At least some hardware treats (x << y) as (x << (y%32)). This means
1203 * we'd get a mask of 0 when bits is 32. Special case it.
1204 *
1205 * mask = (bits == 32 ? 0xffffffff : (1u << bits) - 1u) << offset;
1206 *
1207 * Section 8.8 (Integer Functions) of the GLSL 4.50 spec says:
1208 *
1209 * The result will be undefined if offset or bits is negative, or if the
1210 * sum of offset and bits is greater than the number of bits used to
1211 * store the operand.
1212 *
1213 * Since it's undefined, there are a couple other ways this could be
1214 * implemented. The other way that was considered was to put the csel
1215 * around the whole thing:
1216 *
1217 * final_result = bits == 32 ? insert : ... ;
1218 */
1219 base_ir->insert_before(mask);
1220
1221 base_ir->insert_before(assign(mask, csel(equal(bits, c32),
1222 cFFFFFFFF,
1223 lshift(sub(lshift(c1, bits),
1224 c1->clone(ir, NULL)),
1225 offset))));
1226
1227 /* (base & ~mask) | ((insert << offset) & mask) */
1228 ir->operation = ir_binop_bit_or;
1229 ir->init_num_operands();
1230 ir->operands[0] = bit_and(ir->operands[0], bit_not(mask));
1231 ir->operands[1] = bit_and(lshift(ir->operands[1], offset), mask);
1232 ir->operands[2] = NULL;
1233 ir->operands[3] = NULL;
1234
1235 this->progress = true;
1236 }
1237
1238 void
1239 lower_instructions_visitor::reverse_to_shifts(ir_expression *ir)
1240 {
1241 /* For more details, see:
1242 *
1243 * http://graphics.stanford.edu/~seander/bithacks.html#ReverseParallel
1244 */
1245 ir_constant *c1 =
1246 new(ir) ir_constant(1u, ir->operands[0]->type->vector_elements);
1247 ir_constant *c2 =
1248 new(ir) ir_constant(2u, ir->operands[0]->type->vector_elements);
1249 ir_constant *c4 =
1250 new(ir) ir_constant(4u, ir->operands[0]->type->vector_elements);
1251 ir_constant *c8 =
1252 new(ir) ir_constant(8u, ir->operands[0]->type->vector_elements);
1253 ir_constant *c16 =
1254 new(ir) ir_constant(16u, ir->operands[0]->type->vector_elements);
1255 ir_constant *c33333333 =
1256 new(ir) ir_constant(0x33333333u, ir->operands[0]->type->vector_elements);
1257 ir_constant *c55555555 =
1258 new(ir) ir_constant(0x55555555u, ir->operands[0]->type->vector_elements);
1259 ir_constant *c0F0F0F0F =
1260 new(ir) ir_constant(0x0F0F0F0Fu, ir->operands[0]->type->vector_elements);
1261 ir_constant *c00FF00FF =
1262 new(ir) ir_constant(0x00FF00FFu, ir->operands[0]->type->vector_elements);
1263 ir_variable *temp =
1264 new(ir) ir_variable(glsl_type::uvec(ir->operands[0]->type->vector_elements),
1265 "temp", ir_var_temporary);
1266 ir_instruction &i = *base_ir;
1267
1268 i.insert_before(temp);
1269
1270 if (ir->operands[0]->type->base_type == GLSL_TYPE_UINT) {
1271 i.insert_before(assign(temp, ir->operands[0]));
1272 } else {
1273 assert(ir->operands[0]->type->base_type == GLSL_TYPE_INT);
1274 i.insert_before(assign(temp, i2u(ir->operands[0])));
1275 }
1276
1277 /* Swap odd and even bits.
1278 *
1279 * temp = ((temp >> 1) & 0x55555555u) | ((temp & 0x55555555u) << 1);
1280 */
1281 i.insert_before(assign(temp, bit_or(bit_and(rshift(temp, c1), c55555555),
1282 lshift(bit_and(temp, c55555555->clone(ir, NULL)),
1283 c1->clone(ir, NULL)))));
1284 /* Swap consecutive pairs.
1285 *
1286 * temp = ((temp >> 2) & 0x33333333u) | ((temp & 0x33333333u) << 2);
1287 */
1288 i.insert_before(assign(temp, bit_or(bit_and(rshift(temp, c2), c33333333),
1289 lshift(bit_and(temp, c33333333->clone(ir, NULL)),
1290 c2->clone(ir, NULL)))));
1291
1292 /* Swap nibbles.
1293 *
1294 * temp = ((temp >> 4) & 0x0F0F0F0Fu) | ((temp & 0x0F0F0F0Fu) << 4);
1295 */
1296 i.insert_before(assign(temp, bit_or(bit_and(rshift(temp, c4), c0F0F0F0F),
1297 lshift(bit_and(temp, c0F0F0F0F->clone(ir, NULL)),
1298 c4->clone(ir, NULL)))));
1299
1300 /* The last step is, basically, bswap. Swap the bytes, then swap the
1301 * words. When this code is run through GCC on x86, it does generate a
1302 * bswap instruction.
1303 *
1304 * temp = ((temp >> 8) & 0x00FF00FFu) | ((temp & 0x00FF00FFu) << 8);
1305 * temp = ( temp >> 16 ) | ( temp << 16);
1306 */
1307 i.insert_before(assign(temp, bit_or(bit_and(rshift(temp, c8), c00FF00FF),
1308 lshift(bit_and(temp, c00FF00FF->clone(ir, NULL)),
1309 c8->clone(ir, NULL)))));
1310
1311 if (ir->operands[0]->type->base_type == GLSL_TYPE_UINT) {
1312 ir->operation = ir_binop_bit_or;
1313 ir->init_num_operands();
1314 ir->operands[0] = rshift(temp, c16);
1315 ir->operands[1] = lshift(temp, c16->clone(ir, NULL));
1316 } else {
1317 ir->operation = ir_unop_u2i;
1318 ir->init_num_operands();
1319 ir->operands[0] = bit_or(rshift(temp, c16),
1320 lshift(temp, c16->clone(ir, NULL)));
1321 }
1322
1323 this->progress = true;
1324 }
1325
1326 void
1327 lower_instructions_visitor::find_lsb_to_float_cast(ir_expression *ir)
1328 {
1329 /* For more details, see:
1330 *
1331 * http://graphics.stanford.edu/~seander/bithacks.html#ZerosOnRightFloatCast
1332 */
1333 const unsigned elements = ir->operands[0]->type->vector_elements;
1334 ir_constant *c0 = new(ir) ir_constant(unsigned(0), elements);
1335 ir_constant *cminus1 = new(ir) ir_constant(int(-1), elements);
1336 ir_constant *c23 = new(ir) ir_constant(int(23), elements);
1337 ir_constant *c7F = new(ir) ir_constant(int(0x7F), elements);
1338 ir_variable *temp =
1339 new(ir) ir_variable(glsl_type::ivec(elements), "temp", ir_var_temporary);
1340 ir_variable *lsb_only =
1341 new(ir) ir_variable(glsl_type::uvec(elements), "lsb_only", ir_var_temporary);
1342 ir_variable *as_float =
1343 new(ir) ir_variable(glsl_type::vec(elements), "as_float", ir_var_temporary);
1344 ir_variable *lsb =
1345 new(ir) ir_variable(glsl_type::ivec(elements), "lsb", ir_var_temporary);
1346
1347 ir_instruction &i = *base_ir;
1348
1349 i.insert_before(temp);
1350
1351 if (ir->operands[0]->type->base_type == GLSL_TYPE_INT) {
1352 i.insert_before(assign(temp, ir->operands[0]));
1353 } else {
1354 assert(ir->operands[0]->type->base_type == GLSL_TYPE_UINT);
1355 i.insert_before(assign(temp, u2i(ir->operands[0])));
1356 }
1357
1358 /* The int-to-float conversion is lossless because (value & -value) is
1359 * either a power of two or zero. We don't use the result in the zero
1360 * case. The uint() cast is necessary so that 0x80000000 does not
1361 * generate a negative value.
1362 *
1363 * uint lsb_only = uint(value & -value);
1364 * float as_float = float(lsb_only);
1365 */
1366 i.insert_before(lsb_only);
1367 i.insert_before(assign(lsb_only, i2u(bit_and(temp, neg(temp)))));
1368
1369 i.insert_before(as_float);
1370 i.insert_before(assign(as_float, u2f(lsb_only)));
1371
1372 /* This is basically an open-coded frexp. Implementations that have a
1373 * native frexp instruction would be better served by that. This is
1374 * optimized versus a full-featured open-coded implementation in two ways:
1375 *
1376 * - We don't care about a correct result from subnormal numbers (including
1377 * 0.0), so the raw exponent can always be safely unbiased.
1378 *
1379 * - The value cannot be negative, so it does not need to be masked off to
1380 * extract the exponent.
1381 *
1382 * int lsb = (floatBitsToInt(as_float) >> 23) - 0x7f;
1383 */
1384 i.insert_before(lsb);
1385 i.insert_before(assign(lsb, sub(rshift(bitcast_f2i(as_float), c23), c7F)));
1386
1387 /* Use lsb_only in the comparison instead of temp so that the & (far above)
1388 * can possibly generate the result without an explicit comparison.
1389 *
1390 * (lsb_only == 0) ? -1 : lsb;
1391 *
1392 * Since our input values are all integers, the unbiased exponent must not
1393 * be negative. It will only be negative (-0x7f, in fact) if lsb_only is
1394 * 0. Instead of using (lsb_only == 0), we could use (lsb >= 0). Which is
1395 * better is likely GPU dependent. Either way, the difference should be
1396 * small.
1397 */
1398 ir->operation = ir_triop_csel;
1399 ir->init_num_operands();
1400 ir->operands[0] = equal(lsb_only, c0);
1401 ir->operands[1] = cminus1;
1402 ir->operands[2] = new(ir) ir_dereference_variable(lsb);
1403
1404 this->progress = true;
1405 }
1406
1407 void
1408 lower_instructions_visitor::find_msb_to_float_cast(ir_expression *ir)
1409 {
1410 /* For more details, see:
1411 *
1412 * http://graphics.stanford.edu/~seander/bithacks.html#ZerosOnRightFloatCast
1413 */
1414 const unsigned elements = ir->operands[0]->type->vector_elements;
1415 ir_constant *c0 = new(ir) ir_constant(int(0), elements);
1416 ir_constant *cminus1 = new(ir) ir_constant(int(-1), elements);
1417 ir_constant *c23 = new(ir) ir_constant(int(23), elements);
1418 ir_constant *c7F = new(ir) ir_constant(int(0x7F), elements);
1419 ir_constant *c000000FF = new(ir) ir_constant(0x000000FFu, elements);
1420 ir_constant *cFFFFFF00 = new(ir) ir_constant(0xFFFFFF00u, elements);
1421 ir_variable *temp =
1422 new(ir) ir_variable(glsl_type::uvec(elements), "temp", ir_var_temporary);
1423 ir_variable *as_float =
1424 new(ir) ir_variable(glsl_type::vec(elements), "as_float", ir_var_temporary);
1425 ir_variable *msb =
1426 new(ir) ir_variable(glsl_type::ivec(elements), "msb", ir_var_temporary);
1427
1428 ir_instruction &i = *base_ir;
1429
1430 i.insert_before(temp);
1431
1432 if (ir->operands[0]->type->base_type == GLSL_TYPE_UINT) {
1433 i.insert_before(assign(temp, ir->operands[0]));
1434 } else {
1435 assert(ir->operands[0]->type->base_type == GLSL_TYPE_INT);
1436
1437 /* findMSB(uint(abs(some_int))) almost always does the right thing.
1438 * There are two problem values:
1439 *
1440 * * 0x80000000. Since abs(0x80000000) == 0x80000000, findMSB returns
1441 * 31. However, findMSB(int(0x80000000)) == 30.
1442 *
1443 * * 0xffffffff. Since abs(0xffffffff) == 1, findMSB returns
1444 * 31. Section 8.8 (Integer Functions) of the GLSL 4.50 spec says:
1445 *
1446 * For a value of zero or negative one, -1 will be returned.
1447 *
1448 * For all negative number cases, including 0x80000000 and 0xffffffff,
1449 * the correct value is obtained from findMSB if instead of negating the
1450 * (already negative) value the logical-not is used. A conditonal
1451 * logical-not can be achieved in two instructions.
1452 */
1453 ir_variable *as_int =
1454 new(ir) ir_variable(glsl_type::ivec(elements), "as_int", ir_var_temporary);
1455 ir_constant *c31 = new(ir) ir_constant(int(31), elements);
1456
1457 i.insert_before(as_int);
1458 i.insert_before(assign(as_int, ir->operands[0]));
1459 i.insert_before(assign(temp, i2u(expr(ir_binop_bit_xor,
1460 as_int,
1461 rshift(as_int, c31)))));
1462 }
1463
1464 /* The int-to-float conversion is lossless because bits are conditionally
1465 * masked off the bottom of temp to ensure the value has at most 24 bits of
1466 * data or is zero. We don't use the result in the zero case. The uint()
1467 * cast is necessary so that 0x80000000 does not generate a negative value.
1468 *
1469 * float as_float = float(temp > 255 ? temp & ~255 : temp);
1470 */
1471 i.insert_before(as_float);
1472 i.insert_before(assign(as_float, u2f(csel(greater(temp, c000000FF),
1473 bit_and(temp, cFFFFFF00),
1474 temp))));
1475
1476 /* This is basically an open-coded frexp. Implementations that have a
1477 * native frexp instruction would be better served by that. This is
1478 * optimized versus a full-featured open-coded implementation in two ways:
1479 *
1480 * - We don't care about a correct result from subnormal numbers (including
1481 * 0.0), so the raw exponent can always be safely unbiased.
1482 *
1483 * - The value cannot be negative, so it does not need to be masked off to
1484 * extract the exponent.
1485 *
1486 * int msb = (floatBitsToInt(as_float) >> 23) - 0x7f;
1487 */
1488 i.insert_before(msb);
1489 i.insert_before(assign(msb, sub(rshift(bitcast_f2i(as_float), c23), c7F)));
1490
1491 /* Use msb in the comparison instead of temp so that the subtract can
1492 * possibly generate the result without an explicit comparison.
1493 *
1494 * (msb < 0) ? -1 : msb;
1495 *
1496 * Since our input values are all integers, the unbiased exponent must not
1497 * be negative. It will only be negative (-0x7f, in fact) if temp is 0.
1498 */
1499 ir->operation = ir_triop_csel;
1500 ir->init_num_operands();
1501 ir->operands[0] = less(msb, c0);
1502 ir->operands[1] = cminus1;
1503 ir->operands[2] = new(ir) ir_dereference_variable(msb);
1504
1505 this->progress = true;
1506 }
1507
1508 ir_expression *
1509 lower_instructions_visitor::_carry(operand a, operand b)
1510 {
1511 if (lowering(CARRY_TO_ARITH))
1512 return i2u(b2i(less(add(a, b),
1513 a.val->clone(ralloc_parent(a.val), NULL))));
1514 else
1515 return carry(a, b);
1516 }
1517
1518 void
1519 lower_instructions_visitor::imul_high_to_mul(ir_expression *ir)
1520 {
1521 /* ABCD
1522 * * EFGH
1523 * ======
1524 * (GH * CD) + (GH * AB) << 16 + (EF * CD) << 16 + (EF * AB) << 32
1525 *
1526 * In GLSL, (a * b) becomes
1527 *
1528 * uint m1 = (a & 0x0000ffffu) * (b & 0x0000ffffu);
1529 * uint m2 = (a & 0x0000ffffu) * (b >> 16);
1530 * uint m3 = (a >> 16) * (b & 0x0000ffffu);
1531 * uint m4 = (a >> 16) * (b >> 16);
1532 *
1533 * uint c1;
1534 * uint c2;
1535 * uint lo_result;
1536 * uint hi_result;
1537 *
1538 * lo_result = uaddCarry(m1, m2 << 16, c1);
1539 * hi_result = m4 + c1;
1540 * lo_result = uaddCarry(lo_result, m3 << 16, c2);
1541 * hi_result = hi_result + c2;
1542 * hi_result = hi_result + (m2 >> 16) + (m3 >> 16);
1543 */
1544 const unsigned elements = ir->operands[0]->type->vector_elements;
1545 ir_variable *src1 =
1546 new(ir) ir_variable(glsl_type::uvec(elements), "src1", ir_var_temporary);
1547 ir_variable *src1h =
1548 new(ir) ir_variable(glsl_type::uvec(elements), "src1h", ir_var_temporary);
1549 ir_variable *src1l =
1550 new(ir) ir_variable(glsl_type::uvec(elements), "src1l", ir_var_temporary);
1551 ir_variable *src2 =
1552 new(ir) ir_variable(glsl_type::uvec(elements), "src2", ir_var_temporary);
1553 ir_variable *src2h =
1554 new(ir) ir_variable(glsl_type::uvec(elements), "src2h", ir_var_temporary);
1555 ir_variable *src2l =
1556 new(ir) ir_variable(glsl_type::uvec(elements), "src2l", ir_var_temporary);
1557 ir_variable *t1 =
1558 new(ir) ir_variable(glsl_type::uvec(elements), "t1", ir_var_temporary);
1559 ir_variable *t2 =
1560 new(ir) ir_variable(glsl_type::uvec(elements), "t2", ir_var_temporary);
1561 ir_variable *lo =
1562 new(ir) ir_variable(glsl_type::uvec(elements), "lo", ir_var_temporary);
1563 ir_variable *hi =
1564 new(ir) ir_variable(glsl_type::uvec(elements), "hi", ir_var_temporary);
1565 ir_variable *different_signs = NULL;
1566 ir_constant *c0000FFFF = new(ir) ir_constant(0x0000FFFFu, elements);
1567 ir_constant *c16 = new(ir) ir_constant(16u, elements);
1568
1569 ir_instruction &i = *base_ir;
1570
1571 i.insert_before(src1);
1572 i.insert_before(src2);
1573 i.insert_before(src1h);
1574 i.insert_before(src2h);
1575 i.insert_before(src1l);
1576 i.insert_before(src2l);
1577
1578 if (ir->operands[0]->type->base_type == GLSL_TYPE_UINT) {
1579 i.insert_before(assign(src1, ir->operands[0]));
1580 i.insert_before(assign(src2, ir->operands[1]));
1581 } else {
1582 assert(ir->operands[0]->type->base_type == GLSL_TYPE_INT);
1583
1584 ir_variable *itmp1 =
1585 new(ir) ir_variable(glsl_type::ivec(elements), "itmp1", ir_var_temporary);
1586 ir_variable *itmp2 =
1587 new(ir) ir_variable(glsl_type::ivec(elements), "itmp2", ir_var_temporary);
1588 ir_constant *c0 = new(ir) ir_constant(int(0), elements);
1589
1590 i.insert_before(itmp1);
1591 i.insert_before(itmp2);
1592 i.insert_before(assign(itmp1, ir->operands[0]));
1593 i.insert_before(assign(itmp2, ir->operands[1]));
1594
1595 different_signs =
1596 new(ir) ir_variable(glsl_type::bvec(elements), "different_signs",
1597 ir_var_temporary);
1598
1599 i.insert_before(different_signs);
1600 i.insert_before(assign(different_signs, expr(ir_binop_logic_xor,
1601 less(itmp1, c0),
1602 less(itmp2, c0->clone(ir, NULL)))));
1603
1604 i.insert_before(assign(src1, i2u(abs(itmp1))));
1605 i.insert_before(assign(src2, i2u(abs(itmp2))));
1606 }
1607
1608 i.insert_before(assign(src1l, bit_and(src1, c0000FFFF)));
1609 i.insert_before(assign(src2l, bit_and(src2, c0000FFFF->clone(ir, NULL))));
1610 i.insert_before(assign(src1h, rshift(src1, c16)));
1611 i.insert_before(assign(src2h, rshift(src2, c16->clone(ir, NULL))));
1612
1613 i.insert_before(lo);
1614 i.insert_before(hi);
1615 i.insert_before(t1);
1616 i.insert_before(t2);
1617
1618 i.insert_before(assign(lo, mul(src1l, src2l)));
1619 i.insert_before(assign(t1, mul(src1l, src2h)));
1620 i.insert_before(assign(t2, mul(src1h, src2l)));
1621 i.insert_before(assign(hi, mul(src1h, src2h)));
1622
1623 i.insert_before(assign(hi, add(hi, _carry(lo, lshift(t1, c16->clone(ir, NULL))))));
1624 i.insert_before(assign(lo, add(lo, lshift(t1, c16->clone(ir, NULL)))));
1625
1626 i.insert_before(assign(hi, add(hi, _carry(lo, lshift(t2, c16->clone(ir, NULL))))));
1627 i.insert_before(assign(lo, add(lo, lshift(t2, c16->clone(ir, NULL)))));
1628
1629 if (different_signs == NULL) {
1630 assert(ir->operands[0]->type->base_type == GLSL_TYPE_UINT);
1631
1632 ir->operation = ir_binop_add;
1633 ir->init_num_operands();
1634 ir->operands[0] = add(hi, rshift(t1, c16->clone(ir, NULL)));
1635 ir->operands[1] = rshift(t2, c16->clone(ir, NULL));
1636 } else {
1637 assert(ir->operands[0]->type->base_type == GLSL_TYPE_INT);
1638
1639 i.insert_before(assign(hi, add(add(hi, rshift(t1, c16->clone(ir, NULL))),
1640 rshift(t2, c16->clone(ir, NULL)))));
1641
1642 /* For channels where different_signs is set we have to perform a 64-bit
1643 * negation. This is *not* the same as just negating the high 32-bits.
1644 * Consider -3 * 2. The high 32-bits is 0, but the desired result is
1645 * -1, not -0! Recall -x == ~x + 1.
1646 */
1647 ir_variable *neg_hi =
1648 new(ir) ir_variable(glsl_type::ivec(elements), "neg_hi", ir_var_temporary);
1649 ir_constant *c1 = new(ir) ir_constant(1u, elements);
1650
1651 i.insert_before(neg_hi);
1652 i.insert_before(assign(neg_hi, add(bit_not(u2i(hi)),
1653 u2i(_carry(bit_not(lo), c1)))));
1654
1655 ir->operation = ir_triop_csel;
1656 ir->init_num_operands();
1657 ir->operands[0] = new(ir) ir_dereference_variable(different_signs);
1658 ir->operands[1] = new(ir) ir_dereference_variable(neg_hi);
1659 ir->operands[2] = u2i(hi);
1660 }
1661 }
1662
1663 void
1664 lower_instructions_visitor::sqrt_to_abs_sqrt(ir_expression *ir)
1665 {
1666 ir->operands[0] = new(ir) ir_expression(ir_unop_abs, ir->operands[0]);
1667 this->progress = true;
1668 }
1669
1670 void
1671 lower_instructions_visitor::mul64_to_mul_and_mul_high(ir_expression *ir)
1672 {
1673 /* Lower 32x32-> 64 to
1674 * msb = imul_high(x_lo, y_lo)
1675 * lsb = mul(x_lo, y_lo)
1676 */
1677 const unsigned elements = ir->operands[0]->type->vector_elements;
1678
1679 const ir_expression_operation operation =
1680 ir->type->base_type == GLSL_TYPE_UINT64 ? ir_unop_pack_uint_2x32
1681 : ir_unop_pack_int_2x32;
1682
1683 const glsl_type *var_type = ir->type->base_type == GLSL_TYPE_UINT64
1684 ? glsl_type::uvec(elements)
1685 : glsl_type::ivec(elements);
1686
1687 const glsl_type *ret_type = ir->type->base_type == GLSL_TYPE_UINT64
1688 ? glsl_type::uvec2_type
1689 : glsl_type::ivec2_type;
1690
1691 ir_instruction &i = *base_ir;
1692
1693 ir_variable *msb =
1694 new(ir) ir_variable(var_type, "msb", ir_var_temporary);
1695 ir_variable *lsb =
1696 new(ir) ir_variable(var_type, "lsb", ir_var_temporary);
1697 ir_variable *x =
1698 new(ir) ir_variable(var_type, "x", ir_var_temporary);
1699 ir_variable *y =
1700 new(ir) ir_variable(var_type, "y", ir_var_temporary);
1701
1702 i.insert_before(x);
1703 i.insert_before(assign(x, ir->operands[0]));
1704 i.insert_before(y);
1705 i.insert_before(assign(y, ir->operands[1]));
1706 i.insert_before(msb);
1707 i.insert_before(lsb);
1708
1709 i.insert_before(assign(msb, imul_high(x, y)));
1710 i.insert_before(assign(lsb, mul(x, y)));
1711
1712 ir_rvalue *result[4] = {NULL};
1713 for (unsigned elem = 0; elem < elements; elem++) {
1714 ir_rvalue *val = new(ir) ir_expression(ir_quadop_vector, ret_type,
1715 swizzle(lsb, elem, 1),
1716 swizzle(msb, elem, 1), NULL, NULL);
1717 result[elem] = expr(operation, val);
1718 }
1719
1720 ir->operation = ir_quadop_vector;
1721 ir->init_num_operands();
1722 ir->operands[0] = result[0];
1723 ir->operands[1] = result[1];
1724 ir->operands[2] = result[2];
1725 ir->operands[3] = result[3];
1726
1727 this->progress = true;
1728 }
1729
1730 ir_visitor_status
1731 lower_instructions_visitor::visit_leave(ir_expression *ir)
1732 {
1733 switch (ir->operation) {
1734 case ir_binop_dot:
1735 if (ir->operands[0]->type->is_double())
1736 double_dot_to_fma(ir);
1737 break;
1738 case ir_triop_lrp:
1739 if (ir->operands[0]->type->is_double())
1740 double_lrp(ir);
1741 break;
1742 case ir_binop_sub:
1743 if (lowering(SUB_TO_ADD_NEG))
1744 sub_to_add_neg(ir);
1745 break;
1746
1747 case ir_binop_div:
1748 if (ir->operands[1]->type->is_integer_32() && lowering(INT_DIV_TO_MUL_RCP))
1749 int_div_to_mul_rcp(ir);
1750 else if ((ir->operands[1]->type->is_float() && lowering(FDIV_TO_MUL_RCP)) ||
1751 (ir->operands[1]->type->is_double() && lowering(DDIV_TO_MUL_RCP)))
1752 div_to_mul_rcp(ir);
1753 break;
1754
1755 case ir_unop_exp:
1756 if (lowering(EXP_TO_EXP2))
1757 exp_to_exp2(ir);
1758 break;
1759
1760 case ir_unop_log:
1761 if (lowering(LOG_TO_LOG2))
1762 log_to_log2(ir);
1763 break;
1764
1765 case ir_binop_mod:
1766 if (lowering(MOD_TO_FLOOR) && (ir->type->is_float() || ir->type->is_double()))
1767 mod_to_floor(ir);
1768 break;
1769
1770 case ir_binop_pow:
1771 if (lowering(POW_TO_EXP2))
1772 pow_to_exp2(ir);
1773 break;
1774
1775 case ir_binop_ldexp:
1776 if (lowering(LDEXP_TO_ARITH) && ir->type->is_float())
1777 ldexp_to_arith(ir);
1778 if (lowering(DFREXP_DLDEXP_TO_ARITH) && ir->type->is_double())
1779 dldexp_to_arith(ir);
1780 break;
1781
1782 case ir_unop_frexp_exp:
1783 if (lowering(DFREXP_DLDEXP_TO_ARITH) && ir->operands[0]->type->is_double())
1784 dfrexp_exp_to_arith(ir);
1785 break;
1786
1787 case ir_unop_frexp_sig:
1788 if (lowering(DFREXP_DLDEXP_TO_ARITH) && ir->operands[0]->type->is_double())
1789 dfrexp_sig_to_arith(ir);
1790 break;
1791
1792 case ir_binop_carry:
1793 if (lowering(CARRY_TO_ARITH))
1794 carry_to_arith(ir);
1795 break;
1796
1797 case ir_binop_borrow:
1798 if (lowering(BORROW_TO_ARITH))
1799 borrow_to_arith(ir);
1800 break;
1801
1802 case ir_unop_saturate:
1803 if (lowering(SAT_TO_CLAMP))
1804 sat_to_clamp(ir);
1805 break;
1806
1807 case ir_unop_trunc:
1808 if (lowering(DOPS_TO_DFRAC) && ir->type->is_double())
1809 dtrunc_to_dfrac(ir);
1810 break;
1811
1812 case ir_unop_ceil:
1813 if (lowering(DOPS_TO_DFRAC) && ir->type->is_double())
1814 dceil_to_dfrac(ir);
1815 break;
1816
1817 case ir_unop_floor:
1818 if (lowering(DOPS_TO_DFRAC) && ir->type->is_double())
1819 dfloor_to_dfrac(ir);
1820 break;
1821
1822 case ir_unop_round_even:
1823 if (lowering(DOPS_TO_DFRAC) && ir->type->is_double())
1824 dround_even_to_dfrac(ir);
1825 break;
1826
1827 case ir_unop_sign:
1828 if (lowering(DOPS_TO_DFRAC) && ir->type->is_double())
1829 dsign_to_csel(ir);
1830 break;
1831
1832 case ir_unop_bit_count:
1833 if (lowering(BIT_COUNT_TO_MATH))
1834 bit_count_to_math(ir);
1835 break;
1836
1837 case ir_triop_bitfield_extract:
1838 if (lowering(EXTRACT_TO_SHIFTS))
1839 extract_to_shifts(ir);
1840 break;
1841
1842 case ir_quadop_bitfield_insert:
1843 if (lowering(INSERT_TO_SHIFTS))
1844 insert_to_shifts(ir);
1845 break;
1846
1847 case ir_unop_bitfield_reverse:
1848 if (lowering(REVERSE_TO_SHIFTS))
1849 reverse_to_shifts(ir);
1850 break;
1851
1852 case ir_unop_find_lsb:
1853 if (lowering(FIND_LSB_TO_FLOAT_CAST))
1854 find_lsb_to_float_cast(ir);
1855 break;
1856
1857 case ir_unop_find_msb:
1858 if (lowering(FIND_MSB_TO_FLOAT_CAST))
1859 find_msb_to_float_cast(ir);
1860 break;
1861
1862 case ir_binop_imul_high:
1863 if (lowering(IMUL_HIGH_TO_MUL))
1864 imul_high_to_mul(ir);
1865 break;
1866
1867 case ir_binop_mul:
1868 if (lowering(MUL64_TO_MUL_AND_MUL_HIGH) &&
1869 (ir->type->base_type == GLSL_TYPE_INT64 ||
1870 ir->type->base_type == GLSL_TYPE_UINT64) &&
1871 (ir->operands[0]->type->base_type == GLSL_TYPE_INT ||
1872 ir->operands[1]->type->base_type == GLSL_TYPE_UINT))
1873 mul64_to_mul_and_mul_high(ir);
1874 break;
1875
1876 case ir_unop_rsq:
1877 case ir_unop_sqrt:
1878 if (lowering(SQRT_TO_ABS_SQRT))
1879 sqrt_to_abs_sqrt(ir);
1880 break;
1881
1882 default:
1883 return visit_continue;
1884 }
1885
1886 return visit_continue;
1887 }