nir: move nir_shader_info to a common compiler header
[mesa.git] / src / compiler / nir / nir.h
1 /*
2 * Copyright © 2014 Connor Abbott
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Connor Abbott (cwabbott0@gmail.com)
25 *
26 */
27
28 #pragma once
29
30 #include "util/hash_table.h"
31 #include "compiler/glsl/list.h"
32 #include "GL/gl.h" /* GLenum */
33 #include "util/list.h"
34 #include "util/ralloc.h"
35 #include "util/set.h"
36 #include "util/bitset.h"
37 #include "util/macros.h"
38 #include "compiler/nir_types.h"
39 #include "compiler/shader_enums.h"
40 #include "compiler/shader_info.h"
41 #include <stdio.h>
42
43 #include "nir_opcodes.h"
44
45 #ifdef __cplusplus
46 extern "C" {
47 #endif
48
49 struct gl_program;
50 struct gl_shader_program;
51
52 #define NIR_FALSE 0u
53 #define NIR_TRUE (~0u)
54
55 /** Defines a cast function
56 *
57 * This macro defines a cast function from in_type to out_type where
58 * out_type is some structure type that contains a field of type out_type.
59 *
60 * Note that you have to be a bit careful as the generated cast function
61 * destroys constness.
62 */
63 #define NIR_DEFINE_CAST(name, in_type, out_type, field, \
64 type_field, type_value) \
65 static inline out_type * \
66 name(const in_type *parent) \
67 { \
68 assert(parent && parent->type_field == type_value); \
69 return exec_node_data(out_type, parent, field); \
70 }
71
72 struct nir_function;
73 struct nir_shader;
74 struct nir_instr;
75
76
77 /**
78 * Description of built-in state associated with a uniform
79 *
80 * \sa nir_variable::state_slots
81 */
82 typedef struct {
83 int tokens[5];
84 int swizzle;
85 } nir_state_slot;
86
87 typedef enum {
88 nir_var_shader_in = (1 << 0),
89 nir_var_shader_out = (1 << 1),
90 nir_var_global = (1 << 2),
91 nir_var_local = (1 << 3),
92 nir_var_uniform = (1 << 4),
93 nir_var_shader_storage = (1 << 5),
94 nir_var_system_value = (1 << 6),
95 nir_var_param = (1 << 7),
96 nir_var_shared = (1 << 8),
97 nir_var_all = ~0,
98 } nir_variable_mode;
99
100 /**
101 * Data stored in an nir_constant
102 */
103 union nir_constant_data {
104 unsigned u[16];
105 int i[16];
106 float f[16];
107 bool b[16];
108 double d[16];
109 };
110
111 typedef struct nir_constant {
112 /**
113 * Value of the constant.
114 *
115 * The field used to back the values supplied by the constant is determined
116 * by the type associated with the \c nir_variable. Constants may be
117 * scalars, vectors, or matrices.
118 */
119 union nir_constant_data value;
120
121 /* we could get this from the var->type but makes clone *much* easier to
122 * not have to care about the type.
123 */
124 unsigned num_elements;
125
126 /* Array elements / Structure Fields */
127 struct nir_constant **elements;
128 } nir_constant;
129
130 /**
131 * \brief Layout qualifiers for gl_FragDepth.
132 *
133 * The AMD/ARB_conservative_depth extensions allow gl_FragDepth to be redeclared
134 * with a layout qualifier.
135 */
136 typedef enum {
137 nir_depth_layout_none, /**< No depth layout is specified. */
138 nir_depth_layout_any,
139 nir_depth_layout_greater,
140 nir_depth_layout_less,
141 nir_depth_layout_unchanged
142 } nir_depth_layout;
143
144 /**
145 * Either a uniform, global variable, shader input, or shader output. Based on
146 * ir_variable - it should be easy to translate between the two.
147 */
148
149 typedef struct nir_variable {
150 struct exec_node node;
151
152 /**
153 * Declared type of the variable
154 */
155 const struct glsl_type *type;
156
157 /**
158 * Declared name of the variable
159 */
160 char *name;
161
162 struct nir_variable_data {
163 /**
164 * Storage class of the variable.
165 *
166 * \sa nir_variable_mode
167 */
168 nir_variable_mode mode;
169
170 /**
171 * Is the variable read-only?
172 *
173 * This is set for variables declared as \c const, shader inputs,
174 * and uniforms.
175 */
176 unsigned read_only:1;
177 unsigned centroid:1;
178 unsigned sample:1;
179 unsigned patch:1;
180 unsigned invariant:1;
181
182 /**
183 * Interpolation mode for shader inputs / outputs
184 *
185 * \sa glsl_interp_mode
186 */
187 unsigned interpolation:2;
188
189 /**
190 * \name ARB_fragment_coord_conventions
191 * @{
192 */
193 unsigned origin_upper_left:1;
194 unsigned pixel_center_integer:1;
195 /*@}*/
196
197 /**
198 * Was the location explicitly set in the shader?
199 *
200 * If the location is explicitly set in the shader, it \b cannot be changed
201 * by the linker or by the API (e.g., calls to \c glBindAttribLocation have
202 * no effect).
203 */
204 unsigned explicit_location:1;
205 unsigned explicit_index:1;
206
207 /**
208 * Was an initial binding explicitly set in the shader?
209 *
210 * If so, constant_initializer contains an integer nir_constant
211 * representing the initial binding point.
212 */
213 unsigned explicit_binding:1;
214
215 /**
216 * Does this variable have an initializer?
217 *
218 * This is used by the linker to cross-validiate initializers of global
219 * variables.
220 */
221 unsigned has_initializer:1;
222
223 /**
224 * If non-zero, then this variable may be packed along with other variables
225 * into a single varying slot, so this offset should be applied when
226 * accessing components. For example, an offset of 1 means that the x
227 * component of this variable is actually stored in component y of the
228 * location specified by \c location.
229 */
230 unsigned location_frac:2;
231
232 /**
233 * Whether this is a fragment shader output implicitly initialized with
234 * the previous contents of the specified render target at the
235 * framebuffer location corresponding to this shader invocation.
236 */
237 unsigned fb_fetch_output:1;
238
239 /**
240 * \brief Layout qualifier for gl_FragDepth.
241 *
242 * This is not equal to \c ir_depth_layout_none if and only if this
243 * variable is \c gl_FragDepth and a layout qualifier is specified.
244 */
245 nir_depth_layout depth_layout;
246
247 /**
248 * Storage location of the base of this variable
249 *
250 * The precise meaning of this field depends on the nature of the variable.
251 *
252 * - Vertex shader input: one of the values from \c gl_vert_attrib.
253 * - Vertex shader output: one of the values from \c gl_varying_slot.
254 * - Geometry shader input: one of the values from \c gl_varying_slot.
255 * - Geometry shader output: one of the values from \c gl_varying_slot.
256 * - Fragment shader input: one of the values from \c gl_varying_slot.
257 * - Fragment shader output: one of the values from \c gl_frag_result.
258 * - Uniforms: Per-stage uniform slot number for default uniform block.
259 * - Uniforms: Index within the uniform block definition for UBO members.
260 * - Non-UBO Uniforms: uniform slot number.
261 * - Other: This field is not currently used.
262 *
263 * If the variable is a uniform, shader input, or shader output, and the
264 * slot has not been assigned, the value will be -1.
265 */
266 int location;
267
268 /**
269 * The actual location of the variable in the IR. Only valid for inputs
270 * and outputs.
271 */
272 unsigned int driver_location;
273
274 /**
275 * output index for dual source blending.
276 */
277 int index;
278
279 /**
280 * Descriptor set binding for sampler or UBO.
281 */
282 int descriptor_set;
283
284 /**
285 * Initial binding point for a sampler or UBO.
286 *
287 * For array types, this represents the binding point for the first element.
288 */
289 int binding;
290
291 /**
292 * Location an atomic counter is stored at.
293 */
294 unsigned offset;
295
296 /**
297 * ARB_shader_image_load_store qualifiers.
298 */
299 struct {
300 bool read_only; /**< "readonly" qualifier. */
301 bool write_only; /**< "writeonly" qualifier. */
302 bool coherent;
303 bool _volatile;
304 bool restrict_flag;
305
306 /** Image internal format if specified explicitly, otherwise GL_NONE. */
307 GLenum format;
308 } image;
309
310 /**
311 * Highest element accessed with a constant expression array index
312 *
313 * Not used for non-array variables.
314 */
315 unsigned max_array_access;
316
317 } data;
318
319 /**
320 * Built-in state that backs this uniform
321 *
322 * Once set at variable creation, \c state_slots must remain invariant.
323 * This is because, ideally, this array would be shared by all clones of
324 * this variable in the IR tree. In other words, we'd really like for it
325 * to be a fly-weight.
326 *
327 * If the variable is not a uniform, \c num_state_slots will be zero and
328 * \c state_slots will be \c NULL.
329 */
330 /*@{*/
331 unsigned num_state_slots; /**< Number of state slots used */
332 nir_state_slot *state_slots; /**< State descriptors. */
333 /*@}*/
334
335 /**
336 * Constant expression assigned in the initializer of the variable
337 */
338 nir_constant *constant_initializer;
339
340 /**
341 * For variables that are in an interface block or are an instance of an
342 * interface block, this is the \c GLSL_TYPE_INTERFACE type for that block.
343 *
344 * \sa ir_variable::location
345 */
346 const struct glsl_type *interface_type;
347 } nir_variable;
348
349 #define nir_foreach_variable(var, var_list) \
350 foreach_list_typed(nir_variable, var, node, var_list)
351
352 #define nir_foreach_variable_safe(var, var_list) \
353 foreach_list_typed_safe(nir_variable, var, node, var_list)
354
355 static inline bool
356 nir_variable_is_global(const nir_variable *var)
357 {
358 return var->data.mode != nir_var_local && var->data.mode != nir_var_param;
359 }
360
361 typedef struct nir_register {
362 struct exec_node node;
363
364 unsigned num_components; /** < number of vector components */
365 unsigned num_array_elems; /** < size of array (0 for no array) */
366
367 /* The bit-size of each channel; must be one of 8, 16, 32, or 64 */
368 uint8_t bit_size;
369
370 /** generic register index. */
371 unsigned index;
372
373 /** only for debug purposes, can be NULL */
374 const char *name;
375
376 /** whether this register is local (per-function) or global (per-shader) */
377 bool is_global;
378
379 /**
380 * If this flag is set to true, then accessing channels >= num_components
381 * is well-defined, and simply spills over to the next array element. This
382 * is useful for backends that can do per-component accessing, in
383 * particular scalar backends. By setting this flag and making
384 * num_components equal to 1, structures can be packed tightly into
385 * registers and then registers can be accessed per-component to get to
386 * each structure member, even if it crosses vec4 boundaries.
387 */
388 bool is_packed;
389
390 /** set of nir_src's where this register is used (read from) */
391 struct list_head uses;
392
393 /** set of nir_dest's where this register is defined (written to) */
394 struct list_head defs;
395
396 /** set of nir_if's where this register is used as a condition */
397 struct list_head if_uses;
398 } nir_register;
399
400 typedef enum {
401 nir_instr_type_alu,
402 nir_instr_type_call,
403 nir_instr_type_tex,
404 nir_instr_type_intrinsic,
405 nir_instr_type_load_const,
406 nir_instr_type_jump,
407 nir_instr_type_ssa_undef,
408 nir_instr_type_phi,
409 nir_instr_type_parallel_copy,
410 } nir_instr_type;
411
412 typedef struct nir_instr {
413 struct exec_node node;
414 nir_instr_type type;
415 struct nir_block *block;
416
417 /** generic instruction index. */
418 unsigned index;
419
420 /* A temporary for optimization and analysis passes to use for storing
421 * flags. For instance, DCE uses this to store the "dead/live" info.
422 */
423 uint8_t pass_flags;
424 } nir_instr;
425
426 static inline nir_instr *
427 nir_instr_next(nir_instr *instr)
428 {
429 struct exec_node *next = exec_node_get_next(&instr->node);
430 if (exec_node_is_tail_sentinel(next))
431 return NULL;
432 else
433 return exec_node_data(nir_instr, next, node);
434 }
435
436 static inline nir_instr *
437 nir_instr_prev(nir_instr *instr)
438 {
439 struct exec_node *prev = exec_node_get_prev(&instr->node);
440 if (exec_node_is_head_sentinel(prev))
441 return NULL;
442 else
443 return exec_node_data(nir_instr, prev, node);
444 }
445
446 static inline bool
447 nir_instr_is_first(nir_instr *instr)
448 {
449 return exec_node_is_head_sentinel(exec_node_get_prev(&instr->node));
450 }
451
452 static inline bool
453 nir_instr_is_last(nir_instr *instr)
454 {
455 return exec_node_is_tail_sentinel(exec_node_get_next(&instr->node));
456 }
457
458 typedef struct nir_ssa_def {
459 /** for debugging only, can be NULL */
460 const char* name;
461
462 /** generic SSA definition index. */
463 unsigned index;
464
465 /** Index into the live_in and live_out bitfields */
466 unsigned live_index;
467
468 nir_instr *parent_instr;
469
470 /** set of nir_instr's where this register is used (read from) */
471 struct list_head uses;
472
473 /** set of nir_if's where this register is used as a condition */
474 struct list_head if_uses;
475
476 uint8_t num_components;
477
478 /* The bit-size of each channel; must be one of 8, 16, 32, or 64 */
479 uint8_t bit_size;
480 } nir_ssa_def;
481
482 struct nir_src;
483
484 typedef struct {
485 nir_register *reg;
486 struct nir_src *indirect; /** < NULL for no indirect offset */
487 unsigned base_offset;
488
489 /* TODO use-def chain goes here */
490 } nir_reg_src;
491
492 typedef struct {
493 nir_instr *parent_instr;
494 struct list_head def_link;
495
496 nir_register *reg;
497 struct nir_src *indirect; /** < NULL for no indirect offset */
498 unsigned base_offset;
499
500 /* TODO def-use chain goes here */
501 } nir_reg_dest;
502
503 struct nir_if;
504
505 typedef struct nir_src {
506 union {
507 nir_instr *parent_instr;
508 struct nir_if *parent_if;
509 };
510
511 struct list_head use_link;
512
513 union {
514 nir_reg_src reg;
515 nir_ssa_def *ssa;
516 };
517
518 bool is_ssa;
519 } nir_src;
520
521 static inline nir_src
522 nir_src_init(void)
523 {
524 nir_src src = { { NULL } };
525 return src;
526 }
527
528 #define NIR_SRC_INIT nir_src_init()
529
530 #define nir_foreach_use(src, reg_or_ssa_def) \
531 list_for_each_entry(nir_src, src, &(reg_or_ssa_def)->uses, use_link)
532
533 #define nir_foreach_use_safe(src, reg_or_ssa_def) \
534 list_for_each_entry_safe(nir_src, src, &(reg_or_ssa_def)->uses, use_link)
535
536 #define nir_foreach_if_use(src, reg_or_ssa_def) \
537 list_for_each_entry(nir_src, src, &(reg_or_ssa_def)->if_uses, use_link)
538
539 #define nir_foreach_if_use_safe(src, reg_or_ssa_def) \
540 list_for_each_entry_safe(nir_src, src, &(reg_or_ssa_def)->if_uses, use_link)
541
542 typedef struct {
543 union {
544 nir_reg_dest reg;
545 nir_ssa_def ssa;
546 };
547
548 bool is_ssa;
549 } nir_dest;
550
551 static inline nir_dest
552 nir_dest_init(void)
553 {
554 nir_dest dest = { { { NULL } } };
555 return dest;
556 }
557
558 #define NIR_DEST_INIT nir_dest_init()
559
560 #define nir_foreach_def(dest, reg) \
561 list_for_each_entry(nir_dest, dest, &(reg)->defs, reg.def_link)
562
563 #define nir_foreach_def_safe(dest, reg) \
564 list_for_each_entry_safe(nir_dest, dest, &(reg)->defs, reg.def_link)
565
566 static inline nir_src
567 nir_src_for_ssa(nir_ssa_def *def)
568 {
569 nir_src src = NIR_SRC_INIT;
570
571 src.is_ssa = true;
572 src.ssa = def;
573
574 return src;
575 }
576
577 static inline nir_src
578 nir_src_for_reg(nir_register *reg)
579 {
580 nir_src src = NIR_SRC_INIT;
581
582 src.is_ssa = false;
583 src.reg.reg = reg;
584 src.reg.indirect = NULL;
585 src.reg.base_offset = 0;
586
587 return src;
588 }
589
590 static inline nir_dest
591 nir_dest_for_reg(nir_register *reg)
592 {
593 nir_dest dest = NIR_DEST_INIT;
594
595 dest.reg.reg = reg;
596
597 return dest;
598 }
599
600 static inline unsigned
601 nir_src_bit_size(nir_src src)
602 {
603 return src.is_ssa ? src.ssa->bit_size : src.reg.reg->bit_size;
604 }
605
606 static inline unsigned
607 nir_dest_bit_size(nir_dest dest)
608 {
609 return dest.is_ssa ? dest.ssa.bit_size : dest.reg.reg->bit_size;
610 }
611
612 void nir_src_copy(nir_src *dest, const nir_src *src, void *instr_or_if);
613 void nir_dest_copy(nir_dest *dest, const nir_dest *src, nir_instr *instr);
614
615 typedef struct {
616 nir_src src;
617
618 /**
619 * \name input modifiers
620 */
621 /*@{*/
622 /**
623 * For inputs interpreted as floating point, flips the sign bit. For
624 * inputs interpreted as integers, performs the two's complement negation.
625 */
626 bool negate;
627
628 /**
629 * Clears the sign bit for floating point values, and computes the integer
630 * absolute value for integers. Note that the negate modifier acts after
631 * the absolute value modifier, therefore if both are set then all inputs
632 * will become negative.
633 */
634 bool abs;
635 /*@}*/
636
637 /**
638 * For each input component, says which component of the register it is
639 * chosen from. Note that which elements of the swizzle are used and which
640 * are ignored are based on the write mask for most opcodes - for example,
641 * a statement like "foo.xzw = bar.zyx" would have a writemask of 1101b and
642 * a swizzle of {2, x, 1, 0} where x means "don't care."
643 */
644 uint8_t swizzle[4];
645 } nir_alu_src;
646
647 typedef struct {
648 nir_dest dest;
649
650 /**
651 * \name saturate output modifier
652 *
653 * Only valid for opcodes that output floating-point numbers. Clamps the
654 * output to between 0.0 and 1.0 inclusive.
655 */
656
657 bool saturate;
658
659 unsigned write_mask : 4; /* ignored if dest.is_ssa is true */
660 } nir_alu_dest;
661
662 typedef enum {
663 nir_type_invalid = 0, /* Not a valid type */
664 nir_type_float,
665 nir_type_int,
666 nir_type_uint,
667 nir_type_bool,
668 nir_type_bool32 = 32 | nir_type_bool,
669 nir_type_int8 = 8 | nir_type_int,
670 nir_type_int16 = 16 | nir_type_int,
671 nir_type_int32 = 32 | nir_type_int,
672 nir_type_int64 = 64 | nir_type_int,
673 nir_type_uint8 = 8 | nir_type_uint,
674 nir_type_uint16 = 16 | nir_type_uint,
675 nir_type_uint32 = 32 | nir_type_uint,
676 nir_type_uint64 = 64 | nir_type_uint,
677 nir_type_float16 = 16 | nir_type_float,
678 nir_type_float32 = 32 | nir_type_float,
679 nir_type_float64 = 64 | nir_type_float,
680 } nir_alu_type;
681
682 #define NIR_ALU_TYPE_SIZE_MASK 0xfffffff8
683 #define NIR_ALU_TYPE_BASE_TYPE_MASK 0x00000007
684
685 static inline unsigned
686 nir_alu_type_get_type_size(nir_alu_type type)
687 {
688 return type & NIR_ALU_TYPE_SIZE_MASK;
689 }
690
691 static inline unsigned
692 nir_alu_type_get_base_type(nir_alu_type type)
693 {
694 return type & NIR_ALU_TYPE_BASE_TYPE_MASK;
695 }
696
697 typedef enum {
698 NIR_OP_IS_COMMUTATIVE = (1 << 0),
699 NIR_OP_IS_ASSOCIATIVE = (1 << 1),
700 } nir_op_algebraic_property;
701
702 typedef struct {
703 const char *name;
704
705 unsigned num_inputs;
706
707 /**
708 * The number of components in the output
709 *
710 * If non-zero, this is the size of the output and input sizes are
711 * explicitly given; swizzle and writemask are still in effect, but if
712 * the output component is masked out, then the input component may
713 * still be in use.
714 *
715 * If zero, the opcode acts in the standard, per-component manner; the
716 * operation is performed on each component (except the ones that are
717 * masked out) with the input being taken from the input swizzle for
718 * that component.
719 *
720 * The size of some of the inputs may be given (i.e. non-zero) even
721 * though output_size is zero; in that case, the inputs with a zero
722 * size act per-component, while the inputs with non-zero size don't.
723 */
724 unsigned output_size;
725
726 /**
727 * The type of vector that the instruction outputs. Note that the
728 * staurate modifier is only allowed on outputs with the float type.
729 */
730
731 nir_alu_type output_type;
732
733 /**
734 * The number of components in each input
735 */
736 unsigned input_sizes[4];
737
738 /**
739 * The type of vector that each input takes. Note that negate and
740 * absolute value are only allowed on inputs with int or float type and
741 * behave differently on the two.
742 */
743 nir_alu_type input_types[4];
744
745 nir_op_algebraic_property algebraic_properties;
746 } nir_op_info;
747
748 extern const nir_op_info nir_op_infos[nir_num_opcodes];
749
750 typedef struct nir_alu_instr {
751 nir_instr instr;
752 nir_op op;
753
754 /** Indicates that this ALU instruction generates an exact value
755 *
756 * This is kind of a mixture of GLSL "precise" and "invariant" and not
757 * really equivalent to either. This indicates that the value generated by
758 * this operation is high-precision and any code transformations that touch
759 * it must ensure that the resulting value is bit-for-bit identical to the
760 * original.
761 */
762 bool exact;
763
764 nir_alu_dest dest;
765 nir_alu_src src[];
766 } nir_alu_instr;
767
768 void nir_alu_src_copy(nir_alu_src *dest, const nir_alu_src *src,
769 nir_alu_instr *instr);
770 void nir_alu_dest_copy(nir_alu_dest *dest, const nir_alu_dest *src,
771 nir_alu_instr *instr);
772
773 /* is this source channel used? */
774 static inline bool
775 nir_alu_instr_channel_used(nir_alu_instr *instr, unsigned src, unsigned channel)
776 {
777 if (nir_op_infos[instr->op].input_sizes[src] > 0)
778 return channel < nir_op_infos[instr->op].input_sizes[src];
779
780 return (instr->dest.write_mask >> channel) & 1;
781 }
782
783 /*
784 * For instructions whose destinations are SSA, get the number of channels
785 * used for a source
786 */
787 static inline unsigned
788 nir_ssa_alu_instr_src_components(const nir_alu_instr *instr, unsigned src)
789 {
790 assert(instr->dest.dest.is_ssa);
791
792 if (nir_op_infos[instr->op].input_sizes[src] > 0)
793 return nir_op_infos[instr->op].input_sizes[src];
794
795 return instr->dest.dest.ssa.num_components;
796 }
797
798 bool nir_alu_srcs_equal(const nir_alu_instr *alu1, const nir_alu_instr *alu2,
799 unsigned src1, unsigned src2);
800
801 typedef enum {
802 nir_deref_type_var,
803 nir_deref_type_array,
804 nir_deref_type_struct
805 } nir_deref_type;
806
807 typedef struct nir_deref {
808 nir_deref_type deref_type;
809 struct nir_deref *child;
810 const struct glsl_type *type;
811 } nir_deref;
812
813 typedef struct {
814 nir_deref deref;
815
816 nir_variable *var;
817 } nir_deref_var;
818
819 /* This enum describes how the array is referenced. If the deref is
820 * direct then the base_offset is used. If the deref is indirect then
821 * offset is given by base_offset + indirect. If the deref is a wildcard
822 * then the deref refers to all of the elements of the array at the same
823 * time. Wildcard dereferences are only ever allowed in copy_var
824 * intrinsics and the source and destination derefs must have matching
825 * wildcards.
826 */
827 typedef enum {
828 nir_deref_array_type_direct,
829 nir_deref_array_type_indirect,
830 nir_deref_array_type_wildcard,
831 } nir_deref_array_type;
832
833 typedef struct {
834 nir_deref deref;
835
836 nir_deref_array_type deref_array_type;
837 unsigned base_offset;
838 nir_src indirect;
839 } nir_deref_array;
840
841 typedef struct {
842 nir_deref deref;
843
844 unsigned index;
845 } nir_deref_struct;
846
847 NIR_DEFINE_CAST(nir_deref_as_var, nir_deref, nir_deref_var, deref,
848 deref_type, nir_deref_type_var)
849 NIR_DEFINE_CAST(nir_deref_as_array, nir_deref, nir_deref_array, deref,
850 deref_type, nir_deref_type_array)
851 NIR_DEFINE_CAST(nir_deref_as_struct, nir_deref, nir_deref_struct, deref,
852 deref_type, nir_deref_type_struct)
853
854 /* Returns the last deref in the chain. */
855 static inline nir_deref *
856 nir_deref_tail(nir_deref *deref)
857 {
858 while (deref->child)
859 deref = deref->child;
860 return deref;
861 }
862
863 typedef struct {
864 nir_instr instr;
865
866 unsigned num_params;
867 nir_deref_var **params;
868 nir_deref_var *return_deref;
869
870 struct nir_function *callee;
871 } nir_call_instr;
872
873 #define INTRINSIC(name, num_srcs, src_components, has_dest, dest_components, \
874 num_variables, num_indices, idx0, idx1, idx2, flags) \
875 nir_intrinsic_##name,
876
877 #define LAST_INTRINSIC(name) nir_last_intrinsic = nir_intrinsic_##name,
878
879 typedef enum {
880 #include "nir_intrinsics.h"
881 nir_num_intrinsics = nir_last_intrinsic + 1
882 } nir_intrinsic_op;
883
884 #define NIR_INTRINSIC_MAX_CONST_INDEX 3
885
886 /** Represents an intrinsic
887 *
888 * An intrinsic is an instruction type for handling things that are
889 * more-or-less regular operations but don't just consume and produce SSA
890 * values like ALU operations do. Intrinsics are not for things that have
891 * special semantic meaning such as phi nodes and parallel copies.
892 * Examples of intrinsics include variable load/store operations, system
893 * value loads, and the like. Even though texturing more-or-less falls
894 * under this category, texturing is its own instruction type because
895 * trying to represent texturing with intrinsics would lead to a
896 * combinatorial explosion of intrinsic opcodes.
897 *
898 * By having a single instruction type for handling a lot of different
899 * cases, optimization passes can look for intrinsics and, for the most
900 * part, completely ignore them. Each intrinsic type also has a few
901 * possible flags that govern whether or not they can be reordered or
902 * eliminated. That way passes like dead code elimination can still work
903 * on intrisics without understanding the meaning of each.
904 *
905 * Each intrinsic has some number of constant indices, some number of
906 * variables, and some number of sources. What these sources, variables,
907 * and indices mean depends on the intrinsic and is documented with the
908 * intrinsic declaration in nir_intrinsics.h. Intrinsics and texture
909 * instructions are the only types of instruction that can operate on
910 * variables.
911 */
912 typedef struct {
913 nir_instr instr;
914
915 nir_intrinsic_op intrinsic;
916
917 nir_dest dest;
918
919 /** number of components if this is a vectorized intrinsic
920 *
921 * Similarly to ALU operations, some intrinsics are vectorized.
922 * An intrinsic is vectorized if nir_intrinsic_infos.dest_components == 0.
923 * For vectorized intrinsics, the num_components field specifies the
924 * number of destination components and the number of source components
925 * for all sources with nir_intrinsic_infos.src_components[i] == 0.
926 */
927 uint8_t num_components;
928
929 int const_index[NIR_INTRINSIC_MAX_CONST_INDEX];
930
931 nir_deref_var *variables[2];
932
933 nir_src src[];
934 } nir_intrinsic_instr;
935
936 /**
937 * \name NIR intrinsics semantic flags
938 *
939 * information about what the compiler can do with the intrinsics.
940 *
941 * \sa nir_intrinsic_info::flags
942 */
943 typedef enum {
944 /**
945 * whether the intrinsic can be safely eliminated if none of its output
946 * value is not being used.
947 */
948 NIR_INTRINSIC_CAN_ELIMINATE = (1 << 0),
949
950 /**
951 * Whether the intrinsic can be reordered with respect to any other
952 * intrinsic, i.e. whether the only reordering dependencies of the
953 * intrinsic are due to the register reads/writes.
954 */
955 NIR_INTRINSIC_CAN_REORDER = (1 << 1),
956 } nir_intrinsic_semantic_flag;
957
958 /**
959 * \name NIR intrinsics const-index flag
960 *
961 * Indicates the usage of a const_index slot.
962 *
963 * \sa nir_intrinsic_info::index_map
964 */
965 typedef enum {
966 /**
967 * Generally instructions that take a offset src argument, can encode
968 * a constant 'base' value which is added to the offset.
969 */
970 NIR_INTRINSIC_BASE = 1,
971
972 /**
973 * For store instructions, a writemask for the store.
974 */
975 NIR_INTRINSIC_WRMASK = 2,
976
977 /**
978 * The stream-id for GS emit_vertex/end_primitive intrinsics.
979 */
980 NIR_INTRINSIC_STREAM_ID = 3,
981
982 /**
983 * The clip-plane id for load_user_clip_plane intrinsic.
984 */
985 NIR_INTRINSIC_UCP_ID = 4,
986
987 /**
988 * The amount of data, starting from BASE, that this instruction may
989 * access. This is used to provide bounds if the offset is not constant.
990 */
991 NIR_INTRINSIC_RANGE = 5,
992
993 /**
994 * The Vulkan descriptor set for vulkan_resource_index intrinsic.
995 */
996 NIR_INTRINSIC_DESC_SET = 6,
997
998 /**
999 * The Vulkan descriptor set binding for vulkan_resource_index intrinsic.
1000 */
1001 NIR_INTRINSIC_BINDING = 7,
1002
1003 /**
1004 * Component offset.
1005 */
1006 NIR_INTRINSIC_COMPONENT = 8,
1007
1008 /**
1009 * Interpolation mode (only meaningful for FS inputs).
1010 */
1011 NIR_INTRINSIC_INTERP_MODE = 9,
1012
1013 NIR_INTRINSIC_NUM_INDEX_FLAGS,
1014
1015 } nir_intrinsic_index_flag;
1016
1017 #define NIR_INTRINSIC_MAX_INPUTS 4
1018
1019 typedef struct {
1020 const char *name;
1021
1022 unsigned num_srcs; /** < number of register/SSA inputs */
1023
1024 /** number of components of each input register
1025 *
1026 * If this value is 0, the number of components is given by the
1027 * num_components field of nir_intrinsic_instr.
1028 */
1029 unsigned src_components[NIR_INTRINSIC_MAX_INPUTS];
1030
1031 bool has_dest;
1032
1033 /** number of components of the output register
1034 *
1035 * If this value is 0, the number of components is given by the
1036 * num_components field of nir_intrinsic_instr.
1037 */
1038 unsigned dest_components;
1039
1040 /** the number of inputs/outputs that are variables */
1041 unsigned num_variables;
1042
1043 /** the number of constant indices used by the intrinsic */
1044 unsigned num_indices;
1045
1046 /** indicates the usage of intr->const_index[n] */
1047 unsigned index_map[NIR_INTRINSIC_NUM_INDEX_FLAGS];
1048
1049 /** semantic flags for calls to this intrinsic */
1050 nir_intrinsic_semantic_flag flags;
1051 } nir_intrinsic_info;
1052
1053 extern const nir_intrinsic_info nir_intrinsic_infos[nir_num_intrinsics];
1054
1055
1056 #define INTRINSIC_IDX_ACCESSORS(name, flag, type) \
1057 static inline type \
1058 nir_intrinsic_##name(nir_intrinsic_instr *instr) \
1059 { \
1060 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic]; \
1061 assert(info->index_map[NIR_INTRINSIC_##flag] > 0); \
1062 return instr->const_index[info->index_map[NIR_INTRINSIC_##flag] - 1]; \
1063 } \
1064 static inline void \
1065 nir_intrinsic_set_##name(nir_intrinsic_instr *instr, type val) \
1066 { \
1067 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic]; \
1068 assert(info->index_map[NIR_INTRINSIC_##flag] > 0); \
1069 instr->const_index[info->index_map[NIR_INTRINSIC_##flag] - 1] = val; \
1070 }
1071
1072 INTRINSIC_IDX_ACCESSORS(write_mask, WRMASK, unsigned)
1073 INTRINSIC_IDX_ACCESSORS(base, BASE, int)
1074 INTRINSIC_IDX_ACCESSORS(stream_id, STREAM_ID, unsigned)
1075 INTRINSIC_IDX_ACCESSORS(ucp_id, UCP_ID, unsigned)
1076 INTRINSIC_IDX_ACCESSORS(range, RANGE, unsigned)
1077 INTRINSIC_IDX_ACCESSORS(desc_set, DESC_SET, unsigned)
1078 INTRINSIC_IDX_ACCESSORS(binding, BINDING, unsigned)
1079 INTRINSIC_IDX_ACCESSORS(component, COMPONENT, unsigned)
1080 INTRINSIC_IDX_ACCESSORS(interp_mode, INTERP_MODE, unsigned)
1081
1082 /**
1083 * \group texture information
1084 *
1085 * This gives semantic information about textures which is useful to the
1086 * frontend, the backend, and lowering passes, but not the optimizer.
1087 */
1088
1089 typedef enum {
1090 nir_tex_src_coord,
1091 nir_tex_src_projector,
1092 nir_tex_src_comparitor, /* shadow comparitor */
1093 nir_tex_src_offset,
1094 nir_tex_src_bias,
1095 nir_tex_src_lod,
1096 nir_tex_src_ms_index, /* MSAA sample index */
1097 nir_tex_src_ms_mcs, /* MSAA compression value */
1098 nir_tex_src_ddx,
1099 nir_tex_src_ddy,
1100 nir_tex_src_texture_offset, /* < dynamically uniform indirect offset */
1101 nir_tex_src_sampler_offset, /* < dynamically uniform indirect offset */
1102 nir_tex_src_plane, /* < selects plane for planar textures */
1103 nir_num_tex_src_types
1104 } nir_tex_src_type;
1105
1106 typedef struct {
1107 nir_src src;
1108 nir_tex_src_type src_type;
1109 } nir_tex_src;
1110
1111 typedef enum {
1112 nir_texop_tex, /**< Regular texture look-up */
1113 nir_texop_txb, /**< Texture look-up with LOD bias */
1114 nir_texop_txl, /**< Texture look-up with explicit LOD */
1115 nir_texop_txd, /**< Texture look-up with partial derivatvies */
1116 nir_texop_txf, /**< Texel fetch with explicit LOD */
1117 nir_texop_txf_ms, /**< Multisample texture fetch */
1118 nir_texop_txf_ms_mcs, /**< Multisample compression value fetch */
1119 nir_texop_txs, /**< Texture size */
1120 nir_texop_lod, /**< Texture lod query */
1121 nir_texop_tg4, /**< Texture gather */
1122 nir_texop_query_levels, /**< Texture levels query */
1123 nir_texop_texture_samples, /**< Texture samples query */
1124 nir_texop_samples_identical, /**< Query whether all samples are definitely
1125 * identical.
1126 */
1127 } nir_texop;
1128
1129 typedef struct {
1130 nir_instr instr;
1131
1132 enum glsl_sampler_dim sampler_dim;
1133 nir_alu_type dest_type;
1134
1135 nir_texop op;
1136 nir_dest dest;
1137 nir_tex_src *src;
1138 unsigned num_srcs, coord_components;
1139 bool is_array, is_shadow;
1140
1141 /**
1142 * If is_shadow is true, whether this is the old-style shadow that outputs 4
1143 * components or the new-style shadow that outputs 1 component.
1144 */
1145 bool is_new_style_shadow;
1146
1147 /* gather component selector */
1148 unsigned component : 2;
1149
1150 /** The texture index
1151 *
1152 * If this texture instruction has a nir_tex_src_texture_offset source,
1153 * then the texture index is given by texture_index + texture_offset.
1154 */
1155 unsigned texture_index;
1156
1157 /** The size of the texture array or 0 if it's not an array */
1158 unsigned texture_array_size;
1159
1160 /** The texture deref
1161 *
1162 * If this is null, use texture_index instead.
1163 */
1164 nir_deref_var *texture;
1165
1166 /** The sampler index
1167 *
1168 * The following operations do not require a sampler and, as such, this
1169 * field should be ignored:
1170 * - nir_texop_txf
1171 * - nir_texop_txf_ms
1172 * - nir_texop_txs
1173 * - nir_texop_lod
1174 * - nir_texop_tg4
1175 * - nir_texop_query_levels
1176 * - nir_texop_texture_samples
1177 * - nir_texop_samples_identical
1178 *
1179 * If this texture instruction has a nir_tex_src_sampler_offset source,
1180 * then the sampler index is given by sampler_index + sampler_offset.
1181 */
1182 unsigned sampler_index;
1183
1184 /** The sampler deref
1185 *
1186 * If this is null, use sampler_index instead.
1187 */
1188 nir_deref_var *sampler;
1189 } nir_tex_instr;
1190
1191 static inline unsigned
1192 nir_tex_instr_dest_size(nir_tex_instr *instr)
1193 {
1194 switch (instr->op) {
1195 case nir_texop_txs: {
1196 unsigned ret;
1197 switch (instr->sampler_dim) {
1198 case GLSL_SAMPLER_DIM_1D:
1199 case GLSL_SAMPLER_DIM_BUF:
1200 ret = 1;
1201 break;
1202 case GLSL_SAMPLER_DIM_2D:
1203 case GLSL_SAMPLER_DIM_CUBE:
1204 case GLSL_SAMPLER_DIM_MS:
1205 case GLSL_SAMPLER_DIM_RECT:
1206 case GLSL_SAMPLER_DIM_EXTERNAL:
1207 case GLSL_SAMPLER_DIM_SUBPASS:
1208 ret = 2;
1209 break;
1210 case GLSL_SAMPLER_DIM_3D:
1211 ret = 3;
1212 break;
1213 default:
1214 unreachable("not reached");
1215 }
1216 if (instr->is_array)
1217 ret++;
1218 return ret;
1219 }
1220
1221 case nir_texop_lod:
1222 return 2;
1223
1224 case nir_texop_texture_samples:
1225 case nir_texop_query_levels:
1226 case nir_texop_samples_identical:
1227 return 1;
1228
1229 default:
1230 if (instr->is_shadow && instr->is_new_style_shadow)
1231 return 1;
1232
1233 return 4;
1234 }
1235 }
1236
1237 /* Returns true if this texture operation queries something about the texture
1238 * rather than actually sampling it.
1239 */
1240 static inline bool
1241 nir_tex_instr_is_query(nir_tex_instr *instr)
1242 {
1243 switch (instr->op) {
1244 case nir_texop_txs:
1245 case nir_texop_lod:
1246 case nir_texop_texture_samples:
1247 case nir_texop_query_levels:
1248 case nir_texop_txf_ms_mcs:
1249 return true;
1250 case nir_texop_tex:
1251 case nir_texop_txb:
1252 case nir_texop_txl:
1253 case nir_texop_txd:
1254 case nir_texop_txf:
1255 case nir_texop_txf_ms:
1256 case nir_texop_tg4:
1257 return false;
1258 default:
1259 unreachable("Invalid texture opcode");
1260 }
1261 }
1262
1263 static inline nir_alu_type
1264 nir_tex_instr_src_type(nir_tex_instr *instr, unsigned src)
1265 {
1266 switch (instr->src[src].src_type) {
1267 case nir_tex_src_coord:
1268 switch (instr->op) {
1269 case nir_texop_txf:
1270 case nir_texop_txf_ms:
1271 case nir_texop_txf_ms_mcs:
1272 case nir_texop_samples_identical:
1273 return nir_type_int;
1274
1275 default:
1276 return nir_type_float;
1277 }
1278
1279 case nir_tex_src_lod:
1280 switch (instr->op) {
1281 case nir_texop_txs:
1282 case nir_texop_txf:
1283 return nir_type_int;
1284
1285 default:
1286 return nir_type_float;
1287 }
1288
1289 case nir_tex_src_projector:
1290 case nir_tex_src_comparitor:
1291 case nir_tex_src_bias:
1292 case nir_tex_src_ddx:
1293 case nir_tex_src_ddy:
1294 return nir_type_float;
1295
1296 case nir_tex_src_offset:
1297 case nir_tex_src_ms_index:
1298 case nir_tex_src_texture_offset:
1299 case nir_tex_src_sampler_offset:
1300 return nir_type_int;
1301
1302 default:
1303 unreachable("Invalid texture source type");
1304 }
1305 }
1306
1307 static inline unsigned
1308 nir_tex_instr_src_size(nir_tex_instr *instr, unsigned src)
1309 {
1310 if (instr->src[src].src_type == nir_tex_src_coord)
1311 return instr->coord_components;
1312
1313 /* The MCS value is expected to be a vec4 returned by a txf_ms_mcs */
1314 if (instr->src[src].src_type == nir_tex_src_ms_mcs)
1315 return 4;
1316
1317 if (instr->src[src].src_type == nir_tex_src_offset ||
1318 instr->src[src].src_type == nir_tex_src_ddx ||
1319 instr->src[src].src_type == nir_tex_src_ddy) {
1320 if (instr->is_array)
1321 return instr->coord_components - 1;
1322 else
1323 return instr->coord_components;
1324 }
1325
1326 return 1;
1327 }
1328
1329 static inline int
1330 nir_tex_instr_src_index(nir_tex_instr *instr, nir_tex_src_type type)
1331 {
1332 for (unsigned i = 0; i < instr->num_srcs; i++)
1333 if (instr->src[i].src_type == type)
1334 return (int) i;
1335
1336 return -1;
1337 }
1338
1339 void nir_tex_instr_remove_src(nir_tex_instr *tex, unsigned src_idx);
1340
1341 typedef union {
1342 float f32[4];
1343 double f64[4];
1344 int32_t i32[4];
1345 uint32_t u32[4];
1346 int64_t i64[4];
1347 uint64_t u64[4];
1348 } nir_const_value;
1349
1350 typedef struct {
1351 nir_instr instr;
1352
1353 nir_const_value value;
1354
1355 nir_ssa_def def;
1356 } nir_load_const_instr;
1357
1358 typedef enum {
1359 nir_jump_return,
1360 nir_jump_break,
1361 nir_jump_continue,
1362 } nir_jump_type;
1363
1364 typedef struct {
1365 nir_instr instr;
1366 nir_jump_type type;
1367 } nir_jump_instr;
1368
1369 /* creates a new SSA variable in an undefined state */
1370
1371 typedef struct {
1372 nir_instr instr;
1373 nir_ssa_def def;
1374 } nir_ssa_undef_instr;
1375
1376 typedef struct {
1377 struct exec_node node;
1378
1379 /* The predecessor block corresponding to this source */
1380 struct nir_block *pred;
1381
1382 nir_src src;
1383 } nir_phi_src;
1384
1385 #define nir_foreach_phi_src(phi_src, phi) \
1386 foreach_list_typed(nir_phi_src, phi_src, node, &(phi)->srcs)
1387 #define nir_foreach_phi_src_safe(phi_src, phi) \
1388 foreach_list_typed_safe(nir_phi_src, phi_src, node, &(phi)->srcs)
1389
1390 typedef struct {
1391 nir_instr instr;
1392
1393 struct exec_list srcs; /** < list of nir_phi_src */
1394
1395 nir_dest dest;
1396 } nir_phi_instr;
1397
1398 typedef struct {
1399 struct exec_node node;
1400 nir_src src;
1401 nir_dest dest;
1402 } nir_parallel_copy_entry;
1403
1404 #define nir_foreach_parallel_copy_entry(entry, pcopy) \
1405 foreach_list_typed(nir_parallel_copy_entry, entry, node, &(pcopy)->entries)
1406
1407 typedef struct {
1408 nir_instr instr;
1409
1410 /* A list of nir_parallel_copy_entry's. The sources of all of the
1411 * entries are copied to the corresponding destinations "in parallel".
1412 * In other words, if we have two entries: a -> b and b -> a, the values
1413 * get swapped.
1414 */
1415 struct exec_list entries;
1416 } nir_parallel_copy_instr;
1417
1418 NIR_DEFINE_CAST(nir_instr_as_alu, nir_instr, nir_alu_instr, instr,
1419 type, nir_instr_type_alu)
1420 NIR_DEFINE_CAST(nir_instr_as_call, nir_instr, nir_call_instr, instr,
1421 type, nir_instr_type_call)
1422 NIR_DEFINE_CAST(nir_instr_as_jump, nir_instr, nir_jump_instr, instr,
1423 type, nir_instr_type_jump)
1424 NIR_DEFINE_CAST(nir_instr_as_tex, nir_instr, nir_tex_instr, instr,
1425 type, nir_instr_type_tex)
1426 NIR_DEFINE_CAST(nir_instr_as_intrinsic, nir_instr, nir_intrinsic_instr, instr,
1427 type, nir_instr_type_intrinsic)
1428 NIR_DEFINE_CAST(nir_instr_as_load_const, nir_instr, nir_load_const_instr, instr,
1429 type, nir_instr_type_load_const)
1430 NIR_DEFINE_CAST(nir_instr_as_ssa_undef, nir_instr, nir_ssa_undef_instr, instr,
1431 type, nir_instr_type_ssa_undef)
1432 NIR_DEFINE_CAST(nir_instr_as_phi, nir_instr, nir_phi_instr, instr,
1433 type, nir_instr_type_phi)
1434 NIR_DEFINE_CAST(nir_instr_as_parallel_copy, nir_instr,
1435 nir_parallel_copy_instr, instr,
1436 type, nir_instr_type_parallel_copy)
1437
1438 /*
1439 * Control flow
1440 *
1441 * Control flow consists of a tree of control flow nodes, which include
1442 * if-statements and loops. The leaves of the tree are basic blocks, lists of
1443 * instructions that always run start-to-finish. Each basic block also keeps
1444 * track of its successors (blocks which may run immediately after the current
1445 * block) and predecessors (blocks which could have run immediately before the
1446 * current block). Each function also has a start block and an end block which
1447 * all return statements point to (which is always empty). Together, all the
1448 * blocks with their predecessors and successors make up the control flow
1449 * graph (CFG) of the function. There are helpers that modify the tree of
1450 * control flow nodes while modifying the CFG appropriately; these should be
1451 * used instead of modifying the tree directly.
1452 */
1453
1454 typedef enum {
1455 nir_cf_node_block,
1456 nir_cf_node_if,
1457 nir_cf_node_loop,
1458 nir_cf_node_function
1459 } nir_cf_node_type;
1460
1461 typedef struct nir_cf_node {
1462 struct exec_node node;
1463 nir_cf_node_type type;
1464 struct nir_cf_node *parent;
1465 } nir_cf_node;
1466
1467 typedef struct nir_block {
1468 nir_cf_node cf_node;
1469
1470 struct exec_list instr_list; /** < list of nir_instr */
1471
1472 /** generic block index; generated by nir_index_blocks */
1473 unsigned index;
1474
1475 /*
1476 * Each block can only have up to 2 successors, so we put them in a simple
1477 * array - no need for anything more complicated.
1478 */
1479 struct nir_block *successors[2];
1480
1481 /* Set of nir_block predecessors in the CFG */
1482 struct set *predecessors;
1483
1484 /*
1485 * this node's immediate dominator in the dominance tree - set to NULL for
1486 * the start block.
1487 */
1488 struct nir_block *imm_dom;
1489
1490 /* This node's children in the dominance tree */
1491 unsigned num_dom_children;
1492 struct nir_block **dom_children;
1493
1494 /* Set of nir_block's on the dominance frontier of this block */
1495 struct set *dom_frontier;
1496
1497 /*
1498 * These two indices have the property that dom_{pre,post}_index for each
1499 * child of this block in the dominance tree will always be between
1500 * dom_pre_index and dom_post_index for this block, which makes testing if
1501 * a given block is dominated by another block an O(1) operation.
1502 */
1503 unsigned dom_pre_index, dom_post_index;
1504
1505 /* live in and out for this block; used for liveness analysis */
1506 BITSET_WORD *live_in;
1507 BITSET_WORD *live_out;
1508 } nir_block;
1509
1510 static inline nir_instr *
1511 nir_block_first_instr(nir_block *block)
1512 {
1513 struct exec_node *head = exec_list_get_head(&block->instr_list);
1514 return exec_node_data(nir_instr, head, node);
1515 }
1516
1517 static inline nir_instr *
1518 nir_block_last_instr(nir_block *block)
1519 {
1520 struct exec_node *tail = exec_list_get_tail(&block->instr_list);
1521 return exec_node_data(nir_instr, tail, node);
1522 }
1523
1524 #define nir_foreach_instr(instr, block) \
1525 foreach_list_typed(nir_instr, instr, node, &(block)->instr_list)
1526 #define nir_foreach_instr_reverse(instr, block) \
1527 foreach_list_typed_reverse(nir_instr, instr, node, &(block)->instr_list)
1528 #define nir_foreach_instr_safe(instr, block) \
1529 foreach_list_typed_safe(nir_instr, instr, node, &(block)->instr_list)
1530 #define nir_foreach_instr_reverse_safe(instr, block) \
1531 foreach_list_typed_reverse_safe(nir_instr, instr, node, &(block)->instr_list)
1532
1533 typedef struct nir_if {
1534 nir_cf_node cf_node;
1535 nir_src condition;
1536
1537 struct exec_list then_list; /** < list of nir_cf_node */
1538 struct exec_list else_list; /** < list of nir_cf_node */
1539 } nir_if;
1540
1541 typedef struct {
1542 nir_cf_node cf_node;
1543
1544 struct exec_list body; /** < list of nir_cf_node */
1545 } nir_loop;
1546
1547 /**
1548 * Various bits of metadata that can may be created or required by
1549 * optimization and analysis passes
1550 */
1551 typedef enum {
1552 nir_metadata_none = 0x0,
1553 nir_metadata_block_index = 0x1,
1554 nir_metadata_dominance = 0x2,
1555 nir_metadata_live_ssa_defs = 0x4,
1556 nir_metadata_not_properly_reset = 0x8,
1557 } nir_metadata;
1558
1559 typedef struct {
1560 nir_cf_node cf_node;
1561
1562 /** pointer to the function of which this is an implementation */
1563 struct nir_function *function;
1564
1565 struct exec_list body; /** < list of nir_cf_node */
1566
1567 nir_block *end_block;
1568
1569 /** list for all local variables in the function */
1570 struct exec_list locals;
1571
1572 /** array of variables used as parameters */
1573 unsigned num_params;
1574 nir_variable **params;
1575
1576 /** variable used to hold the result of the function */
1577 nir_variable *return_var;
1578
1579 /** list of local registers in the function */
1580 struct exec_list registers;
1581
1582 /** next available local register index */
1583 unsigned reg_alloc;
1584
1585 /** next available SSA value index */
1586 unsigned ssa_alloc;
1587
1588 /* total number of basic blocks, only valid when block_index_dirty = false */
1589 unsigned num_blocks;
1590
1591 nir_metadata valid_metadata;
1592 } nir_function_impl;
1593
1594 ATTRIBUTE_RETURNS_NONNULL static inline nir_block *
1595 nir_start_block(nir_function_impl *impl)
1596 {
1597 return (nir_block *) impl->body.head_sentinel.next;
1598 }
1599
1600 ATTRIBUTE_RETURNS_NONNULL static inline nir_block *
1601 nir_impl_last_block(nir_function_impl *impl)
1602 {
1603 return (nir_block *) impl->body.tail_sentinel.prev;
1604 }
1605
1606 static inline nir_cf_node *
1607 nir_cf_node_next(nir_cf_node *node)
1608 {
1609 struct exec_node *next = exec_node_get_next(&node->node);
1610 if (exec_node_is_tail_sentinel(next))
1611 return NULL;
1612 else
1613 return exec_node_data(nir_cf_node, next, node);
1614 }
1615
1616 static inline nir_cf_node *
1617 nir_cf_node_prev(nir_cf_node *node)
1618 {
1619 struct exec_node *prev = exec_node_get_prev(&node->node);
1620 if (exec_node_is_head_sentinel(prev))
1621 return NULL;
1622 else
1623 return exec_node_data(nir_cf_node, prev, node);
1624 }
1625
1626 static inline bool
1627 nir_cf_node_is_first(const nir_cf_node *node)
1628 {
1629 return exec_node_is_head_sentinel(node->node.prev);
1630 }
1631
1632 static inline bool
1633 nir_cf_node_is_last(const nir_cf_node *node)
1634 {
1635 return exec_node_is_tail_sentinel(node->node.next);
1636 }
1637
1638 NIR_DEFINE_CAST(nir_cf_node_as_block, nir_cf_node, nir_block, cf_node,
1639 type, nir_cf_node_block)
1640 NIR_DEFINE_CAST(nir_cf_node_as_if, nir_cf_node, nir_if, cf_node,
1641 type, nir_cf_node_if)
1642 NIR_DEFINE_CAST(nir_cf_node_as_loop, nir_cf_node, nir_loop, cf_node,
1643 type, nir_cf_node_loop)
1644 NIR_DEFINE_CAST(nir_cf_node_as_function, nir_cf_node,
1645 nir_function_impl, cf_node, type, nir_cf_node_function)
1646
1647 static inline nir_block *
1648 nir_if_first_then_block(nir_if *if_stmt)
1649 {
1650 struct exec_node *head = exec_list_get_head(&if_stmt->then_list);
1651 return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
1652 }
1653
1654 static inline nir_block *
1655 nir_if_last_then_block(nir_if *if_stmt)
1656 {
1657 struct exec_node *tail = exec_list_get_tail(&if_stmt->then_list);
1658 return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
1659 }
1660
1661 static inline nir_block *
1662 nir_if_first_else_block(nir_if *if_stmt)
1663 {
1664 struct exec_node *head = exec_list_get_head(&if_stmt->else_list);
1665 return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
1666 }
1667
1668 static inline nir_block *
1669 nir_if_last_else_block(nir_if *if_stmt)
1670 {
1671 struct exec_node *tail = exec_list_get_tail(&if_stmt->else_list);
1672 return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
1673 }
1674
1675 static inline nir_block *
1676 nir_loop_first_block(nir_loop *loop)
1677 {
1678 struct exec_node *head = exec_list_get_head(&loop->body);
1679 return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
1680 }
1681
1682 static inline nir_block *
1683 nir_loop_last_block(nir_loop *loop)
1684 {
1685 struct exec_node *tail = exec_list_get_tail(&loop->body);
1686 return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
1687 }
1688
1689 typedef enum {
1690 nir_parameter_in,
1691 nir_parameter_out,
1692 nir_parameter_inout,
1693 } nir_parameter_type;
1694
1695 typedef struct {
1696 nir_parameter_type param_type;
1697 const struct glsl_type *type;
1698 } nir_parameter;
1699
1700 typedef struct nir_function {
1701 struct exec_node node;
1702
1703 const char *name;
1704 struct nir_shader *shader;
1705
1706 unsigned num_params;
1707 nir_parameter *params;
1708 const struct glsl_type *return_type;
1709
1710 /** The implementation of this function.
1711 *
1712 * If the function is only declared and not implemented, this is NULL.
1713 */
1714 nir_function_impl *impl;
1715 } nir_function;
1716
1717 typedef struct nir_shader_compiler_options {
1718 bool lower_fdiv;
1719 bool lower_ffma;
1720 bool fuse_ffma;
1721 bool lower_flrp32;
1722 /** Lowers flrp when it does not support doubles */
1723 bool lower_flrp64;
1724 bool lower_fpow;
1725 bool lower_fsat;
1726 bool lower_fsqrt;
1727 bool lower_fmod32;
1728 bool lower_fmod64;
1729 bool lower_bitfield_extract;
1730 bool lower_bitfield_insert;
1731 bool lower_uadd_carry;
1732 bool lower_usub_borrow;
1733 /** lowers fneg and ineg to fsub and isub. */
1734 bool lower_negate;
1735 /** lowers fsub and isub to fadd+fneg and iadd+ineg. */
1736 bool lower_sub;
1737
1738 /* lower {slt,sge,seq,sne} to {flt,fge,feq,fne} + b2f: */
1739 bool lower_scmp;
1740
1741 /** enables rules to lower idiv by power-of-two: */
1742 bool lower_idiv;
1743
1744 /* Does the native fdot instruction replicate its result for four
1745 * components? If so, then opt_algebraic_late will turn all fdotN
1746 * instructions into fdot_replicatedN instructions.
1747 */
1748 bool fdot_replicates;
1749
1750 /** lowers ffract to fsub+ffloor: */
1751 bool lower_ffract;
1752
1753 bool lower_pack_half_2x16;
1754 bool lower_pack_unorm_2x16;
1755 bool lower_pack_snorm_2x16;
1756 bool lower_pack_unorm_4x8;
1757 bool lower_pack_snorm_4x8;
1758 bool lower_unpack_half_2x16;
1759 bool lower_unpack_unorm_2x16;
1760 bool lower_unpack_snorm_2x16;
1761 bool lower_unpack_unorm_4x8;
1762 bool lower_unpack_snorm_4x8;
1763
1764 bool lower_extract_byte;
1765 bool lower_extract_word;
1766
1767 /**
1768 * Does the driver support real 32-bit integers? (Otherwise, integers
1769 * are simulated by floats.)
1770 */
1771 bool native_integers;
1772
1773 /* Indicates that the driver only has zero-based vertex id */
1774 bool vertex_id_zero_based;
1775
1776 bool lower_cs_local_index_from_id;
1777
1778 /**
1779 * Should nir_lower_io() create load_interpolated_input intrinsics?
1780 *
1781 * If not, it generates regular load_input intrinsics and interpolation
1782 * information must be inferred from the list of input nir_variables.
1783 */
1784 bool use_interpolated_input_intrinsics;
1785 } nir_shader_compiler_options;
1786
1787 typedef struct nir_shader {
1788 /** list of uniforms (nir_variable) */
1789 struct exec_list uniforms;
1790
1791 /** list of inputs (nir_variable) */
1792 struct exec_list inputs;
1793
1794 /** list of outputs (nir_variable) */
1795 struct exec_list outputs;
1796
1797 /** list of shared compute variables (nir_variable) */
1798 struct exec_list shared;
1799
1800 /** Set of driver-specific options for the shader.
1801 *
1802 * The memory for the options is expected to be kept in a single static
1803 * copy by the driver.
1804 */
1805 const struct nir_shader_compiler_options *options;
1806
1807 /** Various bits of compile-time information about a given shader */
1808 struct shader_info info;
1809
1810 /** list of global variables in the shader (nir_variable) */
1811 struct exec_list globals;
1812
1813 /** list of system value variables in the shader (nir_variable) */
1814 struct exec_list system_values;
1815
1816 struct exec_list functions; /** < list of nir_function */
1817
1818 /** list of global register in the shader */
1819 struct exec_list registers;
1820
1821 /** next available global register index */
1822 unsigned reg_alloc;
1823
1824 /**
1825 * the highest index a load_input_*, load_uniform_*, etc. intrinsic can
1826 * access plus one
1827 */
1828 unsigned num_inputs, num_uniforms, num_outputs, num_shared;
1829
1830 /** The shader stage, such as MESA_SHADER_VERTEX. */
1831 gl_shader_stage stage;
1832 } nir_shader;
1833
1834 static inline nir_function_impl *
1835 nir_shader_get_entrypoint(nir_shader *shader)
1836 {
1837 assert(exec_list_length(&shader->functions) == 1);
1838 struct exec_node *func_node = exec_list_get_head(&shader->functions);
1839 nir_function *func = exec_node_data(nir_function, func_node, node);
1840 assert(func->return_type == glsl_void_type());
1841 assert(func->num_params == 0);
1842 assert(func->impl);
1843 return func->impl;
1844 }
1845
1846 #define nir_foreach_function(func, shader) \
1847 foreach_list_typed(nir_function, func, node, &(shader)->functions)
1848
1849 nir_shader *nir_shader_create(void *mem_ctx,
1850 gl_shader_stage stage,
1851 const nir_shader_compiler_options *options);
1852
1853 /** creates a register, including assigning it an index and adding it to the list */
1854 nir_register *nir_global_reg_create(nir_shader *shader);
1855
1856 nir_register *nir_local_reg_create(nir_function_impl *impl);
1857
1858 void nir_reg_remove(nir_register *reg);
1859
1860 /** Adds a variable to the appropreate list in nir_shader */
1861 void nir_shader_add_variable(nir_shader *shader, nir_variable *var);
1862
1863 static inline void
1864 nir_function_impl_add_variable(nir_function_impl *impl, nir_variable *var)
1865 {
1866 assert(var->data.mode == nir_var_local);
1867 exec_list_push_tail(&impl->locals, &var->node);
1868 }
1869
1870 /** creates a variable, sets a few defaults, and adds it to the list */
1871 nir_variable *nir_variable_create(nir_shader *shader,
1872 nir_variable_mode mode,
1873 const struct glsl_type *type,
1874 const char *name);
1875 /** creates a local variable and adds it to the list */
1876 nir_variable *nir_local_variable_create(nir_function_impl *impl,
1877 const struct glsl_type *type,
1878 const char *name);
1879
1880 /** creates a function and adds it to the shader's list of functions */
1881 nir_function *nir_function_create(nir_shader *shader, const char *name);
1882
1883 nir_function_impl *nir_function_impl_create(nir_function *func);
1884 /** creates a function_impl that isn't tied to any particular function */
1885 nir_function_impl *nir_function_impl_create_bare(nir_shader *shader);
1886
1887 nir_block *nir_block_create(nir_shader *shader);
1888 nir_if *nir_if_create(nir_shader *shader);
1889 nir_loop *nir_loop_create(nir_shader *shader);
1890
1891 nir_function_impl *nir_cf_node_get_function(nir_cf_node *node);
1892
1893 /** requests that the given pieces of metadata be generated */
1894 void nir_metadata_require(nir_function_impl *impl, nir_metadata required);
1895 /** dirties all but the preserved metadata */
1896 void nir_metadata_preserve(nir_function_impl *impl, nir_metadata preserved);
1897
1898 /** creates an instruction with default swizzle/writemask/etc. with NULL registers */
1899 nir_alu_instr *nir_alu_instr_create(nir_shader *shader, nir_op op);
1900
1901 nir_jump_instr *nir_jump_instr_create(nir_shader *shader, nir_jump_type type);
1902
1903 nir_load_const_instr *nir_load_const_instr_create(nir_shader *shader,
1904 unsigned num_components,
1905 unsigned bit_size);
1906
1907 nir_intrinsic_instr *nir_intrinsic_instr_create(nir_shader *shader,
1908 nir_intrinsic_op op);
1909
1910 nir_call_instr *nir_call_instr_create(nir_shader *shader,
1911 nir_function *callee);
1912
1913 nir_tex_instr *nir_tex_instr_create(nir_shader *shader, unsigned num_srcs);
1914
1915 nir_phi_instr *nir_phi_instr_create(nir_shader *shader);
1916
1917 nir_parallel_copy_instr *nir_parallel_copy_instr_create(nir_shader *shader);
1918
1919 nir_ssa_undef_instr *nir_ssa_undef_instr_create(nir_shader *shader,
1920 unsigned num_components,
1921 unsigned bit_size);
1922
1923 nir_deref_var *nir_deref_var_create(void *mem_ctx, nir_variable *var);
1924 nir_deref_array *nir_deref_array_create(void *mem_ctx);
1925 nir_deref_struct *nir_deref_struct_create(void *mem_ctx, unsigned field_index);
1926
1927 nir_deref *nir_copy_deref(void *mem_ctx, nir_deref *deref);
1928
1929 typedef bool (*nir_deref_foreach_leaf_cb)(nir_deref_var *deref, void *state);
1930 bool nir_deref_foreach_leaf(nir_deref_var *deref,
1931 nir_deref_foreach_leaf_cb cb, void *state);
1932
1933 nir_load_const_instr *
1934 nir_deref_get_const_initializer_load(nir_shader *shader, nir_deref_var *deref);
1935
1936 /**
1937 * NIR Cursors and Instruction Insertion API
1938 * @{
1939 *
1940 * A tiny struct representing a point to insert/extract instructions or
1941 * control flow nodes. Helps reduce the combinatorial explosion of possible
1942 * points to insert/extract.
1943 *
1944 * \sa nir_control_flow.h
1945 */
1946 typedef enum {
1947 nir_cursor_before_block,
1948 nir_cursor_after_block,
1949 nir_cursor_before_instr,
1950 nir_cursor_after_instr,
1951 } nir_cursor_option;
1952
1953 typedef struct {
1954 nir_cursor_option option;
1955 union {
1956 nir_block *block;
1957 nir_instr *instr;
1958 };
1959 } nir_cursor;
1960
1961 static inline nir_block *
1962 nir_cursor_current_block(nir_cursor cursor)
1963 {
1964 if (cursor.option == nir_cursor_before_instr ||
1965 cursor.option == nir_cursor_after_instr) {
1966 return cursor.instr->block;
1967 } else {
1968 return cursor.block;
1969 }
1970 }
1971
1972 bool nir_cursors_equal(nir_cursor a, nir_cursor b);
1973
1974 static inline nir_cursor
1975 nir_before_block(nir_block *block)
1976 {
1977 nir_cursor cursor;
1978 cursor.option = nir_cursor_before_block;
1979 cursor.block = block;
1980 return cursor;
1981 }
1982
1983 static inline nir_cursor
1984 nir_after_block(nir_block *block)
1985 {
1986 nir_cursor cursor;
1987 cursor.option = nir_cursor_after_block;
1988 cursor.block = block;
1989 return cursor;
1990 }
1991
1992 static inline nir_cursor
1993 nir_before_instr(nir_instr *instr)
1994 {
1995 nir_cursor cursor;
1996 cursor.option = nir_cursor_before_instr;
1997 cursor.instr = instr;
1998 return cursor;
1999 }
2000
2001 static inline nir_cursor
2002 nir_after_instr(nir_instr *instr)
2003 {
2004 nir_cursor cursor;
2005 cursor.option = nir_cursor_after_instr;
2006 cursor.instr = instr;
2007 return cursor;
2008 }
2009
2010 static inline nir_cursor
2011 nir_after_block_before_jump(nir_block *block)
2012 {
2013 nir_instr *last_instr = nir_block_last_instr(block);
2014 if (last_instr && last_instr->type == nir_instr_type_jump) {
2015 return nir_before_instr(last_instr);
2016 } else {
2017 return nir_after_block(block);
2018 }
2019 }
2020
2021 static inline nir_cursor
2022 nir_before_cf_node(nir_cf_node *node)
2023 {
2024 if (node->type == nir_cf_node_block)
2025 return nir_before_block(nir_cf_node_as_block(node));
2026
2027 return nir_after_block(nir_cf_node_as_block(nir_cf_node_prev(node)));
2028 }
2029
2030 static inline nir_cursor
2031 nir_after_cf_node(nir_cf_node *node)
2032 {
2033 if (node->type == nir_cf_node_block)
2034 return nir_after_block(nir_cf_node_as_block(node));
2035
2036 return nir_before_block(nir_cf_node_as_block(nir_cf_node_next(node)));
2037 }
2038
2039 static inline nir_cursor
2040 nir_after_phis(nir_block *block)
2041 {
2042 nir_foreach_instr(instr, block) {
2043 if (instr->type != nir_instr_type_phi)
2044 return nir_before_instr(instr);
2045 }
2046 return nir_after_block(block);
2047 }
2048
2049 static inline nir_cursor
2050 nir_after_cf_node_and_phis(nir_cf_node *node)
2051 {
2052 if (node->type == nir_cf_node_block)
2053 return nir_after_block(nir_cf_node_as_block(node));
2054
2055 nir_block *block = nir_cf_node_as_block(nir_cf_node_next(node));
2056
2057 return nir_after_phis(block);
2058 }
2059
2060 static inline nir_cursor
2061 nir_before_cf_list(struct exec_list *cf_list)
2062 {
2063 nir_cf_node *first_node = exec_node_data(nir_cf_node,
2064 exec_list_get_head(cf_list), node);
2065 return nir_before_cf_node(first_node);
2066 }
2067
2068 static inline nir_cursor
2069 nir_after_cf_list(struct exec_list *cf_list)
2070 {
2071 nir_cf_node *last_node = exec_node_data(nir_cf_node,
2072 exec_list_get_tail(cf_list), node);
2073 return nir_after_cf_node(last_node);
2074 }
2075
2076 /**
2077 * Insert a NIR instruction at the given cursor.
2078 *
2079 * Note: This does not update the cursor.
2080 */
2081 void nir_instr_insert(nir_cursor cursor, nir_instr *instr);
2082
2083 static inline void
2084 nir_instr_insert_before(nir_instr *instr, nir_instr *before)
2085 {
2086 nir_instr_insert(nir_before_instr(instr), before);
2087 }
2088
2089 static inline void
2090 nir_instr_insert_after(nir_instr *instr, nir_instr *after)
2091 {
2092 nir_instr_insert(nir_after_instr(instr), after);
2093 }
2094
2095 static inline void
2096 nir_instr_insert_before_block(nir_block *block, nir_instr *before)
2097 {
2098 nir_instr_insert(nir_before_block(block), before);
2099 }
2100
2101 static inline void
2102 nir_instr_insert_after_block(nir_block *block, nir_instr *after)
2103 {
2104 nir_instr_insert(nir_after_block(block), after);
2105 }
2106
2107 static inline void
2108 nir_instr_insert_before_cf(nir_cf_node *node, nir_instr *before)
2109 {
2110 nir_instr_insert(nir_before_cf_node(node), before);
2111 }
2112
2113 static inline void
2114 nir_instr_insert_after_cf(nir_cf_node *node, nir_instr *after)
2115 {
2116 nir_instr_insert(nir_after_cf_node(node), after);
2117 }
2118
2119 static inline void
2120 nir_instr_insert_before_cf_list(struct exec_list *list, nir_instr *before)
2121 {
2122 nir_instr_insert(nir_before_cf_list(list), before);
2123 }
2124
2125 static inline void
2126 nir_instr_insert_after_cf_list(struct exec_list *list, nir_instr *after)
2127 {
2128 nir_instr_insert(nir_after_cf_list(list), after);
2129 }
2130
2131 void nir_instr_remove(nir_instr *instr);
2132
2133 /** @} */
2134
2135 typedef bool (*nir_foreach_ssa_def_cb)(nir_ssa_def *def, void *state);
2136 typedef bool (*nir_foreach_dest_cb)(nir_dest *dest, void *state);
2137 typedef bool (*nir_foreach_src_cb)(nir_src *src, void *state);
2138 bool nir_foreach_ssa_def(nir_instr *instr, nir_foreach_ssa_def_cb cb,
2139 void *state);
2140 bool nir_foreach_dest(nir_instr *instr, nir_foreach_dest_cb cb, void *state);
2141 bool nir_foreach_src(nir_instr *instr, nir_foreach_src_cb cb, void *state);
2142
2143 nir_const_value *nir_src_as_const_value(nir_src src);
2144 bool nir_src_is_dynamically_uniform(nir_src src);
2145 bool nir_srcs_equal(nir_src src1, nir_src src2);
2146 void nir_instr_rewrite_src(nir_instr *instr, nir_src *src, nir_src new_src);
2147 void nir_instr_move_src(nir_instr *dest_instr, nir_src *dest, nir_src *src);
2148 void nir_if_rewrite_condition(nir_if *if_stmt, nir_src new_src);
2149 void nir_instr_rewrite_dest(nir_instr *instr, nir_dest *dest,
2150 nir_dest new_dest);
2151
2152 void nir_ssa_dest_init(nir_instr *instr, nir_dest *dest,
2153 unsigned num_components, unsigned bit_size,
2154 const char *name);
2155 void nir_ssa_def_init(nir_instr *instr, nir_ssa_def *def,
2156 unsigned num_components, unsigned bit_size,
2157 const char *name);
2158 void nir_ssa_def_rewrite_uses(nir_ssa_def *def, nir_src new_src);
2159 void nir_ssa_def_rewrite_uses_after(nir_ssa_def *def, nir_src new_src,
2160 nir_instr *after_me);
2161
2162 uint8_t nir_ssa_def_components_read(nir_ssa_def *def);
2163
2164 /*
2165 * finds the next basic block in source-code order, returns NULL if there is
2166 * none
2167 */
2168
2169 nir_block *nir_block_cf_tree_next(nir_block *block);
2170
2171 /* Performs the opposite of nir_block_cf_tree_next() */
2172
2173 nir_block *nir_block_cf_tree_prev(nir_block *block);
2174
2175 /* Gets the first block in a CF node in source-code order */
2176
2177 nir_block *nir_cf_node_cf_tree_first(nir_cf_node *node);
2178
2179 /* Gets the last block in a CF node in source-code order */
2180
2181 nir_block *nir_cf_node_cf_tree_last(nir_cf_node *node);
2182
2183 /* Gets the next block after a CF node in source-code order */
2184
2185 nir_block *nir_cf_node_cf_tree_next(nir_cf_node *node);
2186
2187 /* Macros for loops that visit blocks in source-code order */
2188
2189 #define nir_foreach_block(block, impl) \
2190 for (nir_block *block = nir_start_block(impl); block != NULL; \
2191 block = nir_block_cf_tree_next(block))
2192
2193 #define nir_foreach_block_safe(block, impl) \
2194 for (nir_block *block = nir_start_block(impl), \
2195 *next = nir_block_cf_tree_next(block); \
2196 block != NULL; \
2197 block = next, next = nir_block_cf_tree_next(block))
2198
2199 #define nir_foreach_block_reverse(block, impl) \
2200 for (nir_block *block = nir_impl_last_block(impl); block != NULL; \
2201 block = nir_block_cf_tree_prev(block))
2202
2203 #define nir_foreach_block_reverse_safe(block, impl) \
2204 for (nir_block *block = nir_impl_last_block(impl), \
2205 *prev = nir_block_cf_tree_prev(block); \
2206 block != NULL; \
2207 block = prev, prev = nir_block_cf_tree_prev(block))
2208
2209 #define nir_foreach_block_in_cf_node(block, node) \
2210 for (nir_block *block = nir_cf_node_cf_tree_first(node); \
2211 block != nir_cf_node_cf_tree_next(node); \
2212 block = nir_block_cf_tree_next(block))
2213
2214 /* If the following CF node is an if, this function returns that if.
2215 * Otherwise, it returns NULL.
2216 */
2217 nir_if *nir_block_get_following_if(nir_block *block);
2218
2219 nir_loop *nir_block_get_following_loop(nir_block *block);
2220
2221 void nir_index_local_regs(nir_function_impl *impl);
2222 void nir_index_global_regs(nir_shader *shader);
2223 void nir_index_ssa_defs(nir_function_impl *impl);
2224 unsigned nir_index_instrs(nir_function_impl *impl);
2225
2226 void nir_index_blocks(nir_function_impl *impl);
2227
2228 void nir_print_shader(nir_shader *shader, FILE *fp);
2229 void nir_print_shader_annotated(nir_shader *shader, FILE *fp, struct hash_table *errors);
2230 void nir_print_instr(const nir_instr *instr, FILE *fp);
2231
2232 nir_shader *nir_shader_clone(void *mem_ctx, const nir_shader *s);
2233 nir_function_impl *nir_function_impl_clone(const nir_function_impl *fi);
2234 nir_constant *nir_constant_clone(const nir_constant *c, nir_variable *var);
2235 nir_variable *nir_variable_clone(const nir_variable *c, nir_shader *shader);
2236
2237 #ifdef DEBUG
2238 void nir_validate_shader(nir_shader *shader);
2239 void nir_metadata_set_validation_flag(nir_shader *shader);
2240 void nir_metadata_check_validation_flag(nir_shader *shader);
2241
2242 #include "util/debug.h"
2243 static inline bool
2244 should_clone_nir(void)
2245 {
2246 static int should_clone = -1;
2247 if (should_clone < 0)
2248 should_clone = env_var_as_boolean("NIR_TEST_CLONE", false);
2249
2250 return should_clone;
2251 }
2252 #else
2253 static inline void nir_validate_shader(nir_shader *shader) { (void) shader; }
2254 static inline void nir_metadata_set_validation_flag(nir_shader *shader) { (void) shader; }
2255 static inline void nir_metadata_check_validation_flag(nir_shader *shader) { (void) shader; }
2256 static inline bool should_clone_nir(void) { return false; }
2257 #endif /* DEBUG */
2258
2259 #define _PASS(nir, do_pass) do { \
2260 do_pass \
2261 nir_validate_shader(nir); \
2262 if (should_clone_nir()) { \
2263 nir_shader *clone = nir_shader_clone(ralloc_parent(nir), nir); \
2264 ralloc_free(nir); \
2265 nir = clone; \
2266 } \
2267 } while (0)
2268
2269 #define NIR_PASS(progress, nir, pass, ...) _PASS(nir, \
2270 nir_metadata_set_validation_flag(nir); \
2271 if (pass(nir, ##__VA_ARGS__)) { \
2272 progress = true; \
2273 nir_metadata_check_validation_flag(nir); \
2274 } \
2275 )
2276
2277 #define NIR_PASS_V(nir, pass, ...) _PASS(nir, \
2278 pass(nir, ##__VA_ARGS__); \
2279 )
2280
2281 void nir_calc_dominance_impl(nir_function_impl *impl);
2282 void nir_calc_dominance(nir_shader *shader);
2283
2284 nir_block *nir_dominance_lca(nir_block *b1, nir_block *b2);
2285 bool nir_block_dominates(nir_block *parent, nir_block *child);
2286
2287 void nir_dump_dom_tree_impl(nir_function_impl *impl, FILE *fp);
2288 void nir_dump_dom_tree(nir_shader *shader, FILE *fp);
2289
2290 void nir_dump_dom_frontier_impl(nir_function_impl *impl, FILE *fp);
2291 void nir_dump_dom_frontier(nir_shader *shader, FILE *fp);
2292
2293 void nir_dump_cfg_impl(nir_function_impl *impl, FILE *fp);
2294 void nir_dump_cfg(nir_shader *shader, FILE *fp);
2295
2296 int nir_gs_count_vertices(const nir_shader *shader);
2297
2298 bool nir_split_var_copies(nir_shader *shader);
2299
2300 bool nir_lower_returns_impl(nir_function_impl *impl);
2301 bool nir_lower_returns(nir_shader *shader);
2302
2303 bool nir_inline_functions(nir_shader *shader);
2304
2305 bool nir_propagate_invariant(nir_shader *shader);
2306
2307 void nir_lower_var_copy_instr(nir_intrinsic_instr *copy, void *mem_ctx);
2308 void nir_lower_var_copies(nir_shader *shader);
2309
2310 bool nir_lower_global_vars_to_local(nir_shader *shader);
2311
2312 bool nir_lower_indirect_derefs(nir_shader *shader, nir_variable_mode modes);
2313
2314 bool nir_lower_locals_to_regs(nir_shader *shader);
2315
2316 void nir_lower_io_to_temporaries(nir_shader *shader,
2317 nir_function_impl *entrypoint,
2318 bool outputs, bool inputs);
2319
2320 void nir_shader_gather_info(nir_shader *shader, nir_function_impl *entrypoint);
2321
2322 void nir_assign_var_locations(struct exec_list *var_list, unsigned *size,
2323 unsigned base_offset,
2324 int (*type_size)(const struct glsl_type *));
2325
2326 typedef enum {
2327 /* If set, this forces all non-flat fragment shader inputs to be
2328 * interpolated as if with the "sample" qualifier. This requires
2329 * nir_shader_compiler_options::use_interpolated_input_intrinsics.
2330 */
2331 nir_lower_io_force_sample_interpolation = (1 << 1),
2332 } nir_lower_io_options;
2333 void nir_lower_io(nir_shader *shader,
2334 nir_variable_mode modes,
2335 int (*type_size)(const struct glsl_type *),
2336 nir_lower_io_options);
2337 nir_src *nir_get_io_offset_src(nir_intrinsic_instr *instr);
2338 nir_src *nir_get_io_vertex_index_src(nir_intrinsic_instr *instr);
2339
2340 void nir_lower_io_types(nir_shader *shader);
2341 void nir_lower_vars_to_ssa(nir_shader *shader);
2342
2343 bool nir_remove_dead_variables(nir_shader *shader, nir_variable_mode modes);
2344
2345 void nir_move_vec_src_uses_to_dest(nir_shader *shader);
2346 bool nir_lower_vec_to_movs(nir_shader *shader);
2347 bool nir_lower_alu_to_scalar(nir_shader *shader);
2348 void nir_lower_load_const_to_scalar(nir_shader *shader);
2349
2350 bool nir_lower_phis_to_scalar(nir_shader *shader);
2351 void nir_lower_io_to_scalar(nir_shader *shader, nir_variable_mode mask);
2352
2353 void nir_lower_samplers(nir_shader *shader,
2354 const struct gl_shader_program *shader_program);
2355
2356 bool nir_lower_system_values(nir_shader *shader);
2357
2358 typedef struct nir_lower_tex_options {
2359 /**
2360 * bitmask of (1 << GLSL_SAMPLER_DIM_x) to control for which
2361 * sampler types a texture projector is lowered.
2362 */
2363 unsigned lower_txp;
2364
2365 /**
2366 * If true, lower away nir_tex_src_offset for all texelfetch instructions.
2367 */
2368 bool lower_txf_offset;
2369
2370 /**
2371 * If true, lower away nir_tex_src_offset for all rect textures.
2372 */
2373 bool lower_rect_offset;
2374
2375 /**
2376 * If true, lower rect textures to 2D, using txs to fetch the
2377 * texture dimensions and dividing the texture coords by the
2378 * texture dims to normalize.
2379 */
2380 bool lower_rect;
2381
2382 /**
2383 * If true, convert yuv to rgb.
2384 */
2385 unsigned lower_y_uv_external;
2386 unsigned lower_y_u_v_external;
2387 unsigned lower_yx_xuxv_external;
2388
2389 /**
2390 * To emulate certain texture wrap modes, this can be used
2391 * to saturate the specified tex coord to [0.0, 1.0]. The
2392 * bits are according to sampler #, ie. if, for example:
2393 *
2394 * (conf->saturate_s & (1 << n))
2395 *
2396 * is true, then the s coord for sampler n is saturated.
2397 *
2398 * Note that clamping must happen *after* projector lowering
2399 * so any projected texture sample instruction with a clamped
2400 * coordinate gets automatically lowered, regardless of the
2401 * 'lower_txp' setting.
2402 */
2403 unsigned saturate_s;
2404 unsigned saturate_t;
2405 unsigned saturate_r;
2406
2407 /* Bitmask of textures that need swizzling.
2408 *
2409 * If (swizzle_result & (1 << texture_index)), then the swizzle in
2410 * swizzles[texture_index] is applied to the result of the texturing
2411 * operation.
2412 */
2413 unsigned swizzle_result;
2414
2415 /* A swizzle for each texture. Values 0-3 represent x, y, z, or w swizzles
2416 * while 4 and 5 represent 0 and 1 respectively.
2417 */
2418 uint8_t swizzles[32][4];
2419
2420 /**
2421 * Bitmap of textures that need srgb to linear conversion. If
2422 * (lower_srgb & (1 << texture_index)) then the rgb (xyz) components
2423 * of the texture are lowered to linear.
2424 */
2425 unsigned lower_srgb;
2426 } nir_lower_tex_options;
2427
2428 bool nir_lower_tex(nir_shader *shader,
2429 const nir_lower_tex_options *options);
2430
2431 bool nir_lower_idiv(nir_shader *shader);
2432
2433 void nir_lower_clip_vs(nir_shader *shader, unsigned ucp_enables);
2434 void nir_lower_clip_fs(nir_shader *shader, unsigned ucp_enables);
2435
2436 void nir_lower_two_sided_color(nir_shader *shader);
2437
2438 void nir_lower_clamp_color_outputs(nir_shader *shader);
2439
2440 void nir_lower_passthrough_edgeflags(nir_shader *shader);
2441
2442 typedef struct nir_lower_wpos_ytransform_options {
2443 int state_tokens[5];
2444 bool fs_coord_origin_upper_left :1;
2445 bool fs_coord_origin_lower_left :1;
2446 bool fs_coord_pixel_center_integer :1;
2447 bool fs_coord_pixel_center_half_integer :1;
2448 } nir_lower_wpos_ytransform_options;
2449
2450 bool nir_lower_wpos_ytransform(nir_shader *shader,
2451 const nir_lower_wpos_ytransform_options *options);
2452 bool nir_lower_wpos_center(nir_shader *shader);
2453
2454 typedef struct nir_lower_drawpixels_options {
2455 int texcoord_state_tokens[5];
2456 int scale_state_tokens[5];
2457 int bias_state_tokens[5];
2458 unsigned drawpix_sampler;
2459 unsigned pixelmap_sampler;
2460 bool pixel_maps :1;
2461 bool scale_and_bias :1;
2462 } nir_lower_drawpixels_options;
2463
2464 void nir_lower_drawpixels(nir_shader *shader,
2465 const nir_lower_drawpixels_options *options);
2466
2467 typedef struct nir_lower_bitmap_options {
2468 unsigned sampler;
2469 bool swizzle_xxxx;
2470 } nir_lower_bitmap_options;
2471
2472 void nir_lower_bitmap(nir_shader *shader, const nir_lower_bitmap_options *options);
2473
2474 void nir_lower_atomics(nir_shader *shader,
2475 const struct gl_shader_program *shader_program);
2476 void nir_lower_to_source_mods(nir_shader *shader);
2477
2478 bool nir_lower_gs_intrinsics(nir_shader *shader);
2479
2480 typedef enum {
2481 nir_lower_drcp = (1 << 0),
2482 nir_lower_dsqrt = (1 << 1),
2483 nir_lower_drsq = (1 << 2),
2484 nir_lower_dtrunc = (1 << 3),
2485 nir_lower_dfloor = (1 << 4),
2486 nir_lower_dceil = (1 << 5),
2487 nir_lower_dfract = (1 << 6),
2488 nir_lower_dround_even = (1 << 7),
2489 nir_lower_dmod = (1 << 8)
2490 } nir_lower_doubles_options;
2491
2492 void nir_lower_doubles(nir_shader *shader, nir_lower_doubles_options options);
2493 void nir_lower_double_pack(nir_shader *shader);
2494
2495 bool nir_normalize_cubemap_coords(nir_shader *shader);
2496
2497 void nir_live_ssa_defs_impl(nir_function_impl *impl);
2498 bool nir_ssa_defs_interfere(nir_ssa_def *a, nir_ssa_def *b);
2499
2500 void nir_convert_to_ssa_impl(nir_function_impl *impl);
2501 void nir_convert_to_ssa(nir_shader *shader);
2502
2503 bool nir_repair_ssa_impl(nir_function_impl *impl);
2504 bool nir_repair_ssa(nir_shader *shader);
2505
2506 /* If phi_webs_only is true, only convert SSA values involved in phi nodes to
2507 * registers. If false, convert all values (even those not involved in a phi
2508 * node) to registers.
2509 */
2510 void nir_convert_from_ssa(nir_shader *shader, bool phi_webs_only);
2511
2512 bool nir_opt_algebraic(nir_shader *shader);
2513 bool nir_opt_algebraic_late(nir_shader *shader);
2514 bool nir_opt_constant_folding(nir_shader *shader);
2515
2516 bool nir_opt_global_to_local(nir_shader *shader);
2517
2518 bool nir_copy_prop(nir_shader *shader);
2519
2520 bool nir_opt_cse(nir_shader *shader);
2521
2522 bool nir_opt_dce(nir_shader *shader);
2523
2524 bool nir_opt_dead_cf(nir_shader *shader);
2525
2526 bool nir_opt_gcm(nir_shader *shader, bool value_number);
2527
2528 bool nir_opt_peephole_select(nir_shader *shader, unsigned limit);
2529
2530 bool nir_opt_remove_phis(nir_shader *shader);
2531
2532 bool nir_opt_undef(nir_shader *shader);
2533
2534 void nir_sweep(nir_shader *shader);
2535
2536 nir_intrinsic_op nir_intrinsic_from_system_value(gl_system_value val);
2537 gl_system_value nir_system_value_from_intrinsic(nir_intrinsic_op intrin);
2538
2539 #ifdef __cplusplus
2540 } /* extern "C" */
2541 #endif