glsl: Handle packed_type == ivec4[] in lower_packed_varyings().
[mesa.git] / src / compiler / glsl / lower_packed_varyings.cpp
1 /*
2 * Copyright © 2011 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file lower_varyings_to_packed.cpp
26 *
27 * This lowering pass generates GLSL code that manually packs varyings into
28 * vec4 slots, for the benefit of back-ends that don't support packed varyings
29 * natively.
30 *
31 * For example, the following shader:
32 *
33 * out mat3x2 foo; // location=4, location_frac=0
34 * out vec3 bar[2]; // location=5, location_frac=2
35 *
36 * main()
37 * {
38 * ...
39 * }
40 *
41 * Is rewritten to:
42 *
43 * mat3x2 foo;
44 * vec3 bar[2];
45 * out vec4 packed4; // location=4, location_frac=0
46 * out vec4 packed5; // location=5, location_frac=0
47 * out vec4 packed6; // location=6, location_frac=0
48 *
49 * main()
50 * {
51 * ...
52 * packed4.xy = foo[0];
53 * packed4.zw = foo[1];
54 * packed5.xy = foo[2];
55 * packed5.zw = bar[0].xy;
56 * packed6.x = bar[0].z;
57 * packed6.yzw = bar[1];
58 * }
59 *
60 * This lowering pass properly handles "double parking" of a varying vector
61 * across two varying slots. For example, in the code above, two of the
62 * components of bar[0] are stored in packed5, and the remaining component is
63 * stored in packed6.
64 *
65 * Note that in theory, the extra instructions may cause some loss of
66 * performance. However, hopefully in most cases the performance loss will
67 * either be absorbed by a later optimization pass, or it will be offset by
68 * memory bandwidth savings (because fewer varyings are used).
69 *
70 * This lowering pass also packs flat floats, ints, and uints together, by
71 * using ivec4 as the base type of flat "varyings", and using appropriate
72 * casts to convert floats and uints into ints.
73 *
74 * This lowering pass also handles varyings whose type is a struct or an array
75 * of struct. Structs are packed in order and with no gaps, so there may be a
76 * performance penalty due to structure elements being double-parked.
77 *
78 * Lowering of geometry shader inputs is slightly more complex, since geometry
79 * inputs are always arrays, so we need to lower arrays to arrays. For
80 * example, the following input:
81 *
82 * in struct Foo {
83 * float f;
84 * vec3 v;
85 * vec2 a[2];
86 * } arr[3]; // location=4, location_frac=0
87 *
88 * Would get lowered like this if it occurred in a fragment shader:
89 *
90 * struct Foo {
91 * float f;
92 * vec3 v;
93 * vec2 a[2];
94 * } arr[3];
95 * in vec4 packed4; // location=4, location_frac=0
96 * in vec4 packed5; // location=5, location_frac=0
97 * in vec4 packed6; // location=6, location_frac=0
98 * in vec4 packed7; // location=7, location_frac=0
99 * in vec4 packed8; // location=8, location_frac=0
100 * in vec4 packed9; // location=9, location_frac=0
101 *
102 * main()
103 * {
104 * arr[0].f = packed4.x;
105 * arr[0].v = packed4.yzw;
106 * arr[0].a[0] = packed5.xy;
107 * arr[0].a[1] = packed5.zw;
108 * arr[1].f = packed6.x;
109 * arr[1].v = packed6.yzw;
110 * arr[1].a[0] = packed7.xy;
111 * arr[1].a[1] = packed7.zw;
112 * arr[2].f = packed8.x;
113 * arr[2].v = packed8.yzw;
114 * arr[2].a[0] = packed9.xy;
115 * arr[2].a[1] = packed9.zw;
116 * ...
117 * }
118 *
119 * But it would get lowered like this if it occurred in a geometry shader:
120 *
121 * struct Foo {
122 * float f;
123 * vec3 v;
124 * vec2 a[2];
125 * } arr[3];
126 * in vec4 packed4[3]; // location=4, location_frac=0
127 * in vec4 packed5[3]; // location=5, location_frac=0
128 *
129 * main()
130 * {
131 * arr[0].f = packed4[0].x;
132 * arr[0].v = packed4[0].yzw;
133 * arr[0].a[0] = packed5[0].xy;
134 * arr[0].a[1] = packed5[0].zw;
135 * arr[1].f = packed4[1].x;
136 * arr[1].v = packed4[1].yzw;
137 * arr[1].a[0] = packed5[1].xy;
138 * arr[1].a[1] = packed5[1].zw;
139 * arr[2].f = packed4[2].x;
140 * arr[2].v = packed4[2].yzw;
141 * arr[2].a[0] = packed5[2].xy;
142 * arr[2].a[1] = packed5[2].zw;
143 * ...
144 * }
145 */
146
147 #include "glsl_symbol_table.h"
148 #include "ir.h"
149 #include "ir_builder.h"
150 #include "ir_optimization.h"
151 #include "program/prog_instruction.h"
152
153 using namespace ir_builder;
154
155 namespace {
156
157 /**
158 * Visitor that performs varying packing. For each varying declared in the
159 * shader, this visitor determines whether it needs to be packed. If so, it
160 * demotes it to an ordinary global, creates new packed varyings, and
161 * generates assignments to convert between the original varying and the
162 * packed varying.
163 */
164 class lower_packed_varyings_visitor
165 {
166 public:
167 lower_packed_varyings_visitor(void *mem_ctx,
168 unsigned locations_used,
169 const uint8_t *components,
170 ir_variable_mode mode,
171 unsigned gs_input_vertices,
172 exec_list *out_instructions,
173 exec_list *out_variables,
174 bool disable_varying_packing,
175 bool xfb_enabled);
176
177 void run(struct gl_linked_shader *shader);
178
179 private:
180 void bitwise_assign_pack(ir_rvalue *lhs, ir_rvalue *rhs);
181 void bitwise_assign_unpack(ir_rvalue *lhs, ir_rvalue *rhs);
182 unsigned lower_rvalue(ir_rvalue *rvalue, unsigned fine_location,
183 ir_variable *unpacked_var, const char *name,
184 bool gs_input_toplevel, unsigned vertex_index);
185 unsigned lower_arraylike(ir_rvalue *rvalue, unsigned array_size,
186 unsigned fine_location,
187 ir_variable *unpacked_var, const char *name,
188 bool gs_input_toplevel, unsigned vertex_index);
189 ir_dereference *get_packed_varying_deref(unsigned location,
190 ir_variable *unpacked_var,
191 const char *name,
192 unsigned vertex_index);
193 bool needs_lowering(ir_variable *var);
194
195 /**
196 * Memory context used to allocate new instructions for the shader.
197 */
198 void * const mem_ctx;
199
200 /**
201 * Number of generic varying slots which are used by this shader. This is
202 * used to allocate temporary intermediate data structures. If any varying
203 * used by this shader has a location greater than or equal to
204 * VARYING_SLOT_VAR0 + locations_used, an assertion will fire.
205 */
206 const unsigned locations_used;
207
208 const uint8_t* components;
209
210 /**
211 * Array of pointers to the packed varyings that have been created for each
212 * generic varying slot. NULL entries in this array indicate varying slots
213 * for which a packed varying has not been created yet.
214 */
215 ir_variable **packed_varyings;
216
217 /**
218 * Type of varying which is being lowered in this pass (either
219 * ir_var_shader_in or ir_var_shader_out).
220 */
221 const ir_variable_mode mode;
222
223 /**
224 * If we are currently lowering geometry shader inputs, the number of input
225 * vertices the geometry shader accepts. Otherwise zero.
226 */
227 const unsigned gs_input_vertices;
228
229 /**
230 * Exec list into which the visitor should insert the packing instructions.
231 * Caller provides this list; it should insert the instructions into the
232 * appropriate place in the shader once the visitor has finished running.
233 */
234 exec_list *out_instructions;
235
236 /**
237 * Exec list into which the visitor should insert any new variables.
238 */
239 exec_list *out_variables;
240
241 bool disable_varying_packing;
242 bool xfb_enabled;
243 };
244
245 } /* anonymous namespace */
246
247 lower_packed_varyings_visitor::lower_packed_varyings_visitor(
248 void *mem_ctx, unsigned locations_used, const uint8_t *components,
249 ir_variable_mode mode,
250 unsigned gs_input_vertices, exec_list *out_instructions,
251 exec_list *out_variables, bool disable_varying_packing,
252 bool xfb_enabled)
253 : mem_ctx(mem_ctx),
254 locations_used(locations_used),
255 components(components),
256 packed_varyings((ir_variable **)
257 rzalloc_array_size(mem_ctx, sizeof(*packed_varyings),
258 locations_used)),
259 mode(mode),
260 gs_input_vertices(gs_input_vertices),
261 out_instructions(out_instructions),
262 out_variables(out_variables),
263 disable_varying_packing(disable_varying_packing),
264 xfb_enabled(xfb_enabled)
265 {
266 }
267
268 void
269 lower_packed_varyings_visitor::run(struct gl_linked_shader *shader)
270 {
271 foreach_in_list(ir_instruction, node, shader->ir) {
272 ir_variable *var = node->as_variable();
273 if (var == NULL)
274 continue;
275
276 if (var->data.mode != this->mode ||
277 var->data.location < VARYING_SLOT_VAR0 ||
278 !this->needs_lowering(var))
279 continue;
280
281 /* This lowering pass is only capable of packing floats and ints
282 * together when their interpolation mode is "flat". Treat integers as
283 * being flat when the interpolation mode is none.
284 */
285 assert(var->data.interpolation == INTERP_MODE_FLAT ||
286 var->data.interpolation == INTERP_MODE_NONE ||
287 !var->type->contains_integer());
288
289 /* Clone the variable for program resource list before
290 * it gets modified and lost.
291 */
292 if (!shader->packed_varyings)
293 shader->packed_varyings = new (shader) exec_list;
294
295 shader->packed_varyings->push_tail(var->clone(shader, NULL));
296
297 /* Change the old varying into an ordinary global. */
298 assert(var->data.mode != ir_var_temporary);
299 var->data.mode = ir_var_auto;
300
301 /* Create a reference to the old varying. */
302 ir_dereference_variable *deref
303 = new(this->mem_ctx) ir_dereference_variable(var);
304
305 /* Recursively pack or unpack it. */
306 this->lower_rvalue(deref, var->data.location * 4 + var->data.location_frac, var,
307 var->name, this->gs_input_vertices != 0, 0);
308 }
309 }
310
311 #define SWIZZLE_ZWZW MAKE_SWIZZLE4(SWIZZLE_Z, SWIZZLE_W, SWIZZLE_Z, SWIZZLE_W)
312
313 /**
314 * Make an ir_assignment from \c rhs to \c lhs, performing appropriate
315 * bitcasts if necessary to match up types.
316 *
317 * This function is called when packing varyings.
318 */
319 void
320 lower_packed_varyings_visitor::bitwise_assign_pack(ir_rvalue *lhs,
321 ir_rvalue *rhs)
322 {
323 if (lhs->type->base_type != rhs->type->base_type) {
324 /* Since we only mix types in flat varyings, and we always store flat
325 * varyings as type ivec4, we need only produce conversions from (uint
326 * or float) to int.
327 */
328 assert(lhs->type->base_type == GLSL_TYPE_INT);
329 switch (rhs->type->base_type) {
330 case GLSL_TYPE_UINT:
331 rhs = new(this->mem_ctx)
332 ir_expression(ir_unop_u2i, lhs->type, rhs);
333 break;
334 case GLSL_TYPE_FLOAT:
335 rhs = new(this->mem_ctx)
336 ir_expression(ir_unop_bitcast_f2i, lhs->type, rhs);
337 break;
338 case GLSL_TYPE_DOUBLE:
339 assert(rhs->type->vector_elements <= 2);
340 if (rhs->type->vector_elements == 2) {
341 ir_variable *t = new(mem_ctx) ir_variable(lhs->type, "pack", ir_var_temporary);
342
343 assert(lhs->type->vector_elements == 4);
344 this->out_variables->push_tail(t);
345 this->out_instructions->push_tail(
346 assign(t, u2i(expr(ir_unop_unpack_double_2x32, swizzle_x(rhs->clone(mem_ctx, NULL)))), 0x3));
347 this->out_instructions->push_tail(
348 assign(t, u2i(expr(ir_unop_unpack_double_2x32, swizzle_y(rhs))), 0xc));
349 rhs = deref(t).val;
350 } else {
351 rhs = u2i(expr(ir_unop_unpack_double_2x32, rhs));
352 }
353 break;
354 case GLSL_TYPE_INT64:
355 assert(rhs->type->vector_elements <= 2);
356 if (rhs->type->vector_elements == 2) {
357 ir_variable *t = new(mem_ctx) ir_variable(lhs->type, "pack", ir_var_temporary);
358
359 assert(lhs->type->vector_elements == 4);
360 this->out_variables->push_tail(t);
361 this->out_instructions->push_tail(
362 assign(t, expr(ir_unop_unpack_int_2x32, swizzle_x(rhs->clone(mem_ctx, NULL))), 0x3));
363 this->out_instructions->push_tail(
364 assign(t, expr(ir_unop_unpack_int_2x32, swizzle_y(rhs)), 0xc));
365 rhs = deref(t).val;
366 } else {
367 rhs = expr(ir_unop_unpack_int_2x32, rhs);
368 }
369 break;
370 case GLSL_TYPE_UINT64:
371 assert(rhs->type->vector_elements <= 2);
372 if (rhs->type->vector_elements == 2) {
373 ir_variable *t = new(mem_ctx) ir_variable(lhs->type, "pack", ir_var_temporary);
374
375 assert(lhs->type->vector_elements == 4);
376 this->out_variables->push_tail(t);
377 this->out_instructions->push_tail(
378 assign(t, u2i(expr(ir_unop_unpack_uint_2x32, swizzle_x(rhs->clone(mem_ctx, NULL)))), 0x3));
379 this->out_instructions->push_tail(
380 assign(t, u2i(expr(ir_unop_unpack_uint_2x32, swizzle_y(rhs))), 0xc));
381 rhs = deref(t).val;
382 } else {
383 rhs = u2i(expr(ir_unop_unpack_uint_2x32, rhs));
384 }
385 break;
386 default:
387 assert(!"Unexpected type conversion while lowering varyings");
388 break;
389 }
390 }
391 this->out_instructions->push_tail(new (this->mem_ctx) ir_assignment(lhs, rhs));
392 }
393
394
395 /**
396 * Make an ir_assignment from \c rhs to \c lhs, performing appropriate
397 * bitcasts if necessary to match up types.
398 *
399 * This function is called when unpacking varyings.
400 */
401 void
402 lower_packed_varyings_visitor::bitwise_assign_unpack(ir_rvalue *lhs,
403 ir_rvalue *rhs)
404 {
405 if (lhs->type->base_type != rhs->type->base_type) {
406 /* Since we only mix types in flat varyings, and we always store flat
407 * varyings as type ivec4, we need only produce conversions from int to
408 * (uint or float).
409 */
410 assert(rhs->type->base_type == GLSL_TYPE_INT);
411 switch (lhs->type->base_type) {
412 case GLSL_TYPE_UINT:
413 rhs = new(this->mem_ctx)
414 ir_expression(ir_unop_i2u, lhs->type, rhs);
415 break;
416 case GLSL_TYPE_FLOAT:
417 rhs = new(this->mem_ctx)
418 ir_expression(ir_unop_bitcast_i2f, lhs->type, rhs);
419 break;
420 case GLSL_TYPE_DOUBLE:
421 assert(lhs->type->vector_elements <= 2);
422 if (lhs->type->vector_elements == 2) {
423 ir_variable *t = new(mem_ctx) ir_variable(lhs->type, "unpack", ir_var_temporary);
424 assert(rhs->type->vector_elements == 4);
425 this->out_variables->push_tail(t);
426 this->out_instructions->push_tail(
427 assign(t, expr(ir_unop_pack_double_2x32, i2u(swizzle_xy(rhs->clone(mem_ctx, NULL)))), 0x1));
428 this->out_instructions->push_tail(
429 assign(t, expr(ir_unop_pack_double_2x32, i2u(swizzle(rhs->clone(mem_ctx, NULL), SWIZZLE_ZWZW, 2))), 0x2));
430 rhs = deref(t).val;
431 } else {
432 rhs = expr(ir_unop_pack_double_2x32, i2u(rhs));
433 }
434 break;
435 case GLSL_TYPE_INT64:
436 assert(lhs->type->vector_elements <= 2);
437 if (lhs->type->vector_elements == 2) {
438 ir_variable *t = new(mem_ctx) ir_variable(lhs->type, "unpack", ir_var_temporary);
439 assert(rhs->type->vector_elements == 4);
440 this->out_variables->push_tail(t);
441 this->out_instructions->push_tail(
442 assign(t, expr(ir_unop_pack_int_2x32, swizzle_xy(rhs->clone(mem_ctx, NULL))), 0x1));
443 this->out_instructions->push_tail(
444 assign(t, expr(ir_unop_pack_int_2x32, swizzle(rhs->clone(mem_ctx, NULL), SWIZZLE_ZWZW, 2)), 0x2));
445 rhs = deref(t).val;
446 } else {
447 rhs = expr(ir_unop_pack_int_2x32, rhs);
448 }
449 break;
450 case GLSL_TYPE_UINT64:
451 assert(lhs->type->vector_elements <= 2);
452 if (lhs->type->vector_elements == 2) {
453 ir_variable *t = new(mem_ctx) ir_variable(lhs->type, "unpack", ir_var_temporary);
454 assert(rhs->type->vector_elements == 4);
455 this->out_variables->push_tail(t);
456 this->out_instructions->push_tail(
457 assign(t, expr(ir_unop_pack_uint_2x32, i2u(swizzle_xy(rhs->clone(mem_ctx, NULL)))), 0x1));
458 this->out_instructions->push_tail(
459 assign(t, expr(ir_unop_pack_uint_2x32, i2u(swizzle(rhs->clone(mem_ctx, NULL), SWIZZLE_ZWZW, 2))), 0x2));
460 rhs = deref(t).val;
461 } else {
462 rhs = expr(ir_unop_pack_uint_2x32, i2u(rhs));
463 }
464 break;
465 default:
466 assert(!"Unexpected type conversion while lowering varyings");
467 break;
468 }
469 }
470 this->out_instructions->push_tail(new(this->mem_ctx) ir_assignment(lhs, rhs));
471 }
472
473
474 /**
475 * Recursively pack or unpack the given varying (or portion of a varying) by
476 * traversing all of its constituent vectors.
477 *
478 * \param fine_location is the location where the first constituent vector
479 * should be packed--the word "fine" indicates that this location is expressed
480 * in multiples of a float, rather than multiples of a vec4 as is used
481 * elsewhere in Mesa.
482 *
483 * \param gs_input_toplevel should be set to true if we are lowering geometry
484 * shader inputs, and we are currently lowering the whole input variable
485 * (i.e. we are lowering the array whose index selects the vertex).
486 *
487 * \param vertex_index: if we are lowering geometry shader inputs, and the
488 * level of the array that we are currently lowering is *not* the top level,
489 * then this indicates which vertex we are currently lowering. Otherwise it
490 * is ignored.
491 *
492 * \return the location where the next constituent vector (after this one)
493 * should be packed.
494 */
495 unsigned
496 lower_packed_varyings_visitor::lower_rvalue(ir_rvalue *rvalue,
497 unsigned fine_location,
498 ir_variable *unpacked_var,
499 const char *name,
500 bool gs_input_toplevel,
501 unsigned vertex_index)
502 {
503 unsigned dmul = rvalue->type->is_64bit() ? 2 : 1;
504 /* When gs_input_toplevel is set, we should be looking at a geometry shader
505 * input array.
506 */
507 assert(!gs_input_toplevel || rvalue->type->is_array());
508
509 if (rvalue->type->is_record()) {
510 for (unsigned i = 0; i < rvalue->type->length; i++) {
511 if (i != 0)
512 rvalue = rvalue->clone(this->mem_ctx, NULL);
513 const char *field_name = rvalue->type->fields.structure[i].name;
514 ir_dereference_record *dereference_record = new(this->mem_ctx)
515 ir_dereference_record(rvalue, field_name);
516 char *deref_name
517 = ralloc_asprintf(this->mem_ctx, "%s.%s", name, field_name);
518 fine_location = this->lower_rvalue(dereference_record, fine_location,
519 unpacked_var, deref_name, false,
520 vertex_index);
521 }
522 return fine_location;
523 } else if (rvalue->type->is_array()) {
524 /* Arrays are packed/unpacked by considering each array element in
525 * sequence.
526 */
527 return this->lower_arraylike(rvalue, rvalue->type->array_size(),
528 fine_location, unpacked_var, name,
529 gs_input_toplevel, vertex_index);
530 } else if (rvalue->type->is_matrix()) {
531 /* Matrices are packed/unpacked by considering each column vector in
532 * sequence.
533 */
534 return this->lower_arraylike(rvalue, rvalue->type->matrix_columns,
535 fine_location, unpacked_var, name,
536 false, vertex_index);
537 } else if (rvalue->type->vector_elements * dmul +
538 fine_location % 4 > 4) {
539 /* This vector is going to be "double parked" across two varying slots,
540 * so handle it as two separate assignments. For doubles, a dvec3/dvec4
541 * can end up being spread over 3 slots. However the second splitting
542 * will happen later, here we just always want to split into 2.
543 */
544 unsigned left_components, right_components;
545 unsigned left_swizzle_values[4] = { 0, 0, 0, 0 };
546 unsigned right_swizzle_values[4] = { 0, 0, 0, 0 };
547 char left_swizzle_name[4] = { 0, 0, 0, 0 };
548 char right_swizzle_name[4] = { 0, 0, 0, 0 };
549
550 left_components = 4 - fine_location % 4;
551 if (rvalue->type->is_64bit()) {
552 /* We might actually end up with 0 left components! */
553 left_components /= 2;
554 }
555 right_components = rvalue->type->vector_elements - left_components;
556
557 for (unsigned i = 0; i < left_components; i++) {
558 left_swizzle_values[i] = i;
559 left_swizzle_name[i] = "xyzw"[i];
560 }
561 for (unsigned i = 0; i < right_components; i++) {
562 right_swizzle_values[i] = i + left_components;
563 right_swizzle_name[i] = "xyzw"[i + left_components];
564 }
565 ir_swizzle *left_swizzle = new(this->mem_ctx)
566 ir_swizzle(rvalue, left_swizzle_values, left_components);
567 ir_swizzle *right_swizzle = new(this->mem_ctx)
568 ir_swizzle(rvalue->clone(this->mem_ctx, NULL), right_swizzle_values,
569 right_components);
570 char *left_name
571 = ralloc_asprintf(this->mem_ctx, "%s.%s", name, left_swizzle_name);
572 char *right_name
573 = ralloc_asprintf(this->mem_ctx, "%s.%s", name, right_swizzle_name);
574 if (left_components)
575 fine_location = this->lower_rvalue(left_swizzle, fine_location,
576 unpacked_var, left_name, false,
577 vertex_index);
578 else
579 /* Top up the fine location to the next slot */
580 fine_location++;
581 return this->lower_rvalue(right_swizzle, fine_location, unpacked_var,
582 right_name, false, vertex_index);
583 } else {
584 /* No special handling is necessary; pack the rvalue into the
585 * varying.
586 */
587 unsigned swizzle_values[4] = { 0, 0, 0, 0 };
588 unsigned components = rvalue->type->vector_elements * dmul;
589 unsigned location = fine_location / 4;
590 unsigned location_frac = fine_location % 4;
591 for (unsigned i = 0; i < components; ++i)
592 swizzle_values[i] = i + location_frac;
593 ir_dereference *packed_deref =
594 this->get_packed_varying_deref(location, unpacked_var, name,
595 vertex_index);
596 if (unpacked_var->data.stream != 0) {
597 assert(unpacked_var->data.stream < 4);
598 ir_variable *packed_var = packed_deref->variable_referenced();
599 for (unsigned i = 0; i < components; ++i) {
600 packed_var->data.stream |=
601 unpacked_var->data.stream << (2 * (location_frac + i));
602 }
603 }
604 ir_swizzle *swizzle = new(this->mem_ctx)
605 ir_swizzle(packed_deref, swizzle_values, components);
606 if (this->mode == ir_var_shader_out) {
607 this->bitwise_assign_pack(swizzle, rvalue);
608 } else {
609 this->bitwise_assign_unpack(rvalue, swizzle);
610 }
611 return fine_location + components;
612 }
613 }
614
615 /**
616 * Recursively pack or unpack a varying for which we need to iterate over its
617 * constituent elements, accessing each one using an ir_dereference_array.
618 * This takes care of both arrays and matrices, since ir_dereference_array
619 * treats a matrix like an array of its column vectors.
620 *
621 * \param gs_input_toplevel should be set to true if we are lowering geometry
622 * shader inputs, and we are currently lowering the whole input variable
623 * (i.e. we are lowering the array whose index selects the vertex).
624 *
625 * \param vertex_index: if we are lowering geometry shader inputs, and the
626 * level of the array that we are currently lowering is *not* the top level,
627 * then this indicates which vertex we are currently lowering. Otherwise it
628 * is ignored.
629 */
630 unsigned
631 lower_packed_varyings_visitor::lower_arraylike(ir_rvalue *rvalue,
632 unsigned array_size,
633 unsigned fine_location,
634 ir_variable *unpacked_var,
635 const char *name,
636 bool gs_input_toplevel,
637 unsigned vertex_index)
638 {
639 for (unsigned i = 0; i < array_size; i++) {
640 if (i != 0)
641 rvalue = rvalue->clone(this->mem_ctx, NULL);
642 ir_constant *constant = new(this->mem_ctx) ir_constant(i);
643 ir_dereference_array *dereference_array = new(this->mem_ctx)
644 ir_dereference_array(rvalue, constant);
645 if (gs_input_toplevel) {
646 /* Geometry shader inputs are a special case. Instead of storing
647 * each element of the array at a different location, all elements
648 * are at the same location, but with a different vertex index.
649 */
650 (void) this->lower_rvalue(dereference_array, fine_location,
651 unpacked_var, name, false, i);
652 } else {
653 char *subscripted_name
654 = ralloc_asprintf(this->mem_ctx, "%s[%d]", name, i);
655 fine_location =
656 this->lower_rvalue(dereference_array, fine_location,
657 unpacked_var, subscripted_name,
658 false, vertex_index);
659 }
660 }
661 return fine_location;
662 }
663
664 /**
665 * Retrieve the packed varying corresponding to the given varying location.
666 * If no packed varying has been created for the given varying location yet,
667 * create it and add it to the shader before returning it.
668 *
669 * The newly created varying inherits its interpolation parameters from \c
670 * unpacked_var. Its base type is ivec4 if we are lowering a flat varying,
671 * vec4 otherwise.
672 *
673 * \param vertex_index: if we are lowering geometry shader inputs, then this
674 * indicates which vertex we are currently lowering. Otherwise it is ignored.
675 */
676 ir_dereference *
677 lower_packed_varyings_visitor::get_packed_varying_deref(
678 unsigned location, ir_variable *unpacked_var, const char *name,
679 unsigned vertex_index)
680 {
681 unsigned slot = location - VARYING_SLOT_VAR0;
682 assert(slot < locations_used);
683 if (this->packed_varyings[slot] == NULL) {
684 char *packed_name = ralloc_asprintf(this->mem_ctx, "packed:%s", name);
685 const glsl_type *packed_type;
686 assert(components[slot] != 0);
687 if (unpacked_var->is_interpolation_flat())
688 packed_type = glsl_type::get_instance(GLSL_TYPE_INT, components[slot], 1);
689 else
690 packed_type = glsl_type::get_instance(GLSL_TYPE_FLOAT, components[slot], 1);
691 if (this->gs_input_vertices != 0) {
692 packed_type =
693 glsl_type::get_array_instance(packed_type,
694 this->gs_input_vertices);
695 }
696 ir_variable *packed_var = new(this->mem_ctx)
697 ir_variable(packed_type, packed_name, this->mode);
698 if (this->gs_input_vertices != 0) {
699 /* Prevent update_array_sizes() from messing with the size of the
700 * array.
701 */
702 packed_var->data.max_array_access = this->gs_input_vertices - 1;
703 }
704 packed_var->data.centroid = unpacked_var->data.centroid;
705 packed_var->data.sample = unpacked_var->data.sample;
706 packed_var->data.patch = unpacked_var->data.patch;
707 packed_var->data.interpolation =
708 packed_type->without_array() == glsl_type::ivec4_type
709 ? unsigned(INTERP_MODE_FLAT) : unpacked_var->data.interpolation;
710 packed_var->data.location = location;
711 packed_var->data.precision = unpacked_var->data.precision;
712 packed_var->data.always_active_io = unpacked_var->data.always_active_io;
713 packed_var->data.stream = 1u << 31;
714 unpacked_var->insert_before(packed_var);
715 this->packed_varyings[slot] = packed_var;
716 } else {
717 /* For geometry shader inputs, only update the packed variable name the
718 * first time we visit each component.
719 */
720 if (this->gs_input_vertices == 0 || vertex_index == 0) {
721 ir_variable *var = this->packed_varyings[slot];
722
723 if (var->is_name_ralloced())
724 ralloc_asprintf_append((char **) &var->name, ",%s", name);
725 else
726 var->name = ralloc_asprintf(var, "%s,%s", var->name, name);
727 }
728 }
729
730 ir_dereference *deref = new(this->mem_ctx)
731 ir_dereference_variable(this->packed_varyings[slot]);
732 if (this->gs_input_vertices != 0) {
733 /* When lowering GS inputs, the packed variable is an array, so we need
734 * to dereference it using vertex_index.
735 */
736 ir_constant *constant = new(this->mem_ctx) ir_constant(vertex_index);
737 deref = new(this->mem_ctx) ir_dereference_array(deref, constant);
738 }
739 return deref;
740 }
741
742 bool
743 lower_packed_varyings_visitor::needs_lowering(ir_variable *var)
744 {
745 /* Things composed of vec4's and varyings with explicitly assigned
746 * locations don't need lowering. Everything else does.
747 */
748 if (var->data.explicit_location)
749 return false;
750
751 /* Override disable_varying_packing if the var is only used by transform
752 * feedback. Also override it if transform feedback is enabled and the
753 * variable is an array, struct or matrix as the elements of these types
754 * will always has the same interpolation and therefore asre safe to pack.
755 */
756 const glsl_type *type = var->type;
757 if (disable_varying_packing && !var->data.is_xfb_only &&
758 !((type->is_array() || type->is_record() || type->is_matrix()) &&
759 xfb_enabled))
760 return false;
761
762 type = type->without_array();
763 if (type->vector_elements == 4 && !type->is_64bit())
764 return false;
765 return true;
766 }
767
768
769 /**
770 * Visitor that splices varying packing code before every use of EmitVertex()
771 * in a geometry shader.
772 */
773 class lower_packed_varyings_gs_splicer : public ir_hierarchical_visitor
774 {
775 public:
776 explicit lower_packed_varyings_gs_splicer(void *mem_ctx,
777 const exec_list *instructions);
778
779 virtual ir_visitor_status visit_leave(ir_emit_vertex *ev);
780
781 private:
782 /**
783 * Memory context used to allocate new instructions for the shader.
784 */
785 void * const mem_ctx;
786
787 /**
788 * Instructions that should be spliced into place before each EmitVertex()
789 * call.
790 */
791 const exec_list *instructions;
792 };
793
794
795 lower_packed_varyings_gs_splicer::lower_packed_varyings_gs_splicer(
796 void *mem_ctx, const exec_list *instructions)
797 : mem_ctx(mem_ctx), instructions(instructions)
798 {
799 }
800
801
802 ir_visitor_status
803 lower_packed_varyings_gs_splicer::visit_leave(ir_emit_vertex *ev)
804 {
805 foreach_in_list(ir_instruction, ir, this->instructions) {
806 ev->insert_before(ir->clone(this->mem_ctx, NULL));
807 }
808 return visit_continue;
809 }
810
811 /**
812 * Visitor that splices varying packing code before every return.
813 */
814 class lower_packed_varyings_return_splicer : public ir_hierarchical_visitor
815 {
816 public:
817 explicit lower_packed_varyings_return_splicer(void *mem_ctx,
818 const exec_list *instructions);
819
820 virtual ir_visitor_status visit_leave(ir_return *ret);
821
822 private:
823 /**
824 * Memory context used to allocate new instructions for the shader.
825 */
826 void * const mem_ctx;
827
828 /**
829 * Instructions that should be spliced into place before each return.
830 */
831 const exec_list *instructions;
832 };
833
834
835 lower_packed_varyings_return_splicer::lower_packed_varyings_return_splicer(
836 void *mem_ctx, const exec_list *instructions)
837 : mem_ctx(mem_ctx), instructions(instructions)
838 {
839 }
840
841
842 ir_visitor_status
843 lower_packed_varyings_return_splicer::visit_leave(ir_return *ret)
844 {
845 foreach_in_list(ir_instruction, ir, this->instructions) {
846 ret->insert_before(ir->clone(this->mem_ctx, NULL));
847 }
848 return visit_continue;
849 }
850
851 void
852 lower_packed_varyings(void *mem_ctx, unsigned locations_used,
853 const uint8_t *components,
854 ir_variable_mode mode, unsigned gs_input_vertices,
855 gl_linked_shader *shader, bool disable_varying_packing,
856 bool xfb_enabled)
857 {
858 exec_list *instructions = shader->ir;
859 ir_function *main_func = shader->symbols->get_function("main");
860 exec_list void_parameters;
861 ir_function_signature *main_func_sig
862 = main_func->matching_signature(NULL, &void_parameters, false);
863 exec_list new_instructions, new_variables;
864 lower_packed_varyings_visitor visitor(mem_ctx,
865 locations_used,
866 components,
867 mode,
868 gs_input_vertices,
869 &new_instructions,
870 &new_variables,
871 disable_varying_packing,
872 xfb_enabled);
873 visitor.run(shader);
874 if (mode == ir_var_shader_out) {
875 if (shader->Stage == MESA_SHADER_GEOMETRY) {
876 /* For geometry shaders, outputs need to be lowered before each call
877 * to EmitVertex()
878 */
879 lower_packed_varyings_gs_splicer splicer(mem_ctx, &new_instructions);
880
881 /* Add all the variables in first. */
882 main_func_sig->body.get_head_raw()->insert_before(&new_variables);
883
884 /* Now update all the EmitVertex instances */
885 splicer.run(instructions);
886 } else {
887 /* For other shader types, outputs need to be lowered before each
888 * return statement and at the end of main()
889 */
890
891 lower_packed_varyings_return_splicer splicer(mem_ctx, &new_instructions);
892
893 main_func_sig->body.get_head_raw()->insert_before(&new_variables);
894
895 splicer.run(instructions);
896
897 /* Lower outputs at the end of main() if the last instruction is not
898 * a return statement
899 */
900 if (((ir_instruction*)instructions->get_tail())->ir_type != ir_type_return) {
901 main_func_sig->body.append_list(&new_instructions);
902 }
903 }
904 } else {
905 /* Shader inputs need to be lowered at the beginning of main() */
906 main_func_sig->body.get_head_raw()->insert_before(&new_instructions);
907 main_func_sig->body.get_head_raw()->insert_before(&new_variables);
908 }
909 }