glsl: split DIV_TO_MUL_RCP into single- and double-precision flags
[mesa.git] / src / compiler / glsl / lower_instructions.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file lower_instructions.cpp
26 *
27 * Many GPUs lack native instructions for certain expression operations, and
28 * must replace them with some other expression tree. This pass lowers some
29 * of the most common cases, allowing the lowering code to be implemented once
30 * rather than in each driver backend.
31 *
32 * Currently supported transformations:
33 * - SUB_TO_ADD_NEG
34 * - DIV_TO_MUL_RCP
35 * - INT_DIV_TO_MUL_RCP
36 * - EXP_TO_EXP2
37 * - POW_TO_EXP2
38 * - LOG_TO_LOG2
39 * - MOD_TO_FLOOR
40 * - LDEXP_TO_ARITH
41 * - DFREXP_TO_ARITH
42 * - CARRY_TO_ARITH
43 * - BORROW_TO_ARITH
44 * - SAT_TO_CLAMP
45 * - DOPS_TO_DFRAC
46 *
47 * SUB_TO_ADD_NEG:
48 * ---------------
49 * Breaks an ir_binop_sub expression down to add(op0, neg(op1))
50 *
51 * This simplifies expression reassociation, and for many backends
52 * there is no subtract operation separate from adding the negation.
53 * For backends with native subtract operations, they will probably
54 * want to recognize add(op0, neg(op1)) or the other way around to
55 * produce a subtract anyway.
56 *
57 * FDIV_TO_MUL_RCP, DDIV_TO_MUL_RCP, and INT_DIV_TO_MUL_RCP:
58 * ---------------------------------------------------------
59 * Breaks an ir_binop_div expression down to op0 * (rcp(op1)).
60 *
61 * Many GPUs don't have a divide instruction (945 and 965 included),
62 * but they do have an RCP instruction to compute an approximate
63 * reciprocal. By breaking the operation down, constant reciprocals
64 * can get constant folded.
65 *
66 * FDIV_TO_MUL_RCP only lowers single-precision floating point division;
67 * DDIV_TO_MUL_RCP only lowers double-precision floating point division.
68 * DIV_TO_MUL_RCP is a convenience macro that sets both flags.
69 * INT_DIV_TO_MUL_RCP handles the integer case, converting to and from floating
70 * point so that RCP is possible.
71 *
72 * EXP_TO_EXP2 and LOG_TO_LOG2:
73 * ----------------------------
74 * Many GPUs don't have a base e log or exponent instruction, but they
75 * do have base 2 versions, so this pass converts exp and log to exp2
76 * and log2 operations.
77 *
78 * POW_TO_EXP2:
79 * -----------
80 * Many older GPUs don't have an x**y instruction. For these GPUs, convert
81 * x**y to 2**(y * log2(x)).
82 *
83 * MOD_TO_FLOOR:
84 * -------------
85 * Breaks an ir_binop_mod expression down to (op0 - op1 * floor(op0 / op1))
86 *
87 * Many GPUs don't have a MOD instruction (945 and 965 included), and
88 * if we have to break it down like this anyway, it gives an
89 * opportunity to do things like constant fold the (1.0 / op1) easily.
90 *
91 * Note: before we used to implement this as op1 * fract(op / op1) but this
92 * implementation had significant precision errors.
93 *
94 * LDEXP_TO_ARITH:
95 * -------------
96 * Converts ir_binop_ldexp to arithmetic and bit operations for float sources.
97 *
98 * DFREXP_DLDEXP_TO_ARITH:
99 * ---------------
100 * Converts ir_binop_ldexp, ir_unop_frexp_sig, and ir_unop_frexp_exp to
101 * arithmetic and bit ops for double arguments.
102 *
103 * CARRY_TO_ARITH:
104 * ---------------
105 * Converts ir_carry into (x + y) < x.
106 *
107 * BORROW_TO_ARITH:
108 * ----------------
109 * Converts ir_borrow into (x < y).
110 *
111 * SAT_TO_CLAMP:
112 * -------------
113 * Converts ir_unop_saturate into min(max(x, 0.0), 1.0)
114 *
115 * DOPS_TO_DFRAC:
116 * --------------
117 * Converts double trunc, ceil, floor, round to fract
118 */
119
120 #include "c99_math.h"
121 #include "program/prog_instruction.h" /* for swizzle */
122 #include "compiler/glsl_types.h"
123 #include "ir.h"
124 #include "ir_builder.h"
125 #include "ir_optimization.h"
126
127 using namespace ir_builder;
128
129 namespace {
130
131 class lower_instructions_visitor : public ir_hierarchical_visitor {
132 public:
133 lower_instructions_visitor(unsigned lower)
134 : progress(false), lower(lower) { }
135
136 ir_visitor_status visit_leave(ir_expression *);
137
138 bool progress;
139
140 private:
141 unsigned lower; /** Bitfield of which operations to lower */
142
143 void sub_to_add_neg(ir_expression *);
144 void div_to_mul_rcp(ir_expression *);
145 void int_div_to_mul_rcp(ir_expression *);
146 void mod_to_floor(ir_expression *);
147 void exp_to_exp2(ir_expression *);
148 void pow_to_exp2(ir_expression *);
149 void log_to_log2(ir_expression *);
150 void ldexp_to_arith(ir_expression *);
151 void dldexp_to_arith(ir_expression *);
152 void dfrexp_sig_to_arith(ir_expression *);
153 void dfrexp_exp_to_arith(ir_expression *);
154 void carry_to_arith(ir_expression *);
155 void borrow_to_arith(ir_expression *);
156 void sat_to_clamp(ir_expression *);
157 void double_dot_to_fma(ir_expression *);
158 void double_lrp(ir_expression *);
159 void dceil_to_dfrac(ir_expression *);
160 void dfloor_to_dfrac(ir_expression *);
161 void dround_even_to_dfrac(ir_expression *);
162 void dtrunc_to_dfrac(ir_expression *);
163 void dsign_to_csel(ir_expression *);
164 void bit_count_to_math(ir_expression *);
165 void extract_to_shifts(ir_expression *);
166 void insert_to_shifts(ir_expression *);
167 void reverse_to_shifts(ir_expression *ir);
168 void find_lsb_to_float_cast(ir_expression *ir);
169 void find_msb_to_float_cast(ir_expression *ir);
170 void imul_high_to_mul(ir_expression *ir);
171
172 ir_expression *_carry(operand a, operand b);
173 };
174
175 } /* anonymous namespace */
176
177 /**
178 * Determine if a particular type of lowering should occur
179 */
180 #define lowering(x) (this->lower & x)
181
182 bool
183 lower_instructions(exec_list *instructions, unsigned what_to_lower)
184 {
185 lower_instructions_visitor v(what_to_lower);
186
187 visit_list_elements(&v, instructions);
188 return v.progress;
189 }
190
191 void
192 lower_instructions_visitor::sub_to_add_neg(ir_expression *ir)
193 {
194 ir->operation = ir_binop_add;
195 ir->operands[1] = new(ir) ir_expression(ir_unop_neg, ir->operands[1]->type,
196 ir->operands[1], NULL);
197 this->progress = true;
198 }
199
200 void
201 lower_instructions_visitor::div_to_mul_rcp(ir_expression *ir)
202 {
203 assert(ir->operands[1]->type->is_float() || ir->operands[1]->type->is_double());
204
205 /* New expression for the 1.0 / op1 */
206 ir_rvalue *expr;
207 expr = new(ir) ir_expression(ir_unop_rcp,
208 ir->operands[1]->type,
209 ir->operands[1]);
210
211 /* op0 / op1 -> op0 * (1.0 / op1) */
212 ir->operation = ir_binop_mul;
213 ir->operands[1] = expr;
214
215 this->progress = true;
216 }
217
218 void
219 lower_instructions_visitor::int_div_to_mul_rcp(ir_expression *ir)
220 {
221 assert(ir->operands[1]->type->is_integer());
222
223 /* Be careful with integer division -- we need to do it as a
224 * float and re-truncate, since rcp(n > 1) of an integer would
225 * just be 0.
226 */
227 ir_rvalue *op0, *op1;
228 const struct glsl_type *vec_type;
229
230 vec_type = glsl_type::get_instance(GLSL_TYPE_FLOAT,
231 ir->operands[1]->type->vector_elements,
232 ir->operands[1]->type->matrix_columns);
233
234 if (ir->operands[1]->type->base_type == GLSL_TYPE_INT)
235 op1 = new(ir) ir_expression(ir_unop_i2f, vec_type, ir->operands[1], NULL);
236 else
237 op1 = new(ir) ir_expression(ir_unop_u2f, vec_type, ir->operands[1], NULL);
238
239 op1 = new(ir) ir_expression(ir_unop_rcp, op1->type, op1, NULL);
240
241 vec_type = glsl_type::get_instance(GLSL_TYPE_FLOAT,
242 ir->operands[0]->type->vector_elements,
243 ir->operands[0]->type->matrix_columns);
244
245 if (ir->operands[0]->type->base_type == GLSL_TYPE_INT)
246 op0 = new(ir) ir_expression(ir_unop_i2f, vec_type, ir->operands[0], NULL);
247 else
248 op0 = new(ir) ir_expression(ir_unop_u2f, vec_type, ir->operands[0], NULL);
249
250 vec_type = glsl_type::get_instance(GLSL_TYPE_FLOAT,
251 ir->type->vector_elements,
252 ir->type->matrix_columns);
253
254 op0 = new(ir) ir_expression(ir_binop_mul, vec_type, op0, op1);
255
256 if (ir->operands[1]->type->base_type == GLSL_TYPE_INT) {
257 ir->operation = ir_unop_f2i;
258 ir->operands[0] = op0;
259 } else {
260 ir->operation = ir_unop_i2u;
261 ir->operands[0] = new(ir) ir_expression(ir_unop_f2i, op0);
262 }
263 ir->operands[1] = NULL;
264
265 this->progress = true;
266 }
267
268 void
269 lower_instructions_visitor::exp_to_exp2(ir_expression *ir)
270 {
271 ir_constant *log2_e = new(ir) ir_constant(float(M_LOG2E));
272
273 ir->operation = ir_unop_exp2;
274 ir->operands[0] = new(ir) ir_expression(ir_binop_mul, ir->operands[0]->type,
275 ir->operands[0], log2_e);
276 this->progress = true;
277 }
278
279 void
280 lower_instructions_visitor::pow_to_exp2(ir_expression *ir)
281 {
282 ir_expression *const log2_x =
283 new(ir) ir_expression(ir_unop_log2, ir->operands[0]->type,
284 ir->operands[0]);
285
286 ir->operation = ir_unop_exp2;
287 ir->operands[0] = new(ir) ir_expression(ir_binop_mul, ir->operands[1]->type,
288 ir->operands[1], log2_x);
289 ir->operands[1] = NULL;
290 this->progress = true;
291 }
292
293 void
294 lower_instructions_visitor::log_to_log2(ir_expression *ir)
295 {
296 ir->operation = ir_binop_mul;
297 ir->operands[0] = new(ir) ir_expression(ir_unop_log2, ir->operands[0]->type,
298 ir->operands[0], NULL);
299 ir->operands[1] = new(ir) ir_constant(float(1.0 / M_LOG2E));
300 this->progress = true;
301 }
302
303 void
304 lower_instructions_visitor::mod_to_floor(ir_expression *ir)
305 {
306 ir_variable *x = new(ir) ir_variable(ir->operands[0]->type, "mod_x",
307 ir_var_temporary);
308 ir_variable *y = new(ir) ir_variable(ir->operands[1]->type, "mod_y",
309 ir_var_temporary);
310 this->base_ir->insert_before(x);
311 this->base_ir->insert_before(y);
312
313 ir_assignment *const assign_x =
314 new(ir) ir_assignment(new(ir) ir_dereference_variable(x),
315 ir->operands[0], NULL);
316 ir_assignment *const assign_y =
317 new(ir) ir_assignment(new(ir) ir_dereference_variable(y),
318 ir->operands[1], NULL);
319
320 this->base_ir->insert_before(assign_x);
321 this->base_ir->insert_before(assign_y);
322
323 ir_expression *const div_expr =
324 new(ir) ir_expression(ir_binop_div, x->type,
325 new(ir) ir_dereference_variable(x),
326 new(ir) ir_dereference_variable(y));
327
328 /* Don't generate new IR that would need to be lowered in an additional
329 * pass.
330 */
331 if ((lowering(FDIV_TO_MUL_RCP) && ir->type->is_float()) ||
332 (lowering(DDIV_TO_MUL_RCP) && ir->type->is_double()))
333 div_to_mul_rcp(div_expr);
334
335 ir_expression *const floor_expr =
336 new(ir) ir_expression(ir_unop_floor, x->type, div_expr);
337
338 if (lowering(DOPS_TO_DFRAC) && ir->type->is_double())
339 dfloor_to_dfrac(floor_expr);
340
341 ir_expression *const mul_expr =
342 new(ir) ir_expression(ir_binop_mul,
343 new(ir) ir_dereference_variable(y),
344 floor_expr);
345
346 ir->operation = ir_binop_sub;
347 ir->operands[0] = new(ir) ir_dereference_variable(x);
348 ir->operands[1] = mul_expr;
349 this->progress = true;
350 }
351
352 void
353 lower_instructions_visitor::ldexp_to_arith(ir_expression *ir)
354 {
355 /* Translates
356 * ir_binop_ldexp x exp
357 * into
358 *
359 * extracted_biased_exp = rshift(bitcast_f2i(abs(x)), exp_shift);
360 * resulting_biased_exp = extracted_biased_exp + exp;
361 *
362 * if (resulting_biased_exp < 1 || x == 0.0f) {
363 * return copysign(0.0, x);
364 * }
365 *
366 * return bitcast_u2f((bitcast_f2u(x) & sign_mantissa_mask) |
367 * lshift(i2u(resulting_biased_exp), exp_shift));
368 *
369 * which we can't actually implement as such, since the GLSL IR doesn't
370 * have vectorized if-statements. We actually implement it without branches
371 * using conditional-select:
372 *
373 * extracted_biased_exp = rshift(bitcast_f2i(abs(x)), exp_shift);
374 * resulting_biased_exp = extracted_biased_exp + exp;
375 *
376 * is_not_zero_or_underflow = logic_and(nequal(x, 0.0f),
377 * gequal(resulting_biased_exp, 1);
378 * x = csel(is_not_zero_or_underflow, x, copysign(0.0f, x));
379 * resulting_biased_exp = csel(is_not_zero_or_underflow,
380 * resulting_biased_exp, 0);
381 *
382 * return bitcast_u2f((bitcast_f2u(x) & sign_mantissa_mask) |
383 * lshift(i2u(resulting_biased_exp), exp_shift));
384 */
385
386 const unsigned vec_elem = ir->type->vector_elements;
387
388 /* Types */
389 const glsl_type *ivec = glsl_type::get_instance(GLSL_TYPE_INT, vec_elem, 1);
390 const glsl_type *bvec = glsl_type::get_instance(GLSL_TYPE_BOOL, vec_elem, 1);
391
392 /* Constants */
393 ir_constant *zeroi = ir_constant::zero(ir, ivec);
394
395 ir_constant *sign_mask = new(ir) ir_constant(0x80000000u, vec_elem);
396
397 ir_constant *exp_shift = new(ir) ir_constant(23, vec_elem);
398
399 /* Temporary variables */
400 ir_variable *x = new(ir) ir_variable(ir->type, "x", ir_var_temporary);
401 ir_variable *exp = new(ir) ir_variable(ivec, "exp", ir_var_temporary);
402
403 ir_variable *zero_sign_x = new(ir) ir_variable(ir->type, "zero_sign_x",
404 ir_var_temporary);
405
406 ir_variable *extracted_biased_exp =
407 new(ir) ir_variable(ivec, "extracted_biased_exp", ir_var_temporary);
408 ir_variable *resulting_biased_exp =
409 new(ir) ir_variable(ivec, "resulting_biased_exp", ir_var_temporary);
410
411 ir_variable *is_not_zero_or_underflow =
412 new(ir) ir_variable(bvec, "is_not_zero_or_underflow", ir_var_temporary);
413
414 ir_instruction &i = *base_ir;
415
416 /* Copy <x> and <exp> arguments. */
417 i.insert_before(x);
418 i.insert_before(assign(x, ir->operands[0]));
419 i.insert_before(exp);
420 i.insert_before(assign(exp, ir->operands[1]));
421
422 /* Extract the biased exponent from <x>. */
423 i.insert_before(extracted_biased_exp);
424 i.insert_before(assign(extracted_biased_exp,
425 rshift(bitcast_f2i(abs(x)), exp_shift)));
426
427 i.insert_before(resulting_biased_exp);
428 i.insert_before(assign(resulting_biased_exp,
429 add(extracted_biased_exp, exp)));
430
431 /* Test if result is ±0.0, subnormal, or underflow by checking if the
432 * resulting biased exponent would be less than 0x1. If so, the result is
433 * 0.0 with the sign of x. (Actually, invert the conditions so that
434 * immediate values are the second arguments, which is better for i965)
435 */
436 i.insert_before(zero_sign_x);
437 i.insert_before(assign(zero_sign_x,
438 bitcast_u2f(bit_and(bitcast_f2u(x), sign_mask))));
439
440 i.insert_before(is_not_zero_or_underflow);
441 i.insert_before(assign(is_not_zero_or_underflow,
442 logic_and(nequal(x, new(ir) ir_constant(0.0f, vec_elem)),
443 gequal(resulting_biased_exp,
444 new(ir) ir_constant(0x1, vec_elem)))));
445 i.insert_before(assign(x, csel(is_not_zero_or_underflow,
446 x, zero_sign_x)));
447 i.insert_before(assign(resulting_biased_exp,
448 csel(is_not_zero_or_underflow,
449 resulting_biased_exp, zeroi)));
450
451 /* We could test for overflows by checking if the resulting biased exponent
452 * would be greater than 0xFE. Turns out we don't need to because the GLSL
453 * spec says:
454 *
455 * "If this product is too large to be represented in the
456 * floating-point type, the result is undefined."
457 */
458
459 ir_constant *exp_shift_clone = exp_shift->clone(ir, NULL);
460
461 /* Don't generate new IR that would need to be lowered in an additional
462 * pass.
463 */
464 if (!lowering(INSERT_TO_SHIFTS)) {
465 ir_constant *exp_width = new(ir) ir_constant(8, vec_elem);
466 ir->operation = ir_unop_bitcast_i2f;
467 ir->operands[0] = bitfield_insert(bitcast_f2i(x), resulting_biased_exp,
468 exp_shift_clone, exp_width);
469 ir->operands[1] = NULL;
470 } else {
471 ir_constant *sign_mantissa_mask = new(ir) ir_constant(0x807fffffu, vec_elem);
472 ir->operation = ir_unop_bitcast_u2f;
473 ir->operands[0] = bit_or(bit_and(bitcast_f2u(x), sign_mantissa_mask),
474 lshift(i2u(resulting_biased_exp), exp_shift_clone));
475 }
476
477 this->progress = true;
478 }
479
480 void
481 lower_instructions_visitor::dldexp_to_arith(ir_expression *ir)
482 {
483 /* See ldexp_to_arith for structure. Uses frexp_exp to extract the exponent
484 * from the significand.
485 */
486
487 const unsigned vec_elem = ir->type->vector_elements;
488
489 /* Types */
490 const glsl_type *ivec = glsl_type::get_instance(GLSL_TYPE_INT, vec_elem, 1);
491 const glsl_type *bvec = glsl_type::get_instance(GLSL_TYPE_BOOL, vec_elem, 1);
492
493 /* Constants */
494 ir_constant *zeroi = ir_constant::zero(ir, ivec);
495
496 ir_constant *sign_mask = new(ir) ir_constant(0x80000000u);
497
498 ir_constant *exp_shift = new(ir) ir_constant(20u);
499 ir_constant *exp_width = new(ir) ir_constant(11u);
500 ir_constant *exp_bias = new(ir) ir_constant(1022, vec_elem);
501
502 /* Temporary variables */
503 ir_variable *x = new(ir) ir_variable(ir->type, "x", ir_var_temporary);
504 ir_variable *exp = new(ir) ir_variable(ivec, "exp", ir_var_temporary);
505
506 ir_variable *zero_sign_x = new(ir) ir_variable(ir->type, "zero_sign_x",
507 ir_var_temporary);
508
509 ir_variable *extracted_biased_exp =
510 new(ir) ir_variable(ivec, "extracted_biased_exp", ir_var_temporary);
511 ir_variable *resulting_biased_exp =
512 new(ir) ir_variable(ivec, "resulting_biased_exp", ir_var_temporary);
513
514 ir_variable *is_not_zero_or_underflow =
515 new(ir) ir_variable(bvec, "is_not_zero_or_underflow", ir_var_temporary);
516
517 ir_instruction &i = *base_ir;
518
519 /* Copy <x> and <exp> arguments. */
520 i.insert_before(x);
521 i.insert_before(assign(x, ir->operands[0]));
522 i.insert_before(exp);
523 i.insert_before(assign(exp, ir->operands[1]));
524
525 ir_expression *frexp_exp = expr(ir_unop_frexp_exp, x);
526 if (lowering(DFREXP_DLDEXP_TO_ARITH))
527 dfrexp_exp_to_arith(frexp_exp);
528
529 /* Extract the biased exponent from <x>. */
530 i.insert_before(extracted_biased_exp);
531 i.insert_before(assign(extracted_biased_exp, add(frexp_exp, exp_bias)));
532
533 i.insert_before(resulting_biased_exp);
534 i.insert_before(assign(resulting_biased_exp,
535 add(extracted_biased_exp, exp)));
536
537 /* Test if result is ±0.0, subnormal, or underflow by checking if the
538 * resulting biased exponent would be less than 0x1. If so, the result is
539 * 0.0 with the sign of x. (Actually, invert the conditions so that
540 * immediate values are the second arguments, which is better for i965)
541 * TODO: Implement in a vector fashion.
542 */
543 i.insert_before(zero_sign_x);
544 for (unsigned elem = 0; elem < vec_elem; elem++) {
545 ir_variable *unpacked =
546 new(ir) ir_variable(glsl_type::uvec2_type, "unpacked", ir_var_temporary);
547 i.insert_before(unpacked);
548 i.insert_before(
549 assign(unpacked,
550 expr(ir_unop_unpack_double_2x32, swizzle(x, elem, 1))));
551 i.insert_before(assign(unpacked, bit_and(swizzle_y(unpacked), sign_mask->clone(ir, NULL)),
552 WRITEMASK_Y));
553 i.insert_before(assign(unpacked, ir_constant::zero(ir, glsl_type::uint_type), WRITEMASK_X));
554 i.insert_before(assign(zero_sign_x,
555 expr(ir_unop_pack_double_2x32, unpacked),
556 1 << elem));
557 }
558 i.insert_before(is_not_zero_or_underflow);
559 i.insert_before(assign(is_not_zero_or_underflow,
560 gequal(resulting_biased_exp,
561 new(ir) ir_constant(0x1, vec_elem))));
562 i.insert_before(assign(x, csel(is_not_zero_or_underflow,
563 x, zero_sign_x)));
564 i.insert_before(assign(resulting_biased_exp,
565 csel(is_not_zero_or_underflow,
566 resulting_biased_exp, zeroi)));
567
568 /* We could test for overflows by checking if the resulting biased exponent
569 * would be greater than 0xFE. Turns out we don't need to because the GLSL
570 * spec says:
571 *
572 * "If this product is too large to be represented in the
573 * floating-point type, the result is undefined."
574 */
575
576 ir_rvalue *results[4] = {NULL};
577 for (unsigned elem = 0; elem < vec_elem; elem++) {
578 ir_variable *unpacked =
579 new(ir) ir_variable(glsl_type::uvec2_type, "unpacked", ir_var_temporary);
580 i.insert_before(unpacked);
581 i.insert_before(
582 assign(unpacked,
583 expr(ir_unop_unpack_double_2x32, swizzle(x, elem, 1))));
584
585 ir_expression *bfi = bitfield_insert(
586 swizzle_y(unpacked),
587 i2u(swizzle(resulting_biased_exp, elem, 1)),
588 exp_shift->clone(ir, NULL),
589 exp_width->clone(ir, NULL));
590
591 i.insert_before(assign(unpacked, bfi, WRITEMASK_Y));
592
593 results[elem] = expr(ir_unop_pack_double_2x32, unpacked);
594 }
595
596 ir->operation = ir_quadop_vector;
597 ir->operands[0] = results[0];
598 ir->operands[1] = results[1];
599 ir->operands[2] = results[2];
600 ir->operands[3] = results[3];
601
602 /* Don't generate new IR that would need to be lowered in an additional
603 * pass.
604 */
605
606 this->progress = true;
607 }
608
609 void
610 lower_instructions_visitor::dfrexp_sig_to_arith(ir_expression *ir)
611 {
612 const unsigned vec_elem = ir->type->vector_elements;
613 const glsl_type *bvec = glsl_type::get_instance(GLSL_TYPE_BOOL, vec_elem, 1);
614
615 /* Double-precision floating-point values are stored as
616 * 1 sign bit;
617 * 11 exponent bits;
618 * 52 mantissa bits.
619 *
620 * We're just extracting the significand here, so we only need to modify
621 * the upper 32-bit uint. Unfortunately we must extract each double
622 * independently as there is no vector version of unpackDouble.
623 */
624
625 ir_instruction &i = *base_ir;
626
627 ir_variable *is_not_zero =
628 new(ir) ir_variable(bvec, "is_not_zero", ir_var_temporary);
629 ir_rvalue *results[4] = {NULL};
630
631 ir_constant *dzero = new(ir) ir_constant(0.0, vec_elem);
632 i.insert_before(is_not_zero);
633 i.insert_before(
634 assign(is_not_zero,
635 nequal(abs(ir->operands[0]->clone(ir, NULL)), dzero)));
636
637 /* TODO: Remake this as more vector-friendly when int64 support is
638 * available.
639 */
640 for (unsigned elem = 0; elem < vec_elem; elem++) {
641 ir_constant *zero = new(ir) ir_constant(0u, 1);
642 ir_constant *sign_mantissa_mask = new(ir) ir_constant(0x800fffffu, 1);
643
644 /* Exponent of double floating-point values in the range [0.5, 1.0). */
645 ir_constant *exponent_value = new(ir) ir_constant(0x3fe00000u, 1);
646
647 ir_variable *bits =
648 new(ir) ir_variable(glsl_type::uint_type, "bits", ir_var_temporary);
649 ir_variable *unpacked =
650 new(ir) ir_variable(glsl_type::uvec2_type, "unpacked", ir_var_temporary);
651
652 ir_rvalue *x = swizzle(ir->operands[0]->clone(ir, NULL), elem, 1);
653
654 i.insert_before(bits);
655 i.insert_before(unpacked);
656 i.insert_before(assign(unpacked, expr(ir_unop_unpack_double_2x32, x)));
657
658 /* Manipulate the high uint to remove the exponent and replace it with
659 * either the default exponent or zero.
660 */
661 i.insert_before(assign(bits, swizzle_y(unpacked)));
662 i.insert_before(assign(bits, bit_and(bits, sign_mantissa_mask)));
663 i.insert_before(assign(bits, bit_or(bits,
664 csel(swizzle(is_not_zero, elem, 1),
665 exponent_value,
666 zero))));
667 i.insert_before(assign(unpacked, bits, WRITEMASK_Y));
668 results[elem] = expr(ir_unop_pack_double_2x32, unpacked);
669 }
670
671 /* Put the dvec back together */
672 ir->operation = ir_quadop_vector;
673 ir->operands[0] = results[0];
674 ir->operands[1] = results[1];
675 ir->operands[2] = results[2];
676 ir->operands[3] = results[3];
677
678 this->progress = true;
679 }
680
681 void
682 lower_instructions_visitor::dfrexp_exp_to_arith(ir_expression *ir)
683 {
684 const unsigned vec_elem = ir->type->vector_elements;
685 const glsl_type *bvec = glsl_type::get_instance(GLSL_TYPE_BOOL, vec_elem, 1);
686 const glsl_type *uvec = glsl_type::get_instance(GLSL_TYPE_UINT, vec_elem, 1);
687
688 /* Double-precision floating-point values are stored as
689 * 1 sign bit;
690 * 11 exponent bits;
691 * 52 mantissa bits.
692 *
693 * We're just extracting the exponent here, so we only care about the upper
694 * 32-bit uint.
695 */
696
697 ir_instruction &i = *base_ir;
698
699 ir_variable *is_not_zero =
700 new(ir) ir_variable(bvec, "is_not_zero", ir_var_temporary);
701 ir_variable *high_words =
702 new(ir) ir_variable(uvec, "high_words", ir_var_temporary);
703 ir_constant *dzero = new(ir) ir_constant(0.0, vec_elem);
704 ir_constant *izero = new(ir) ir_constant(0, vec_elem);
705
706 ir_rvalue *absval = abs(ir->operands[0]);
707
708 i.insert_before(is_not_zero);
709 i.insert_before(high_words);
710 i.insert_before(assign(is_not_zero, nequal(absval->clone(ir, NULL), dzero)));
711
712 /* Extract all of the upper uints. */
713 for (unsigned elem = 0; elem < vec_elem; elem++) {
714 ir_rvalue *x = swizzle(absval->clone(ir, NULL), elem, 1);
715
716 i.insert_before(assign(high_words,
717 swizzle_y(expr(ir_unop_unpack_double_2x32, x)),
718 1 << elem));
719
720 }
721 ir_constant *exponent_shift = new(ir) ir_constant(20, vec_elem);
722 ir_constant *exponent_bias = new(ir) ir_constant(-1022, vec_elem);
723
724 /* For non-zero inputs, shift the exponent down and apply bias. */
725 ir->operation = ir_triop_csel;
726 ir->operands[0] = new(ir) ir_dereference_variable(is_not_zero);
727 ir->operands[1] = add(exponent_bias, u2i(rshift(high_words, exponent_shift)));
728 ir->operands[2] = izero;
729
730 this->progress = true;
731 }
732
733 void
734 lower_instructions_visitor::carry_to_arith(ir_expression *ir)
735 {
736 /* Translates
737 * ir_binop_carry x y
738 * into
739 * sum = ir_binop_add x y
740 * bcarry = ir_binop_less sum x
741 * carry = ir_unop_b2i bcarry
742 */
743
744 ir_rvalue *x_clone = ir->operands[0]->clone(ir, NULL);
745 ir->operation = ir_unop_i2u;
746 ir->operands[0] = b2i(less(add(ir->operands[0], ir->operands[1]), x_clone));
747 ir->operands[1] = NULL;
748
749 this->progress = true;
750 }
751
752 void
753 lower_instructions_visitor::borrow_to_arith(ir_expression *ir)
754 {
755 /* Translates
756 * ir_binop_borrow x y
757 * into
758 * bcarry = ir_binop_less x y
759 * carry = ir_unop_b2i bcarry
760 */
761
762 ir->operation = ir_unop_i2u;
763 ir->operands[0] = b2i(less(ir->operands[0], ir->operands[1]));
764 ir->operands[1] = NULL;
765
766 this->progress = true;
767 }
768
769 void
770 lower_instructions_visitor::sat_to_clamp(ir_expression *ir)
771 {
772 /* Translates
773 * ir_unop_saturate x
774 * into
775 * ir_binop_min (ir_binop_max(x, 0.0), 1.0)
776 */
777
778 ir->operation = ir_binop_min;
779 ir->operands[0] = new(ir) ir_expression(ir_binop_max, ir->operands[0]->type,
780 ir->operands[0],
781 new(ir) ir_constant(0.0f));
782 ir->operands[1] = new(ir) ir_constant(1.0f);
783
784 this->progress = true;
785 }
786
787 void
788 lower_instructions_visitor::double_dot_to_fma(ir_expression *ir)
789 {
790 ir_variable *temp = new(ir) ir_variable(ir->operands[0]->type->get_base_type(), "dot_res",
791 ir_var_temporary);
792 this->base_ir->insert_before(temp);
793
794 int nc = ir->operands[0]->type->components();
795 for (int i = nc - 1; i >= 1; i--) {
796 ir_assignment *assig;
797 if (i == (nc - 1)) {
798 assig = assign(temp, mul(swizzle(ir->operands[0]->clone(ir, NULL), i, 1),
799 swizzle(ir->operands[1]->clone(ir, NULL), i, 1)));
800 } else {
801 assig = assign(temp, fma(swizzle(ir->operands[0]->clone(ir, NULL), i, 1),
802 swizzle(ir->operands[1]->clone(ir, NULL), i, 1),
803 temp));
804 }
805 this->base_ir->insert_before(assig);
806 }
807
808 ir->operation = ir_triop_fma;
809 ir->operands[0] = swizzle(ir->operands[0], 0, 1);
810 ir->operands[1] = swizzle(ir->operands[1], 0, 1);
811 ir->operands[2] = new(ir) ir_dereference_variable(temp);
812
813 this->progress = true;
814
815 }
816
817 void
818 lower_instructions_visitor::double_lrp(ir_expression *ir)
819 {
820 int swizval;
821 ir_rvalue *op0 = ir->operands[0], *op2 = ir->operands[2];
822 ir_constant *one = new(ir) ir_constant(1.0, op2->type->vector_elements);
823
824 switch (op2->type->vector_elements) {
825 case 1:
826 swizval = SWIZZLE_XXXX;
827 break;
828 default:
829 assert(op0->type->vector_elements == op2->type->vector_elements);
830 swizval = SWIZZLE_XYZW;
831 break;
832 }
833
834 ir->operation = ir_triop_fma;
835 ir->operands[0] = swizzle(op2, swizval, op0->type->vector_elements);
836 ir->operands[2] = mul(sub(one, op2->clone(ir, NULL)), op0);
837
838 this->progress = true;
839 }
840
841 void
842 lower_instructions_visitor::dceil_to_dfrac(ir_expression *ir)
843 {
844 /*
845 * frtemp = frac(x);
846 * temp = sub(x, frtemp);
847 * result = temp + ((frtemp != 0.0) ? 1.0 : 0.0);
848 */
849 ir_instruction &i = *base_ir;
850 ir_constant *zero = new(ir) ir_constant(0.0, ir->operands[0]->type->vector_elements);
851 ir_constant *one = new(ir) ir_constant(1.0, ir->operands[0]->type->vector_elements);
852 ir_variable *frtemp = new(ir) ir_variable(ir->operands[0]->type, "frtemp",
853 ir_var_temporary);
854
855 i.insert_before(frtemp);
856 i.insert_before(assign(frtemp, fract(ir->operands[0])));
857
858 ir->operation = ir_binop_add;
859 ir->operands[0] = sub(ir->operands[0]->clone(ir, NULL), frtemp);
860 ir->operands[1] = csel(nequal(frtemp, zero), one, zero->clone(ir, NULL));
861
862 this->progress = true;
863 }
864
865 void
866 lower_instructions_visitor::dfloor_to_dfrac(ir_expression *ir)
867 {
868 /*
869 * frtemp = frac(x);
870 * result = sub(x, frtemp);
871 */
872 ir->operation = ir_binop_sub;
873 ir->operands[1] = fract(ir->operands[0]->clone(ir, NULL));
874
875 this->progress = true;
876 }
877 void
878 lower_instructions_visitor::dround_even_to_dfrac(ir_expression *ir)
879 {
880 /*
881 * insane but works
882 * temp = x + 0.5;
883 * frtemp = frac(temp);
884 * t2 = sub(temp, frtemp);
885 * if (frac(x) == 0.5)
886 * result = frac(t2 * 0.5) == 0 ? t2 : t2 - 1;
887 * else
888 * result = t2;
889
890 */
891 ir_instruction &i = *base_ir;
892 ir_variable *frtemp = new(ir) ir_variable(ir->operands[0]->type, "frtemp",
893 ir_var_temporary);
894 ir_variable *temp = new(ir) ir_variable(ir->operands[0]->type, "temp",
895 ir_var_temporary);
896 ir_variable *t2 = new(ir) ir_variable(ir->operands[0]->type, "t2",
897 ir_var_temporary);
898 ir_constant *p5 = new(ir) ir_constant(0.5, ir->operands[0]->type->vector_elements);
899 ir_constant *one = new(ir) ir_constant(1.0, ir->operands[0]->type->vector_elements);
900 ir_constant *zero = new(ir) ir_constant(0.0, ir->operands[0]->type->vector_elements);
901
902 i.insert_before(temp);
903 i.insert_before(assign(temp, add(ir->operands[0], p5)));
904
905 i.insert_before(frtemp);
906 i.insert_before(assign(frtemp, fract(temp)));
907
908 i.insert_before(t2);
909 i.insert_before(assign(t2, sub(temp, frtemp)));
910
911 ir->operation = ir_triop_csel;
912 ir->operands[0] = equal(fract(ir->operands[0]->clone(ir, NULL)),
913 p5->clone(ir, NULL));
914 ir->operands[1] = csel(equal(fract(mul(t2, p5->clone(ir, NULL))),
915 zero),
916 t2,
917 sub(t2, one));
918 ir->operands[2] = new(ir) ir_dereference_variable(t2);
919
920 this->progress = true;
921 }
922
923 void
924 lower_instructions_visitor::dtrunc_to_dfrac(ir_expression *ir)
925 {
926 /*
927 * frtemp = frac(x);
928 * temp = sub(x, frtemp);
929 * result = x >= 0 ? temp : temp + (frtemp == 0.0) ? 0 : 1;
930 */
931 ir_rvalue *arg = ir->operands[0];
932 ir_instruction &i = *base_ir;
933
934 ir_constant *zero = new(ir) ir_constant(0.0, arg->type->vector_elements);
935 ir_constant *one = new(ir) ir_constant(1.0, arg->type->vector_elements);
936 ir_variable *frtemp = new(ir) ir_variable(arg->type, "frtemp",
937 ir_var_temporary);
938 ir_variable *temp = new(ir) ir_variable(ir->operands[0]->type, "temp",
939 ir_var_temporary);
940
941 i.insert_before(frtemp);
942 i.insert_before(assign(frtemp, fract(arg)));
943 i.insert_before(temp);
944 i.insert_before(assign(temp, sub(arg->clone(ir, NULL), frtemp)));
945
946 ir->operation = ir_triop_csel;
947 ir->operands[0] = gequal(arg->clone(ir, NULL), zero);
948 ir->operands[1] = new (ir) ir_dereference_variable(temp);
949 ir->operands[2] = add(temp,
950 csel(equal(frtemp, zero->clone(ir, NULL)),
951 zero->clone(ir, NULL),
952 one));
953
954 this->progress = true;
955 }
956
957 void
958 lower_instructions_visitor::dsign_to_csel(ir_expression *ir)
959 {
960 /*
961 * temp = x > 0.0 ? 1.0 : 0.0;
962 * result = x < 0.0 ? -1.0 : temp;
963 */
964 ir_rvalue *arg = ir->operands[0];
965 ir_constant *zero = new(ir) ir_constant(0.0, arg->type->vector_elements);
966 ir_constant *one = new(ir) ir_constant(1.0, arg->type->vector_elements);
967 ir_constant *neg_one = new(ir) ir_constant(-1.0, arg->type->vector_elements);
968
969 ir->operation = ir_triop_csel;
970 ir->operands[0] = less(arg->clone(ir, NULL),
971 zero->clone(ir, NULL));
972 ir->operands[1] = neg_one;
973 ir->operands[2] = csel(greater(arg, zero),
974 one,
975 zero->clone(ir, NULL));
976
977 this->progress = true;
978 }
979
980 void
981 lower_instructions_visitor::bit_count_to_math(ir_expression *ir)
982 {
983 /* For more details, see:
984 *
985 * http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetPaallel
986 */
987 const unsigned elements = ir->operands[0]->type->vector_elements;
988 ir_variable *temp = new(ir) ir_variable(glsl_type::uvec(elements), "temp",
989 ir_var_temporary);
990 ir_constant *c55555555 = new(ir) ir_constant(0x55555555u);
991 ir_constant *c33333333 = new(ir) ir_constant(0x33333333u);
992 ir_constant *c0F0F0F0F = new(ir) ir_constant(0x0F0F0F0Fu);
993 ir_constant *c01010101 = new(ir) ir_constant(0x01010101u);
994 ir_constant *c1 = new(ir) ir_constant(1u);
995 ir_constant *c2 = new(ir) ir_constant(2u);
996 ir_constant *c4 = new(ir) ir_constant(4u);
997 ir_constant *c24 = new(ir) ir_constant(24u);
998
999 base_ir->insert_before(temp);
1000
1001 if (ir->operands[0]->type->base_type == GLSL_TYPE_UINT) {
1002 base_ir->insert_before(assign(temp, ir->operands[0]));
1003 } else {
1004 assert(ir->operands[0]->type->base_type == GLSL_TYPE_INT);
1005 base_ir->insert_before(assign(temp, i2u(ir->operands[0])));
1006 }
1007
1008 /* temp = temp - ((temp >> 1) & 0x55555555u); */
1009 base_ir->insert_before(assign(temp, sub(temp, bit_and(rshift(temp, c1),
1010 c55555555))));
1011
1012 /* temp = (temp & 0x33333333u) + ((temp >> 2) & 0x33333333u); */
1013 base_ir->insert_before(assign(temp, add(bit_and(temp, c33333333),
1014 bit_and(rshift(temp, c2),
1015 c33333333->clone(ir, NULL)))));
1016
1017 /* int(((temp + (temp >> 4) & 0xF0F0F0Fu) * 0x1010101u) >> 24); */
1018 ir->operation = ir_unop_u2i;
1019 ir->operands[0] = rshift(mul(bit_and(add(temp, rshift(temp, c4)), c0F0F0F0F),
1020 c01010101),
1021 c24);
1022
1023 this->progress = true;
1024 }
1025
1026 void
1027 lower_instructions_visitor::extract_to_shifts(ir_expression *ir)
1028 {
1029 ir_variable *bits =
1030 new(ir) ir_variable(ir->operands[0]->type, "bits", ir_var_temporary);
1031
1032 base_ir->insert_before(bits);
1033 base_ir->insert_before(assign(bits, ir->operands[2]));
1034
1035 if (ir->operands[0]->type->base_type == GLSL_TYPE_UINT) {
1036 ir_constant *c1 =
1037 new(ir) ir_constant(1u, ir->operands[0]->type->vector_elements);
1038 ir_constant *c32 =
1039 new(ir) ir_constant(32u, ir->operands[0]->type->vector_elements);
1040 ir_constant *cFFFFFFFF =
1041 new(ir) ir_constant(0xFFFFFFFFu, ir->operands[0]->type->vector_elements);
1042
1043 /* At least some hardware treats (x << y) as (x << (y%32)). This means
1044 * we'd get a mask of 0 when bits is 32. Special case it.
1045 *
1046 * mask = bits == 32 ? 0xffffffff : (1u << bits) - 1u;
1047 */
1048 ir_expression *mask = csel(equal(bits, c32),
1049 cFFFFFFFF,
1050 sub(lshift(c1, bits), c1->clone(ir, NULL)));
1051
1052 /* Section 8.8 (Integer Functions) of the GLSL 4.50 spec says:
1053 *
1054 * If bits is zero, the result will be zero.
1055 *
1056 * Since (1 << 0) - 1 == 0, we don't need to bother with the conditional
1057 * select as in the signed integer case.
1058 *
1059 * (value >> offset) & mask;
1060 */
1061 ir->operation = ir_binop_bit_and;
1062 ir->operands[0] = rshift(ir->operands[0], ir->operands[1]);
1063 ir->operands[1] = mask;
1064 ir->operands[2] = NULL;
1065 } else {
1066 ir_constant *c0 =
1067 new(ir) ir_constant(int(0), ir->operands[0]->type->vector_elements);
1068 ir_constant *c32 =
1069 new(ir) ir_constant(int(32), ir->operands[0]->type->vector_elements);
1070 ir_variable *temp =
1071 new(ir) ir_variable(ir->operands[0]->type, "temp", ir_var_temporary);
1072
1073 /* temp = 32 - bits; */
1074 base_ir->insert_before(temp);
1075 base_ir->insert_before(assign(temp, sub(c32, bits)));
1076
1077 /* expr = value << (temp - offset)) >> temp; */
1078 ir_expression *expr =
1079 rshift(lshift(ir->operands[0], sub(temp, ir->operands[1])), temp);
1080
1081 /* Section 8.8 (Integer Functions) of the GLSL 4.50 spec says:
1082 *
1083 * If bits is zero, the result will be zero.
1084 *
1085 * Due to the (x << (y%32)) behavior mentioned before, the (value <<
1086 * (32-0)) doesn't "erase" all of the data as we would like, so finish
1087 * up with:
1088 *
1089 * (bits == 0) ? 0 : e;
1090 */
1091 ir->operation = ir_triop_csel;
1092 ir->operands[0] = equal(c0, bits);
1093 ir->operands[1] = c0->clone(ir, NULL);
1094 ir->operands[2] = expr;
1095 }
1096
1097 this->progress = true;
1098 }
1099
1100 void
1101 lower_instructions_visitor::insert_to_shifts(ir_expression *ir)
1102 {
1103 ir_constant *c1;
1104 ir_constant *c32;
1105 ir_constant *cFFFFFFFF;
1106 ir_variable *offset =
1107 new(ir) ir_variable(ir->operands[0]->type, "offset", ir_var_temporary);
1108 ir_variable *bits =
1109 new(ir) ir_variable(ir->operands[0]->type, "bits", ir_var_temporary);
1110 ir_variable *mask =
1111 new(ir) ir_variable(ir->operands[0]->type, "mask", ir_var_temporary);
1112
1113 if (ir->operands[0]->type->base_type == GLSL_TYPE_INT) {
1114 c1 = new(ir) ir_constant(int(1), ir->operands[0]->type->vector_elements);
1115 c32 = new(ir) ir_constant(int(32), ir->operands[0]->type->vector_elements);
1116 cFFFFFFFF = new(ir) ir_constant(int(0xFFFFFFFF), ir->operands[0]->type->vector_elements);
1117 } else {
1118 assert(ir->operands[0]->type->base_type == GLSL_TYPE_UINT);
1119
1120 c1 = new(ir) ir_constant(1u, ir->operands[0]->type->vector_elements);
1121 c32 = new(ir) ir_constant(32u, ir->operands[0]->type->vector_elements);
1122 cFFFFFFFF = new(ir) ir_constant(0xFFFFFFFFu, ir->operands[0]->type->vector_elements);
1123 }
1124
1125 base_ir->insert_before(offset);
1126 base_ir->insert_before(assign(offset, ir->operands[2]));
1127
1128 base_ir->insert_before(bits);
1129 base_ir->insert_before(assign(bits, ir->operands[3]));
1130
1131 /* At least some hardware treats (x << y) as (x << (y%32)). This means
1132 * we'd get a mask of 0 when bits is 32. Special case it.
1133 *
1134 * mask = (bits == 32 ? 0xffffffff : (1u << bits) - 1u) << offset;
1135 *
1136 * Section 8.8 (Integer Functions) of the GLSL 4.50 spec says:
1137 *
1138 * The result will be undefined if offset or bits is negative, or if the
1139 * sum of offset and bits is greater than the number of bits used to
1140 * store the operand.
1141 *
1142 * Since it's undefined, there are a couple other ways this could be
1143 * implemented. The other way that was considered was to put the csel
1144 * around the whole thing:
1145 *
1146 * final_result = bits == 32 ? insert : ... ;
1147 */
1148 base_ir->insert_before(mask);
1149
1150 base_ir->insert_before(assign(mask, csel(equal(bits, c32),
1151 cFFFFFFFF,
1152 lshift(sub(lshift(c1, bits),
1153 c1->clone(ir, NULL)),
1154 offset))));
1155
1156 /* (base & ~mask) | ((insert << offset) & mask) */
1157 ir->operation = ir_binop_bit_or;
1158 ir->operands[0] = bit_and(ir->operands[0], bit_not(mask));
1159 ir->operands[1] = bit_and(lshift(ir->operands[1], offset), mask);
1160 ir->operands[2] = NULL;
1161 ir->operands[3] = NULL;
1162
1163 this->progress = true;
1164 }
1165
1166 void
1167 lower_instructions_visitor::reverse_to_shifts(ir_expression *ir)
1168 {
1169 /* For more details, see:
1170 *
1171 * http://graphics.stanford.edu/~seander/bithacks.html#ReverseParallel
1172 */
1173 ir_constant *c1 =
1174 new(ir) ir_constant(1u, ir->operands[0]->type->vector_elements);
1175 ir_constant *c2 =
1176 new(ir) ir_constant(2u, ir->operands[0]->type->vector_elements);
1177 ir_constant *c4 =
1178 new(ir) ir_constant(4u, ir->operands[0]->type->vector_elements);
1179 ir_constant *c8 =
1180 new(ir) ir_constant(8u, ir->operands[0]->type->vector_elements);
1181 ir_constant *c16 =
1182 new(ir) ir_constant(16u, ir->operands[0]->type->vector_elements);
1183 ir_constant *c33333333 =
1184 new(ir) ir_constant(0x33333333u, ir->operands[0]->type->vector_elements);
1185 ir_constant *c55555555 =
1186 new(ir) ir_constant(0x55555555u, ir->operands[0]->type->vector_elements);
1187 ir_constant *c0F0F0F0F =
1188 new(ir) ir_constant(0x0F0F0F0Fu, ir->operands[0]->type->vector_elements);
1189 ir_constant *c00FF00FF =
1190 new(ir) ir_constant(0x00FF00FFu, ir->operands[0]->type->vector_elements);
1191 ir_variable *temp =
1192 new(ir) ir_variable(glsl_type::uvec(ir->operands[0]->type->vector_elements),
1193 "temp", ir_var_temporary);
1194 ir_instruction &i = *base_ir;
1195
1196 i.insert_before(temp);
1197
1198 if (ir->operands[0]->type->base_type == GLSL_TYPE_UINT) {
1199 i.insert_before(assign(temp, ir->operands[0]));
1200 } else {
1201 assert(ir->operands[0]->type->base_type == GLSL_TYPE_INT);
1202 i.insert_before(assign(temp, i2u(ir->operands[0])));
1203 }
1204
1205 /* Swap odd and even bits.
1206 *
1207 * temp = ((temp >> 1) & 0x55555555u) | ((temp & 0x55555555u) << 1);
1208 */
1209 i.insert_before(assign(temp, bit_or(bit_and(rshift(temp, c1), c55555555),
1210 lshift(bit_and(temp, c55555555->clone(ir, NULL)),
1211 c1->clone(ir, NULL)))));
1212 /* Swap consecutive pairs.
1213 *
1214 * temp = ((temp >> 2) & 0x33333333u) | ((temp & 0x33333333u) << 2);
1215 */
1216 i.insert_before(assign(temp, bit_or(bit_and(rshift(temp, c2), c33333333),
1217 lshift(bit_and(temp, c33333333->clone(ir, NULL)),
1218 c2->clone(ir, NULL)))));
1219
1220 /* Swap nibbles.
1221 *
1222 * temp = ((temp >> 4) & 0x0F0F0F0Fu) | ((temp & 0x0F0F0F0Fu) << 4);
1223 */
1224 i.insert_before(assign(temp, bit_or(bit_and(rshift(temp, c4), c0F0F0F0F),
1225 lshift(bit_and(temp, c0F0F0F0F->clone(ir, NULL)),
1226 c4->clone(ir, NULL)))));
1227
1228 /* The last step is, basically, bswap. Swap the bytes, then swap the
1229 * words. When this code is run through GCC on x86, it does generate a
1230 * bswap instruction.
1231 *
1232 * temp = ((temp >> 8) & 0x00FF00FFu) | ((temp & 0x00FF00FFu) << 8);
1233 * temp = ( temp >> 16 ) | ( temp << 16);
1234 */
1235 i.insert_before(assign(temp, bit_or(bit_and(rshift(temp, c8), c00FF00FF),
1236 lshift(bit_and(temp, c00FF00FF->clone(ir, NULL)),
1237 c8->clone(ir, NULL)))));
1238
1239 if (ir->operands[0]->type->base_type == GLSL_TYPE_UINT) {
1240 ir->operation = ir_binop_bit_or;
1241 ir->operands[0] = rshift(temp, c16);
1242 ir->operands[1] = lshift(temp, c16->clone(ir, NULL));
1243 } else {
1244 ir->operation = ir_unop_u2i;
1245 ir->operands[0] = bit_or(rshift(temp, c16),
1246 lshift(temp, c16->clone(ir, NULL)));
1247 }
1248
1249 this->progress = true;
1250 }
1251
1252 void
1253 lower_instructions_visitor::find_lsb_to_float_cast(ir_expression *ir)
1254 {
1255 /* For more details, see:
1256 *
1257 * http://graphics.stanford.edu/~seander/bithacks.html#ZerosOnRightFloatCast
1258 */
1259 const unsigned elements = ir->operands[0]->type->vector_elements;
1260 ir_constant *c0 = new(ir) ir_constant(unsigned(0), elements);
1261 ir_constant *cminus1 = new(ir) ir_constant(int(-1), elements);
1262 ir_constant *c23 = new(ir) ir_constant(int(23), elements);
1263 ir_constant *c7F = new(ir) ir_constant(int(0x7F), elements);
1264 ir_variable *temp =
1265 new(ir) ir_variable(glsl_type::ivec(elements), "temp", ir_var_temporary);
1266 ir_variable *lsb_only =
1267 new(ir) ir_variable(glsl_type::uvec(elements), "lsb_only", ir_var_temporary);
1268 ir_variable *as_float =
1269 new(ir) ir_variable(glsl_type::vec(elements), "as_float", ir_var_temporary);
1270 ir_variable *lsb =
1271 new(ir) ir_variable(glsl_type::ivec(elements), "lsb", ir_var_temporary);
1272
1273 ir_instruction &i = *base_ir;
1274
1275 i.insert_before(temp);
1276
1277 if (ir->operands[0]->type->base_type == GLSL_TYPE_INT) {
1278 i.insert_before(assign(temp, ir->operands[0]));
1279 } else {
1280 assert(ir->operands[0]->type->base_type == GLSL_TYPE_UINT);
1281 i.insert_before(assign(temp, u2i(ir->operands[0])));
1282 }
1283
1284 /* The int-to-float conversion is lossless because (value & -value) is
1285 * either a power of two or zero. We don't use the result in the zero
1286 * case. The uint() cast is necessary so that 0x80000000 does not
1287 * generate a negative value.
1288 *
1289 * uint lsb_only = uint(value & -value);
1290 * float as_float = float(lsb_only);
1291 */
1292 i.insert_before(lsb_only);
1293 i.insert_before(assign(lsb_only, i2u(bit_and(temp, neg(temp)))));
1294
1295 i.insert_before(as_float);
1296 i.insert_before(assign(as_float, u2f(lsb_only)));
1297
1298 /* This is basically an open-coded frexp. Implementations that have a
1299 * native frexp instruction would be better served by that. This is
1300 * optimized versus a full-featured open-coded implementation in two ways:
1301 *
1302 * - We don't care about a correct result from subnormal numbers (including
1303 * 0.0), so the raw exponent can always be safely unbiased.
1304 *
1305 * - The value cannot be negative, so it does not need to be masked off to
1306 * extract the exponent.
1307 *
1308 * int lsb = (floatBitsToInt(as_float) >> 23) - 0x7f;
1309 */
1310 i.insert_before(lsb);
1311 i.insert_before(assign(lsb, sub(rshift(bitcast_f2i(as_float), c23), c7F)));
1312
1313 /* Use lsb_only in the comparison instead of temp so that the & (far above)
1314 * can possibly generate the result without an explicit comparison.
1315 *
1316 * (lsb_only == 0) ? -1 : lsb;
1317 *
1318 * Since our input values are all integers, the unbiased exponent must not
1319 * be negative. It will only be negative (-0x7f, in fact) if lsb_only is
1320 * 0. Instead of using (lsb_only == 0), we could use (lsb >= 0). Which is
1321 * better is likely GPU dependent. Either way, the difference should be
1322 * small.
1323 */
1324 ir->operation = ir_triop_csel;
1325 ir->operands[0] = equal(lsb_only, c0);
1326 ir->operands[1] = cminus1;
1327 ir->operands[2] = new(ir) ir_dereference_variable(lsb);
1328
1329 this->progress = true;
1330 }
1331
1332 void
1333 lower_instructions_visitor::find_msb_to_float_cast(ir_expression *ir)
1334 {
1335 /* For more details, see:
1336 *
1337 * http://graphics.stanford.edu/~seander/bithacks.html#ZerosOnRightFloatCast
1338 */
1339 const unsigned elements = ir->operands[0]->type->vector_elements;
1340 ir_constant *c0 = new(ir) ir_constant(int(0), elements);
1341 ir_constant *cminus1 = new(ir) ir_constant(int(-1), elements);
1342 ir_constant *c23 = new(ir) ir_constant(int(23), elements);
1343 ir_constant *c7F = new(ir) ir_constant(int(0x7F), elements);
1344 ir_constant *c000000FF = new(ir) ir_constant(0x000000FFu, elements);
1345 ir_constant *cFFFFFF00 = new(ir) ir_constant(0xFFFFFF00u, elements);
1346 ir_variable *temp =
1347 new(ir) ir_variable(glsl_type::uvec(elements), "temp", ir_var_temporary);
1348 ir_variable *as_float =
1349 new(ir) ir_variable(glsl_type::vec(elements), "as_float", ir_var_temporary);
1350 ir_variable *msb =
1351 new(ir) ir_variable(glsl_type::ivec(elements), "msb", ir_var_temporary);
1352
1353 ir_instruction &i = *base_ir;
1354
1355 i.insert_before(temp);
1356
1357 if (ir->operands[0]->type->base_type == GLSL_TYPE_UINT) {
1358 i.insert_before(assign(temp, ir->operands[0]));
1359 } else {
1360 assert(ir->operands[0]->type->base_type == GLSL_TYPE_INT);
1361
1362 /* findMSB(uint(abs(some_int))) almost always does the right thing.
1363 * There are two problem values:
1364 *
1365 * * 0x80000000. Since abs(0x80000000) == 0x80000000, findMSB returns
1366 * 31. However, findMSB(int(0x80000000)) == 30.
1367 *
1368 * * 0xffffffff. Since abs(0xffffffff) == 1, findMSB returns
1369 * 31. Section 8.8 (Integer Functions) of the GLSL 4.50 spec says:
1370 *
1371 * For a value of zero or negative one, -1 will be returned.
1372 *
1373 * For all negative number cases, including 0x80000000 and 0xffffffff,
1374 * the correct value is obtained from findMSB if instead of negating the
1375 * (already negative) value the logical-not is used. A conditonal
1376 * logical-not can be achieved in two instructions.
1377 */
1378 ir_variable *as_int =
1379 new(ir) ir_variable(glsl_type::ivec(elements), "as_int", ir_var_temporary);
1380 ir_constant *c31 = new(ir) ir_constant(int(31), elements);
1381
1382 i.insert_before(as_int);
1383 i.insert_before(assign(as_int, ir->operands[0]));
1384 i.insert_before(assign(temp, i2u(expr(ir_binop_bit_xor,
1385 as_int,
1386 rshift(as_int, c31)))));
1387 }
1388
1389 /* The int-to-float conversion is lossless because bits are conditionally
1390 * masked off the bottom of temp to ensure the value has at most 24 bits of
1391 * data or is zero. We don't use the result in the zero case. The uint()
1392 * cast is necessary so that 0x80000000 does not generate a negative value.
1393 *
1394 * float as_float = float(temp > 255 ? temp & ~255 : temp);
1395 */
1396 i.insert_before(as_float);
1397 i.insert_before(assign(as_float, u2f(csel(greater(temp, c000000FF),
1398 bit_and(temp, cFFFFFF00),
1399 temp))));
1400
1401 /* This is basically an open-coded frexp. Implementations that have a
1402 * native frexp instruction would be better served by that. This is
1403 * optimized versus a full-featured open-coded implementation in two ways:
1404 *
1405 * - We don't care about a correct result from subnormal numbers (including
1406 * 0.0), so the raw exponent can always be safely unbiased.
1407 *
1408 * - The value cannot be negative, so it does not need to be masked off to
1409 * extract the exponent.
1410 *
1411 * int msb = (floatBitsToInt(as_float) >> 23) - 0x7f;
1412 */
1413 i.insert_before(msb);
1414 i.insert_before(assign(msb, sub(rshift(bitcast_f2i(as_float), c23), c7F)));
1415
1416 /* Use msb in the comparison instead of temp so that the subtract can
1417 * possibly generate the result without an explicit comparison.
1418 *
1419 * (msb < 0) ? -1 : msb;
1420 *
1421 * Since our input values are all integers, the unbiased exponent must not
1422 * be negative. It will only be negative (-0x7f, in fact) if temp is 0.
1423 */
1424 ir->operation = ir_triop_csel;
1425 ir->operands[0] = less(msb, c0);
1426 ir->operands[1] = cminus1;
1427 ir->operands[2] = new(ir) ir_dereference_variable(msb);
1428
1429 this->progress = true;
1430 }
1431
1432 ir_expression *
1433 lower_instructions_visitor::_carry(operand a, operand b)
1434 {
1435 if (lowering(CARRY_TO_ARITH))
1436 return i2u(b2i(less(add(a, b),
1437 a.val->clone(ralloc_parent(a.val), NULL))));
1438 else
1439 return carry(a, b);
1440 }
1441
1442 void
1443 lower_instructions_visitor::imul_high_to_mul(ir_expression *ir)
1444 {
1445 /* ABCD
1446 * * EFGH
1447 * ======
1448 * (GH * CD) + (GH * AB) << 16 + (EF * CD) << 16 + (EF * AB) << 32
1449 *
1450 * In GLSL, (a * b) becomes
1451 *
1452 * uint m1 = (a & 0x0000ffffu) * (b & 0x0000ffffu);
1453 * uint m2 = (a & 0x0000ffffu) * (b >> 16);
1454 * uint m3 = (a >> 16) * (b & 0x0000ffffu);
1455 * uint m4 = (a >> 16) * (b >> 16);
1456 *
1457 * uint c1;
1458 * uint c2;
1459 * uint lo_result;
1460 * uint hi_result;
1461 *
1462 * lo_result = uaddCarry(m1, m2 << 16, c1);
1463 * hi_result = m4 + c1;
1464 * lo_result = uaddCarry(lo_result, m3 << 16, c2);
1465 * hi_result = hi_result + c2;
1466 * hi_result = hi_result + (m2 >> 16) + (m3 >> 16);
1467 */
1468 const unsigned elements = ir->operands[0]->type->vector_elements;
1469 ir_variable *src1 =
1470 new(ir) ir_variable(glsl_type::uvec(elements), "src1", ir_var_temporary);
1471 ir_variable *src1h =
1472 new(ir) ir_variable(glsl_type::uvec(elements), "src1h", ir_var_temporary);
1473 ir_variable *src1l =
1474 new(ir) ir_variable(glsl_type::uvec(elements), "src1l", ir_var_temporary);
1475 ir_variable *src2 =
1476 new(ir) ir_variable(glsl_type::uvec(elements), "src2", ir_var_temporary);
1477 ir_variable *src2h =
1478 new(ir) ir_variable(glsl_type::uvec(elements), "src2h", ir_var_temporary);
1479 ir_variable *src2l =
1480 new(ir) ir_variable(glsl_type::uvec(elements), "src2l", ir_var_temporary);
1481 ir_variable *t1 =
1482 new(ir) ir_variable(glsl_type::uvec(elements), "t1", ir_var_temporary);
1483 ir_variable *t2 =
1484 new(ir) ir_variable(glsl_type::uvec(elements), "t2", ir_var_temporary);
1485 ir_variable *lo =
1486 new(ir) ir_variable(glsl_type::uvec(elements), "lo", ir_var_temporary);
1487 ir_variable *hi =
1488 new(ir) ir_variable(glsl_type::uvec(elements), "hi", ir_var_temporary);
1489 ir_variable *different_signs = NULL;
1490 ir_constant *c0000FFFF = new(ir) ir_constant(0x0000FFFFu, elements);
1491 ir_constant *c16 = new(ir) ir_constant(16u, elements);
1492
1493 ir_instruction &i = *base_ir;
1494
1495 i.insert_before(src1);
1496 i.insert_before(src2);
1497 i.insert_before(src1h);
1498 i.insert_before(src2h);
1499 i.insert_before(src1l);
1500 i.insert_before(src2l);
1501
1502 if (ir->operands[0]->type->base_type == GLSL_TYPE_UINT) {
1503 i.insert_before(assign(src1, ir->operands[0]));
1504 i.insert_before(assign(src2, ir->operands[1]));
1505 } else {
1506 assert(ir->operands[0]->type->base_type == GLSL_TYPE_INT);
1507
1508 ir_variable *itmp1 =
1509 new(ir) ir_variable(glsl_type::ivec(elements), "itmp1", ir_var_temporary);
1510 ir_variable *itmp2 =
1511 new(ir) ir_variable(glsl_type::ivec(elements), "itmp2", ir_var_temporary);
1512 ir_constant *c0 = new(ir) ir_constant(int(0), elements);
1513
1514 i.insert_before(itmp1);
1515 i.insert_before(itmp2);
1516 i.insert_before(assign(itmp1, ir->operands[0]));
1517 i.insert_before(assign(itmp2, ir->operands[1]));
1518
1519 different_signs =
1520 new(ir) ir_variable(glsl_type::bvec(elements), "different_signs",
1521 ir_var_temporary);
1522
1523 i.insert_before(different_signs);
1524 i.insert_before(assign(different_signs, expr(ir_binop_logic_xor,
1525 less(itmp1, c0),
1526 less(itmp2, c0->clone(ir, NULL)))));
1527
1528 i.insert_before(assign(src1, i2u(abs(itmp1))));
1529 i.insert_before(assign(src2, i2u(abs(itmp2))));
1530 }
1531
1532 i.insert_before(assign(src1l, bit_and(src1, c0000FFFF)));
1533 i.insert_before(assign(src2l, bit_and(src2, c0000FFFF->clone(ir, NULL))));
1534 i.insert_before(assign(src1h, rshift(src1, c16)));
1535 i.insert_before(assign(src2h, rshift(src2, c16->clone(ir, NULL))));
1536
1537 i.insert_before(lo);
1538 i.insert_before(hi);
1539 i.insert_before(t1);
1540 i.insert_before(t2);
1541
1542 i.insert_before(assign(lo, mul(src1l, src2l)));
1543 i.insert_before(assign(t1, mul(src1l, src2h)));
1544 i.insert_before(assign(t2, mul(src1h, src2l)));
1545 i.insert_before(assign(hi, mul(src1h, src2h)));
1546
1547 i.insert_before(assign(hi, add(hi, _carry(lo, lshift(t1, c16->clone(ir, NULL))))));
1548 i.insert_before(assign(lo, add(lo, lshift(t1, c16->clone(ir, NULL)))));
1549
1550 i.insert_before(assign(hi, add(hi, _carry(lo, lshift(t2, c16->clone(ir, NULL))))));
1551 i.insert_before(assign(lo, add(lo, lshift(t2, c16->clone(ir, NULL)))));
1552
1553 if (different_signs == NULL) {
1554 assert(ir->operands[0]->type->base_type == GLSL_TYPE_UINT);
1555
1556 ir->operation = ir_binop_add;
1557 ir->operands[0] = add(hi, rshift(t1, c16->clone(ir, NULL)));
1558 ir->operands[1] = rshift(t2, c16->clone(ir, NULL));
1559 } else {
1560 assert(ir->operands[0]->type->base_type == GLSL_TYPE_INT);
1561
1562 i.insert_before(assign(hi, add(add(hi, rshift(t1, c16->clone(ir, NULL))),
1563 rshift(t2, c16->clone(ir, NULL)))));
1564
1565 /* For channels where different_signs is set we have to perform a 64-bit
1566 * negation. This is *not* the same as just negating the high 32-bits.
1567 * Consider -3 * 2. The high 32-bits is 0, but the desired result is
1568 * -1, not -0! Recall -x == ~x + 1.
1569 */
1570 ir_variable *neg_hi =
1571 new(ir) ir_variable(glsl_type::ivec(elements), "neg_hi", ir_var_temporary);
1572 ir_constant *c1 = new(ir) ir_constant(1u, elements);
1573
1574 i.insert_before(neg_hi);
1575 i.insert_before(assign(neg_hi, add(bit_not(u2i(hi)),
1576 u2i(_carry(bit_not(lo), c1)))));
1577
1578 ir->operation = ir_triop_csel;
1579 ir->operands[0] = new(ir) ir_dereference_variable(different_signs);
1580 ir->operands[1] = new(ir) ir_dereference_variable(neg_hi);
1581 ir->operands[2] = u2i(hi);
1582 }
1583 }
1584
1585 ir_visitor_status
1586 lower_instructions_visitor::visit_leave(ir_expression *ir)
1587 {
1588 switch (ir->operation) {
1589 case ir_binop_dot:
1590 if (ir->operands[0]->type->is_double())
1591 double_dot_to_fma(ir);
1592 break;
1593 case ir_triop_lrp:
1594 if (ir->operands[0]->type->is_double())
1595 double_lrp(ir);
1596 break;
1597 case ir_binop_sub:
1598 if (lowering(SUB_TO_ADD_NEG))
1599 sub_to_add_neg(ir);
1600 break;
1601
1602 case ir_binop_div:
1603 if (ir->operands[1]->type->is_integer() && lowering(INT_DIV_TO_MUL_RCP))
1604 int_div_to_mul_rcp(ir);
1605 else if ((ir->operands[1]->type->is_float() && lowering(FDIV_TO_MUL_RCP)) ||
1606 (ir->operands[1]->type->is_double() && lowering(DDIV_TO_MUL_RCP)))
1607 div_to_mul_rcp(ir);
1608 break;
1609
1610 case ir_unop_exp:
1611 if (lowering(EXP_TO_EXP2))
1612 exp_to_exp2(ir);
1613 break;
1614
1615 case ir_unop_log:
1616 if (lowering(LOG_TO_LOG2))
1617 log_to_log2(ir);
1618 break;
1619
1620 case ir_binop_mod:
1621 if (lowering(MOD_TO_FLOOR) && (ir->type->is_float() || ir->type->is_double()))
1622 mod_to_floor(ir);
1623 break;
1624
1625 case ir_binop_pow:
1626 if (lowering(POW_TO_EXP2))
1627 pow_to_exp2(ir);
1628 break;
1629
1630 case ir_binop_ldexp:
1631 if (lowering(LDEXP_TO_ARITH) && ir->type->is_float())
1632 ldexp_to_arith(ir);
1633 if (lowering(DFREXP_DLDEXP_TO_ARITH) && ir->type->is_double())
1634 dldexp_to_arith(ir);
1635 break;
1636
1637 case ir_unop_frexp_exp:
1638 if (lowering(DFREXP_DLDEXP_TO_ARITH) && ir->operands[0]->type->is_double())
1639 dfrexp_exp_to_arith(ir);
1640 break;
1641
1642 case ir_unop_frexp_sig:
1643 if (lowering(DFREXP_DLDEXP_TO_ARITH) && ir->operands[0]->type->is_double())
1644 dfrexp_sig_to_arith(ir);
1645 break;
1646
1647 case ir_binop_carry:
1648 if (lowering(CARRY_TO_ARITH))
1649 carry_to_arith(ir);
1650 break;
1651
1652 case ir_binop_borrow:
1653 if (lowering(BORROW_TO_ARITH))
1654 borrow_to_arith(ir);
1655 break;
1656
1657 case ir_unop_saturate:
1658 if (lowering(SAT_TO_CLAMP))
1659 sat_to_clamp(ir);
1660 break;
1661
1662 case ir_unop_trunc:
1663 if (lowering(DOPS_TO_DFRAC) && ir->type->is_double())
1664 dtrunc_to_dfrac(ir);
1665 break;
1666
1667 case ir_unop_ceil:
1668 if (lowering(DOPS_TO_DFRAC) && ir->type->is_double())
1669 dceil_to_dfrac(ir);
1670 break;
1671
1672 case ir_unop_floor:
1673 if (lowering(DOPS_TO_DFRAC) && ir->type->is_double())
1674 dfloor_to_dfrac(ir);
1675 break;
1676
1677 case ir_unop_round_even:
1678 if (lowering(DOPS_TO_DFRAC) && ir->type->is_double())
1679 dround_even_to_dfrac(ir);
1680 break;
1681
1682 case ir_unop_sign:
1683 if (lowering(DOPS_TO_DFRAC) && ir->type->is_double())
1684 dsign_to_csel(ir);
1685 break;
1686
1687 case ir_unop_bit_count:
1688 if (lowering(BIT_COUNT_TO_MATH))
1689 bit_count_to_math(ir);
1690 break;
1691
1692 case ir_triop_bitfield_extract:
1693 if (lowering(EXTRACT_TO_SHIFTS))
1694 extract_to_shifts(ir);
1695 break;
1696
1697 case ir_quadop_bitfield_insert:
1698 if (lowering(INSERT_TO_SHIFTS))
1699 insert_to_shifts(ir);
1700 break;
1701
1702 case ir_unop_bitfield_reverse:
1703 if (lowering(REVERSE_TO_SHIFTS))
1704 reverse_to_shifts(ir);
1705 break;
1706
1707 case ir_unop_find_lsb:
1708 if (lowering(FIND_LSB_TO_FLOAT_CAST))
1709 find_lsb_to_float_cast(ir);
1710 break;
1711
1712 case ir_unop_find_msb:
1713 if (lowering(FIND_MSB_TO_FLOAT_CAST))
1714 find_msb_to_float_cast(ir);
1715 break;
1716
1717 case ir_binop_imul_high:
1718 if (lowering(IMUL_HIGH_TO_MUL))
1719 imul_high_to_mul(ir);
1720 break;
1721
1722 default:
1723 return visit_continue;
1724 }
1725
1726 return visit_continue;
1727 }