d91aa22c2a462f59fa04c6420c3aef594ff2b214
[mesa.git] / src / compiler / glsl / lower_packed_varyings.cpp
1 /*
2 * Copyright © 2011 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file lower_varyings_to_packed.cpp
26 *
27 * This lowering pass generates GLSL code that manually packs varyings into
28 * vec4 slots, for the benefit of back-ends that don't support packed varyings
29 * natively.
30 *
31 * For example, the following shader:
32 *
33 * out mat3x2 foo; // location=4, location_frac=0
34 * out vec3 bar[2]; // location=5, location_frac=2
35 *
36 * main()
37 * {
38 * ...
39 * }
40 *
41 * Is rewritten to:
42 *
43 * mat3x2 foo;
44 * vec3 bar[2];
45 * out vec4 packed4; // location=4, location_frac=0
46 * out vec4 packed5; // location=5, location_frac=0
47 * out vec4 packed6; // location=6, location_frac=0
48 *
49 * main()
50 * {
51 * ...
52 * packed4.xy = foo[0];
53 * packed4.zw = foo[1];
54 * packed5.xy = foo[2];
55 * packed5.zw = bar[0].xy;
56 * packed6.x = bar[0].z;
57 * packed6.yzw = bar[1];
58 * }
59 *
60 * This lowering pass properly handles "double parking" of a varying vector
61 * across two varying slots. For example, in the code above, two of the
62 * components of bar[0] are stored in packed5, and the remaining component is
63 * stored in packed6.
64 *
65 * Note that in theory, the extra instructions may cause some loss of
66 * performance. However, hopefully in most cases the performance loss will
67 * either be absorbed by a later optimization pass, or it will be offset by
68 * memory bandwidth savings (because fewer varyings are used).
69 *
70 * This lowering pass also packs flat floats, ints, and uints together, by
71 * using ivec4 as the base type of flat "varyings", and using appropriate
72 * casts to convert floats and uints into ints.
73 *
74 * This lowering pass also handles varyings whose type is a struct or an array
75 * of struct. Structs are packed in order and with no gaps, so there may be a
76 * performance penalty due to structure elements being double-parked.
77 *
78 * Lowering of geometry shader inputs is slightly more complex, since geometry
79 * inputs are always arrays, so we need to lower arrays to arrays. For
80 * example, the following input:
81 *
82 * in struct Foo {
83 * float f;
84 * vec3 v;
85 * vec2 a[2];
86 * } arr[3]; // location=4, location_frac=0
87 *
88 * Would get lowered like this if it occurred in a fragment shader:
89 *
90 * struct Foo {
91 * float f;
92 * vec3 v;
93 * vec2 a[2];
94 * } arr[3];
95 * in vec4 packed4; // location=4, location_frac=0
96 * in vec4 packed5; // location=5, location_frac=0
97 * in vec4 packed6; // location=6, location_frac=0
98 * in vec4 packed7; // location=7, location_frac=0
99 * in vec4 packed8; // location=8, location_frac=0
100 * in vec4 packed9; // location=9, location_frac=0
101 *
102 * main()
103 * {
104 * arr[0].f = packed4.x;
105 * arr[0].v = packed4.yzw;
106 * arr[0].a[0] = packed5.xy;
107 * arr[0].a[1] = packed5.zw;
108 * arr[1].f = packed6.x;
109 * arr[1].v = packed6.yzw;
110 * arr[1].a[0] = packed7.xy;
111 * arr[1].a[1] = packed7.zw;
112 * arr[2].f = packed8.x;
113 * arr[2].v = packed8.yzw;
114 * arr[2].a[0] = packed9.xy;
115 * arr[2].a[1] = packed9.zw;
116 * ...
117 * }
118 *
119 * But it would get lowered like this if it occurred in a geometry shader:
120 *
121 * struct Foo {
122 * float f;
123 * vec3 v;
124 * vec2 a[2];
125 * } arr[3];
126 * in vec4 packed4[3]; // location=4, location_frac=0
127 * in vec4 packed5[3]; // location=5, location_frac=0
128 *
129 * main()
130 * {
131 * arr[0].f = packed4[0].x;
132 * arr[0].v = packed4[0].yzw;
133 * arr[0].a[0] = packed5[0].xy;
134 * arr[0].a[1] = packed5[0].zw;
135 * arr[1].f = packed4[1].x;
136 * arr[1].v = packed4[1].yzw;
137 * arr[1].a[0] = packed5[1].xy;
138 * arr[1].a[1] = packed5[1].zw;
139 * arr[2].f = packed4[2].x;
140 * arr[2].v = packed4[2].yzw;
141 * arr[2].a[0] = packed5[2].xy;
142 * arr[2].a[1] = packed5[2].zw;
143 * ...
144 * }
145 */
146
147 #include "glsl_symbol_table.h"
148 #include "ir.h"
149 #include "ir_builder.h"
150 #include "ir_optimization.h"
151 #include "program/prog_instruction.h"
152
153 using namespace ir_builder;
154
155 namespace {
156
157 /**
158 * Visitor that performs varying packing. For each varying declared in the
159 * shader, this visitor determines whether it needs to be packed. If so, it
160 * demotes it to an ordinary global, creates new packed varyings, and
161 * generates assignments to convert between the original varying and the
162 * packed varying.
163 */
164 class lower_packed_varyings_visitor
165 {
166 public:
167 lower_packed_varyings_visitor(void *mem_ctx, unsigned locations_used,
168 ir_variable_mode mode,
169 unsigned gs_input_vertices,
170 exec_list *out_instructions,
171 exec_list *out_variables,
172 bool disable_varying_packing);
173
174 void run(struct gl_shader *shader);
175
176 private:
177 void bitwise_assign_pack(ir_rvalue *lhs, ir_rvalue *rhs);
178 void bitwise_assign_unpack(ir_rvalue *lhs, ir_rvalue *rhs);
179 unsigned lower_rvalue(ir_rvalue *rvalue, unsigned fine_location,
180 ir_variable *unpacked_var, const char *name,
181 bool gs_input_toplevel, unsigned vertex_index);
182 unsigned lower_arraylike(ir_rvalue *rvalue, unsigned array_size,
183 unsigned fine_location,
184 ir_variable *unpacked_var, const char *name,
185 bool gs_input_toplevel, unsigned vertex_index);
186 ir_dereference *get_packed_varying_deref(unsigned location,
187 ir_variable *unpacked_var,
188 const char *name,
189 unsigned vertex_index);
190 bool needs_lowering(ir_variable *var);
191
192 /**
193 * Memory context used to allocate new instructions for the shader.
194 */
195 void * const mem_ctx;
196
197 /**
198 * Number of generic varying slots which are used by this shader. This is
199 * used to allocate temporary intermediate data structures. If any varying
200 * used by this shader has a location greater than or equal to
201 * VARYING_SLOT_VAR0 + locations_used, an assertion will fire.
202 */
203 const unsigned locations_used;
204
205 /**
206 * Array of pointers to the packed varyings that have been created for each
207 * generic varying slot. NULL entries in this array indicate varying slots
208 * for which a packed varying has not been created yet.
209 */
210 ir_variable **packed_varyings;
211
212 /**
213 * Type of varying which is being lowered in this pass (either
214 * ir_var_shader_in or ir_var_shader_out).
215 */
216 const ir_variable_mode mode;
217
218 /**
219 * If we are currently lowering geometry shader inputs, the number of input
220 * vertices the geometry shader accepts. Otherwise zero.
221 */
222 const unsigned gs_input_vertices;
223
224 /**
225 * Exec list into which the visitor should insert the packing instructions.
226 * Caller provides this list; it should insert the instructions into the
227 * appropriate place in the shader once the visitor has finished running.
228 */
229 exec_list *out_instructions;
230
231 /**
232 * Exec list into which the visitor should insert any new variables.
233 */
234 exec_list *out_variables;
235
236 bool disable_varying_packing;
237 };
238
239 } /* anonymous namespace */
240
241 lower_packed_varyings_visitor::lower_packed_varyings_visitor(
242 void *mem_ctx, unsigned locations_used, ir_variable_mode mode,
243 unsigned gs_input_vertices, exec_list *out_instructions,
244 exec_list *out_variables, bool disable_varying_packing)
245 : mem_ctx(mem_ctx),
246 locations_used(locations_used),
247 packed_varyings((ir_variable **)
248 rzalloc_array_size(mem_ctx, sizeof(*packed_varyings),
249 locations_used)),
250 mode(mode),
251 gs_input_vertices(gs_input_vertices),
252 out_instructions(out_instructions),
253 out_variables(out_variables),
254 disable_varying_packing(disable_varying_packing)
255 {
256 }
257
258 void
259 lower_packed_varyings_visitor::run(struct gl_shader *shader)
260 {
261 foreach_in_list(ir_instruction, node, shader->ir) {
262 ir_variable *var = node->as_variable();
263 if (var == NULL)
264 continue;
265
266 if (var->data.mode != this->mode ||
267 var->data.location < VARYING_SLOT_VAR0 ||
268 !this->needs_lowering(var))
269 continue;
270
271 /* This lowering pass is only capable of packing floats and ints
272 * together when their interpolation mode is "flat". Therefore, to be
273 * safe, caller should ensure that integral varyings always use flat
274 * interpolation, even when this is not required by GLSL.
275 */
276 assert(var->data.interpolation == INTERP_QUALIFIER_FLAT ||
277 !var->type->contains_integer());
278
279 /* Clone the variable for program resource list before
280 * it gets modified and lost.
281 */
282 if (!shader->packed_varyings)
283 shader->packed_varyings = new (shader) exec_list;
284
285 shader->packed_varyings->push_tail(var->clone(shader, NULL));
286
287 /* Change the old varying into an ordinary global. */
288 assert(var->data.mode != ir_var_temporary);
289 var->data.mode = ir_var_auto;
290
291 /* Create a reference to the old varying. */
292 ir_dereference_variable *deref
293 = new(this->mem_ctx) ir_dereference_variable(var);
294
295 /* Recursively pack or unpack it. */
296 this->lower_rvalue(deref, var->data.location * 4 + var->data.location_frac, var,
297 var->name, this->gs_input_vertices != 0, 0);
298 }
299 }
300
301 #define SWIZZLE_ZWZW MAKE_SWIZZLE4(SWIZZLE_Z, SWIZZLE_W, SWIZZLE_Z, SWIZZLE_W)
302
303 /**
304 * Make an ir_assignment from \c rhs to \c lhs, performing appropriate
305 * bitcasts if necessary to match up types.
306 *
307 * This function is called when packing varyings.
308 */
309 void
310 lower_packed_varyings_visitor::bitwise_assign_pack(ir_rvalue *lhs,
311 ir_rvalue *rhs)
312 {
313 if (lhs->type->base_type != rhs->type->base_type) {
314 /* Since we only mix types in flat varyings, and we always store flat
315 * varyings as type ivec4, we need only produce conversions from (uint
316 * or float) to int.
317 */
318 assert(lhs->type->base_type == GLSL_TYPE_INT);
319 switch (rhs->type->base_type) {
320 case GLSL_TYPE_UINT:
321 rhs = new(this->mem_ctx)
322 ir_expression(ir_unop_u2i, lhs->type, rhs);
323 break;
324 case GLSL_TYPE_FLOAT:
325 rhs = new(this->mem_ctx)
326 ir_expression(ir_unop_bitcast_f2i, lhs->type, rhs);
327 break;
328 case GLSL_TYPE_DOUBLE:
329 assert(rhs->type->vector_elements <= 2);
330 if (rhs->type->vector_elements == 2) {
331 ir_variable *t = new(mem_ctx) ir_variable(lhs->type, "pack", ir_var_temporary);
332
333 assert(lhs->type->vector_elements == 4);
334 this->out_variables->push_tail(t);
335 this->out_instructions->push_tail(
336 assign(t, u2i(expr(ir_unop_unpack_double_2x32, swizzle_x(rhs->clone(mem_ctx, NULL)))), 0x3));
337 this->out_instructions->push_tail(
338 assign(t, u2i(expr(ir_unop_unpack_double_2x32, swizzle_y(rhs))), 0xc));
339 rhs = deref(t).val;
340 } else {
341 rhs = u2i(expr(ir_unop_unpack_double_2x32, rhs));
342 }
343 break;
344 default:
345 assert(!"Unexpected type conversion while lowering varyings");
346 break;
347 }
348 }
349 this->out_instructions->push_tail(new (this->mem_ctx) ir_assignment(lhs, rhs));
350 }
351
352
353 /**
354 * Make an ir_assignment from \c rhs to \c lhs, performing appropriate
355 * bitcasts if necessary to match up types.
356 *
357 * This function is called when unpacking varyings.
358 */
359 void
360 lower_packed_varyings_visitor::bitwise_assign_unpack(ir_rvalue *lhs,
361 ir_rvalue *rhs)
362 {
363 if (lhs->type->base_type != rhs->type->base_type) {
364 /* Since we only mix types in flat varyings, and we always store flat
365 * varyings as type ivec4, we need only produce conversions from int to
366 * (uint or float).
367 */
368 assert(rhs->type->base_type == GLSL_TYPE_INT);
369 switch (lhs->type->base_type) {
370 case GLSL_TYPE_UINT:
371 rhs = new(this->mem_ctx)
372 ir_expression(ir_unop_i2u, lhs->type, rhs);
373 break;
374 case GLSL_TYPE_FLOAT:
375 rhs = new(this->mem_ctx)
376 ir_expression(ir_unop_bitcast_i2f, lhs->type, rhs);
377 break;
378 case GLSL_TYPE_DOUBLE:
379 assert(lhs->type->vector_elements <= 2);
380 if (lhs->type->vector_elements == 2) {
381 ir_variable *t = new(mem_ctx) ir_variable(lhs->type, "unpack", ir_var_temporary);
382 assert(rhs->type->vector_elements == 4);
383 this->out_variables->push_tail(t);
384 this->out_instructions->push_tail(
385 assign(t, expr(ir_unop_pack_double_2x32, i2u(swizzle_xy(rhs->clone(mem_ctx, NULL)))), 0x1));
386 this->out_instructions->push_tail(
387 assign(t, expr(ir_unop_pack_double_2x32, i2u(swizzle(rhs->clone(mem_ctx, NULL), SWIZZLE_ZWZW, 2))), 0x2));
388 rhs = deref(t).val;
389 } else {
390 rhs = expr(ir_unop_pack_double_2x32, i2u(rhs));
391 }
392 break;
393 default:
394 assert(!"Unexpected type conversion while lowering varyings");
395 break;
396 }
397 }
398 this->out_instructions->push_tail(new(this->mem_ctx) ir_assignment(lhs, rhs));
399 }
400
401
402 /**
403 * Recursively pack or unpack the given varying (or portion of a varying) by
404 * traversing all of its constituent vectors.
405 *
406 * \param fine_location is the location where the first constituent vector
407 * should be packed--the word "fine" indicates that this location is expressed
408 * in multiples of a float, rather than multiples of a vec4 as is used
409 * elsewhere in Mesa.
410 *
411 * \param gs_input_toplevel should be set to true if we are lowering geometry
412 * shader inputs, and we are currently lowering the whole input variable
413 * (i.e. we are lowering the array whose index selects the vertex).
414 *
415 * \param vertex_index: if we are lowering geometry shader inputs, and the
416 * level of the array that we are currently lowering is *not* the top level,
417 * then this indicates which vertex we are currently lowering. Otherwise it
418 * is ignored.
419 *
420 * \return the location where the next constituent vector (after this one)
421 * should be packed.
422 */
423 unsigned
424 lower_packed_varyings_visitor::lower_rvalue(ir_rvalue *rvalue,
425 unsigned fine_location,
426 ir_variable *unpacked_var,
427 const char *name,
428 bool gs_input_toplevel,
429 unsigned vertex_index)
430 {
431 unsigned dmul = rvalue->type->is_double() ? 2 : 1;
432 /* When gs_input_toplevel is set, we should be looking at a geometry shader
433 * input array.
434 */
435 assert(!gs_input_toplevel || rvalue->type->is_array());
436
437 if (rvalue->type->is_record()) {
438 for (unsigned i = 0; i < rvalue->type->length; i++) {
439 if (i != 0)
440 rvalue = rvalue->clone(this->mem_ctx, NULL);
441 const char *field_name = rvalue->type->fields.structure[i].name;
442 ir_dereference_record *dereference_record = new(this->mem_ctx)
443 ir_dereference_record(rvalue, field_name);
444 char *deref_name
445 = ralloc_asprintf(this->mem_ctx, "%s.%s", name, field_name);
446 fine_location = this->lower_rvalue(dereference_record, fine_location,
447 unpacked_var, deref_name, false,
448 vertex_index);
449 }
450 return fine_location;
451 } else if (rvalue->type->is_array()) {
452 /* Arrays are packed/unpacked by considering each array element in
453 * sequence.
454 */
455 return this->lower_arraylike(rvalue, rvalue->type->array_size(),
456 fine_location, unpacked_var, name,
457 gs_input_toplevel, vertex_index);
458 } else if (rvalue->type->is_matrix()) {
459 /* Matrices are packed/unpacked by considering each column vector in
460 * sequence.
461 */
462 return this->lower_arraylike(rvalue, rvalue->type->matrix_columns,
463 fine_location, unpacked_var, name,
464 false, vertex_index);
465 } else if (rvalue->type->vector_elements * dmul +
466 fine_location % 4 > 4) {
467 /* This vector is going to be "double parked" across two varying slots,
468 * so handle it as two separate assignments. For doubles, a dvec3/dvec4
469 * can end up being spread over 3 slots. However the second splitting
470 * will happen later, here we just always want to split into 2.
471 */
472 unsigned left_components, right_components;
473 unsigned left_swizzle_values[4] = { 0, 0, 0, 0 };
474 unsigned right_swizzle_values[4] = { 0, 0, 0, 0 };
475 char left_swizzle_name[4] = { 0, 0, 0, 0 };
476 char right_swizzle_name[4] = { 0, 0, 0, 0 };
477
478 left_components = 4 - fine_location % 4;
479 if (rvalue->type->is_double()) {
480 /* We might actually end up with 0 left components! */
481 left_components /= 2;
482 }
483 right_components = rvalue->type->vector_elements - left_components;
484
485 for (unsigned i = 0; i < left_components; i++) {
486 left_swizzle_values[i] = i;
487 left_swizzle_name[i] = "xyzw"[i];
488 }
489 for (unsigned i = 0; i < right_components; i++) {
490 right_swizzle_values[i] = i + left_components;
491 right_swizzle_name[i] = "xyzw"[i + left_components];
492 }
493 ir_swizzle *left_swizzle = new(this->mem_ctx)
494 ir_swizzle(rvalue, left_swizzle_values, left_components);
495 ir_swizzle *right_swizzle = new(this->mem_ctx)
496 ir_swizzle(rvalue->clone(this->mem_ctx, NULL), right_swizzle_values,
497 right_components);
498 char *left_name
499 = ralloc_asprintf(this->mem_ctx, "%s.%s", name, left_swizzle_name);
500 char *right_name
501 = ralloc_asprintf(this->mem_ctx, "%s.%s", name, right_swizzle_name);
502 if (left_components)
503 fine_location = this->lower_rvalue(left_swizzle, fine_location,
504 unpacked_var, left_name, false,
505 vertex_index);
506 else
507 /* Top up the fine location to the next slot */
508 fine_location++;
509 return this->lower_rvalue(right_swizzle, fine_location, unpacked_var,
510 right_name, false, vertex_index);
511 } else {
512 /* No special handling is necessary; pack the rvalue into the
513 * varying.
514 */
515 unsigned swizzle_values[4] = { 0, 0, 0, 0 };
516 unsigned components = rvalue->type->vector_elements * dmul;
517 unsigned location = fine_location / 4;
518 unsigned location_frac = fine_location % 4;
519 for (unsigned i = 0; i < components; ++i)
520 swizzle_values[i] = i + location_frac;
521 ir_dereference *packed_deref =
522 this->get_packed_varying_deref(location, unpacked_var, name,
523 vertex_index);
524 ir_swizzle *swizzle = new(this->mem_ctx)
525 ir_swizzle(packed_deref, swizzle_values, components);
526 if (this->mode == ir_var_shader_out) {
527 this->bitwise_assign_pack(swizzle, rvalue);
528 } else {
529 this->bitwise_assign_unpack(rvalue, swizzle);
530 }
531 return fine_location + components;
532 }
533 }
534
535 /**
536 * Recursively pack or unpack a varying for which we need to iterate over its
537 * constituent elements, accessing each one using an ir_dereference_array.
538 * This takes care of both arrays and matrices, since ir_dereference_array
539 * treats a matrix like an array of its column vectors.
540 *
541 * \param gs_input_toplevel should be set to true if we are lowering geometry
542 * shader inputs, and we are currently lowering the whole input variable
543 * (i.e. we are lowering the array whose index selects the vertex).
544 *
545 * \param vertex_index: if we are lowering geometry shader inputs, and the
546 * level of the array that we are currently lowering is *not* the top level,
547 * then this indicates which vertex we are currently lowering. Otherwise it
548 * is ignored.
549 */
550 unsigned
551 lower_packed_varyings_visitor::lower_arraylike(ir_rvalue *rvalue,
552 unsigned array_size,
553 unsigned fine_location,
554 ir_variable *unpacked_var,
555 const char *name,
556 bool gs_input_toplevel,
557 unsigned vertex_index)
558 {
559 for (unsigned i = 0; i < array_size; i++) {
560 if (i != 0)
561 rvalue = rvalue->clone(this->mem_ctx, NULL);
562 ir_constant *constant = new(this->mem_ctx) ir_constant(i);
563 ir_dereference_array *dereference_array = new(this->mem_ctx)
564 ir_dereference_array(rvalue, constant);
565 if (gs_input_toplevel) {
566 /* Geometry shader inputs are a special case. Instead of storing
567 * each element of the array at a different location, all elements
568 * are at the same location, but with a different vertex index.
569 */
570 (void) this->lower_rvalue(dereference_array, fine_location,
571 unpacked_var, name, false, i);
572 } else {
573 char *subscripted_name
574 = ralloc_asprintf(this->mem_ctx, "%s[%d]", name, i);
575 fine_location =
576 this->lower_rvalue(dereference_array, fine_location,
577 unpacked_var, subscripted_name,
578 false, vertex_index);
579 }
580 }
581 return fine_location;
582 }
583
584 /**
585 * Retrieve the packed varying corresponding to the given varying location.
586 * If no packed varying has been created for the given varying location yet,
587 * create it and add it to the shader before returning it.
588 *
589 * The newly created varying inherits its interpolation parameters from \c
590 * unpacked_var. Its base type is ivec4 if we are lowering a flat varying,
591 * vec4 otherwise.
592 *
593 * \param vertex_index: if we are lowering geometry shader inputs, then this
594 * indicates which vertex we are currently lowering. Otherwise it is ignored.
595 */
596 ir_dereference *
597 lower_packed_varyings_visitor::get_packed_varying_deref(
598 unsigned location, ir_variable *unpacked_var, const char *name,
599 unsigned vertex_index)
600 {
601 unsigned slot = location - VARYING_SLOT_VAR0;
602 assert(slot < locations_used);
603 if (this->packed_varyings[slot] == NULL) {
604 char *packed_name = ralloc_asprintf(this->mem_ctx, "packed:%s", name);
605 const glsl_type *packed_type;
606 if (unpacked_var->data.interpolation == INTERP_QUALIFIER_FLAT)
607 packed_type = glsl_type::ivec4_type;
608 else
609 packed_type = glsl_type::vec4_type;
610 if (this->gs_input_vertices != 0) {
611 packed_type =
612 glsl_type::get_array_instance(packed_type,
613 this->gs_input_vertices);
614 }
615 ir_variable *packed_var = new(this->mem_ctx)
616 ir_variable(packed_type, packed_name, this->mode);
617 if (this->gs_input_vertices != 0) {
618 /* Prevent update_array_sizes() from messing with the size of the
619 * array.
620 */
621 packed_var->data.max_array_access = this->gs_input_vertices - 1;
622 }
623 packed_var->data.centroid = unpacked_var->data.centroid;
624 packed_var->data.sample = unpacked_var->data.sample;
625 packed_var->data.patch = unpacked_var->data.patch;
626 packed_var->data.interpolation = unpacked_var->data.interpolation;
627 packed_var->data.location = location;
628 packed_var->data.precision = unpacked_var->data.precision;
629 packed_var->data.always_active_io = unpacked_var->data.always_active_io;
630 unpacked_var->insert_before(packed_var);
631 this->packed_varyings[slot] = packed_var;
632 } else {
633 /* For geometry shader inputs, only update the packed variable name the
634 * first time we visit each component.
635 */
636 if (this->gs_input_vertices == 0 || vertex_index == 0) {
637 ralloc_asprintf_append((char **) &this->packed_varyings[slot]->name,
638 ",%s", name);
639 }
640 }
641
642 ir_dereference *deref = new(this->mem_ctx)
643 ir_dereference_variable(this->packed_varyings[slot]);
644 if (this->gs_input_vertices != 0) {
645 /* When lowering GS inputs, the packed variable is an array, so we need
646 * to dereference it using vertex_index.
647 */
648 ir_constant *constant = new(this->mem_ctx) ir_constant(vertex_index);
649 deref = new(this->mem_ctx) ir_dereference_array(deref, constant);
650 }
651 return deref;
652 }
653
654 bool
655 lower_packed_varyings_visitor::needs_lowering(ir_variable *var)
656 {
657 /* Things composed of vec4's and varyings with explicitly assigned
658 * locations don't need lowering. Everything else does.
659 */
660 if (var->data.explicit_location)
661 return false;
662
663 if (disable_varying_packing)
664 return false;
665
666 const glsl_type *type = var->type->without_array();
667 if (type->vector_elements == 4 && !type->is_double())
668 return false;
669 return true;
670 }
671
672
673 /**
674 * Visitor that splices varying packing code before every use of EmitVertex()
675 * in a geometry shader.
676 */
677 class lower_packed_varyings_gs_splicer : public ir_hierarchical_visitor
678 {
679 public:
680 explicit lower_packed_varyings_gs_splicer(void *mem_ctx,
681 const exec_list *instructions);
682
683 virtual ir_visitor_status visit_leave(ir_emit_vertex *ev);
684
685 private:
686 /**
687 * Memory context used to allocate new instructions for the shader.
688 */
689 void * const mem_ctx;
690
691 /**
692 * Instructions that should be spliced into place before each EmitVertex()
693 * call.
694 */
695 const exec_list *instructions;
696 };
697
698
699 lower_packed_varyings_gs_splicer::lower_packed_varyings_gs_splicer(
700 void *mem_ctx, const exec_list *instructions)
701 : mem_ctx(mem_ctx), instructions(instructions)
702 {
703 }
704
705
706 ir_visitor_status
707 lower_packed_varyings_gs_splicer::visit_leave(ir_emit_vertex *ev)
708 {
709 foreach_in_list(ir_instruction, ir, this->instructions) {
710 ev->insert_before(ir->clone(this->mem_ctx, NULL));
711 }
712 return visit_continue;
713 }
714
715
716 void
717 lower_packed_varyings(void *mem_ctx, unsigned locations_used,
718 ir_variable_mode mode, unsigned gs_input_vertices,
719 gl_shader *shader, bool disable_varying_packing)
720 {
721 exec_list *instructions = shader->ir;
722 ir_function *main_func = shader->symbols->get_function("main");
723 exec_list void_parameters;
724 ir_function_signature *main_func_sig
725 = main_func->matching_signature(NULL, &void_parameters, false);
726 exec_list new_instructions, new_variables;
727 lower_packed_varyings_visitor visitor(mem_ctx, locations_used, mode,
728 gs_input_vertices,
729 &new_instructions,
730 &new_variables,
731 disable_varying_packing);
732 visitor.run(shader);
733 if (mode == ir_var_shader_out) {
734 if (shader->Stage == MESA_SHADER_GEOMETRY) {
735 /* For geometry shaders, outputs need to be lowered before each call
736 * to EmitVertex()
737 */
738 lower_packed_varyings_gs_splicer splicer(mem_ctx, &new_instructions);
739
740 /* Add all the variables in first. */
741 main_func_sig->body.head->insert_before(&new_variables);
742
743 /* Now update all the EmitVertex instances */
744 splicer.run(instructions);
745 } else {
746 /* For other shader types, outputs need to be lowered at the end of
747 * main()
748 */
749 main_func_sig->body.append_list(&new_variables);
750 main_func_sig->body.append_list(&new_instructions);
751 }
752 } else {
753 /* Shader inputs need to be lowered at the beginning of main() */
754 main_func_sig->body.head->insert_before(&new_instructions);
755 main_func_sig->body.head->insert_before(&new_variables);
756 }
757 }