glsl/types: Use _mesa_hash_data for hashing function types
[mesa.git] / src / compiler / glsl_types.cpp
1 /*
2 * Copyright © 2009 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 #include <stdio.h>
25 #include "main/macros.h"
26 #include "compiler/glsl/glsl_parser_extras.h"
27 #include "glsl_types.h"
28 #include "util/hash_table.h"
29
30
31 mtx_t glsl_type::mutex = _MTX_INITIALIZER_NP;
32 hash_table *glsl_type::array_types = NULL;
33 hash_table *glsl_type::record_types = NULL;
34 hash_table *glsl_type::interface_types = NULL;
35 hash_table *glsl_type::function_types = NULL;
36 hash_table *glsl_type::subroutine_types = NULL;
37 void *glsl_type::mem_ctx = NULL;
38
39 void
40 glsl_type::init_ralloc_type_ctx(void)
41 {
42 if (glsl_type::mem_ctx == NULL) {
43 glsl_type::mem_ctx = ralloc_autofree_context();
44 assert(glsl_type::mem_ctx != NULL);
45 }
46 }
47
48 glsl_type::glsl_type(GLenum gl_type,
49 glsl_base_type base_type, unsigned vector_elements,
50 unsigned matrix_columns, const char *name) :
51 gl_type(gl_type),
52 base_type(base_type),
53 sampler_dimensionality(0), sampler_shadow(0), sampler_array(0),
54 sampled_type(0), interface_packing(0),
55 vector_elements(vector_elements), matrix_columns(matrix_columns),
56 length(0)
57 {
58 /* Values of these types must fit in the two bits of
59 * glsl_type::sampled_type.
60 */
61 STATIC_ASSERT((unsigned(GLSL_TYPE_UINT) & 3) == unsigned(GLSL_TYPE_UINT));
62 STATIC_ASSERT((unsigned(GLSL_TYPE_INT) & 3) == unsigned(GLSL_TYPE_INT));
63 STATIC_ASSERT((unsigned(GLSL_TYPE_FLOAT) & 3) == unsigned(GLSL_TYPE_FLOAT));
64
65 mtx_lock(&glsl_type::mutex);
66
67 init_ralloc_type_ctx();
68 assert(name != NULL);
69 this->name = ralloc_strdup(this->mem_ctx, name);
70
71 mtx_unlock(&glsl_type::mutex);
72
73 /* Neither dimension is zero or both dimensions are zero.
74 */
75 assert((vector_elements == 0) == (matrix_columns == 0));
76 memset(& fields, 0, sizeof(fields));
77 }
78
79 glsl_type::glsl_type(GLenum gl_type, glsl_base_type base_type,
80 enum glsl_sampler_dim dim, bool shadow, bool array,
81 unsigned type, const char *name) :
82 gl_type(gl_type),
83 base_type(base_type),
84 sampler_dimensionality(dim), sampler_shadow(shadow),
85 sampler_array(array), sampled_type(type), interface_packing(0),
86 length(0)
87 {
88 mtx_lock(&glsl_type::mutex);
89
90 init_ralloc_type_ctx();
91 assert(name != NULL);
92 this->name = ralloc_strdup(this->mem_ctx, name);
93
94 mtx_unlock(&glsl_type::mutex);
95
96 memset(& fields, 0, sizeof(fields));
97
98 if (base_type == GLSL_TYPE_SAMPLER) {
99 /* Samplers take no storage whatsoever. */
100 matrix_columns = vector_elements = 0;
101 } else {
102 matrix_columns = vector_elements = 1;
103 }
104 }
105
106 glsl_type::glsl_type(const glsl_struct_field *fields, unsigned num_fields,
107 const char *name) :
108 gl_type(0),
109 base_type(GLSL_TYPE_STRUCT),
110 sampler_dimensionality(0), sampler_shadow(0), sampler_array(0),
111 sampled_type(0), interface_packing(0),
112 vector_elements(0), matrix_columns(0),
113 length(num_fields)
114 {
115 unsigned int i;
116
117 mtx_lock(&glsl_type::mutex);
118
119 init_ralloc_type_ctx();
120 assert(name != NULL);
121 this->name = ralloc_strdup(this->mem_ctx, name);
122 this->fields.structure = ralloc_array(this->mem_ctx,
123 glsl_struct_field, length);
124
125 for (i = 0; i < length; i++) {
126 this->fields.structure[i].type = fields[i].type;
127 this->fields.structure[i].name = ralloc_strdup(this->fields.structure,
128 fields[i].name);
129 this->fields.structure[i].location = fields[i].location;
130 this->fields.structure[i].offset = fields[i].offset;
131 this->fields.structure[i].interpolation = fields[i].interpolation;
132 this->fields.structure[i].centroid = fields[i].centroid;
133 this->fields.structure[i].sample = fields[i].sample;
134 this->fields.structure[i].matrix_layout = fields[i].matrix_layout;
135 this->fields.structure[i].patch = fields[i].patch;
136 this->fields.structure[i].image_read_only = fields[i].image_read_only;
137 this->fields.structure[i].image_write_only = fields[i].image_write_only;
138 this->fields.structure[i].image_coherent = fields[i].image_coherent;
139 this->fields.structure[i].image_volatile = fields[i].image_volatile;
140 this->fields.structure[i].image_restrict = fields[i].image_restrict;
141 this->fields.structure[i].precision = fields[i].precision;
142 this->fields.structure[i].explicit_xfb_buffer =
143 fields[i].explicit_xfb_buffer;
144 this->fields.structure[i].xfb_buffer = fields[i].xfb_buffer;
145 this->fields.structure[i].xfb_stride = fields[i].xfb_stride;
146 }
147
148 mtx_unlock(&glsl_type::mutex);
149 }
150
151 glsl_type::glsl_type(const glsl_struct_field *fields, unsigned num_fields,
152 enum glsl_interface_packing packing, const char *name) :
153 gl_type(0),
154 base_type(GLSL_TYPE_INTERFACE),
155 sampler_dimensionality(0), sampler_shadow(0), sampler_array(0),
156 sampled_type(0), interface_packing((unsigned) packing),
157 vector_elements(0), matrix_columns(0),
158 length(num_fields)
159 {
160 unsigned int i;
161
162 mtx_lock(&glsl_type::mutex);
163
164 init_ralloc_type_ctx();
165 assert(name != NULL);
166 this->name = ralloc_strdup(this->mem_ctx, name);
167 this->fields.structure = ralloc_array(this->mem_ctx,
168 glsl_struct_field, length);
169 for (i = 0; i < length; i++) {
170 this->fields.structure[i].type = fields[i].type;
171 this->fields.structure[i].name = ralloc_strdup(this->fields.structure,
172 fields[i].name);
173 this->fields.structure[i].location = fields[i].location;
174 this->fields.structure[i].offset = fields[i].offset;
175 this->fields.structure[i].interpolation = fields[i].interpolation;
176 this->fields.structure[i].centroid = fields[i].centroid;
177 this->fields.structure[i].sample = fields[i].sample;
178 this->fields.structure[i].matrix_layout = fields[i].matrix_layout;
179 this->fields.structure[i].patch = fields[i].patch;
180 this->fields.structure[i].image_read_only = fields[i].image_read_only;
181 this->fields.structure[i].image_write_only = fields[i].image_write_only;
182 this->fields.structure[i].image_coherent = fields[i].image_coherent;
183 this->fields.structure[i].image_volatile = fields[i].image_volatile;
184 this->fields.structure[i].image_restrict = fields[i].image_restrict;
185 this->fields.structure[i].precision = fields[i].precision;
186 this->fields.structure[i].explicit_xfb_buffer =
187 fields[i].explicit_xfb_buffer;
188 this->fields.structure[i].xfb_buffer = fields[i].xfb_buffer;
189 this->fields.structure[i].xfb_stride = fields[i].xfb_stride;
190 }
191
192 mtx_unlock(&glsl_type::mutex);
193 }
194
195 glsl_type::glsl_type(const glsl_type *return_type,
196 const glsl_function_param *params, unsigned num_params) :
197 gl_type(0),
198 base_type(GLSL_TYPE_FUNCTION),
199 sampler_dimensionality(0), sampler_shadow(0), sampler_array(0),
200 sampled_type(0), interface_packing(0),
201 vector_elements(0), matrix_columns(0),
202 length(num_params)
203 {
204 unsigned int i;
205
206 mtx_lock(&glsl_type::mutex);
207
208 init_ralloc_type_ctx();
209
210 this->fields.parameters = rzalloc_array(this->mem_ctx,
211 glsl_function_param, num_params + 1);
212
213 /* We store the return type as the first parameter */
214 this->fields.parameters[0].type = return_type;
215 this->fields.parameters[0].in = false;
216 this->fields.parameters[0].out = true;
217
218 /* We store the i'th parameter in slot i+1 */
219 for (i = 0; i < length; i++) {
220 this->fields.parameters[i + 1].type = params[i].type;
221 this->fields.parameters[i + 1].in = params[i].in;
222 this->fields.parameters[i + 1].out = params[i].out;
223 }
224
225 mtx_unlock(&glsl_type::mutex);
226 }
227
228 glsl_type::glsl_type(const char *subroutine_name) :
229 gl_type(0),
230 base_type(GLSL_TYPE_SUBROUTINE),
231 sampler_dimensionality(0), sampler_shadow(0), sampler_array(0),
232 sampled_type(0), interface_packing(0),
233 vector_elements(1), matrix_columns(1),
234 length(0)
235 {
236 mtx_lock(&glsl_type::mutex);
237
238 init_ralloc_type_ctx();
239 assert(subroutine_name != NULL);
240 this->name = ralloc_strdup(this->mem_ctx, subroutine_name);
241 mtx_unlock(&glsl_type::mutex);
242 }
243
244 bool
245 glsl_type::contains_sampler() const
246 {
247 if (this->is_array()) {
248 return this->fields.array->contains_sampler();
249 } else if (this->is_record()) {
250 for (unsigned int i = 0; i < this->length; i++) {
251 if (this->fields.structure[i].type->contains_sampler())
252 return true;
253 }
254 return false;
255 } else {
256 return this->is_sampler();
257 }
258 }
259
260
261 bool
262 glsl_type::contains_integer() const
263 {
264 if (this->is_array()) {
265 return this->fields.array->contains_integer();
266 } else if (this->is_record()) {
267 for (unsigned int i = 0; i < this->length; i++) {
268 if (this->fields.structure[i].type->contains_integer())
269 return true;
270 }
271 return false;
272 } else {
273 return this->is_integer();
274 }
275 }
276
277 bool
278 glsl_type::contains_double() const
279 {
280 if (this->is_array()) {
281 return this->fields.array->contains_double();
282 } else if (this->is_record()) {
283 for (unsigned int i = 0; i < this->length; i++) {
284 if (this->fields.structure[i].type->contains_double())
285 return true;
286 }
287 return false;
288 } else {
289 return this->is_double();
290 }
291 }
292
293 bool
294 glsl_type::contains_opaque() const {
295 switch (base_type) {
296 case GLSL_TYPE_SAMPLER:
297 case GLSL_TYPE_IMAGE:
298 case GLSL_TYPE_ATOMIC_UINT:
299 return true;
300 case GLSL_TYPE_ARRAY:
301 return fields.array->contains_opaque();
302 case GLSL_TYPE_STRUCT:
303 for (unsigned int i = 0; i < length; i++) {
304 if (fields.structure[i].type->contains_opaque())
305 return true;
306 }
307 return false;
308 default:
309 return false;
310 }
311 }
312
313 bool
314 glsl_type::contains_subroutine() const
315 {
316 if (this->is_array()) {
317 return this->fields.array->contains_subroutine();
318 } else if (this->is_record()) {
319 for (unsigned int i = 0; i < this->length; i++) {
320 if (this->fields.structure[i].type->contains_subroutine())
321 return true;
322 }
323 return false;
324 } else {
325 return this->is_subroutine();
326 }
327 }
328
329 gl_texture_index
330 glsl_type::sampler_index() const
331 {
332 const glsl_type *const t = (this->is_array()) ? this->fields.array : this;
333
334 assert(t->is_sampler());
335
336 switch (t->sampler_dimensionality) {
337 case GLSL_SAMPLER_DIM_1D:
338 return (t->sampler_array) ? TEXTURE_1D_ARRAY_INDEX : TEXTURE_1D_INDEX;
339 case GLSL_SAMPLER_DIM_2D:
340 return (t->sampler_array) ? TEXTURE_2D_ARRAY_INDEX : TEXTURE_2D_INDEX;
341 case GLSL_SAMPLER_DIM_3D:
342 return TEXTURE_3D_INDEX;
343 case GLSL_SAMPLER_DIM_CUBE:
344 return (t->sampler_array) ? TEXTURE_CUBE_ARRAY_INDEX : TEXTURE_CUBE_INDEX;
345 case GLSL_SAMPLER_DIM_RECT:
346 return TEXTURE_RECT_INDEX;
347 case GLSL_SAMPLER_DIM_BUF:
348 return TEXTURE_BUFFER_INDEX;
349 case GLSL_SAMPLER_DIM_EXTERNAL:
350 return TEXTURE_EXTERNAL_INDEX;
351 case GLSL_SAMPLER_DIM_MS:
352 return (t->sampler_array) ? TEXTURE_2D_MULTISAMPLE_ARRAY_INDEX : TEXTURE_2D_MULTISAMPLE_INDEX;
353 default:
354 assert(!"Should not get here.");
355 return TEXTURE_BUFFER_INDEX;
356 }
357 }
358
359 bool
360 glsl_type::contains_image() const
361 {
362 if (this->is_array()) {
363 return this->fields.array->contains_image();
364 } else if (this->is_record()) {
365 for (unsigned int i = 0; i < this->length; i++) {
366 if (this->fields.structure[i].type->contains_image())
367 return true;
368 }
369 return false;
370 } else {
371 return this->is_image();
372 }
373 }
374
375 const glsl_type *glsl_type::get_base_type() const
376 {
377 switch (base_type) {
378 case GLSL_TYPE_UINT:
379 return uint_type;
380 case GLSL_TYPE_INT:
381 return int_type;
382 case GLSL_TYPE_FLOAT:
383 return float_type;
384 case GLSL_TYPE_DOUBLE:
385 return double_type;
386 case GLSL_TYPE_BOOL:
387 return bool_type;
388 default:
389 return error_type;
390 }
391 }
392
393
394 const glsl_type *glsl_type::get_scalar_type() const
395 {
396 const glsl_type *type = this;
397
398 /* Handle arrays */
399 while (type->base_type == GLSL_TYPE_ARRAY)
400 type = type->fields.array;
401
402 /* Handle vectors and matrices */
403 switch (type->base_type) {
404 case GLSL_TYPE_UINT:
405 return uint_type;
406 case GLSL_TYPE_INT:
407 return int_type;
408 case GLSL_TYPE_FLOAT:
409 return float_type;
410 case GLSL_TYPE_DOUBLE:
411 return double_type;
412 case GLSL_TYPE_BOOL:
413 return bool_type;
414 default:
415 /* Handle everything else */
416 return type;
417 }
418 }
419
420
421 void
422 _mesa_glsl_release_types(void)
423 {
424 /* Should only be called during atexit (either when unloading shared
425 * object, or if process terminates), so no mutex-locking should be
426 * necessary.
427 */
428 if (glsl_type::array_types != NULL) {
429 _mesa_hash_table_destroy(glsl_type::array_types, NULL);
430 glsl_type::array_types = NULL;
431 }
432
433 if (glsl_type::record_types != NULL) {
434 _mesa_hash_table_destroy(glsl_type::record_types, NULL);
435 glsl_type::record_types = NULL;
436 }
437
438 if (glsl_type::interface_types != NULL) {
439 _mesa_hash_table_destroy(glsl_type::interface_types, NULL);
440 glsl_type::interface_types = NULL;
441 }
442 }
443
444
445 glsl_type::glsl_type(const glsl_type *array, unsigned length) :
446 base_type(GLSL_TYPE_ARRAY),
447 sampler_dimensionality(0), sampler_shadow(0), sampler_array(0),
448 sampled_type(0), interface_packing(0),
449 vector_elements(0), matrix_columns(0),
450 length(length), name(NULL)
451 {
452 this->fields.array = array;
453 /* Inherit the gl type of the base. The GL type is used for
454 * uniform/statevar handling in Mesa and the arrayness of the type
455 * is represented by the size rather than the type.
456 */
457 this->gl_type = array->gl_type;
458
459 /* Allow a maximum of 10 characters for the array size. This is enough
460 * for 32-bits of ~0. The extra 3 are for the '[', ']', and terminating
461 * NUL.
462 */
463 const unsigned name_length = strlen(array->name) + 10 + 3;
464
465 mtx_lock(&glsl_type::mutex);
466 char *const n = (char *) ralloc_size(this->mem_ctx, name_length);
467 mtx_unlock(&glsl_type::mutex);
468
469 if (length == 0)
470 snprintf(n, name_length, "%s[]", array->name);
471 else {
472 /* insert outermost dimensions in the correct spot
473 * otherwise the dimension order will be backwards
474 */
475 const char *pos = strchr(array->name, '[');
476 if (pos) {
477 int idx = pos - array->name;
478 snprintf(n, idx+1, "%s", array->name);
479 snprintf(n + idx, name_length - idx, "[%u]%s",
480 length, array->name + idx);
481 } else {
482 snprintf(n, name_length, "%s[%u]", array->name, length);
483 }
484 }
485
486 this->name = n;
487 }
488
489
490 const glsl_type *
491 glsl_type::vec(unsigned components)
492 {
493 if (components == 0 || components > 4)
494 return error_type;
495
496 static const glsl_type *const ts[] = {
497 float_type, vec2_type, vec3_type, vec4_type
498 };
499 return ts[components - 1];
500 }
501
502 const glsl_type *
503 glsl_type::dvec(unsigned components)
504 {
505 if (components == 0 || components > 4)
506 return error_type;
507
508 static const glsl_type *const ts[] = {
509 double_type, dvec2_type, dvec3_type, dvec4_type
510 };
511 return ts[components - 1];
512 }
513
514 const glsl_type *
515 glsl_type::ivec(unsigned components)
516 {
517 if (components == 0 || components > 4)
518 return error_type;
519
520 static const glsl_type *const ts[] = {
521 int_type, ivec2_type, ivec3_type, ivec4_type
522 };
523 return ts[components - 1];
524 }
525
526
527 const glsl_type *
528 glsl_type::uvec(unsigned components)
529 {
530 if (components == 0 || components > 4)
531 return error_type;
532
533 static const glsl_type *const ts[] = {
534 uint_type, uvec2_type, uvec3_type, uvec4_type
535 };
536 return ts[components - 1];
537 }
538
539
540 const glsl_type *
541 glsl_type::bvec(unsigned components)
542 {
543 if (components == 0 || components > 4)
544 return error_type;
545
546 static const glsl_type *const ts[] = {
547 bool_type, bvec2_type, bvec3_type, bvec4_type
548 };
549 return ts[components - 1];
550 }
551
552
553 const glsl_type *
554 glsl_type::get_instance(unsigned base_type, unsigned rows, unsigned columns)
555 {
556 if (base_type == GLSL_TYPE_VOID)
557 return void_type;
558
559 if ((rows < 1) || (rows > 4) || (columns < 1) || (columns > 4))
560 return error_type;
561
562 /* Treat GLSL vectors as Nx1 matrices.
563 */
564 if (columns == 1) {
565 switch (base_type) {
566 case GLSL_TYPE_UINT:
567 return uvec(rows);
568 case GLSL_TYPE_INT:
569 return ivec(rows);
570 case GLSL_TYPE_FLOAT:
571 return vec(rows);
572 case GLSL_TYPE_DOUBLE:
573 return dvec(rows);
574 case GLSL_TYPE_BOOL:
575 return bvec(rows);
576 default:
577 return error_type;
578 }
579 } else {
580 if ((base_type != GLSL_TYPE_FLOAT && base_type != GLSL_TYPE_DOUBLE) || (rows == 1))
581 return error_type;
582
583 /* GLSL matrix types are named mat{COLUMNS}x{ROWS}. Only the following
584 * combinations are valid:
585 *
586 * 1 2 3 4
587 * 1
588 * 2 x x x
589 * 3 x x x
590 * 4 x x x
591 */
592 #define IDX(c,r) (((c-1)*3) + (r-1))
593
594 if (base_type == GLSL_TYPE_DOUBLE) {
595 switch (IDX(columns, rows)) {
596 case IDX(2,2): return dmat2_type;
597 case IDX(2,3): return dmat2x3_type;
598 case IDX(2,4): return dmat2x4_type;
599 case IDX(3,2): return dmat3x2_type;
600 case IDX(3,3): return dmat3_type;
601 case IDX(3,4): return dmat3x4_type;
602 case IDX(4,2): return dmat4x2_type;
603 case IDX(4,3): return dmat4x3_type;
604 case IDX(4,4): return dmat4_type;
605 default: return error_type;
606 }
607 } else {
608 switch (IDX(columns, rows)) {
609 case IDX(2,2): return mat2_type;
610 case IDX(2,3): return mat2x3_type;
611 case IDX(2,4): return mat2x4_type;
612 case IDX(3,2): return mat3x2_type;
613 case IDX(3,3): return mat3_type;
614 case IDX(3,4): return mat3x4_type;
615 case IDX(4,2): return mat4x2_type;
616 case IDX(4,3): return mat4x3_type;
617 case IDX(4,4): return mat4_type;
618 default: return error_type;
619 }
620 }
621 }
622
623 assert(!"Should not get here.");
624 return error_type;
625 }
626
627 const glsl_type *
628 glsl_type::get_sampler_instance(enum glsl_sampler_dim dim,
629 bool shadow,
630 bool array,
631 glsl_base_type type)
632 {
633 switch (type) {
634 case GLSL_TYPE_FLOAT:
635 switch (dim) {
636 case GLSL_SAMPLER_DIM_1D:
637 if (shadow)
638 return (array ? sampler1DArrayShadow_type : sampler1DShadow_type);
639 else
640 return (array ? sampler1DArray_type : sampler1D_type);
641 case GLSL_SAMPLER_DIM_2D:
642 if (shadow)
643 return (array ? sampler2DArrayShadow_type : sampler2DShadow_type);
644 else
645 return (array ? sampler2DArray_type : sampler2D_type);
646 case GLSL_SAMPLER_DIM_3D:
647 if (shadow || array)
648 return error_type;
649 else
650 return sampler3D_type;
651 case GLSL_SAMPLER_DIM_CUBE:
652 if (shadow)
653 return (array ? samplerCubeArrayShadow_type : samplerCubeShadow_type);
654 else
655 return (array ? samplerCubeArray_type : samplerCube_type);
656 case GLSL_SAMPLER_DIM_RECT:
657 if (array)
658 return error_type;
659 if (shadow)
660 return sampler2DRectShadow_type;
661 else
662 return sampler2DRect_type;
663 case GLSL_SAMPLER_DIM_BUF:
664 if (shadow || array)
665 return error_type;
666 else
667 return samplerBuffer_type;
668 case GLSL_SAMPLER_DIM_MS:
669 if (shadow)
670 return error_type;
671 return (array ? sampler2DMSArray_type : sampler2DMS_type);
672 case GLSL_SAMPLER_DIM_EXTERNAL:
673 if (shadow || array)
674 return error_type;
675 else
676 return samplerExternalOES_type;
677 }
678 case GLSL_TYPE_INT:
679 if (shadow)
680 return error_type;
681 switch (dim) {
682 case GLSL_SAMPLER_DIM_1D:
683 return (array ? isampler1DArray_type : isampler1D_type);
684 case GLSL_SAMPLER_DIM_2D:
685 return (array ? isampler2DArray_type : isampler2D_type);
686 case GLSL_SAMPLER_DIM_3D:
687 if (array)
688 return error_type;
689 return isampler3D_type;
690 case GLSL_SAMPLER_DIM_CUBE:
691 return (array ? isamplerCubeArray_type : isamplerCube_type);
692 case GLSL_SAMPLER_DIM_RECT:
693 if (array)
694 return error_type;
695 return isampler2DRect_type;
696 case GLSL_SAMPLER_DIM_BUF:
697 if (array)
698 return error_type;
699 return isamplerBuffer_type;
700 case GLSL_SAMPLER_DIM_MS:
701 return (array ? isampler2DMSArray_type : isampler2DMS_type);
702 case GLSL_SAMPLER_DIM_EXTERNAL:
703 return error_type;
704 }
705 case GLSL_TYPE_UINT:
706 if (shadow)
707 return error_type;
708 switch (dim) {
709 case GLSL_SAMPLER_DIM_1D:
710 return (array ? usampler1DArray_type : usampler1D_type);
711 case GLSL_SAMPLER_DIM_2D:
712 return (array ? usampler2DArray_type : usampler2D_type);
713 case GLSL_SAMPLER_DIM_3D:
714 if (array)
715 return error_type;
716 return usampler3D_type;
717 case GLSL_SAMPLER_DIM_CUBE:
718 return (array ? usamplerCubeArray_type : usamplerCube_type);
719 case GLSL_SAMPLER_DIM_RECT:
720 if (array)
721 return error_type;
722 return usampler2DRect_type;
723 case GLSL_SAMPLER_DIM_BUF:
724 if (array)
725 return error_type;
726 return usamplerBuffer_type;
727 case GLSL_SAMPLER_DIM_MS:
728 return (array ? usampler2DMSArray_type : usampler2DMS_type);
729 case GLSL_SAMPLER_DIM_EXTERNAL:
730 return error_type;
731 }
732 default:
733 return error_type;
734 }
735
736 unreachable("switch statement above should be complete");
737 }
738
739 const glsl_type *
740 glsl_type::get_image_instance(enum glsl_sampler_dim dim,
741 bool array, glsl_base_type type)
742 {
743 switch (type) {
744 case GLSL_TYPE_FLOAT:
745 switch (dim) {
746 case GLSL_SAMPLER_DIM_1D:
747 return (array ? image1DArray_type : image1D_type);
748 case GLSL_SAMPLER_DIM_2D:
749 return (array ? image2DArray_type : image2D_type);
750 case GLSL_SAMPLER_DIM_3D:
751 return image3D_type;
752 case GLSL_SAMPLER_DIM_CUBE:
753 return (array ? imageCubeArray_type : imageCube_type);
754 case GLSL_SAMPLER_DIM_RECT:
755 if (array)
756 return error_type;
757 else
758 return image2DRect_type;
759 case GLSL_SAMPLER_DIM_BUF:
760 if (array)
761 return error_type;
762 else
763 return imageBuffer_type;
764 case GLSL_SAMPLER_DIM_MS:
765 return (array ? image2DMSArray_type : image2DMS_type);
766 case GLSL_SAMPLER_DIM_EXTERNAL:
767 return error_type;
768 }
769 case GLSL_TYPE_INT:
770 switch (dim) {
771 case GLSL_SAMPLER_DIM_1D:
772 return (array ? iimage1DArray_type : iimage1D_type);
773 case GLSL_SAMPLER_DIM_2D:
774 return (array ? iimage2DArray_type : iimage2D_type);
775 case GLSL_SAMPLER_DIM_3D:
776 if (array)
777 return error_type;
778 return iimage3D_type;
779 case GLSL_SAMPLER_DIM_CUBE:
780 return (array ? iimageCubeArray_type : iimageCube_type);
781 case GLSL_SAMPLER_DIM_RECT:
782 if (array)
783 return error_type;
784 return iimage2DRect_type;
785 case GLSL_SAMPLER_DIM_BUF:
786 if (array)
787 return error_type;
788 return iimageBuffer_type;
789 case GLSL_SAMPLER_DIM_MS:
790 return (array ? iimage2DMSArray_type : iimage2DMS_type);
791 case GLSL_SAMPLER_DIM_EXTERNAL:
792 return error_type;
793 }
794 case GLSL_TYPE_UINT:
795 switch (dim) {
796 case GLSL_SAMPLER_DIM_1D:
797 return (array ? uimage1DArray_type : uimage1D_type);
798 case GLSL_SAMPLER_DIM_2D:
799 return (array ? uimage2DArray_type : uimage2D_type);
800 case GLSL_SAMPLER_DIM_3D:
801 if (array)
802 return error_type;
803 return uimage3D_type;
804 case GLSL_SAMPLER_DIM_CUBE:
805 return (array ? uimageCubeArray_type : uimageCube_type);
806 case GLSL_SAMPLER_DIM_RECT:
807 if (array)
808 return error_type;
809 return uimage2DRect_type;
810 case GLSL_SAMPLER_DIM_BUF:
811 if (array)
812 return error_type;
813 return uimageBuffer_type;
814 case GLSL_SAMPLER_DIM_MS:
815 return (array ? uimage2DMSArray_type : uimage2DMS_type);
816 case GLSL_SAMPLER_DIM_EXTERNAL:
817 return error_type;
818 }
819 default:
820 return error_type;
821 }
822
823 unreachable("switch statement above should be complete");
824 }
825
826 const glsl_type *
827 glsl_type::get_array_instance(const glsl_type *base, unsigned array_size)
828 {
829 /* Generate a name using the base type pointer in the key. This is
830 * done because the name of the base type may not be unique across
831 * shaders. For example, two shaders may have different record types
832 * named 'foo'.
833 */
834 char key[128];
835 snprintf(key, sizeof(key), "%p[%u]", (void *) base, array_size);
836
837 mtx_lock(&glsl_type::mutex);
838
839 if (array_types == NULL) {
840 array_types = _mesa_hash_table_create(NULL, _mesa_key_hash_string,
841 _mesa_key_string_equal);
842 }
843
844 const struct hash_entry *entry = _mesa_hash_table_search(array_types, key);
845 if (entry == NULL) {
846 mtx_unlock(&glsl_type::mutex);
847 const glsl_type *t = new glsl_type(base, array_size);
848 mtx_lock(&glsl_type::mutex);
849
850 entry = _mesa_hash_table_insert(array_types,
851 ralloc_strdup(mem_ctx, key),
852 (void *) t);
853 }
854
855 assert(((glsl_type *) entry->data)->base_type == GLSL_TYPE_ARRAY);
856 assert(((glsl_type *) entry->data)->length == array_size);
857 assert(((glsl_type *) entry->data)->fields.array == base);
858
859 mtx_unlock(&glsl_type::mutex);
860
861 return (glsl_type *) entry->data;
862 }
863
864
865 bool
866 glsl_type::record_compare(const glsl_type *b, bool match_locations) const
867 {
868 if (this->length != b->length)
869 return false;
870
871 if (this->interface_packing != b->interface_packing)
872 return false;
873
874 /* From the GLSL 4.20 specification (Sec 4.2):
875 *
876 * "Structures must have the same name, sequence of type names, and
877 * type definitions, and field names to be considered the same type."
878 *
879 * GLSL ES behaves the same (Ver 1.00 Sec 4.2.4, Ver 3.00 Sec 4.2.5).
880 *
881 * Note that we cannot force type name check when comparing unnamed
882 * structure types, these have a unique name assigned during parsing.
883 */
884 if (!this->is_anonymous() && !b->is_anonymous())
885 if (strcmp(this->name, b->name) != 0)
886 return false;
887
888 for (unsigned i = 0; i < this->length; i++) {
889 if (this->fields.structure[i].type != b->fields.structure[i].type)
890 return false;
891 if (strcmp(this->fields.structure[i].name,
892 b->fields.structure[i].name) != 0)
893 return false;
894 if (this->fields.structure[i].matrix_layout
895 != b->fields.structure[i].matrix_layout)
896 return false;
897 if (match_locations && this->fields.structure[i].location
898 != b->fields.structure[i].location)
899 return false;
900 if (this->fields.structure[i].offset
901 != b->fields.structure[i].offset)
902 return false;
903 if (this->fields.structure[i].interpolation
904 != b->fields.structure[i].interpolation)
905 return false;
906 if (this->fields.structure[i].centroid
907 != b->fields.structure[i].centroid)
908 return false;
909 if (this->fields.structure[i].sample
910 != b->fields.structure[i].sample)
911 return false;
912 if (this->fields.structure[i].patch
913 != b->fields.structure[i].patch)
914 return false;
915 if (this->fields.structure[i].image_read_only
916 != b->fields.structure[i].image_read_only)
917 return false;
918 if (this->fields.structure[i].image_write_only
919 != b->fields.structure[i].image_write_only)
920 return false;
921 if (this->fields.structure[i].image_coherent
922 != b->fields.structure[i].image_coherent)
923 return false;
924 if (this->fields.structure[i].image_volatile
925 != b->fields.structure[i].image_volatile)
926 return false;
927 if (this->fields.structure[i].image_restrict
928 != b->fields.structure[i].image_restrict)
929 return false;
930 if (this->fields.structure[i].precision
931 != b->fields.structure[i].precision)
932 return false;
933 if (this->fields.structure[i].explicit_xfb_buffer
934 != b->fields.structure[i].explicit_xfb_buffer)
935 return false;
936 if (this->fields.structure[i].xfb_buffer
937 != b->fields.structure[i].xfb_buffer)
938 return false;
939 if (this->fields.structure[i].xfb_stride
940 != b->fields.structure[i].xfb_stride)
941 return false;
942 }
943
944 return true;
945 }
946
947
948 bool
949 glsl_type::record_key_compare(const void *a, const void *b)
950 {
951 const glsl_type *const key1 = (glsl_type *) a;
952 const glsl_type *const key2 = (glsl_type *) b;
953
954 return strcmp(key1->name, key2->name) == 0 && key1->record_compare(key2);
955 }
956
957
958 /**
959 * Generate an integer hash value for a glsl_type structure type.
960 */
961 unsigned
962 glsl_type::record_key_hash(const void *a)
963 {
964 const glsl_type *const key = (glsl_type *) a;
965 uintptr_t hash = key->length;
966 unsigned retval;
967
968 for (unsigned i = 0; i < key->length; i++) {
969 /* casting pointer to uintptr_t */
970 hash = (hash * 13 ) + (uintptr_t) key->fields.structure[i].type;
971 }
972
973 if (sizeof(hash) == 8)
974 retval = (hash & 0xffffffff) ^ ((uint64_t) hash >> 32);
975 else
976 retval = hash;
977
978 return retval;
979 }
980
981
982 const glsl_type *
983 glsl_type::get_record_instance(const glsl_struct_field *fields,
984 unsigned num_fields,
985 const char *name)
986 {
987 const glsl_type key(fields, num_fields, name);
988
989 mtx_lock(&glsl_type::mutex);
990
991 if (record_types == NULL) {
992 record_types = _mesa_hash_table_create(NULL, record_key_hash,
993 record_key_compare);
994 }
995
996 const struct hash_entry *entry = _mesa_hash_table_search(record_types,
997 &key);
998 if (entry == NULL) {
999 mtx_unlock(&glsl_type::mutex);
1000 const glsl_type *t = new glsl_type(fields, num_fields, name);
1001 mtx_lock(&glsl_type::mutex);
1002
1003 entry = _mesa_hash_table_insert(record_types, t, (void *) t);
1004 }
1005
1006 assert(((glsl_type *) entry->data)->base_type == GLSL_TYPE_STRUCT);
1007 assert(((glsl_type *) entry->data)->length == num_fields);
1008 assert(strcmp(((glsl_type *) entry->data)->name, name) == 0);
1009
1010 mtx_unlock(&glsl_type::mutex);
1011
1012 return (glsl_type *) entry->data;
1013 }
1014
1015
1016 const glsl_type *
1017 glsl_type::get_interface_instance(const glsl_struct_field *fields,
1018 unsigned num_fields,
1019 enum glsl_interface_packing packing,
1020 const char *block_name)
1021 {
1022 const glsl_type key(fields, num_fields, packing, block_name);
1023
1024 mtx_lock(&glsl_type::mutex);
1025
1026 if (interface_types == NULL) {
1027 interface_types = _mesa_hash_table_create(NULL, record_key_hash,
1028 record_key_compare);
1029 }
1030
1031 const struct hash_entry *entry = _mesa_hash_table_search(interface_types,
1032 &key);
1033 if (entry == NULL) {
1034 mtx_unlock(&glsl_type::mutex);
1035 const glsl_type *t = new glsl_type(fields, num_fields,
1036 packing, block_name);
1037 mtx_lock(&glsl_type::mutex);
1038
1039 entry = _mesa_hash_table_insert(interface_types, t, (void *) t);
1040 }
1041
1042 assert(((glsl_type *) entry->data)->base_type == GLSL_TYPE_INTERFACE);
1043 assert(((glsl_type *) entry->data)->length == num_fields);
1044 assert(strcmp(((glsl_type *) entry->data)->name, block_name) == 0);
1045
1046 mtx_unlock(&glsl_type::mutex);
1047
1048 return (glsl_type *) entry->data;
1049 }
1050
1051 const glsl_type *
1052 glsl_type::get_subroutine_instance(const char *subroutine_name)
1053 {
1054 const glsl_type key(subroutine_name);
1055
1056 mtx_lock(&glsl_type::mutex);
1057
1058 if (subroutine_types == NULL) {
1059 subroutine_types = _mesa_hash_table_create(NULL, record_key_hash,
1060 record_key_compare);
1061 }
1062
1063 const struct hash_entry *entry = _mesa_hash_table_search(subroutine_types,
1064 &key);
1065 if (entry == NULL) {
1066 mtx_unlock(&glsl_type::mutex);
1067 const glsl_type *t = new glsl_type(subroutine_name);
1068 mtx_lock(&glsl_type::mutex);
1069
1070 entry = _mesa_hash_table_insert(subroutine_types, t, (void *) t);
1071 }
1072
1073 assert(((glsl_type *) entry->data)->base_type == GLSL_TYPE_SUBROUTINE);
1074 assert(strcmp(((glsl_type *) entry->data)->name, subroutine_name) == 0);
1075
1076 mtx_unlock(&glsl_type::mutex);
1077
1078 return (glsl_type *) entry->data;
1079 }
1080
1081
1082 static bool
1083 function_key_compare(const void *a, const void *b)
1084 {
1085 const glsl_type *const key1 = (glsl_type *) a;
1086 const glsl_type *const key2 = (glsl_type *) b;
1087
1088 if (key1->length != key2->length)
1089 return false;
1090
1091 return memcmp(key1->fields.parameters, key2->fields.parameters,
1092 (key1->length + 1) * sizeof(*key1->fields.parameters)) == 0;
1093 }
1094
1095
1096 static uint32_t
1097 function_key_hash(const void *a)
1098 {
1099 const glsl_type *const key = (glsl_type *) a;
1100 return _mesa_hash_data(key->fields.parameters,
1101 (key->length + 1) * sizeof(*key->fields.parameters));
1102 }
1103
1104 const glsl_type *
1105 glsl_type::get_function_instance(const glsl_type *return_type,
1106 const glsl_function_param *params,
1107 unsigned num_params)
1108 {
1109 const glsl_type key(return_type, params, num_params);
1110
1111 mtx_lock(&glsl_type::mutex);
1112
1113 if (function_types == NULL) {
1114 function_types = _mesa_hash_table_create(NULL, function_key_hash,
1115 function_key_compare);
1116 }
1117
1118 struct hash_entry *entry = _mesa_hash_table_search(function_types, &key);
1119 if (entry == NULL) {
1120 mtx_unlock(&glsl_type::mutex);
1121 const glsl_type *t = new glsl_type(return_type, params, num_params);
1122 mtx_lock(&glsl_type::mutex);
1123
1124 entry = _mesa_hash_table_insert(function_types, t, (void *) t);
1125 }
1126
1127 const glsl_type *t = (const glsl_type *)entry->data;
1128
1129 assert(t->base_type == GLSL_TYPE_FUNCTION);
1130 assert(t->length == num_params);
1131
1132 mtx_unlock(&glsl_type::mutex);
1133
1134 return t;
1135 }
1136
1137
1138 const glsl_type *
1139 glsl_type::get_mul_type(const glsl_type *type_a, const glsl_type *type_b)
1140 {
1141 if (type_a == type_b) {
1142 return type_a;
1143 } else if (type_a->is_matrix() && type_b->is_matrix()) {
1144 /* Matrix multiply. The columns of A must match the rows of B. Given
1145 * the other previously tested constraints, this means the vector type
1146 * of a row from A must be the same as the vector type of a column from
1147 * B.
1148 */
1149 if (type_a->row_type() == type_b->column_type()) {
1150 /* The resulting matrix has the number of columns of matrix B and
1151 * the number of rows of matrix A. We get the row count of A by
1152 * looking at the size of a vector that makes up a column. The
1153 * transpose (size of a row) is done for B.
1154 */
1155 const glsl_type *const type =
1156 get_instance(type_a->base_type,
1157 type_a->column_type()->vector_elements,
1158 type_b->row_type()->vector_elements);
1159 assert(type != error_type);
1160
1161 return type;
1162 }
1163 } else if (type_a->is_matrix()) {
1164 /* A is a matrix and B is a column vector. Columns of A must match
1165 * rows of B. Given the other previously tested constraints, this
1166 * means the vector type of a row from A must be the same as the
1167 * vector the type of B.
1168 */
1169 if (type_a->row_type() == type_b) {
1170 /* The resulting vector has a number of elements equal to
1171 * the number of rows of matrix A. */
1172 const glsl_type *const type =
1173 get_instance(type_a->base_type,
1174 type_a->column_type()->vector_elements,
1175 1);
1176 assert(type != error_type);
1177
1178 return type;
1179 }
1180 } else {
1181 assert(type_b->is_matrix());
1182
1183 /* A is a row vector and B is a matrix. Columns of A must match rows
1184 * of B. Given the other previously tested constraints, this means
1185 * the type of A must be the same as the vector type of a column from
1186 * B.
1187 */
1188 if (type_a == type_b->column_type()) {
1189 /* The resulting vector has a number of elements equal to
1190 * the number of columns of matrix B. */
1191 const glsl_type *const type =
1192 get_instance(type_a->base_type,
1193 type_b->row_type()->vector_elements,
1194 1);
1195 assert(type != error_type);
1196
1197 return type;
1198 }
1199 }
1200
1201 return error_type;
1202 }
1203
1204
1205 const glsl_type *
1206 glsl_type::field_type(const char *name) const
1207 {
1208 if (this->base_type != GLSL_TYPE_STRUCT
1209 && this->base_type != GLSL_TYPE_INTERFACE)
1210 return error_type;
1211
1212 for (unsigned i = 0; i < this->length; i++) {
1213 if (strcmp(name, this->fields.structure[i].name) == 0)
1214 return this->fields.structure[i].type;
1215 }
1216
1217 return error_type;
1218 }
1219
1220
1221 int
1222 glsl_type::field_index(const char *name) const
1223 {
1224 if (this->base_type != GLSL_TYPE_STRUCT
1225 && this->base_type != GLSL_TYPE_INTERFACE)
1226 return -1;
1227
1228 for (unsigned i = 0; i < this->length; i++) {
1229 if (strcmp(name, this->fields.structure[i].name) == 0)
1230 return i;
1231 }
1232
1233 return -1;
1234 }
1235
1236
1237 unsigned
1238 glsl_type::component_slots() const
1239 {
1240 switch (this->base_type) {
1241 case GLSL_TYPE_UINT:
1242 case GLSL_TYPE_INT:
1243 case GLSL_TYPE_FLOAT:
1244 case GLSL_TYPE_BOOL:
1245 return this->components();
1246
1247 case GLSL_TYPE_DOUBLE:
1248 return 2 * this->components();
1249
1250 case GLSL_TYPE_STRUCT:
1251 case GLSL_TYPE_INTERFACE: {
1252 unsigned size = 0;
1253
1254 for (unsigned i = 0; i < this->length; i++)
1255 size += this->fields.structure[i].type->component_slots();
1256
1257 return size;
1258 }
1259
1260 case GLSL_TYPE_ARRAY:
1261 return this->length * this->fields.array->component_slots();
1262
1263 case GLSL_TYPE_IMAGE:
1264 return 1;
1265 case GLSL_TYPE_SUBROUTINE:
1266 return 1;
1267
1268 case GLSL_TYPE_FUNCTION:
1269 case GLSL_TYPE_SAMPLER:
1270 case GLSL_TYPE_ATOMIC_UINT:
1271 case GLSL_TYPE_VOID:
1272 case GLSL_TYPE_ERROR:
1273 break;
1274 }
1275
1276 return 0;
1277 }
1278
1279 unsigned
1280 glsl_type::record_location_offset(unsigned length) const
1281 {
1282 unsigned offset = 0;
1283 const glsl_type *t = this->without_array();
1284 if (t->is_record()) {
1285 assert(length <= t->length);
1286
1287 for (unsigned i = 0; i < length; i++) {
1288 const glsl_type *st = t->fields.structure[i].type;
1289 const glsl_type *wa = st->without_array();
1290 if (wa->is_record()) {
1291 unsigned r_offset = wa->record_location_offset(wa->length);
1292 offset += st->is_array() ?
1293 st->arrays_of_arrays_size() * r_offset : r_offset;
1294 } else if (st->is_array() && st->fields.array->is_array()) {
1295 unsigned outer_array_size = st->length;
1296 const glsl_type *base_type = st->fields.array;
1297
1298 /* For arrays of arrays the outer arrays take up a uniform
1299 * slot for each element. The innermost array elements share a
1300 * single slot so we ignore the innermost array when calculating
1301 * the offset.
1302 */
1303 while (base_type->fields.array->is_array()) {
1304 outer_array_size = outer_array_size * base_type->length;
1305 base_type = base_type->fields.array;
1306 }
1307 offset += outer_array_size;
1308 } else {
1309 /* We dont worry about arrays here because unless the array
1310 * contains a structure or another array it only takes up a single
1311 * uniform slot.
1312 */
1313 offset += 1;
1314 }
1315 }
1316 }
1317 return offset;
1318 }
1319
1320 unsigned
1321 glsl_type::uniform_locations() const
1322 {
1323 unsigned size = 0;
1324
1325 switch (this->base_type) {
1326 case GLSL_TYPE_UINT:
1327 case GLSL_TYPE_INT:
1328 case GLSL_TYPE_FLOAT:
1329 case GLSL_TYPE_DOUBLE:
1330 case GLSL_TYPE_BOOL:
1331 case GLSL_TYPE_SAMPLER:
1332 case GLSL_TYPE_IMAGE:
1333 case GLSL_TYPE_SUBROUTINE:
1334 return 1;
1335
1336 case GLSL_TYPE_STRUCT:
1337 case GLSL_TYPE_INTERFACE:
1338 for (unsigned i = 0; i < this->length; i++)
1339 size += this->fields.structure[i].type->uniform_locations();
1340 return size;
1341 case GLSL_TYPE_ARRAY:
1342 return this->length * this->fields.array->uniform_locations();
1343 default:
1344 return 0;
1345 }
1346 }
1347
1348 unsigned
1349 glsl_type::varying_count() const
1350 {
1351 unsigned size = 0;
1352
1353 switch (this->base_type) {
1354 case GLSL_TYPE_UINT:
1355 case GLSL_TYPE_INT:
1356 case GLSL_TYPE_FLOAT:
1357 case GLSL_TYPE_DOUBLE:
1358 case GLSL_TYPE_BOOL:
1359 return 1;
1360
1361 case GLSL_TYPE_STRUCT:
1362 case GLSL_TYPE_INTERFACE:
1363 for (unsigned i = 0; i < this->length; i++)
1364 size += this->fields.structure[i].type->varying_count();
1365 return size;
1366 case GLSL_TYPE_ARRAY:
1367 /* Don't count innermost array elements */
1368 if (this->without_array()->is_record() ||
1369 this->without_array()->is_interface() ||
1370 this->fields.array->is_array())
1371 return this->length * this->fields.array->varying_count();
1372 else
1373 return this->fields.array->varying_count();
1374 default:
1375 assert(!"unsupported varying type");
1376 return 0;
1377 }
1378 }
1379
1380 bool
1381 glsl_type::can_implicitly_convert_to(const glsl_type *desired,
1382 _mesa_glsl_parse_state *state) const
1383 {
1384 if (this == desired)
1385 return true;
1386
1387 /* ESSL does not allow implicit conversions. If there is no state, we're
1388 * doing intra-stage function linking where these checks have already been
1389 * done.
1390 */
1391 if (state && state->es_shader)
1392 return false;
1393
1394 /* There is no conversion among matrix types. */
1395 if (this->matrix_columns > 1 || desired->matrix_columns > 1)
1396 return false;
1397
1398 /* Vector size must match. */
1399 if (this->vector_elements != desired->vector_elements)
1400 return false;
1401
1402 /* int and uint can be converted to float. */
1403 if (desired->is_float() && this->is_integer())
1404 return true;
1405
1406 /* With GLSL 4.0 / ARB_gpu_shader5, int can be converted to uint.
1407 * Note that state may be NULL here, when resolving function calls in the
1408 * linker. By this time, all the state-dependent checks have already
1409 * happened though, so allow anything that's allowed in any shader version. */
1410 if ((!state || state->is_version(400, 0) || state->ARB_gpu_shader5_enable) &&
1411 desired->base_type == GLSL_TYPE_UINT && this->base_type == GLSL_TYPE_INT)
1412 return true;
1413
1414 /* No implicit conversions from double. */
1415 if ((!state || state->has_double()) && this->is_double())
1416 return false;
1417
1418 /* Conversions from different types to double. */
1419 if ((!state || state->has_double()) && desired->is_double()) {
1420 if (this->is_float())
1421 return true;
1422 if (this->is_integer())
1423 return true;
1424 }
1425
1426 return false;
1427 }
1428
1429 unsigned
1430 glsl_type::std140_base_alignment(bool row_major) const
1431 {
1432 unsigned N = is_64bit() ? 8 : 4;
1433
1434 /* (1) If the member is a scalar consuming <N> basic machine units, the
1435 * base alignment is <N>.
1436 *
1437 * (2) If the member is a two- or four-component vector with components
1438 * consuming <N> basic machine units, the base alignment is 2<N> or
1439 * 4<N>, respectively.
1440 *
1441 * (3) If the member is a three-component vector with components consuming
1442 * <N> basic machine units, the base alignment is 4<N>.
1443 */
1444 if (this->is_scalar() || this->is_vector()) {
1445 switch (this->vector_elements) {
1446 case 1:
1447 return N;
1448 case 2:
1449 return 2 * N;
1450 case 3:
1451 case 4:
1452 return 4 * N;
1453 }
1454 }
1455
1456 /* (4) If the member is an array of scalars or vectors, the base alignment
1457 * and array stride are set to match the base alignment of a single
1458 * array element, according to rules (1), (2), and (3), and rounded up
1459 * to the base alignment of a vec4. The array may have padding at the
1460 * end; the base offset of the member following the array is rounded up
1461 * to the next multiple of the base alignment.
1462 *
1463 * (6) If the member is an array of <S> column-major matrices with <C>
1464 * columns and <R> rows, the matrix is stored identically to a row of
1465 * <S>*<C> column vectors with <R> components each, according to rule
1466 * (4).
1467 *
1468 * (8) If the member is an array of <S> row-major matrices with <C> columns
1469 * and <R> rows, the matrix is stored identically to a row of <S>*<R>
1470 * row vectors with <C> components each, according to rule (4).
1471 *
1472 * (10) If the member is an array of <S> structures, the <S> elements of
1473 * the array are laid out in order, according to rule (9).
1474 */
1475 if (this->is_array()) {
1476 if (this->fields.array->is_scalar() ||
1477 this->fields.array->is_vector() ||
1478 this->fields.array->is_matrix()) {
1479 return MAX2(this->fields.array->std140_base_alignment(row_major), 16);
1480 } else {
1481 assert(this->fields.array->is_record() ||
1482 this->fields.array->is_array());
1483 return this->fields.array->std140_base_alignment(row_major);
1484 }
1485 }
1486
1487 /* (5) If the member is a column-major matrix with <C> columns and
1488 * <R> rows, the matrix is stored identically to an array of
1489 * <C> column vectors with <R> components each, according to
1490 * rule (4).
1491 *
1492 * (7) If the member is a row-major matrix with <C> columns and <R>
1493 * rows, the matrix is stored identically to an array of <R>
1494 * row vectors with <C> components each, according to rule (4).
1495 */
1496 if (this->is_matrix()) {
1497 const struct glsl_type *vec_type, *array_type;
1498 int c = this->matrix_columns;
1499 int r = this->vector_elements;
1500
1501 if (row_major) {
1502 vec_type = get_instance(base_type, c, 1);
1503 array_type = glsl_type::get_array_instance(vec_type, r);
1504 } else {
1505 vec_type = get_instance(base_type, r, 1);
1506 array_type = glsl_type::get_array_instance(vec_type, c);
1507 }
1508
1509 return array_type->std140_base_alignment(false);
1510 }
1511
1512 /* (9) If the member is a structure, the base alignment of the
1513 * structure is <N>, where <N> is the largest base alignment
1514 * value of any of its members, and rounded up to the base
1515 * alignment of a vec4. The individual members of this
1516 * sub-structure are then assigned offsets by applying this set
1517 * of rules recursively, where the base offset of the first
1518 * member of the sub-structure is equal to the aligned offset
1519 * of the structure. The structure may have padding at the end;
1520 * the base offset of the member following the sub-structure is
1521 * rounded up to the next multiple of the base alignment of the
1522 * structure.
1523 */
1524 if (this->is_record()) {
1525 unsigned base_alignment = 16;
1526 for (unsigned i = 0; i < this->length; i++) {
1527 bool field_row_major = row_major;
1528 const enum glsl_matrix_layout matrix_layout =
1529 glsl_matrix_layout(this->fields.structure[i].matrix_layout);
1530 if (matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR) {
1531 field_row_major = true;
1532 } else if (matrix_layout == GLSL_MATRIX_LAYOUT_COLUMN_MAJOR) {
1533 field_row_major = false;
1534 }
1535
1536 const struct glsl_type *field_type = this->fields.structure[i].type;
1537 base_alignment = MAX2(base_alignment,
1538 field_type->std140_base_alignment(field_row_major));
1539 }
1540 return base_alignment;
1541 }
1542
1543 assert(!"not reached");
1544 return -1;
1545 }
1546
1547 unsigned
1548 glsl_type::std140_size(bool row_major) const
1549 {
1550 unsigned N = is_64bit() ? 8 : 4;
1551
1552 /* (1) If the member is a scalar consuming <N> basic machine units, the
1553 * base alignment is <N>.
1554 *
1555 * (2) If the member is a two- or four-component vector with components
1556 * consuming <N> basic machine units, the base alignment is 2<N> or
1557 * 4<N>, respectively.
1558 *
1559 * (3) If the member is a three-component vector with components consuming
1560 * <N> basic machine units, the base alignment is 4<N>.
1561 */
1562 if (this->is_scalar() || this->is_vector()) {
1563 return this->vector_elements * N;
1564 }
1565
1566 /* (5) If the member is a column-major matrix with <C> columns and
1567 * <R> rows, the matrix is stored identically to an array of
1568 * <C> column vectors with <R> components each, according to
1569 * rule (4).
1570 *
1571 * (6) If the member is an array of <S> column-major matrices with <C>
1572 * columns and <R> rows, the matrix is stored identically to a row of
1573 * <S>*<C> column vectors with <R> components each, according to rule
1574 * (4).
1575 *
1576 * (7) If the member is a row-major matrix with <C> columns and <R>
1577 * rows, the matrix is stored identically to an array of <R>
1578 * row vectors with <C> components each, according to rule (4).
1579 *
1580 * (8) If the member is an array of <S> row-major matrices with <C> columns
1581 * and <R> rows, the matrix is stored identically to a row of <S>*<R>
1582 * row vectors with <C> components each, according to rule (4).
1583 */
1584 if (this->without_array()->is_matrix()) {
1585 const struct glsl_type *element_type;
1586 const struct glsl_type *vec_type;
1587 unsigned int array_len;
1588
1589 if (this->is_array()) {
1590 element_type = this->without_array();
1591 array_len = this->arrays_of_arrays_size();
1592 } else {
1593 element_type = this;
1594 array_len = 1;
1595 }
1596
1597 if (row_major) {
1598 vec_type = get_instance(element_type->base_type,
1599 element_type->matrix_columns, 1);
1600
1601 array_len *= element_type->vector_elements;
1602 } else {
1603 vec_type = get_instance(element_type->base_type,
1604 element_type->vector_elements, 1);
1605 array_len *= element_type->matrix_columns;
1606 }
1607 const glsl_type *array_type = glsl_type::get_array_instance(vec_type,
1608 array_len);
1609
1610 return array_type->std140_size(false);
1611 }
1612
1613 /* (4) If the member is an array of scalars or vectors, the base alignment
1614 * and array stride are set to match the base alignment of a single
1615 * array element, according to rules (1), (2), and (3), and rounded up
1616 * to the base alignment of a vec4. The array may have padding at the
1617 * end; the base offset of the member following the array is rounded up
1618 * to the next multiple of the base alignment.
1619 *
1620 * (10) If the member is an array of <S> structures, the <S> elements of
1621 * the array are laid out in order, according to rule (9).
1622 */
1623 if (this->is_array()) {
1624 if (this->without_array()->is_record()) {
1625 return this->arrays_of_arrays_size() *
1626 this->without_array()->std140_size(row_major);
1627 } else {
1628 unsigned element_base_align =
1629 this->without_array()->std140_base_alignment(row_major);
1630 return this->arrays_of_arrays_size() * MAX2(element_base_align, 16);
1631 }
1632 }
1633
1634 /* (9) If the member is a structure, the base alignment of the
1635 * structure is <N>, where <N> is the largest base alignment
1636 * value of any of its members, and rounded up to the base
1637 * alignment of a vec4. The individual members of this
1638 * sub-structure are then assigned offsets by applying this set
1639 * of rules recursively, where the base offset of the first
1640 * member of the sub-structure is equal to the aligned offset
1641 * of the structure. The structure may have padding at the end;
1642 * the base offset of the member following the sub-structure is
1643 * rounded up to the next multiple of the base alignment of the
1644 * structure.
1645 */
1646 if (this->is_record() || this->is_interface()) {
1647 unsigned size = 0;
1648 unsigned max_align = 0;
1649
1650 for (unsigned i = 0; i < this->length; i++) {
1651 bool field_row_major = row_major;
1652 const enum glsl_matrix_layout matrix_layout =
1653 glsl_matrix_layout(this->fields.structure[i].matrix_layout);
1654 if (matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR) {
1655 field_row_major = true;
1656 } else if (matrix_layout == GLSL_MATRIX_LAYOUT_COLUMN_MAJOR) {
1657 field_row_major = false;
1658 }
1659
1660 const struct glsl_type *field_type = this->fields.structure[i].type;
1661 unsigned align = field_type->std140_base_alignment(field_row_major);
1662
1663 /* Ignore unsized arrays when calculating size */
1664 if (field_type->is_unsized_array())
1665 continue;
1666
1667 size = glsl_align(size, align);
1668 size += field_type->std140_size(field_row_major);
1669
1670 max_align = MAX2(align, max_align);
1671
1672 if (field_type->is_record() && (i + 1 < this->length))
1673 size = glsl_align(size, 16);
1674 }
1675 size = glsl_align(size, MAX2(max_align, 16));
1676 return size;
1677 }
1678
1679 assert(!"not reached");
1680 return -1;
1681 }
1682
1683 unsigned
1684 glsl_type::std430_base_alignment(bool row_major) const
1685 {
1686
1687 unsigned N = is_64bit() ? 8 : 4;
1688
1689 /* (1) If the member is a scalar consuming <N> basic machine units, the
1690 * base alignment is <N>.
1691 *
1692 * (2) If the member is a two- or four-component vector with components
1693 * consuming <N> basic machine units, the base alignment is 2<N> or
1694 * 4<N>, respectively.
1695 *
1696 * (3) If the member is a three-component vector with components consuming
1697 * <N> basic machine units, the base alignment is 4<N>.
1698 */
1699 if (this->is_scalar() || this->is_vector()) {
1700 switch (this->vector_elements) {
1701 case 1:
1702 return N;
1703 case 2:
1704 return 2 * N;
1705 case 3:
1706 case 4:
1707 return 4 * N;
1708 }
1709 }
1710
1711 /* OpenGL 4.30 spec, section 7.6.2.2 "Standard Uniform Block Layout":
1712 *
1713 * "When using the std430 storage layout, shader storage blocks will be
1714 * laid out in buffer storage identically to uniform and shader storage
1715 * blocks using the std140 layout, except that the base alignment and
1716 * stride of arrays of scalars and vectors in rule 4 and of structures
1717 * in rule 9 are not rounded up a multiple of the base alignment of a vec4.
1718 */
1719
1720 /* (1) If the member is a scalar consuming <N> basic machine units, the
1721 * base alignment is <N>.
1722 *
1723 * (2) If the member is a two- or four-component vector with components
1724 * consuming <N> basic machine units, the base alignment is 2<N> or
1725 * 4<N>, respectively.
1726 *
1727 * (3) If the member is a three-component vector with components consuming
1728 * <N> basic machine units, the base alignment is 4<N>.
1729 */
1730 if (this->is_array())
1731 return this->fields.array->std430_base_alignment(row_major);
1732
1733 /* (5) If the member is a column-major matrix with <C> columns and
1734 * <R> rows, the matrix is stored identically to an array of
1735 * <C> column vectors with <R> components each, according to
1736 * rule (4).
1737 *
1738 * (7) If the member is a row-major matrix with <C> columns and <R>
1739 * rows, the matrix is stored identically to an array of <R>
1740 * row vectors with <C> components each, according to rule (4).
1741 */
1742 if (this->is_matrix()) {
1743 const struct glsl_type *vec_type, *array_type;
1744 int c = this->matrix_columns;
1745 int r = this->vector_elements;
1746
1747 if (row_major) {
1748 vec_type = get_instance(base_type, c, 1);
1749 array_type = glsl_type::get_array_instance(vec_type, r);
1750 } else {
1751 vec_type = get_instance(base_type, r, 1);
1752 array_type = glsl_type::get_array_instance(vec_type, c);
1753 }
1754
1755 return array_type->std430_base_alignment(false);
1756 }
1757
1758 /* (9) If the member is a structure, the base alignment of the
1759 * structure is <N>, where <N> is the largest base alignment
1760 * value of any of its members, and rounded up to the base
1761 * alignment of a vec4. The individual members of this
1762 * sub-structure are then assigned offsets by applying this set
1763 * of rules recursively, where the base offset of the first
1764 * member of the sub-structure is equal to the aligned offset
1765 * of the structure. The structure may have padding at the end;
1766 * the base offset of the member following the sub-structure is
1767 * rounded up to the next multiple of the base alignment of the
1768 * structure.
1769 */
1770 if (this->is_record()) {
1771 unsigned base_alignment = 0;
1772 for (unsigned i = 0; i < this->length; i++) {
1773 bool field_row_major = row_major;
1774 const enum glsl_matrix_layout matrix_layout =
1775 glsl_matrix_layout(this->fields.structure[i].matrix_layout);
1776 if (matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR) {
1777 field_row_major = true;
1778 } else if (matrix_layout == GLSL_MATRIX_LAYOUT_COLUMN_MAJOR) {
1779 field_row_major = false;
1780 }
1781
1782 const struct glsl_type *field_type = this->fields.structure[i].type;
1783 base_alignment = MAX2(base_alignment,
1784 field_type->std430_base_alignment(field_row_major));
1785 }
1786 assert(base_alignment > 0);
1787 return base_alignment;
1788 }
1789 assert(!"not reached");
1790 return -1;
1791 }
1792
1793 unsigned
1794 glsl_type::std430_array_stride(bool row_major) const
1795 {
1796 unsigned N = is_64bit() ? 8 : 4;
1797
1798 /* Notice that the array stride of a vec3 is not 3 * N but 4 * N.
1799 * See OpenGL 4.30 spec, section 7.6.2.2 "Standard Uniform Block Layout"
1800 *
1801 * (3) If the member is a three-component vector with components consuming
1802 * <N> basic machine units, the base alignment is 4<N>.
1803 */
1804 if (this->is_vector() && this->vector_elements == 3)
1805 return 4 * N;
1806
1807 /* By default use std430_size(row_major) */
1808 return this->std430_size(row_major);
1809 }
1810
1811 unsigned
1812 glsl_type::std430_size(bool row_major) const
1813 {
1814 unsigned N = is_64bit() ? 8 : 4;
1815
1816 /* OpenGL 4.30 spec, section 7.6.2.2 "Standard Uniform Block Layout":
1817 *
1818 * "When using the std430 storage layout, shader storage blocks will be
1819 * laid out in buffer storage identically to uniform and shader storage
1820 * blocks using the std140 layout, except that the base alignment and
1821 * stride of arrays of scalars and vectors in rule 4 and of structures
1822 * in rule 9 are not rounded up a multiple of the base alignment of a vec4.
1823 */
1824 if (this->is_scalar() || this->is_vector())
1825 return this->vector_elements * N;
1826
1827 if (this->without_array()->is_matrix()) {
1828 const struct glsl_type *element_type;
1829 const struct glsl_type *vec_type;
1830 unsigned int array_len;
1831
1832 if (this->is_array()) {
1833 element_type = this->without_array();
1834 array_len = this->arrays_of_arrays_size();
1835 } else {
1836 element_type = this;
1837 array_len = 1;
1838 }
1839
1840 if (row_major) {
1841 vec_type = get_instance(element_type->base_type,
1842 element_type->matrix_columns, 1);
1843
1844 array_len *= element_type->vector_elements;
1845 } else {
1846 vec_type = get_instance(element_type->base_type,
1847 element_type->vector_elements, 1);
1848 array_len *= element_type->matrix_columns;
1849 }
1850 const glsl_type *array_type = glsl_type::get_array_instance(vec_type,
1851 array_len);
1852
1853 return array_type->std430_size(false);
1854 }
1855
1856 if (this->is_array()) {
1857 if (this->without_array()->is_record())
1858 return this->arrays_of_arrays_size() *
1859 this->without_array()->std430_size(row_major);
1860 else
1861 return this->arrays_of_arrays_size() *
1862 this->without_array()->std430_base_alignment(row_major);
1863 }
1864
1865 if (this->is_record() || this->is_interface()) {
1866 unsigned size = 0;
1867 unsigned max_align = 0;
1868
1869 for (unsigned i = 0; i < this->length; i++) {
1870 bool field_row_major = row_major;
1871 const enum glsl_matrix_layout matrix_layout =
1872 glsl_matrix_layout(this->fields.structure[i].matrix_layout);
1873 if (matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR) {
1874 field_row_major = true;
1875 } else if (matrix_layout == GLSL_MATRIX_LAYOUT_COLUMN_MAJOR) {
1876 field_row_major = false;
1877 }
1878
1879 const struct glsl_type *field_type = this->fields.structure[i].type;
1880 unsigned align = field_type->std430_base_alignment(field_row_major);
1881 size = glsl_align(size, align);
1882 size += field_type->std430_size(field_row_major);
1883
1884 max_align = MAX2(align, max_align);
1885 }
1886 size = glsl_align(size, max_align);
1887 return size;
1888 }
1889
1890 assert(!"not reached");
1891 return -1;
1892 }
1893
1894 unsigned
1895 glsl_type::count_attribute_slots(bool is_vertex_input) const
1896 {
1897 /* From page 31 (page 37 of the PDF) of the GLSL 1.50 spec:
1898 *
1899 * "A scalar input counts the same amount against this limit as a vec4,
1900 * so applications may want to consider packing groups of four
1901 * unrelated float inputs together into a vector to better utilize the
1902 * capabilities of the underlying hardware. A matrix input will use up
1903 * multiple locations. The number of locations used will equal the
1904 * number of columns in the matrix."
1905 *
1906 * The spec does not explicitly say how arrays are counted. However, it
1907 * should be safe to assume the total number of slots consumed by an array
1908 * is the number of entries in the array multiplied by the number of slots
1909 * consumed by a single element of the array.
1910 *
1911 * The spec says nothing about how structs are counted, because vertex
1912 * attributes are not allowed to be (or contain) structs. However, Mesa
1913 * allows varying structs, the number of varying slots taken up by a
1914 * varying struct is simply equal to the sum of the number of slots taken
1915 * up by each element.
1916 *
1917 * Doubles are counted different depending on whether they are vertex
1918 * inputs or everything else. Vertex inputs from ARB_vertex_attrib_64bit
1919 * take one location no matter what size they are, otherwise dvec3/4
1920 * take two locations.
1921 */
1922 switch (this->base_type) {
1923 case GLSL_TYPE_UINT:
1924 case GLSL_TYPE_INT:
1925 case GLSL_TYPE_FLOAT:
1926 case GLSL_TYPE_BOOL:
1927 return this->matrix_columns;
1928 case GLSL_TYPE_DOUBLE:
1929 if (this->vector_elements > 2 && !is_vertex_input)
1930 return this->matrix_columns * 2;
1931 else
1932 return this->matrix_columns;
1933 case GLSL_TYPE_STRUCT:
1934 case GLSL_TYPE_INTERFACE: {
1935 unsigned size = 0;
1936
1937 for (unsigned i = 0; i < this->length; i++)
1938 size += this->fields.structure[i].type->count_attribute_slots(is_vertex_input);
1939
1940 return size;
1941 }
1942
1943 case GLSL_TYPE_ARRAY:
1944 return this->length * this->fields.array->count_attribute_slots(is_vertex_input);
1945
1946 case GLSL_TYPE_FUNCTION:
1947 case GLSL_TYPE_SAMPLER:
1948 case GLSL_TYPE_IMAGE:
1949 case GLSL_TYPE_ATOMIC_UINT:
1950 case GLSL_TYPE_VOID:
1951 case GLSL_TYPE_SUBROUTINE:
1952 case GLSL_TYPE_ERROR:
1953 break;
1954 }
1955
1956 assert(!"Unexpected type in count_attribute_slots()");
1957
1958 return 0;
1959 }
1960
1961 int
1962 glsl_type::coordinate_components() const
1963 {
1964 int size;
1965
1966 switch (sampler_dimensionality) {
1967 case GLSL_SAMPLER_DIM_1D:
1968 case GLSL_SAMPLER_DIM_BUF:
1969 size = 1;
1970 break;
1971 case GLSL_SAMPLER_DIM_2D:
1972 case GLSL_SAMPLER_DIM_RECT:
1973 case GLSL_SAMPLER_DIM_MS:
1974 case GLSL_SAMPLER_DIM_EXTERNAL:
1975 size = 2;
1976 break;
1977 case GLSL_SAMPLER_DIM_3D:
1978 case GLSL_SAMPLER_DIM_CUBE:
1979 size = 3;
1980 break;
1981 default:
1982 assert(!"Should not get here.");
1983 size = 1;
1984 break;
1985 }
1986
1987 /* Array textures need an additional component for the array index, except
1988 * for cubemap array images that behave like a 2D array of interleaved
1989 * cubemap faces.
1990 */
1991 if (sampler_array &&
1992 !(base_type == GLSL_TYPE_IMAGE &&
1993 sampler_dimensionality == GLSL_SAMPLER_DIM_CUBE))
1994 size += 1;
1995
1996 return size;
1997 }
1998
1999 /**
2000 * Declarations of type flyweights (glsl_type::_foo_type) and
2001 * convenience pointers (glsl_type::foo_type).
2002 * @{
2003 */
2004 #define DECL_TYPE(NAME, ...) \
2005 const glsl_type glsl_type::_##NAME##_type = glsl_type(__VA_ARGS__, #NAME); \
2006 const glsl_type *const glsl_type::NAME##_type = &glsl_type::_##NAME##_type;
2007
2008 #define STRUCT_TYPE(NAME)
2009
2010 #include "compiler/builtin_type_macros.h"
2011 /** @} */