nir: Print array deref indices as decimal
[mesa.git] / src / compiler / glsl / lower_packed_varyings.cpp
1 /*
2 * Copyright © 2011 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file lower_varyings_to_packed.cpp
26 *
27 * This lowering pass generates GLSL code that manually packs varyings into
28 * vec4 slots, for the benefit of back-ends that don't support packed varyings
29 * natively.
30 *
31 * For example, the following shader:
32 *
33 * out mat3x2 foo; // location=4, location_frac=0
34 * out vec3 bar[2]; // location=5, location_frac=2
35 *
36 * main()
37 * {
38 * ...
39 * }
40 *
41 * Is rewritten to:
42 *
43 * mat3x2 foo;
44 * vec3 bar[2];
45 * out vec4 packed4; // location=4, location_frac=0
46 * out vec4 packed5; // location=5, location_frac=0
47 * out vec4 packed6; // location=6, location_frac=0
48 *
49 * main()
50 * {
51 * ...
52 * packed4.xy = foo[0];
53 * packed4.zw = foo[1];
54 * packed5.xy = foo[2];
55 * packed5.zw = bar[0].xy;
56 * packed6.x = bar[0].z;
57 * packed6.yzw = bar[1];
58 * }
59 *
60 * This lowering pass properly handles "double parking" of a varying vector
61 * across two varying slots. For example, in the code above, two of the
62 * components of bar[0] are stored in packed5, and the remaining component is
63 * stored in packed6.
64 *
65 * Note that in theory, the extra instructions may cause some loss of
66 * performance. However, hopefully in most cases the performance loss will
67 * either be absorbed by a later optimization pass, or it will be offset by
68 * memory bandwidth savings (because fewer varyings are used).
69 *
70 * This lowering pass also packs flat floats, ints, and uints together, by
71 * using ivec4 as the base type of flat "varyings", and using appropriate
72 * casts to convert floats and uints into ints.
73 *
74 * This lowering pass also handles varyings whose type is a struct or an array
75 * of struct. Structs are packed in order and with no gaps, so there may be a
76 * performance penalty due to structure elements being double-parked.
77 *
78 * Lowering of geometry shader inputs is slightly more complex, since geometry
79 * inputs are always arrays, so we need to lower arrays to arrays. For
80 * example, the following input:
81 *
82 * in struct Foo {
83 * float f;
84 * vec3 v;
85 * vec2 a[2];
86 * } arr[3]; // location=4, location_frac=0
87 *
88 * Would get lowered like this if it occurred in a fragment shader:
89 *
90 * struct Foo {
91 * float f;
92 * vec3 v;
93 * vec2 a[2];
94 * } arr[3];
95 * in vec4 packed4; // location=4, location_frac=0
96 * in vec4 packed5; // location=5, location_frac=0
97 * in vec4 packed6; // location=6, location_frac=0
98 * in vec4 packed7; // location=7, location_frac=0
99 * in vec4 packed8; // location=8, location_frac=0
100 * in vec4 packed9; // location=9, location_frac=0
101 *
102 * main()
103 * {
104 * arr[0].f = packed4.x;
105 * arr[0].v = packed4.yzw;
106 * arr[0].a[0] = packed5.xy;
107 * arr[0].a[1] = packed5.zw;
108 * arr[1].f = packed6.x;
109 * arr[1].v = packed6.yzw;
110 * arr[1].a[0] = packed7.xy;
111 * arr[1].a[1] = packed7.zw;
112 * arr[2].f = packed8.x;
113 * arr[2].v = packed8.yzw;
114 * arr[2].a[0] = packed9.xy;
115 * arr[2].a[1] = packed9.zw;
116 * ...
117 * }
118 *
119 * But it would get lowered like this if it occurred in a geometry shader:
120 *
121 * struct Foo {
122 * float f;
123 * vec3 v;
124 * vec2 a[2];
125 * } arr[3];
126 * in vec4 packed4[3]; // location=4, location_frac=0
127 * in vec4 packed5[3]; // location=5, location_frac=0
128 *
129 * main()
130 * {
131 * arr[0].f = packed4[0].x;
132 * arr[0].v = packed4[0].yzw;
133 * arr[0].a[0] = packed5[0].xy;
134 * arr[0].a[1] = packed5[0].zw;
135 * arr[1].f = packed4[1].x;
136 * arr[1].v = packed4[1].yzw;
137 * arr[1].a[0] = packed5[1].xy;
138 * arr[1].a[1] = packed5[1].zw;
139 * arr[2].f = packed4[2].x;
140 * arr[2].v = packed4[2].yzw;
141 * arr[2].a[0] = packed5[2].xy;
142 * arr[2].a[1] = packed5[2].zw;
143 * ...
144 * }
145 */
146
147 #include "glsl_symbol_table.h"
148 #include "ir.h"
149 #include "ir_builder.h"
150 #include "ir_optimization.h"
151 #include "program/prog_instruction.h"
152 #include "main/mtypes.h"
153
154 using namespace ir_builder;
155
156 namespace {
157
158 /**
159 * Visitor that performs varying packing. For each varying declared in the
160 * shader, this visitor determines whether it needs to be packed. If so, it
161 * demotes it to an ordinary global, creates new packed varyings, and
162 * generates assignments to convert between the original varying and the
163 * packed varying.
164 */
165 class lower_packed_varyings_visitor
166 {
167 public:
168 lower_packed_varyings_visitor(void *mem_ctx,
169 unsigned locations_used,
170 const uint8_t *components,
171 ir_variable_mode mode,
172 unsigned gs_input_vertices,
173 exec_list *out_instructions,
174 exec_list *out_variables,
175 bool disable_varying_packing,
176 bool xfb_enabled);
177
178 void run(struct gl_linked_shader *shader);
179
180 private:
181 void bitwise_assign_pack(ir_rvalue *lhs, ir_rvalue *rhs);
182 void bitwise_assign_unpack(ir_rvalue *lhs, ir_rvalue *rhs);
183 unsigned lower_rvalue(ir_rvalue *rvalue, unsigned fine_location,
184 ir_variable *unpacked_var, const char *name,
185 bool gs_input_toplevel, unsigned vertex_index);
186 unsigned lower_arraylike(ir_rvalue *rvalue, unsigned array_size,
187 unsigned fine_location,
188 ir_variable *unpacked_var, const char *name,
189 bool gs_input_toplevel, unsigned vertex_index);
190 ir_dereference *get_packed_varying_deref(unsigned location,
191 ir_variable *unpacked_var,
192 const char *name,
193 unsigned vertex_index);
194 bool needs_lowering(ir_variable *var);
195
196 /**
197 * Memory context used to allocate new instructions for the shader.
198 */
199 void * const mem_ctx;
200
201 /**
202 * Number of generic varying slots which are used by this shader. This is
203 * used to allocate temporary intermediate data structures. If any varying
204 * used by this shader has a location greater than or equal to
205 * VARYING_SLOT_VAR0 + locations_used, an assertion will fire.
206 */
207 const unsigned locations_used;
208
209 const uint8_t* components;
210
211 /**
212 * Array of pointers to the packed varyings that have been created for each
213 * generic varying slot. NULL entries in this array indicate varying slots
214 * for which a packed varying has not been created yet.
215 */
216 ir_variable **packed_varyings;
217
218 /**
219 * Type of varying which is being lowered in this pass (either
220 * ir_var_shader_in or ir_var_shader_out).
221 */
222 const ir_variable_mode mode;
223
224 /**
225 * If we are currently lowering geometry shader inputs, the number of input
226 * vertices the geometry shader accepts. Otherwise zero.
227 */
228 const unsigned gs_input_vertices;
229
230 /**
231 * Exec list into which the visitor should insert the packing instructions.
232 * Caller provides this list; it should insert the instructions into the
233 * appropriate place in the shader once the visitor has finished running.
234 */
235 exec_list *out_instructions;
236
237 /**
238 * Exec list into which the visitor should insert any new variables.
239 */
240 exec_list *out_variables;
241
242 bool disable_varying_packing;
243 bool xfb_enabled;
244 };
245
246 } /* anonymous namespace */
247
248 lower_packed_varyings_visitor::lower_packed_varyings_visitor(
249 void *mem_ctx, unsigned locations_used, const uint8_t *components,
250 ir_variable_mode mode,
251 unsigned gs_input_vertices, exec_list *out_instructions,
252 exec_list *out_variables, bool disable_varying_packing,
253 bool xfb_enabled)
254 : mem_ctx(mem_ctx),
255 locations_used(locations_used),
256 components(components),
257 packed_varyings((ir_variable **)
258 rzalloc_array_size(mem_ctx, sizeof(*packed_varyings),
259 locations_used)),
260 mode(mode),
261 gs_input_vertices(gs_input_vertices),
262 out_instructions(out_instructions),
263 out_variables(out_variables),
264 disable_varying_packing(disable_varying_packing),
265 xfb_enabled(xfb_enabled)
266 {
267 }
268
269 void
270 lower_packed_varyings_visitor::run(struct gl_linked_shader *shader)
271 {
272 foreach_in_list(ir_instruction, node, shader->ir) {
273 ir_variable *var = node->as_variable();
274 if (var == NULL)
275 continue;
276
277 if (var->data.mode != this->mode ||
278 var->data.location < VARYING_SLOT_VAR0 ||
279 !this->needs_lowering(var))
280 continue;
281
282 /* This lowering pass is only capable of packing floats and ints
283 * together when their interpolation mode is "flat". Treat integers as
284 * being flat when the interpolation mode is none.
285 */
286 assert(var->data.interpolation == INTERP_MODE_FLAT ||
287 var->data.interpolation == INTERP_MODE_NONE ||
288 !var->type->contains_integer());
289
290 /* Clone the variable for program resource list before
291 * it gets modified and lost.
292 */
293 if (!shader->packed_varyings)
294 shader->packed_varyings = new (shader) exec_list;
295
296 shader->packed_varyings->push_tail(var->clone(shader, NULL));
297
298 /* Change the old varying into an ordinary global. */
299 assert(var->data.mode != ir_var_temporary);
300 var->data.mode = ir_var_auto;
301
302 /* Create a reference to the old varying. */
303 ir_dereference_variable *deref
304 = new(this->mem_ctx) ir_dereference_variable(var);
305
306 /* Recursively pack or unpack it. */
307 this->lower_rvalue(deref, var->data.location * 4 + var->data.location_frac, var,
308 var->name, this->gs_input_vertices != 0, 0);
309 }
310 }
311
312 #define SWIZZLE_ZWZW MAKE_SWIZZLE4(SWIZZLE_Z, SWIZZLE_W, SWIZZLE_Z, SWIZZLE_W)
313
314 /**
315 * Make an ir_assignment from \c rhs to \c lhs, performing appropriate
316 * bitcasts if necessary to match up types.
317 *
318 * This function is called when packing varyings.
319 */
320 void
321 lower_packed_varyings_visitor::bitwise_assign_pack(ir_rvalue *lhs,
322 ir_rvalue *rhs)
323 {
324 if (lhs->type->base_type != rhs->type->base_type) {
325 /* Since we only mix types in flat varyings, and we always store flat
326 * varyings as type ivec4, we need only produce conversions from (uint
327 * or float) to int.
328 */
329 assert(lhs->type->base_type == GLSL_TYPE_INT);
330 switch (rhs->type->base_type) {
331 case GLSL_TYPE_UINT:
332 rhs = new(this->mem_ctx)
333 ir_expression(ir_unop_u2i, lhs->type, rhs);
334 break;
335 case GLSL_TYPE_FLOAT:
336 rhs = new(this->mem_ctx)
337 ir_expression(ir_unop_bitcast_f2i, lhs->type, rhs);
338 break;
339 case GLSL_TYPE_DOUBLE:
340 assert(rhs->type->vector_elements <= 2);
341 if (rhs->type->vector_elements == 2) {
342 ir_variable *t = new(mem_ctx) ir_variable(lhs->type, "pack", ir_var_temporary);
343
344 assert(lhs->type->vector_elements == 4);
345 this->out_variables->push_tail(t);
346 this->out_instructions->push_tail(
347 assign(t, u2i(expr(ir_unop_unpack_double_2x32, swizzle_x(rhs->clone(mem_ctx, NULL)))), 0x3));
348 this->out_instructions->push_tail(
349 assign(t, u2i(expr(ir_unop_unpack_double_2x32, swizzle_y(rhs))), 0xc));
350 rhs = deref(t).val;
351 } else {
352 rhs = u2i(expr(ir_unop_unpack_double_2x32, rhs));
353 }
354 break;
355 case GLSL_TYPE_INT64:
356 assert(rhs->type->vector_elements <= 2);
357 if (rhs->type->vector_elements == 2) {
358 ir_variable *t = new(mem_ctx) ir_variable(lhs->type, "pack", ir_var_temporary);
359
360 assert(lhs->type->vector_elements == 4);
361 this->out_variables->push_tail(t);
362 this->out_instructions->push_tail(
363 assign(t, expr(ir_unop_unpack_int_2x32, swizzle_x(rhs->clone(mem_ctx, NULL))), 0x3));
364 this->out_instructions->push_tail(
365 assign(t, expr(ir_unop_unpack_int_2x32, swizzle_y(rhs)), 0xc));
366 rhs = deref(t).val;
367 } else {
368 rhs = expr(ir_unop_unpack_int_2x32, rhs);
369 }
370 break;
371 case GLSL_TYPE_UINT64:
372 assert(rhs->type->vector_elements <= 2);
373 if (rhs->type->vector_elements == 2) {
374 ir_variable *t = new(mem_ctx) ir_variable(lhs->type, "pack", ir_var_temporary);
375
376 assert(lhs->type->vector_elements == 4);
377 this->out_variables->push_tail(t);
378 this->out_instructions->push_tail(
379 assign(t, u2i(expr(ir_unop_unpack_uint_2x32, swizzle_x(rhs->clone(mem_ctx, NULL)))), 0x3));
380 this->out_instructions->push_tail(
381 assign(t, u2i(expr(ir_unop_unpack_uint_2x32, swizzle_y(rhs))), 0xc));
382 rhs = deref(t).val;
383 } else {
384 rhs = u2i(expr(ir_unop_unpack_uint_2x32, rhs));
385 }
386 break;
387 case GLSL_TYPE_SAMPLER:
388 rhs = u2i(expr(ir_unop_unpack_sampler_2x32, rhs));
389 break;
390 case GLSL_TYPE_IMAGE:
391 rhs = u2i(expr(ir_unop_unpack_image_2x32, rhs));
392 break;
393 default:
394 assert(!"Unexpected type conversion while lowering varyings");
395 break;
396 }
397 }
398 this->out_instructions->push_tail(new (this->mem_ctx) ir_assignment(lhs, rhs));
399 }
400
401
402 /**
403 * Make an ir_assignment from \c rhs to \c lhs, performing appropriate
404 * bitcasts if necessary to match up types.
405 *
406 * This function is called when unpacking varyings.
407 */
408 void
409 lower_packed_varyings_visitor::bitwise_assign_unpack(ir_rvalue *lhs,
410 ir_rvalue *rhs)
411 {
412 if (lhs->type->base_type != rhs->type->base_type) {
413 /* Since we only mix types in flat varyings, and we always store flat
414 * varyings as type ivec4, we need only produce conversions from int to
415 * (uint or float).
416 */
417 assert(rhs->type->base_type == GLSL_TYPE_INT);
418 switch (lhs->type->base_type) {
419 case GLSL_TYPE_UINT:
420 rhs = new(this->mem_ctx)
421 ir_expression(ir_unop_i2u, lhs->type, rhs);
422 break;
423 case GLSL_TYPE_FLOAT:
424 rhs = new(this->mem_ctx)
425 ir_expression(ir_unop_bitcast_i2f, lhs->type, rhs);
426 break;
427 case GLSL_TYPE_DOUBLE:
428 assert(lhs->type->vector_elements <= 2);
429 if (lhs->type->vector_elements == 2) {
430 ir_variable *t = new(mem_ctx) ir_variable(lhs->type, "unpack", ir_var_temporary);
431 assert(rhs->type->vector_elements == 4);
432 this->out_variables->push_tail(t);
433 this->out_instructions->push_tail(
434 assign(t, expr(ir_unop_pack_double_2x32, i2u(swizzle_xy(rhs->clone(mem_ctx, NULL)))), 0x1));
435 this->out_instructions->push_tail(
436 assign(t, expr(ir_unop_pack_double_2x32, i2u(swizzle(rhs->clone(mem_ctx, NULL), SWIZZLE_ZWZW, 2))), 0x2));
437 rhs = deref(t).val;
438 } else {
439 rhs = expr(ir_unop_pack_double_2x32, i2u(rhs));
440 }
441 break;
442 case GLSL_TYPE_INT64:
443 assert(lhs->type->vector_elements <= 2);
444 if (lhs->type->vector_elements == 2) {
445 ir_variable *t = new(mem_ctx) ir_variable(lhs->type, "unpack", ir_var_temporary);
446 assert(rhs->type->vector_elements == 4);
447 this->out_variables->push_tail(t);
448 this->out_instructions->push_tail(
449 assign(t, expr(ir_unop_pack_int_2x32, swizzle_xy(rhs->clone(mem_ctx, NULL))), 0x1));
450 this->out_instructions->push_tail(
451 assign(t, expr(ir_unop_pack_int_2x32, swizzle(rhs->clone(mem_ctx, NULL), SWIZZLE_ZWZW, 2)), 0x2));
452 rhs = deref(t).val;
453 } else {
454 rhs = expr(ir_unop_pack_int_2x32, rhs);
455 }
456 break;
457 case GLSL_TYPE_UINT64:
458 assert(lhs->type->vector_elements <= 2);
459 if (lhs->type->vector_elements == 2) {
460 ir_variable *t = new(mem_ctx) ir_variable(lhs->type, "unpack", ir_var_temporary);
461 assert(rhs->type->vector_elements == 4);
462 this->out_variables->push_tail(t);
463 this->out_instructions->push_tail(
464 assign(t, expr(ir_unop_pack_uint_2x32, i2u(swizzle_xy(rhs->clone(mem_ctx, NULL)))), 0x1));
465 this->out_instructions->push_tail(
466 assign(t, expr(ir_unop_pack_uint_2x32, i2u(swizzle(rhs->clone(mem_ctx, NULL), SWIZZLE_ZWZW, 2))), 0x2));
467 rhs = deref(t).val;
468 } else {
469 rhs = expr(ir_unop_pack_uint_2x32, i2u(rhs));
470 }
471 break;
472 case GLSL_TYPE_SAMPLER:
473 rhs = new(mem_ctx)
474 ir_expression(ir_unop_pack_sampler_2x32, lhs->type, i2u(rhs));
475 break;
476 case GLSL_TYPE_IMAGE:
477 rhs = new(mem_ctx)
478 ir_expression(ir_unop_pack_image_2x32, lhs->type, i2u(rhs));
479 break;
480 default:
481 assert(!"Unexpected type conversion while lowering varyings");
482 break;
483 }
484 }
485 this->out_instructions->push_tail(new(this->mem_ctx) ir_assignment(lhs, rhs));
486 }
487
488
489 /**
490 * Recursively pack or unpack the given varying (or portion of a varying) by
491 * traversing all of its constituent vectors.
492 *
493 * \param fine_location is the location where the first constituent vector
494 * should be packed--the word "fine" indicates that this location is expressed
495 * in multiples of a float, rather than multiples of a vec4 as is used
496 * elsewhere in Mesa.
497 *
498 * \param gs_input_toplevel should be set to true if we are lowering geometry
499 * shader inputs, and we are currently lowering the whole input variable
500 * (i.e. we are lowering the array whose index selects the vertex).
501 *
502 * \param vertex_index: if we are lowering geometry shader inputs, and the
503 * level of the array that we are currently lowering is *not* the top level,
504 * then this indicates which vertex we are currently lowering. Otherwise it
505 * is ignored.
506 *
507 * \return the location where the next constituent vector (after this one)
508 * should be packed.
509 */
510 unsigned
511 lower_packed_varyings_visitor::lower_rvalue(ir_rvalue *rvalue,
512 unsigned fine_location,
513 ir_variable *unpacked_var,
514 const char *name,
515 bool gs_input_toplevel,
516 unsigned vertex_index)
517 {
518 unsigned dmul = rvalue->type->is_64bit() ? 2 : 1;
519 /* When gs_input_toplevel is set, we should be looking at a geometry shader
520 * input array.
521 */
522 assert(!gs_input_toplevel || rvalue->type->is_array());
523
524 if (rvalue->type->is_struct()) {
525 for (unsigned i = 0; i < rvalue->type->length; i++) {
526 if (i != 0)
527 rvalue = rvalue->clone(this->mem_ctx, NULL);
528 const char *field_name = rvalue->type->fields.structure[i].name;
529 ir_dereference_record *dereference_record = new(this->mem_ctx)
530 ir_dereference_record(rvalue, field_name);
531 char *deref_name
532 = ralloc_asprintf(this->mem_ctx, "%s.%s", name, field_name);
533 fine_location = this->lower_rvalue(dereference_record, fine_location,
534 unpacked_var, deref_name, false,
535 vertex_index);
536 }
537 return fine_location;
538 } else if (rvalue->type->is_array()) {
539 /* Arrays are packed/unpacked by considering each array element in
540 * sequence.
541 */
542 return this->lower_arraylike(rvalue, rvalue->type->array_size(),
543 fine_location, unpacked_var, name,
544 gs_input_toplevel, vertex_index);
545 } else if (rvalue->type->is_matrix()) {
546 /* Matrices are packed/unpacked by considering each column vector in
547 * sequence.
548 */
549 return this->lower_arraylike(rvalue, rvalue->type->matrix_columns,
550 fine_location, unpacked_var, name,
551 false, vertex_index);
552 } else if (rvalue->type->vector_elements * dmul +
553 fine_location % 4 > 4) {
554 /* This vector is going to be "double parked" across two varying slots,
555 * so handle it as two separate assignments. For doubles, a dvec3/dvec4
556 * can end up being spread over 3 slots. However the second splitting
557 * will happen later, here we just always want to split into 2.
558 */
559 unsigned left_components, right_components;
560 unsigned left_swizzle_values[4] = { 0, 0, 0, 0 };
561 unsigned right_swizzle_values[4] = { 0, 0, 0, 0 };
562 char left_swizzle_name[4] = { 0, 0, 0, 0 };
563 char right_swizzle_name[4] = { 0, 0, 0, 0 };
564
565 left_components = 4 - fine_location % 4;
566 if (rvalue->type->is_64bit()) {
567 /* We might actually end up with 0 left components! */
568 left_components /= 2;
569 }
570 right_components = rvalue->type->vector_elements - left_components;
571
572 for (unsigned i = 0; i < left_components; i++) {
573 left_swizzle_values[i] = i;
574 left_swizzle_name[i] = "xyzw"[i];
575 }
576 for (unsigned i = 0; i < right_components; i++) {
577 right_swizzle_values[i] = i + left_components;
578 right_swizzle_name[i] = "xyzw"[i + left_components];
579 }
580 ir_swizzle *left_swizzle = new(this->mem_ctx)
581 ir_swizzle(rvalue, left_swizzle_values, left_components);
582 ir_swizzle *right_swizzle = new(this->mem_ctx)
583 ir_swizzle(rvalue->clone(this->mem_ctx, NULL), right_swizzle_values,
584 right_components);
585 char *left_name
586 = ralloc_asprintf(this->mem_ctx, "%s.%s", name, left_swizzle_name);
587 char *right_name
588 = ralloc_asprintf(this->mem_ctx, "%s.%s", name, right_swizzle_name);
589 if (left_components)
590 fine_location = this->lower_rvalue(left_swizzle, fine_location,
591 unpacked_var, left_name, false,
592 vertex_index);
593 else
594 /* Top up the fine location to the next slot */
595 fine_location++;
596 return this->lower_rvalue(right_swizzle, fine_location, unpacked_var,
597 right_name, false, vertex_index);
598 } else {
599 /* No special handling is necessary; pack the rvalue into the
600 * varying.
601 */
602 unsigned swizzle_values[4] = { 0, 0, 0, 0 };
603 unsigned components = rvalue->type->vector_elements * dmul;
604 unsigned location = fine_location / 4;
605 unsigned location_frac = fine_location % 4;
606 for (unsigned i = 0; i < components; ++i)
607 swizzle_values[i] = i + location_frac;
608 ir_dereference *packed_deref =
609 this->get_packed_varying_deref(location, unpacked_var, name,
610 vertex_index);
611 if (unpacked_var->data.stream != 0) {
612 assert(unpacked_var->data.stream < 4);
613 ir_variable *packed_var = packed_deref->variable_referenced();
614 for (unsigned i = 0; i < components; ++i) {
615 packed_var->data.stream |=
616 unpacked_var->data.stream << (2 * (location_frac + i));
617 }
618 }
619 ir_swizzle *swizzle = new(this->mem_ctx)
620 ir_swizzle(packed_deref, swizzle_values, components);
621 if (this->mode == ir_var_shader_out) {
622 this->bitwise_assign_pack(swizzle, rvalue);
623 } else {
624 this->bitwise_assign_unpack(rvalue, swizzle);
625 }
626 return fine_location + components;
627 }
628 }
629
630 /**
631 * Recursively pack or unpack a varying for which we need to iterate over its
632 * constituent elements, accessing each one using an ir_dereference_array.
633 * This takes care of both arrays and matrices, since ir_dereference_array
634 * treats a matrix like an array of its column vectors.
635 *
636 * \param gs_input_toplevel should be set to true if we are lowering geometry
637 * shader inputs, and we are currently lowering the whole input variable
638 * (i.e. we are lowering the array whose index selects the vertex).
639 *
640 * \param vertex_index: if we are lowering geometry shader inputs, and the
641 * level of the array that we are currently lowering is *not* the top level,
642 * then this indicates which vertex we are currently lowering. Otherwise it
643 * is ignored.
644 */
645 unsigned
646 lower_packed_varyings_visitor::lower_arraylike(ir_rvalue *rvalue,
647 unsigned array_size,
648 unsigned fine_location,
649 ir_variable *unpacked_var,
650 const char *name,
651 bool gs_input_toplevel,
652 unsigned vertex_index)
653 {
654 for (unsigned i = 0; i < array_size; i++) {
655 if (i != 0)
656 rvalue = rvalue->clone(this->mem_ctx, NULL);
657 ir_constant *constant = new(this->mem_ctx) ir_constant(i);
658 ir_dereference_array *dereference_array = new(this->mem_ctx)
659 ir_dereference_array(rvalue, constant);
660 if (gs_input_toplevel) {
661 /* Geometry shader inputs are a special case. Instead of storing
662 * each element of the array at a different location, all elements
663 * are at the same location, but with a different vertex index.
664 */
665 (void) this->lower_rvalue(dereference_array, fine_location,
666 unpacked_var, name, false, i);
667 } else {
668 char *subscripted_name
669 = ralloc_asprintf(this->mem_ctx, "%s[%d]", name, i);
670 fine_location =
671 this->lower_rvalue(dereference_array, fine_location,
672 unpacked_var, subscripted_name,
673 false, vertex_index);
674 }
675 }
676 return fine_location;
677 }
678
679 /**
680 * Retrieve the packed varying corresponding to the given varying location.
681 * If no packed varying has been created for the given varying location yet,
682 * create it and add it to the shader before returning it.
683 *
684 * The newly created varying inherits its interpolation parameters from \c
685 * unpacked_var. Its base type is ivec4 if we are lowering a flat varying,
686 * vec4 otherwise.
687 *
688 * \param vertex_index: if we are lowering geometry shader inputs, then this
689 * indicates which vertex we are currently lowering. Otherwise it is ignored.
690 */
691 ir_dereference *
692 lower_packed_varyings_visitor::get_packed_varying_deref(
693 unsigned location, ir_variable *unpacked_var, const char *name,
694 unsigned vertex_index)
695 {
696 unsigned slot = location - VARYING_SLOT_VAR0;
697 assert(slot < locations_used);
698 if (this->packed_varyings[slot] == NULL) {
699 char *packed_name = ralloc_asprintf(this->mem_ctx, "packed:%s", name);
700 const glsl_type *packed_type;
701 assert(components[slot] != 0);
702 if (unpacked_var->is_interpolation_flat())
703 packed_type = glsl_type::get_instance(GLSL_TYPE_INT, components[slot], 1);
704 else
705 packed_type = glsl_type::get_instance(GLSL_TYPE_FLOAT, components[slot], 1);
706 if (this->gs_input_vertices != 0) {
707 packed_type =
708 glsl_type::get_array_instance(packed_type,
709 this->gs_input_vertices);
710 }
711 ir_variable *packed_var = new(this->mem_ctx)
712 ir_variable(packed_type, packed_name, this->mode);
713 if (this->gs_input_vertices != 0) {
714 /* Prevent update_array_sizes() from messing with the size of the
715 * array.
716 */
717 packed_var->data.max_array_access = this->gs_input_vertices - 1;
718 }
719 packed_var->data.centroid = unpacked_var->data.centroid;
720 packed_var->data.sample = unpacked_var->data.sample;
721 packed_var->data.patch = unpacked_var->data.patch;
722 packed_var->data.interpolation =
723 packed_type->without_array() == glsl_type::ivec4_type
724 ? unsigned(INTERP_MODE_FLAT) : unpacked_var->data.interpolation;
725 packed_var->data.location = location;
726 packed_var->data.precision = unpacked_var->data.precision;
727 packed_var->data.always_active_io = unpacked_var->data.always_active_io;
728 packed_var->data.stream = 1u << 31;
729 unpacked_var->insert_before(packed_var);
730 this->packed_varyings[slot] = packed_var;
731 } else {
732 ir_variable *var = this->packed_varyings[slot];
733
734 /* The slot needs to be marked as always active if any variable that got
735 * packed there was.
736 */
737 var->data.always_active_io |= unpacked_var->data.always_active_io;
738
739 /* For geometry shader inputs, only update the packed variable name the
740 * first time we visit each component.
741 */
742 if (this->gs_input_vertices == 0 || vertex_index == 0) {
743 if (var->is_name_ralloced())
744 ralloc_asprintf_append((char **) &var->name, ",%s", name);
745 else
746 var->name = ralloc_asprintf(var, "%s,%s", var->name, name);
747 }
748 }
749
750 ir_dereference *deref = new(this->mem_ctx)
751 ir_dereference_variable(this->packed_varyings[slot]);
752 if (this->gs_input_vertices != 0) {
753 /* When lowering GS inputs, the packed variable is an array, so we need
754 * to dereference it using vertex_index.
755 */
756 ir_constant *constant = new(this->mem_ctx) ir_constant(vertex_index);
757 deref = new(this->mem_ctx) ir_dereference_array(deref, constant);
758 }
759 return deref;
760 }
761
762 bool
763 lower_packed_varyings_visitor::needs_lowering(ir_variable *var)
764 {
765 /* Things composed of vec4's, varyings with explicitly assigned
766 * locations or varyings marked as must_be_shader_input (which might be used
767 * by interpolateAt* functions) shouldn't be lowered. Everything else can be.
768 */
769 if (var->data.explicit_location || var->data.must_be_shader_input)
770 return false;
771
772 /* Override disable_varying_packing if the var is only used by transform
773 * feedback. Also override it if transform feedback is enabled and the
774 * variable is an array, struct or matrix as the elements of these types
775 * will always have the same interpolation and therefore are safe to pack.
776 */
777 const glsl_type *type = var->type;
778 if (disable_varying_packing && !var->data.is_xfb_only &&
779 !((type->is_array() || type->is_struct() || type->is_matrix()) &&
780 xfb_enabled))
781 return false;
782
783 type = type->without_array();
784 if (type->vector_elements == 4 && !type->is_64bit())
785 return false;
786 return true;
787 }
788
789
790 /**
791 * Visitor that splices varying packing code before every use of EmitVertex()
792 * in a geometry shader.
793 */
794 class lower_packed_varyings_gs_splicer : public ir_hierarchical_visitor
795 {
796 public:
797 explicit lower_packed_varyings_gs_splicer(void *mem_ctx,
798 const exec_list *instructions);
799
800 virtual ir_visitor_status visit_leave(ir_emit_vertex *ev);
801
802 private:
803 /**
804 * Memory context used to allocate new instructions for the shader.
805 */
806 void * const mem_ctx;
807
808 /**
809 * Instructions that should be spliced into place before each EmitVertex()
810 * call.
811 */
812 const exec_list *instructions;
813 };
814
815
816 lower_packed_varyings_gs_splicer::lower_packed_varyings_gs_splicer(
817 void *mem_ctx, const exec_list *instructions)
818 : mem_ctx(mem_ctx), instructions(instructions)
819 {
820 }
821
822
823 ir_visitor_status
824 lower_packed_varyings_gs_splicer::visit_leave(ir_emit_vertex *ev)
825 {
826 foreach_in_list(ir_instruction, ir, this->instructions) {
827 ev->insert_before(ir->clone(this->mem_ctx, NULL));
828 }
829 return visit_continue;
830 }
831
832 /**
833 * Visitor that splices varying packing code before every return.
834 */
835 class lower_packed_varyings_return_splicer : public ir_hierarchical_visitor
836 {
837 public:
838 explicit lower_packed_varyings_return_splicer(void *mem_ctx,
839 const exec_list *instructions);
840
841 virtual ir_visitor_status visit_leave(ir_return *ret);
842
843 private:
844 /**
845 * Memory context used to allocate new instructions for the shader.
846 */
847 void * const mem_ctx;
848
849 /**
850 * Instructions that should be spliced into place before each return.
851 */
852 const exec_list *instructions;
853 };
854
855
856 lower_packed_varyings_return_splicer::lower_packed_varyings_return_splicer(
857 void *mem_ctx, const exec_list *instructions)
858 : mem_ctx(mem_ctx), instructions(instructions)
859 {
860 }
861
862
863 ir_visitor_status
864 lower_packed_varyings_return_splicer::visit_leave(ir_return *ret)
865 {
866 foreach_in_list(ir_instruction, ir, this->instructions) {
867 ret->insert_before(ir->clone(this->mem_ctx, NULL));
868 }
869 return visit_continue;
870 }
871
872 void
873 lower_packed_varyings(void *mem_ctx, unsigned locations_used,
874 const uint8_t *components,
875 ir_variable_mode mode, unsigned gs_input_vertices,
876 gl_linked_shader *shader, bool disable_varying_packing,
877 bool xfb_enabled)
878 {
879 exec_list *instructions = shader->ir;
880 ir_function *main_func = shader->symbols->get_function("main");
881 exec_list void_parameters;
882 ir_function_signature *main_func_sig
883 = main_func->matching_signature(NULL, &void_parameters, false);
884 exec_list new_instructions, new_variables;
885 lower_packed_varyings_visitor visitor(mem_ctx,
886 locations_used,
887 components,
888 mode,
889 gs_input_vertices,
890 &new_instructions,
891 &new_variables,
892 disable_varying_packing,
893 xfb_enabled);
894 visitor.run(shader);
895 if (mode == ir_var_shader_out) {
896 if (shader->Stage == MESA_SHADER_GEOMETRY) {
897 /* For geometry shaders, outputs need to be lowered before each call
898 * to EmitVertex()
899 */
900 lower_packed_varyings_gs_splicer splicer(mem_ctx, &new_instructions);
901
902 /* Add all the variables in first. */
903 main_func_sig->body.get_head_raw()->insert_before(&new_variables);
904
905 /* Now update all the EmitVertex instances */
906 splicer.run(instructions);
907 } else {
908 /* For other shader types, outputs need to be lowered before each
909 * return statement and at the end of main()
910 */
911
912 lower_packed_varyings_return_splicer splicer(mem_ctx, &new_instructions);
913
914 main_func_sig->body.get_head_raw()->insert_before(&new_variables);
915
916 splicer.run(instructions);
917
918 /* Lower outputs at the end of main() if the last instruction is not
919 * a return statement
920 */
921 if (((ir_instruction*)instructions->get_tail())->ir_type != ir_type_return) {
922 main_func_sig->body.append_list(&new_instructions);
923 }
924 }
925 } else {
926 /* Shader inputs need to be lowered at the beginning of main() */
927 main_func_sig->body.get_head_raw()->insert_before(&new_instructions);
928 main_func_sig->body.get_head_raw()->insert_before(&new_variables);
929 }
930 }