egl: Update headers from Khronos
[mesa.git] / src / compiler / glsl / opt_algebraic.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file opt_algebraic.cpp
26 *
27 * Takes advantage of association, commutivity, and other algebraic
28 * properties to simplify expressions.
29 */
30
31 #include "ir.h"
32 #include "ir_visitor.h"
33 #include "ir_rvalue_visitor.h"
34 #include "ir_optimization.h"
35 #include "ir_builder.h"
36 #include "compiler/glsl_types.h"
37
38 using namespace ir_builder;
39
40 namespace {
41
42 /**
43 * Visitor class for replacing expressions with ir_constant values.
44 */
45
46 class ir_algebraic_visitor : public ir_rvalue_visitor {
47 public:
48 ir_algebraic_visitor(bool native_integers,
49 const struct gl_shader_compiler_options *options)
50 : options(options)
51 {
52 this->progress = false;
53 this->mem_ctx = NULL;
54 this->native_integers = native_integers;
55 }
56
57 virtual ~ir_algebraic_visitor()
58 {
59 }
60
61 virtual ir_visitor_status visit_enter(ir_assignment *ir);
62
63 ir_rvalue *handle_expression(ir_expression *ir);
64 void handle_rvalue(ir_rvalue **rvalue);
65 bool reassociate_constant(ir_expression *ir1,
66 int const_index,
67 ir_constant *constant,
68 ir_expression *ir2);
69 void reassociate_operands(ir_expression *ir1,
70 int op1,
71 ir_expression *ir2,
72 int op2);
73 ir_rvalue *swizzle_if_required(ir_expression *expr,
74 ir_rvalue *operand);
75
76 const struct gl_shader_compiler_options *options;
77 void *mem_ctx;
78
79 bool native_integers;
80 bool progress;
81 };
82
83 } /* unnamed namespace */
84
85 ir_visitor_status
86 ir_algebraic_visitor::visit_enter(ir_assignment *ir)
87 {
88 ir_variable *var = ir->lhs->variable_referenced();
89 if (var->data.invariant || var->data.precise) {
90 /* If we're assigning to an invariant or precise variable, just bail.
91 * Most of the algebraic optimizations aren't precision-safe.
92 *
93 * FINISHME: Find out which optimizations are precision-safe and enable
94 * then only for invariant or precise trees.
95 */
96 return visit_continue_with_parent;
97 } else {
98 return visit_continue;
99 }
100 }
101
102 static inline bool
103 is_vec_zero(ir_constant *ir)
104 {
105 return (ir == NULL) ? false : ir->is_zero();
106 }
107
108 static inline bool
109 is_vec_one(ir_constant *ir)
110 {
111 return (ir == NULL) ? false : ir->is_one();
112 }
113
114 static inline bool
115 is_vec_two(ir_constant *ir)
116 {
117 return (ir == NULL) ? false : ir->is_value(2.0, 2);
118 }
119
120 static inline bool
121 is_vec_four(ir_constant *ir)
122 {
123 return (ir == NULL) ? false : ir->is_value(4.0, 4);
124 }
125
126 static inline bool
127 is_vec_negative_one(ir_constant *ir)
128 {
129 return (ir == NULL) ? false : ir->is_negative_one();
130 }
131
132 static inline bool
133 is_valid_vec_const(ir_constant *ir)
134 {
135 if (ir == NULL)
136 return false;
137
138 if (!ir->type->is_scalar() && !ir->type->is_vector())
139 return false;
140
141 return true;
142 }
143
144 static inline bool
145 is_less_than_one(ir_constant *ir)
146 {
147 assert(ir->type->is_float());
148
149 if (!is_valid_vec_const(ir))
150 return false;
151
152 unsigned component = 0;
153 for (int c = 0; c < ir->type->vector_elements; c++) {
154 if (ir->get_float_component(c) < 1.0f)
155 component++;
156 }
157
158 return (component == ir->type->vector_elements);
159 }
160
161 static inline bool
162 is_greater_than_zero(ir_constant *ir)
163 {
164 assert(ir->type->is_float());
165
166 if (!is_valid_vec_const(ir))
167 return false;
168
169 unsigned component = 0;
170 for (int c = 0; c < ir->type->vector_elements; c++) {
171 if (ir->get_float_component(c) > 0.0f)
172 component++;
173 }
174
175 return (component == ir->type->vector_elements);
176 }
177
178 static void
179 update_type(ir_expression *ir)
180 {
181 if (ir->operands[0]->type->is_vector())
182 ir->type = ir->operands[0]->type;
183 else
184 ir->type = ir->operands[1]->type;
185 }
186
187 /* Recognize (v.x + v.y) + (v.z + v.w) as dot(v, 1.0) */
188 static ir_expression *
189 try_replace_with_dot(ir_expression *expr0, ir_expression *expr1, void *mem_ctx)
190 {
191 if (expr0 && expr0->operation == ir_binop_add &&
192 expr0->type->is_float() &&
193 expr1 && expr1->operation == ir_binop_add &&
194 expr1->type->is_float()) {
195 ir_swizzle *x = expr0->operands[0]->as_swizzle();
196 ir_swizzle *y = expr0->operands[1]->as_swizzle();
197 ir_swizzle *z = expr1->operands[0]->as_swizzle();
198 ir_swizzle *w = expr1->operands[1]->as_swizzle();
199
200 if (!x || x->mask.num_components != 1 ||
201 !y || y->mask.num_components != 1 ||
202 !z || z->mask.num_components != 1 ||
203 !w || w->mask.num_components != 1) {
204 return NULL;
205 }
206
207 bool swiz_seen[4] = {false, false, false, false};
208 swiz_seen[x->mask.x] = true;
209 swiz_seen[y->mask.x] = true;
210 swiz_seen[z->mask.x] = true;
211 swiz_seen[w->mask.x] = true;
212
213 if (!swiz_seen[0] || !swiz_seen[1] ||
214 !swiz_seen[2] || !swiz_seen[3]) {
215 return NULL;
216 }
217
218 if (x->val->equals(y->val) &&
219 x->val->equals(z->val) &&
220 x->val->equals(w->val)) {
221 return dot(x->val, new(mem_ctx) ir_constant(1.0f, 4));
222 }
223 }
224 return NULL;
225 }
226
227 void
228 ir_algebraic_visitor::reassociate_operands(ir_expression *ir1,
229 int op1,
230 ir_expression *ir2,
231 int op2)
232 {
233 ir_rvalue *temp = ir2->operands[op2];
234 ir2->operands[op2] = ir1->operands[op1];
235 ir1->operands[op1] = temp;
236
237 /* Update the type of ir2. The type of ir1 won't have changed --
238 * base types matched, and at least one of the operands of the 2
239 * binops is still a vector if any of them were.
240 */
241 update_type(ir2);
242
243 this->progress = true;
244 }
245
246 /**
247 * Reassociates a constant down a tree of adds or multiplies.
248 *
249 * Consider (2 * (a * (b * 0.5))). We want to end up with a * b.
250 */
251 bool
252 ir_algebraic_visitor::reassociate_constant(ir_expression *ir1, int const_index,
253 ir_constant *constant,
254 ir_expression *ir2)
255 {
256 if (!ir2 || ir1->operation != ir2->operation)
257 return false;
258
259 /* Don't want to even think about matrices. */
260 if (ir1->operands[0]->type->is_matrix() ||
261 ir1->operands[1]->type->is_matrix() ||
262 ir2->operands[0]->type->is_matrix() ||
263 ir2->operands[1]->type->is_matrix())
264 return false;
265
266 void *mem_ctx = ralloc_parent(ir2);
267
268 ir_constant *ir2_const[2];
269 ir2_const[0] = ir2->operands[0]->constant_expression_value(mem_ctx);
270 ir2_const[1] = ir2->operands[1]->constant_expression_value(mem_ctx);
271
272 if (ir2_const[0] && ir2_const[1])
273 return false;
274
275 if (ir2_const[0]) {
276 reassociate_operands(ir1, const_index, ir2, 1);
277 return true;
278 } else if (ir2_const[1]) {
279 reassociate_operands(ir1, const_index, ir2, 0);
280 return true;
281 }
282
283 if (reassociate_constant(ir1, const_index, constant,
284 ir2->operands[0]->as_expression())) {
285 update_type(ir2);
286 return true;
287 }
288
289 if (reassociate_constant(ir1, const_index, constant,
290 ir2->operands[1]->as_expression())) {
291 update_type(ir2);
292 return true;
293 }
294
295 return false;
296 }
297
298 /* When eliminating an expression and just returning one of its operands,
299 * we may need to swizzle that operand out to a vector if the expression was
300 * vector type.
301 */
302 ir_rvalue *
303 ir_algebraic_visitor::swizzle_if_required(ir_expression *expr,
304 ir_rvalue *operand)
305 {
306 if (expr->type->is_vector() && operand->type->is_scalar()) {
307 return new(mem_ctx) ir_swizzle(operand, 0, 0, 0, 0,
308 expr->type->vector_elements);
309 } else
310 return operand;
311 }
312
313 ir_rvalue *
314 ir_algebraic_visitor::handle_expression(ir_expression *ir)
315 {
316 ir_constant *op_const[4] = {NULL, NULL, NULL, NULL};
317 ir_expression *op_expr[4] = {NULL, NULL, NULL, NULL};
318
319 if (ir->operation == ir_binop_mul &&
320 ir->operands[0]->type->is_matrix() &&
321 ir->operands[1]->type->is_vector()) {
322 ir_expression *matrix_mul = ir->operands[0]->as_expression();
323
324 if (matrix_mul && matrix_mul->operation == ir_binop_mul &&
325 matrix_mul->operands[0]->type->is_matrix() &&
326 matrix_mul->operands[1]->type->is_matrix()) {
327
328 return mul(matrix_mul->operands[0],
329 mul(matrix_mul->operands[1], ir->operands[1]));
330 }
331 }
332
333 assert(ir->num_operands <= 4);
334 for (unsigned i = 0; i < ir->num_operands; i++) {
335 if (ir->operands[i]->type->is_matrix())
336 return ir;
337
338 op_const[i] =
339 ir->operands[i]->constant_expression_value(ralloc_parent(ir));
340 op_expr[i] = ir->operands[i]->as_expression();
341 }
342
343 if (this->mem_ctx == NULL)
344 this->mem_ctx = ralloc_parent(ir);
345
346 switch (ir->operation) {
347 case ir_unop_bit_not:
348 if (op_expr[0] && op_expr[0]->operation == ir_unop_bit_not)
349 return op_expr[0]->operands[0];
350 break;
351
352 case ir_unop_abs:
353 if (op_expr[0] == NULL)
354 break;
355
356 switch (op_expr[0]->operation) {
357 case ir_unop_abs:
358 case ir_unop_neg:
359 return abs(op_expr[0]->operands[0]);
360 default:
361 break;
362 }
363 break;
364
365 case ir_unop_neg:
366 if (op_expr[0] == NULL)
367 break;
368
369 if (op_expr[0]->operation == ir_unop_neg) {
370 return op_expr[0]->operands[0];
371 }
372 break;
373
374 case ir_unop_exp:
375 if (op_expr[0] == NULL)
376 break;
377
378 if (op_expr[0]->operation == ir_unop_log) {
379 return op_expr[0]->operands[0];
380 }
381 break;
382
383 case ir_unop_log:
384 if (op_expr[0] == NULL)
385 break;
386
387 if (op_expr[0]->operation == ir_unop_exp) {
388 return op_expr[0]->operands[0];
389 }
390 break;
391
392 case ir_unop_exp2:
393 if (op_expr[0] == NULL)
394 break;
395
396 if (op_expr[0]->operation == ir_unop_log2) {
397 return op_expr[0]->operands[0];
398 }
399
400 if (!options->EmitNoPow && op_expr[0]->operation == ir_binop_mul) {
401 for (int log2_pos = 0; log2_pos < 2; log2_pos++) {
402 ir_expression *log2_expr =
403 op_expr[0]->operands[log2_pos]->as_expression();
404
405 if (log2_expr && log2_expr->operation == ir_unop_log2) {
406 return new(mem_ctx) ir_expression(ir_binop_pow,
407 ir->type,
408 log2_expr->operands[0],
409 op_expr[0]->operands[1 - log2_pos]);
410 }
411 }
412 }
413 break;
414
415 case ir_unop_log2:
416 if (op_expr[0] == NULL)
417 break;
418
419 if (op_expr[0]->operation == ir_unop_exp2) {
420 return op_expr[0]->operands[0];
421 }
422 break;
423
424 case ir_unop_f2i:
425 case ir_unop_f2u:
426 if (op_expr[0] && op_expr[0]->operation == ir_unop_trunc) {
427 return new(mem_ctx) ir_expression(ir->operation,
428 ir->type,
429 op_expr[0]->operands[0]);
430 }
431 break;
432
433 case ir_unop_logic_not: {
434 enum ir_expression_operation new_op = ir_unop_logic_not;
435
436 if (op_expr[0] == NULL)
437 break;
438
439 switch (op_expr[0]->operation) {
440 case ir_binop_less: new_op = ir_binop_gequal; break;
441 case ir_binop_greater: new_op = ir_binop_lequal; break;
442 case ir_binop_lequal: new_op = ir_binop_greater; break;
443 case ir_binop_gequal: new_op = ir_binop_less; break;
444 case ir_binop_equal: new_op = ir_binop_nequal; break;
445 case ir_binop_nequal: new_op = ir_binop_equal; break;
446 case ir_binop_all_equal: new_op = ir_binop_any_nequal; break;
447 case ir_binop_any_nequal: new_op = ir_binop_all_equal; break;
448
449 default:
450 /* The default case handler is here to silence a warning from GCC.
451 */
452 break;
453 }
454
455 if (new_op != ir_unop_logic_not) {
456 return new(mem_ctx) ir_expression(new_op,
457 ir->type,
458 op_expr[0]->operands[0],
459 op_expr[0]->operands[1]);
460 }
461
462 break;
463 }
464
465 case ir_unop_saturate:
466 if (op_expr[0] && op_expr[0]->operation == ir_binop_add) {
467 ir_expression *b2f_0 = op_expr[0]->operands[0]->as_expression();
468 ir_expression *b2f_1 = op_expr[0]->operands[1]->as_expression();
469
470 if (b2f_0 && b2f_0->operation == ir_unop_b2f &&
471 b2f_1 && b2f_1->operation == ir_unop_b2f) {
472 return b2f(logic_or(b2f_0->operands[0], b2f_1->operands[0]));
473 }
474 }
475 break;
476
477 /* This macro CANNOT use the do { } while(true) mechanism because
478 * then the breaks apply to the loop instead of the switch!
479 */
480 #define HANDLE_PACK_UNPACK_INVERSE(inverse_operation) \
481 { \
482 ir_expression *const op = ir->operands[0]->as_expression(); \
483 if (op == NULL) \
484 break; \
485 if (op->operation == (inverse_operation)) \
486 return op->operands[0]; \
487 break; \
488 }
489
490 case ir_unop_unpack_uint_2x32:
491 HANDLE_PACK_UNPACK_INVERSE(ir_unop_pack_uint_2x32);
492 case ir_unop_pack_uint_2x32:
493 HANDLE_PACK_UNPACK_INVERSE(ir_unop_unpack_uint_2x32);
494 case ir_unop_unpack_int_2x32:
495 HANDLE_PACK_UNPACK_INVERSE(ir_unop_pack_int_2x32);
496 case ir_unop_pack_int_2x32:
497 HANDLE_PACK_UNPACK_INVERSE(ir_unop_unpack_int_2x32);
498 case ir_unop_unpack_double_2x32:
499 HANDLE_PACK_UNPACK_INVERSE(ir_unop_pack_double_2x32);
500 case ir_unop_pack_double_2x32:
501 HANDLE_PACK_UNPACK_INVERSE(ir_unop_unpack_double_2x32);
502
503 #undef HANDLE_PACK_UNPACK_INVERSE
504
505 case ir_binop_add:
506 if (is_vec_zero(op_const[0]))
507 return ir->operands[1];
508 if (is_vec_zero(op_const[1]))
509 return ir->operands[0];
510
511 /* Reassociate addition of constants so that we can do constant
512 * folding.
513 */
514 if (op_const[0] && !op_const[1])
515 reassociate_constant(ir, 0, op_const[0], op_expr[1]);
516 if (op_const[1] && !op_const[0])
517 reassociate_constant(ir, 1, op_const[1], op_expr[0]);
518
519 /* Recognize (v.x + v.y) + (v.z + v.w) as dot(v, 1.0) */
520 if (options->OptimizeForAOS) {
521 ir_expression *expr = try_replace_with_dot(op_expr[0], op_expr[1],
522 mem_ctx);
523 if (expr)
524 return expr;
525 }
526
527 /* Replace (-x + y) * a + x and commutative variations with lrp(x, y, a).
528 *
529 * (-x + y) * a + x
530 * (x * -a) + (y * a) + x
531 * x + (x * -a) + (y * a)
532 * x * (1 - a) + y * a
533 * lrp(x, y, a)
534 */
535 for (int mul_pos = 0; mul_pos < 2; mul_pos++) {
536 ir_expression *mul = op_expr[mul_pos];
537
538 if (!mul || mul->operation != ir_binop_mul)
539 continue;
540
541 /* Multiply found on one of the operands. Now check for an
542 * inner addition operation.
543 */
544 for (int inner_add_pos = 0; inner_add_pos < 2; inner_add_pos++) {
545 ir_expression *inner_add =
546 mul->operands[inner_add_pos]->as_expression();
547
548 if (!inner_add || inner_add->operation != ir_binop_add)
549 continue;
550
551 /* Inner addition found on one of the operands. Now check for
552 * one of the operands of the inner addition to be the negative
553 * of x_operand.
554 */
555 for (int neg_pos = 0; neg_pos < 2; neg_pos++) {
556 ir_expression *neg =
557 inner_add->operands[neg_pos]->as_expression();
558
559 if (!neg || neg->operation != ir_unop_neg)
560 continue;
561
562 ir_rvalue *x_operand = ir->operands[1 - mul_pos];
563
564 if (!neg->operands[0]->equals(x_operand))
565 continue;
566
567 ir_rvalue *y_operand = inner_add->operands[1 - neg_pos];
568 ir_rvalue *a_operand = mul->operands[1 - inner_add_pos];
569
570 if (x_operand->type != y_operand->type ||
571 x_operand->type != a_operand->type)
572 continue;
573
574 return lrp(x_operand, y_operand, a_operand);
575 }
576 }
577 }
578
579 break;
580
581 case ir_binop_sub:
582 if (is_vec_zero(op_const[0]))
583 return neg(ir->operands[1]);
584 if (is_vec_zero(op_const[1]))
585 return ir->operands[0];
586 break;
587
588 case ir_binop_mul:
589 if (is_vec_one(op_const[0]))
590 return ir->operands[1];
591 if (is_vec_one(op_const[1]))
592 return ir->operands[0];
593
594 if (is_vec_zero(op_const[0]) || is_vec_zero(op_const[1]))
595 return ir_constant::zero(ir, ir->type);
596
597 if (is_vec_negative_one(op_const[0]))
598 return neg(ir->operands[1]);
599 if (is_vec_negative_one(op_const[1]))
600 return neg(ir->operands[0]);
601
602 if (op_expr[0] && op_expr[0]->operation == ir_unop_b2f &&
603 op_expr[1] && op_expr[1]->operation == ir_unop_b2f) {
604 return b2f(logic_and(op_expr[0]->operands[0], op_expr[1]->operands[0]));
605 }
606
607 /* Reassociate multiplication of constants so that we can do
608 * constant folding.
609 */
610 if (op_const[0] && !op_const[1])
611 reassociate_constant(ir, 0, op_const[0], op_expr[1]);
612 if (op_const[1] && !op_const[0])
613 reassociate_constant(ir, 1, op_const[1], op_expr[0]);
614
615 /* Optimizes
616 *
617 * (mul (floor (add (abs x) 0.5) (sign x)))
618 *
619 * into
620 *
621 * (trunc (add x (mul (sign x) 0.5)))
622 */
623 for (int i = 0; i < 2; i++) {
624 ir_expression *sign_expr = ir->operands[i]->as_expression();
625 ir_expression *floor_expr = ir->operands[1 - i]->as_expression();
626
627 if (!sign_expr || sign_expr->operation != ir_unop_sign ||
628 !floor_expr || floor_expr->operation != ir_unop_floor)
629 continue;
630
631 ir_expression *add_expr = floor_expr->operands[0]->as_expression();
632 if (!add_expr || add_expr->operation != ir_binop_add)
633 continue;
634
635 for (int j = 0; j < 2; j++) {
636 ir_expression *abs_expr = add_expr->operands[j]->as_expression();
637 if (!abs_expr || abs_expr->operation != ir_unop_abs)
638 continue;
639
640 ir_constant *point_five = add_expr->operands[1 - j]->as_constant();
641 if (!point_five || !point_five->is_value(0.5, 0))
642 continue;
643
644 if (abs_expr->operands[0]->equals(sign_expr->operands[0])) {
645 return trunc(add(abs_expr->operands[0],
646 mul(sign_expr, point_five)));
647 }
648 }
649 }
650 break;
651
652 case ir_binop_div:
653 if (is_vec_one(op_const[0]) && (
654 ir->type->is_float() || ir->type->is_double())) {
655 return new(mem_ctx) ir_expression(ir_unop_rcp,
656 ir->operands[1]->type,
657 ir->operands[1],
658 NULL);
659 }
660 if (is_vec_one(op_const[1]))
661 return ir->operands[0];
662 break;
663
664 case ir_binop_dot:
665 if (is_vec_zero(op_const[0]) || is_vec_zero(op_const[1]))
666 return ir_constant::zero(mem_ctx, ir->type);
667
668 for (int i = 0; i < 2; i++) {
669 if (!op_const[i])
670 continue;
671
672 unsigned components[4] = { 0 }, count = 0;
673
674 for (unsigned c = 0; c < op_const[i]->type->vector_elements; c++) {
675 if (op_const[i]->is_zero())
676 continue;
677
678 components[count] = c;
679 count++;
680 }
681
682 /* No channels had zero values; bail. */
683 if (count >= op_const[i]->type->vector_elements)
684 break;
685
686 ir_expression_operation op = count == 1 ?
687 ir_binop_mul : ir_binop_dot;
688
689 /* Swizzle both operands to remove the channels that were zero. */
690 return new(mem_ctx)
691 ir_expression(op, ir->type,
692 new(mem_ctx) ir_swizzle(ir->operands[0],
693 components, count),
694 new(mem_ctx) ir_swizzle(ir->operands[1],
695 components, count));
696 }
697 break;
698
699 case ir_binop_less:
700 case ir_binop_lequal:
701 case ir_binop_greater:
702 case ir_binop_gequal:
703 case ir_binop_equal:
704 case ir_binop_nequal:
705 for (int add_pos = 0; add_pos < 2; add_pos++) {
706 ir_expression *add = op_expr[add_pos];
707
708 if (!add || add->operation != ir_binop_add)
709 continue;
710
711 ir_constant *zero = op_const[1 - add_pos];
712 if (!is_vec_zero(zero))
713 continue;
714
715 /* Depending of the zero position we want to optimize
716 * (0 cmp x+y) into (-x cmp y) or (x+y cmp 0) into (x cmp -y)
717 */
718 if (add_pos == 1) {
719 return new(mem_ctx) ir_expression(ir->operation,
720 neg(add->operands[0]),
721 add->operands[1]);
722 } else {
723 return new(mem_ctx) ir_expression(ir->operation,
724 add->operands[0],
725 neg(add->operands[1]));
726 }
727 }
728 break;
729
730 case ir_binop_all_equal:
731 case ir_binop_any_nequal:
732 if (ir->operands[0]->type->is_scalar() &&
733 ir->operands[1]->type->is_scalar())
734 return new(mem_ctx) ir_expression(ir->operation == ir_binop_all_equal
735 ? ir_binop_equal : ir_binop_nequal,
736 ir->operands[0],
737 ir->operands[1]);
738 break;
739
740 case ir_binop_rshift:
741 case ir_binop_lshift:
742 /* 0 >> x == 0 */
743 if (is_vec_zero(op_const[0]))
744 return ir->operands[0];
745 /* x >> 0 == x */
746 if (is_vec_zero(op_const[1]))
747 return ir->operands[0];
748 break;
749
750 case ir_binop_logic_and:
751 if (is_vec_one(op_const[0])) {
752 return ir->operands[1];
753 } else if (is_vec_one(op_const[1])) {
754 return ir->operands[0];
755 } else if (is_vec_zero(op_const[0]) || is_vec_zero(op_const[1])) {
756 return ir_constant::zero(mem_ctx, ir->type);
757 } else if (op_expr[0] && op_expr[0]->operation == ir_unop_logic_not &&
758 op_expr[1] && op_expr[1]->operation == ir_unop_logic_not) {
759 /* De Morgan's Law:
760 * (not A) and (not B) === not (A or B)
761 */
762 return logic_not(logic_or(op_expr[0]->operands[0],
763 op_expr[1]->operands[0]));
764 } else if (ir->operands[0]->equals(ir->operands[1])) {
765 /* (a && a) == a */
766 return ir->operands[0];
767 }
768 break;
769
770 case ir_binop_logic_xor:
771 if (is_vec_zero(op_const[0])) {
772 return ir->operands[1];
773 } else if (is_vec_zero(op_const[1])) {
774 return ir->operands[0];
775 } else if (is_vec_one(op_const[0])) {
776 return logic_not(ir->operands[1]);
777 } else if (is_vec_one(op_const[1])) {
778 return logic_not(ir->operands[0]);
779 } else if (ir->operands[0]->equals(ir->operands[1])) {
780 /* (a ^^ a) == false */
781 return ir_constant::zero(mem_ctx, ir->type);
782 }
783 break;
784
785 case ir_binop_logic_or:
786 if (is_vec_zero(op_const[0])) {
787 return ir->operands[1];
788 } else if (is_vec_zero(op_const[1])) {
789 return ir->operands[0];
790 } else if (is_vec_one(op_const[0]) || is_vec_one(op_const[1])) {
791 ir_constant_data data;
792
793 for (unsigned i = 0; i < 16; i++)
794 data.b[i] = true;
795
796 return new(mem_ctx) ir_constant(ir->type, &data);
797 } else if (op_expr[0] && op_expr[0]->operation == ir_unop_logic_not &&
798 op_expr[1] && op_expr[1]->operation == ir_unop_logic_not) {
799 /* De Morgan's Law:
800 * (not A) or (not B) === not (A and B)
801 */
802 return logic_not(logic_and(op_expr[0]->operands[0],
803 op_expr[1]->operands[0]));
804 } else if (ir->operands[0]->equals(ir->operands[1])) {
805 /* (a || a) == a */
806 return ir->operands[0];
807 }
808 break;
809
810 case ir_binop_pow:
811 /* 1^x == 1 */
812 if (is_vec_one(op_const[0]))
813 return op_const[0];
814
815 /* x^1 == x */
816 if (is_vec_one(op_const[1]))
817 return ir->operands[0];
818
819 /* pow(2,x) == exp2(x) */
820 if (is_vec_two(op_const[0]))
821 return expr(ir_unop_exp2, ir->operands[1]);
822
823 if (is_vec_two(op_const[1])) {
824 ir_variable *x = new(ir) ir_variable(ir->operands[1]->type, "x",
825 ir_var_temporary);
826 base_ir->insert_before(x);
827 base_ir->insert_before(assign(x, ir->operands[0]));
828 return mul(x, x);
829 }
830
831 if (is_vec_four(op_const[1])) {
832 ir_variable *x = new(ir) ir_variable(ir->operands[1]->type, "x",
833 ir_var_temporary);
834 base_ir->insert_before(x);
835 base_ir->insert_before(assign(x, ir->operands[0]));
836
837 ir_variable *squared = new(ir) ir_variable(ir->operands[1]->type,
838 "squared",
839 ir_var_temporary);
840 base_ir->insert_before(squared);
841 base_ir->insert_before(assign(squared, mul(x, x)));
842 return mul(squared, squared);
843 }
844
845 break;
846
847 case ir_binop_min:
848 case ir_binop_max:
849 if (!ir->type->is_float() || options->EmitNoSat)
850 break;
851
852 /* Replace min(max) operations and its commutative combinations with
853 * a saturate operation
854 */
855 for (int op = 0; op < 2; op++) {
856 ir_expression *inner_expr = op_expr[op];
857 ir_constant *outer_const = op_const[1 - op];
858 ir_expression_operation op_cond = (ir->operation == ir_binop_max) ?
859 ir_binop_min : ir_binop_max;
860
861 if (!inner_expr || !outer_const || (inner_expr->operation != op_cond))
862 continue;
863
864 /* One of these has to be a constant */
865 if (!inner_expr->operands[0]->as_constant() &&
866 !inner_expr->operands[1]->as_constant())
867 break;
868
869 /* Found a min(max) combination. Now try to see if its operands
870 * meet our conditions that we can do just a single saturate operation
871 */
872 for (int minmax_op = 0; minmax_op < 2; minmax_op++) {
873 ir_rvalue *x = inner_expr->operands[minmax_op];
874 ir_rvalue *y = inner_expr->operands[1 - minmax_op];
875
876 ir_constant *inner_const = y->as_constant();
877 if (!inner_const)
878 continue;
879
880 /* min(max(x, 0.0), 1.0) is sat(x) */
881 if (ir->operation == ir_binop_min &&
882 inner_const->is_zero() &&
883 outer_const->is_one())
884 return saturate(x);
885
886 /* max(min(x, 1.0), 0.0) is sat(x) */
887 if (ir->operation == ir_binop_max &&
888 inner_const->is_one() &&
889 outer_const->is_zero())
890 return saturate(x);
891
892 /* min(max(x, 0.0), b) where b < 1.0 is sat(min(x, b)) */
893 if (ir->operation == ir_binop_min &&
894 inner_const->is_zero() &&
895 is_less_than_one(outer_const))
896 return saturate(expr(ir_binop_min, x, outer_const));
897
898 /* max(min(x, b), 0.0) where b < 1.0 is sat(min(x, b)) */
899 if (ir->operation == ir_binop_max &&
900 is_less_than_one(inner_const) &&
901 outer_const->is_zero())
902 return saturate(expr(ir_binop_min, x, inner_const));
903
904 /* max(min(x, 1.0), b) where b > 0.0 is sat(max(x, b)) */
905 if (ir->operation == ir_binop_max &&
906 inner_const->is_one() &&
907 is_greater_than_zero(outer_const))
908 return saturate(expr(ir_binop_max, x, outer_const));
909
910 /* min(max(x, b), 1.0) where b > 0.0 is sat(max(x, b)) */
911 if (ir->operation == ir_binop_min &&
912 is_greater_than_zero(inner_const) &&
913 outer_const->is_one())
914 return saturate(expr(ir_binop_max, x, inner_const));
915 }
916 }
917
918 break;
919
920 case ir_unop_rcp:
921 if (op_expr[0] && op_expr[0]->operation == ir_unop_rcp)
922 return op_expr[0]->operands[0];
923
924 if (op_expr[0] && (op_expr[0]->operation == ir_unop_exp2 ||
925 op_expr[0]->operation == ir_unop_exp)) {
926 return new(mem_ctx) ir_expression(op_expr[0]->operation, ir->type,
927 neg(op_expr[0]->operands[0]));
928 }
929
930 /* While ir_to_mesa.cpp will lower sqrt(x) to rcp(rsq(x)), it does so at
931 * its IR level, so we can always apply this transformation.
932 */
933 if (op_expr[0] && op_expr[0]->operation == ir_unop_rsq)
934 return sqrt(op_expr[0]->operands[0]);
935
936 /* As far as we know, all backends are OK with rsq. */
937 if (op_expr[0] && op_expr[0]->operation == ir_unop_sqrt) {
938 return rsq(op_expr[0]->operands[0]);
939 }
940
941 break;
942
943 case ir_triop_fma:
944 /* Operands are op0 * op1 + op2. */
945 if (is_vec_zero(op_const[0]) || is_vec_zero(op_const[1])) {
946 return ir->operands[2];
947 } else if (is_vec_zero(op_const[2])) {
948 return mul(ir->operands[0], ir->operands[1]);
949 } else if (is_vec_one(op_const[0])) {
950 return add(ir->operands[1], ir->operands[2]);
951 } else if (is_vec_one(op_const[1])) {
952 return add(ir->operands[0], ir->operands[2]);
953 }
954 break;
955
956 case ir_triop_lrp:
957 /* Operands are (x, y, a). */
958 if (is_vec_zero(op_const[2])) {
959 return ir->operands[0];
960 } else if (is_vec_one(op_const[2])) {
961 return ir->operands[1];
962 } else if (ir->operands[0]->equals(ir->operands[1])) {
963 return ir->operands[0];
964 } else if (is_vec_zero(op_const[0])) {
965 return mul(ir->operands[1], ir->operands[2]);
966 } else if (is_vec_zero(op_const[1])) {
967 unsigned op2_components = ir->operands[2]->type->vector_elements;
968 ir_constant *one;
969
970 switch (ir->type->base_type) {
971 case GLSL_TYPE_FLOAT:
972 one = new(mem_ctx) ir_constant(1.0f, op2_components);
973 break;
974 case GLSL_TYPE_DOUBLE:
975 one = new(mem_ctx) ir_constant(1.0, op2_components);
976 break;
977 default:
978 one = NULL;
979 unreachable("unexpected type");
980 }
981
982 return mul(ir->operands[0], add(one, neg(ir->operands[2])));
983 }
984 break;
985
986 case ir_triop_csel:
987 if (is_vec_one(op_const[0]))
988 return ir->operands[1];
989 if (is_vec_zero(op_const[0]))
990 return ir->operands[2];
991 break;
992
993 /* Remove interpolateAt* instructions for demoted inputs. They are
994 * assigned a constant expression to facilitate this.
995 */
996 case ir_unop_interpolate_at_centroid:
997 case ir_binop_interpolate_at_offset:
998 case ir_binop_interpolate_at_sample:
999 if (op_const[0])
1000 return ir->operands[0];
1001 break;
1002
1003 default:
1004 break;
1005 }
1006
1007 return ir;
1008 }
1009
1010 void
1011 ir_algebraic_visitor::handle_rvalue(ir_rvalue **rvalue)
1012 {
1013 if (!*rvalue)
1014 return;
1015
1016 ir_expression *expr = (*rvalue)->as_expression();
1017 if (!expr || expr->operation == ir_quadop_vector)
1018 return;
1019
1020 ir_rvalue *new_rvalue = handle_expression(expr);
1021 if (new_rvalue == *rvalue)
1022 return;
1023
1024 /* If the expr used to be some vec OP scalar returning a vector, and the
1025 * optimization gave us back a scalar, we still need to turn it into a
1026 * vector.
1027 */
1028 *rvalue = swizzle_if_required(expr, new_rvalue);
1029
1030 this->progress = true;
1031 }
1032
1033 bool
1034 do_algebraic(exec_list *instructions, bool native_integers,
1035 const struct gl_shader_compiler_options *options)
1036 {
1037 ir_algebraic_visitor v(native_integers, options);
1038
1039 visit_list_elements(&v, instructions);
1040
1041 return v.progress;
1042 }