nir: Add a pass for fixing deref modes
[mesa.git] / src / compiler / nir / nir.h
1 /*
2 * Copyright © 2014 Connor Abbott
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Connor Abbott (cwabbott0@gmail.com)
25 *
26 */
27
28 #ifndef NIR_H
29 #define NIR_H
30
31 #include "util/hash_table.h"
32 #include "compiler/glsl/list.h"
33 #include "GL/gl.h" /* GLenum */
34 #include "util/list.h"
35 #include "util/ralloc.h"
36 #include "util/set.h"
37 #include "util/bitset.h"
38 #include "util/macros.h"
39 #include "compiler/nir_types.h"
40 #include "compiler/shader_enums.h"
41 #include "compiler/shader_info.h"
42 #include <stdio.h>
43
44 #ifndef NDEBUG
45 #include "util/debug.h"
46 #endif /* NDEBUG */
47
48 #include "nir_opcodes.h"
49
50 #if defined(_WIN32) && !defined(snprintf)
51 #define snprintf _snprintf
52 #endif
53
54 #ifdef __cplusplus
55 extern "C" {
56 #endif
57
58 #define NIR_FALSE 0u
59 #define NIR_TRUE (~0u)
60
61 /** Defines a cast function
62 *
63 * This macro defines a cast function from in_type to out_type where
64 * out_type is some structure type that contains a field of type out_type.
65 *
66 * Note that you have to be a bit careful as the generated cast function
67 * destroys constness.
68 */
69 #define NIR_DEFINE_CAST(name, in_type, out_type, field, \
70 type_field, type_value) \
71 static inline out_type * \
72 name(const in_type *parent) \
73 { \
74 assert(parent && parent->type_field == type_value); \
75 return exec_node_data(out_type, parent, field); \
76 }
77
78 struct nir_function;
79 struct nir_shader;
80 struct nir_instr;
81
82
83 /**
84 * Description of built-in state associated with a uniform
85 *
86 * \sa nir_variable::state_slots
87 */
88 typedef struct {
89 gl_state_index16 tokens[STATE_LENGTH];
90 int swizzle;
91 } nir_state_slot;
92
93 typedef enum {
94 nir_var_shader_in = (1 << 0),
95 nir_var_shader_out = (1 << 1),
96 nir_var_global = (1 << 2),
97 nir_var_local = (1 << 3),
98 nir_var_uniform = (1 << 4),
99 nir_var_shader_storage = (1 << 5),
100 nir_var_system_value = (1 << 6),
101 nir_var_param = (1 << 7),
102 nir_var_shared = (1 << 8),
103 nir_var_all = ~0,
104 } nir_variable_mode;
105
106 /**
107 * Rounding modes.
108 */
109 typedef enum {
110 nir_rounding_mode_undef = 0,
111 nir_rounding_mode_rtne = 1, /* round to nearest even */
112 nir_rounding_mode_ru = 2, /* round up */
113 nir_rounding_mode_rd = 3, /* round down */
114 nir_rounding_mode_rtz = 4, /* round towards zero */
115 } nir_rounding_mode;
116
117 typedef union {
118 float f32[4];
119 double f64[4];
120 int8_t i8[4];
121 uint8_t u8[4];
122 int16_t i16[4];
123 uint16_t u16[4];
124 int32_t i32[4];
125 uint32_t u32[4];
126 int64_t i64[4];
127 uint64_t u64[4];
128 } nir_const_value;
129
130 typedef struct nir_constant {
131 /**
132 * Value of the constant.
133 *
134 * The field used to back the values supplied by the constant is determined
135 * by the type associated with the \c nir_variable. Constants may be
136 * scalars, vectors, or matrices.
137 */
138 nir_const_value values[4];
139
140 /* we could get this from the var->type but makes clone *much* easier to
141 * not have to care about the type.
142 */
143 unsigned num_elements;
144
145 /* Array elements / Structure Fields */
146 struct nir_constant **elements;
147 } nir_constant;
148
149 /**
150 * \brief Layout qualifiers for gl_FragDepth.
151 *
152 * The AMD/ARB_conservative_depth extensions allow gl_FragDepth to be redeclared
153 * with a layout qualifier.
154 */
155 typedef enum {
156 nir_depth_layout_none, /**< No depth layout is specified. */
157 nir_depth_layout_any,
158 nir_depth_layout_greater,
159 nir_depth_layout_less,
160 nir_depth_layout_unchanged
161 } nir_depth_layout;
162
163 /**
164 * Either a uniform, global variable, shader input, or shader output. Based on
165 * ir_variable - it should be easy to translate between the two.
166 */
167
168 typedef struct nir_variable {
169 struct exec_node node;
170
171 /**
172 * Declared type of the variable
173 */
174 const struct glsl_type *type;
175
176 /**
177 * Declared name of the variable
178 */
179 char *name;
180
181 struct nir_variable_data {
182 /**
183 * Storage class of the variable.
184 *
185 * \sa nir_variable_mode
186 */
187 nir_variable_mode mode;
188
189 /**
190 * Is the variable read-only?
191 *
192 * This is set for variables declared as \c const, shader inputs,
193 * and uniforms.
194 */
195 unsigned read_only:1;
196 unsigned centroid:1;
197 unsigned sample:1;
198 unsigned patch:1;
199 unsigned invariant:1;
200
201 /**
202 * When separate shader programs are enabled, only input/outputs between
203 * the stages of a multi-stage separate program can be safely removed
204 * from the shader interface. Other input/outputs must remains active.
205 *
206 * This is also used to make sure xfb varyings that are unused by the
207 * fragment shader are not removed.
208 */
209 unsigned always_active_io:1;
210
211 /**
212 * Interpolation mode for shader inputs / outputs
213 *
214 * \sa glsl_interp_mode
215 */
216 unsigned interpolation:2;
217
218 /**
219 * \name ARB_fragment_coord_conventions
220 * @{
221 */
222 unsigned origin_upper_left:1;
223 unsigned pixel_center_integer:1;
224 /*@}*/
225
226 /**
227 * If non-zero, then this variable may be packed along with other variables
228 * into a single varying slot, so this offset should be applied when
229 * accessing components. For example, an offset of 1 means that the x
230 * component of this variable is actually stored in component y of the
231 * location specified by \c location.
232 */
233 unsigned location_frac:2;
234
235 /**
236 * If true, this variable represents an array of scalars that should
237 * be tightly packed. In other words, consecutive array elements
238 * should be stored one component apart, rather than one slot apart.
239 */
240 unsigned compact:1;
241
242 /**
243 * Whether this is a fragment shader output implicitly initialized with
244 * the previous contents of the specified render target at the
245 * framebuffer location corresponding to this shader invocation.
246 */
247 unsigned fb_fetch_output:1;
248
249 /**
250 * Non-zero if this variable is considered bindless as defined by
251 * ARB_bindless_texture.
252 */
253 unsigned bindless:1;
254
255 /**
256 * Was an explicit binding set in the shader?
257 */
258 unsigned explicit_binding:1;
259
260 /**
261 * \brief Layout qualifier for gl_FragDepth.
262 *
263 * This is not equal to \c ir_depth_layout_none if and only if this
264 * variable is \c gl_FragDepth and a layout qualifier is specified.
265 */
266 nir_depth_layout depth_layout;
267
268 /**
269 * Storage location of the base of this variable
270 *
271 * The precise meaning of this field depends on the nature of the variable.
272 *
273 * - Vertex shader input: one of the values from \c gl_vert_attrib.
274 * - Vertex shader output: one of the values from \c gl_varying_slot.
275 * - Geometry shader input: one of the values from \c gl_varying_slot.
276 * - Geometry shader output: one of the values from \c gl_varying_slot.
277 * - Fragment shader input: one of the values from \c gl_varying_slot.
278 * - Fragment shader output: one of the values from \c gl_frag_result.
279 * - Uniforms: Per-stage uniform slot number for default uniform block.
280 * - Uniforms: Index within the uniform block definition for UBO members.
281 * - Non-UBO Uniforms: uniform slot number.
282 * - Other: This field is not currently used.
283 *
284 * If the variable is a uniform, shader input, or shader output, and the
285 * slot has not been assigned, the value will be -1.
286 */
287 int location;
288
289 /**
290 * The actual location of the variable in the IR. Only valid for inputs
291 * and outputs.
292 */
293 unsigned int driver_location;
294
295 /**
296 * Vertex stream output identifier.
297 *
298 * For packed outputs, bit 31 is set and bits [2*i+1,2*i] indicate the
299 * stream of the i-th component.
300 */
301 unsigned stream;
302
303 /**
304 * output index for dual source blending.
305 */
306 int index;
307
308 /**
309 * Descriptor set binding for sampler or UBO.
310 */
311 int descriptor_set;
312
313 /**
314 * Initial binding point for a sampler or UBO.
315 *
316 * For array types, this represents the binding point for the first element.
317 */
318 int binding;
319
320 /**
321 * Location an atomic counter is stored at.
322 */
323 unsigned offset;
324
325 /**
326 * ARB_shader_image_load_store qualifiers.
327 */
328 struct {
329 bool read_only; /**< "readonly" qualifier. */
330 bool write_only; /**< "writeonly" qualifier. */
331 bool coherent;
332 bool _volatile;
333 bool restrict_flag;
334
335 /** Image internal format if specified explicitly, otherwise GL_NONE. */
336 GLenum format;
337 } image;
338 } data;
339
340 /**
341 * Built-in state that backs this uniform
342 *
343 * Once set at variable creation, \c state_slots must remain invariant.
344 * This is because, ideally, this array would be shared by all clones of
345 * this variable in the IR tree. In other words, we'd really like for it
346 * to be a fly-weight.
347 *
348 * If the variable is not a uniform, \c num_state_slots will be zero and
349 * \c state_slots will be \c NULL.
350 */
351 /*@{*/
352 unsigned num_state_slots; /**< Number of state slots used */
353 nir_state_slot *state_slots; /**< State descriptors. */
354 /*@}*/
355
356 /**
357 * Constant expression assigned in the initializer of the variable
358 *
359 * This field should only be used temporarily by creators of NIR shaders
360 * and then lower_constant_initializers can be used to get rid of them.
361 * Most of the rest of NIR ignores this field or asserts that it's NULL.
362 */
363 nir_constant *constant_initializer;
364
365 /**
366 * For variables that are in an interface block or are an instance of an
367 * interface block, this is the \c GLSL_TYPE_INTERFACE type for that block.
368 *
369 * \sa ir_variable::location
370 */
371 const struct glsl_type *interface_type;
372 } nir_variable;
373
374 #define nir_foreach_variable(var, var_list) \
375 foreach_list_typed(nir_variable, var, node, var_list)
376
377 #define nir_foreach_variable_safe(var, var_list) \
378 foreach_list_typed_safe(nir_variable, var, node, var_list)
379
380 static inline bool
381 nir_variable_is_global(const nir_variable *var)
382 {
383 return var->data.mode != nir_var_local && var->data.mode != nir_var_param;
384 }
385
386 typedef struct nir_register {
387 struct exec_node node;
388
389 unsigned num_components; /** < number of vector components */
390 unsigned num_array_elems; /** < size of array (0 for no array) */
391
392 /* The bit-size of each channel; must be one of 8, 16, 32, or 64 */
393 uint8_t bit_size;
394
395 /** generic register index. */
396 unsigned index;
397
398 /** only for debug purposes, can be NULL */
399 const char *name;
400
401 /** whether this register is local (per-function) or global (per-shader) */
402 bool is_global;
403
404 /**
405 * If this flag is set to true, then accessing channels >= num_components
406 * is well-defined, and simply spills over to the next array element. This
407 * is useful for backends that can do per-component accessing, in
408 * particular scalar backends. By setting this flag and making
409 * num_components equal to 1, structures can be packed tightly into
410 * registers and then registers can be accessed per-component to get to
411 * each structure member, even if it crosses vec4 boundaries.
412 */
413 bool is_packed;
414
415 /** set of nir_srcs where this register is used (read from) */
416 struct list_head uses;
417
418 /** set of nir_dests where this register is defined (written to) */
419 struct list_head defs;
420
421 /** set of nir_ifs where this register is used as a condition */
422 struct list_head if_uses;
423 } nir_register;
424
425 #define nir_foreach_register(reg, reg_list) \
426 foreach_list_typed(nir_register, reg, node, reg_list)
427 #define nir_foreach_register_safe(reg, reg_list) \
428 foreach_list_typed_safe(nir_register, reg, node, reg_list)
429
430 typedef enum {
431 nir_instr_type_alu,
432 nir_instr_type_deref,
433 nir_instr_type_call,
434 nir_instr_type_tex,
435 nir_instr_type_intrinsic,
436 nir_instr_type_load_const,
437 nir_instr_type_jump,
438 nir_instr_type_ssa_undef,
439 nir_instr_type_phi,
440 nir_instr_type_parallel_copy,
441 } nir_instr_type;
442
443 typedef struct nir_instr {
444 struct exec_node node;
445 nir_instr_type type;
446 struct nir_block *block;
447
448 /** generic instruction index. */
449 unsigned index;
450
451 /* A temporary for optimization and analysis passes to use for storing
452 * flags. For instance, DCE uses this to store the "dead/live" info.
453 */
454 uint8_t pass_flags;
455 } nir_instr;
456
457 static inline nir_instr *
458 nir_instr_next(nir_instr *instr)
459 {
460 struct exec_node *next = exec_node_get_next(&instr->node);
461 if (exec_node_is_tail_sentinel(next))
462 return NULL;
463 else
464 return exec_node_data(nir_instr, next, node);
465 }
466
467 static inline nir_instr *
468 nir_instr_prev(nir_instr *instr)
469 {
470 struct exec_node *prev = exec_node_get_prev(&instr->node);
471 if (exec_node_is_head_sentinel(prev))
472 return NULL;
473 else
474 return exec_node_data(nir_instr, prev, node);
475 }
476
477 static inline bool
478 nir_instr_is_first(const nir_instr *instr)
479 {
480 return exec_node_is_head_sentinel(exec_node_get_prev_const(&instr->node));
481 }
482
483 static inline bool
484 nir_instr_is_last(const nir_instr *instr)
485 {
486 return exec_node_is_tail_sentinel(exec_node_get_next_const(&instr->node));
487 }
488
489 typedef struct nir_ssa_def {
490 /** for debugging only, can be NULL */
491 const char* name;
492
493 /** generic SSA definition index. */
494 unsigned index;
495
496 /** Index into the live_in and live_out bitfields */
497 unsigned live_index;
498
499 /** Instruction which produces this SSA value. */
500 nir_instr *parent_instr;
501
502 /** set of nir_instrs where this register is used (read from) */
503 struct list_head uses;
504
505 /** set of nir_ifs where this register is used as a condition */
506 struct list_head if_uses;
507
508 uint8_t num_components;
509
510 /* The bit-size of each channel; must be one of 8, 16, 32, or 64 */
511 uint8_t bit_size;
512 } nir_ssa_def;
513
514 struct nir_src;
515
516 typedef struct {
517 nir_register *reg;
518 struct nir_src *indirect; /** < NULL for no indirect offset */
519 unsigned base_offset;
520
521 /* TODO use-def chain goes here */
522 } nir_reg_src;
523
524 typedef struct {
525 nir_instr *parent_instr;
526 struct list_head def_link;
527
528 nir_register *reg;
529 struct nir_src *indirect; /** < NULL for no indirect offset */
530 unsigned base_offset;
531
532 /* TODO def-use chain goes here */
533 } nir_reg_dest;
534
535 struct nir_if;
536
537 typedef struct nir_src {
538 union {
539 /** Instruction that consumes this value as a source. */
540 nir_instr *parent_instr;
541 struct nir_if *parent_if;
542 };
543
544 struct list_head use_link;
545
546 union {
547 nir_reg_src reg;
548 nir_ssa_def *ssa;
549 };
550
551 bool is_ssa;
552 } nir_src;
553
554 static inline nir_src
555 nir_src_init(void)
556 {
557 nir_src src = { { NULL } };
558 return src;
559 }
560
561 #define NIR_SRC_INIT nir_src_init()
562
563 #define nir_foreach_use(src, reg_or_ssa_def) \
564 list_for_each_entry(nir_src, src, &(reg_or_ssa_def)->uses, use_link)
565
566 #define nir_foreach_use_safe(src, reg_or_ssa_def) \
567 list_for_each_entry_safe(nir_src, src, &(reg_or_ssa_def)->uses, use_link)
568
569 #define nir_foreach_if_use(src, reg_or_ssa_def) \
570 list_for_each_entry(nir_src, src, &(reg_or_ssa_def)->if_uses, use_link)
571
572 #define nir_foreach_if_use_safe(src, reg_or_ssa_def) \
573 list_for_each_entry_safe(nir_src, src, &(reg_or_ssa_def)->if_uses, use_link)
574
575 typedef struct {
576 union {
577 nir_reg_dest reg;
578 nir_ssa_def ssa;
579 };
580
581 bool is_ssa;
582 } nir_dest;
583
584 static inline nir_dest
585 nir_dest_init(void)
586 {
587 nir_dest dest = { { { NULL } } };
588 return dest;
589 }
590
591 #define NIR_DEST_INIT nir_dest_init()
592
593 #define nir_foreach_def(dest, reg) \
594 list_for_each_entry(nir_dest, dest, &(reg)->defs, reg.def_link)
595
596 #define nir_foreach_def_safe(dest, reg) \
597 list_for_each_entry_safe(nir_dest, dest, &(reg)->defs, reg.def_link)
598
599 static inline nir_src
600 nir_src_for_ssa(nir_ssa_def *def)
601 {
602 nir_src src = NIR_SRC_INIT;
603
604 src.is_ssa = true;
605 src.ssa = def;
606
607 return src;
608 }
609
610 static inline nir_src
611 nir_src_for_reg(nir_register *reg)
612 {
613 nir_src src = NIR_SRC_INIT;
614
615 src.is_ssa = false;
616 src.reg.reg = reg;
617 src.reg.indirect = NULL;
618 src.reg.base_offset = 0;
619
620 return src;
621 }
622
623 static inline nir_dest
624 nir_dest_for_reg(nir_register *reg)
625 {
626 nir_dest dest = NIR_DEST_INIT;
627
628 dest.reg.reg = reg;
629
630 return dest;
631 }
632
633 static inline unsigned
634 nir_src_bit_size(nir_src src)
635 {
636 return src.is_ssa ? src.ssa->bit_size : src.reg.reg->bit_size;
637 }
638
639 static inline unsigned
640 nir_src_num_components(nir_src src)
641 {
642 return src.is_ssa ? src.ssa->num_components : src.reg.reg->num_components;
643 }
644
645 static inline unsigned
646 nir_dest_bit_size(nir_dest dest)
647 {
648 return dest.is_ssa ? dest.ssa.bit_size : dest.reg.reg->bit_size;
649 }
650
651 static inline unsigned
652 nir_dest_num_components(nir_dest dest)
653 {
654 return dest.is_ssa ? dest.ssa.num_components : dest.reg.reg->num_components;
655 }
656
657 void nir_src_copy(nir_src *dest, const nir_src *src, void *instr_or_if);
658 void nir_dest_copy(nir_dest *dest, const nir_dest *src, nir_instr *instr);
659
660 typedef struct {
661 nir_src src;
662
663 /**
664 * \name input modifiers
665 */
666 /*@{*/
667 /**
668 * For inputs interpreted as floating point, flips the sign bit. For
669 * inputs interpreted as integers, performs the two's complement negation.
670 */
671 bool negate;
672
673 /**
674 * Clears the sign bit for floating point values, and computes the integer
675 * absolute value for integers. Note that the negate modifier acts after
676 * the absolute value modifier, therefore if both are set then all inputs
677 * will become negative.
678 */
679 bool abs;
680 /*@}*/
681
682 /**
683 * For each input component, says which component of the register it is
684 * chosen from. Note that which elements of the swizzle are used and which
685 * are ignored are based on the write mask for most opcodes - for example,
686 * a statement like "foo.xzw = bar.zyx" would have a writemask of 1101b and
687 * a swizzle of {2, x, 1, 0} where x means "don't care."
688 */
689 uint8_t swizzle[4];
690 } nir_alu_src;
691
692 typedef struct {
693 nir_dest dest;
694
695 /**
696 * \name saturate output modifier
697 *
698 * Only valid for opcodes that output floating-point numbers. Clamps the
699 * output to between 0.0 and 1.0 inclusive.
700 */
701
702 bool saturate;
703
704 unsigned write_mask : 4; /* ignored if dest.is_ssa is true */
705 } nir_alu_dest;
706
707 typedef enum {
708 nir_type_invalid = 0, /* Not a valid type */
709 nir_type_float,
710 nir_type_int,
711 nir_type_uint,
712 nir_type_bool,
713 nir_type_bool32 = 32 | nir_type_bool,
714 nir_type_int8 = 8 | nir_type_int,
715 nir_type_int16 = 16 | nir_type_int,
716 nir_type_int32 = 32 | nir_type_int,
717 nir_type_int64 = 64 | nir_type_int,
718 nir_type_uint8 = 8 | nir_type_uint,
719 nir_type_uint16 = 16 | nir_type_uint,
720 nir_type_uint32 = 32 | nir_type_uint,
721 nir_type_uint64 = 64 | nir_type_uint,
722 nir_type_float16 = 16 | nir_type_float,
723 nir_type_float32 = 32 | nir_type_float,
724 nir_type_float64 = 64 | nir_type_float,
725 } nir_alu_type;
726
727 #define NIR_ALU_TYPE_SIZE_MASK 0xfffffff8
728 #define NIR_ALU_TYPE_BASE_TYPE_MASK 0x00000007
729
730 static inline unsigned
731 nir_alu_type_get_type_size(nir_alu_type type)
732 {
733 return type & NIR_ALU_TYPE_SIZE_MASK;
734 }
735
736 static inline unsigned
737 nir_alu_type_get_base_type(nir_alu_type type)
738 {
739 return type & NIR_ALU_TYPE_BASE_TYPE_MASK;
740 }
741
742 static inline nir_alu_type
743 nir_get_nir_type_for_glsl_base_type(enum glsl_base_type base_type)
744 {
745 switch (base_type) {
746 case GLSL_TYPE_BOOL:
747 return nir_type_bool32;
748 break;
749 case GLSL_TYPE_UINT:
750 return nir_type_uint32;
751 break;
752 case GLSL_TYPE_INT:
753 return nir_type_int32;
754 break;
755 case GLSL_TYPE_UINT16:
756 return nir_type_uint16;
757 break;
758 case GLSL_TYPE_INT16:
759 return nir_type_int16;
760 break;
761 case GLSL_TYPE_UINT8:
762 return nir_type_uint8;
763 case GLSL_TYPE_INT8:
764 return nir_type_int8;
765 case GLSL_TYPE_UINT64:
766 return nir_type_uint64;
767 break;
768 case GLSL_TYPE_INT64:
769 return nir_type_int64;
770 break;
771 case GLSL_TYPE_FLOAT:
772 return nir_type_float32;
773 break;
774 case GLSL_TYPE_FLOAT16:
775 return nir_type_float16;
776 break;
777 case GLSL_TYPE_DOUBLE:
778 return nir_type_float64;
779 break;
780 default:
781 unreachable("unknown type");
782 }
783 }
784
785 static inline nir_alu_type
786 nir_get_nir_type_for_glsl_type(const struct glsl_type *type)
787 {
788 return nir_get_nir_type_for_glsl_base_type(glsl_get_base_type(type));
789 }
790
791 nir_op nir_type_conversion_op(nir_alu_type src, nir_alu_type dst,
792 nir_rounding_mode rnd);
793
794 typedef enum {
795 NIR_OP_IS_COMMUTATIVE = (1 << 0),
796 NIR_OP_IS_ASSOCIATIVE = (1 << 1),
797 } nir_op_algebraic_property;
798
799 typedef struct {
800 const char *name;
801
802 unsigned num_inputs;
803
804 /**
805 * The number of components in the output
806 *
807 * If non-zero, this is the size of the output and input sizes are
808 * explicitly given; swizzle and writemask are still in effect, but if
809 * the output component is masked out, then the input component may
810 * still be in use.
811 *
812 * If zero, the opcode acts in the standard, per-component manner; the
813 * operation is performed on each component (except the ones that are
814 * masked out) with the input being taken from the input swizzle for
815 * that component.
816 *
817 * The size of some of the inputs may be given (i.e. non-zero) even
818 * though output_size is zero; in that case, the inputs with a zero
819 * size act per-component, while the inputs with non-zero size don't.
820 */
821 unsigned output_size;
822
823 /**
824 * The type of vector that the instruction outputs. Note that the
825 * staurate modifier is only allowed on outputs with the float type.
826 */
827
828 nir_alu_type output_type;
829
830 /**
831 * The number of components in each input
832 */
833 unsigned input_sizes[4];
834
835 /**
836 * The type of vector that each input takes. Note that negate and
837 * absolute value are only allowed on inputs with int or float type and
838 * behave differently on the two.
839 */
840 nir_alu_type input_types[4];
841
842 nir_op_algebraic_property algebraic_properties;
843 } nir_op_info;
844
845 extern const nir_op_info nir_op_infos[nir_num_opcodes];
846
847 typedef struct nir_alu_instr {
848 nir_instr instr;
849 nir_op op;
850
851 /** Indicates that this ALU instruction generates an exact value
852 *
853 * This is kind of a mixture of GLSL "precise" and "invariant" and not
854 * really equivalent to either. This indicates that the value generated by
855 * this operation is high-precision and any code transformations that touch
856 * it must ensure that the resulting value is bit-for-bit identical to the
857 * original.
858 */
859 bool exact;
860
861 nir_alu_dest dest;
862 nir_alu_src src[];
863 } nir_alu_instr;
864
865 void nir_alu_src_copy(nir_alu_src *dest, const nir_alu_src *src,
866 nir_alu_instr *instr);
867 void nir_alu_dest_copy(nir_alu_dest *dest, const nir_alu_dest *src,
868 nir_alu_instr *instr);
869
870 /* is this source channel used? */
871 static inline bool
872 nir_alu_instr_channel_used(const nir_alu_instr *instr, unsigned src,
873 unsigned channel)
874 {
875 if (nir_op_infos[instr->op].input_sizes[src] > 0)
876 return channel < nir_op_infos[instr->op].input_sizes[src];
877
878 return (instr->dest.write_mask >> channel) & 1;
879 }
880
881 /*
882 * For instructions whose destinations are SSA, get the number of channels
883 * used for a source
884 */
885 static inline unsigned
886 nir_ssa_alu_instr_src_components(const nir_alu_instr *instr, unsigned src)
887 {
888 assert(instr->dest.dest.is_ssa);
889
890 if (nir_op_infos[instr->op].input_sizes[src] > 0)
891 return nir_op_infos[instr->op].input_sizes[src];
892
893 return instr->dest.dest.ssa.num_components;
894 }
895
896 bool nir_alu_srcs_equal(const nir_alu_instr *alu1, const nir_alu_instr *alu2,
897 unsigned src1, unsigned src2);
898
899 typedef enum {
900 nir_deref_type_var,
901 nir_deref_type_array,
902 nir_deref_type_array_wildcard,
903 nir_deref_type_struct,
904 nir_deref_type_cast,
905 } nir_deref_type;
906
907 typedef struct nir_deref {
908 nir_deref_type deref_type;
909 struct nir_deref *child;
910 const struct glsl_type *type;
911 } nir_deref;
912
913 typedef struct {
914 nir_deref deref;
915
916 nir_variable *var;
917 } nir_deref_var;
918
919 /* This enum describes how the array is referenced. If the deref is
920 * direct then the base_offset is used. If the deref is indirect then
921 * offset is given by base_offset + indirect. If the deref is a wildcard
922 * then the deref refers to all of the elements of the array at the same
923 * time. Wildcard dereferences are only ever allowed in copy_var
924 * intrinsics and the source and destination derefs must have matching
925 * wildcards.
926 */
927 typedef enum {
928 nir_deref_array_type_direct,
929 nir_deref_array_type_indirect,
930 nir_deref_array_type_wildcard,
931 } nir_deref_array_type;
932
933 typedef struct {
934 nir_deref deref;
935
936 nir_deref_array_type deref_array_type;
937 unsigned base_offset;
938 nir_src indirect;
939 } nir_deref_array;
940
941 typedef struct {
942 nir_deref deref;
943
944 unsigned index;
945 } nir_deref_struct;
946
947 NIR_DEFINE_CAST(nir_deref_as_var, nir_deref, nir_deref_var, deref,
948 deref_type, nir_deref_type_var)
949 NIR_DEFINE_CAST(nir_deref_as_array, nir_deref, nir_deref_array, deref,
950 deref_type, nir_deref_type_array)
951 NIR_DEFINE_CAST(nir_deref_as_struct, nir_deref, nir_deref_struct, deref,
952 deref_type, nir_deref_type_struct)
953
954 /* Returns the last deref in the chain. */
955 static inline nir_deref *
956 nir_deref_tail(nir_deref *deref)
957 {
958 while (deref->child)
959 deref = deref->child;
960 return deref;
961 }
962
963 typedef struct {
964 nir_instr instr;
965
966 /** The type of this deref instruction */
967 nir_deref_type deref_type;
968
969 /** The mode of the underlying variable */
970 nir_variable_mode mode;
971
972 /** The dereferenced type of the resulting pointer value */
973 const struct glsl_type *type;
974
975 union {
976 /** Variable being dereferenced if deref_type is a deref_var */
977 nir_variable *var;
978
979 /** Parent deref if deref_type is not deref_var */
980 nir_src parent;
981 };
982
983 /** Additional deref parameters */
984 union {
985 struct {
986 nir_src index;
987 } arr;
988
989 struct {
990 unsigned index;
991 } strct;
992 };
993
994 /** Destination to store the resulting "pointer" */
995 nir_dest dest;
996 } nir_deref_instr;
997
998 NIR_DEFINE_CAST(nir_instr_as_deref, nir_instr, nir_deref_instr, instr,
999 type, nir_instr_type_deref)
1000
1001 static inline nir_deref_instr *
1002 nir_src_as_deref(nir_src src)
1003 {
1004 if (!src.is_ssa)
1005 return NULL;
1006
1007 if (src.ssa->parent_instr->type != nir_instr_type_deref)
1008 return NULL;
1009
1010 return nir_instr_as_deref(src.ssa->parent_instr);
1011 }
1012
1013 static inline nir_deref_instr *
1014 nir_deref_instr_parent(const nir_deref_instr *instr)
1015 {
1016 if (instr->deref_type == nir_deref_type_var)
1017 return NULL;
1018 else
1019 return nir_src_as_deref(instr->parent);
1020 }
1021
1022 static inline nir_variable *
1023 nir_deref_instr_get_variable(const nir_deref_instr *instr)
1024 {
1025 while (instr->deref_type != nir_deref_type_var) {
1026 if (instr->deref_type == nir_deref_type_cast)
1027 return NULL;
1028
1029 instr = nir_deref_instr_parent(instr);
1030 }
1031
1032 return instr->var;
1033 }
1034
1035 bool nir_deref_instr_remove_if_unused(nir_deref_instr *instr);
1036
1037 nir_deref_var *
1038 nir_deref_instr_to_deref(nir_deref_instr *instr, void *mem_ctx);
1039
1040 typedef struct {
1041 nir_instr instr;
1042
1043 unsigned num_params;
1044 nir_deref_var **params;
1045 nir_deref_var *return_deref;
1046
1047 struct nir_function *callee;
1048 } nir_call_instr;
1049
1050 #include "nir_intrinsics.h"
1051
1052 #define NIR_INTRINSIC_MAX_CONST_INDEX 3
1053
1054 /** Represents an intrinsic
1055 *
1056 * An intrinsic is an instruction type for handling things that are
1057 * more-or-less regular operations but don't just consume and produce SSA
1058 * values like ALU operations do. Intrinsics are not for things that have
1059 * special semantic meaning such as phi nodes and parallel copies.
1060 * Examples of intrinsics include variable load/store operations, system
1061 * value loads, and the like. Even though texturing more-or-less falls
1062 * under this category, texturing is its own instruction type because
1063 * trying to represent texturing with intrinsics would lead to a
1064 * combinatorial explosion of intrinsic opcodes.
1065 *
1066 * By having a single instruction type for handling a lot of different
1067 * cases, optimization passes can look for intrinsics and, for the most
1068 * part, completely ignore them. Each intrinsic type also has a few
1069 * possible flags that govern whether or not they can be reordered or
1070 * eliminated. That way passes like dead code elimination can still work
1071 * on intrisics without understanding the meaning of each.
1072 *
1073 * Each intrinsic has some number of constant indices, some number of
1074 * variables, and some number of sources. What these sources, variables,
1075 * and indices mean depends on the intrinsic and is documented with the
1076 * intrinsic declaration in nir_intrinsics.h. Intrinsics and texture
1077 * instructions are the only types of instruction that can operate on
1078 * variables.
1079 */
1080 typedef struct {
1081 nir_instr instr;
1082
1083 nir_intrinsic_op intrinsic;
1084
1085 nir_dest dest;
1086
1087 /** number of components if this is a vectorized intrinsic
1088 *
1089 * Similarly to ALU operations, some intrinsics are vectorized.
1090 * An intrinsic is vectorized if nir_intrinsic_infos.dest_components == 0.
1091 * For vectorized intrinsics, the num_components field specifies the
1092 * number of destination components and the number of source components
1093 * for all sources with nir_intrinsic_infos.src_components[i] == 0.
1094 */
1095 uint8_t num_components;
1096
1097 int const_index[NIR_INTRINSIC_MAX_CONST_INDEX];
1098
1099 nir_deref_var *variables[2];
1100
1101 nir_src src[];
1102 } nir_intrinsic_instr;
1103
1104 /**
1105 * \name NIR intrinsics semantic flags
1106 *
1107 * information about what the compiler can do with the intrinsics.
1108 *
1109 * \sa nir_intrinsic_info::flags
1110 */
1111 typedef enum {
1112 /**
1113 * whether the intrinsic can be safely eliminated if none of its output
1114 * value is not being used.
1115 */
1116 NIR_INTRINSIC_CAN_ELIMINATE = (1 << 0),
1117
1118 /**
1119 * Whether the intrinsic can be reordered with respect to any other
1120 * intrinsic, i.e. whether the only reordering dependencies of the
1121 * intrinsic are due to the register reads/writes.
1122 */
1123 NIR_INTRINSIC_CAN_REORDER = (1 << 1),
1124 } nir_intrinsic_semantic_flag;
1125
1126 /**
1127 * \name NIR intrinsics const-index flag
1128 *
1129 * Indicates the usage of a const_index slot.
1130 *
1131 * \sa nir_intrinsic_info::index_map
1132 */
1133 typedef enum {
1134 /**
1135 * Generally instructions that take a offset src argument, can encode
1136 * a constant 'base' value which is added to the offset.
1137 */
1138 NIR_INTRINSIC_BASE = 1,
1139
1140 /**
1141 * For store instructions, a writemask for the store.
1142 */
1143 NIR_INTRINSIC_WRMASK = 2,
1144
1145 /**
1146 * The stream-id for GS emit_vertex/end_primitive intrinsics.
1147 */
1148 NIR_INTRINSIC_STREAM_ID = 3,
1149
1150 /**
1151 * The clip-plane id for load_user_clip_plane intrinsic.
1152 */
1153 NIR_INTRINSIC_UCP_ID = 4,
1154
1155 /**
1156 * The amount of data, starting from BASE, that this instruction may
1157 * access. This is used to provide bounds if the offset is not constant.
1158 */
1159 NIR_INTRINSIC_RANGE = 5,
1160
1161 /**
1162 * The Vulkan descriptor set for vulkan_resource_index intrinsic.
1163 */
1164 NIR_INTRINSIC_DESC_SET = 6,
1165
1166 /**
1167 * The Vulkan descriptor set binding for vulkan_resource_index intrinsic.
1168 */
1169 NIR_INTRINSIC_BINDING = 7,
1170
1171 /**
1172 * Component offset.
1173 */
1174 NIR_INTRINSIC_COMPONENT = 8,
1175
1176 /**
1177 * Interpolation mode (only meaningful for FS inputs).
1178 */
1179 NIR_INTRINSIC_INTERP_MODE = 9,
1180
1181 /**
1182 * A binary nir_op to use when performing a reduction or scan operation
1183 */
1184 NIR_INTRINSIC_REDUCTION_OP = 10,
1185
1186 /**
1187 * Cluster size for reduction operations
1188 */
1189 NIR_INTRINSIC_CLUSTER_SIZE = 11,
1190
1191 NIR_INTRINSIC_NUM_INDEX_FLAGS,
1192
1193 } nir_intrinsic_index_flag;
1194
1195 #define NIR_INTRINSIC_MAX_INPUTS 5
1196
1197 typedef struct {
1198 const char *name;
1199
1200 unsigned num_srcs; /** < number of register/SSA inputs */
1201
1202 /** number of components of each input register
1203 *
1204 * If this value is 0, the number of components is given by the
1205 * num_components field of nir_intrinsic_instr.
1206 */
1207 unsigned src_components[NIR_INTRINSIC_MAX_INPUTS];
1208
1209 bool has_dest;
1210
1211 /** number of components of the output register
1212 *
1213 * If this value is 0, the number of components is given by the
1214 * num_components field of nir_intrinsic_instr.
1215 */
1216 unsigned dest_components;
1217
1218 /** the number of inputs/outputs that are variables */
1219 unsigned num_variables;
1220
1221 /** the number of constant indices used by the intrinsic */
1222 unsigned num_indices;
1223
1224 /** indicates the usage of intr->const_index[n] */
1225 unsigned index_map[NIR_INTRINSIC_NUM_INDEX_FLAGS];
1226
1227 /** semantic flags for calls to this intrinsic */
1228 nir_intrinsic_semantic_flag flags;
1229 } nir_intrinsic_info;
1230
1231 extern const nir_intrinsic_info nir_intrinsic_infos[nir_num_intrinsics];
1232
1233 static inline unsigned
1234 nir_intrinsic_src_components(nir_intrinsic_instr *intr, unsigned srcn)
1235 {
1236 const nir_intrinsic_info *info = &nir_intrinsic_infos[intr->intrinsic];
1237 assert(srcn < info->num_srcs);
1238 if (info->src_components[srcn])
1239 return info->src_components[srcn];
1240 else
1241 return intr->num_components;
1242 }
1243
1244 static inline unsigned
1245 nir_intrinsic_dest_components(nir_intrinsic_instr *intr)
1246 {
1247 const nir_intrinsic_info *info = &nir_intrinsic_infos[intr->intrinsic];
1248 if (!info->has_dest)
1249 return 0;
1250 else if (info->dest_components)
1251 return info->dest_components;
1252 else
1253 return intr->num_components;
1254 }
1255
1256 #define INTRINSIC_IDX_ACCESSORS(name, flag, type) \
1257 static inline type \
1258 nir_intrinsic_##name(const nir_intrinsic_instr *instr) \
1259 { \
1260 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic]; \
1261 assert(info->index_map[NIR_INTRINSIC_##flag] > 0); \
1262 return instr->const_index[info->index_map[NIR_INTRINSIC_##flag] - 1]; \
1263 } \
1264 static inline void \
1265 nir_intrinsic_set_##name(nir_intrinsic_instr *instr, type val) \
1266 { \
1267 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic]; \
1268 assert(info->index_map[NIR_INTRINSIC_##flag] > 0); \
1269 instr->const_index[info->index_map[NIR_INTRINSIC_##flag] - 1] = val; \
1270 }
1271
1272 INTRINSIC_IDX_ACCESSORS(write_mask, WRMASK, unsigned)
1273 INTRINSIC_IDX_ACCESSORS(base, BASE, int)
1274 INTRINSIC_IDX_ACCESSORS(stream_id, STREAM_ID, unsigned)
1275 INTRINSIC_IDX_ACCESSORS(ucp_id, UCP_ID, unsigned)
1276 INTRINSIC_IDX_ACCESSORS(range, RANGE, unsigned)
1277 INTRINSIC_IDX_ACCESSORS(desc_set, DESC_SET, unsigned)
1278 INTRINSIC_IDX_ACCESSORS(binding, BINDING, unsigned)
1279 INTRINSIC_IDX_ACCESSORS(component, COMPONENT, unsigned)
1280 INTRINSIC_IDX_ACCESSORS(interp_mode, INTERP_MODE, unsigned)
1281 INTRINSIC_IDX_ACCESSORS(reduction_op, REDUCTION_OP, unsigned)
1282 INTRINSIC_IDX_ACCESSORS(cluster_size, CLUSTER_SIZE, unsigned)
1283
1284 /**
1285 * \group texture information
1286 *
1287 * This gives semantic information about textures which is useful to the
1288 * frontend, the backend, and lowering passes, but not the optimizer.
1289 */
1290
1291 typedef enum {
1292 nir_tex_src_coord,
1293 nir_tex_src_projector,
1294 nir_tex_src_comparator, /* shadow comparator */
1295 nir_tex_src_offset,
1296 nir_tex_src_bias,
1297 nir_tex_src_lod,
1298 nir_tex_src_ms_index, /* MSAA sample index */
1299 nir_tex_src_ms_mcs, /* MSAA compression value */
1300 nir_tex_src_ddx,
1301 nir_tex_src_ddy,
1302 nir_tex_src_texture_deref, /* < deref pointing to the texture */
1303 nir_tex_src_sampler_deref, /* < deref pointing to the sampler */
1304 nir_tex_src_texture_offset, /* < dynamically uniform indirect offset */
1305 nir_tex_src_sampler_offset, /* < dynamically uniform indirect offset */
1306 nir_tex_src_plane, /* < selects plane for planar textures */
1307 nir_num_tex_src_types
1308 } nir_tex_src_type;
1309
1310 typedef struct {
1311 nir_src src;
1312 nir_tex_src_type src_type;
1313 } nir_tex_src;
1314
1315 typedef enum {
1316 nir_texop_tex, /**< Regular texture look-up */
1317 nir_texop_txb, /**< Texture look-up with LOD bias */
1318 nir_texop_txl, /**< Texture look-up with explicit LOD */
1319 nir_texop_txd, /**< Texture look-up with partial derivatives */
1320 nir_texop_txf, /**< Texel fetch with explicit LOD */
1321 nir_texop_txf_ms, /**< Multisample texture fetch */
1322 nir_texop_txf_ms_mcs, /**< Multisample compression value fetch */
1323 nir_texop_txs, /**< Texture size */
1324 nir_texop_lod, /**< Texture lod query */
1325 nir_texop_tg4, /**< Texture gather */
1326 nir_texop_query_levels, /**< Texture levels query */
1327 nir_texop_texture_samples, /**< Texture samples query */
1328 nir_texop_samples_identical, /**< Query whether all samples are definitely
1329 * identical.
1330 */
1331 } nir_texop;
1332
1333 typedef struct {
1334 nir_instr instr;
1335
1336 enum glsl_sampler_dim sampler_dim;
1337 nir_alu_type dest_type;
1338
1339 nir_texop op;
1340 nir_dest dest;
1341 nir_tex_src *src;
1342 unsigned num_srcs, coord_components;
1343 bool is_array, is_shadow;
1344
1345 /**
1346 * If is_shadow is true, whether this is the old-style shadow that outputs 4
1347 * components or the new-style shadow that outputs 1 component.
1348 */
1349 bool is_new_style_shadow;
1350
1351 /* gather component selector */
1352 unsigned component : 2;
1353
1354 /** The texture index
1355 *
1356 * If this texture instruction has a nir_tex_src_texture_offset source,
1357 * then the texture index is given by texture_index + texture_offset.
1358 */
1359 unsigned texture_index;
1360
1361 /** The size of the texture array or 0 if it's not an array */
1362 unsigned texture_array_size;
1363
1364 /** The texture deref
1365 *
1366 * If this is null, use texture_index instead.
1367 */
1368 nir_deref_var *texture;
1369
1370 /** The sampler index
1371 *
1372 * The following operations do not require a sampler and, as such, this
1373 * field should be ignored:
1374 * - nir_texop_txf
1375 * - nir_texop_txf_ms
1376 * - nir_texop_txs
1377 * - nir_texop_lod
1378 * - nir_texop_query_levels
1379 * - nir_texop_texture_samples
1380 * - nir_texop_samples_identical
1381 *
1382 * If this texture instruction has a nir_tex_src_sampler_offset source,
1383 * then the sampler index is given by sampler_index + sampler_offset.
1384 */
1385 unsigned sampler_index;
1386
1387 /** The sampler deref
1388 *
1389 * If this is null, use sampler_index instead.
1390 */
1391 nir_deref_var *sampler;
1392 } nir_tex_instr;
1393
1394 static inline unsigned
1395 nir_tex_instr_dest_size(const nir_tex_instr *instr)
1396 {
1397 switch (instr->op) {
1398 case nir_texop_txs: {
1399 unsigned ret;
1400 switch (instr->sampler_dim) {
1401 case GLSL_SAMPLER_DIM_1D:
1402 case GLSL_SAMPLER_DIM_BUF:
1403 ret = 1;
1404 break;
1405 case GLSL_SAMPLER_DIM_2D:
1406 case GLSL_SAMPLER_DIM_CUBE:
1407 case GLSL_SAMPLER_DIM_MS:
1408 case GLSL_SAMPLER_DIM_RECT:
1409 case GLSL_SAMPLER_DIM_EXTERNAL:
1410 case GLSL_SAMPLER_DIM_SUBPASS:
1411 ret = 2;
1412 break;
1413 case GLSL_SAMPLER_DIM_3D:
1414 ret = 3;
1415 break;
1416 default:
1417 unreachable("not reached");
1418 }
1419 if (instr->is_array)
1420 ret++;
1421 return ret;
1422 }
1423
1424 case nir_texop_lod:
1425 return 2;
1426
1427 case nir_texop_texture_samples:
1428 case nir_texop_query_levels:
1429 case nir_texop_samples_identical:
1430 return 1;
1431
1432 default:
1433 if (instr->is_shadow && instr->is_new_style_shadow)
1434 return 1;
1435
1436 return 4;
1437 }
1438 }
1439
1440 /* Returns true if this texture operation queries something about the texture
1441 * rather than actually sampling it.
1442 */
1443 static inline bool
1444 nir_tex_instr_is_query(const nir_tex_instr *instr)
1445 {
1446 switch (instr->op) {
1447 case nir_texop_txs:
1448 case nir_texop_lod:
1449 case nir_texop_texture_samples:
1450 case nir_texop_query_levels:
1451 case nir_texop_txf_ms_mcs:
1452 return true;
1453 case nir_texop_tex:
1454 case nir_texop_txb:
1455 case nir_texop_txl:
1456 case nir_texop_txd:
1457 case nir_texop_txf:
1458 case nir_texop_txf_ms:
1459 case nir_texop_tg4:
1460 return false;
1461 default:
1462 unreachable("Invalid texture opcode");
1463 }
1464 }
1465
1466 static inline bool
1467 nir_alu_instr_is_comparison(const nir_alu_instr *instr)
1468 {
1469 switch (instr->op) {
1470 case nir_op_flt:
1471 case nir_op_fge:
1472 case nir_op_feq:
1473 case nir_op_fne:
1474 case nir_op_ilt:
1475 case nir_op_ult:
1476 case nir_op_ige:
1477 case nir_op_uge:
1478 case nir_op_ieq:
1479 case nir_op_ine:
1480 case nir_op_i2b:
1481 case nir_op_f2b:
1482 case nir_op_inot:
1483 case nir_op_fnot:
1484 return true;
1485 default:
1486 return false;
1487 }
1488 }
1489
1490 static inline nir_alu_type
1491 nir_tex_instr_src_type(const nir_tex_instr *instr, unsigned src)
1492 {
1493 switch (instr->src[src].src_type) {
1494 case nir_tex_src_coord:
1495 switch (instr->op) {
1496 case nir_texop_txf:
1497 case nir_texop_txf_ms:
1498 case nir_texop_txf_ms_mcs:
1499 case nir_texop_samples_identical:
1500 return nir_type_int;
1501
1502 default:
1503 return nir_type_float;
1504 }
1505
1506 case nir_tex_src_lod:
1507 switch (instr->op) {
1508 case nir_texop_txs:
1509 case nir_texop_txf:
1510 return nir_type_int;
1511
1512 default:
1513 return nir_type_float;
1514 }
1515
1516 case nir_tex_src_projector:
1517 case nir_tex_src_comparator:
1518 case nir_tex_src_bias:
1519 case nir_tex_src_ddx:
1520 case nir_tex_src_ddy:
1521 return nir_type_float;
1522
1523 case nir_tex_src_offset:
1524 case nir_tex_src_ms_index:
1525 case nir_tex_src_texture_offset:
1526 case nir_tex_src_sampler_offset:
1527 return nir_type_int;
1528
1529 default:
1530 unreachable("Invalid texture source type");
1531 }
1532 }
1533
1534 static inline unsigned
1535 nir_tex_instr_src_size(const nir_tex_instr *instr, unsigned src)
1536 {
1537 if (instr->src[src].src_type == nir_tex_src_coord)
1538 return instr->coord_components;
1539
1540 /* The MCS value is expected to be a vec4 returned by a txf_ms_mcs */
1541 if (instr->src[src].src_type == nir_tex_src_ms_mcs)
1542 return 4;
1543
1544 if (instr->src[src].src_type == nir_tex_src_ddx ||
1545 instr->src[src].src_type == nir_tex_src_ddy) {
1546 if (instr->is_array)
1547 return instr->coord_components - 1;
1548 else
1549 return instr->coord_components;
1550 }
1551
1552 /* Usual APIs don't allow cube + offset, but we allow it, with 2 coords for
1553 * the offset, since a cube maps to a single face.
1554 */
1555 if (instr->src[src].src_type == nir_tex_src_offset) {
1556 if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE)
1557 return 2;
1558 else if (instr->is_array)
1559 return instr->coord_components - 1;
1560 else
1561 return instr->coord_components;
1562 }
1563
1564 return 1;
1565 }
1566
1567 static inline int
1568 nir_tex_instr_src_index(const nir_tex_instr *instr, nir_tex_src_type type)
1569 {
1570 for (unsigned i = 0; i < instr->num_srcs; i++)
1571 if (instr->src[i].src_type == type)
1572 return (int) i;
1573
1574 return -1;
1575 }
1576
1577 void nir_tex_instr_add_src(nir_tex_instr *tex,
1578 nir_tex_src_type src_type,
1579 nir_src src);
1580
1581 void nir_tex_instr_remove_src(nir_tex_instr *tex, unsigned src_idx);
1582
1583 typedef struct {
1584 nir_instr instr;
1585
1586 nir_const_value value;
1587
1588 nir_ssa_def def;
1589 } nir_load_const_instr;
1590
1591 typedef enum {
1592 nir_jump_return,
1593 nir_jump_break,
1594 nir_jump_continue,
1595 } nir_jump_type;
1596
1597 typedef struct {
1598 nir_instr instr;
1599 nir_jump_type type;
1600 } nir_jump_instr;
1601
1602 /* creates a new SSA variable in an undefined state */
1603
1604 typedef struct {
1605 nir_instr instr;
1606 nir_ssa_def def;
1607 } nir_ssa_undef_instr;
1608
1609 typedef struct {
1610 struct exec_node node;
1611
1612 /* The predecessor block corresponding to this source */
1613 struct nir_block *pred;
1614
1615 nir_src src;
1616 } nir_phi_src;
1617
1618 #define nir_foreach_phi_src(phi_src, phi) \
1619 foreach_list_typed(nir_phi_src, phi_src, node, &(phi)->srcs)
1620 #define nir_foreach_phi_src_safe(phi_src, phi) \
1621 foreach_list_typed_safe(nir_phi_src, phi_src, node, &(phi)->srcs)
1622
1623 typedef struct {
1624 nir_instr instr;
1625
1626 struct exec_list srcs; /** < list of nir_phi_src */
1627
1628 nir_dest dest;
1629 } nir_phi_instr;
1630
1631 typedef struct {
1632 struct exec_node node;
1633 nir_src src;
1634 nir_dest dest;
1635 } nir_parallel_copy_entry;
1636
1637 #define nir_foreach_parallel_copy_entry(entry, pcopy) \
1638 foreach_list_typed(nir_parallel_copy_entry, entry, node, &(pcopy)->entries)
1639
1640 typedef struct {
1641 nir_instr instr;
1642
1643 /* A list of nir_parallel_copy_entrys. The sources of all of the
1644 * entries are copied to the corresponding destinations "in parallel".
1645 * In other words, if we have two entries: a -> b and b -> a, the values
1646 * get swapped.
1647 */
1648 struct exec_list entries;
1649 } nir_parallel_copy_instr;
1650
1651 NIR_DEFINE_CAST(nir_instr_as_alu, nir_instr, nir_alu_instr, instr,
1652 type, nir_instr_type_alu)
1653 NIR_DEFINE_CAST(nir_instr_as_call, nir_instr, nir_call_instr, instr,
1654 type, nir_instr_type_call)
1655 NIR_DEFINE_CAST(nir_instr_as_jump, nir_instr, nir_jump_instr, instr,
1656 type, nir_instr_type_jump)
1657 NIR_DEFINE_CAST(nir_instr_as_tex, nir_instr, nir_tex_instr, instr,
1658 type, nir_instr_type_tex)
1659 NIR_DEFINE_CAST(nir_instr_as_intrinsic, nir_instr, nir_intrinsic_instr, instr,
1660 type, nir_instr_type_intrinsic)
1661 NIR_DEFINE_CAST(nir_instr_as_load_const, nir_instr, nir_load_const_instr, instr,
1662 type, nir_instr_type_load_const)
1663 NIR_DEFINE_CAST(nir_instr_as_ssa_undef, nir_instr, nir_ssa_undef_instr, instr,
1664 type, nir_instr_type_ssa_undef)
1665 NIR_DEFINE_CAST(nir_instr_as_phi, nir_instr, nir_phi_instr, instr,
1666 type, nir_instr_type_phi)
1667 NIR_DEFINE_CAST(nir_instr_as_parallel_copy, nir_instr,
1668 nir_parallel_copy_instr, instr,
1669 type, nir_instr_type_parallel_copy)
1670
1671 /*
1672 * Control flow
1673 *
1674 * Control flow consists of a tree of control flow nodes, which include
1675 * if-statements and loops. The leaves of the tree are basic blocks, lists of
1676 * instructions that always run start-to-finish. Each basic block also keeps
1677 * track of its successors (blocks which may run immediately after the current
1678 * block) and predecessors (blocks which could have run immediately before the
1679 * current block). Each function also has a start block and an end block which
1680 * all return statements point to (which is always empty). Together, all the
1681 * blocks with their predecessors and successors make up the control flow
1682 * graph (CFG) of the function. There are helpers that modify the tree of
1683 * control flow nodes while modifying the CFG appropriately; these should be
1684 * used instead of modifying the tree directly.
1685 */
1686
1687 typedef enum {
1688 nir_cf_node_block,
1689 nir_cf_node_if,
1690 nir_cf_node_loop,
1691 nir_cf_node_function
1692 } nir_cf_node_type;
1693
1694 typedef struct nir_cf_node {
1695 struct exec_node node;
1696 nir_cf_node_type type;
1697 struct nir_cf_node *parent;
1698 } nir_cf_node;
1699
1700 typedef struct nir_block {
1701 nir_cf_node cf_node;
1702
1703 struct exec_list instr_list; /** < list of nir_instr */
1704
1705 /** generic block index; generated by nir_index_blocks */
1706 unsigned index;
1707
1708 /*
1709 * Each block can only have up to 2 successors, so we put them in a simple
1710 * array - no need for anything more complicated.
1711 */
1712 struct nir_block *successors[2];
1713
1714 /* Set of nir_block predecessors in the CFG */
1715 struct set *predecessors;
1716
1717 /*
1718 * this node's immediate dominator in the dominance tree - set to NULL for
1719 * the start block.
1720 */
1721 struct nir_block *imm_dom;
1722
1723 /* This node's children in the dominance tree */
1724 unsigned num_dom_children;
1725 struct nir_block **dom_children;
1726
1727 /* Set of nir_blocks on the dominance frontier of this block */
1728 struct set *dom_frontier;
1729
1730 /*
1731 * These two indices have the property that dom_{pre,post}_index for each
1732 * child of this block in the dominance tree will always be between
1733 * dom_pre_index and dom_post_index for this block, which makes testing if
1734 * a given block is dominated by another block an O(1) operation.
1735 */
1736 unsigned dom_pre_index, dom_post_index;
1737
1738 /* live in and out for this block; used for liveness analysis */
1739 BITSET_WORD *live_in;
1740 BITSET_WORD *live_out;
1741 } nir_block;
1742
1743 static inline nir_instr *
1744 nir_block_first_instr(nir_block *block)
1745 {
1746 struct exec_node *head = exec_list_get_head(&block->instr_list);
1747 return exec_node_data(nir_instr, head, node);
1748 }
1749
1750 static inline nir_instr *
1751 nir_block_last_instr(nir_block *block)
1752 {
1753 struct exec_node *tail = exec_list_get_tail(&block->instr_list);
1754 return exec_node_data(nir_instr, tail, node);
1755 }
1756
1757 #define nir_foreach_instr(instr, block) \
1758 foreach_list_typed(nir_instr, instr, node, &(block)->instr_list)
1759 #define nir_foreach_instr_reverse(instr, block) \
1760 foreach_list_typed_reverse(nir_instr, instr, node, &(block)->instr_list)
1761 #define nir_foreach_instr_safe(instr, block) \
1762 foreach_list_typed_safe(nir_instr, instr, node, &(block)->instr_list)
1763 #define nir_foreach_instr_reverse_safe(instr, block) \
1764 foreach_list_typed_reverse_safe(nir_instr, instr, node, &(block)->instr_list)
1765
1766 typedef struct nir_if {
1767 nir_cf_node cf_node;
1768 nir_src condition;
1769
1770 struct exec_list then_list; /** < list of nir_cf_node */
1771 struct exec_list else_list; /** < list of nir_cf_node */
1772 } nir_if;
1773
1774 typedef struct {
1775 nir_if *nif;
1776
1777 nir_instr *conditional_instr;
1778
1779 nir_block *break_block;
1780 nir_block *continue_from_block;
1781
1782 bool continue_from_then;
1783
1784 struct list_head loop_terminator_link;
1785 } nir_loop_terminator;
1786
1787 typedef struct {
1788 /* Number of instructions in the loop */
1789 unsigned num_instructions;
1790
1791 /* How many times the loop is run (if known) */
1792 unsigned trip_count;
1793 bool is_trip_count_known;
1794
1795 /* Unroll the loop regardless of its size */
1796 bool force_unroll;
1797
1798 nir_loop_terminator *limiting_terminator;
1799
1800 /* A list of loop_terminators terminating this loop. */
1801 struct list_head loop_terminator_list;
1802 } nir_loop_info;
1803
1804 typedef struct {
1805 nir_cf_node cf_node;
1806
1807 struct exec_list body; /** < list of nir_cf_node */
1808
1809 nir_loop_info *info;
1810 } nir_loop;
1811
1812 /**
1813 * Various bits of metadata that can may be created or required by
1814 * optimization and analysis passes
1815 */
1816 typedef enum {
1817 nir_metadata_none = 0x0,
1818 nir_metadata_block_index = 0x1,
1819 nir_metadata_dominance = 0x2,
1820 nir_metadata_live_ssa_defs = 0x4,
1821 nir_metadata_not_properly_reset = 0x8,
1822 nir_metadata_loop_analysis = 0x10,
1823 } nir_metadata;
1824
1825 typedef struct {
1826 nir_cf_node cf_node;
1827
1828 /** pointer to the function of which this is an implementation */
1829 struct nir_function *function;
1830
1831 struct exec_list body; /** < list of nir_cf_node */
1832
1833 nir_block *end_block;
1834
1835 /** list for all local variables in the function */
1836 struct exec_list locals;
1837
1838 /** array of variables used as parameters */
1839 unsigned num_params;
1840 nir_variable **params;
1841
1842 /** variable used to hold the result of the function */
1843 nir_variable *return_var;
1844
1845 /** list of local registers in the function */
1846 struct exec_list registers;
1847
1848 /** next available local register index */
1849 unsigned reg_alloc;
1850
1851 /** next available SSA value index */
1852 unsigned ssa_alloc;
1853
1854 /* total number of basic blocks, only valid when block_index_dirty = false */
1855 unsigned num_blocks;
1856
1857 nir_metadata valid_metadata;
1858 } nir_function_impl;
1859
1860 ATTRIBUTE_RETURNS_NONNULL static inline nir_block *
1861 nir_start_block(nir_function_impl *impl)
1862 {
1863 return (nir_block *) impl->body.head_sentinel.next;
1864 }
1865
1866 ATTRIBUTE_RETURNS_NONNULL static inline nir_block *
1867 nir_impl_last_block(nir_function_impl *impl)
1868 {
1869 return (nir_block *) impl->body.tail_sentinel.prev;
1870 }
1871
1872 static inline nir_cf_node *
1873 nir_cf_node_next(nir_cf_node *node)
1874 {
1875 struct exec_node *next = exec_node_get_next(&node->node);
1876 if (exec_node_is_tail_sentinel(next))
1877 return NULL;
1878 else
1879 return exec_node_data(nir_cf_node, next, node);
1880 }
1881
1882 static inline nir_cf_node *
1883 nir_cf_node_prev(nir_cf_node *node)
1884 {
1885 struct exec_node *prev = exec_node_get_prev(&node->node);
1886 if (exec_node_is_head_sentinel(prev))
1887 return NULL;
1888 else
1889 return exec_node_data(nir_cf_node, prev, node);
1890 }
1891
1892 static inline bool
1893 nir_cf_node_is_first(const nir_cf_node *node)
1894 {
1895 return exec_node_is_head_sentinel(node->node.prev);
1896 }
1897
1898 static inline bool
1899 nir_cf_node_is_last(const nir_cf_node *node)
1900 {
1901 return exec_node_is_tail_sentinel(node->node.next);
1902 }
1903
1904 NIR_DEFINE_CAST(nir_cf_node_as_block, nir_cf_node, nir_block, cf_node,
1905 type, nir_cf_node_block)
1906 NIR_DEFINE_CAST(nir_cf_node_as_if, nir_cf_node, nir_if, cf_node,
1907 type, nir_cf_node_if)
1908 NIR_DEFINE_CAST(nir_cf_node_as_loop, nir_cf_node, nir_loop, cf_node,
1909 type, nir_cf_node_loop)
1910 NIR_DEFINE_CAST(nir_cf_node_as_function, nir_cf_node,
1911 nir_function_impl, cf_node, type, nir_cf_node_function)
1912
1913 static inline nir_block *
1914 nir_if_first_then_block(nir_if *if_stmt)
1915 {
1916 struct exec_node *head = exec_list_get_head(&if_stmt->then_list);
1917 return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
1918 }
1919
1920 static inline nir_block *
1921 nir_if_last_then_block(nir_if *if_stmt)
1922 {
1923 struct exec_node *tail = exec_list_get_tail(&if_stmt->then_list);
1924 return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
1925 }
1926
1927 static inline nir_block *
1928 nir_if_first_else_block(nir_if *if_stmt)
1929 {
1930 struct exec_node *head = exec_list_get_head(&if_stmt->else_list);
1931 return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
1932 }
1933
1934 static inline nir_block *
1935 nir_if_last_else_block(nir_if *if_stmt)
1936 {
1937 struct exec_node *tail = exec_list_get_tail(&if_stmt->else_list);
1938 return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
1939 }
1940
1941 static inline nir_block *
1942 nir_loop_first_block(nir_loop *loop)
1943 {
1944 struct exec_node *head = exec_list_get_head(&loop->body);
1945 return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
1946 }
1947
1948 static inline nir_block *
1949 nir_loop_last_block(nir_loop *loop)
1950 {
1951 struct exec_node *tail = exec_list_get_tail(&loop->body);
1952 return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
1953 }
1954
1955 typedef enum {
1956 nir_parameter_in,
1957 nir_parameter_out,
1958 nir_parameter_inout,
1959 } nir_parameter_type;
1960
1961 typedef struct {
1962 nir_parameter_type param_type;
1963 const struct glsl_type *type;
1964 } nir_parameter;
1965
1966 typedef struct nir_function {
1967 struct exec_node node;
1968
1969 const char *name;
1970 struct nir_shader *shader;
1971
1972 unsigned num_params;
1973 nir_parameter *params;
1974 const struct glsl_type *return_type;
1975
1976 /** The implementation of this function.
1977 *
1978 * If the function is only declared and not implemented, this is NULL.
1979 */
1980 nir_function_impl *impl;
1981 } nir_function;
1982
1983 typedef struct nir_shader_compiler_options {
1984 bool lower_fdiv;
1985 bool lower_ffma;
1986 bool fuse_ffma;
1987 bool lower_flrp32;
1988 /** Lowers flrp when it does not support doubles */
1989 bool lower_flrp64;
1990 bool lower_fpow;
1991 bool lower_fsat;
1992 bool lower_fsqrt;
1993 bool lower_fmod32;
1994 bool lower_fmod64;
1995 /** Lowers ibitfield_extract/ubitfield_extract to ibfe/ubfe. */
1996 bool lower_bitfield_extract;
1997 /** Lowers ibitfield_extract/ubitfield_extract to bfm, compares, shifts. */
1998 bool lower_bitfield_extract_to_shifts;
1999 /** Lowers bitfield_insert to bfi/bfm */
2000 bool lower_bitfield_insert;
2001 /** Lowers bitfield_insert to bfm, compares, and shifts. */
2002 bool lower_bitfield_insert_to_shifts;
2003 /** Lowers bitfield_reverse to shifts. */
2004 bool lower_bitfield_reverse;
2005 /** Lowers bit_count to shifts. */
2006 bool lower_bit_count;
2007 /** Lowers bfm to shifts and subtracts. */
2008 bool lower_bfm;
2009 /** Lowers ifind_msb to compare and ufind_msb */
2010 bool lower_ifind_msb;
2011 /** Lowers find_lsb to ufind_msb and logic ops */
2012 bool lower_find_lsb;
2013 bool lower_uadd_carry;
2014 bool lower_usub_borrow;
2015 /** Lowers imul_high/umul_high to 16-bit multiplies and carry operations. */
2016 bool lower_mul_high;
2017 /** lowers fneg and ineg to fsub and isub. */
2018 bool lower_negate;
2019 /** lowers fsub and isub to fadd+fneg and iadd+ineg. */
2020 bool lower_sub;
2021
2022 /* lower {slt,sge,seq,sne} to {flt,fge,feq,fne} + b2f: */
2023 bool lower_scmp;
2024
2025 /** enables rules to lower idiv by power-of-two: */
2026 bool lower_idiv;
2027
2028 /* lower b2f to iand */
2029 bool lower_b2f;
2030
2031 /* Does the native fdot instruction replicate its result for four
2032 * components? If so, then opt_algebraic_late will turn all fdotN
2033 * instructions into fdot_replicatedN instructions.
2034 */
2035 bool fdot_replicates;
2036
2037 /** lowers ffract to fsub+ffloor: */
2038 bool lower_ffract;
2039
2040 bool lower_ldexp;
2041
2042 bool lower_pack_half_2x16;
2043 bool lower_pack_unorm_2x16;
2044 bool lower_pack_snorm_2x16;
2045 bool lower_pack_unorm_4x8;
2046 bool lower_pack_snorm_4x8;
2047 bool lower_unpack_half_2x16;
2048 bool lower_unpack_unorm_2x16;
2049 bool lower_unpack_snorm_2x16;
2050 bool lower_unpack_unorm_4x8;
2051 bool lower_unpack_snorm_4x8;
2052
2053 bool lower_extract_byte;
2054 bool lower_extract_word;
2055
2056 bool lower_all_io_to_temps;
2057
2058 /**
2059 * Does the driver support real 32-bit integers? (Otherwise, integers
2060 * are simulated by floats.)
2061 */
2062 bool native_integers;
2063
2064 /* Indicates that the driver only has zero-based vertex id */
2065 bool vertex_id_zero_based;
2066
2067 /**
2068 * If enabled, gl_BaseVertex will be lowered as:
2069 * is_indexed_draw (~0/0) & firstvertex
2070 */
2071 bool lower_base_vertex;
2072
2073 bool lower_cs_local_index_from_id;
2074
2075 bool lower_device_index_to_zero;
2076
2077 /**
2078 * Should nir_lower_io() create load_interpolated_input intrinsics?
2079 *
2080 * If not, it generates regular load_input intrinsics and interpolation
2081 * information must be inferred from the list of input nir_variables.
2082 */
2083 bool use_interpolated_input_intrinsics;
2084
2085 /**
2086 * Do vertex shader double inputs use two locations? The Vulkan spec
2087 * requires two locations to be used, OpenGL allows a single location.
2088 */
2089 bool vs_inputs_dual_locations;
2090
2091 unsigned max_unroll_iterations;
2092 } nir_shader_compiler_options;
2093
2094 typedef struct nir_shader {
2095 /** list of uniforms (nir_variable) */
2096 struct exec_list uniforms;
2097
2098 /** list of inputs (nir_variable) */
2099 struct exec_list inputs;
2100
2101 /** list of outputs (nir_variable) */
2102 struct exec_list outputs;
2103
2104 /** list of shared compute variables (nir_variable) */
2105 struct exec_list shared;
2106
2107 /** Set of driver-specific options for the shader.
2108 *
2109 * The memory for the options is expected to be kept in a single static
2110 * copy by the driver.
2111 */
2112 const struct nir_shader_compiler_options *options;
2113
2114 /** Various bits of compile-time information about a given shader */
2115 struct shader_info info;
2116
2117 /** list of global variables in the shader (nir_variable) */
2118 struct exec_list globals;
2119
2120 /** list of system value variables in the shader (nir_variable) */
2121 struct exec_list system_values;
2122
2123 struct exec_list functions; /** < list of nir_function */
2124
2125 /** list of global register in the shader */
2126 struct exec_list registers;
2127
2128 /** next available global register index */
2129 unsigned reg_alloc;
2130
2131 /**
2132 * the highest index a load_input_*, load_uniform_*, etc. intrinsic can
2133 * access plus one
2134 */
2135 unsigned num_inputs, num_uniforms, num_outputs, num_shared;
2136
2137 /* temporary, tracking for which derefs instructions have been lowered
2138 * to deref chains
2139 */
2140 unsigned lowered_derefs;
2141 } nir_shader;
2142
2143 #define nir_assert_lowered_derefs(shader, mask) \
2144 assert(((shader)->lowered_derefs & (mask)) == (mask))
2145
2146 #define nir_assert_unlowered_derefs(shader, mask) \
2147 assert(!((shader)->lowered_derefs & (mask)))
2148
2149 static inline nir_function_impl *
2150 nir_shader_get_entrypoint(nir_shader *shader)
2151 {
2152 assert(exec_list_length(&shader->functions) == 1);
2153 struct exec_node *func_node = exec_list_get_head(&shader->functions);
2154 nir_function *func = exec_node_data(nir_function, func_node, node);
2155 assert(func->return_type == glsl_void_type());
2156 assert(func->num_params == 0);
2157 assert(func->impl);
2158 return func->impl;
2159 }
2160
2161 #define nir_foreach_function(func, shader) \
2162 foreach_list_typed(nir_function, func, node, &(shader)->functions)
2163
2164 nir_shader *nir_shader_create(void *mem_ctx,
2165 gl_shader_stage stage,
2166 const nir_shader_compiler_options *options,
2167 shader_info *si);
2168
2169 /** creates a register, including assigning it an index and adding it to the list */
2170 nir_register *nir_global_reg_create(nir_shader *shader);
2171
2172 nir_register *nir_local_reg_create(nir_function_impl *impl);
2173
2174 void nir_reg_remove(nir_register *reg);
2175
2176 /** Adds a variable to the appropriate list in nir_shader */
2177 void nir_shader_add_variable(nir_shader *shader, nir_variable *var);
2178
2179 static inline void
2180 nir_function_impl_add_variable(nir_function_impl *impl, nir_variable *var)
2181 {
2182 assert(var->data.mode == nir_var_local);
2183 exec_list_push_tail(&impl->locals, &var->node);
2184 }
2185
2186 /** creates a variable, sets a few defaults, and adds it to the list */
2187 nir_variable *nir_variable_create(nir_shader *shader,
2188 nir_variable_mode mode,
2189 const struct glsl_type *type,
2190 const char *name);
2191 /** creates a local variable and adds it to the list */
2192 nir_variable *nir_local_variable_create(nir_function_impl *impl,
2193 const struct glsl_type *type,
2194 const char *name);
2195
2196 /** creates a function and adds it to the shader's list of functions */
2197 nir_function *nir_function_create(nir_shader *shader, const char *name);
2198
2199 nir_function_impl *nir_function_impl_create(nir_function *func);
2200 /** creates a function_impl that isn't tied to any particular function */
2201 nir_function_impl *nir_function_impl_create_bare(nir_shader *shader);
2202
2203 nir_block *nir_block_create(nir_shader *shader);
2204 nir_if *nir_if_create(nir_shader *shader);
2205 nir_loop *nir_loop_create(nir_shader *shader);
2206
2207 nir_function_impl *nir_cf_node_get_function(nir_cf_node *node);
2208
2209 /** requests that the given pieces of metadata be generated */
2210 void nir_metadata_require(nir_function_impl *impl, nir_metadata required, ...);
2211 /** dirties all but the preserved metadata */
2212 void nir_metadata_preserve(nir_function_impl *impl, nir_metadata preserved);
2213
2214 /** creates an instruction with default swizzle/writemask/etc. with NULL registers */
2215 nir_alu_instr *nir_alu_instr_create(nir_shader *shader, nir_op op);
2216
2217 nir_deref_instr *nir_deref_instr_create(nir_shader *shader,
2218 nir_deref_type deref_type);
2219
2220 nir_jump_instr *nir_jump_instr_create(nir_shader *shader, nir_jump_type type);
2221
2222 nir_load_const_instr *nir_load_const_instr_create(nir_shader *shader,
2223 unsigned num_components,
2224 unsigned bit_size);
2225
2226 nir_intrinsic_instr *nir_intrinsic_instr_create(nir_shader *shader,
2227 nir_intrinsic_op op);
2228
2229 nir_call_instr *nir_call_instr_create(nir_shader *shader,
2230 nir_function *callee);
2231
2232 nir_tex_instr *nir_tex_instr_create(nir_shader *shader, unsigned num_srcs);
2233
2234 nir_phi_instr *nir_phi_instr_create(nir_shader *shader);
2235
2236 nir_parallel_copy_instr *nir_parallel_copy_instr_create(nir_shader *shader);
2237
2238 nir_ssa_undef_instr *nir_ssa_undef_instr_create(nir_shader *shader,
2239 unsigned num_components,
2240 unsigned bit_size);
2241
2242 nir_deref_var *nir_deref_var_create(void *mem_ctx, nir_variable *var);
2243 nir_deref_array *nir_deref_array_create(void *mem_ctx);
2244 nir_deref_struct *nir_deref_struct_create(void *mem_ctx, unsigned field_index);
2245
2246 typedef bool (*nir_deref_foreach_leaf_cb)(nir_deref_var *deref, void *state);
2247 bool nir_deref_foreach_leaf(nir_deref_var *deref,
2248 nir_deref_foreach_leaf_cb cb, void *state);
2249
2250 nir_load_const_instr *
2251 nir_deref_get_const_initializer_load(nir_shader *shader, nir_deref_var *deref);
2252
2253 nir_const_value nir_alu_binop_identity(nir_op binop, unsigned bit_size);
2254
2255 /**
2256 * NIR Cursors and Instruction Insertion API
2257 * @{
2258 *
2259 * A tiny struct representing a point to insert/extract instructions or
2260 * control flow nodes. Helps reduce the combinatorial explosion of possible
2261 * points to insert/extract.
2262 *
2263 * \sa nir_control_flow.h
2264 */
2265 typedef enum {
2266 nir_cursor_before_block,
2267 nir_cursor_after_block,
2268 nir_cursor_before_instr,
2269 nir_cursor_after_instr,
2270 } nir_cursor_option;
2271
2272 typedef struct {
2273 nir_cursor_option option;
2274 union {
2275 nir_block *block;
2276 nir_instr *instr;
2277 };
2278 } nir_cursor;
2279
2280 static inline nir_block *
2281 nir_cursor_current_block(nir_cursor cursor)
2282 {
2283 if (cursor.option == nir_cursor_before_instr ||
2284 cursor.option == nir_cursor_after_instr) {
2285 return cursor.instr->block;
2286 } else {
2287 return cursor.block;
2288 }
2289 }
2290
2291 bool nir_cursors_equal(nir_cursor a, nir_cursor b);
2292
2293 static inline nir_cursor
2294 nir_before_block(nir_block *block)
2295 {
2296 nir_cursor cursor;
2297 cursor.option = nir_cursor_before_block;
2298 cursor.block = block;
2299 return cursor;
2300 }
2301
2302 static inline nir_cursor
2303 nir_after_block(nir_block *block)
2304 {
2305 nir_cursor cursor;
2306 cursor.option = nir_cursor_after_block;
2307 cursor.block = block;
2308 return cursor;
2309 }
2310
2311 static inline nir_cursor
2312 nir_before_instr(nir_instr *instr)
2313 {
2314 nir_cursor cursor;
2315 cursor.option = nir_cursor_before_instr;
2316 cursor.instr = instr;
2317 return cursor;
2318 }
2319
2320 static inline nir_cursor
2321 nir_after_instr(nir_instr *instr)
2322 {
2323 nir_cursor cursor;
2324 cursor.option = nir_cursor_after_instr;
2325 cursor.instr = instr;
2326 return cursor;
2327 }
2328
2329 static inline nir_cursor
2330 nir_after_block_before_jump(nir_block *block)
2331 {
2332 nir_instr *last_instr = nir_block_last_instr(block);
2333 if (last_instr && last_instr->type == nir_instr_type_jump) {
2334 return nir_before_instr(last_instr);
2335 } else {
2336 return nir_after_block(block);
2337 }
2338 }
2339
2340 static inline nir_cursor
2341 nir_before_cf_node(nir_cf_node *node)
2342 {
2343 if (node->type == nir_cf_node_block)
2344 return nir_before_block(nir_cf_node_as_block(node));
2345
2346 return nir_after_block(nir_cf_node_as_block(nir_cf_node_prev(node)));
2347 }
2348
2349 static inline nir_cursor
2350 nir_after_cf_node(nir_cf_node *node)
2351 {
2352 if (node->type == nir_cf_node_block)
2353 return nir_after_block(nir_cf_node_as_block(node));
2354
2355 return nir_before_block(nir_cf_node_as_block(nir_cf_node_next(node)));
2356 }
2357
2358 static inline nir_cursor
2359 nir_after_phis(nir_block *block)
2360 {
2361 nir_foreach_instr(instr, block) {
2362 if (instr->type != nir_instr_type_phi)
2363 return nir_before_instr(instr);
2364 }
2365 return nir_after_block(block);
2366 }
2367
2368 static inline nir_cursor
2369 nir_after_cf_node_and_phis(nir_cf_node *node)
2370 {
2371 if (node->type == nir_cf_node_block)
2372 return nir_after_block(nir_cf_node_as_block(node));
2373
2374 nir_block *block = nir_cf_node_as_block(nir_cf_node_next(node));
2375
2376 return nir_after_phis(block);
2377 }
2378
2379 static inline nir_cursor
2380 nir_before_cf_list(struct exec_list *cf_list)
2381 {
2382 nir_cf_node *first_node = exec_node_data(nir_cf_node,
2383 exec_list_get_head(cf_list), node);
2384 return nir_before_cf_node(first_node);
2385 }
2386
2387 static inline nir_cursor
2388 nir_after_cf_list(struct exec_list *cf_list)
2389 {
2390 nir_cf_node *last_node = exec_node_data(nir_cf_node,
2391 exec_list_get_tail(cf_list), node);
2392 return nir_after_cf_node(last_node);
2393 }
2394
2395 /**
2396 * Insert a NIR instruction at the given cursor.
2397 *
2398 * Note: This does not update the cursor.
2399 */
2400 void nir_instr_insert(nir_cursor cursor, nir_instr *instr);
2401
2402 static inline void
2403 nir_instr_insert_before(nir_instr *instr, nir_instr *before)
2404 {
2405 nir_instr_insert(nir_before_instr(instr), before);
2406 }
2407
2408 static inline void
2409 nir_instr_insert_after(nir_instr *instr, nir_instr *after)
2410 {
2411 nir_instr_insert(nir_after_instr(instr), after);
2412 }
2413
2414 static inline void
2415 nir_instr_insert_before_block(nir_block *block, nir_instr *before)
2416 {
2417 nir_instr_insert(nir_before_block(block), before);
2418 }
2419
2420 static inline void
2421 nir_instr_insert_after_block(nir_block *block, nir_instr *after)
2422 {
2423 nir_instr_insert(nir_after_block(block), after);
2424 }
2425
2426 static inline void
2427 nir_instr_insert_before_cf(nir_cf_node *node, nir_instr *before)
2428 {
2429 nir_instr_insert(nir_before_cf_node(node), before);
2430 }
2431
2432 static inline void
2433 nir_instr_insert_after_cf(nir_cf_node *node, nir_instr *after)
2434 {
2435 nir_instr_insert(nir_after_cf_node(node), after);
2436 }
2437
2438 static inline void
2439 nir_instr_insert_before_cf_list(struct exec_list *list, nir_instr *before)
2440 {
2441 nir_instr_insert(nir_before_cf_list(list), before);
2442 }
2443
2444 static inline void
2445 nir_instr_insert_after_cf_list(struct exec_list *list, nir_instr *after)
2446 {
2447 nir_instr_insert(nir_after_cf_list(list), after);
2448 }
2449
2450 void nir_instr_remove_v(nir_instr *instr);
2451
2452 static inline nir_cursor
2453 nir_instr_remove(nir_instr *instr)
2454 {
2455 nir_cursor cursor;
2456 nir_instr *prev = nir_instr_prev(instr);
2457 if (prev) {
2458 cursor = nir_after_instr(prev);
2459 } else {
2460 cursor = nir_before_block(instr->block);
2461 }
2462 nir_instr_remove_v(instr);
2463 return cursor;
2464 }
2465
2466 /** @} */
2467
2468 typedef bool (*nir_foreach_ssa_def_cb)(nir_ssa_def *def, void *state);
2469 typedef bool (*nir_foreach_dest_cb)(nir_dest *dest, void *state);
2470 typedef bool (*nir_foreach_src_cb)(nir_src *src, void *state);
2471 bool nir_foreach_ssa_def(nir_instr *instr, nir_foreach_ssa_def_cb cb,
2472 void *state);
2473 bool nir_foreach_dest(nir_instr *instr, nir_foreach_dest_cb cb, void *state);
2474 bool nir_foreach_src(nir_instr *instr, nir_foreach_src_cb cb, void *state);
2475
2476 nir_const_value *nir_src_as_const_value(nir_src src);
2477 bool nir_src_is_dynamically_uniform(nir_src src);
2478 bool nir_srcs_equal(nir_src src1, nir_src src2);
2479 void nir_instr_rewrite_src(nir_instr *instr, nir_src *src, nir_src new_src);
2480 void nir_instr_move_src(nir_instr *dest_instr, nir_src *dest, nir_src *src);
2481 void nir_if_rewrite_condition(nir_if *if_stmt, nir_src new_src);
2482 void nir_instr_rewrite_dest(nir_instr *instr, nir_dest *dest,
2483 nir_dest new_dest);
2484 void nir_instr_rewrite_deref(nir_instr *instr, nir_deref_var **deref,
2485 nir_deref_var *new_deref);
2486
2487 void nir_ssa_dest_init(nir_instr *instr, nir_dest *dest,
2488 unsigned num_components, unsigned bit_size,
2489 const char *name);
2490 void nir_ssa_def_init(nir_instr *instr, nir_ssa_def *def,
2491 unsigned num_components, unsigned bit_size,
2492 const char *name);
2493 static inline void
2494 nir_ssa_dest_init_for_type(nir_instr *instr, nir_dest *dest,
2495 const struct glsl_type *type,
2496 const char *name)
2497 {
2498 assert(glsl_type_is_vector_or_scalar(type));
2499 nir_ssa_dest_init(instr, dest, glsl_get_components(type),
2500 glsl_get_bit_size(type), name);
2501 }
2502 void nir_ssa_def_rewrite_uses(nir_ssa_def *def, nir_src new_src);
2503 void nir_ssa_def_rewrite_uses_after(nir_ssa_def *def, nir_src new_src,
2504 nir_instr *after_me);
2505
2506 uint8_t nir_ssa_def_components_read(const nir_ssa_def *def);
2507
2508 /*
2509 * finds the next basic block in source-code order, returns NULL if there is
2510 * none
2511 */
2512
2513 nir_block *nir_block_cf_tree_next(nir_block *block);
2514
2515 /* Performs the opposite of nir_block_cf_tree_next() */
2516
2517 nir_block *nir_block_cf_tree_prev(nir_block *block);
2518
2519 /* Gets the first block in a CF node in source-code order */
2520
2521 nir_block *nir_cf_node_cf_tree_first(nir_cf_node *node);
2522
2523 /* Gets the last block in a CF node in source-code order */
2524
2525 nir_block *nir_cf_node_cf_tree_last(nir_cf_node *node);
2526
2527 /* Gets the next block after a CF node in source-code order */
2528
2529 nir_block *nir_cf_node_cf_tree_next(nir_cf_node *node);
2530
2531 /* Macros for loops that visit blocks in source-code order */
2532
2533 #define nir_foreach_block(block, impl) \
2534 for (nir_block *block = nir_start_block(impl); block != NULL; \
2535 block = nir_block_cf_tree_next(block))
2536
2537 #define nir_foreach_block_safe(block, impl) \
2538 for (nir_block *block = nir_start_block(impl), \
2539 *next = nir_block_cf_tree_next(block); \
2540 block != NULL; \
2541 block = next, next = nir_block_cf_tree_next(block))
2542
2543 #define nir_foreach_block_reverse(block, impl) \
2544 for (nir_block *block = nir_impl_last_block(impl); block != NULL; \
2545 block = nir_block_cf_tree_prev(block))
2546
2547 #define nir_foreach_block_reverse_safe(block, impl) \
2548 for (nir_block *block = nir_impl_last_block(impl), \
2549 *prev = nir_block_cf_tree_prev(block); \
2550 block != NULL; \
2551 block = prev, prev = nir_block_cf_tree_prev(block))
2552
2553 #define nir_foreach_block_in_cf_node(block, node) \
2554 for (nir_block *block = nir_cf_node_cf_tree_first(node); \
2555 block != nir_cf_node_cf_tree_next(node); \
2556 block = nir_block_cf_tree_next(block))
2557
2558 /* If the following CF node is an if, this function returns that if.
2559 * Otherwise, it returns NULL.
2560 */
2561 nir_if *nir_block_get_following_if(nir_block *block);
2562
2563 nir_loop *nir_block_get_following_loop(nir_block *block);
2564
2565 void nir_index_local_regs(nir_function_impl *impl);
2566 void nir_index_global_regs(nir_shader *shader);
2567 void nir_index_ssa_defs(nir_function_impl *impl);
2568 unsigned nir_index_instrs(nir_function_impl *impl);
2569
2570 void nir_index_blocks(nir_function_impl *impl);
2571
2572 void nir_print_shader(nir_shader *shader, FILE *fp);
2573 void nir_print_shader_annotated(nir_shader *shader, FILE *fp, struct hash_table *errors);
2574 void nir_print_instr(const nir_instr *instr, FILE *fp);
2575
2576 nir_shader *nir_shader_clone(void *mem_ctx, const nir_shader *s);
2577 nir_function_impl *nir_function_impl_clone(const nir_function_impl *fi);
2578 nir_constant *nir_constant_clone(const nir_constant *c, nir_variable *var);
2579 nir_variable *nir_variable_clone(const nir_variable *c, nir_shader *shader);
2580 nir_deref *nir_deref_clone(const nir_deref *deref, void *mem_ctx);
2581 nir_deref_var *nir_deref_var_clone(const nir_deref_var *deref, void *mem_ctx);
2582
2583 nir_shader *nir_shader_serialize_deserialize(void *mem_ctx, nir_shader *s);
2584
2585 #ifndef NDEBUG
2586 void nir_validate_shader(nir_shader *shader);
2587 void nir_metadata_set_validation_flag(nir_shader *shader);
2588 void nir_metadata_check_validation_flag(nir_shader *shader);
2589
2590 static inline bool
2591 should_clone_nir(void)
2592 {
2593 static int should_clone = -1;
2594 if (should_clone < 0)
2595 should_clone = env_var_as_boolean("NIR_TEST_CLONE", false);
2596
2597 return should_clone;
2598 }
2599
2600 static inline bool
2601 should_serialize_deserialize_nir(void)
2602 {
2603 static int test_serialize = -1;
2604 if (test_serialize < 0)
2605 test_serialize = env_var_as_boolean("NIR_TEST_SERIALIZE", false);
2606
2607 return test_serialize;
2608 }
2609
2610 static inline bool
2611 should_print_nir(void)
2612 {
2613 static int should_print = -1;
2614 if (should_print < 0)
2615 should_print = env_var_as_boolean("NIR_PRINT", false);
2616
2617 return should_print;
2618 }
2619 #else
2620 static inline void nir_validate_shader(nir_shader *shader) { (void) shader; }
2621 static inline void nir_metadata_set_validation_flag(nir_shader *shader) { (void) shader; }
2622 static inline void nir_metadata_check_validation_flag(nir_shader *shader) { (void) shader; }
2623 static inline bool should_clone_nir(void) { return false; }
2624 static inline bool should_serialize_deserialize_nir(void) { return false; }
2625 static inline bool should_print_nir(void) { return false; }
2626 #endif /* NDEBUG */
2627
2628 #define _PASS(nir, do_pass) do { \
2629 do_pass \
2630 nir_validate_shader(nir); \
2631 if (should_clone_nir()) { \
2632 nir_shader *clone = nir_shader_clone(ralloc_parent(nir), nir); \
2633 ralloc_free(nir); \
2634 nir = clone; \
2635 } \
2636 if (should_serialize_deserialize_nir()) { \
2637 void *mem_ctx = ralloc_parent(nir); \
2638 nir = nir_shader_serialize_deserialize(mem_ctx, nir); \
2639 } \
2640 } while (0)
2641
2642 #define NIR_PASS(progress, nir, pass, ...) _PASS(nir, \
2643 nir_metadata_set_validation_flag(nir); \
2644 if (should_print_nir()) \
2645 printf("%s\n", #pass); \
2646 if (pass(nir, ##__VA_ARGS__)) { \
2647 progress = true; \
2648 if (should_print_nir()) \
2649 nir_print_shader(nir, stdout); \
2650 nir_metadata_check_validation_flag(nir); \
2651 } \
2652 )
2653
2654 #define NIR_PASS_V(nir, pass, ...) _PASS(nir, \
2655 if (should_print_nir()) \
2656 printf("%s\n", #pass); \
2657 pass(nir, ##__VA_ARGS__); \
2658 if (should_print_nir()) \
2659 nir_print_shader(nir, stdout); \
2660 )
2661
2662 void nir_calc_dominance_impl(nir_function_impl *impl);
2663 void nir_calc_dominance(nir_shader *shader);
2664
2665 nir_block *nir_dominance_lca(nir_block *b1, nir_block *b2);
2666 bool nir_block_dominates(nir_block *parent, nir_block *child);
2667
2668 void nir_dump_dom_tree_impl(nir_function_impl *impl, FILE *fp);
2669 void nir_dump_dom_tree(nir_shader *shader, FILE *fp);
2670
2671 void nir_dump_dom_frontier_impl(nir_function_impl *impl, FILE *fp);
2672 void nir_dump_dom_frontier(nir_shader *shader, FILE *fp);
2673
2674 void nir_dump_cfg_impl(nir_function_impl *impl, FILE *fp);
2675 void nir_dump_cfg(nir_shader *shader, FILE *fp);
2676
2677 int nir_gs_count_vertices(const nir_shader *shader);
2678
2679 bool nir_split_var_copies(nir_shader *shader);
2680
2681 bool nir_lower_returns_impl(nir_function_impl *impl);
2682 bool nir_lower_returns(nir_shader *shader);
2683
2684 bool nir_inline_functions(nir_shader *shader);
2685
2686 bool nir_propagate_invariant(nir_shader *shader);
2687
2688 enum nir_lower_deref_flags {
2689 nir_lower_load_store_derefs = (1 << 0),
2690 nir_lower_texture_derefs = (1 << 1),
2691 nir_lower_interp_derefs = (1 << 2),
2692 nir_lower_atomic_counter_derefs = (1 << 3),
2693 nir_lower_atomic_derefs = (1 << 4),
2694 nir_lower_image_derefs = (1 << 5),
2695 nir_lower_all_derefs = (1 << 6) - 1,
2696 };
2697
2698 bool nir_lower_deref_instrs(nir_shader *shader,
2699 enum nir_lower_deref_flags flags);
2700
2701 void nir_lower_var_copy_instr(nir_intrinsic_instr *copy, nir_shader *shader);
2702 bool nir_lower_var_copies(nir_shader *shader);
2703
2704 void nir_fixup_deref_modes(nir_shader *shader);
2705
2706 bool nir_lower_global_vars_to_local(nir_shader *shader);
2707
2708 bool nir_lower_indirect_derefs(nir_shader *shader, nir_variable_mode modes);
2709
2710 bool nir_lower_locals_to_regs(nir_shader *shader);
2711
2712 void nir_lower_io_to_temporaries(nir_shader *shader,
2713 nir_function_impl *entrypoint,
2714 bool outputs, bool inputs);
2715
2716 void nir_shader_gather_info(nir_shader *shader, nir_function_impl *entrypoint);
2717
2718 void nir_assign_var_locations(struct exec_list *var_list, unsigned *size,
2719 int (*type_size)(const struct glsl_type *));
2720
2721 /* Some helpers to do very simple linking */
2722 bool nir_remove_unused_varyings(nir_shader *producer, nir_shader *consumer);
2723 void nir_compact_varyings(nir_shader *producer, nir_shader *consumer,
2724 bool default_to_smooth_interp);
2725
2726 typedef enum {
2727 /* If set, this forces all non-flat fragment shader inputs to be
2728 * interpolated as if with the "sample" qualifier. This requires
2729 * nir_shader_compiler_options::use_interpolated_input_intrinsics.
2730 */
2731 nir_lower_io_force_sample_interpolation = (1 << 1),
2732 } nir_lower_io_options;
2733 bool nir_lower_io(nir_shader *shader,
2734 nir_variable_mode modes,
2735 int (*type_size)(const struct glsl_type *),
2736 nir_lower_io_options);
2737 nir_src *nir_get_io_offset_src(nir_intrinsic_instr *instr);
2738 nir_src *nir_get_io_vertex_index_src(nir_intrinsic_instr *instr);
2739
2740 bool nir_is_per_vertex_io(const nir_variable *var, gl_shader_stage stage);
2741
2742 void nir_lower_io_types(nir_shader *shader);
2743 bool nir_lower_regs_to_ssa_impl(nir_function_impl *impl);
2744 bool nir_lower_regs_to_ssa(nir_shader *shader);
2745 bool nir_lower_vars_to_ssa(nir_shader *shader);
2746
2747 bool nir_remove_dead_derefs(nir_shader *shader);
2748 bool nir_remove_dead_derefs_impl(nir_function_impl *impl);
2749 bool nir_remove_dead_variables(nir_shader *shader, nir_variable_mode modes);
2750 bool nir_lower_constant_initializers(nir_shader *shader,
2751 nir_variable_mode modes);
2752
2753 bool nir_move_load_const(nir_shader *shader);
2754 bool nir_move_vec_src_uses_to_dest(nir_shader *shader);
2755 bool nir_lower_vec_to_movs(nir_shader *shader);
2756 void nir_lower_alpha_test(nir_shader *shader, enum compare_func func,
2757 bool alpha_to_one);
2758 bool nir_lower_alu(nir_shader *shader);
2759 bool nir_lower_alu_to_scalar(nir_shader *shader);
2760 bool nir_lower_load_const_to_scalar(nir_shader *shader);
2761 bool nir_lower_read_invocation_to_scalar(nir_shader *shader);
2762 bool nir_lower_phis_to_scalar(nir_shader *shader);
2763 void nir_lower_io_arrays_to_elements(nir_shader *producer, nir_shader *consumer);
2764 void nir_lower_io_arrays_to_elements_no_indirects(nir_shader *shader,
2765 bool outputs_only);
2766 void nir_lower_io_to_scalar(nir_shader *shader, nir_variable_mode mask);
2767 void nir_lower_io_to_scalar_early(nir_shader *shader, nir_variable_mode mask);
2768
2769 typedef struct nir_lower_subgroups_options {
2770 uint8_t subgroup_size;
2771 uint8_t ballot_bit_size;
2772 bool lower_to_scalar:1;
2773 bool lower_vote_trivial:1;
2774 bool lower_vote_eq_to_ballot:1;
2775 bool lower_subgroup_masks:1;
2776 bool lower_shuffle:1;
2777 bool lower_shuffle_to_32bit:1;
2778 bool lower_quad:1;
2779 } nir_lower_subgroups_options;
2780
2781 bool nir_lower_subgroups(nir_shader *shader,
2782 const nir_lower_subgroups_options *options);
2783
2784 bool nir_lower_system_values(nir_shader *shader);
2785
2786 typedef struct nir_lower_tex_options {
2787 /**
2788 * bitmask of (1 << GLSL_SAMPLER_DIM_x) to control for which
2789 * sampler types a texture projector is lowered.
2790 */
2791 unsigned lower_txp;
2792
2793 /**
2794 * If true, lower away nir_tex_src_offset for all texelfetch instructions.
2795 */
2796 bool lower_txf_offset;
2797
2798 /**
2799 * If true, lower away nir_tex_src_offset for all rect textures.
2800 */
2801 bool lower_rect_offset;
2802
2803 /**
2804 * If true, lower rect textures to 2D, using txs to fetch the
2805 * texture dimensions and dividing the texture coords by the
2806 * texture dims to normalize.
2807 */
2808 bool lower_rect;
2809
2810 /**
2811 * If true, convert yuv to rgb.
2812 */
2813 unsigned lower_y_uv_external;
2814 unsigned lower_y_u_v_external;
2815 unsigned lower_yx_xuxv_external;
2816 unsigned lower_xy_uxvx_external;
2817
2818 /**
2819 * To emulate certain texture wrap modes, this can be used
2820 * to saturate the specified tex coord to [0.0, 1.0]. The
2821 * bits are according to sampler #, ie. if, for example:
2822 *
2823 * (conf->saturate_s & (1 << n))
2824 *
2825 * is true, then the s coord for sampler n is saturated.
2826 *
2827 * Note that clamping must happen *after* projector lowering
2828 * so any projected texture sample instruction with a clamped
2829 * coordinate gets automatically lowered, regardless of the
2830 * 'lower_txp' setting.
2831 */
2832 unsigned saturate_s;
2833 unsigned saturate_t;
2834 unsigned saturate_r;
2835
2836 /* Bitmask of textures that need swizzling.
2837 *
2838 * If (swizzle_result & (1 << texture_index)), then the swizzle in
2839 * swizzles[texture_index] is applied to the result of the texturing
2840 * operation.
2841 */
2842 unsigned swizzle_result;
2843
2844 /* A swizzle for each texture. Values 0-3 represent x, y, z, or w swizzles
2845 * while 4 and 5 represent 0 and 1 respectively.
2846 */
2847 uint8_t swizzles[32][4];
2848
2849 /**
2850 * Bitmap of textures that need srgb to linear conversion. If
2851 * (lower_srgb & (1 << texture_index)) then the rgb (xyz) components
2852 * of the texture are lowered to linear.
2853 */
2854 unsigned lower_srgb;
2855
2856 /**
2857 * If true, lower nir_texop_txd on cube maps with nir_texop_txl.
2858 */
2859 bool lower_txd_cube_map;
2860
2861 /**
2862 * If true, lower nir_texop_txd on shadow samplers (except cube maps)
2863 * with nir_texop_txl. Notice that cube map shadow samplers are lowered
2864 * with lower_txd_cube_map.
2865 */
2866 bool lower_txd_shadow;
2867
2868 /**
2869 * If true, lower nir_texop_txd on all samplers to a nir_texop_txl.
2870 * Implies lower_txd_cube_map and lower_txd_shadow.
2871 */
2872 bool lower_txd;
2873 } nir_lower_tex_options;
2874
2875 bool nir_lower_tex(nir_shader *shader,
2876 const nir_lower_tex_options *options);
2877
2878 bool nir_lower_idiv(nir_shader *shader);
2879
2880 bool nir_lower_clip_vs(nir_shader *shader, unsigned ucp_enables);
2881 bool nir_lower_clip_fs(nir_shader *shader, unsigned ucp_enables);
2882 bool nir_lower_clip_cull_distance_arrays(nir_shader *nir);
2883
2884 void nir_lower_two_sided_color(nir_shader *shader);
2885
2886 bool nir_lower_clamp_color_outputs(nir_shader *shader);
2887
2888 void nir_lower_passthrough_edgeflags(nir_shader *shader);
2889 void nir_lower_tes_patch_vertices(nir_shader *tes, unsigned patch_vertices);
2890
2891 typedef struct nir_lower_wpos_ytransform_options {
2892 gl_state_index16 state_tokens[STATE_LENGTH];
2893 bool fs_coord_origin_upper_left :1;
2894 bool fs_coord_origin_lower_left :1;
2895 bool fs_coord_pixel_center_integer :1;
2896 bool fs_coord_pixel_center_half_integer :1;
2897 } nir_lower_wpos_ytransform_options;
2898
2899 bool nir_lower_wpos_ytransform(nir_shader *shader,
2900 const nir_lower_wpos_ytransform_options *options);
2901 bool nir_lower_wpos_center(nir_shader *shader, const bool for_sample_shading);
2902
2903 typedef struct nir_lower_drawpixels_options {
2904 gl_state_index16 texcoord_state_tokens[STATE_LENGTH];
2905 gl_state_index16 scale_state_tokens[STATE_LENGTH];
2906 gl_state_index16 bias_state_tokens[STATE_LENGTH];
2907 unsigned drawpix_sampler;
2908 unsigned pixelmap_sampler;
2909 bool pixel_maps :1;
2910 bool scale_and_bias :1;
2911 } nir_lower_drawpixels_options;
2912
2913 void nir_lower_drawpixels(nir_shader *shader,
2914 const nir_lower_drawpixels_options *options);
2915
2916 typedef struct nir_lower_bitmap_options {
2917 unsigned sampler;
2918 bool swizzle_xxxx;
2919 } nir_lower_bitmap_options;
2920
2921 void nir_lower_bitmap(nir_shader *shader, const nir_lower_bitmap_options *options);
2922
2923 bool nir_lower_atomics_to_ssbo(nir_shader *shader, unsigned ssbo_offset);
2924 bool nir_lower_to_source_mods(nir_shader *shader);
2925
2926 bool nir_lower_gs_intrinsics(nir_shader *shader);
2927
2928 typedef unsigned (*nir_lower_bit_size_callback)(const nir_alu_instr *, void *);
2929
2930 bool nir_lower_bit_size(nir_shader *shader,
2931 nir_lower_bit_size_callback callback,
2932 void *callback_data);
2933
2934 typedef enum {
2935 nir_lower_imul64 = (1 << 0),
2936 nir_lower_isign64 = (1 << 1),
2937 /** Lower all int64 modulus and division opcodes */
2938 nir_lower_divmod64 = (1 << 2),
2939 } nir_lower_int64_options;
2940
2941 bool nir_lower_int64(nir_shader *shader, nir_lower_int64_options options);
2942
2943 typedef enum {
2944 nir_lower_drcp = (1 << 0),
2945 nir_lower_dsqrt = (1 << 1),
2946 nir_lower_drsq = (1 << 2),
2947 nir_lower_dtrunc = (1 << 3),
2948 nir_lower_dfloor = (1 << 4),
2949 nir_lower_dceil = (1 << 5),
2950 nir_lower_dfract = (1 << 6),
2951 nir_lower_dround_even = (1 << 7),
2952 nir_lower_dmod = (1 << 8)
2953 } nir_lower_doubles_options;
2954
2955 bool nir_lower_doubles(nir_shader *shader, nir_lower_doubles_options options);
2956 bool nir_lower_pack(nir_shader *shader);
2957
2958 bool nir_normalize_cubemap_coords(nir_shader *shader);
2959
2960 void nir_live_ssa_defs_impl(nir_function_impl *impl);
2961
2962 void nir_loop_analyze_impl(nir_function_impl *impl,
2963 nir_variable_mode indirect_mask);
2964
2965 bool nir_ssa_defs_interfere(nir_ssa_def *a, nir_ssa_def *b);
2966
2967 bool nir_repair_ssa_impl(nir_function_impl *impl);
2968 bool nir_repair_ssa(nir_shader *shader);
2969
2970 void nir_convert_loop_to_lcssa(nir_loop *loop);
2971
2972 /* If phi_webs_only is true, only convert SSA values involved in phi nodes to
2973 * registers. If false, convert all values (even those not involved in a phi
2974 * node) to registers.
2975 */
2976 bool nir_convert_from_ssa(nir_shader *shader, bool phi_webs_only);
2977
2978 bool nir_lower_phis_to_regs_block(nir_block *block);
2979 bool nir_lower_ssa_defs_to_regs_block(nir_block *block);
2980
2981 bool nir_opt_algebraic(nir_shader *shader);
2982 bool nir_opt_algebraic_before_ffma(nir_shader *shader);
2983 bool nir_opt_algebraic_late(nir_shader *shader);
2984 bool nir_opt_constant_folding(nir_shader *shader);
2985
2986 bool nir_opt_global_to_local(nir_shader *shader);
2987
2988 bool nir_copy_prop(nir_shader *shader);
2989
2990 bool nir_opt_copy_prop_vars(nir_shader *shader);
2991
2992 bool nir_opt_cse(nir_shader *shader);
2993
2994 bool nir_opt_dce(nir_shader *shader);
2995
2996 bool nir_opt_dead_cf(nir_shader *shader);
2997
2998 bool nir_opt_gcm(nir_shader *shader, bool value_number);
2999
3000 bool nir_opt_if(nir_shader *shader);
3001
3002 bool nir_opt_intrinsics(nir_shader *shader);
3003
3004 bool nir_opt_loop_unroll(nir_shader *shader, nir_variable_mode indirect_mask);
3005
3006 bool nir_opt_move_comparisons(nir_shader *shader);
3007
3008 bool nir_opt_move_load_ubo(nir_shader *shader);
3009
3010 bool nir_opt_peephole_select(nir_shader *shader, unsigned limit);
3011
3012 bool nir_opt_remove_phis(nir_shader *shader);
3013
3014 bool nir_opt_shrink_load(nir_shader *shader);
3015
3016 bool nir_opt_trivial_continues(nir_shader *shader);
3017
3018 bool nir_opt_undef(nir_shader *shader);
3019
3020 bool nir_opt_conditional_discard(nir_shader *shader);
3021
3022 void nir_sweep(nir_shader *shader);
3023
3024 nir_intrinsic_op nir_intrinsic_from_system_value(gl_system_value val);
3025 gl_system_value nir_system_value_from_intrinsic(nir_intrinsic_op intrin);
3026
3027 #ifdef __cplusplus
3028 } /* extern "C" */
3029 #endif
3030
3031 #endif /* NIR_H */