glsl: Remove unnecessary assignments to type
[mesa.git] / src / compiler / glsl / opt_constant_propagation.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * constant of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, constant, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above constantright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR CONSTANTRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file opt_constant_propagation.cpp
26 *
27 * Tracks assignments of constants to channels of variables, and
28 * usage of those constant channels with direct usage of the constants.
29 *
30 * This can lead to constant folding and algebraic optimizations in
31 * those later expressions, while causing no increase in instruction
32 * count (due to constants being generally free to load from a
33 * constant push buffer or as instruction immediate values) and
34 * possibly reducing register pressure.
35 */
36
37 #include "ir.h"
38 #include "ir_visitor.h"
39 #include "ir_rvalue_visitor.h"
40 #include "ir_basic_block.h"
41 #include "ir_optimization.h"
42 #include "compiler/glsl_types.h"
43 #include "util/hash_table.h"
44
45 namespace {
46
47 class acp_entry : public exec_node
48 {
49 public:
50 /* override operator new from exec_node */
51 DECLARE_LINEAR_ZALLOC_CXX_OPERATORS(acp_entry)
52
53 acp_entry(ir_variable *var, unsigned write_mask, ir_constant *constant)
54 {
55 assert(var);
56 assert(constant);
57 this->var = var;
58 this->write_mask = write_mask;
59 this->constant = constant;
60 this->initial_values = write_mask;
61 }
62
63 acp_entry(const acp_entry *src)
64 {
65 this->var = src->var;
66 this->write_mask = src->write_mask;
67 this->constant = src->constant;
68 this->initial_values = src->initial_values;
69 }
70
71 ir_variable *var;
72 ir_constant *constant;
73 unsigned write_mask;
74
75 /** Mask of values initially available in the constant. */
76 unsigned initial_values;
77 };
78
79
80 class kill_entry : public exec_node
81 {
82 public:
83 /* override operator new from exec_node */
84 DECLARE_LINEAR_ZALLOC_CXX_OPERATORS(kill_entry)
85
86 kill_entry(ir_variable *var, unsigned write_mask)
87 {
88 assert(var);
89 this->var = var;
90 this->write_mask = write_mask;
91 }
92
93 ir_variable *var;
94 unsigned write_mask;
95 };
96
97 class ir_constant_propagation_visitor : public ir_rvalue_visitor {
98 public:
99 ir_constant_propagation_visitor()
100 {
101 progress = false;
102 killed_all = false;
103 mem_ctx = ralloc_context(0);
104 this->lin_ctx = linear_alloc_parent(this->mem_ctx, 0);
105 this->acp = new(mem_ctx) exec_list;
106 this->kills = _mesa_hash_table_create(mem_ctx, _mesa_hash_pointer,
107 _mesa_key_pointer_equal);
108 }
109 ~ir_constant_propagation_visitor()
110 {
111 ralloc_free(mem_ctx);
112 }
113
114 virtual ir_visitor_status visit_enter(class ir_loop *);
115 virtual ir_visitor_status visit_enter(class ir_function_signature *);
116 virtual ir_visitor_status visit_enter(class ir_function *);
117 virtual ir_visitor_status visit_leave(class ir_assignment *);
118 virtual ir_visitor_status visit_enter(class ir_call *);
119 virtual ir_visitor_status visit_enter(class ir_if *);
120
121 void add_constant(ir_assignment *ir);
122 void constant_folding(ir_rvalue **rvalue);
123 void constant_propagation(ir_rvalue **rvalue);
124 void kill(ir_variable *ir, unsigned write_mask);
125 void handle_if_block(exec_list *instructions);
126 void handle_rvalue(ir_rvalue **rvalue);
127
128 /** List of acp_entry: The available constants to propagate */
129 exec_list *acp;
130
131 /**
132 * Hash table of kill_entry: The masks of variables whose values were
133 * killed in this block.
134 */
135 hash_table *kills;
136
137 bool progress;
138
139 bool killed_all;
140
141 void *mem_ctx;
142 void *lin_ctx;
143 };
144
145
146 void
147 ir_constant_propagation_visitor::constant_folding(ir_rvalue **rvalue)
148 {
149 if (this->in_assignee || *rvalue == NULL)
150 return;
151
152 if (ir_constant_fold(rvalue))
153 this->progress = true;
154
155 ir_dereference_variable *var_ref = (*rvalue)->as_dereference_variable();
156 if (var_ref && !var_ref->type->is_array()) {
157 ir_constant *constant =
158 var_ref->constant_expression_value(ralloc_parent(var_ref));
159 if (constant) {
160 *rvalue = constant;
161 this->progress = true;
162 }
163 }
164 }
165
166 void
167 ir_constant_propagation_visitor::constant_propagation(ir_rvalue **rvalue) {
168
169 if (this->in_assignee || !*rvalue)
170 return;
171
172 const glsl_type *type = (*rvalue)->type;
173 if (!type->is_scalar() && !type->is_vector())
174 return;
175
176 ir_swizzle *swiz = NULL;
177 ir_dereference_variable *deref = (*rvalue)->as_dereference_variable();
178 if (!deref) {
179 swiz = (*rvalue)->as_swizzle();
180 if (!swiz)
181 return;
182
183 deref = swiz->val->as_dereference_variable();
184 if (!deref)
185 return;
186 }
187
188 ir_constant_data data;
189 memset(&data, 0, sizeof(data));
190
191 for (unsigned int i = 0; i < type->components(); i++) {
192 int channel;
193 acp_entry *found = NULL;
194
195 if (swiz) {
196 switch (i) {
197 case 0: channel = swiz->mask.x; break;
198 case 1: channel = swiz->mask.y; break;
199 case 2: channel = swiz->mask.z; break;
200 case 3: channel = swiz->mask.w; break;
201 default: assert(!"shouldn't be reached"); channel = 0; break;
202 }
203 } else {
204 channel = i;
205 }
206
207 foreach_in_list(acp_entry, entry, this->acp) {
208 if (entry->var == deref->var && entry->write_mask & (1 << channel)) {
209 found = entry;
210 break;
211 }
212 }
213
214 if (!found)
215 return;
216
217 int rhs_channel = 0;
218 for (int j = 0; j < 4; j++) {
219 if (j == channel)
220 break;
221 if (found->initial_values & (1 << j))
222 rhs_channel++;
223 }
224
225 switch (type->base_type) {
226 case GLSL_TYPE_FLOAT:
227 data.f[i] = found->constant->value.f[rhs_channel];
228 break;
229 case GLSL_TYPE_DOUBLE:
230 data.d[i] = found->constant->value.d[rhs_channel];
231 break;
232 case GLSL_TYPE_INT:
233 data.i[i] = found->constant->value.i[rhs_channel];
234 break;
235 case GLSL_TYPE_UINT:
236 data.u[i] = found->constant->value.u[rhs_channel];
237 break;
238 case GLSL_TYPE_BOOL:
239 data.b[i] = found->constant->value.b[rhs_channel];
240 break;
241 case GLSL_TYPE_UINT64:
242 data.u64[i] = found->constant->value.u64[rhs_channel];
243 break;
244 case GLSL_TYPE_INT64:
245 data.i64[i] = found->constant->value.i64[rhs_channel];
246 break;
247 default:
248 assert(!"not reached");
249 break;
250 }
251 }
252
253 *rvalue = new(ralloc_parent(deref)) ir_constant(type, &data);
254 this->progress = true;
255 }
256
257 void
258 ir_constant_propagation_visitor::handle_rvalue(ir_rvalue **rvalue)
259 {
260 constant_propagation(rvalue);
261 constant_folding(rvalue);
262 }
263
264 ir_visitor_status
265 ir_constant_propagation_visitor::visit_enter(ir_function_signature *ir)
266 {
267 /* Treat entry into a function signature as a completely separate
268 * block. Any instructions at global scope will be shuffled into
269 * main() at link time, so they're irrelevant to us.
270 */
271 exec_list *orig_acp = this->acp;
272 hash_table *orig_kills = this->kills;
273 bool orig_killed_all = this->killed_all;
274
275 this->acp = new(mem_ctx) exec_list;
276 this->kills = _mesa_hash_table_create(mem_ctx, _mesa_hash_pointer,
277 _mesa_key_pointer_equal);
278 this->killed_all = false;
279
280 visit_list_elements(this, &ir->body);
281
282 this->kills = orig_kills;
283 this->acp = orig_acp;
284 this->killed_all = orig_killed_all;
285
286 return visit_continue_with_parent;
287 }
288
289 ir_visitor_status
290 ir_constant_propagation_visitor::visit_leave(ir_assignment *ir)
291 {
292 constant_folding(&ir->rhs);
293
294 if (this->in_assignee)
295 return visit_continue;
296
297 unsigned kill_mask = ir->write_mask;
298 if (ir->lhs->as_dereference_array()) {
299 /* The LHS of the assignment uses an array indexing operator (e.g. v[i]
300 * = ...;). Since we only try to constant propagate vectors and
301 * scalars, this means that either (a) array indexing is being used to
302 * select a vector component, or (b) the variable in question is neither
303 * a scalar or a vector, so we don't care about it. In the former case,
304 * we want to kill the whole vector, since in general we can't predict
305 * which vector component will be selected by array indexing. In the
306 * latter case, it doesn't matter what we do, so go ahead and kill the
307 * whole variable anyway.
308 *
309 * Note that if the array index is constant (e.g. v[2] = ...;), we could
310 * in principle be smarter, but we don't need to, because a future
311 * optimization pass will convert it to a simple assignment with the
312 * correct mask.
313 */
314 kill_mask = ~0;
315 }
316 kill(ir->lhs->variable_referenced(), kill_mask);
317
318 add_constant(ir);
319
320 return visit_continue;
321 }
322
323 ir_visitor_status
324 ir_constant_propagation_visitor::visit_enter(ir_function *ir)
325 {
326 (void) ir;
327 return visit_continue;
328 }
329
330 ir_visitor_status
331 ir_constant_propagation_visitor::visit_enter(ir_call *ir)
332 {
333 /* Do constant propagation on call parameters, but skip any out params */
334 foreach_two_lists(formal_node, &ir->callee->parameters,
335 actual_node, &ir->actual_parameters) {
336 ir_variable *sig_param = (ir_variable *) formal_node;
337 ir_rvalue *param = (ir_rvalue *) actual_node;
338 if (sig_param->data.mode != ir_var_function_out
339 && sig_param->data.mode != ir_var_function_inout) {
340 ir_rvalue *new_param = param;
341 handle_rvalue(&new_param);
342 if (new_param != param)
343 param->replace_with(new_param);
344 else
345 param->accept(this);
346 }
347 }
348
349 /* Since we're unlinked, we don't (necssarily) know the side effects of
350 * this call. So kill all copies.
351 */
352 acp->make_empty();
353 this->killed_all = true;
354
355 return visit_continue_with_parent;
356 }
357
358 void
359 ir_constant_propagation_visitor::handle_if_block(exec_list *instructions)
360 {
361 exec_list *orig_acp = this->acp;
362 hash_table *orig_kills = this->kills;
363 bool orig_killed_all = this->killed_all;
364
365 this->acp = new(mem_ctx) exec_list;
366 this->kills = _mesa_hash_table_create(mem_ctx, _mesa_hash_pointer,
367 _mesa_key_pointer_equal);
368 this->killed_all = false;
369
370 /* Populate the initial acp with a constant of the original */
371 foreach_in_list(acp_entry, a, orig_acp) {
372 this->acp->push_tail(new(this->lin_ctx) acp_entry(a));
373 }
374
375 visit_list_elements(this, instructions);
376
377 if (this->killed_all) {
378 orig_acp->make_empty();
379 }
380
381 hash_table *new_kills = this->kills;
382 this->kills = orig_kills;
383 this->acp = orig_acp;
384 this->killed_all = this->killed_all || orig_killed_all;
385
386 hash_entry *htk;
387 hash_table_foreach(new_kills, htk) {
388 kill_entry *k = (kill_entry *) htk->data;
389 kill(k->var, k->write_mask);
390 }
391 }
392
393 ir_visitor_status
394 ir_constant_propagation_visitor::visit_enter(ir_if *ir)
395 {
396 ir->condition->accept(this);
397 handle_rvalue(&ir->condition);
398
399 handle_if_block(&ir->then_instructions);
400 handle_if_block(&ir->else_instructions);
401
402 /* handle_if_block() already descended into the children. */
403 return visit_continue_with_parent;
404 }
405
406 ir_visitor_status
407 ir_constant_propagation_visitor::visit_enter(ir_loop *ir)
408 {
409 exec_list *orig_acp = this->acp;
410 hash_table *orig_kills = this->kills;
411 bool orig_killed_all = this->killed_all;
412
413 /* FINISHME: For now, the initial acp for loops is totally empty.
414 * We could go through once, then go through again with the acp
415 * cloned minus the killed entries after the first run through.
416 */
417 this->acp = new(mem_ctx) exec_list;
418 this->kills = _mesa_hash_table_create(mem_ctx, _mesa_hash_pointer,
419 _mesa_key_pointer_equal);
420 this->killed_all = false;
421
422 visit_list_elements(this, &ir->body_instructions);
423
424 if (this->killed_all) {
425 orig_acp->make_empty();
426 }
427
428 hash_table *new_kills = this->kills;
429 this->kills = orig_kills;
430 this->acp = orig_acp;
431 this->killed_all = this->killed_all || orig_killed_all;
432
433 hash_entry *htk;
434 hash_table_foreach(new_kills, htk) {
435 kill_entry *k = (kill_entry *) htk->data;
436 kill(k->var, k->write_mask);
437 }
438
439 /* already descended into the children. */
440 return visit_continue_with_parent;
441 }
442
443 void
444 ir_constant_propagation_visitor::kill(ir_variable *var, unsigned write_mask)
445 {
446 assert(var != NULL);
447
448 /* We don't track non-vectors. */
449 if (!var->type->is_vector() && !var->type->is_scalar())
450 return;
451
452 /* Remove any entries currently in the ACP for this kill. */
453 foreach_in_list_safe(acp_entry, entry, this->acp) {
454 if (entry->var == var) {
455 entry->write_mask &= ~write_mask;
456 if (entry->write_mask == 0)
457 entry->remove();
458 }
459 }
460
461 /* Add this writemask of the variable to the hash table of killed
462 * variables in this block.
463 */
464 hash_entry *kill_hash_entry = _mesa_hash_table_search(this->kills, var);
465 if (kill_hash_entry) {
466 kill_entry *entry = (kill_entry *) kill_hash_entry->data;
467 entry->write_mask |= write_mask;
468 return;
469 }
470 /* Not already in the hash table. Make new entry. */
471 _mesa_hash_table_insert(this->kills, var,
472 new(this->lin_ctx) kill_entry(var, write_mask));
473 }
474
475 /**
476 * Adds an entry to the available constant list if it's a plain assignment
477 * of a variable to a variable.
478 */
479 void
480 ir_constant_propagation_visitor::add_constant(ir_assignment *ir)
481 {
482 acp_entry *entry;
483
484 if (ir->condition)
485 return;
486
487 if (!ir->write_mask)
488 return;
489
490 ir_dereference_variable *deref = ir->lhs->as_dereference_variable();
491 ir_constant *constant = ir->rhs->as_constant();
492
493 if (!deref || !constant)
494 return;
495
496 /* Only do constant propagation on vectors. Constant matrices,
497 * arrays, or structures would require more work elsewhere.
498 */
499 if (!deref->var->type->is_vector() && !deref->var->type->is_scalar())
500 return;
501
502 /* We can't do copy propagation on buffer variables, since the underlying
503 * memory storage is shared across multiple threads we can't be sure that
504 * the variable value isn't modified between this assignment and the next
505 * instruction where its value is read.
506 */
507 if (deref->var->data.mode == ir_var_shader_storage ||
508 deref->var->data.mode == ir_var_shader_shared)
509 return;
510
511 entry = new(this->lin_ctx) acp_entry(deref->var, ir->write_mask, constant);
512 this->acp->push_tail(entry);
513 }
514
515 } /* unnamed namespace */
516
517 /**
518 * Does a constant propagation pass on the code present in the instruction stream.
519 */
520 bool
521 do_constant_propagation(exec_list *instructions)
522 {
523 ir_constant_propagation_visitor v;
524
525 visit_list_elements(&v, instructions);
526
527 return v.progress;
528 }