2fd75ec8be57d28e77908b82357441343bd20e4c
[mesa.git] / src / compiler / nir / nir.h
1 /*
2 * Copyright © 2014 Connor Abbott
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Connor Abbott (cwabbott0@gmail.com)
25 *
26 */
27
28 #pragma once
29
30 #include "util/hash_table.h"
31 #include "compiler/glsl/list.h"
32 #include "GL/gl.h" /* GLenum */
33 #include "util/list.h"
34 #include "util/ralloc.h"
35 #include "util/set.h"
36 #include "util/bitset.h"
37 #include "compiler/nir_types.h"
38 #include "compiler/shader_enums.h"
39 #include <stdio.h>
40
41 #include "nir_opcodes.h"
42
43 #ifdef __cplusplus
44 extern "C" {
45 #endif
46
47 struct gl_program;
48 struct gl_shader_program;
49
50 #define NIR_FALSE 0u
51 #define NIR_TRUE (~0u)
52
53 /** Defines a cast function
54 *
55 * This macro defines a cast function from in_type to out_type where
56 * out_type is some structure type that contains a field of type out_type.
57 *
58 * Note that you have to be a bit careful as the generated cast function
59 * destroys constness.
60 */
61 #define NIR_DEFINE_CAST(name, in_type, out_type, field) \
62 static inline out_type * \
63 name(const in_type *parent) \
64 { \
65 return exec_node_data(out_type, parent, field); \
66 }
67
68 struct nir_function;
69 struct nir_shader;
70 struct nir_instr;
71
72
73 /**
74 * Description of built-in state associated with a uniform
75 *
76 * \sa nir_variable::state_slots
77 */
78 typedef struct {
79 int tokens[5];
80 int swizzle;
81 } nir_state_slot;
82
83 typedef enum {
84 nir_var_all = -1,
85 nir_var_shader_in,
86 nir_var_shader_out,
87 nir_var_global,
88 nir_var_local,
89 nir_var_uniform,
90 nir_var_shader_storage,
91 nir_var_system_value,
92 nir_var_param,
93 nir_var_shared,
94 } nir_variable_mode;
95
96 /**
97 * Data stored in an nir_constant
98 */
99 union nir_constant_data {
100 unsigned u[16];
101 int i[16];
102 float f[16];
103 bool b[16];
104 double d[16];
105 };
106
107 typedef struct nir_constant {
108 /**
109 * Value of the constant.
110 *
111 * The field used to back the values supplied by the constant is determined
112 * by the type associated with the \c nir_variable. Constants may be
113 * scalars, vectors, or matrices.
114 */
115 union nir_constant_data value;
116
117 /* we could get this from the var->type but makes clone *much* easier to
118 * not have to care about the type.
119 */
120 unsigned num_elements;
121
122 /* Array elements / Structure Fields */
123 struct nir_constant **elements;
124 } nir_constant;
125
126 /**
127 * \brief Layout qualifiers for gl_FragDepth.
128 *
129 * The AMD/ARB_conservative_depth extensions allow gl_FragDepth to be redeclared
130 * with a layout qualifier.
131 */
132 typedef enum {
133 nir_depth_layout_none, /**< No depth layout is specified. */
134 nir_depth_layout_any,
135 nir_depth_layout_greater,
136 nir_depth_layout_less,
137 nir_depth_layout_unchanged
138 } nir_depth_layout;
139
140 /**
141 * Either a uniform, global variable, shader input, or shader output. Based on
142 * ir_variable - it should be easy to translate between the two.
143 */
144
145 typedef struct nir_variable {
146 struct exec_node node;
147
148 /**
149 * Declared type of the variable
150 */
151 const struct glsl_type *type;
152
153 /**
154 * Declared name of the variable
155 */
156 char *name;
157
158 struct nir_variable_data {
159
160 /**
161 * Is the variable read-only?
162 *
163 * This is set for variables declared as \c const, shader inputs,
164 * and uniforms.
165 */
166 unsigned read_only:1;
167 unsigned centroid:1;
168 unsigned sample:1;
169 unsigned patch:1;
170 unsigned invariant:1;
171
172 /**
173 * Storage class of the variable.
174 *
175 * \sa nir_variable_mode
176 */
177 nir_variable_mode mode:5;
178
179 /**
180 * Interpolation mode for shader inputs / outputs
181 *
182 * \sa glsl_interp_qualifier
183 */
184 unsigned interpolation:2;
185
186 /**
187 * \name ARB_fragment_coord_conventions
188 * @{
189 */
190 unsigned origin_upper_left:1;
191 unsigned pixel_center_integer:1;
192 /*@}*/
193
194 /**
195 * Was the location explicitly set in the shader?
196 *
197 * If the location is explicitly set in the shader, it \b cannot be changed
198 * by the linker or by the API (e.g., calls to \c glBindAttribLocation have
199 * no effect).
200 */
201 unsigned explicit_location:1;
202 unsigned explicit_index:1;
203
204 /**
205 * Was an initial binding explicitly set in the shader?
206 *
207 * If so, constant_initializer contains an integer nir_constant
208 * representing the initial binding point.
209 */
210 unsigned explicit_binding:1;
211
212 /**
213 * Does this variable have an initializer?
214 *
215 * This is used by the linker to cross-validiate initializers of global
216 * variables.
217 */
218 unsigned has_initializer:1;
219
220 /**
221 * If non-zero, then this variable may be packed along with other variables
222 * into a single varying slot, so this offset should be applied when
223 * accessing components. For example, an offset of 1 means that the x
224 * component of this variable is actually stored in component y of the
225 * location specified by \c location.
226 */
227 unsigned location_frac:2;
228
229 /**
230 * \brief Layout qualifier for gl_FragDepth.
231 *
232 * This is not equal to \c ir_depth_layout_none if and only if this
233 * variable is \c gl_FragDepth and a layout qualifier is specified.
234 */
235 nir_depth_layout depth_layout;
236
237 /**
238 * Storage location of the base of this variable
239 *
240 * The precise meaning of this field depends on the nature of the variable.
241 *
242 * - Vertex shader input: one of the values from \c gl_vert_attrib.
243 * - Vertex shader output: one of the values from \c gl_varying_slot.
244 * - Geometry shader input: one of the values from \c gl_varying_slot.
245 * - Geometry shader output: one of the values from \c gl_varying_slot.
246 * - Fragment shader input: one of the values from \c gl_varying_slot.
247 * - Fragment shader output: one of the values from \c gl_frag_result.
248 * - Uniforms: Per-stage uniform slot number for default uniform block.
249 * - Uniforms: Index within the uniform block definition for UBO members.
250 * - Non-UBO Uniforms: uniform slot number.
251 * - Other: This field is not currently used.
252 *
253 * If the variable is a uniform, shader input, or shader output, and the
254 * slot has not been assigned, the value will be -1.
255 */
256 int location;
257
258 /**
259 * The actual location of the variable in the IR. Only valid for inputs
260 * and outputs.
261 */
262 unsigned int driver_location;
263
264 /**
265 * output index for dual source blending.
266 */
267 int index;
268
269 /**
270 * Descriptor set binding for sampler or UBO.
271 */
272 int descriptor_set;
273
274 /**
275 * Initial binding point for a sampler or UBO.
276 *
277 * For array types, this represents the binding point for the first element.
278 */
279 int binding;
280
281 /**
282 * Location an atomic counter is stored at.
283 */
284 unsigned offset;
285
286 /**
287 * ARB_shader_image_load_store qualifiers.
288 */
289 struct {
290 bool read_only; /**< "readonly" qualifier. */
291 bool write_only; /**< "writeonly" qualifier. */
292 bool coherent;
293 bool _volatile;
294 bool restrict_flag;
295
296 /** Image internal format if specified explicitly, otherwise GL_NONE. */
297 GLenum format;
298 } image;
299
300 /**
301 * Highest element accessed with a constant expression array index
302 *
303 * Not used for non-array variables.
304 */
305 unsigned max_array_access;
306
307 } data;
308
309 /**
310 * Built-in state that backs this uniform
311 *
312 * Once set at variable creation, \c state_slots must remain invariant.
313 * This is because, ideally, this array would be shared by all clones of
314 * this variable in the IR tree. In other words, we'd really like for it
315 * to be a fly-weight.
316 *
317 * If the variable is not a uniform, \c num_state_slots will be zero and
318 * \c state_slots will be \c NULL.
319 */
320 /*@{*/
321 unsigned num_state_slots; /**< Number of state slots used */
322 nir_state_slot *state_slots; /**< State descriptors. */
323 /*@}*/
324
325 /**
326 * Constant expression assigned in the initializer of the variable
327 */
328 nir_constant *constant_initializer;
329
330 /**
331 * For variables that are in an interface block or are an instance of an
332 * interface block, this is the \c GLSL_TYPE_INTERFACE type for that block.
333 *
334 * \sa ir_variable::location
335 */
336 const struct glsl_type *interface_type;
337 } nir_variable;
338
339 #define nir_foreach_variable(var, var_list) \
340 foreach_list_typed(nir_variable, var, node, var_list)
341
342 #define nir_foreach_variable_safe(var, var_list) \
343 foreach_list_typed_safe(nir_variable, var, node, var_list)
344
345 static inline bool
346 nir_variable_is_global(const nir_variable *var)
347 {
348 return var->data.mode != nir_var_local && var->data.mode != nir_var_param;
349 }
350
351 /**
352 * Returns the bits in the inputs_read, outputs_written, or
353 * system_values_read bitfield corresponding to this variable.
354 */
355 static inline uint64_t
356 nir_variable_get_io_mask(nir_variable *var, gl_shader_stage stage)
357 {
358 assert(var->data.mode == nir_var_shader_in ||
359 var->data.mode == nir_var_shader_out ||
360 var->data.mode == nir_var_system_value);
361 assert(var->data.location >= 0);
362
363 const struct glsl_type *var_type = var->type;
364 if (stage == MESA_SHADER_GEOMETRY && var->data.mode == nir_var_shader_in) {
365 /* Most geometry shader inputs are per-vertex arrays */
366 if (var->data.location >= VARYING_SLOT_VAR0)
367 assert(glsl_type_is_array(var_type));
368
369 if (glsl_type_is_array(var_type))
370 var_type = glsl_get_array_element(var_type);
371 }
372
373 bool is_vertex_input = (var->data.mode == nir_var_shader_in &&
374 stage == MESA_SHADER_VERTEX);
375 unsigned slots = glsl_count_attribute_slots(var_type, is_vertex_input);
376 return ((1ull << slots) - 1) << var->data.location;
377 }
378
379 typedef struct nir_register {
380 struct exec_node node;
381
382 unsigned num_components; /** < number of vector components */
383 unsigned num_array_elems; /** < size of array (0 for no array) */
384
385 /* The bit-size of each channel; must be one of 8, 16, 32, or 64 */
386 uint8_t bit_size;
387
388 /** generic register index. */
389 unsigned index;
390
391 /** only for debug purposes, can be NULL */
392 const char *name;
393
394 /** whether this register is local (per-function) or global (per-shader) */
395 bool is_global;
396
397 /**
398 * If this flag is set to true, then accessing channels >= num_components
399 * is well-defined, and simply spills over to the next array element. This
400 * is useful for backends that can do per-component accessing, in
401 * particular scalar backends. By setting this flag and making
402 * num_components equal to 1, structures can be packed tightly into
403 * registers and then registers can be accessed per-component to get to
404 * each structure member, even if it crosses vec4 boundaries.
405 */
406 bool is_packed;
407
408 /** set of nir_src's where this register is used (read from) */
409 struct list_head uses;
410
411 /** set of nir_dest's where this register is defined (written to) */
412 struct list_head defs;
413
414 /** set of nir_if's where this register is used as a condition */
415 struct list_head if_uses;
416 } nir_register;
417
418 typedef enum {
419 nir_instr_type_alu,
420 nir_instr_type_call,
421 nir_instr_type_tex,
422 nir_instr_type_intrinsic,
423 nir_instr_type_load_const,
424 nir_instr_type_jump,
425 nir_instr_type_ssa_undef,
426 nir_instr_type_phi,
427 nir_instr_type_parallel_copy,
428 } nir_instr_type;
429
430 typedef struct nir_instr {
431 struct exec_node node;
432 nir_instr_type type;
433 struct nir_block *block;
434
435 /** generic instruction index. */
436 unsigned index;
437
438 /* A temporary for optimization and analysis passes to use for storing
439 * flags. For instance, DCE uses this to store the "dead/live" info.
440 */
441 uint8_t pass_flags;
442 } nir_instr;
443
444 static inline nir_instr *
445 nir_instr_next(nir_instr *instr)
446 {
447 struct exec_node *next = exec_node_get_next(&instr->node);
448 if (exec_node_is_tail_sentinel(next))
449 return NULL;
450 else
451 return exec_node_data(nir_instr, next, node);
452 }
453
454 static inline nir_instr *
455 nir_instr_prev(nir_instr *instr)
456 {
457 struct exec_node *prev = exec_node_get_prev(&instr->node);
458 if (exec_node_is_head_sentinel(prev))
459 return NULL;
460 else
461 return exec_node_data(nir_instr, prev, node);
462 }
463
464 static inline bool
465 nir_instr_is_first(nir_instr *instr)
466 {
467 return exec_node_is_head_sentinel(exec_node_get_prev(&instr->node));
468 }
469
470 static inline bool
471 nir_instr_is_last(nir_instr *instr)
472 {
473 return exec_node_is_tail_sentinel(exec_node_get_next(&instr->node));
474 }
475
476 typedef struct nir_ssa_def {
477 /** for debugging only, can be NULL */
478 const char* name;
479
480 /** generic SSA definition index. */
481 unsigned index;
482
483 /** Index into the live_in and live_out bitfields */
484 unsigned live_index;
485
486 nir_instr *parent_instr;
487
488 /** set of nir_instr's where this register is used (read from) */
489 struct list_head uses;
490
491 /** set of nir_if's where this register is used as a condition */
492 struct list_head if_uses;
493
494 uint8_t num_components;
495
496 /* The bit-size of each channel; must be one of 8, 16, 32, or 64 */
497 uint8_t bit_size;
498 } nir_ssa_def;
499
500 struct nir_src;
501
502 typedef struct {
503 nir_register *reg;
504 struct nir_src *indirect; /** < NULL for no indirect offset */
505 unsigned base_offset;
506
507 /* TODO use-def chain goes here */
508 } nir_reg_src;
509
510 typedef struct {
511 nir_instr *parent_instr;
512 struct list_head def_link;
513
514 nir_register *reg;
515 struct nir_src *indirect; /** < NULL for no indirect offset */
516 unsigned base_offset;
517
518 /* TODO def-use chain goes here */
519 } nir_reg_dest;
520
521 struct nir_if;
522
523 typedef struct nir_src {
524 union {
525 nir_instr *parent_instr;
526 struct nir_if *parent_if;
527 };
528
529 struct list_head use_link;
530
531 union {
532 nir_reg_src reg;
533 nir_ssa_def *ssa;
534 };
535
536 bool is_ssa;
537 } nir_src;
538
539 #define NIR_SRC_INIT (nir_src) { { NULL } }
540
541 #define nir_foreach_use(reg_or_ssa_def, src) \
542 list_for_each_entry(nir_src, src, &(reg_or_ssa_def)->uses, use_link)
543
544 #define nir_foreach_use_safe(reg_or_ssa_def, src) \
545 list_for_each_entry_safe(nir_src, src, &(reg_or_ssa_def)->uses, use_link)
546
547 #define nir_foreach_if_use(reg_or_ssa_def, src) \
548 list_for_each_entry(nir_src, src, &(reg_or_ssa_def)->if_uses, use_link)
549
550 #define nir_foreach_if_use_safe(reg_or_ssa_def, src) \
551 list_for_each_entry_safe(nir_src, src, &(reg_or_ssa_def)->if_uses, use_link)
552
553 typedef struct {
554 union {
555 nir_reg_dest reg;
556 nir_ssa_def ssa;
557 };
558
559 bool is_ssa;
560 } nir_dest;
561
562 #define NIR_DEST_INIT (nir_dest) { { { NULL } } }
563
564 #define nir_foreach_def(reg, dest) \
565 list_for_each_entry(nir_dest, dest, &(reg)->defs, reg.def_link)
566
567 #define nir_foreach_def_safe(reg, dest) \
568 list_for_each_entry_safe(nir_dest, dest, &(reg)->defs, reg.def_link)
569
570 static inline nir_src
571 nir_src_for_ssa(nir_ssa_def *def)
572 {
573 nir_src src = NIR_SRC_INIT;
574
575 src.is_ssa = true;
576 src.ssa = def;
577
578 return src;
579 }
580
581 static inline nir_src
582 nir_src_for_reg(nir_register *reg)
583 {
584 nir_src src = NIR_SRC_INIT;
585
586 src.is_ssa = false;
587 src.reg.reg = reg;
588 src.reg.indirect = NULL;
589 src.reg.base_offset = 0;
590
591 return src;
592 }
593
594 static inline nir_dest
595 nir_dest_for_reg(nir_register *reg)
596 {
597 nir_dest dest = NIR_DEST_INIT;
598
599 dest.reg.reg = reg;
600
601 return dest;
602 }
603
604 static inline unsigned
605 nir_src_bit_size(nir_src src)
606 {
607 return src.is_ssa ? src.ssa->bit_size : src.reg.reg->bit_size;
608 }
609
610 static inline unsigned
611 nir_dest_bit_size(nir_dest dest)
612 {
613 return dest.is_ssa ? dest.ssa.bit_size : dest.reg.reg->bit_size;
614 }
615
616 void nir_src_copy(nir_src *dest, const nir_src *src, void *instr_or_if);
617 void nir_dest_copy(nir_dest *dest, const nir_dest *src, nir_instr *instr);
618
619 typedef struct {
620 nir_src src;
621
622 /**
623 * \name input modifiers
624 */
625 /*@{*/
626 /**
627 * For inputs interpreted as floating point, flips the sign bit. For
628 * inputs interpreted as integers, performs the two's complement negation.
629 */
630 bool negate;
631
632 /**
633 * Clears the sign bit for floating point values, and computes the integer
634 * absolute value for integers. Note that the negate modifier acts after
635 * the absolute value modifier, therefore if both are set then all inputs
636 * will become negative.
637 */
638 bool abs;
639 /*@}*/
640
641 /**
642 * For each input component, says which component of the register it is
643 * chosen from. Note that which elements of the swizzle are used and which
644 * are ignored are based on the write mask for most opcodes - for example,
645 * a statement like "foo.xzw = bar.zyx" would have a writemask of 1101b and
646 * a swizzle of {2, x, 1, 0} where x means "don't care."
647 */
648 uint8_t swizzle[4];
649 } nir_alu_src;
650
651 typedef struct {
652 nir_dest dest;
653
654 /**
655 * \name saturate output modifier
656 *
657 * Only valid for opcodes that output floating-point numbers. Clamps the
658 * output to between 0.0 and 1.0 inclusive.
659 */
660
661 bool saturate;
662
663 unsigned write_mask : 4; /* ignored if dest.is_ssa is true */
664 } nir_alu_dest;
665
666 typedef enum {
667 nir_type_invalid = 0, /* Not a valid type */
668 nir_type_float,
669 nir_type_int,
670 nir_type_uint,
671 nir_type_bool,
672 nir_type_bool32 = 32 | nir_type_bool,
673 nir_type_int8 = 8 | nir_type_int,
674 nir_type_int16 = 16 | nir_type_int,
675 nir_type_int32 = 32 | nir_type_int,
676 nir_type_int64 = 64 | nir_type_int,
677 nir_type_uint8 = 8 | nir_type_uint,
678 nir_type_uint16 = 16 | nir_type_uint,
679 nir_type_uint32 = 32 | nir_type_uint,
680 nir_type_uint64 = 64 | nir_type_uint,
681 nir_type_float16 = 16 | nir_type_float,
682 nir_type_float32 = 32 | nir_type_float,
683 nir_type_float64 = 64 | nir_type_float,
684 } nir_alu_type;
685
686 #define NIR_ALU_TYPE_SIZE_MASK 0xfffffff8
687 #define NIR_ALU_TYPE_BASE_TYPE_MASK 0x00000007
688
689 static inline unsigned
690 nir_alu_type_get_type_size(nir_alu_type type)
691 {
692 return type & NIR_ALU_TYPE_SIZE_MASK;
693 }
694
695 static inline unsigned
696 nir_alu_type_get_base_type(nir_alu_type type)
697 {
698 return type & NIR_ALU_TYPE_BASE_TYPE_MASK;
699 }
700
701 typedef enum {
702 NIR_OP_IS_COMMUTATIVE = (1 << 0),
703 NIR_OP_IS_ASSOCIATIVE = (1 << 1),
704 } nir_op_algebraic_property;
705
706 typedef struct {
707 const char *name;
708
709 unsigned num_inputs;
710
711 /**
712 * The number of components in the output
713 *
714 * If non-zero, this is the size of the output and input sizes are
715 * explicitly given; swizzle and writemask are still in effect, but if
716 * the output component is masked out, then the input component may
717 * still be in use.
718 *
719 * If zero, the opcode acts in the standard, per-component manner; the
720 * operation is performed on each component (except the ones that are
721 * masked out) with the input being taken from the input swizzle for
722 * that component.
723 *
724 * The size of some of the inputs may be given (i.e. non-zero) even
725 * though output_size is zero; in that case, the inputs with a zero
726 * size act per-component, while the inputs with non-zero size don't.
727 */
728 unsigned output_size;
729
730 /**
731 * The type of vector that the instruction outputs. Note that the
732 * staurate modifier is only allowed on outputs with the float type.
733 */
734
735 nir_alu_type output_type;
736
737 /**
738 * The number of components in each input
739 */
740 unsigned input_sizes[4];
741
742 /**
743 * The type of vector that each input takes. Note that negate and
744 * absolute value are only allowed on inputs with int or float type and
745 * behave differently on the two.
746 */
747 nir_alu_type input_types[4];
748
749 nir_op_algebraic_property algebraic_properties;
750 } nir_op_info;
751
752 extern const nir_op_info nir_op_infos[nir_num_opcodes];
753
754 typedef struct nir_alu_instr {
755 nir_instr instr;
756 nir_op op;
757
758 /** Indicates that this ALU instruction generates an exact value
759 *
760 * This is kind of a mixture of GLSL "precise" and "invariant" and not
761 * really equivalent to either. This indicates that the value generated by
762 * this operation is high-precision and any code transformations that touch
763 * it must ensure that the resulting value is bit-for-bit identical to the
764 * original.
765 */
766 bool exact;
767
768 nir_alu_dest dest;
769 nir_alu_src src[];
770 } nir_alu_instr;
771
772 void nir_alu_src_copy(nir_alu_src *dest, const nir_alu_src *src,
773 nir_alu_instr *instr);
774 void nir_alu_dest_copy(nir_alu_dest *dest, const nir_alu_dest *src,
775 nir_alu_instr *instr);
776
777 /* is this source channel used? */
778 static inline bool
779 nir_alu_instr_channel_used(nir_alu_instr *instr, unsigned src, unsigned channel)
780 {
781 if (nir_op_infos[instr->op].input_sizes[src] > 0)
782 return channel < nir_op_infos[instr->op].input_sizes[src];
783
784 return (instr->dest.write_mask >> channel) & 1;
785 }
786
787 /*
788 * For instructions whose destinations are SSA, get the number of channels
789 * used for a source
790 */
791 static inline unsigned
792 nir_ssa_alu_instr_src_components(const nir_alu_instr *instr, unsigned src)
793 {
794 assert(instr->dest.dest.is_ssa);
795
796 if (nir_op_infos[instr->op].input_sizes[src] > 0)
797 return nir_op_infos[instr->op].input_sizes[src];
798
799 return instr->dest.dest.ssa.num_components;
800 }
801
802 typedef enum {
803 nir_deref_type_var,
804 nir_deref_type_array,
805 nir_deref_type_struct
806 } nir_deref_type;
807
808 typedef struct nir_deref {
809 nir_deref_type deref_type;
810 struct nir_deref *child;
811 const struct glsl_type *type;
812 } nir_deref;
813
814 typedef struct {
815 nir_deref deref;
816
817 nir_variable *var;
818 } nir_deref_var;
819
820 /* This enum describes how the array is referenced. If the deref is
821 * direct then the base_offset is used. If the deref is indirect then then
822 * offset is given by base_offset + indirect. If the deref is a wildcard
823 * then the deref refers to all of the elements of the array at the same
824 * time. Wildcard dereferences are only ever allowed in copy_var
825 * intrinsics and the source and destination derefs must have matching
826 * wildcards.
827 */
828 typedef enum {
829 nir_deref_array_type_direct,
830 nir_deref_array_type_indirect,
831 nir_deref_array_type_wildcard,
832 } nir_deref_array_type;
833
834 typedef struct {
835 nir_deref deref;
836
837 nir_deref_array_type deref_array_type;
838 unsigned base_offset;
839 nir_src indirect;
840 } nir_deref_array;
841
842 typedef struct {
843 nir_deref deref;
844
845 unsigned index;
846 } nir_deref_struct;
847
848 NIR_DEFINE_CAST(nir_deref_as_var, nir_deref, nir_deref_var, deref)
849 NIR_DEFINE_CAST(nir_deref_as_array, nir_deref, nir_deref_array, deref)
850 NIR_DEFINE_CAST(nir_deref_as_struct, nir_deref, nir_deref_struct, deref)
851
852 /* Returns the last deref in the chain. */
853 static inline nir_deref *
854 nir_deref_tail(nir_deref *deref)
855 {
856 while (deref->child)
857 deref = deref->child;
858 return deref;
859 }
860
861 typedef struct {
862 nir_instr instr;
863
864 unsigned num_params;
865 nir_deref_var **params;
866 nir_deref_var *return_deref;
867
868 struct nir_function *callee;
869 } nir_call_instr;
870
871 #define INTRINSIC(name, num_srcs, src_components, has_dest, dest_components, \
872 num_variables, num_indices, idx0, idx1, idx2, flags) \
873 nir_intrinsic_##name,
874
875 #define LAST_INTRINSIC(name) nir_last_intrinsic = nir_intrinsic_##name,
876
877 typedef enum {
878 #include "nir_intrinsics.h"
879 nir_num_intrinsics = nir_last_intrinsic + 1
880 } nir_intrinsic_op;
881
882 #undef INTRINSIC
883 #undef LAST_INTRINSIC
884
885 #define NIR_INTRINSIC_MAX_CONST_INDEX 3
886
887 /** Represents an intrinsic
888 *
889 * An intrinsic is an instruction type for handling things that are
890 * more-or-less regular operations but don't just consume and produce SSA
891 * values like ALU operations do. Intrinsics are not for things that have
892 * special semantic meaning such as phi nodes and parallel copies.
893 * Examples of intrinsics include variable load/store operations, system
894 * value loads, and the like. Even though texturing more-or-less falls
895 * under this category, texturing is its own instruction type because
896 * trying to represent texturing with intrinsics would lead to a
897 * combinatorial explosion of intrinsic opcodes.
898 *
899 * By having a single instruction type for handling a lot of different
900 * cases, optimization passes can look for intrinsics and, for the most
901 * part, completely ignore them. Each intrinsic type also has a few
902 * possible flags that govern whether or not they can be reordered or
903 * eliminated. That way passes like dead code elimination can still work
904 * on intrisics without understanding the meaning of each.
905 *
906 * Each intrinsic has some number of constant indices, some number of
907 * variables, and some number of sources. What these sources, variables,
908 * and indices mean depends on the intrinsic and is documented with the
909 * intrinsic declaration in nir_intrinsics.h. Intrinsics and texture
910 * instructions are the only types of instruction that can operate on
911 * variables.
912 */
913 typedef struct {
914 nir_instr instr;
915
916 nir_intrinsic_op intrinsic;
917
918 nir_dest dest;
919
920 /** number of components if this is a vectorized intrinsic
921 *
922 * Similarly to ALU operations, some intrinsics are vectorized.
923 * An intrinsic is vectorized if nir_intrinsic_infos.dest_components == 0.
924 * For vectorized intrinsics, the num_components field specifies the
925 * number of destination components and the number of source components
926 * for all sources with nir_intrinsic_infos.src_components[i] == 0.
927 */
928 uint8_t num_components;
929
930 int const_index[NIR_INTRINSIC_MAX_CONST_INDEX];
931
932 nir_deref_var *variables[2];
933
934 nir_src src[];
935 } nir_intrinsic_instr;
936
937 /**
938 * \name NIR intrinsics semantic flags
939 *
940 * information about what the compiler can do with the intrinsics.
941 *
942 * \sa nir_intrinsic_info::flags
943 */
944 typedef enum {
945 /**
946 * whether the intrinsic can be safely eliminated if none of its output
947 * value is not being used.
948 */
949 NIR_INTRINSIC_CAN_ELIMINATE = (1 << 0),
950
951 /**
952 * Whether the intrinsic can be reordered with respect to any other
953 * intrinsic, i.e. whether the only reordering dependencies of the
954 * intrinsic are due to the register reads/writes.
955 */
956 NIR_INTRINSIC_CAN_REORDER = (1 << 1),
957 } nir_intrinsic_semantic_flag;
958
959 /**
960 * \name NIR intrinsics const-index flag
961 *
962 * Indicates the usage of a const_index slot.
963 *
964 * \sa nir_intrinsic_info::index_map
965 */
966 typedef enum {
967 /**
968 * Generally instructions that take a offset src argument, can encode
969 * a constant 'base' value which is added to the offset.
970 */
971 NIR_INTRINSIC_BASE = 1,
972
973 /**
974 * For store instructions, a writemask for the store.
975 */
976 NIR_INTRINSIC_WRMASK = 2,
977
978 /**
979 * The stream-id for GS emit_vertex/end_primitive intrinsics.
980 */
981 NIR_INTRINSIC_STREAM_ID = 3,
982
983 /**
984 * The clip-plane id for load_user_clip_plane intrinsic.
985 */
986 NIR_INTRINSIC_UCP_ID = 4,
987
988 /**
989 * The range of a load operation. This specifies the maximum amount of
990 * data starting at the base offset (if any) that can be accessed.
991 */
992 NIR_INTRINSIC_RANGE = 5,
993
994 /**
995 * The Vulkan descriptor set for vulkan_resource_index intrinsic.
996 */
997 NIR_INTRINSIC_DESC_SET = 6,
998
999 /**
1000 * The Vulkan descriptor set binding for vulkan_resource_index intrinsic.
1001 */
1002 NIR_INTRINSIC_BINDING = 7,
1003
1004 NIR_INTRINSIC_NUM_INDEX_FLAGS,
1005
1006 } nir_intrinsic_index_flag;
1007
1008 #define NIR_INTRINSIC_MAX_INPUTS 4
1009
1010 typedef struct {
1011 const char *name;
1012
1013 unsigned num_srcs; /** < number of register/SSA inputs */
1014
1015 /** number of components of each input register
1016 *
1017 * If this value is 0, the number of components is given by the
1018 * num_components field of nir_intrinsic_instr.
1019 */
1020 unsigned src_components[NIR_INTRINSIC_MAX_INPUTS];
1021
1022 bool has_dest;
1023
1024 /** number of components of the output register
1025 *
1026 * If this value is 0, the number of components is given by the
1027 * num_components field of nir_intrinsic_instr.
1028 */
1029 unsigned dest_components;
1030
1031 /** the number of inputs/outputs that are variables */
1032 unsigned num_variables;
1033
1034 /** the number of constant indices used by the intrinsic */
1035 unsigned num_indices;
1036
1037 /** indicates the usage of intr->const_index[n] */
1038 unsigned index_map[NIR_INTRINSIC_NUM_INDEX_FLAGS];
1039
1040 /** semantic flags for calls to this intrinsic */
1041 nir_intrinsic_semantic_flag flags;
1042 } nir_intrinsic_info;
1043
1044 extern const nir_intrinsic_info nir_intrinsic_infos[nir_num_intrinsics];
1045
1046
1047 #define INTRINSIC_IDX_ACCESSORS(name, flag, type) \
1048 static inline type \
1049 nir_intrinsic_##name(nir_intrinsic_instr *instr) \
1050 { \
1051 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic]; \
1052 assert(info->index_map[NIR_INTRINSIC_##flag] > 0); \
1053 return instr->const_index[info->index_map[NIR_INTRINSIC_##flag] - 1]; \
1054 } \
1055 static inline void \
1056 nir_intrinsic_set_##name(nir_intrinsic_instr *instr, type val) \
1057 { \
1058 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic]; \
1059 assert(info->index_map[NIR_INTRINSIC_##flag] > 0); \
1060 instr->const_index[info->index_map[NIR_INTRINSIC_##flag] - 1] = val; \
1061 }
1062
1063 INTRINSIC_IDX_ACCESSORS(write_mask, WRMASK, unsigned)
1064 INTRINSIC_IDX_ACCESSORS(base, BASE, int)
1065 INTRINSIC_IDX_ACCESSORS(stream_id, STREAM_ID, unsigned)
1066 INTRINSIC_IDX_ACCESSORS(ucp_id, UCP_ID, unsigned)
1067 INTRINSIC_IDX_ACCESSORS(range, RANGE, unsigned)
1068 INTRINSIC_IDX_ACCESSORS(desc_set, DESC_SET, unsigned)
1069 INTRINSIC_IDX_ACCESSORS(binding, BINDING, unsigned)
1070
1071 /**
1072 * \group texture information
1073 *
1074 * This gives semantic information about textures which is useful to the
1075 * frontend, the backend, and lowering passes, but not the optimizer.
1076 */
1077
1078 typedef enum {
1079 nir_tex_src_coord,
1080 nir_tex_src_projector,
1081 nir_tex_src_comparitor, /* shadow comparitor */
1082 nir_tex_src_offset,
1083 nir_tex_src_bias,
1084 nir_tex_src_lod,
1085 nir_tex_src_ms_index, /* MSAA sample index */
1086 nir_tex_src_ddx,
1087 nir_tex_src_ddy,
1088 nir_tex_src_texture_offset, /* < dynamically uniform indirect offset */
1089 nir_tex_src_sampler_offset, /* < dynamically uniform indirect offset */
1090 nir_num_tex_src_types
1091 } nir_tex_src_type;
1092
1093 typedef struct {
1094 nir_src src;
1095 nir_tex_src_type src_type;
1096 } nir_tex_src;
1097
1098 typedef enum {
1099 nir_texop_tex, /**< Regular texture look-up */
1100 nir_texop_txb, /**< Texture look-up with LOD bias */
1101 nir_texop_txl, /**< Texture look-up with explicit LOD */
1102 nir_texop_txd, /**< Texture look-up with partial derivatvies */
1103 nir_texop_txf, /**< Texel fetch with explicit LOD */
1104 nir_texop_txf_ms, /**< Multisample texture fetch */
1105 nir_texop_txs, /**< Texture size */
1106 nir_texop_lod, /**< Texture lod query */
1107 nir_texop_tg4, /**< Texture gather */
1108 nir_texop_query_levels, /**< Texture levels query */
1109 nir_texop_texture_samples, /**< Texture samples query */
1110 nir_texop_samples_identical, /**< Query whether all samples are definitely
1111 * identical.
1112 */
1113 } nir_texop;
1114
1115 typedef struct {
1116 nir_instr instr;
1117
1118 enum glsl_sampler_dim sampler_dim;
1119 nir_alu_type dest_type;
1120
1121 nir_texop op;
1122 nir_dest dest;
1123 nir_tex_src *src;
1124 unsigned num_srcs, coord_components;
1125 bool is_array, is_shadow;
1126
1127 /**
1128 * If is_shadow is true, whether this is the old-style shadow that outputs 4
1129 * components or the new-style shadow that outputs 1 component.
1130 */
1131 bool is_new_style_shadow;
1132
1133 /* gather component selector */
1134 unsigned component : 2;
1135
1136 /** The texture index
1137 *
1138 * If this texture instruction has a nir_tex_src_texture_offset source,
1139 * then the texture index is given by texture_index + texture_offset.
1140 */
1141 unsigned texture_index;
1142
1143 /** The size of the texture array or 0 if it's not an array */
1144 unsigned texture_array_size;
1145
1146 /** The texture deref
1147 *
1148 * If this is null, use texture_index instead.
1149 */
1150 nir_deref_var *texture;
1151
1152 /** The sampler index
1153 *
1154 * The following operations do not require a sampler and, as such, this
1155 * field should be ignored:
1156 * - nir_texop_txf
1157 * - nir_texop_txf_ms
1158 * - nir_texop_txs
1159 * - nir_texop_lod
1160 * - nir_texop_tg4
1161 * - nir_texop_query_levels
1162 * - nir_texop_texture_samples
1163 * - nir_texop_samples_identical
1164 *
1165 * If this texture instruction has a nir_tex_src_sampler_offset source,
1166 * then the sampler index is given by sampler_index + sampler_offset.
1167 */
1168 unsigned sampler_index;
1169
1170 /** The sampler deref
1171 *
1172 * If this is null, use sampler_index instead.
1173 */
1174 nir_deref_var *sampler;
1175 } nir_tex_instr;
1176
1177 static inline unsigned
1178 nir_tex_instr_dest_size(nir_tex_instr *instr)
1179 {
1180 switch (instr->op) {
1181 case nir_texop_txs: {
1182 unsigned ret;
1183 switch (instr->sampler_dim) {
1184 case GLSL_SAMPLER_DIM_1D:
1185 case GLSL_SAMPLER_DIM_BUF:
1186 ret = 1;
1187 break;
1188 case GLSL_SAMPLER_DIM_2D:
1189 case GLSL_SAMPLER_DIM_CUBE:
1190 case GLSL_SAMPLER_DIM_MS:
1191 case GLSL_SAMPLER_DIM_RECT:
1192 case GLSL_SAMPLER_DIM_EXTERNAL:
1193 ret = 2;
1194 break;
1195 case GLSL_SAMPLER_DIM_3D:
1196 ret = 3;
1197 break;
1198 default:
1199 unreachable("not reached");
1200 }
1201 if (instr->is_array)
1202 ret++;
1203 return ret;
1204 }
1205
1206 case nir_texop_lod:
1207 return 2;
1208
1209 case nir_texop_texture_samples:
1210 case nir_texop_query_levels:
1211 case nir_texop_samples_identical:
1212 return 1;
1213
1214 default:
1215 if (instr->is_shadow && instr->is_new_style_shadow)
1216 return 1;
1217
1218 return 4;
1219 }
1220 }
1221
1222 /* Returns true if this texture operation queries something about the texture
1223 * rather than actually sampling it.
1224 */
1225 static inline bool
1226 nir_tex_instr_is_query(nir_tex_instr *instr)
1227 {
1228 switch (instr->op) {
1229 case nir_texop_txs:
1230 case nir_texop_lod:
1231 case nir_texop_texture_samples:
1232 case nir_texop_query_levels:
1233 return true;
1234 case nir_texop_tex:
1235 case nir_texop_txb:
1236 case nir_texop_txl:
1237 case nir_texop_txd:
1238 case nir_texop_txf:
1239 case nir_texop_txf_ms:
1240 case nir_texop_tg4:
1241 return false;
1242 default:
1243 unreachable("Invalid texture opcode");
1244 }
1245 }
1246
1247 static inline unsigned
1248 nir_tex_instr_src_size(nir_tex_instr *instr, unsigned src)
1249 {
1250 if (instr->src[src].src_type == nir_tex_src_coord)
1251 return instr->coord_components;
1252
1253
1254 if (instr->src[src].src_type == nir_tex_src_offset ||
1255 instr->src[src].src_type == nir_tex_src_ddx ||
1256 instr->src[src].src_type == nir_tex_src_ddy) {
1257 if (instr->is_array)
1258 return instr->coord_components - 1;
1259 else
1260 return instr->coord_components;
1261 }
1262
1263 return 1;
1264 }
1265
1266 static inline int
1267 nir_tex_instr_src_index(nir_tex_instr *instr, nir_tex_src_type type)
1268 {
1269 for (unsigned i = 0; i < instr->num_srcs; i++)
1270 if (instr->src[i].src_type == type)
1271 return (int) i;
1272
1273 return -1;
1274 }
1275
1276 typedef struct {
1277 union {
1278 float f32[4];
1279 double f64[4];
1280 int32_t i32[4];
1281 uint32_t u32[4];
1282 int64_t i64[4];
1283 uint64_t u64[4];
1284 };
1285 } nir_const_value;
1286
1287 typedef struct {
1288 nir_instr instr;
1289
1290 nir_const_value value;
1291
1292 nir_ssa_def def;
1293 } nir_load_const_instr;
1294
1295 typedef enum {
1296 nir_jump_return,
1297 nir_jump_break,
1298 nir_jump_continue,
1299 } nir_jump_type;
1300
1301 typedef struct {
1302 nir_instr instr;
1303 nir_jump_type type;
1304 } nir_jump_instr;
1305
1306 /* creates a new SSA variable in an undefined state */
1307
1308 typedef struct {
1309 nir_instr instr;
1310 nir_ssa_def def;
1311 } nir_ssa_undef_instr;
1312
1313 typedef struct {
1314 struct exec_node node;
1315
1316 /* The predecessor block corresponding to this source */
1317 struct nir_block *pred;
1318
1319 nir_src src;
1320 } nir_phi_src;
1321
1322 #define nir_foreach_phi_src(phi, entry) \
1323 foreach_list_typed(nir_phi_src, entry, node, &(phi)->srcs)
1324 #define nir_foreach_phi_src_safe(phi, entry) \
1325 foreach_list_typed_safe(nir_phi_src, entry, node, &(phi)->srcs)
1326
1327 typedef struct {
1328 nir_instr instr;
1329
1330 struct exec_list srcs; /** < list of nir_phi_src */
1331
1332 nir_dest dest;
1333 } nir_phi_instr;
1334
1335 typedef struct {
1336 struct exec_node node;
1337 nir_src src;
1338 nir_dest dest;
1339 } nir_parallel_copy_entry;
1340
1341 #define nir_foreach_parallel_copy_entry(pcopy, entry) \
1342 foreach_list_typed(nir_parallel_copy_entry, entry, node, &(pcopy)->entries)
1343
1344 typedef struct {
1345 nir_instr instr;
1346
1347 /* A list of nir_parallel_copy_entry's. The sources of all of the
1348 * entries are copied to the corresponding destinations "in parallel".
1349 * In other words, if we have two entries: a -> b and b -> a, the values
1350 * get swapped.
1351 */
1352 struct exec_list entries;
1353 } nir_parallel_copy_instr;
1354
1355 NIR_DEFINE_CAST(nir_instr_as_alu, nir_instr, nir_alu_instr, instr)
1356 NIR_DEFINE_CAST(nir_instr_as_call, nir_instr, nir_call_instr, instr)
1357 NIR_DEFINE_CAST(nir_instr_as_jump, nir_instr, nir_jump_instr, instr)
1358 NIR_DEFINE_CAST(nir_instr_as_tex, nir_instr, nir_tex_instr, instr)
1359 NIR_DEFINE_CAST(nir_instr_as_intrinsic, nir_instr, nir_intrinsic_instr, instr)
1360 NIR_DEFINE_CAST(nir_instr_as_load_const, nir_instr, nir_load_const_instr, instr)
1361 NIR_DEFINE_CAST(nir_instr_as_ssa_undef, nir_instr, nir_ssa_undef_instr, instr)
1362 NIR_DEFINE_CAST(nir_instr_as_phi, nir_instr, nir_phi_instr, instr)
1363 NIR_DEFINE_CAST(nir_instr_as_parallel_copy, nir_instr,
1364 nir_parallel_copy_instr, instr)
1365
1366 /*
1367 * Control flow
1368 *
1369 * Control flow consists of a tree of control flow nodes, which include
1370 * if-statements and loops. The leaves of the tree are basic blocks, lists of
1371 * instructions that always run start-to-finish. Each basic block also keeps
1372 * track of its successors (blocks which may run immediately after the current
1373 * block) and predecessors (blocks which could have run immediately before the
1374 * current block). Each function also has a start block and an end block which
1375 * all return statements point to (which is always empty). Together, all the
1376 * blocks with their predecessors and successors make up the control flow
1377 * graph (CFG) of the function. There are helpers that modify the tree of
1378 * control flow nodes while modifying the CFG appropriately; these should be
1379 * used instead of modifying the tree directly.
1380 */
1381
1382 typedef enum {
1383 nir_cf_node_block,
1384 nir_cf_node_if,
1385 nir_cf_node_loop,
1386 nir_cf_node_function
1387 } nir_cf_node_type;
1388
1389 typedef struct nir_cf_node {
1390 struct exec_node node;
1391 nir_cf_node_type type;
1392 struct nir_cf_node *parent;
1393 } nir_cf_node;
1394
1395 typedef struct nir_block {
1396 nir_cf_node cf_node;
1397
1398 struct exec_list instr_list; /** < list of nir_instr */
1399
1400 /** generic block index; generated by nir_index_blocks */
1401 unsigned index;
1402
1403 /*
1404 * Each block can only have up to 2 successors, so we put them in a simple
1405 * array - no need for anything more complicated.
1406 */
1407 struct nir_block *successors[2];
1408
1409 /* Set of nir_block predecessors in the CFG */
1410 struct set *predecessors;
1411
1412 /*
1413 * this node's immediate dominator in the dominance tree - set to NULL for
1414 * the start block.
1415 */
1416 struct nir_block *imm_dom;
1417
1418 /* This node's children in the dominance tree */
1419 unsigned num_dom_children;
1420 struct nir_block **dom_children;
1421
1422 /* Set of nir_block's on the dominance frontier of this block */
1423 struct set *dom_frontier;
1424
1425 /*
1426 * These two indices have the property that dom_{pre,post}_index for each
1427 * child of this block in the dominance tree will always be between
1428 * dom_pre_index and dom_post_index for this block, which makes testing if
1429 * a given block is dominated by another block an O(1) operation.
1430 */
1431 unsigned dom_pre_index, dom_post_index;
1432
1433 /* live in and out for this block; used for liveness analysis */
1434 BITSET_WORD *live_in;
1435 BITSET_WORD *live_out;
1436 } nir_block;
1437
1438 static inline nir_instr *
1439 nir_block_first_instr(nir_block *block)
1440 {
1441 struct exec_node *head = exec_list_get_head(&block->instr_list);
1442 return exec_node_data(nir_instr, head, node);
1443 }
1444
1445 static inline nir_instr *
1446 nir_block_last_instr(nir_block *block)
1447 {
1448 struct exec_node *tail = exec_list_get_tail(&block->instr_list);
1449 return exec_node_data(nir_instr, tail, node);
1450 }
1451
1452 #define nir_foreach_instr(block, instr) \
1453 foreach_list_typed(nir_instr, instr, node, &(block)->instr_list)
1454 #define nir_foreach_instr_reverse(block, instr) \
1455 foreach_list_typed_reverse(nir_instr, instr, node, &(block)->instr_list)
1456 #define nir_foreach_instr_safe(block, instr) \
1457 foreach_list_typed_safe(nir_instr, instr, node, &(block)->instr_list)
1458 #define nir_foreach_instr_reverse_safe(block, instr) \
1459 foreach_list_typed_reverse_safe(nir_instr, instr, node, &(block)->instr_list)
1460
1461 typedef struct nir_if {
1462 nir_cf_node cf_node;
1463 nir_src condition;
1464
1465 struct exec_list then_list; /** < list of nir_cf_node */
1466 struct exec_list else_list; /** < list of nir_cf_node */
1467 } nir_if;
1468
1469 static inline nir_cf_node *
1470 nir_if_first_then_node(nir_if *if_stmt)
1471 {
1472 struct exec_node *head = exec_list_get_head(&if_stmt->then_list);
1473 return exec_node_data(nir_cf_node, head, node);
1474 }
1475
1476 static inline nir_cf_node *
1477 nir_if_last_then_node(nir_if *if_stmt)
1478 {
1479 struct exec_node *tail = exec_list_get_tail(&if_stmt->then_list);
1480 return exec_node_data(nir_cf_node, tail, node);
1481 }
1482
1483 static inline nir_cf_node *
1484 nir_if_first_else_node(nir_if *if_stmt)
1485 {
1486 struct exec_node *head = exec_list_get_head(&if_stmt->else_list);
1487 return exec_node_data(nir_cf_node, head, node);
1488 }
1489
1490 static inline nir_cf_node *
1491 nir_if_last_else_node(nir_if *if_stmt)
1492 {
1493 struct exec_node *tail = exec_list_get_tail(&if_stmt->else_list);
1494 return exec_node_data(nir_cf_node, tail, node);
1495 }
1496
1497 typedef struct {
1498 nir_cf_node cf_node;
1499
1500 struct exec_list body; /** < list of nir_cf_node */
1501 } nir_loop;
1502
1503 static inline nir_cf_node *
1504 nir_loop_first_cf_node(nir_loop *loop)
1505 {
1506 return exec_node_data(nir_cf_node, exec_list_get_head(&loop->body), node);
1507 }
1508
1509 static inline nir_cf_node *
1510 nir_loop_last_cf_node(nir_loop *loop)
1511 {
1512 return exec_node_data(nir_cf_node, exec_list_get_tail(&loop->body), node);
1513 }
1514
1515 /**
1516 * Various bits of metadata that can may be created or required by
1517 * optimization and analysis passes
1518 */
1519 typedef enum {
1520 nir_metadata_none = 0x0,
1521 nir_metadata_block_index = 0x1,
1522 nir_metadata_dominance = 0x2,
1523 nir_metadata_live_ssa_defs = 0x4,
1524 nir_metadata_not_properly_reset = 0x8,
1525 } nir_metadata;
1526
1527 typedef struct {
1528 nir_cf_node cf_node;
1529
1530 /** pointer to the function of which this is an implementation */
1531 struct nir_function *function;
1532
1533 struct exec_list body; /** < list of nir_cf_node */
1534
1535 nir_block *end_block;
1536
1537 /** list for all local variables in the function */
1538 struct exec_list locals;
1539
1540 /** array of variables used as parameters */
1541 unsigned num_params;
1542 nir_variable **params;
1543
1544 /** variable used to hold the result of the function */
1545 nir_variable *return_var;
1546
1547 /** list of local registers in the function */
1548 struct exec_list registers;
1549
1550 /** next available local register index */
1551 unsigned reg_alloc;
1552
1553 /** next available SSA value index */
1554 unsigned ssa_alloc;
1555
1556 /* total number of basic blocks, only valid when block_index_dirty = false */
1557 unsigned num_blocks;
1558
1559 nir_metadata valid_metadata;
1560 } nir_function_impl;
1561
1562 static inline nir_block *
1563 nir_start_block(nir_function_impl *impl)
1564 {
1565 return (nir_block *) exec_list_get_head(&impl->body);
1566 }
1567
1568 static inline nir_cf_node *
1569 nir_cf_node_next(nir_cf_node *node)
1570 {
1571 struct exec_node *next = exec_node_get_next(&node->node);
1572 if (exec_node_is_tail_sentinel(next))
1573 return NULL;
1574 else
1575 return exec_node_data(nir_cf_node, next, node);
1576 }
1577
1578 static inline nir_cf_node *
1579 nir_cf_node_prev(nir_cf_node *node)
1580 {
1581 struct exec_node *prev = exec_node_get_prev(&node->node);
1582 if (exec_node_is_head_sentinel(prev))
1583 return NULL;
1584 else
1585 return exec_node_data(nir_cf_node, prev, node);
1586 }
1587
1588 static inline bool
1589 nir_cf_node_is_first(const nir_cf_node *node)
1590 {
1591 return exec_node_is_head_sentinel(node->node.prev);
1592 }
1593
1594 static inline bool
1595 nir_cf_node_is_last(const nir_cf_node *node)
1596 {
1597 return exec_node_is_tail_sentinel(node->node.next);
1598 }
1599
1600 NIR_DEFINE_CAST(nir_cf_node_as_block, nir_cf_node, nir_block, cf_node)
1601 NIR_DEFINE_CAST(nir_cf_node_as_if, nir_cf_node, nir_if, cf_node)
1602 NIR_DEFINE_CAST(nir_cf_node_as_loop, nir_cf_node, nir_loop, cf_node)
1603 NIR_DEFINE_CAST(nir_cf_node_as_function, nir_cf_node, nir_function_impl, cf_node)
1604
1605 typedef enum {
1606 nir_parameter_in,
1607 nir_parameter_out,
1608 nir_parameter_inout,
1609 } nir_parameter_type;
1610
1611 typedef struct {
1612 nir_parameter_type param_type;
1613 const struct glsl_type *type;
1614 } nir_parameter;
1615
1616 typedef struct nir_function {
1617 struct exec_node node;
1618
1619 const char *name;
1620 struct nir_shader *shader;
1621
1622 unsigned num_params;
1623 nir_parameter *params;
1624 const struct glsl_type *return_type;
1625
1626 /** The implementation of this function.
1627 *
1628 * If the function is only declared and not implemented, this is NULL.
1629 */
1630 nir_function_impl *impl;
1631 } nir_function;
1632
1633 typedef struct nir_shader_compiler_options {
1634 bool lower_fdiv;
1635 bool lower_ffma;
1636 bool lower_flrp;
1637 bool lower_fpow;
1638 bool lower_fsat;
1639 bool lower_fsqrt;
1640 bool lower_fmod;
1641 bool lower_bitfield_extract;
1642 bool lower_bitfield_insert;
1643 bool lower_uadd_carry;
1644 bool lower_usub_borrow;
1645 /** lowers fneg and ineg to fsub and isub. */
1646 bool lower_negate;
1647 /** lowers fsub and isub to fadd+fneg and iadd+ineg. */
1648 bool lower_sub;
1649
1650 /* lower {slt,sge,seq,sne} to {flt,fge,feq,fne} + b2f: */
1651 bool lower_scmp;
1652
1653 /* Does the native fdot instruction replicate its result for four
1654 * components? If so, then opt_algebraic_late will turn all fdotN
1655 * instructions into fdot_replicatedN instructions.
1656 */
1657 bool fdot_replicates;
1658
1659 /** lowers ffract to fsub+ffloor: */
1660 bool lower_ffract;
1661
1662 bool lower_pack_half_2x16;
1663 bool lower_pack_unorm_2x16;
1664 bool lower_pack_snorm_2x16;
1665 bool lower_pack_unorm_4x8;
1666 bool lower_pack_snorm_4x8;
1667 bool lower_unpack_half_2x16;
1668 bool lower_unpack_unorm_2x16;
1669 bool lower_unpack_snorm_2x16;
1670 bool lower_unpack_unorm_4x8;
1671 bool lower_unpack_snorm_4x8;
1672
1673 bool lower_extract_byte;
1674 bool lower_extract_word;
1675
1676 /**
1677 * Does the driver support real 32-bit integers? (Otherwise, integers
1678 * are simulated by floats.)
1679 */
1680 bool native_integers;
1681
1682 /* Indicates that the driver only has zero-based vertex id */
1683 bool vertex_id_zero_based;
1684 } nir_shader_compiler_options;
1685
1686 typedef struct nir_shader_info {
1687 const char *name;
1688
1689 /* Descriptive name provided by the client; may be NULL */
1690 const char *label;
1691
1692 /* Number of textures used by this shader */
1693 unsigned num_textures;
1694 /* Number of uniform buffers used by this shader */
1695 unsigned num_ubos;
1696 /* Number of atomic buffers used by this shader */
1697 unsigned num_abos;
1698 /* Number of shader storage buffers used by this shader */
1699 unsigned num_ssbos;
1700 /* Number of images used by this shader */
1701 unsigned num_images;
1702
1703 /* Which inputs are actually read */
1704 uint64_t inputs_read;
1705 /* Which outputs are actually written */
1706 uint64_t outputs_written;
1707 /* Which system values are actually read */
1708 uint64_t system_values_read;
1709
1710 /* Which patch inputs are actually read */
1711 uint32_t patch_inputs_read;
1712 /* Which patch outputs are actually written */
1713 uint32_t patch_outputs_written;
1714
1715 /* Whether or not this shader ever uses textureGather() */
1716 bool uses_texture_gather;
1717
1718 /* Whether or not this shader uses the gl_ClipDistance output */
1719 bool uses_clip_distance_out;
1720
1721 /* Whether or not separate shader objects were used */
1722 bool separate_shader;
1723
1724 /** Was this shader linked with any transform feedback varyings? */
1725 bool has_transform_feedback_varyings;
1726
1727 union {
1728 struct {
1729 /** The number of vertices recieves per input primitive */
1730 unsigned vertices_in;
1731
1732 /** The output primitive type (GL enum value) */
1733 unsigned output_primitive;
1734
1735 /** The maximum number of vertices the geometry shader might write. */
1736 unsigned vertices_out;
1737
1738 /** 1 .. MAX_GEOMETRY_SHADER_INVOCATIONS */
1739 unsigned invocations;
1740
1741 /** Whether or not this shader uses EndPrimitive */
1742 bool uses_end_primitive;
1743
1744 /** Whether or not this shader uses non-zero streams */
1745 bool uses_streams;
1746 } gs;
1747
1748 struct {
1749 bool uses_discard;
1750
1751 /**
1752 * Whether early fragment tests are enabled as defined by
1753 * ARB_shader_image_load_store.
1754 */
1755 bool early_fragment_tests;
1756
1757 /** gl_FragDepth layout for ARB_conservative_depth. */
1758 enum gl_frag_depth_layout depth_layout;
1759 } fs;
1760
1761 struct {
1762 unsigned local_size[3];
1763 } cs;
1764
1765 struct {
1766 /** The number of vertices in the TCS output patch. */
1767 unsigned vertices_out;
1768 } tcs;
1769 };
1770 } nir_shader_info;
1771
1772 typedef struct nir_shader {
1773 /** list of uniforms (nir_variable) */
1774 struct exec_list uniforms;
1775
1776 /** list of inputs (nir_variable) */
1777 struct exec_list inputs;
1778
1779 /** list of outputs (nir_variable) */
1780 struct exec_list outputs;
1781
1782 /** list of shared compute variables (nir_variable) */
1783 struct exec_list shared;
1784
1785 /** Set of driver-specific options for the shader.
1786 *
1787 * The memory for the options is expected to be kept in a single static
1788 * copy by the driver.
1789 */
1790 const struct nir_shader_compiler_options *options;
1791
1792 /** Various bits of compile-time information about a given shader */
1793 struct nir_shader_info info;
1794
1795 /** list of global variables in the shader (nir_variable) */
1796 struct exec_list globals;
1797
1798 /** list of system value variables in the shader (nir_variable) */
1799 struct exec_list system_values;
1800
1801 struct exec_list functions; /** < list of nir_function */
1802
1803 /** list of global register in the shader */
1804 struct exec_list registers;
1805
1806 /** next available global register index */
1807 unsigned reg_alloc;
1808
1809 /**
1810 * the highest index a load_input_*, load_uniform_*, etc. intrinsic can
1811 * access plus one
1812 */
1813 unsigned num_inputs, num_uniforms, num_outputs, num_shared;
1814
1815 /** The shader stage, such as MESA_SHADER_VERTEX. */
1816 gl_shader_stage stage;
1817 } nir_shader;
1818
1819 static inline nir_function *
1820 nir_shader_get_entrypoint(nir_shader *shader)
1821 {
1822 assert(exec_list_length(&shader->functions) == 1);
1823 struct exec_node *func_node = exec_list_get_head(&shader->functions);
1824 nir_function *func = exec_node_data(nir_function, func_node, node);
1825 return func;
1826 }
1827
1828 #define nir_foreach_function(shader, func) \
1829 foreach_list_typed(nir_function, func, node, &(shader)->functions)
1830
1831 nir_shader *nir_shader_create(void *mem_ctx,
1832 gl_shader_stage stage,
1833 const nir_shader_compiler_options *options);
1834
1835 /** creates a register, including assigning it an index and adding it to the list */
1836 nir_register *nir_global_reg_create(nir_shader *shader);
1837
1838 nir_register *nir_local_reg_create(nir_function_impl *impl);
1839
1840 void nir_reg_remove(nir_register *reg);
1841
1842 /** Adds a variable to the appropreate list in nir_shader */
1843 void nir_shader_add_variable(nir_shader *shader, nir_variable *var);
1844
1845 static inline void
1846 nir_function_impl_add_variable(nir_function_impl *impl, nir_variable *var)
1847 {
1848 assert(var->data.mode == nir_var_local);
1849 exec_list_push_tail(&impl->locals, &var->node);
1850 }
1851
1852 /** creates a variable, sets a few defaults, and adds it to the list */
1853 nir_variable *nir_variable_create(nir_shader *shader,
1854 nir_variable_mode mode,
1855 const struct glsl_type *type,
1856 const char *name);
1857 /** creates a local variable and adds it to the list */
1858 nir_variable *nir_local_variable_create(nir_function_impl *impl,
1859 const struct glsl_type *type,
1860 const char *name);
1861
1862 /** creates a function and adds it to the shader's list of functions */
1863 nir_function *nir_function_create(nir_shader *shader, const char *name);
1864
1865 nir_function_impl *nir_function_impl_create(nir_function *func);
1866 /** creates a function_impl that isn't tied to any particular function */
1867 nir_function_impl *nir_function_impl_create_bare(nir_shader *shader);
1868
1869 nir_block *nir_block_create(nir_shader *shader);
1870 nir_if *nir_if_create(nir_shader *shader);
1871 nir_loop *nir_loop_create(nir_shader *shader);
1872
1873 nir_function_impl *nir_cf_node_get_function(nir_cf_node *node);
1874
1875 /** requests that the given pieces of metadata be generated */
1876 void nir_metadata_require(nir_function_impl *impl, nir_metadata required);
1877 /** dirties all but the preserved metadata */
1878 void nir_metadata_preserve(nir_function_impl *impl, nir_metadata preserved);
1879
1880 /** creates an instruction with default swizzle/writemask/etc. with NULL registers */
1881 nir_alu_instr *nir_alu_instr_create(nir_shader *shader, nir_op op);
1882
1883 nir_jump_instr *nir_jump_instr_create(nir_shader *shader, nir_jump_type type);
1884
1885 nir_load_const_instr *nir_load_const_instr_create(nir_shader *shader,
1886 unsigned num_components);
1887
1888 nir_intrinsic_instr *nir_intrinsic_instr_create(nir_shader *shader,
1889 nir_intrinsic_op op);
1890
1891 nir_call_instr *nir_call_instr_create(nir_shader *shader,
1892 nir_function *callee);
1893
1894 nir_tex_instr *nir_tex_instr_create(nir_shader *shader, unsigned num_srcs);
1895
1896 nir_phi_instr *nir_phi_instr_create(nir_shader *shader);
1897
1898 nir_parallel_copy_instr *nir_parallel_copy_instr_create(nir_shader *shader);
1899
1900 nir_ssa_undef_instr *nir_ssa_undef_instr_create(nir_shader *shader,
1901 unsigned num_components);
1902
1903 nir_deref_var *nir_deref_var_create(void *mem_ctx, nir_variable *var);
1904 nir_deref_array *nir_deref_array_create(void *mem_ctx);
1905 nir_deref_struct *nir_deref_struct_create(void *mem_ctx, unsigned field_index);
1906
1907 nir_deref *nir_copy_deref(void *mem_ctx, nir_deref *deref);
1908
1909 nir_load_const_instr *
1910 nir_deref_get_const_initializer_load(nir_shader *shader, nir_deref_var *deref);
1911
1912 /**
1913 * NIR Cursors and Instruction Insertion API
1914 * @{
1915 *
1916 * A tiny struct representing a point to insert/extract instructions or
1917 * control flow nodes. Helps reduce the combinatorial explosion of possible
1918 * points to insert/extract.
1919 *
1920 * \sa nir_control_flow.h
1921 */
1922 typedef enum {
1923 nir_cursor_before_block,
1924 nir_cursor_after_block,
1925 nir_cursor_before_instr,
1926 nir_cursor_after_instr,
1927 } nir_cursor_option;
1928
1929 typedef struct {
1930 nir_cursor_option option;
1931 union {
1932 nir_block *block;
1933 nir_instr *instr;
1934 };
1935 } nir_cursor;
1936
1937 static inline nir_block *
1938 nir_cursor_current_block(nir_cursor cursor)
1939 {
1940 if (cursor.option == nir_cursor_before_instr ||
1941 cursor.option == nir_cursor_after_instr) {
1942 return cursor.instr->block;
1943 } else {
1944 return cursor.block;
1945 }
1946 }
1947
1948 bool nir_cursors_equal(nir_cursor a, nir_cursor b);
1949
1950 static inline nir_cursor
1951 nir_before_block(nir_block *block)
1952 {
1953 nir_cursor cursor;
1954 cursor.option = nir_cursor_before_block;
1955 cursor.block = block;
1956 return cursor;
1957 }
1958
1959 static inline nir_cursor
1960 nir_after_block(nir_block *block)
1961 {
1962 nir_cursor cursor;
1963 cursor.option = nir_cursor_after_block;
1964 cursor.block = block;
1965 return cursor;
1966 }
1967
1968 static inline nir_cursor
1969 nir_before_instr(nir_instr *instr)
1970 {
1971 nir_cursor cursor;
1972 cursor.option = nir_cursor_before_instr;
1973 cursor.instr = instr;
1974 return cursor;
1975 }
1976
1977 static inline nir_cursor
1978 nir_after_instr(nir_instr *instr)
1979 {
1980 nir_cursor cursor;
1981 cursor.option = nir_cursor_after_instr;
1982 cursor.instr = instr;
1983 return cursor;
1984 }
1985
1986 static inline nir_cursor
1987 nir_after_block_before_jump(nir_block *block)
1988 {
1989 nir_instr *last_instr = nir_block_last_instr(block);
1990 if (last_instr && last_instr->type == nir_instr_type_jump) {
1991 return nir_before_instr(last_instr);
1992 } else {
1993 return nir_after_block(block);
1994 }
1995 }
1996
1997 static inline nir_cursor
1998 nir_before_cf_node(nir_cf_node *node)
1999 {
2000 if (node->type == nir_cf_node_block)
2001 return nir_before_block(nir_cf_node_as_block(node));
2002
2003 return nir_after_block(nir_cf_node_as_block(nir_cf_node_prev(node)));
2004 }
2005
2006 static inline nir_cursor
2007 nir_after_cf_node(nir_cf_node *node)
2008 {
2009 if (node->type == nir_cf_node_block)
2010 return nir_after_block(nir_cf_node_as_block(node));
2011
2012 return nir_before_block(nir_cf_node_as_block(nir_cf_node_next(node)));
2013 }
2014
2015 static inline nir_cursor
2016 nir_after_cf_node_and_phis(nir_cf_node *node)
2017 {
2018 if (node->type == nir_cf_node_block)
2019 return nir_after_block(nir_cf_node_as_block(node));
2020
2021 nir_block *block = nir_cf_node_as_block(nir_cf_node_next(node));
2022 assert(block->cf_node.type == nir_cf_node_block);
2023
2024 nir_foreach_instr(block, instr) {
2025 if (instr->type != nir_instr_type_phi)
2026 return nir_before_instr(instr);
2027 }
2028 return nir_after_block(block);
2029 }
2030
2031 static inline nir_cursor
2032 nir_before_cf_list(struct exec_list *cf_list)
2033 {
2034 nir_cf_node *first_node = exec_node_data(nir_cf_node,
2035 exec_list_get_head(cf_list), node);
2036 return nir_before_cf_node(first_node);
2037 }
2038
2039 static inline nir_cursor
2040 nir_after_cf_list(struct exec_list *cf_list)
2041 {
2042 nir_cf_node *last_node = exec_node_data(nir_cf_node,
2043 exec_list_get_tail(cf_list), node);
2044 return nir_after_cf_node(last_node);
2045 }
2046
2047 /**
2048 * Insert a NIR instruction at the given cursor.
2049 *
2050 * Note: This does not update the cursor.
2051 */
2052 void nir_instr_insert(nir_cursor cursor, nir_instr *instr);
2053
2054 static inline void
2055 nir_instr_insert_before(nir_instr *instr, nir_instr *before)
2056 {
2057 nir_instr_insert(nir_before_instr(instr), before);
2058 }
2059
2060 static inline void
2061 nir_instr_insert_after(nir_instr *instr, nir_instr *after)
2062 {
2063 nir_instr_insert(nir_after_instr(instr), after);
2064 }
2065
2066 static inline void
2067 nir_instr_insert_before_block(nir_block *block, nir_instr *before)
2068 {
2069 nir_instr_insert(nir_before_block(block), before);
2070 }
2071
2072 static inline void
2073 nir_instr_insert_after_block(nir_block *block, nir_instr *after)
2074 {
2075 nir_instr_insert(nir_after_block(block), after);
2076 }
2077
2078 static inline void
2079 nir_instr_insert_before_cf(nir_cf_node *node, nir_instr *before)
2080 {
2081 nir_instr_insert(nir_before_cf_node(node), before);
2082 }
2083
2084 static inline void
2085 nir_instr_insert_after_cf(nir_cf_node *node, nir_instr *after)
2086 {
2087 nir_instr_insert(nir_after_cf_node(node), after);
2088 }
2089
2090 static inline void
2091 nir_instr_insert_before_cf_list(struct exec_list *list, nir_instr *before)
2092 {
2093 nir_instr_insert(nir_before_cf_list(list), before);
2094 }
2095
2096 static inline void
2097 nir_instr_insert_after_cf_list(struct exec_list *list, nir_instr *after)
2098 {
2099 nir_instr_insert(nir_after_cf_list(list), after);
2100 }
2101
2102 void nir_instr_remove(nir_instr *instr);
2103
2104 /** @} */
2105
2106 typedef bool (*nir_foreach_ssa_def_cb)(nir_ssa_def *def, void *state);
2107 typedef bool (*nir_foreach_dest_cb)(nir_dest *dest, void *state);
2108 typedef bool (*nir_foreach_src_cb)(nir_src *src, void *state);
2109 bool nir_foreach_ssa_def(nir_instr *instr, nir_foreach_ssa_def_cb cb,
2110 void *state);
2111 bool nir_foreach_dest(nir_instr *instr, nir_foreach_dest_cb cb, void *state);
2112 bool nir_foreach_src(nir_instr *instr, nir_foreach_src_cb cb, void *state);
2113
2114 nir_const_value *nir_src_as_const_value(nir_src src);
2115 bool nir_src_is_dynamically_uniform(nir_src src);
2116 bool nir_srcs_equal(nir_src src1, nir_src src2);
2117 void nir_instr_rewrite_src(nir_instr *instr, nir_src *src, nir_src new_src);
2118 void nir_instr_move_src(nir_instr *dest_instr, nir_src *dest, nir_src *src);
2119 void nir_if_rewrite_condition(nir_if *if_stmt, nir_src new_src);
2120 void nir_instr_rewrite_dest(nir_instr *instr, nir_dest *dest,
2121 nir_dest new_dest);
2122
2123 void nir_ssa_dest_init(nir_instr *instr, nir_dest *dest,
2124 unsigned num_components, unsigned bit_size,
2125 const char *name);
2126 void nir_ssa_def_init(nir_instr *instr, nir_ssa_def *def,
2127 unsigned num_components, unsigned bit_size,
2128 const char *name);
2129 void nir_ssa_def_rewrite_uses(nir_ssa_def *def, nir_src new_src);
2130 void nir_ssa_def_rewrite_uses_after(nir_ssa_def *def, nir_src new_src,
2131 nir_instr *after_me);
2132
2133 /* visits basic blocks in source-code order */
2134 typedef bool (*nir_foreach_block_cb)(nir_block *block, void *state);
2135 bool nir_foreach_block(nir_function_impl *impl, nir_foreach_block_cb cb,
2136 void *state);
2137 bool nir_foreach_block_reverse(nir_function_impl *impl, nir_foreach_block_cb cb,
2138 void *state);
2139 bool nir_foreach_block_in_cf_node(nir_cf_node *node, nir_foreach_block_cb cb,
2140 void *state);
2141
2142 /* If the following CF node is an if, this function returns that if.
2143 * Otherwise, it returns NULL.
2144 */
2145 nir_if *nir_block_get_following_if(nir_block *block);
2146
2147 nir_loop *nir_block_get_following_loop(nir_block *block);
2148
2149 void nir_index_local_regs(nir_function_impl *impl);
2150 void nir_index_global_regs(nir_shader *shader);
2151 void nir_index_ssa_defs(nir_function_impl *impl);
2152 unsigned nir_index_instrs(nir_function_impl *impl);
2153
2154 void nir_index_blocks(nir_function_impl *impl);
2155
2156 void nir_print_shader(nir_shader *shader, FILE *fp);
2157 void nir_print_instr(const nir_instr *instr, FILE *fp);
2158
2159 nir_shader *nir_shader_clone(void *mem_ctx, const nir_shader *s);
2160 nir_function_impl *nir_function_impl_clone(const nir_function_impl *fi);
2161 nir_constant *nir_constant_clone(const nir_constant *c, nir_variable *var);
2162 nir_variable *nir_variable_clone(const nir_variable *c, nir_shader *shader);
2163
2164 #ifdef DEBUG
2165 void nir_validate_shader(nir_shader *shader);
2166 void nir_metadata_set_validation_flag(nir_shader *shader);
2167 void nir_metadata_check_validation_flag(nir_shader *shader);
2168
2169 #include "util/debug.h"
2170 static inline bool
2171 should_clone_nir(void)
2172 {
2173 static int should_clone = -1;
2174 if (should_clone < 0)
2175 should_clone = env_var_as_boolean("NIR_TEST_CLONE", false);
2176
2177 return should_clone;
2178 }
2179 #else
2180 static inline void nir_validate_shader(nir_shader *shader) { (void) shader; }
2181 static inline void nir_metadata_set_validation_flag(nir_shader *shader) { (void) shader; }
2182 static inline void nir_metadata_check_validation_flag(nir_shader *shader) { (void) shader; }
2183 static inline bool should_clone_nir(void) { return false; }
2184 #endif /* DEBUG */
2185
2186 #define _PASS(nir, do_pass) do { \
2187 do_pass \
2188 nir_validate_shader(nir); \
2189 if (should_clone_nir()) { \
2190 nir_shader *clone = nir_shader_clone(ralloc_parent(nir), nir); \
2191 ralloc_free(nir); \
2192 nir = clone; \
2193 } \
2194 } while (0)
2195
2196 #define NIR_PASS(progress, nir, pass, ...) _PASS(nir, \
2197 nir_metadata_set_validation_flag(nir); \
2198 if (pass(nir, ##__VA_ARGS__)) { \
2199 progress = true; \
2200 nir_metadata_check_validation_flag(nir); \
2201 } \
2202 )
2203
2204 #define NIR_PASS_V(nir, pass, ...) _PASS(nir, \
2205 pass(nir, ##__VA_ARGS__); \
2206 )
2207
2208 void nir_calc_dominance_impl(nir_function_impl *impl);
2209 void nir_calc_dominance(nir_shader *shader);
2210
2211 nir_block *nir_dominance_lca(nir_block *b1, nir_block *b2);
2212 bool nir_block_dominates(nir_block *parent, nir_block *child);
2213
2214 void nir_dump_dom_tree_impl(nir_function_impl *impl, FILE *fp);
2215 void nir_dump_dom_tree(nir_shader *shader, FILE *fp);
2216
2217 void nir_dump_dom_frontier_impl(nir_function_impl *impl, FILE *fp);
2218 void nir_dump_dom_frontier(nir_shader *shader, FILE *fp);
2219
2220 void nir_dump_cfg_impl(nir_function_impl *impl, FILE *fp);
2221 void nir_dump_cfg(nir_shader *shader, FILE *fp);
2222
2223 int nir_gs_count_vertices(const nir_shader *shader);
2224
2225 bool nir_split_var_copies(nir_shader *shader);
2226
2227 bool nir_lower_returns_impl(nir_function_impl *impl);
2228 bool nir_lower_returns(nir_shader *shader);
2229
2230 bool nir_inline_functions(nir_shader *shader);
2231
2232 void nir_lower_var_copy_instr(nir_intrinsic_instr *copy, void *mem_ctx);
2233 void nir_lower_var_copies(nir_shader *shader);
2234
2235 bool nir_lower_global_vars_to_local(nir_shader *shader);
2236
2237 bool nir_lower_indirect_derefs(nir_shader *shader, uint32_t mode_mask);
2238
2239 bool nir_lower_locals_to_regs(nir_shader *shader);
2240
2241 void nir_lower_outputs_to_temporaries(nir_shader *shader,
2242 nir_function *entrypoint);
2243
2244 void nir_shader_gather_info(nir_shader *shader, nir_function_impl *entrypoint);
2245
2246 void nir_assign_var_locations(struct exec_list *var_list,
2247 unsigned *size,
2248 int (*type_size)(const struct glsl_type *));
2249
2250 void nir_lower_io(nir_shader *shader,
2251 nir_variable_mode mode,
2252 int (*type_size)(const struct glsl_type *));
2253 nir_src *nir_get_io_offset_src(nir_intrinsic_instr *instr);
2254 nir_src *nir_get_io_vertex_index_src(nir_intrinsic_instr *instr);
2255
2256 void nir_lower_vars_to_ssa(nir_shader *shader);
2257
2258 bool nir_remove_dead_variables(nir_shader *shader, nir_variable_mode mode);
2259
2260 void nir_move_vec_src_uses_to_dest(nir_shader *shader);
2261 bool nir_lower_vec_to_movs(nir_shader *shader);
2262 void nir_lower_alu_to_scalar(nir_shader *shader);
2263 void nir_lower_load_const_to_scalar(nir_shader *shader);
2264
2265 void nir_lower_phis_to_scalar(nir_shader *shader);
2266
2267 void nir_lower_samplers(nir_shader *shader,
2268 const struct gl_shader_program *shader_program);
2269
2270 bool nir_lower_system_values(nir_shader *shader);
2271
2272 typedef struct nir_lower_tex_options {
2273 /**
2274 * bitmask of (1 << GLSL_SAMPLER_DIM_x) to control for which
2275 * sampler types a texture projector is lowered.
2276 */
2277 unsigned lower_txp;
2278
2279 /**
2280 * If true, lower rect textures to 2D, using txs to fetch the
2281 * texture dimensions and dividing the texture coords by the
2282 * texture dims to normalize.
2283 */
2284 bool lower_rect;
2285
2286 /**
2287 * To emulate certain texture wrap modes, this can be used
2288 * to saturate the specified tex coord to [0.0, 1.0]. The
2289 * bits are according to sampler #, ie. if, for example:
2290 *
2291 * (conf->saturate_s & (1 << n))
2292 *
2293 * is true, then the s coord for sampler n is saturated.
2294 *
2295 * Note that clamping must happen *after* projector lowering
2296 * so any projected texture sample instruction with a clamped
2297 * coordinate gets automatically lowered, regardless of the
2298 * 'lower_txp' setting.
2299 */
2300 unsigned saturate_s;
2301 unsigned saturate_t;
2302 unsigned saturate_r;
2303
2304 /* Bitmask of textures that need swizzling.
2305 *
2306 * If (swizzle_result & (1 << texture_index)), then the swizzle in
2307 * swizzles[texture_index] is applied to the result of the texturing
2308 * operation.
2309 */
2310 unsigned swizzle_result;
2311
2312 /* A swizzle for each texture. Values 0-3 represent x, y, z, or w swizzles
2313 * while 4 and 5 represent 0 and 1 respectively.
2314 */
2315 uint8_t swizzles[32][4];
2316 } nir_lower_tex_options;
2317
2318 bool nir_lower_tex(nir_shader *shader,
2319 const nir_lower_tex_options *options);
2320
2321 void nir_lower_idiv(nir_shader *shader);
2322
2323 void nir_lower_clip_vs(nir_shader *shader, unsigned ucp_enables);
2324 void nir_lower_clip_fs(nir_shader *shader, unsigned ucp_enables);
2325
2326 void nir_lower_two_sided_color(nir_shader *shader);
2327
2328 void nir_lower_atomics(nir_shader *shader,
2329 const struct gl_shader_program *shader_program);
2330 void nir_lower_to_source_mods(nir_shader *shader);
2331
2332 bool nir_lower_gs_intrinsics(nir_shader *shader);
2333
2334 bool nir_normalize_cubemap_coords(nir_shader *shader);
2335
2336 void nir_live_ssa_defs_impl(nir_function_impl *impl);
2337 bool nir_ssa_defs_interfere(nir_ssa_def *a, nir_ssa_def *b);
2338
2339 void nir_convert_to_ssa_impl(nir_function_impl *impl);
2340 void nir_convert_to_ssa(nir_shader *shader);
2341
2342 bool nir_repair_ssa_impl(nir_function_impl *impl);
2343 bool nir_repair_ssa(nir_shader *shader);
2344
2345 /* If phi_webs_only is true, only convert SSA values involved in phi nodes to
2346 * registers. If false, convert all values (even those not involved in a phi
2347 * node) to registers.
2348 */
2349 void nir_convert_from_ssa(nir_shader *shader, bool phi_webs_only);
2350
2351 bool nir_opt_algebraic(nir_shader *shader);
2352 bool nir_opt_algebraic_late(nir_shader *shader);
2353 bool nir_opt_constant_folding(nir_shader *shader);
2354
2355 bool nir_opt_global_to_local(nir_shader *shader);
2356
2357 bool nir_copy_prop(nir_shader *shader);
2358
2359 bool nir_opt_cse(nir_shader *shader);
2360
2361 bool nir_opt_dce(nir_shader *shader);
2362
2363 bool nir_opt_dead_cf(nir_shader *shader);
2364
2365 void nir_opt_gcm(nir_shader *shader);
2366
2367 bool nir_opt_peephole_select(nir_shader *shader);
2368
2369 bool nir_opt_remove_phis(nir_shader *shader);
2370
2371 bool nir_opt_undef(nir_shader *shader);
2372
2373 void nir_sweep(nir_shader *shader);
2374
2375 nir_intrinsic_op nir_intrinsic_from_system_value(gl_system_value val);
2376 gl_system_value nir_system_value_from_intrinsic(nir_intrinsic_op intrin);
2377
2378 #ifdef __cplusplus
2379 } /* extern "C" */
2380 #endif