nir: Add some new helpers for working with const sources
[mesa.git] / src / compiler / nir / nir.h
1 /*
2 * Copyright © 2014 Connor Abbott
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Connor Abbott (cwabbott0@gmail.com)
25 *
26 */
27
28 #ifndef NIR_H
29 #define NIR_H
30
31 #include "util/hash_table.h"
32 #include "compiler/glsl/list.h"
33 #include "GL/gl.h" /* GLenum */
34 #include "util/list.h"
35 #include "util/ralloc.h"
36 #include "util/set.h"
37 #include "util/bitset.h"
38 #include "util/macros.h"
39 #include "compiler/nir_types.h"
40 #include "compiler/shader_enums.h"
41 #include "compiler/shader_info.h"
42 #include <stdio.h>
43
44 #ifndef NDEBUG
45 #include "util/debug.h"
46 #endif /* NDEBUG */
47
48 #include "nir_opcodes.h"
49
50 #if defined(_WIN32) && !defined(snprintf)
51 #define snprintf _snprintf
52 #endif
53
54 #ifdef __cplusplus
55 extern "C" {
56 #endif
57
58 #define NIR_FALSE 0u
59 #define NIR_TRUE (~0u)
60 #define NIR_MAX_VEC_COMPONENTS 4
61 typedef uint8_t nir_component_mask_t;
62
63 /** Defines a cast function
64 *
65 * This macro defines a cast function from in_type to out_type where
66 * out_type is some structure type that contains a field of type out_type.
67 *
68 * Note that you have to be a bit careful as the generated cast function
69 * destroys constness.
70 */
71 #define NIR_DEFINE_CAST(name, in_type, out_type, field, \
72 type_field, type_value) \
73 static inline out_type * \
74 name(const in_type *parent) \
75 { \
76 assert(parent && parent->type_field == type_value); \
77 return exec_node_data(out_type, parent, field); \
78 }
79
80 struct nir_function;
81 struct nir_shader;
82 struct nir_instr;
83 struct nir_builder;
84
85
86 /**
87 * Description of built-in state associated with a uniform
88 *
89 * \sa nir_variable::state_slots
90 */
91 typedef struct {
92 gl_state_index16 tokens[STATE_LENGTH];
93 int swizzle;
94 } nir_state_slot;
95
96 typedef enum {
97 nir_var_shader_in = (1 << 0),
98 nir_var_shader_out = (1 << 1),
99 nir_var_global = (1 << 2),
100 nir_var_local = (1 << 3),
101 nir_var_uniform = (1 << 4),
102 nir_var_shader_storage = (1 << 5),
103 nir_var_system_value = (1 << 6),
104 nir_var_shared = (1 << 8),
105 nir_var_all = ~0,
106 } nir_variable_mode;
107
108 /**
109 * Rounding modes.
110 */
111 typedef enum {
112 nir_rounding_mode_undef = 0,
113 nir_rounding_mode_rtne = 1, /* round to nearest even */
114 nir_rounding_mode_ru = 2, /* round up */
115 nir_rounding_mode_rd = 3, /* round down */
116 nir_rounding_mode_rtz = 4, /* round towards zero */
117 } nir_rounding_mode;
118
119 typedef union {
120 float f32[NIR_MAX_VEC_COMPONENTS];
121 double f64[NIR_MAX_VEC_COMPONENTS];
122 int8_t i8[NIR_MAX_VEC_COMPONENTS];
123 uint8_t u8[NIR_MAX_VEC_COMPONENTS];
124 int16_t i16[NIR_MAX_VEC_COMPONENTS];
125 uint16_t u16[NIR_MAX_VEC_COMPONENTS];
126 int32_t i32[NIR_MAX_VEC_COMPONENTS];
127 uint32_t u32[NIR_MAX_VEC_COMPONENTS];
128 int64_t i64[NIR_MAX_VEC_COMPONENTS];
129 uint64_t u64[NIR_MAX_VEC_COMPONENTS];
130 } nir_const_value;
131
132 typedef struct nir_constant {
133 /**
134 * Value of the constant.
135 *
136 * The field used to back the values supplied by the constant is determined
137 * by the type associated with the \c nir_variable. Constants may be
138 * scalars, vectors, or matrices.
139 */
140 nir_const_value values[NIR_MAX_VEC_COMPONENTS];
141
142 /* we could get this from the var->type but makes clone *much* easier to
143 * not have to care about the type.
144 */
145 unsigned num_elements;
146
147 /* Array elements / Structure Fields */
148 struct nir_constant **elements;
149 } nir_constant;
150
151 /**
152 * \brief Layout qualifiers for gl_FragDepth.
153 *
154 * The AMD/ARB_conservative_depth extensions allow gl_FragDepth to be redeclared
155 * with a layout qualifier.
156 */
157 typedef enum {
158 nir_depth_layout_none, /**< No depth layout is specified. */
159 nir_depth_layout_any,
160 nir_depth_layout_greater,
161 nir_depth_layout_less,
162 nir_depth_layout_unchanged
163 } nir_depth_layout;
164
165 /**
166 * Enum keeping track of how a variable was declared.
167 */
168 typedef enum {
169 /**
170 * Normal declaration.
171 */
172 nir_var_declared_normally = 0,
173
174 /**
175 * Variable is implicitly generated by the compiler and should not be
176 * visible via the API.
177 */
178 nir_var_hidden,
179 } nir_var_declaration_type;
180
181 /**
182 * Either a uniform, global variable, shader input, or shader output. Based on
183 * ir_variable - it should be easy to translate between the two.
184 */
185
186 typedef struct nir_variable {
187 struct exec_node node;
188
189 /**
190 * Declared type of the variable
191 */
192 const struct glsl_type *type;
193
194 /**
195 * Declared name of the variable
196 */
197 char *name;
198
199 struct nir_variable_data {
200 /**
201 * Storage class of the variable.
202 *
203 * \sa nir_variable_mode
204 */
205 nir_variable_mode mode;
206
207 /**
208 * Is the variable read-only?
209 *
210 * This is set for variables declared as \c const, shader inputs,
211 * and uniforms.
212 */
213 unsigned read_only:1;
214 unsigned centroid:1;
215 unsigned sample:1;
216 unsigned patch:1;
217 unsigned invariant:1;
218
219 /**
220 * When separate shader programs are enabled, only input/outputs between
221 * the stages of a multi-stage separate program can be safely removed
222 * from the shader interface. Other input/outputs must remains active.
223 *
224 * This is also used to make sure xfb varyings that are unused by the
225 * fragment shader are not removed.
226 */
227 unsigned always_active_io:1;
228
229 /**
230 * Interpolation mode for shader inputs / outputs
231 *
232 * \sa glsl_interp_mode
233 */
234 unsigned interpolation:2;
235
236 /**
237 * \name ARB_fragment_coord_conventions
238 * @{
239 */
240 unsigned origin_upper_left:1;
241 unsigned pixel_center_integer:1;
242 /*@}*/
243
244 /**
245 * If non-zero, then this variable may be packed along with other variables
246 * into a single varying slot, so this offset should be applied when
247 * accessing components. For example, an offset of 1 means that the x
248 * component of this variable is actually stored in component y of the
249 * location specified by \c location.
250 */
251 unsigned location_frac:2;
252
253 /**
254 * If true, this variable represents an array of scalars that should
255 * be tightly packed. In other words, consecutive array elements
256 * should be stored one component apart, rather than one slot apart.
257 */
258 unsigned compact:1;
259
260 /**
261 * Whether this is a fragment shader output implicitly initialized with
262 * the previous contents of the specified render target at the
263 * framebuffer location corresponding to this shader invocation.
264 */
265 unsigned fb_fetch_output:1;
266
267 /**
268 * Non-zero if this variable is considered bindless as defined by
269 * ARB_bindless_texture.
270 */
271 unsigned bindless:1;
272
273 /**
274 * Was an explicit binding set in the shader?
275 */
276 unsigned explicit_binding:1;
277
278 /**
279 * Was a transfer feedback buffer set in the shader?
280 */
281 unsigned explicit_xfb_buffer:1;
282
283 /**
284 * Was a transfer feedback stride set in the shader?
285 */
286 unsigned explicit_xfb_stride:1;
287
288 /**
289 * Was an explicit offset set in the shader?
290 */
291 unsigned explicit_offset:1;
292
293 /**
294 * \brief Layout qualifier for gl_FragDepth.
295 *
296 * This is not equal to \c ir_depth_layout_none if and only if this
297 * variable is \c gl_FragDepth and a layout qualifier is specified.
298 */
299 nir_depth_layout depth_layout;
300
301 /**
302 * Storage location of the base of this variable
303 *
304 * The precise meaning of this field depends on the nature of the variable.
305 *
306 * - Vertex shader input: one of the values from \c gl_vert_attrib.
307 * - Vertex shader output: one of the values from \c gl_varying_slot.
308 * - Geometry shader input: one of the values from \c gl_varying_slot.
309 * - Geometry shader output: one of the values from \c gl_varying_slot.
310 * - Fragment shader input: one of the values from \c gl_varying_slot.
311 * - Fragment shader output: one of the values from \c gl_frag_result.
312 * - Uniforms: Per-stage uniform slot number for default uniform block.
313 * - Uniforms: Index within the uniform block definition for UBO members.
314 * - Non-UBO Uniforms: uniform slot number.
315 * - Other: This field is not currently used.
316 *
317 * If the variable is a uniform, shader input, or shader output, and the
318 * slot has not been assigned, the value will be -1.
319 */
320 int location;
321
322 /**
323 * The actual location of the variable in the IR. Only valid for inputs
324 * and outputs.
325 */
326 unsigned int driver_location;
327
328 /**
329 * Vertex stream output identifier.
330 *
331 * For packed outputs, bit 31 is set and bits [2*i+1,2*i] indicate the
332 * stream of the i-th component.
333 */
334 unsigned stream;
335
336 /**
337 * output index for dual source blending.
338 */
339 int index;
340
341 /**
342 * Descriptor set binding for sampler or UBO.
343 */
344 int descriptor_set;
345
346 /**
347 * Initial binding point for a sampler or UBO.
348 *
349 * For array types, this represents the binding point for the first element.
350 */
351 int binding;
352
353 /**
354 * Location an atomic counter or transform feedback is stored at.
355 */
356 unsigned offset;
357
358 /**
359 * Transform feedback buffer.
360 */
361 unsigned xfb_buffer;
362
363 /**
364 * Transform feedback stride.
365 */
366 unsigned xfb_stride;
367
368 /**
369 * How the variable was declared. See nir_var_declaration_type.
370 *
371 * This is used to detect variables generated by the compiler, so should
372 * not be visible via the API.
373 */
374 unsigned how_declared:2;
375
376 /**
377 * ARB_shader_image_load_store qualifiers.
378 */
379 struct {
380 enum gl_access_qualifier access;
381
382 /** Image internal format if specified explicitly, otherwise GL_NONE. */
383 GLenum format;
384 } image;
385 } data;
386
387 /**
388 * Built-in state that backs this uniform
389 *
390 * Once set at variable creation, \c state_slots must remain invariant.
391 * This is because, ideally, this array would be shared by all clones of
392 * this variable in the IR tree. In other words, we'd really like for it
393 * to be a fly-weight.
394 *
395 * If the variable is not a uniform, \c num_state_slots will be zero and
396 * \c state_slots will be \c NULL.
397 */
398 /*@{*/
399 unsigned num_state_slots; /**< Number of state slots used */
400 nir_state_slot *state_slots; /**< State descriptors. */
401 /*@}*/
402
403 /**
404 * Constant expression assigned in the initializer of the variable
405 *
406 * This field should only be used temporarily by creators of NIR shaders
407 * and then lower_constant_initializers can be used to get rid of them.
408 * Most of the rest of NIR ignores this field or asserts that it's NULL.
409 */
410 nir_constant *constant_initializer;
411
412 /**
413 * For variables that are in an interface block or are an instance of an
414 * interface block, this is the \c GLSL_TYPE_INTERFACE type for that block.
415 *
416 * \sa ir_variable::location
417 */
418 const struct glsl_type *interface_type;
419
420 /**
421 * Description of per-member data for per-member struct variables
422 *
423 * This is used for variables which are actually an amalgamation of
424 * multiple entities such as a struct of built-in values or a struct of
425 * inputs each with their own layout specifier. This is only allowed on
426 * variables with a struct or array of array of struct type.
427 */
428 unsigned num_members;
429 struct nir_variable_data *members;
430 } nir_variable;
431
432 #define nir_foreach_variable(var, var_list) \
433 foreach_list_typed(nir_variable, var, node, var_list)
434
435 #define nir_foreach_variable_safe(var, var_list) \
436 foreach_list_typed_safe(nir_variable, var, node, var_list)
437
438 static inline bool
439 nir_variable_is_global(const nir_variable *var)
440 {
441 return var->data.mode != nir_var_local;
442 }
443
444 typedef struct nir_register {
445 struct exec_node node;
446
447 unsigned num_components; /** < number of vector components */
448 unsigned num_array_elems; /** < size of array (0 for no array) */
449
450 /* The bit-size of each channel; must be one of 8, 16, 32, or 64 */
451 uint8_t bit_size;
452
453 /** generic register index. */
454 unsigned index;
455
456 /** only for debug purposes, can be NULL */
457 const char *name;
458
459 /** whether this register is local (per-function) or global (per-shader) */
460 bool is_global;
461
462 /**
463 * If this flag is set to true, then accessing channels >= num_components
464 * is well-defined, and simply spills over to the next array element. This
465 * is useful for backends that can do per-component accessing, in
466 * particular scalar backends. By setting this flag and making
467 * num_components equal to 1, structures can be packed tightly into
468 * registers and then registers can be accessed per-component to get to
469 * each structure member, even if it crosses vec4 boundaries.
470 */
471 bool is_packed;
472
473 /** set of nir_srcs where this register is used (read from) */
474 struct list_head uses;
475
476 /** set of nir_dests where this register is defined (written to) */
477 struct list_head defs;
478
479 /** set of nir_ifs where this register is used as a condition */
480 struct list_head if_uses;
481 } nir_register;
482
483 #define nir_foreach_register(reg, reg_list) \
484 foreach_list_typed(nir_register, reg, node, reg_list)
485 #define nir_foreach_register_safe(reg, reg_list) \
486 foreach_list_typed_safe(nir_register, reg, node, reg_list)
487
488 typedef enum {
489 nir_instr_type_alu,
490 nir_instr_type_deref,
491 nir_instr_type_call,
492 nir_instr_type_tex,
493 nir_instr_type_intrinsic,
494 nir_instr_type_load_const,
495 nir_instr_type_jump,
496 nir_instr_type_ssa_undef,
497 nir_instr_type_phi,
498 nir_instr_type_parallel_copy,
499 } nir_instr_type;
500
501 typedef struct nir_instr {
502 struct exec_node node;
503 nir_instr_type type;
504 struct nir_block *block;
505
506 /** generic instruction index. */
507 unsigned index;
508
509 /* A temporary for optimization and analysis passes to use for storing
510 * flags. For instance, DCE uses this to store the "dead/live" info.
511 */
512 uint8_t pass_flags;
513 } nir_instr;
514
515 static inline nir_instr *
516 nir_instr_next(nir_instr *instr)
517 {
518 struct exec_node *next = exec_node_get_next(&instr->node);
519 if (exec_node_is_tail_sentinel(next))
520 return NULL;
521 else
522 return exec_node_data(nir_instr, next, node);
523 }
524
525 static inline nir_instr *
526 nir_instr_prev(nir_instr *instr)
527 {
528 struct exec_node *prev = exec_node_get_prev(&instr->node);
529 if (exec_node_is_head_sentinel(prev))
530 return NULL;
531 else
532 return exec_node_data(nir_instr, prev, node);
533 }
534
535 static inline bool
536 nir_instr_is_first(const nir_instr *instr)
537 {
538 return exec_node_is_head_sentinel(exec_node_get_prev_const(&instr->node));
539 }
540
541 static inline bool
542 nir_instr_is_last(const nir_instr *instr)
543 {
544 return exec_node_is_tail_sentinel(exec_node_get_next_const(&instr->node));
545 }
546
547 typedef struct nir_ssa_def {
548 /** for debugging only, can be NULL */
549 const char* name;
550
551 /** generic SSA definition index. */
552 unsigned index;
553
554 /** Index into the live_in and live_out bitfields */
555 unsigned live_index;
556
557 /** Instruction which produces this SSA value. */
558 nir_instr *parent_instr;
559
560 /** set of nir_instrs where this register is used (read from) */
561 struct list_head uses;
562
563 /** set of nir_ifs where this register is used as a condition */
564 struct list_head if_uses;
565
566 uint8_t num_components;
567
568 /* The bit-size of each channel; must be one of 8, 16, 32, or 64 */
569 uint8_t bit_size;
570 } nir_ssa_def;
571
572 struct nir_src;
573
574 typedef struct {
575 nir_register *reg;
576 struct nir_src *indirect; /** < NULL for no indirect offset */
577 unsigned base_offset;
578
579 /* TODO use-def chain goes here */
580 } nir_reg_src;
581
582 typedef struct {
583 nir_instr *parent_instr;
584 struct list_head def_link;
585
586 nir_register *reg;
587 struct nir_src *indirect; /** < NULL for no indirect offset */
588 unsigned base_offset;
589
590 /* TODO def-use chain goes here */
591 } nir_reg_dest;
592
593 struct nir_if;
594
595 typedef struct nir_src {
596 union {
597 /** Instruction that consumes this value as a source. */
598 nir_instr *parent_instr;
599 struct nir_if *parent_if;
600 };
601
602 struct list_head use_link;
603
604 union {
605 nir_reg_src reg;
606 nir_ssa_def *ssa;
607 };
608
609 bool is_ssa;
610 } nir_src;
611
612 static inline nir_src
613 nir_src_init(void)
614 {
615 nir_src src = { { NULL } };
616 return src;
617 }
618
619 #define NIR_SRC_INIT nir_src_init()
620
621 #define nir_foreach_use(src, reg_or_ssa_def) \
622 list_for_each_entry(nir_src, src, &(reg_or_ssa_def)->uses, use_link)
623
624 #define nir_foreach_use_safe(src, reg_or_ssa_def) \
625 list_for_each_entry_safe(nir_src, src, &(reg_or_ssa_def)->uses, use_link)
626
627 #define nir_foreach_if_use(src, reg_or_ssa_def) \
628 list_for_each_entry(nir_src, src, &(reg_or_ssa_def)->if_uses, use_link)
629
630 #define nir_foreach_if_use_safe(src, reg_or_ssa_def) \
631 list_for_each_entry_safe(nir_src, src, &(reg_or_ssa_def)->if_uses, use_link)
632
633 typedef struct {
634 union {
635 nir_reg_dest reg;
636 nir_ssa_def ssa;
637 };
638
639 bool is_ssa;
640 } nir_dest;
641
642 static inline nir_dest
643 nir_dest_init(void)
644 {
645 nir_dest dest = { { { NULL } } };
646 return dest;
647 }
648
649 #define NIR_DEST_INIT nir_dest_init()
650
651 #define nir_foreach_def(dest, reg) \
652 list_for_each_entry(nir_dest, dest, &(reg)->defs, reg.def_link)
653
654 #define nir_foreach_def_safe(dest, reg) \
655 list_for_each_entry_safe(nir_dest, dest, &(reg)->defs, reg.def_link)
656
657 static inline nir_src
658 nir_src_for_ssa(nir_ssa_def *def)
659 {
660 nir_src src = NIR_SRC_INIT;
661
662 src.is_ssa = true;
663 src.ssa = def;
664
665 return src;
666 }
667
668 static inline nir_src
669 nir_src_for_reg(nir_register *reg)
670 {
671 nir_src src = NIR_SRC_INIT;
672
673 src.is_ssa = false;
674 src.reg.reg = reg;
675 src.reg.indirect = NULL;
676 src.reg.base_offset = 0;
677
678 return src;
679 }
680
681 static inline nir_dest
682 nir_dest_for_reg(nir_register *reg)
683 {
684 nir_dest dest = NIR_DEST_INIT;
685
686 dest.reg.reg = reg;
687
688 return dest;
689 }
690
691 static inline unsigned
692 nir_src_bit_size(nir_src src)
693 {
694 return src.is_ssa ? src.ssa->bit_size : src.reg.reg->bit_size;
695 }
696
697 static inline unsigned
698 nir_src_num_components(nir_src src)
699 {
700 return src.is_ssa ? src.ssa->num_components : src.reg.reg->num_components;
701 }
702
703 static inline bool
704 nir_src_is_const(nir_src src)
705 {
706 return src.is_ssa &&
707 src.ssa->parent_instr->type == nir_instr_type_load_const;
708 }
709
710 int64_t nir_src_as_int(nir_src src);
711 uint64_t nir_src_as_uint(nir_src src);
712 bool nir_src_as_bool(nir_src src);
713 double nir_src_as_float(nir_src src);
714 int64_t nir_src_comp_as_int(nir_src src, unsigned component);
715 uint64_t nir_src_comp_as_uint(nir_src src, unsigned component);
716 bool nir_src_comp_as_bool(nir_src src, unsigned component);
717 double nir_src_comp_as_float(nir_src src, unsigned component);
718
719 static inline unsigned
720 nir_dest_bit_size(nir_dest dest)
721 {
722 return dest.is_ssa ? dest.ssa.bit_size : dest.reg.reg->bit_size;
723 }
724
725 static inline unsigned
726 nir_dest_num_components(nir_dest dest)
727 {
728 return dest.is_ssa ? dest.ssa.num_components : dest.reg.reg->num_components;
729 }
730
731 void nir_src_copy(nir_src *dest, const nir_src *src, void *instr_or_if);
732 void nir_dest_copy(nir_dest *dest, const nir_dest *src, nir_instr *instr);
733
734 typedef struct {
735 nir_src src;
736
737 /**
738 * \name input modifiers
739 */
740 /*@{*/
741 /**
742 * For inputs interpreted as floating point, flips the sign bit. For
743 * inputs interpreted as integers, performs the two's complement negation.
744 */
745 bool negate;
746
747 /**
748 * Clears the sign bit for floating point values, and computes the integer
749 * absolute value for integers. Note that the negate modifier acts after
750 * the absolute value modifier, therefore if both are set then all inputs
751 * will become negative.
752 */
753 bool abs;
754 /*@}*/
755
756 /**
757 * For each input component, says which component of the register it is
758 * chosen from. Note that which elements of the swizzle are used and which
759 * are ignored are based on the write mask for most opcodes - for example,
760 * a statement like "foo.xzw = bar.zyx" would have a writemask of 1101b and
761 * a swizzle of {2, x, 1, 0} where x means "don't care."
762 */
763 uint8_t swizzle[NIR_MAX_VEC_COMPONENTS];
764 } nir_alu_src;
765
766 typedef struct {
767 nir_dest dest;
768
769 /**
770 * \name saturate output modifier
771 *
772 * Only valid for opcodes that output floating-point numbers. Clamps the
773 * output to between 0.0 and 1.0 inclusive.
774 */
775
776 bool saturate;
777
778 unsigned write_mask : NIR_MAX_VEC_COMPONENTS; /* ignored if dest.is_ssa is true */
779 } nir_alu_dest;
780
781 typedef enum {
782 nir_type_invalid = 0, /* Not a valid type */
783 nir_type_float,
784 nir_type_int,
785 nir_type_uint,
786 nir_type_bool,
787 nir_type_bool32 = 32 | nir_type_bool,
788 nir_type_int8 = 8 | nir_type_int,
789 nir_type_int16 = 16 | nir_type_int,
790 nir_type_int32 = 32 | nir_type_int,
791 nir_type_int64 = 64 | nir_type_int,
792 nir_type_uint8 = 8 | nir_type_uint,
793 nir_type_uint16 = 16 | nir_type_uint,
794 nir_type_uint32 = 32 | nir_type_uint,
795 nir_type_uint64 = 64 | nir_type_uint,
796 nir_type_float16 = 16 | nir_type_float,
797 nir_type_float32 = 32 | nir_type_float,
798 nir_type_float64 = 64 | nir_type_float,
799 } nir_alu_type;
800
801 #define NIR_ALU_TYPE_SIZE_MASK 0xfffffff8
802 #define NIR_ALU_TYPE_BASE_TYPE_MASK 0x00000007
803
804 static inline unsigned
805 nir_alu_type_get_type_size(nir_alu_type type)
806 {
807 return type & NIR_ALU_TYPE_SIZE_MASK;
808 }
809
810 static inline unsigned
811 nir_alu_type_get_base_type(nir_alu_type type)
812 {
813 return type & NIR_ALU_TYPE_BASE_TYPE_MASK;
814 }
815
816 static inline nir_alu_type
817 nir_get_nir_type_for_glsl_base_type(enum glsl_base_type base_type)
818 {
819 switch (base_type) {
820 case GLSL_TYPE_BOOL:
821 return nir_type_bool32;
822 break;
823 case GLSL_TYPE_UINT:
824 return nir_type_uint32;
825 break;
826 case GLSL_TYPE_INT:
827 return nir_type_int32;
828 break;
829 case GLSL_TYPE_UINT16:
830 return nir_type_uint16;
831 break;
832 case GLSL_TYPE_INT16:
833 return nir_type_int16;
834 break;
835 case GLSL_TYPE_UINT8:
836 return nir_type_uint8;
837 case GLSL_TYPE_INT8:
838 return nir_type_int8;
839 case GLSL_TYPE_UINT64:
840 return nir_type_uint64;
841 break;
842 case GLSL_TYPE_INT64:
843 return nir_type_int64;
844 break;
845 case GLSL_TYPE_FLOAT:
846 return nir_type_float32;
847 break;
848 case GLSL_TYPE_FLOAT16:
849 return nir_type_float16;
850 break;
851 case GLSL_TYPE_DOUBLE:
852 return nir_type_float64;
853 break;
854 default:
855 unreachable("unknown type");
856 }
857 }
858
859 static inline nir_alu_type
860 nir_get_nir_type_for_glsl_type(const struct glsl_type *type)
861 {
862 return nir_get_nir_type_for_glsl_base_type(glsl_get_base_type(type));
863 }
864
865 nir_op nir_type_conversion_op(nir_alu_type src, nir_alu_type dst,
866 nir_rounding_mode rnd);
867
868 typedef enum {
869 NIR_OP_IS_COMMUTATIVE = (1 << 0),
870 NIR_OP_IS_ASSOCIATIVE = (1 << 1),
871 } nir_op_algebraic_property;
872
873 typedef struct {
874 const char *name;
875
876 unsigned num_inputs;
877
878 /**
879 * The number of components in the output
880 *
881 * If non-zero, this is the size of the output and input sizes are
882 * explicitly given; swizzle and writemask are still in effect, but if
883 * the output component is masked out, then the input component may
884 * still be in use.
885 *
886 * If zero, the opcode acts in the standard, per-component manner; the
887 * operation is performed on each component (except the ones that are
888 * masked out) with the input being taken from the input swizzle for
889 * that component.
890 *
891 * The size of some of the inputs may be given (i.e. non-zero) even
892 * though output_size is zero; in that case, the inputs with a zero
893 * size act per-component, while the inputs with non-zero size don't.
894 */
895 unsigned output_size;
896
897 /**
898 * The type of vector that the instruction outputs. Note that the
899 * staurate modifier is only allowed on outputs with the float type.
900 */
901
902 nir_alu_type output_type;
903
904 /**
905 * The number of components in each input
906 */
907 unsigned input_sizes[NIR_MAX_VEC_COMPONENTS];
908
909 /**
910 * The type of vector that each input takes. Note that negate and
911 * absolute value are only allowed on inputs with int or float type and
912 * behave differently on the two.
913 */
914 nir_alu_type input_types[NIR_MAX_VEC_COMPONENTS];
915
916 nir_op_algebraic_property algebraic_properties;
917 } nir_op_info;
918
919 extern const nir_op_info nir_op_infos[nir_num_opcodes];
920
921 typedef struct nir_alu_instr {
922 nir_instr instr;
923 nir_op op;
924
925 /** Indicates that this ALU instruction generates an exact value
926 *
927 * This is kind of a mixture of GLSL "precise" and "invariant" and not
928 * really equivalent to either. This indicates that the value generated by
929 * this operation is high-precision and any code transformations that touch
930 * it must ensure that the resulting value is bit-for-bit identical to the
931 * original.
932 */
933 bool exact;
934
935 nir_alu_dest dest;
936 nir_alu_src src[];
937 } nir_alu_instr;
938
939 void nir_alu_src_copy(nir_alu_src *dest, const nir_alu_src *src,
940 nir_alu_instr *instr);
941 void nir_alu_dest_copy(nir_alu_dest *dest, const nir_alu_dest *src,
942 nir_alu_instr *instr);
943
944 /* is this source channel used? */
945 static inline bool
946 nir_alu_instr_channel_used(const nir_alu_instr *instr, unsigned src,
947 unsigned channel)
948 {
949 if (nir_op_infos[instr->op].input_sizes[src] > 0)
950 return channel < nir_op_infos[instr->op].input_sizes[src];
951
952 return (instr->dest.write_mask >> channel) & 1;
953 }
954
955 /*
956 * For instructions whose destinations are SSA, get the number of channels
957 * used for a source
958 */
959 static inline unsigned
960 nir_ssa_alu_instr_src_components(const nir_alu_instr *instr, unsigned src)
961 {
962 assert(instr->dest.dest.is_ssa);
963
964 if (nir_op_infos[instr->op].input_sizes[src] > 0)
965 return nir_op_infos[instr->op].input_sizes[src];
966
967 return instr->dest.dest.ssa.num_components;
968 }
969
970 bool nir_alu_srcs_equal(const nir_alu_instr *alu1, const nir_alu_instr *alu2,
971 unsigned src1, unsigned src2);
972
973 typedef enum {
974 nir_deref_type_var,
975 nir_deref_type_array,
976 nir_deref_type_array_wildcard,
977 nir_deref_type_struct,
978 nir_deref_type_cast,
979 } nir_deref_type;
980
981 typedef struct {
982 nir_instr instr;
983
984 /** The type of this deref instruction */
985 nir_deref_type deref_type;
986
987 /** The mode of the underlying variable */
988 nir_variable_mode mode;
989
990 /** The dereferenced type of the resulting pointer value */
991 const struct glsl_type *type;
992
993 union {
994 /** Variable being dereferenced if deref_type is a deref_var */
995 nir_variable *var;
996
997 /** Parent deref if deref_type is not deref_var */
998 nir_src parent;
999 };
1000
1001 /** Additional deref parameters */
1002 union {
1003 struct {
1004 nir_src index;
1005 } arr;
1006
1007 struct {
1008 unsigned index;
1009 } strct;
1010 };
1011
1012 /** Destination to store the resulting "pointer" */
1013 nir_dest dest;
1014 } nir_deref_instr;
1015
1016 NIR_DEFINE_CAST(nir_instr_as_deref, nir_instr, nir_deref_instr, instr,
1017 type, nir_instr_type_deref)
1018
1019 static inline nir_deref_instr *
1020 nir_src_as_deref(nir_src src)
1021 {
1022 if (!src.is_ssa)
1023 return NULL;
1024
1025 if (src.ssa->parent_instr->type != nir_instr_type_deref)
1026 return NULL;
1027
1028 return nir_instr_as_deref(src.ssa->parent_instr);
1029 }
1030
1031 static inline nir_deref_instr *
1032 nir_deref_instr_parent(const nir_deref_instr *instr)
1033 {
1034 if (instr->deref_type == nir_deref_type_var)
1035 return NULL;
1036 else
1037 return nir_src_as_deref(instr->parent);
1038 }
1039
1040 static inline nir_variable *
1041 nir_deref_instr_get_variable(const nir_deref_instr *instr)
1042 {
1043 while (instr->deref_type != nir_deref_type_var) {
1044 if (instr->deref_type == nir_deref_type_cast)
1045 return NULL;
1046
1047 instr = nir_deref_instr_parent(instr);
1048 }
1049
1050 return instr->var;
1051 }
1052
1053 bool nir_deref_instr_has_indirect(nir_deref_instr *instr);
1054
1055 bool nir_deref_instr_remove_if_unused(nir_deref_instr *instr);
1056
1057 typedef struct {
1058 nir_instr instr;
1059
1060 struct nir_function *callee;
1061
1062 unsigned num_params;
1063 nir_src params[];
1064 } nir_call_instr;
1065
1066 #include "nir_intrinsics.h"
1067
1068 #define NIR_INTRINSIC_MAX_CONST_INDEX 4
1069
1070 /** Represents an intrinsic
1071 *
1072 * An intrinsic is an instruction type for handling things that are
1073 * more-or-less regular operations but don't just consume and produce SSA
1074 * values like ALU operations do. Intrinsics are not for things that have
1075 * special semantic meaning such as phi nodes and parallel copies.
1076 * Examples of intrinsics include variable load/store operations, system
1077 * value loads, and the like. Even though texturing more-or-less falls
1078 * under this category, texturing is its own instruction type because
1079 * trying to represent texturing with intrinsics would lead to a
1080 * combinatorial explosion of intrinsic opcodes.
1081 *
1082 * By having a single instruction type for handling a lot of different
1083 * cases, optimization passes can look for intrinsics and, for the most
1084 * part, completely ignore them. Each intrinsic type also has a few
1085 * possible flags that govern whether or not they can be reordered or
1086 * eliminated. That way passes like dead code elimination can still work
1087 * on intrisics without understanding the meaning of each.
1088 *
1089 * Each intrinsic has some number of constant indices, some number of
1090 * variables, and some number of sources. What these sources, variables,
1091 * and indices mean depends on the intrinsic and is documented with the
1092 * intrinsic declaration in nir_intrinsics.h. Intrinsics and texture
1093 * instructions are the only types of instruction that can operate on
1094 * variables.
1095 */
1096 typedef struct {
1097 nir_instr instr;
1098
1099 nir_intrinsic_op intrinsic;
1100
1101 nir_dest dest;
1102
1103 /** number of components if this is a vectorized intrinsic
1104 *
1105 * Similarly to ALU operations, some intrinsics are vectorized.
1106 * An intrinsic is vectorized if nir_intrinsic_infos.dest_components == 0.
1107 * For vectorized intrinsics, the num_components field specifies the
1108 * number of destination components and the number of source components
1109 * for all sources with nir_intrinsic_infos.src_components[i] == 0.
1110 */
1111 uint8_t num_components;
1112
1113 int const_index[NIR_INTRINSIC_MAX_CONST_INDEX];
1114
1115 nir_src src[];
1116 } nir_intrinsic_instr;
1117
1118 static inline nir_variable *
1119 nir_intrinsic_get_var(nir_intrinsic_instr *intrin, unsigned i)
1120 {
1121 return nir_deref_instr_get_variable(nir_src_as_deref(intrin->src[i]));
1122 }
1123
1124 /**
1125 * \name NIR intrinsics semantic flags
1126 *
1127 * information about what the compiler can do with the intrinsics.
1128 *
1129 * \sa nir_intrinsic_info::flags
1130 */
1131 typedef enum {
1132 /**
1133 * whether the intrinsic can be safely eliminated if none of its output
1134 * value is not being used.
1135 */
1136 NIR_INTRINSIC_CAN_ELIMINATE = (1 << 0),
1137
1138 /**
1139 * Whether the intrinsic can be reordered with respect to any other
1140 * intrinsic, i.e. whether the only reordering dependencies of the
1141 * intrinsic are due to the register reads/writes.
1142 */
1143 NIR_INTRINSIC_CAN_REORDER = (1 << 1),
1144 } nir_intrinsic_semantic_flag;
1145
1146 /**
1147 * \name NIR intrinsics const-index flag
1148 *
1149 * Indicates the usage of a const_index slot.
1150 *
1151 * \sa nir_intrinsic_info::index_map
1152 */
1153 typedef enum {
1154 /**
1155 * Generally instructions that take a offset src argument, can encode
1156 * a constant 'base' value which is added to the offset.
1157 */
1158 NIR_INTRINSIC_BASE = 1,
1159
1160 /**
1161 * For store instructions, a writemask for the store.
1162 */
1163 NIR_INTRINSIC_WRMASK = 2,
1164
1165 /**
1166 * The stream-id for GS emit_vertex/end_primitive intrinsics.
1167 */
1168 NIR_INTRINSIC_STREAM_ID = 3,
1169
1170 /**
1171 * The clip-plane id for load_user_clip_plane intrinsic.
1172 */
1173 NIR_INTRINSIC_UCP_ID = 4,
1174
1175 /**
1176 * The amount of data, starting from BASE, that this instruction may
1177 * access. This is used to provide bounds if the offset is not constant.
1178 */
1179 NIR_INTRINSIC_RANGE = 5,
1180
1181 /**
1182 * The Vulkan descriptor set for vulkan_resource_index intrinsic.
1183 */
1184 NIR_INTRINSIC_DESC_SET = 6,
1185
1186 /**
1187 * The Vulkan descriptor set binding for vulkan_resource_index intrinsic.
1188 */
1189 NIR_INTRINSIC_BINDING = 7,
1190
1191 /**
1192 * Component offset.
1193 */
1194 NIR_INTRINSIC_COMPONENT = 8,
1195
1196 /**
1197 * Interpolation mode (only meaningful for FS inputs).
1198 */
1199 NIR_INTRINSIC_INTERP_MODE = 9,
1200
1201 /**
1202 * A binary nir_op to use when performing a reduction or scan operation
1203 */
1204 NIR_INTRINSIC_REDUCTION_OP = 10,
1205
1206 /**
1207 * Cluster size for reduction operations
1208 */
1209 NIR_INTRINSIC_CLUSTER_SIZE = 11,
1210
1211 /**
1212 * Parameter index for a load_param intrinsic
1213 */
1214 NIR_INTRINSIC_PARAM_IDX = 12,
1215
1216 /**
1217 * Image dimensionality for image intrinsics
1218 *
1219 * One of GLSL_SAMPLER_DIM_*
1220 */
1221 NIR_INTRINSIC_IMAGE_DIM = 13,
1222
1223 /**
1224 * Non-zero if we are accessing an array image
1225 */
1226 NIR_INTRINSIC_IMAGE_ARRAY = 14,
1227
1228 /**
1229 * Image format for image intrinsics
1230 */
1231 NIR_INTRINSIC_FORMAT = 15,
1232
1233 /**
1234 * Access qualifiers for image intrinsics
1235 */
1236 NIR_INTRINSIC_ACCESS = 16,
1237
1238 NIR_INTRINSIC_NUM_INDEX_FLAGS,
1239
1240 } nir_intrinsic_index_flag;
1241
1242 #define NIR_INTRINSIC_MAX_INPUTS 5
1243
1244 typedef struct {
1245 const char *name;
1246
1247 unsigned num_srcs; /** < number of register/SSA inputs */
1248
1249 /** number of components of each input register
1250 *
1251 * If this value is 0, the number of components is given by the
1252 * num_components field of nir_intrinsic_instr.
1253 */
1254 unsigned src_components[NIR_INTRINSIC_MAX_INPUTS];
1255
1256 bool has_dest;
1257
1258 /** number of components of the output register
1259 *
1260 * If this value is 0, the number of components is given by the
1261 * num_components field of nir_intrinsic_instr.
1262 */
1263 unsigned dest_components;
1264
1265 /** the number of constant indices used by the intrinsic */
1266 unsigned num_indices;
1267
1268 /** indicates the usage of intr->const_index[n] */
1269 unsigned index_map[NIR_INTRINSIC_NUM_INDEX_FLAGS];
1270
1271 /** semantic flags for calls to this intrinsic */
1272 nir_intrinsic_semantic_flag flags;
1273 } nir_intrinsic_info;
1274
1275 extern const nir_intrinsic_info nir_intrinsic_infos[nir_num_intrinsics];
1276
1277 static inline unsigned
1278 nir_intrinsic_src_components(nir_intrinsic_instr *intr, unsigned srcn)
1279 {
1280 const nir_intrinsic_info *info = &nir_intrinsic_infos[intr->intrinsic];
1281 assert(srcn < info->num_srcs);
1282 if (info->src_components[srcn])
1283 return info->src_components[srcn];
1284 else
1285 return intr->num_components;
1286 }
1287
1288 static inline unsigned
1289 nir_intrinsic_dest_components(nir_intrinsic_instr *intr)
1290 {
1291 const nir_intrinsic_info *info = &nir_intrinsic_infos[intr->intrinsic];
1292 if (!info->has_dest)
1293 return 0;
1294 else if (info->dest_components)
1295 return info->dest_components;
1296 else
1297 return intr->num_components;
1298 }
1299
1300 #define INTRINSIC_IDX_ACCESSORS(name, flag, type) \
1301 static inline type \
1302 nir_intrinsic_##name(const nir_intrinsic_instr *instr) \
1303 { \
1304 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic]; \
1305 assert(info->index_map[NIR_INTRINSIC_##flag] > 0); \
1306 return (type)instr->const_index[info->index_map[NIR_INTRINSIC_##flag] - 1]; \
1307 } \
1308 static inline void \
1309 nir_intrinsic_set_##name(nir_intrinsic_instr *instr, type val) \
1310 { \
1311 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic]; \
1312 assert(info->index_map[NIR_INTRINSIC_##flag] > 0); \
1313 instr->const_index[info->index_map[NIR_INTRINSIC_##flag] - 1] = val; \
1314 }
1315
1316 INTRINSIC_IDX_ACCESSORS(write_mask, WRMASK, unsigned)
1317 INTRINSIC_IDX_ACCESSORS(base, BASE, int)
1318 INTRINSIC_IDX_ACCESSORS(stream_id, STREAM_ID, unsigned)
1319 INTRINSIC_IDX_ACCESSORS(ucp_id, UCP_ID, unsigned)
1320 INTRINSIC_IDX_ACCESSORS(range, RANGE, unsigned)
1321 INTRINSIC_IDX_ACCESSORS(desc_set, DESC_SET, unsigned)
1322 INTRINSIC_IDX_ACCESSORS(binding, BINDING, unsigned)
1323 INTRINSIC_IDX_ACCESSORS(component, COMPONENT, unsigned)
1324 INTRINSIC_IDX_ACCESSORS(interp_mode, INTERP_MODE, unsigned)
1325 INTRINSIC_IDX_ACCESSORS(reduction_op, REDUCTION_OP, unsigned)
1326 INTRINSIC_IDX_ACCESSORS(cluster_size, CLUSTER_SIZE, unsigned)
1327 INTRINSIC_IDX_ACCESSORS(param_idx, PARAM_IDX, unsigned)
1328 INTRINSIC_IDX_ACCESSORS(image_dim, IMAGE_DIM, enum glsl_sampler_dim)
1329 INTRINSIC_IDX_ACCESSORS(image_array, IMAGE_ARRAY, bool)
1330 INTRINSIC_IDX_ACCESSORS(access, ACCESS, enum gl_access_qualifier)
1331 INTRINSIC_IDX_ACCESSORS(format, FORMAT, unsigned)
1332
1333 /**
1334 * \group texture information
1335 *
1336 * This gives semantic information about textures which is useful to the
1337 * frontend, the backend, and lowering passes, but not the optimizer.
1338 */
1339
1340 typedef enum {
1341 nir_tex_src_coord,
1342 nir_tex_src_projector,
1343 nir_tex_src_comparator, /* shadow comparator */
1344 nir_tex_src_offset,
1345 nir_tex_src_bias,
1346 nir_tex_src_lod,
1347 nir_tex_src_ms_index, /* MSAA sample index */
1348 nir_tex_src_ms_mcs, /* MSAA compression value */
1349 nir_tex_src_ddx,
1350 nir_tex_src_ddy,
1351 nir_tex_src_texture_deref, /* < deref pointing to the texture */
1352 nir_tex_src_sampler_deref, /* < deref pointing to the sampler */
1353 nir_tex_src_texture_offset, /* < dynamically uniform indirect offset */
1354 nir_tex_src_sampler_offset, /* < dynamically uniform indirect offset */
1355 nir_tex_src_plane, /* < selects plane for planar textures */
1356 nir_num_tex_src_types
1357 } nir_tex_src_type;
1358
1359 typedef struct {
1360 nir_src src;
1361 nir_tex_src_type src_type;
1362 } nir_tex_src;
1363
1364 typedef enum {
1365 nir_texop_tex, /**< Regular texture look-up */
1366 nir_texop_txb, /**< Texture look-up with LOD bias */
1367 nir_texop_txl, /**< Texture look-up with explicit LOD */
1368 nir_texop_txd, /**< Texture look-up with partial derivatives */
1369 nir_texop_txf, /**< Texel fetch with explicit LOD */
1370 nir_texop_txf_ms, /**< Multisample texture fetch */
1371 nir_texop_txf_ms_mcs, /**< Multisample compression value fetch */
1372 nir_texop_txs, /**< Texture size */
1373 nir_texop_lod, /**< Texture lod query */
1374 nir_texop_tg4, /**< Texture gather */
1375 nir_texop_query_levels, /**< Texture levels query */
1376 nir_texop_texture_samples, /**< Texture samples query */
1377 nir_texop_samples_identical, /**< Query whether all samples are definitely
1378 * identical.
1379 */
1380 } nir_texop;
1381
1382 typedef struct {
1383 nir_instr instr;
1384
1385 enum glsl_sampler_dim sampler_dim;
1386 nir_alu_type dest_type;
1387
1388 nir_texop op;
1389 nir_dest dest;
1390 nir_tex_src *src;
1391 unsigned num_srcs, coord_components;
1392 bool is_array, is_shadow;
1393
1394 /**
1395 * If is_shadow is true, whether this is the old-style shadow that outputs 4
1396 * components or the new-style shadow that outputs 1 component.
1397 */
1398 bool is_new_style_shadow;
1399
1400 /* gather component selector */
1401 unsigned component : 2;
1402
1403 /** The texture index
1404 *
1405 * If this texture instruction has a nir_tex_src_texture_offset source,
1406 * then the texture index is given by texture_index + texture_offset.
1407 */
1408 unsigned texture_index;
1409
1410 /** The size of the texture array or 0 if it's not an array */
1411 unsigned texture_array_size;
1412
1413 /** The sampler index
1414 *
1415 * The following operations do not require a sampler and, as such, this
1416 * field should be ignored:
1417 * - nir_texop_txf
1418 * - nir_texop_txf_ms
1419 * - nir_texop_txs
1420 * - nir_texop_lod
1421 * - nir_texop_query_levels
1422 * - nir_texop_texture_samples
1423 * - nir_texop_samples_identical
1424 *
1425 * If this texture instruction has a nir_tex_src_sampler_offset source,
1426 * then the sampler index is given by sampler_index + sampler_offset.
1427 */
1428 unsigned sampler_index;
1429 } nir_tex_instr;
1430
1431 static inline unsigned
1432 nir_tex_instr_dest_size(const nir_tex_instr *instr)
1433 {
1434 switch (instr->op) {
1435 case nir_texop_txs: {
1436 unsigned ret;
1437 switch (instr->sampler_dim) {
1438 case GLSL_SAMPLER_DIM_1D:
1439 case GLSL_SAMPLER_DIM_BUF:
1440 ret = 1;
1441 break;
1442 case GLSL_SAMPLER_DIM_2D:
1443 case GLSL_SAMPLER_DIM_CUBE:
1444 case GLSL_SAMPLER_DIM_MS:
1445 case GLSL_SAMPLER_DIM_RECT:
1446 case GLSL_SAMPLER_DIM_EXTERNAL:
1447 case GLSL_SAMPLER_DIM_SUBPASS:
1448 ret = 2;
1449 break;
1450 case GLSL_SAMPLER_DIM_3D:
1451 ret = 3;
1452 break;
1453 default:
1454 unreachable("not reached");
1455 }
1456 if (instr->is_array)
1457 ret++;
1458 return ret;
1459 }
1460
1461 case nir_texop_lod:
1462 return 2;
1463
1464 case nir_texop_texture_samples:
1465 case nir_texop_query_levels:
1466 case nir_texop_samples_identical:
1467 return 1;
1468
1469 default:
1470 if (instr->is_shadow && instr->is_new_style_shadow)
1471 return 1;
1472
1473 return 4;
1474 }
1475 }
1476
1477 /* Returns true if this texture operation queries something about the texture
1478 * rather than actually sampling it.
1479 */
1480 static inline bool
1481 nir_tex_instr_is_query(const nir_tex_instr *instr)
1482 {
1483 switch (instr->op) {
1484 case nir_texop_txs:
1485 case nir_texop_lod:
1486 case nir_texop_texture_samples:
1487 case nir_texop_query_levels:
1488 case nir_texop_txf_ms_mcs:
1489 return true;
1490 case nir_texop_tex:
1491 case nir_texop_txb:
1492 case nir_texop_txl:
1493 case nir_texop_txd:
1494 case nir_texop_txf:
1495 case nir_texop_txf_ms:
1496 case nir_texop_tg4:
1497 return false;
1498 default:
1499 unreachable("Invalid texture opcode");
1500 }
1501 }
1502
1503 static inline bool
1504 nir_alu_instr_is_comparison(const nir_alu_instr *instr)
1505 {
1506 switch (instr->op) {
1507 case nir_op_flt:
1508 case nir_op_fge:
1509 case nir_op_feq:
1510 case nir_op_fne:
1511 case nir_op_ilt:
1512 case nir_op_ult:
1513 case nir_op_ige:
1514 case nir_op_uge:
1515 case nir_op_ieq:
1516 case nir_op_ine:
1517 case nir_op_i2b:
1518 case nir_op_f2b:
1519 case nir_op_inot:
1520 case nir_op_fnot:
1521 return true;
1522 default:
1523 return false;
1524 }
1525 }
1526
1527 static inline nir_alu_type
1528 nir_tex_instr_src_type(const nir_tex_instr *instr, unsigned src)
1529 {
1530 switch (instr->src[src].src_type) {
1531 case nir_tex_src_coord:
1532 switch (instr->op) {
1533 case nir_texop_txf:
1534 case nir_texop_txf_ms:
1535 case nir_texop_txf_ms_mcs:
1536 case nir_texop_samples_identical:
1537 return nir_type_int;
1538
1539 default:
1540 return nir_type_float;
1541 }
1542
1543 case nir_tex_src_lod:
1544 switch (instr->op) {
1545 case nir_texop_txs:
1546 case nir_texop_txf:
1547 return nir_type_int;
1548
1549 default:
1550 return nir_type_float;
1551 }
1552
1553 case nir_tex_src_projector:
1554 case nir_tex_src_comparator:
1555 case nir_tex_src_bias:
1556 case nir_tex_src_ddx:
1557 case nir_tex_src_ddy:
1558 return nir_type_float;
1559
1560 case nir_tex_src_offset:
1561 case nir_tex_src_ms_index:
1562 case nir_tex_src_texture_offset:
1563 case nir_tex_src_sampler_offset:
1564 return nir_type_int;
1565
1566 default:
1567 unreachable("Invalid texture source type");
1568 }
1569 }
1570
1571 static inline unsigned
1572 nir_tex_instr_src_size(const nir_tex_instr *instr, unsigned src)
1573 {
1574 if (instr->src[src].src_type == nir_tex_src_coord)
1575 return instr->coord_components;
1576
1577 /* The MCS value is expected to be a vec4 returned by a txf_ms_mcs */
1578 if (instr->src[src].src_type == nir_tex_src_ms_mcs)
1579 return 4;
1580
1581 if (instr->src[src].src_type == nir_tex_src_ddx ||
1582 instr->src[src].src_type == nir_tex_src_ddy) {
1583 if (instr->is_array)
1584 return instr->coord_components - 1;
1585 else
1586 return instr->coord_components;
1587 }
1588
1589 /* Usual APIs don't allow cube + offset, but we allow it, with 2 coords for
1590 * the offset, since a cube maps to a single face.
1591 */
1592 if (instr->src[src].src_type == nir_tex_src_offset) {
1593 if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE)
1594 return 2;
1595 else if (instr->is_array)
1596 return instr->coord_components - 1;
1597 else
1598 return instr->coord_components;
1599 }
1600
1601 return 1;
1602 }
1603
1604 static inline int
1605 nir_tex_instr_src_index(const nir_tex_instr *instr, nir_tex_src_type type)
1606 {
1607 for (unsigned i = 0; i < instr->num_srcs; i++)
1608 if (instr->src[i].src_type == type)
1609 return (int) i;
1610
1611 return -1;
1612 }
1613
1614 void nir_tex_instr_add_src(nir_tex_instr *tex,
1615 nir_tex_src_type src_type,
1616 nir_src src);
1617
1618 void nir_tex_instr_remove_src(nir_tex_instr *tex, unsigned src_idx);
1619
1620 typedef struct {
1621 nir_instr instr;
1622
1623 nir_const_value value;
1624
1625 nir_ssa_def def;
1626 } nir_load_const_instr;
1627
1628 typedef enum {
1629 nir_jump_return,
1630 nir_jump_break,
1631 nir_jump_continue,
1632 } nir_jump_type;
1633
1634 typedef struct {
1635 nir_instr instr;
1636 nir_jump_type type;
1637 } nir_jump_instr;
1638
1639 /* creates a new SSA variable in an undefined state */
1640
1641 typedef struct {
1642 nir_instr instr;
1643 nir_ssa_def def;
1644 } nir_ssa_undef_instr;
1645
1646 typedef struct {
1647 struct exec_node node;
1648
1649 /* The predecessor block corresponding to this source */
1650 struct nir_block *pred;
1651
1652 nir_src src;
1653 } nir_phi_src;
1654
1655 #define nir_foreach_phi_src(phi_src, phi) \
1656 foreach_list_typed(nir_phi_src, phi_src, node, &(phi)->srcs)
1657 #define nir_foreach_phi_src_safe(phi_src, phi) \
1658 foreach_list_typed_safe(nir_phi_src, phi_src, node, &(phi)->srcs)
1659
1660 typedef struct {
1661 nir_instr instr;
1662
1663 struct exec_list srcs; /** < list of nir_phi_src */
1664
1665 nir_dest dest;
1666 } nir_phi_instr;
1667
1668 typedef struct {
1669 struct exec_node node;
1670 nir_src src;
1671 nir_dest dest;
1672 } nir_parallel_copy_entry;
1673
1674 #define nir_foreach_parallel_copy_entry(entry, pcopy) \
1675 foreach_list_typed(nir_parallel_copy_entry, entry, node, &(pcopy)->entries)
1676
1677 typedef struct {
1678 nir_instr instr;
1679
1680 /* A list of nir_parallel_copy_entrys. The sources of all of the
1681 * entries are copied to the corresponding destinations "in parallel".
1682 * In other words, if we have two entries: a -> b and b -> a, the values
1683 * get swapped.
1684 */
1685 struct exec_list entries;
1686 } nir_parallel_copy_instr;
1687
1688 NIR_DEFINE_CAST(nir_instr_as_alu, nir_instr, nir_alu_instr, instr,
1689 type, nir_instr_type_alu)
1690 NIR_DEFINE_CAST(nir_instr_as_call, nir_instr, nir_call_instr, instr,
1691 type, nir_instr_type_call)
1692 NIR_DEFINE_CAST(nir_instr_as_jump, nir_instr, nir_jump_instr, instr,
1693 type, nir_instr_type_jump)
1694 NIR_DEFINE_CAST(nir_instr_as_tex, nir_instr, nir_tex_instr, instr,
1695 type, nir_instr_type_tex)
1696 NIR_DEFINE_CAST(nir_instr_as_intrinsic, nir_instr, nir_intrinsic_instr, instr,
1697 type, nir_instr_type_intrinsic)
1698 NIR_DEFINE_CAST(nir_instr_as_load_const, nir_instr, nir_load_const_instr, instr,
1699 type, nir_instr_type_load_const)
1700 NIR_DEFINE_CAST(nir_instr_as_ssa_undef, nir_instr, nir_ssa_undef_instr, instr,
1701 type, nir_instr_type_ssa_undef)
1702 NIR_DEFINE_CAST(nir_instr_as_phi, nir_instr, nir_phi_instr, instr,
1703 type, nir_instr_type_phi)
1704 NIR_DEFINE_CAST(nir_instr_as_parallel_copy, nir_instr,
1705 nir_parallel_copy_instr, instr,
1706 type, nir_instr_type_parallel_copy)
1707
1708 /*
1709 * Control flow
1710 *
1711 * Control flow consists of a tree of control flow nodes, which include
1712 * if-statements and loops. The leaves of the tree are basic blocks, lists of
1713 * instructions that always run start-to-finish. Each basic block also keeps
1714 * track of its successors (blocks which may run immediately after the current
1715 * block) and predecessors (blocks which could have run immediately before the
1716 * current block). Each function also has a start block and an end block which
1717 * all return statements point to (which is always empty). Together, all the
1718 * blocks with their predecessors and successors make up the control flow
1719 * graph (CFG) of the function. There are helpers that modify the tree of
1720 * control flow nodes while modifying the CFG appropriately; these should be
1721 * used instead of modifying the tree directly.
1722 */
1723
1724 typedef enum {
1725 nir_cf_node_block,
1726 nir_cf_node_if,
1727 nir_cf_node_loop,
1728 nir_cf_node_function
1729 } nir_cf_node_type;
1730
1731 typedef struct nir_cf_node {
1732 struct exec_node node;
1733 nir_cf_node_type type;
1734 struct nir_cf_node *parent;
1735 } nir_cf_node;
1736
1737 typedef struct nir_block {
1738 nir_cf_node cf_node;
1739
1740 struct exec_list instr_list; /** < list of nir_instr */
1741
1742 /** generic block index; generated by nir_index_blocks */
1743 unsigned index;
1744
1745 /*
1746 * Each block can only have up to 2 successors, so we put them in a simple
1747 * array - no need for anything more complicated.
1748 */
1749 struct nir_block *successors[2];
1750
1751 /* Set of nir_block predecessors in the CFG */
1752 struct set *predecessors;
1753
1754 /*
1755 * this node's immediate dominator in the dominance tree - set to NULL for
1756 * the start block.
1757 */
1758 struct nir_block *imm_dom;
1759
1760 /* This node's children in the dominance tree */
1761 unsigned num_dom_children;
1762 struct nir_block **dom_children;
1763
1764 /* Set of nir_blocks on the dominance frontier of this block */
1765 struct set *dom_frontier;
1766
1767 /*
1768 * These two indices have the property that dom_{pre,post}_index for each
1769 * child of this block in the dominance tree will always be between
1770 * dom_pre_index and dom_post_index for this block, which makes testing if
1771 * a given block is dominated by another block an O(1) operation.
1772 */
1773 unsigned dom_pre_index, dom_post_index;
1774
1775 /* live in and out for this block; used for liveness analysis */
1776 BITSET_WORD *live_in;
1777 BITSET_WORD *live_out;
1778 } nir_block;
1779
1780 static inline nir_instr *
1781 nir_block_first_instr(nir_block *block)
1782 {
1783 struct exec_node *head = exec_list_get_head(&block->instr_list);
1784 return exec_node_data(nir_instr, head, node);
1785 }
1786
1787 static inline nir_instr *
1788 nir_block_last_instr(nir_block *block)
1789 {
1790 struct exec_node *tail = exec_list_get_tail(&block->instr_list);
1791 return exec_node_data(nir_instr, tail, node);
1792 }
1793
1794 static inline bool
1795 nir_block_ends_in_jump(nir_block *block)
1796 {
1797 return !exec_list_is_empty(&block->instr_list) &&
1798 nir_block_last_instr(block)->type == nir_instr_type_jump;
1799 }
1800
1801 #define nir_foreach_instr(instr, block) \
1802 foreach_list_typed(nir_instr, instr, node, &(block)->instr_list)
1803 #define nir_foreach_instr_reverse(instr, block) \
1804 foreach_list_typed_reverse(nir_instr, instr, node, &(block)->instr_list)
1805 #define nir_foreach_instr_safe(instr, block) \
1806 foreach_list_typed_safe(nir_instr, instr, node, &(block)->instr_list)
1807 #define nir_foreach_instr_reverse_safe(instr, block) \
1808 foreach_list_typed_reverse_safe(nir_instr, instr, node, &(block)->instr_list)
1809
1810 typedef struct nir_if {
1811 nir_cf_node cf_node;
1812 nir_src condition;
1813
1814 struct exec_list then_list; /** < list of nir_cf_node */
1815 struct exec_list else_list; /** < list of nir_cf_node */
1816 } nir_if;
1817
1818 typedef struct {
1819 nir_if *nif;
1820
1821 nir_instr *conditional_instr;
1822
1823 nir_block *break_block;
1824 nir_block *continue_from_block;
1825
1826 bool continue_from_then;
1827
1828 struct list_head loop_terminator_link;
1829 } nir_loop_terminator;
1830
1831 typedef struct {
1832 /* Number of instructions in the loop */
1833 unsigned num_instructions;
1834
1835 /* How many times the loop is run (if known) */
1836 unsigned trip_count;
1837 bool is_trip_count_known;
1838
1839 /* Unroll the loop regardless of its size */
1840 bool force_unroll;
1841
1842 /* Does the loop contain complex loop terminators, continues or other
1843 * complex behaviours? If this is true we can't rely on
1844 * loop_terminator_list to be complete or accurate.
1845 */
1846 bool complex_loop;
1847
1848 nir_loop_terminator *limiting_terminator;
1849
1850 /* A list of loop_terminators terminating this loop. */
1851 struct list_head loop_terminator_list;
1852 } nir_loop_info;
1853
1854 typedef struct {
1855 nir_cf_node cf_node;
1856
1857 struct exec_list body; /** < list of nir_cf_node */
1858
1859 nir_loop_info *info;
1860 } nir_loop;
1861
1862 /**
1863 * Various bits of metadata that can may be created or required by
1864 * optimization and analysis passes
1865 */
1866 typedef enum {
1867 nir_metadata_none = 0x0,
1868 nir_metadata_block_index = 0x1,
1869 nir_metadata_dominance = 0x2,
1870 nir_metadata_live_ssa_defs = 0x4,
1871 nir_metadata_not_properly_reset = 0x8,
1872 nir_metadata_loop_analysis = 0x10,
1873 } nir_metadata;
1874
1875 typedef struct {
1876 nir_cf_node cf_node;
1877
1878 /** pointer to the function of which this is an implementation */
1879 struct nir_function *function;
1880
1881 struct exec_list body; /** < list of nir_cf_node */
1882
1883 nir_block *end_block;
1884
1885 /** list for all local variables in the function */
1886 struct exec_list locals;
1887
1888 /** list of local registers in the function */
1889 struct exec_list registers;
1890
1891 /** next available local register index */
1892 unsigned reg_alloc;
1893
1894 /** next available SSA value index */
1895 unsigned ssa_alloc;
1896
1897 /* total number of basic blocks, only valid when block_index_dirty = false */
1898 unsigned num_blocks;
1899
1900 nir_metadata valid_metadata;
1901 } nir_function_impl;
1902
1903 ATTRIBUTE_RETURNS_NONNULL static inline nir_block *
1904 nir_start_block(nir_function_impl *impl)
1905 {
1906 return (nir_block *) impl->body.head_sentinel.next;
1907 }
1908
1909 ATTRIBUTE_RETURNS_NONNULL static inline nir_block *
1910 nir_impl_last_block(nir_function_impl *impl)
1911 {
1912 return (nir_block *) impl->body.tail_sentinel.prev;
1913 }
1914
1915 static inline nir_cf_node *
1916 nir_cf_node_next(nir_cf_node *node)
1917 {
1918 struct exec_node *next = exec_node_get_next(&node->node);
1919 if (exec_node_is_tail_sentinel(next))
1920 return NULL;
1921 else
1922 return exec_node_data(nir_cf_node, next, node);
1923 }
1924
1925 static inline nir_cf_node *
1926 nir_cf_node_prev(nir_cf_node *node)
1927 {
1928 struct exec_node *prev = exec_node_get_prev(&node->node);
1929 if (exec_node_is_head_sentinel(prev))
1930 return NULL;
1931 else
1932 return exec_node_data(nir_cf_node, prev, node);
1933 }
1934
1935 static inline bool
1936 nir_cf_node_is_first(const nir_cf_node *node)
1937 {
1938 return exec_node_is_head_sentinel(node->node.prev);
1939 }
1940
1941 static inline bool
1942 nir_cf_node_is_last(const nir_cf_node *node)
1943 {
1944 return exec_node_is_tail_sentinel(node->node.next);
1945 }
1946
1947 NIR_DEFINE_CAST(nir_cf_node_as_block, nir_cf_node, nir_block, cf_node,
1948 type, nir_cf_node_block)
1949 NIR_DEFINE_CAST(nir_cf_node_as_if, nir_cf_node, nir_if, cf_node,
1950 type, nir_cf_node_if)
1951 NIR_DEFINE_CAST(nir_cf_node_as_loop, nir_cf_node, nir_loop, cf_node,
1952 type, nir_cf_node_loop)
1953 NIR_DEFINE_CAST(nir_cf_node_as_function, nir_cf_node,
1954 nir_function_impl, cf_node, type, nir_cf_node_function)
1955
1956 static inline nir_block *
1957 nir_if_first_then_block(nir_if *if_stmt)
1958 {
1959 struct exec_node *head = exec_list_get_head(&if_stmt->then_list);
1960 return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
1961 }
1962
1963 static inline nir_block *
1964 nir_if_last_then_block(nir_if *if_stmt)
1965 {
1966 struct exec_node *tail = exec_list_get_tail(&if_stmt->then_list);
1967 return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
1968 }
1969
1970 static inline nir_block *
1971 nir_if_first_else_block(nir_if *if_stmt)
1972 {
1973 struct exec_node *head = exec_list_get_head(&if_stmt->else_list);
1974 return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
1975 }
1976
1977 static inline nir_block *
1978 nir_if_last_else_block(nir_if *if_stmt)
1979 {
1980 struct exec_node *tail = exec_list_get_tail(&if_stmt->else_list);
1981 return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
1982 }
1983
1984 static inline nir_block *
1985 nir_loop_first_block(nir_loop *loop)
1986 {
1987 struct exec_node *head = exec_list_get_head(&loop->body);
1988 return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
1989 }
1990
1991 static inline nir_block *
1992 nir_loop_last_block(nir_loop *loop)
1993 {
1994 struct exec_node *tail = exec_list_get_tail(&loop->body);
1995 return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
1996 }
1997
1998 typedef struct {
1999 uint8_t num_components;
2000 uint8_t bit_size;
2001 } nir_parameter;
2002
2003 typedef struct nir_function {
2004 struct exec_node node;
2005
2006 const char *name;
2007 struct nir_shader *shader;
2008
2009 unsigned num_params;
2010 nir_parameter *params;
2011
2012 /** The implementation of this function.
2013 *
2014 * If the function is only declared and not implemented, this is NULL.
2015 */
2016 nir_function_impl *impl;
2017 } nir_function;
2018
2019 typedef struct nir_shader_compiler_options {
2020 bool lower_fdiv;
2021 bool lower_ffma;
2022 bool fuse_ffma;
2023 bool lower_flrp32;
2024 /** Lowers flrp when it does not support doubles */
2025 bool lower_flrp64;
2026 bool lower_fpow;
2027 bool lower_fsat;
2028 bool lower_fsqrt;
2029 bool lower_fmod32;
2030 bool lower_fmod64;
2031 /** Lowers ibitfield_extract/ubitfield_extract to ibfe/ubfe. */
2032 bool lower_bitfield_extract;
2033 /** Lowers ibitfield_extract/ubitfield_extract to bfm, compares, shifts. */
2034 bool lower_bitfield_extract_to_shifts;
2035 /** Lowers bitfield_insert to bfi/bfm */
2036 bool lower_bitfield_insert;
2037 /** Lowers bitfield_insert to bfm, compares, and shifts. */
2038 bool lower_bitfield_insert_to_shifts;
2039 /** Lowers bitfield_reverse to shifts. */
2040 bool lower_bitfield_reverse;
2041 /** Lowers bit_count to shifts. */
2042 bool lower_bit_count;
2043 /** Lowers bfm to shifts and subtracts. */
2044 bool lower_bfm;
2045 /** Lowers ifind_msb to compare and ufind_msb */
2046 bool lower_ifind_msb;
2047 /** Lowers find_lsb to ufind_msb and logic ops */
2048 bool lower_find_lsb;
2049 bool lower_uadd_carry;
2050 bool lower_usub_borrow;
2051 /** Lowers imul_high/umul_high to 16-bit multiplies and carry operations. */
2052 bool lower_mul_high;
2053 /** lowers fneg and ineg to fsub and isub. */
2054 bool lower_negate;
2055 /** lowers fsub and isub to fadd+fneg and iadd+ineg. */
2056 bool lower_sub;
2057
2058 /* lower {slt,sge,seq,sne} to {flt,fge,feq,fne} + b2f: */
2059 bool lower_scmp;
2060
2061 /** enables rules to lower idiv by power-of-two: */
2062 bool lower_idiv;
2063
2064 /* lower b2f to iand */
2065 bool lower_b2f;
2066
2067 /* Does the native fdot instruction replicate its result for four
2068 * components? If so, then opt_algebraic_late will turn all fdotN
2069 * instructions into fdot_replicatedN instructions.
2070 */
2071 bool fdot_replicates;
2072
2073 /** lowers ffract to fsub+ffloor: */
2074 bool lower_ffract;
2075
2076 bool lower_ldexp;
2077
2078 bool lower_pack_half_2x16;
2079 bool lower_pack_unorm_2x16;
2080 bool lower_pack_snorm_2x16;
2081 bool lower_pack_unorm_4x8;
2082 bool lower_pack_snorm_4x8;
2083 bool lower_unpack_half_2x16;
2084 bool lower_unpack_unorm_2x16;
2085 bool lower_unpack_snorm_2x16;
2086 bool lower_unpack_unorm_4x8;
2087 bool lower_unpack_snorm_4x8;
2088
2089 bool lower_extract_byte;
2090 bool lower_extract_word;
2091
2092 bool lower_all_io_to_temps;
2093
2094 /**
2095 * Does the driver support real 32-bit integers? (Otherwise, integers
2096 * are simulated by floats.)
2097 */
2098 bool native_integers;
2099
2100 /* Indicates that the driver only has zero-based vertex id */
2101 bool vertex_id_zero_based;
2102
2103 /**
2104 * If enabled, gl_BaseVertex will be lowered as:
2105 * is_indexed_draw (~0/0) & firstvertex
2106 */
2107 bool lower_base_vertex;
2108
2109 /**
2110 * If enabled, gl_HelperInvocation will be lowered as:
2111 *
2112 * !((1 << sample_id) & sample_mask_in))
2113 *
2114 * This depends on some possibly hw implementation details, which may
2115 * not be true for all hw. In particular that the FS is only executed
2116 * for covered samples or for helper invocations. So, do not blindly
2117 * enable this option.
2118 *
2119 * Note: See also issue #22 in ARB_shader_image_load_store
2120 */
2121 bool lower_helper_invocation;
2122
2123 bool lower_cs_local_index_from_id;
2124
2125 bool lower_device_index_to_zero;
2126
2127 /* Set if nir_lower_wpos_ytransform() should also invert gl_PointCoord. */
2128 bool lower_wpos_pntc;
2129
2130 /**
2131 * Should nir_lower_io() create load_interpolated_input intrinsics?
2132 *
2133 * If not, it generates regular load_input intrinsics and interpolation
2134 * information must be inferred from the list of input nir_variables.
2135 */
2136 bool use_interpolated_input_intrinsics;
2137
2138 unsigned max_unroll_iterations;
2139 } nir_shader_compiler_options;
2140
2141 typedef struct nir_shader {
2142 /** list of uniforms (nir_variable) */
2143 struct exec_list uniforms;
2144
2145 /** list of inputs (nir_variable) */
2146 struct exec_list inputs;
2147
2148 /** list of outputs (nir_variable) */
2149 struct exec_list outputs;
2150
2151 /** list of shared compute variables (nir_variable) */
2152 struct exec_list shared;
2153
2154 /** Set of driver-specific options for the shader.
2155 *
2156 * The memory for the options is expected to be kept in a single static
2157 * copy by the driver.
2158 */
2159 const struct nir_shader_compiler_options *options;
2160
2161 /** Various bits of compile-time information about a given shader */
2162 struct shader_info info;
2163
2164 /** list of global variables in the shader (nir_variable) */
2165 struct exec_list globals;
2166
2167 /** list of system value variables in the shader (nir_variable) */
2168 struct exec_list system_values;
2169
2170 struct exec_list functions; /** < list of nir_function */
2171
2172 /** list of global register in the shader */
2173 struct exec_list registers;
2174
2175 /** next available global register index */
2176 unsigned reg_alloc;
2177
2178 /**
2179 * the highest index a load_input_*, load_uniform_*, etc. intrinsic can
2180 * access plus one
2181 */
2182 unsigned num_inputs, num_uniforms, num_outputs, num_shared;
2183
2184 /** Constant data associated with this shader.
2185 *
2186 * Constant data is loaded through load_constant intrinsics. See also
2187 * nir_opt_large_constants.
2188 */
2189 void *constant_data;
2190 unsigned constant_data_size;
2191 } nir_shader;
2192
2193 static inline nir_function_impl *
2194 nir_shader_get_entrypoint(nir_shader *shader)
2195 {
2196 assert(exec_list_length(&shader->functions) == 1);
2197 struct exec_node *func_node = exec_list_get_head(&shader->functions);
2198 nir_function *func = exec_node_data(nir_function, func_node, node);
2199 assert(func->num_params == 0);
2200 assert(func->impl);
2201 return func->impl;
2202 }
2203
2204 #define nir_foreach_function(func, shader) \
2205 foreach_list_typed(nir_function, func, node, &(shader)->functions)
2206
2207 nir_shader *nir_shader_create(void *mem_ctx,
2208 gl_shader_stage stage,
2209 const nir_shader_compiler_options *options,
2210 shader_info *si);
2211
2212 /** creates a register, including assigning it an index and adding it to the list */
2213 nir_register *nir_global_reg_create(nir_shader *shader);
2214
2215 nir_register *nir_local_reg_create(nir_function_impl *impl);
2216
2217 void nir_reg_remove(nir_register *reg);
2218
2219 /** Adds a variable to the appropriate list in nir_shader */
2220 void nir_shader_add_variable(nir_shader *shader, nir_variable *var);
2221
2222 static inline void
2223 nir_function_impl_add_variable(nir_function_impl *impl, nir_variable *var)
2224 {
2225 assert(var->data.mode == nir_var_local);
2226 exec_list_push_tail(&impl->locals, &var->node);
2227 }
2228
2229 /** creates a variable, sets a few defaults, and adds it to the list */
2230 nir_variable *nir_variable_create(nir_shader *shader,
2231 nir_variable_mode mode,
2232 const struct glsl_type *type,
2233 const char *name);
2234 /** creates a local variable and adds it to the list */
2235 nir_variable *nir_local_variable_create(nir_function_impl *impl,
2236 const struct glsl_type *type,
2237 const char *name);
2238
2239 /** creates a function and adds it to the shader's list of functions */
2240 nir_function *nir_function_create(nir_shader *shader, const char *name);
2241
2242 nir_function_impl *nir_function_impl_create(nir_function *func);
2243 /** creates a function_impl that isn't tied to any particular function */
2244 nir_function_impl *nir_function_impl_create_bare(nir_shader *shader);
2245
2246 nir_block *nir_block_create(nir_shader *shader);
2247 nir_if *nir_if_create(nir_shader *shader);
2248 nir_loop *nir_loop_create(nir_shader *shader);
2249
2250 nir_function_impl *nir_cf_node_get_function(nir_cf_node *node);
2251
2252 /** requests that the given pieces of metadata be generated */
2253 void nir_metadata_require(nir_function_impl *impl, nir_metadata required, ...);
2254 /** dirties all but the preserved metadata */
2255 void nir_metadata_preserve(nir_function_impl *impl, nir_metadata preserved);
2256
2257 /** creates an instruction with default swizzle/writemask/etc. with NULL registers */
2258 nir_alu_instr *nir_alu_instr_create(nir_shader *shader, nir_op op);
2259
2260 nir_deref_instr *nir_deref_instr_create(nir_shader *shader,
2261 nir_deref_type deref_type);
2262
2263 nir_jump_instr *nir_jump_instr_create(nir_shader *shader, nir_jump_type type);
2264
2265 nir_load_const_instr *nir_load_const_instr_create(nir_shader *shader,
2266 unsigned num_components,
2267 unsigned bit_size);
2268
2269 nir_intrinsic_instr *nir_intrinsic_instr_create(nir_shader *shader,
2270 nir_intrinsic_op op);
2271
2272 nir_call_instr *nir_call_instr_create(nir_shader *shader,
2273 nir_function *callee);
2274
2275 nir_tex_instr *nir_tex_instr_create(nir_shader *shader, unsigned num_srcs);
2276
2277 nir_phi_instr *nir_phi_instr_create(nir_shader *shader);
2278
2279 nir_parallel_copy_instr *nir_parallel_copy_instr_create(nir_shader *shader);
2280
2281 nir_ssa_undef_instr *nir_ssa_undef_instr_create(nir_shader *shader,
2282 unsigned num_components,
2283 unsigned bit_size);
2284
2285 nir_const_value nir_alu_binop_identity(nir_op binop, unsigned bit_size);
2286
2287 /**
2288 * NIR Cursors and Instruction Insertion API
2289 * @{
2290 *
2291 * A tiny struct representing a point to insert/extract instructions or
2292 * control flow nodes. Helps reduce the combinatorial explosion of possible
2293 * points to insert/extract.
2294 *
2295 * \sa nir_control_flow.h
2296 */
2297 typedef enum {
2298 nir_cursor_before_block,
2299 nir_cursor_after_block,
2300 nir_cursor_before_instr,
2301 nir_cursor_after_instr,
2302 } nir_cursor_option;
2303
2304 typedef struct {
2305 nir_cursor_option option;
2306 union {
2307 nir_block *block;
2308 nir_instr *instr;
2309 };
2310 } nir_cursor;
2311
2312 static inline nir_block *
2313 nir_cursor_current_block(nir_cursor cursor)
2314 {
2315 if (cursor.option == nir_cursor_before_instr ||
2316 cursor.option == nir_cursor_after_instr) {
2317 return cursor.instr->block;
2318 } else {
2319 return cursor.block;
2320 }
2321 }
2322
2323 bool nir_cursors_equal(nir_cursor a, nir_cursor b);
2324
2325 static inline nir_cursor
2326 nir_before_block(nir_block *block)
2327 {
2328 nir_cursor cursor;
2329 cursor.option = nir_cursor_before_block;
2330 cursor.block = block;
2331 return cursor;
2332 }
2333
2334 static inline nir_cursor
2335 nir_after_block(nir_block *block)
2336 {
2337 nir_cursor cursor;
2338 cursor.option = nir_cursor_after_block;
2339 cursor.block = block;
2340 return cursor;
2341 }
2342
2343 static inline nir_cursor
2344 nir_before_instr(nir_instr *instr)
2345 {
2346 nir_cursor cursor;
2347 cursor.option = nir_cursor_before_instr;
2348 cursor.instr = instr;
2349 return cursor;
2350 }
2351
2352 static inline nir_cursor
2353 nir_after_instr(nir_instr *instr)
2354 {
2355 nir_cursor cursor;
2356 cursor.option = nir_cursor_after_instr;
2357 cursor.instr = instr;
2358 return cursor;
2359 }
2360
2361 static inline nir_cursor
2362 nir_after_block_before_jump(nir_block *block)
2363 {
2364 nir_instr *last_instr = nir_block_last_instr(block);
2365 if (last_instr && last_instr->type == nir_instr_type_jump) {
2366 return nir_before_instr(last_instr);
2367 } else {
2368 return nir_after_block(block);
2369 }
2370 }
2371
2372 static inline nir_cursor
2373 nir_before_src(nir_src *src, bool is_if_condition)
2374 {
2375 if (is_if_condition) {
2376 nir_block *prev_block =
2377 nir_cf_node_as_block(nir_cf_node_prev(&src->parent_if->cf_node));
2378 assert(!nir_block_ends_in_jump(prev_block));
2379 return nir_after_block(prev_block);
2380 } else if (src->parent_instr->type == nir_instr_type_phi) {
2381 #ifndef NDEBUG
2382 nir_phi_instr *cond_phi = nir_instr_as_phi(src->parent_instr);
2383 bool found = false;
2384 nir_foreach_phi_src(phi_src, cond_phi) {
2385 if (phi_src->src.ssa == src->ssa) {
2386 found = true;
2387 break;
2388 }
2389 }
2390 assert(found);
2391 #endif
2392 /* The LIST_ENTRY macro is a generic container-of macro, it just happens
2393 * to have a more specific name.
2394 */
2395 nir_phi_src *phi_src = LIST_ENTRY(nir_phi_src, src, src);
2396 return nir_after_block_before_jump(phi_src->pred);
2397 } else {
2398 return nir_before_instr(src->parent_instr);
2399 }
2400 }
2401
2402 static inline nir_cursor
2403 nir_before_cf_node(nir_cf_node *node)
2404 {
2405 if (node->type == nir_cf_node_block)
2406 return nir_before_block(nir_cf_node_as_block(node));
2407
2408 return nir_after_block(nir_cf_node_as_block(nir_cf_node_prev(node)));
2409 }
2410
2411 static inline nir_cursor
2412 nir_after_cf_node(nir_cf_node *node)
2413 {
2414 if (node->type == nir_cf_node_block)
2415 return nir_after_block(nir_cf_node_as_block(node));
2416
2417 return nir_before_block(nir_cf_node_as_block(nir_cf_node_next(node)));
2418 }
2419
2420 static inline nir_cursor
2421 nir_after_phis(nir_block *block)
2422 {
2423 nir_foreach_instr(instr, block) {
2424 if (instr->type != nir_instr_type_phi)
2425 return nir_before_instr(instr);
2426 }
2427 return nir_after_block(block);
2428 }
2429
2430 static inline nir_cursor
2431 nir_after_cf_node_and_phis(nir_cf_node *node)
2432 {
2433 if (node->type == nir_cf_node_block)
2434 return nir_after_block(nir_cf_node_as_block(node));
2435
2436 nir_block *block = nir_cf_node_as_block(nir_cf_node_next(node));
2437
2438 return nir_after_phis(block);
2439 }
2440
2441 static inline nir_cursor
2442 nir_before_cf_list(struct exec_list *cf_list)
2443 {
2444 nir_cf_node *first_node = exec_node_data(nir_cf_node,
2445 exec_list_get_head(cf_list), node);
2446 return nir_before_cf_node(first_node);
2447 }
2448
2449 static inline nir_cursor
2450 nir_after_cf_list(struct exec_list *cf_list)
2451 {
2452 nir_cf_node *last_node = exec_node_data(nir_cf_node,
2453 exec_list_get_tail(cf_list), node);
2454 return nir_after_cf_node(last_node);
2455 }
2456
2457 /**
2458 * Insert a NIR instruction at the given cursor.
2459 *
2460 * Note: This does not update the cursor.
2461 */
2462 void nir_instr_insert(nir_cursor cursor, nir_instr *instr);
2463
2464 static inline void
2465 nir_instr_insert_before(nir_instr *instr, nir_instr *before)
2466 {
2467 nir_instr_insert(nir_before_instr(instr), before);
2468 }
2469
2470 static inline void
2471 nir_instr_insert_after(nir_instr *instr, nir_instr *after)
2472 {
2473 nir_instr_insert(nir_after_instr(instr), after);
2474 }
2475
2476 static inline void
2477 nir_instr_insert_before_block(nir_block *block, nir_instr *before)
2478 {
2479 nir_instr_insert(nir_before_block(block), before);
2480 }
2481
2482 static inline void
2483 nir_instr_insert_after_block(nir_block *block, nir_instr *after)
2484 {
2485 nir_instr_insert(nir_after_block(block), after);
2486 }
2487
2488 static inline void
2489 nir_instr_insert_before_cf(nir_cf_node *node, nir_instr *before)
2490 {
2491 nir_instr_insert(nir_before_cf_node(node), before);
2492 }
2493
2494 static inline void
2495 nir_instr_insert_after_cf(nir_cf_node *node, nir_instr *after)
2496 {
2497 nir_instr_insert(nir_after_cf_node(node), after);
2498 }
2499
2500 static inline void
2501 nir_instr_insert_before_cf_list(struct exec_list *list, nir_instr *before)
2502 {
2503 nir_instr_insert(nir_before_cf_list(list), before);
2504 }
2505
2506 static inline void
2507 nir_instr_insert_after_cf_list(struct exec_list *list, nir_instr *after)
2508 {
2509 nir_instr_insert(nir_after_cf_list(list), after);
2510 }
2511
2512 void nir_instr_remove_v(nir_instr *instr);
2513
2514 static inline nir_cursor
2515 nir_instr_remove(nir_instr *instr)
2516 {
2517 nir_cursor cursor;
2518 nir_instr *prev = nir_instr_prev(instr);
2519 if (prev) {
2520 cursor = nir_after_instr(prev);
2521 } else {
2522 cursor = nir_before_block(instr->block);
2523 }
2524 nir_instr_remove_v(instr);
2525 return cursor;
2526 }
2527
2528 /** @} */
2529
2530 typedef bool (*nir_foreach_ssa_def_cb)(nir_ssa_def *def, void *state);
2531 typedef bool (*nir_foreach_dest_cb)(nir_dest *dest, void *state);
2532 typedef bool (*nir_foreach_src_cb)(nir_src *src, void *state);
2533 bool nir_foreach_ssa_def(nir_instr *instr, nir_foreach_ssa_def_cb cb,
2534 void *state);
2535 bool nir_foreach_dest(nir_instr *instr, nir_foreach_dest_cb cb, void *state);
2536 bool nir_foreach_src(nir_instr *instr, nir_foreach_src_cb cb, void *state);
2537
2538 nir_const_value *nir_src_as_const_value(nir_src src);
2539
2540 static inline struct nir_instr *
2541 nir_src_instr(const struct nir_src *src)
2542 {
2543 return src->is_ssa ? src->ssa->parent_instr : NULL;
2544 }
2545
2546 #define NIR_SRC_AS_(name, c_type, type_enum, cast_macro) \
2547 static inline c_type * \
2548 nir_src_as_ ## name (struct nir_src *src) \
2549 { \
2550 return src->is_ssa && src->ssa->parent_instr->type == type_enum \
2551 ? cast_macro(src->ssa->parent_instr) : NULL; \
2552 } \
2553 static inline const c_type * \
2554 nir_src_as_ ## name ## _const(const struct nir_src *src) \
2555 { \
2556 return src->is_ssa && src->ssa->parent_instr->type == type_enum \
2557 ? cast_macro(src->ssa->parent_instr) : NULL; \
2558 }
2559
2560 NIR_SRC_AS_(alu_instr, nir_alu_instr, nir_instr_type_alu, nir_instr_as_alu)
2561
2562 bool nir_src_is_dynamically_uniform(nir_src src);
2563 bool nir_srcs_equal(nir_src src1, nir_src src2);
2564 void nir_instr_rewrite_src(nir_instr *instr, nir_src *src, nir_src new_src);
2565 void nir_instr_move_src(nir_instr *dest_instr, nir_src *dest, nir_src *src);
2566 void nir_if_rewrite_condition(nir_if *if_stmt, nir_src new_src);
2567 void nir_instr_rewrite_dest(nir_instr *instr, nir_dest *dest,
2568 nir_dest new_dest);
2569
2570 void nir_ssa_dest_init(nir_instr *instr, nir_dest *dest,
2571 unsigned num_components, unsigned bit_size,
2572 const char *name);
2573 void nir_ssa_def_init(nir_instr *instr, nir_ssa_def *def,
2574 unsigned num_components, unsigned bit_size,
2575 const char *name);
2576 static inline void
2577 nir_ssa_dest_init_for_type(nir_instr *instr, nir_dest *dest,
2578 const struct glsl_type *type,
2579 const char *name)
2580 {
2581 assert(glsl_type_is_vector_or_scalar(type));
2582 nir_ssa_dest_init(instr, dest, glsl_get_components(type),
2583 glsl_get_bit_size(type), name);
2584 }
2585 void nir_ssa_def_rewrite_uses(nir_ssa_def *def, nir_src new_src);
2586 void nir_ssa_def_rewrite_uses_after(nir_ssa_def *def, nir_src new_src,
2587 nir_instr *after_me);
2588
2589 nir_component_mask_t nir_ssa_def_components_read(const nir_ssa_def *def);
2590
2591 /*
2592 * finds the next basic block in source-code order, returns NULL if there is
2593 * none
2594 */
2595
2596 nir_block *nir_block_cf_tree_next(nir_block *block);
2597
2598 /* Performs the opposite of nir_block_cf_tree_next() */
2599
2600 nir_block *nir_block_cf_tree_prev(nir_block *block);
2601
2602 /* Gets the first block in a CF node in source-code order */
2603
2604 nir_block *nir_cf_node_cf_tree_first(nir_cf_node *node);
2605
2606 /* Gets the last block in a CF node in source-code order */
2607
2608 nir_block *nir_cf_node_cf_tree_last(nir_cf_node *node);
2609
2610 /* Gets the next block after a CF node in source-code order */
2611
2612 nir_block *nir_cf_node_cf_tree_next(nir_cf_node *node);
2613
2614 /* Macros for loops that visit blocks in source-code order */
2615
2616 #define nir_foreach_block(block, impl) \
2617 for (nir_block *block = nir_start_block(impl); block != NULL; \
2618 block = nir_block_cf_tree_next(block))
2619
2620 #define nir_foreach_block_safe(block, impl) \
2621 for (nir_block *block = nir_start_block(impl), \
2622 *next = nir_block_cf_tree_next(block); \
2623 block != NULL; \
2624 block = next, next = nir_block_cf_tree_next(block))
2625
2626 #define nir_foreach_block_reverse(block, impl) \
2627 for (nir_block *block = nir_impl_last_block(impl); block != NULL; \
2628 block = nir_block_cf_tree_prev(block))
2629
2630 #define nir_foreach_block_reverse_safe(block, impl) \
2631 for (nir_block *block = nir_impl_last_block(impl), \
2632 *prev = nir_block_cf_tree_prev(block); \
2633 block != NULL; \
2634 block = prev, prev = nir_block_cf_tree_prev(block))
2635
2636 #define nir_foreach_block_in_cf_node(block, node) \
2637 for (nir_block *block = nir_cf_node_cf_tree_first(node); \
2638 block != nir_cf_node_cf_tree_next(node); \
2639 block = nir_block_cf_tree_next(block))
2640
2641 /* If the following CF node is an if, this function returns that if.
2642 * Otherwise, it returns NULL.
2643 */
2644 nir_if *nir_block_get_following_if(nir_block *block);
2645
2646 nir_loop *nir_block_get_following_loop(nir_block *block);
2647
2648 void nir_index_local_regs(nir_function_impl *impl);
2649 void nir_index_global_regs(nir_shader *shader);
2650 void nir_index_ssa_defs(nir_function_impl *impl);
2651 unsigned nir_index_instrs(nir_function_impl *impl);
2652
2653 void nir_index_blocks(nir_function_impl *impl);
2654
2655 void nir_print_shader(nir_shader *shader, FILE *fp);
2656 void nir_print_shader_annotated(nir_shader *shader, FILE *fp, struct hash_table *errors);
2657 void nir_print_instr(const nir_instr *instr, FILE *fp);
2658
2659 nir_shader *nir_shader_clone(void *mem_ctx, const nir_shader *s);
2660 nir_function_impl *nir_function_impl_clone(const nir_function_impl *fi);
2661 nir_constant *nir_constant_clone(const nir_constant *c, nir_variable *var);
2662 nir_variable *nir_variable_clone(const nir_variable *c, nir_shader *shader);
2663
2664 nir_shader *nir_shader_serialize_deserialize(void *mem_ctx, nir_shader *s);
2665
2666 #ifndef NDEBUG
2667 void nir_validate_shader(nir_shader *shader);
2668 void nir_metadata_set_validation_flag(nir_shader *shader);
2669 void nir_metadata_check_validation_flag(nir_shader *shader);
2670
2671 static inline bool
2672 should_clone_nir(void)
2673 {
2674 static int should_clone = -1;
2675 if (should_clone < 0)
2676 should_clone = env_var_as_boolean("NIR_TEST_CLONE", false);
2677
2678 return should_clone;
2679 }
2680
2681 static inline bool
2682 should_serialize_deserialize_nir(void)
2683 {
2684 static int test_serialize = -1;
2685 if (test_serialize < 0)
2686 test_serialize = env_var_as_boolean("NIR_TEST_SERIALIZE", false);
2687
2688 return test_serialize;
2689 }
2690
2691 static inline bool
2692 should_print_nir(void)
2693 {
2694 static int should_print = -1;
2695 if (should_print < 0)
2696 should_print = env_var_as_boolean("NIR_PRINT", false);
2697
2698 return should_print;
2699 }
2700 #else
2701 static inline void nir_validate_shader(nir_shader *shader) { (void) shader; }
2702 static inline void nir_metadata_set_validation_flag(nir_shader *shader) { (void) shader; }
2703 static inline void nir_metadata_check_validation_flag(nir_shader *shader) { (void) shader; }
2704 static inline bool should_clone_nir(void) { return false; }
2705 static inline bool should_serialize_deserialize_nir(void) { return false; }
2706 static inline bool should_print_nir(void) { return false; }
2707 #endif /* NDEBUG */
2708
2709 #define _PASS(nir, do_pass) do { \
2710 do_pass \
2711 nir_validate_shader(nir); \
2712 if (should_clone_nir()) { \
2713 nir_shader *clone = nir_shader_clone(ralloc_parent(nir), nir); \
2714 ralloc_free(nir); \
2715 nir = clone; \
2716 } \
2717 if (should_serialize_deserialize_nir()) { \
2718 void *mem_ctx = ralloc_parent(nir); \
2719 nir = nir_shader_serialize_deserialize(mem_ctx, nir); \
2720 } \
2721 } while (0)
2722
2723 #define NIR_PASS(progress, nir, pass, ...) _PASS(nir, \
2724 nir_metadata_set_validation_flag(nir); \
2725 if (should_print_nir()) \
2726 printf("%s\n", #pass); \
2727 if (pass(nir, ##__VA_ARGS__)) { \
2728 progress = true; \
2729 if (should_print_nir()) \
2730 nir_print_shader(nir, stdout); \
2731 nir_metadata_check_validation_flag(nir); \
2732 } \
2733 )
2734
2735 #define NIR_PASS_V(nir, pass, ...) _PASS(nir, \
2736 if (should_print_nir()) \
2737 printf("%s\n", #pass); \
2738 pass(nir, ##__VA_ARGS__); \
2739 if (should_print_nir()) \
2740 nir_print_shader(nir, stdout); \
2741 )
2742
2743 void nir_calc_dominance_impl(nir_function_impl *impl);
2744 void nir_calc_dominance(nir_shader *shader);
2745
2746 nir_block *nir_dominance_lca(nir_block *b1, nir_block *b2);
2747 bool nir_block_dominates(nir_block *parent, nir_block *child);
2748
2749 void nir_dump_dom_tree_impl(nir_function_impl *impl, FILE *fp);
2750 void nir_dump_dom_tree(nir_shader *shader, FILE *fp);
2751
2752 void nir_dump_dom_frontier_impl(nir_function_impl *impl, FILE *fp);
2753 void nir_dump_dom_frontier(nir_shader *shader, FILE *fp);
2754
2755 void nir_dump_cfg_impl(nir_function_impl *impl, FILE *fp);
2756 void nir_dump_cfg(nir_shader *shader, FILE *fp);
2757
2758 int nir_gs_count_vertices(const nir_shader *shader);
2759
2760 bool nir_shrink_vec_array_vars(nir_shader *shader, nir_variable_mode modes);
2761 bool nir_split_array_vars(nir_shader *shader, nir_variable_mode modes);
2762 bool nir_split_var_copies(nir_shader *shader);
2763 bool nir_split_per_member_structs(nir_shader *shader);
2764 bool nir_split_struct_vars(nir_shader *shader, nir_variable_mode modes);
2765
2766 bool nir_lower_returns_impl(nir_function_impl *impl);
2767 bool nir_lower_returns(nir_shader *shader);
2768
2769 bool nir_inline_functions(nir_shader *shader);
2770
2771 bool nir_propagate_invariant(nir_shader *shader);
2772
2773 void nir_lower_var_copy_instr(nir_intrinsic_instr *copy, nir_shader *shader);
2774 void nir_lower_deref_copy_instr(struct nir_builder *b,
2775 nir_intrinsic_instr *copy);
2776 bool nir_lower_var_copies(nir_shader *shader);
2777
2778 void nir_fixup_deref_modes(nir_shader *shader);
2779
2780 bool nir_lower_global_vars_to_local(nir_shader *shader);
2781
2782 bool nir_lower_indirect_derefs(nir_shader *shader, nir_variable_mode modes);
2783
2784 bool nir_lower_locals_to_regs(nir_shader *shader);
2785
2786 void nir_lower_io_to_temporaries(nir_shader *shader,
2787 nir_function_impl *entrypoint,
2788 bool outputs, bool inputs);
2789
2790 void nir_shader_gather_info(nir_shader *shader, nir_function_impl *entrypoint);
2791
2792 void nir_assign_var_locations(struct exec_list *var_list, unsigned *size,
2793 int (*type_size)(const struct glsl_type *));
2794
2795 /* Some helpers to do very simple linking */
2796 bool nir_remove_unused_varyings(nir_shader *producer, nir_shader *consumer);
2797 bool nir_remove_unused_io_vars(nir_shader *shader, struct exec_list *var_list,
2798 uint64_t *used_by_other_stage,
2799 uint64_t *used_by_other_stage_patches);
2800 void nir_compact_varyings(nir_shader *producer, nir_shader *consumer,
2801 bool default_to_smooth_interp);
2802
2803 typedef enum {
2804 /* If set, this forces all non-flat fragment shader inputs to be
2805 * interpolated as if with the "sample" qualifier. This requires
2806 * nir_shader_compiler_options::use_interpolated_input_intrinsics.
2807 */
2808 nir_lower_io_force_sample_interpolation = (1 << 1),
2809 } nir_lower_io_options;
2810 bool nir_lower_io(nir_shader *shader,
2811 nir_variable_mode modes,
2812 int (*type_size)(const struct glsl_type *),
2813 nir_lower_io_options);
2814 nir_src *nir_get_io_offset_src(nir_intrinsic_instr *instr);
2815 nir_src *nir_get_io_vertex_index_src(nir_intrinsic_instr *instr);
2816
2817 bool nir_is_per_vertex_io(const nir_variable *var, gl_shader_stage stage);
2818
2819 bool nir_lower_regs_to_ssa_impl(nir_function_impl *impl);
2820 bool nir_lower_regs_to_ssa(nir_shader *shader);
2821 bool nir_lower_vars_to_ssa(nir_shader *shader);
2822
2823 bool nir_remove_dead_derefs(nir_shader *shader);
2824 bool nir_remove_dead_derefs_impl(nir_function_impl *impl);
2825 bool nir_remove_dead_variables(nir_shader *shader, nir_variable_mode modes);
2826 bool nir_lower_constant_initializers(nir_shader *shader,
2827 nir_variable_mode modes);
2828
2829 bool nir_move_load_const(nir_shader *shader);
2830 bool nir_move_vec_src_uses_to_dest(nir_shader *shader);
2831 bool nir_lower_vec_to_movs(nir_shader *shader);
2832 void nir_lower_alpha_test(nir_shader *shader, enum compare_func func,
2833 bool alpha_to_one);
2834 bool nir_lower_alu(nir_shader *shader);
2835 bool nir_lower_alu_to_scalar(nir_shader *shader);
2836 bool nir_lower_load_const_to_scalar(nir_shader *shader);
2837 bool nir_lower_read_invocation_to_scalar(nir_shader *shader);
2838 bool nir_lower_phis_to_scalar(nir_shader *shader);
2839 void nir_lower_io_arrays_to_elements(nir_shader *producer, nir_shader *consumer);
2840 void nir_lower_io_arrays_to_elements_no_indirects(nir_shader *shader,
2841 bool outputs_only);
2842 void nir_lower_io_to_scalar(nir_shader *shader, nir_variable_mode mask);
2843 void nir_lower_io_to_scalar_early(nir_shader *shader, nir_variable_mode mask);
2844
2845 typedef struct nir_lower_subgroups_options {
2846 uint8_t subgroup_size;
2847 uint8_t ballot_bit_size;
2848 bool lower_to_scalar:1;
2849 bool lower_vote_trivial:1;
2850 bool lower_vote_eq_to_ballot:1;
2851 bool lower_subgroup_masks:1;
2852 bool lower_shuffle:1;
2853 bool lower_shuffle_to_32bit:1;
2854 bool lower_quad:1;
2855 } nir_lower_subgroups_options;
2856
2857 bool nir_lower_subgroups(nir_shader *shader,
2858 const nir_lower_subgroups_options *options);
2859
2860 bool nir_lower_system_values(nir_shader *shader);
2861
2862 typedef struct nir_lower_tex_options {
2863 /**
2864 * bitmask of (1 << GLSL_SAMPLER_DIM_x) to control for which
2865 * sampler types a texture projector is lowered.
2866 */
2867 unsigned lower_txp;
2868
2869 /**
2870 * If true, lower away nir_tex_src_offset for all texelfetch instructions.
2871 */
2872 bool lower_txf_offset;
2873
2874 /**
2875 * If true, lower away nir_tex_src_offset for all rect textures.
2876 */
2877 bool lower_rect_offset;
2878
2879 /**
2880 * If true, lower rect textures to 2D, using txs to fetch the
2881 * texture dimensions and dividing the texture coords by the
2882 * texture dims to normalize.
2883 */
2884 bool lower_rect;
2885
2886 /**
2887 * If true, convert yuv to rgb.
2888 */
2889 unsigned lower_y_uv_external;
2890 unsigned lower_y_u_v_external;
2891 unsigned lower_yx_xuxv_external;
2892 unsigned lower_xy_uxvx_external;
2893
2894 /**
2895 * To emulate certain texture wrap modes, this can be used
2896 * to saturate the specified tex coord to [0.0, 1.0]. The
2897 * bits are according to sampler #, ie. if, for example:
2898 *
2899 * (conf->saturate_s & (1 << n))
2900 *
2901 * is true, then the s coord for sampler n is saturated.
2902 *
2903 * Note that clamping must happen *after* projector lowering
2904 * so any projected texture sample instruction with a clamped
2905 * coordinate gets automatically lowered, regardless of the
2906 * 'lower_txp' setting.
2907 */
2908 unsigned saturate_s;
2909 unsigned saturate_t;
2910 unsigned saturate_r;
2911
2912 /* Bitmask of textures that need swizzling.
2913 *
2914 * If (swizzle_result & (1 << texture_index)), then the swizzle in
2915 * swizzles[texture_index] is applied to the result of the texturing
2916 * operation.
2917 */
2918 unsigned swizzle_result;
2919
2920 /* A swizzle for each texture. Values 0-3 represent x, y, z, or w swizzles
2921 * while 4 and 5 represent 0 and 1 respectively.
2922 */
2923 uint8_t swizzles[32][4];
2924
2925 /**
2926 * Bitmap of textures that need srgb to linear conversion. If
2927 * (lower_srgb & (1 << texture_index)) then the rgb (xyz) components
2928 * of the texture are lowered to linear.
2929 */
2930 unsigned lower_srgb;
2931
2932 /**
2933 * If true, lower nir_texop_txd on cube maps with nir_texop_txl.
2934 */
2935 bool lower_txd_cube_map;
2936
2937 /**
2938 * If true, lower nir_texop_txd on shadow samplers (except cube maps)
2939 * with nir_texop_txl. Notice that cube map shadow samplers are lowered
2940 * with lower_txd_cube_map.
2941 */
2942 bool lower_txd_shadow;
2943
2944 /**
2945 * If true, lower nir_texop_txd on all samplers to a nir_texop_txl.
2946 * Implies lower_txd_cube_map and lower_txd_shadow.
2947 */
2948 bool lower_txd;
2949 } nir_lower_tex_options;
2950
2951 bool nir_lower_tex(nir_shader *shader,
2952 const nir_lower_tex_options *options);
2953
2954 bool nir_lower_idiv(nir_shader *shader);
2955
2956 bool nir_lower_clip_vs(nir_shader *shader, unsigned ucp_enables);
2957 bool nir_lower_clip_fs(nir_shader *shader, unsigned ucp_enables);
2958 bool nir_lower_clip_cull_distance_arrays(nir_shader *nir);
2959
2960 void nir_lower_two_sided_color(nir_shader *shader);
2961
2962 bool nir_lower_clamp_color_outputs(nir_shader *shader);
2963
2964 void nir_lower_passthrough_edgeflags(nir_shader *shader);
2965 bool nir_lower_patch_vertices(nir_shader *nir, unsigned static_count,
2966 const gl_state_index16 *uniform_state_tokens);
2967
2968 typedef struct nir_lower_wpos_ytransform_options {
2969 gl_state_index16 state_tokens[STATE_LENGTH];
2970 bool fs_coord_origin_upper_left :1;
2971 bool fs_coord_origin_lower_left :1;
2972 bool fs_coord_pixel_center_integer :1;
2973 bool fs_coord_pixel_center_half_integer :1;
2974 } nir_lower_wpos_ytransform_options;
2975
2976 bool nir_lower_wpos_ytransform(nir_shader *shader,
2977 const nir_lower_wpos_ytransform_options *options);
2978 bool nir_lower_wpos_center(nir_shader *shader, const bool for_sample_shading);
2979
2980 typedef struct nir_lower_drawpixels_options {
2981 gl_state_index16 texcoord_state_tokens[STATE_LENGTH];
2982 gl_state_index16 scale_state_tokens[STATE_LENGTH];
2983 gl_state_index16 bias_state_tokens[STATE_LENGTH];
2984 unsigned drawpix_sampler;
2985 unsigned pixelmap_sampler;
2986 bool pixel_maps :1;
2987 bool scale_and_bias :1;
2988 } nir_lower_drawpixels_options;
2989
2990 void nir_lower_drawpixels(nir_shader *shader,
2991 const nir_lower_drawpixels_options *options);
2992
2993 typedef struct nir_lower_bitmap_options {
2994 unsigned sampler;
2995 bool swizzle_xxxx;
2996 } nir_lower_bitmap_options;
2997
2998 void nir_lower_bitmap(nir_shader *shader, const nir_lower_bitmap_options *options);
2999
3000 bool nir_lower_atomics_to_ssbo(nir_shader *shader, unsigned ssbo_offset);
3001 bool nir_lower_to_source_mods(nir_shader *shader);
3002
3003 bool nir_lower_gs_intrinsics(nir_shader *shader);
3004
3005 typedef unsigned (*nir_lower_bit_size_callback)(const nir_alu_instr *, void *);
3006
3007 bool nir_lower_bit_size(nir_shader *shader,
3008 nir_lower_bit_size_callback callback,
3009 void *callback_data);
3010
3011 typedef enum {
3012 nir_lower_imul64 = (1 << 0),
3013 nir_lower_isign64 = (1 << 1),
3014 /** Lower all int64 modulus and division opcodes */
3015 nir_lower_divmod64 = (1 << 2),
3016 } nir_lower_int64_options;
3017
3018 bool nir_lower_int64(nir_shader *shader, nir_lower_int64_options options);
3019
3020 typedef enum {
3021 nir_lower_drcp = (1 << 0),
3022 nir_lower_dsqrt = (1 << 1),
3023 nir_lower_drsq = (1 << 2),
3024 nir_lower_dtrunc = (1 << 3),
3025 nir_lower_dfloor = (1 << 4),
3026 nir_lower_dceil = (1 << 5),
3027 nir_lower_dfract = (1 << 6),
3028 nir_lower_dround_even = (1 << 7),
3029 nir_lower_dmod = (1 << 8)
3030 } nir_lower_doubles_options;
3031
3032 bool nir_lower_doubles(nir_shader *shader, nir_lower_doubles_options options);
3033 bool nir_lower_pack(nir_shader *shader);
3034
3035 bool nir_normalize_cubemap_coords(nir_shader *shader);
3036
3037 void nir_live_ssa_defs_impl(nir_function_impl *impl);
3038
3039 void nir_loop_analyze_impl(nir_function_impl *impl,
3040 nir_variable_mode indirect_mask);
3041
3042 bool nir_ssa_defs_interfere(nir_ssa_def *a, nir_ssa_def *b);
3043
3044 bool nir_repair_ssa_impl(nir_function_impl *impl);
3045 bool nir_repair_ssa(nir_shader *shader);
3046
3047 void nir_convert_loop_to_lcssa(nir_loop *loop);
3048
3049 /* If phi_webs_only is true, only convert SSA values involved in phi nodes to
3050 * registers. If false, convert all values (even those not involved in a phi
3051 * node) to registers.
3052 */
3053 bool nir_convert_from_ssa(nir_shader *shader, bool phi_webs_only);
3054
3055 bool nir_lower_phis_to_regs_block(nir_block *block);
3056 bool nir_lower_ssa_defs_to_regs_block(nir_block *block);
3057 bool nir_rematerialize_derefs_in_use_blocks_impl(nir_function_impl *impl);
3058
3059 bool nir_opt_algebraic(nir_shader *shader);
3060 bool nir_opt_algebraic_before_ffma(nir_shader *shader);
3061 bool nir_opt_algebraic_late(nir_shader *shader);
3062 bool nir_opt_constant_folding(nir_shader *shader);
3063
3064 bool nir_opt_global_to_local(nir_shader *shader);
3065
3066 bool nir_copy_prop(nir_shader *shader);
3067
3068 bool nir_opt_copy_prop_vars(nir_shader *shader);
3069
3070 bool nir_opt_cse(nir_shader *shader);
3071
3072 bool nir_opt_dce(nir_shader *shader);
3073
3074 bool nir_opt_dead_cf(nir_shader *shader);
3075
3076 bool nir_opt_dead_write_vars(nir_shader *shader);
3077
3078 bool nir_opt_find_array_copies(nir_shader *shader);
3079
3080 bool nir_opt_gcm(nir_shader *shader, bool value_number);
3081
3082 bool nir_opt_if(nir_shader *shader);
3083
3084 bool nir_opt_intrinsics(nir_shader *shader);
3085
3086 bool nir_opt_large_constants(nir_shader *shader,
3087 glsl_type_size_align_func size_align,
3088 unsigned threshold);
3089
3090 bool nir_opt_loop_unroll(nir_shader *shader, nir_variable_mode indirect_mask);
3091
3092 bool nir_opt_move_comparisons(nir_shader *shader);
3093
3094 bool nir_opt_move_load_ubo(nir_shader *shader);
3095
3096 bool nir_opt_peephole_select(nir_shader *shader, unsigned limit);
3097
3098 bool nir_opt_remove_phis_impl(nir_function_impl *impl);
3099 bool nir_opt_remove_phis(nir_shader *shader);
3100
3101 bool nir_opt_shrink_load(nir_shader *shader);
3102
3103 bool nir_opt_trivial_continues(nir_shader *shader);
3104
3105 bool nir_opt_undef(nir_shader *shader);
3106
3107 bool nir_opt_conditional_discard(nir_shader *shader);
3108
3109 void nir_sweep(nir_shader *shader);
3110
3111 void nir_remap_dual_slot_attributes(nir_shader *shader,
3112 uint64_t *dual_slot_inputs);
3113 uint64_t nir_get_single_slot_attribs_mask(uint64_t attribs, uint64_t dual_slot);
3114
3115 nir_intrinsic_op nir_intrinsic_from_system_value(gl_system_value val);
3116 gl_system_value nir_system_value_from_intrinsic(nir_intrinsic_op intrin);
3117
3118 #ifdef __cplusplus
3119 } /* extern "C" */
3120 #endif
3121
3122 #endif /* NIR_H */