glsl: Add a lowering pass for 64-bit integer multiplication
[mesa.git] / src / compiler / glsl / lower_int64.cpp
1 /*
2 * Copyright © 2016 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file lower_int64.cpp
26 *
27 * Lower 64-bit operations to 32-bit operations. Each 64-bit value is lowered
28 * to a uvec2. For each operation that can be lowered, there is a function
29 * called __builtin_foo with the same number of parameters that takes uvec2
30 * sources and produces uvec2 results. An operation like
31 *
32 * uint64_t(x) * uint64_t(y)
33 *
34 * becomes
35 *
36 * packUint2x32(__builtin_umul64(unpackUint2x32(x), unpackUint2x32(y)));
37 */
38
39 #include "main/macros.h"
40 #include "compiler/glsl_types.h"
41 #include "ir.h"
42 #include "ir_rvalue_visitor.h"
43 #include "ir_builder.h"
44 #include "ir_optimization.h"
45 #include "util/hash_table.h"
46 #include "builtin_functions.h"
47
48 typedef ir_function_signature *(*function_generator)(void *mem_ctx,
49 builtin_available_predicate avail);
50
51 using namespace ir_builder;
52
53 namespace lower_64bit {
54 void expand_source(ir_factory &, ir_rvalue *val, ir_variable **expanded_src);
55
56 ir_dereference_variable *compact_destination(ir_factory &,
57 const glsl_type *type,
58 ir_variable *result[4]);
59
60 ir_rvalue *lower_op_to_function_call(ir_instruction *base_ir,
61 ir_expression *ir,
62 ir_function_signature *callee);
63 };
64
65 using namespace lower_64bit;
66
67 namespace {
68
69 class lower_64bit_visitor : public ir_rvalue_visitor {
70 public:
71 lower_64bit_visitor(void *mem_ctx, exec_list *instructions, unsigned lower)
72 : progress(false), lower(lower), instructions(instructions),
73 function_list(), added_functions(&function_list, mem_ctx)
74 {
75 functions = _mesa_hash_table_create(mem_ctx,
76 _mesa_key_hash_string,
77 _mesa_key_string_equal);
78
79 foreach_in_list(ir_instruction, node, instructions) {
80 ir_function *const f = node->as_function();
81
82 if (f == NULL || strncmp(f->name, "__builtin_", 10) != 0)
83 continue;
84
85 add_function(f);
86 }
87 }
88
89 ~lower_64bit_visitor()
90 {
91 _mesa_hash_table_destroy(functions, NULL);
92 }
93
94 void handle_rvalue(ir_rvalue **rvalue);
95
96 void add_function(ir_function *f)
97 {
98 _mesa_hash_table_insert(functions, f->name, f);
99 }
100
101 ir_function *find_function(const char *name)
102 {
103 struct hash_entry *const entry =
104 _mesa_hash_table_search(functions, name);
105
106 return entry != NULL ? (ir_function *) entry->data : NULL;
107 }
108
109 bool progress;
110
111 private:
112 unsigned lower; /** Bitfield of which operations to lower */
113
114 exec_list *instructions;
115
116 /** Hashtable containing all of the known functions in the IR */
117 struct hash_table *functions;
118
119 public:
120 exec_list function_list;
121
122 private:
123 ir_factory added_functions;
124
125 ir_rvalue *handle_op(ir_expression *ir, const char *function_name,
126 function_generator generator);
127 };
128
129 } /* anonymous namespace */
130
131 static bool
132 is_integer_64(const glsl_type *t)
133 {
134 return t->base_type == GLSL_TYPE_UINT64 || t->base_type == GLSL_TYPE_INT64;
135 }
136
137 /**
138 * Determine if a particular type of lowering should occur
139 */
140 #define lowering(x) (this->lower & x)
141
142 bool
143 lower_64bit_integer_instructions(exec_list *instructions,
144 unsigned what_to_lower)
145 {
146 if (instructions->is_empty())
147 return false;
148
149 ir_instruction *first_inst = (ir_instruction *) instructions->get_head_raw();
150 void *const mem_ctx = ralloc_parent(first_inst);
151 lower_64bit_visitor v(mem_ctx, instructions, what_to_lower);
152
153 visit_list_elements(&v, instructions);
154
155 if (v.progress && !v.function_list.is_empty()) {
156 /* Move all of the nodes from function_list to the head if the incoming
157 * instruction list.
158 */
159 exec_node *const after = &instructions->head_sentinel;
160 exec_node *const before = instructions->head_sentinel.next;
161 exec_node *const head = v.function_list.head_sentinel.next;
162 exec_node *const tail = v.function_list.tail_sentinel.prev;
163
164 before->next = head;
165 head->prev = before;
166
167 after->prev = tail;
168 tail->next = after;
169 }
170
171 return v.progress;
172 }
173
174
175 /**
176 * Expand individual 64-bit values to uvec2 values
177 *
178 * Each operation is in one of a few forms.
179 *
180 * vector op vector
181 * vector op scalar
182 * scalar op vector
183 * scalar op scalar
184 *
185 * In the 'vector op vector' case, the two vectors must have the same size.
186 * In a way, the 'scalar op scalar' form is special case of the 'vector op
187 * vector' form.
188 *
189 * This method generates a new set of uvec2 values for each element of a
190 * single operand. If the operand is a scalar, the uvec2 is replicated
191 * multiple times. A value like
192 *
193 * u64vec3(a) + u64vec3(b)
194 *
195 * becomes
196 *
197 * u64vec3 tmp0 = u64vec3(a) + u64vec3(b);
198 * uvec2 tmp1 = unpackUint2x32(tmp0.x);
199 * uvec2 tmp2 = unpackUint2x32(tmp0.y);
200 * uvec2 tmp3 = unpackUint2x32(tmp0.z);
201 *
202 * and the returned operands array contains ir_variable pointers to
203 *
204 * { tmp1, tmp2, tmp3, tmp1 }
205 */
206 void
207 lower_64bit::expand_source(ir_factory &body,
208 ir_rvalue *val,
209 ir_variable **expanded_src)
210 {
211 assert(val->type->base_type == GLSL_TYPE_UINT64 ||
212 val->type->base_type == GLSL_TYPE_INT64);
213
214 ir_variable *const temp = body.make_temp(val->type, "tmp");
215
216 body.emit(assign(temp, val));
217
218 const ir_expression_operation unpack_opcode =
219 val->type->base_type == GLSL_TYPE_UINT64
220 ? ir_unop_unpack_uint_2x32 : ir_unop_unpack_int_2x32;
221
222 const glsl_type *const type =
223 val->type->base_type == GLSL_TYPE_UINT64
224 ? glsl_type::uvec2_type : glsl_type::ivec2_type;
225
226 unsigned i;
227 for (i = 0; i < val->type->vector_elements; i++) {
228 expanded_src[i] = body.make_temp(type, "expanded_64bit_source");
229
230 body.emit(assign(expanded_src[i],
231 expr(unpack_opcode, swizzle(temp, i, 1))));
232 }
233
234 for (/* empty */; i < 4; i++)
235 expanded_src[i] = expanded_src[0];
236 }
237
238 /**
239 * Convert a series of uvec2 results into a single 64-bit integer vector
240 */
241 ir_dereference_variable *
242 lower_64bit::compact_destination(ir_factory &body,
243 const glsl_type *type,
244 ir_variable *result[4])
245 {
246 const ir_expression_operation pack_opcode =
247 type->base_type == GLSL_TYPE_UINT64
248 ? ir_unop_pack_uint_2x32 : ir_unop_pack_int_2x32;
249
250 ir_variable *const compacted_result =
251 body.make_temp(type, "compacted_64bit_result");
252
253 for (unsigned i = 0; i < type->vector_elements; i++) {
254 body.emit(assign(compacted_result,
255 expr(pack_opcode, result[i]),
256 1U << i));
257 }
258
259 void *const mem_ctx = ralloc_parent(compacted_result);
260 return new(mem_ctx) ir_dereference_variable(compacted_result);
261 }
262
263 ir_rvalue *
264 lower_64bit::lower_op_to_function_call(ir_instruction *base_ir,
265 ir_expression *ir,
266 ir_function_signature *callee)
267 {
268 const unsigned num_operands = ir->get_num_operands();
269 ir_variable *src[4][4];
270 ir_variable *dst[4];
271 void *const mem_ctx = ralloc_parent(ir);
272 exec_list instructions;
273 unsigned source_components = 0;
274 const glsl_type *const result_type =
275 ir->type->base_type == GLSL_TYPE_UINT64
276 ? glsl_type::uvec2_type : glsl_type::ivec2_type;
277
278 ir_factory body(&instructions, mem_ctx);
279
280 for (unsigned i = 0; i < num_operands; i++) {
281 expand_source(body, ir->operands[i], src[i]);
282
283 if (ir->operands[i]->type->vector_elements > source_components)
284 source_components = ir->operands[i]->type->vector_elements;
285 }
286
287 for (unsigned i = 0; i < source_components; i++) {
288 dst[i] = body.make_temp(result_type, "expanded_64bit_result");
289
290 exec_list parameters;
291
292 for (unsigned j = 0; j < num_operands; j++)
293 parameters.push_tail(new(mem_ctx) ir_dereference_variable(src[j][i]));
294
295 ir_dereference_variable *const return_deref =
296 new(mem_ctx) ir_dereference_variable(dst[i]);
297
298 ir_call *const c = new(mem_ctx) ir_call(callee,
299 return_deref,
300 &parameters);
301
302 body.emit(c);
303 }
304
305 ir_rvalue *const rv = compact_destination(body, ir->type, dst);
306
307 /* Move all of the nodes from instructions between base_ir and the
308 * instruction before it.
309 */
310 exec_node *const after = base_ir;
311 exec_node *const before = after->prev;
312 exec_node *const head = instructions.head_sentinel.next;
313 exec_node *const tail = instructions.tail_sentinel.prev;
314
315 before->next = head;
316 head->prev = before;
317
318 after->prev = tail;
319 tail->next = after;
320
321 return rv;
322 }
323
324 ir_rvalue *
325 lower_64bit_visitor::handle_op(ir_expression *ir,
326 const char *function_name,
327 function_generator generator)
328 {
329 for (unsigned i = 0; i < ir->get_num_operands(); i++)
330 if (!is_integer_64(ir->operands[i]->type))
331 return ir;
332
333 /* Get a handle to the correct ir_function_signature for the core
334 * operation.
335 */
336 ir_function_signature *callee = NULL;
337 ir_function *f = find_function(function_name);
338
339 if (f != NULL) {
340 callee = (ir_function_signature *) f->signatures.get_head();
341 assert(callee != NULL && callee->ir_type == ir_type_function_signature);
342 } else {
343 f = new(base_ir) ir_function(function_name);
344 callee = generator(base_ir, NULL);
345
346 f->add_signature(callee);
347
348 add_function(f);
349 }
350
351 return lower_op_to_function_call(this->base_ir, ir, callee);
352 }
353
354 void
355 lower_64bit_visitor::handle_rvalue(ir_rvalue **rvalue)
356 {
357 if (*rvalue == NULL || (*rvalue)->ir_type != ir_type_expression)
358 return;
359
360 ir_expression *const ir = (*rvalue)->as_expression();
361 assert(ir != NULL);
362
363 switch (ir->operation) {
364 case ir_binop_mul:
365 if (lowering(MUL64)) {
366 *rvalue = handle_op(ir, "__builtin_umul64", generate_ir::umul64);
367 this->progress = true;
368 }
369 break;
370
371 default:
372 break;
373 }
374 }