nir: fix constness in nir_intrinsic_align()
[mesa.git] / src / compiler / nir / nir.h
1 /*
2 * Copyright © 2014 Connor Abbott
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Connor Abbott (cwabbott0@gmail.com)
25 *
26 */
27
28 #ifndef NIR_H
29 #define NIR_H
30
31 #include "util/hash_table.h"
32 #include "compiler/glsl/list.h"
33 #include "GL/gl.h" /* GLenum */
34 #include "util/list.h"
35 #include "util/ralloc.h"
36 #include "util/set.h"
37 #include "util/bitscan.h"
38 #include "util/bitset.h"
39 #include "util/macros.h"
40 #include "compiler/nir_types.h"
41 #include "compiler/shader_enums.h"
42 #include "compiler/shader_info.h"
43 #include <stdio.h>
44
45 #ifndef NDEBUG
46 #include "util/debug.h"
47 #endif /* NDEBUG */
48
49 #include "nir_opcodes.h"
50
51 #if defined(_WIN32) && !defined(snprintf)
52 #define snprintf _snprintf
53 #endif
54
55 #ifdef __cplusplus
56 extern "C" {
57 #endif
58
59 #define NIR_FALSE 0u
60 #define NIR_TRUE (~0u)
61 #define NIR_MAX_VEC_COMPONENTS 4
62 typedef uint8_t nir_component_mask_t;
63
64 /** Defines a cast function
65 *
66 * This macro defines a cast function from in_type to out_type where
67 * out_type is some structure type that contains a field of type out_type.
68 *
69 * Note that you have to be a bit careful as the generated cast function
70 * destroys constness.
71 */
72 #define NIR_DEFINE_CAST(name, in_type, out_type, field, \
73 type_field, type_value) \
74 static inline out_type * \
75 name(const in_type *parent) \
76 { \
77 assert(parent && parent->type_field == type_value); \
78 return exec_node_data(out_type, parent, field); \
79 }
80
81 struct nir_function;
82 struct nir_shader;
83 struct nir_instr;
84 struct nir_builder;
85
86
87 /**
88 * Description of built-in state associated with a uniform
89 *
90 * \sa nir_variable::state_slots
91 */
92 typedef struct {
93 gl_state_index16 tokens[STATE_LENGTH];
94 int swizzle;
95 } nir_state_slot;
96
97 typedef enum {
98 nir_var_shader_in = (1 << 0),
99 nir_var_shader_out = (1 << 1),
100 nir_var_global = (1 << 2),
101 nir_var_local = (1 << 3),
102 nir_var_uniform = (1 << 4),
103 nir_var_shader_storage = (1 << 5),
104 nir_var_system_value = (1 << 6),
105 nir_var_shared = (1 << 8),
106 nir_var_all = ~0,
107 } nir_variable_mode;
108
109 /**
110 * Rounding modes.
111 */
112 typedef enum {
113 nir_rounding_mode_undef = 0,
114 nir_rounding_mode_rtne = 1, /* round to nearest even */
115 nir_rounding_mode_ru = 2, /* round up */
116 nir_rounding_mode_rd = 3, /* round down */
117 nir_rounding_mode_rtz = 4, /* round towards zero */
118 } nir_rounding_mode;
119
120 typedef union {
121 float f32[NIR_MAX_VEC_COMPONENTS];
122 double f64[NIR_MAX_VEC_COMPONENTS];
123 int8_t i8[NIR_MAX_VEC_COMPONENTS];
124 uint8_t u8[NIR_MAX_VEC_COMPONENTS];
125 int16_t i16[NIR_MAX_VEC_COMPONENTS];
126 uint16_t u16[NIR_MAX_VEC_COMPONENTS];
127 int32_t i32[NIR_MAX_VEC_COMPONENTS];
128 uint32_t u32[NIR_MAX_VEC_COMPONENTS];
129 int64_t i64[NIR_MAX_VEC_COMPONENTS];
130 uint64_t u64[NIR_MAX_VEC_COMPONENTS];
131 } nir_const_value;
132
133 typedef struct nir_constant {
134 /**
135 * Value of the constant.
136 *
137 * The field used to back the values supplied by the constant is determined
138 * by the type associated with the \c nir_variable. Constants may be
139 * scalars, vectors, or matrices.
140 */
141 nir_const_value values[NIR_MAX_VEC_COMPONENTS];
142
143 /* we could get this from the var->type but makes clone *much* easier to
144 * not have to care about the type.
145 */
146 unsigned num_elements;
147
148 /* Array elements / Structure Fields */
149 struct nir_constant **elements;
150 } nir_constant;
151
152 /**
153 * \brief Layout qualifiers for gl_FragDepth.
154 *
155 * The AMD/ARB_conservative_depth extensions allow gl_FragDepth to be redeclared
156 * with a layout qualifier.
157 */
158 typedef enum {
159 nir_depth_layout_none, /**< No depth layout is specified. */
160 nir_depth_layout_any,
161 nir_depth_layout_greater,
162 nir_depth_layout_less,
163 nir_depth_layout_unchanged
164 } nir_depth_layout;
165
166 /**
167 * Enum keeping track of how a variable was declared.
168 */
169 typedef enum {
170 /**
171 * Normal declaration.
172 */
173 nir_var_declared_normally = 0,
174
175 /**
176 * Variable is implicitly generated by the compiler and should not be
177 * visible via the API.
178 */
179 nir_var_hidden,
180 } nir_var_declaration_type;
181
182 /**
183 * Either a uniform, global variable, shader input, or shader output. Based on
184 * ir_variable - it should be easy to translate between the two.
185 */
186
187 typedef struct nir_variable {
188 struct exec_node node;
189
190 /**
191 * Declared type of the variable
192 */
193 const struct glsl_type *type;
194
195 /**
196 * Declared name of the variable
197 */
198 char *name;
199
200 struct nir_variable_data {
201 /**
202 * Storage class of the variable.
203 *
204 * \sa nir_variable_mode
205 */
206 nir_variable_mode mode;
207
208 /**
209 * Is the variable read-only?
210 *
211 * This is set for variables declared as \c const, shader inputs,
212 * and uniforms.
213 */
214 unsigned read_only:1;
215 unsigned centroid:1;
216 unsigned sample:1;
217 unsigned patch:1;
218 unsigned invariant:1;
219
220 /**
221 * When separate shader programs are enabled, only input/outputs between
222 * the stages of a multi-stage separate program can be safely removed
223 * from the shader interface. Other input/outputs must remains active.
224 *
225 * This is also used to make sure xfb varyings that are unused by the
226 * fragment shader are not removed.
227 */
228 unsigned always_active_io:1;
229
230 /**
231 * Interpolation mode for shader inputs / outputs
232 *
233 * \sa glsl_interp_mode
234 */
235 unsigned interpolation:2;
236
237 /**
238 * \name ARB_fragment_coord_conventions
239 * @{
240 */
241 unsigned origin_upper_left:1;
242 unsigned pixel_center_integer:1;
243 /*@}*/
244
245 /**
246 * If non-zero, then this variable may be packed along with other variables
247 * into a single varying slot, so this offset should be applied when
248 * accessing components. For example, an offset of 1 means that the x
249 * component of this variable is actually stored in component y of the
250 * location specified by \c location.
251 */
252 unsigned location_frac:2;
253
254 /**
255 * If true, this variable represents an array of scalars that should
256 * be tightly packed. In other words, consecutive array elements
257 * should be stored one component apart, rather than one slot apart.
258 */
259 unsigned compact:1;
260
261 /**
262 * Whether this is a fragment shader output implicitly initialized with
263 * the previous contents of the specified render target at the
264 * framebuffer location corresponding to this shader invocation.
265 */
266 unsigned fb_fetch_output:1;
267
268 /**
269 * Non-zero if this variable is considered bindless as defined by
270 * ARB_bindless_texture.
271 */
272 unsigned bindless:1;
273
274 /**
275 * Was an explicit binding set in the shader?
276 */
277 unsigned explicit_binding:1;
278
279 /**
280 * Was a transfer feedback buffer set in the shader?
281 */
282 unsigned explicit_xfb_buffer:1;
283
284 /**
285 * Was a transfer feedback stride set in the shader?
286 */
287 unsigned explicit_xfb_stride:1;
288
289 /**
290 * Was an explicit offset set in the shader?
291 */
292 unsigned explicit_offset:1;
293
294 /**
295 * \brief Layout qualifier for gl_FragDepth.
296 *
297 * This is not equal to \c ir_depth_layout_none if and only if this
298 * variable is \c gl_FragDepth and a layout qualifier is specified.
299 */
300 nir_depth_layout depth_layout;
301
302 /**
303 * Storage location of the base of this variable
304 *
305 * The precise meaning of this field depends on the nature of the variable.
306 *
307 * - Vertex shader input: one of the values from \c gl_vert_attrib.
308 * - Vertex shader output: one of the values from \c gl_varying_slot.
309 * - Geometry shader input: one of the values from \c gl_varying_slot.
310 * - Geometry shader output: one of the values from \c gl_varying_slot.
311 * - Fragment shader input: one of the values from \c gl_varying_slot.
312 * - Fragment shader output: one of the values from \c gl_frag_result.
313 * - Uniforms: Per-stage uniform slot number for default uniform block.
314 * - Uniforms: Index within the uniform block definition for UBO members.
315 * - Non-UBO Uniforms: uniform slot number.
316 * - Other: This field is not currently used.
317 *
318 * If the variable is a uniform, shader input, or shader output, and the
319 * slot has not been assigned, the value will be -1.
320 */
321 int location;
322
323 /**
324 * The actual location of the variable in the IR. Only valid for inputs
325 * and outputs.
326 */
327 unsigned int driver_location;
328
329 /**
330 * Vertex stream output identifier.
331 *
332 * For packed outputs, bit 31 is set and bits [2*i+1,2*i] indicate the
333 * stream of the i-th component.
334 */
335 unsigned stream;
336
337 /**
338 * output index for dual source blending.
339 */
340 int index;
341
342 /**
343 * Descriptor set binding for sampler or UBO.
344 */
345 int descriptor_set;
346
347 /**
348 * Initial binding point for a sampler or UBO.
349 *
350 * For array types, this represents the binding point for the first element.
351 */
352 int binding;
353
354 /**
355 * Location an atomic counter or transform feedback is stored at.
356 */
357 unsigned offset;
358
359 /**
360 * Transform feedback buffer.
361 */
362 unsigned xfb_buffer;
363
364 /**
365 * Transform feedback stride.
366 */
367 unsigned xfb_stride;
368
369 /**
370 * How the variable was declared. See nir_var_declaration_type.
371 *
372 * This is used to detect variables generated by the compiler, so should
373 * not be visible via the API.
374 */
375 unsigned how_declared:2;
376
377 /**
378 * ARB_shader_image_load_store qualifiers.
379 */
380 struct {
381 enum gl_access_qualifier access;
382
383 /** Image internal format if specified explicitly, otherwise GL_NONE. */
384 GLenum format;
385 } image;
386 } data;
387
388 /**
389 * Built-in state that backs this uniform
390 *
391 * Once set at variable creation, \c state_slots must remain invariant.
392 * This is because, ideally, this array would be shared by all clones of
393 * this variable in the IR tree. In other words, we'd really like for it
394 * to be a fly-weight.
395 *
396 * If the variable is not a uniform, \c num_state_slots will be zero and
397 * \c state_slots will be \c NULL.
398 */
399 /*@{*/
400 unsigned num_state_slots; /**< Number of state slots used */
401 nir_state_slot *state_slots; /**< State descriptors. */
402 /*@}*/
403
404 /**
405 * Constant expression assigned in the initializer of the variable
406 *
407 * This field should only be used temporarily by creators of NIR shaders
408 * and then lower_constant_initializers can be used to get rid of them.
409 * Most of the rest of NIR ignores this field or asserts that it's NULL.
410 */
411 nir_constant *constant_initializer;
412
413 /**
414 * For variables that are in an interface block or are an instance of an
415 * interface block, this is the \c GLSL_TYPE_INTERFACE type for that block.
416 *
417 * \sa ir_variable::location
418 */
419 const struct glsl_type *interface_type;
420
421 /**
422 * Description of per-member data for per-member struct variables
423 *
424 * This is used for variables which are actually an amalgamation of
425 * multiple entities such as a struct of built-in values or a struct of
426 * inputs each with their own layout specifier. This is only allowed on
427 * variables with a struct or array of array of struct type.
428 */
429 unsigned num_members;
430 struct nir_variable_data *members;
431 } nir_variable;
432
433 #define nir_foreach_variable(var, var_list) \
434 foreach_list_typed(nir_variable, var, node, var_list)
435
436 #define nir_foreach_variable_safe(var, var_list) \
437 foreach_list_typed_safe(nir_variable, var, node, var_list)
438
439 static inline bool
440 nir_variable_is_global(const nir_variable *var)
441 {
442 return var->data.mode != nir_var_local;
443 }
444
445 typedef struct nir_register {
446 struct exec_node node;
447
448 unsigned num_components; /** < number of vector components */
449 unsigned num_array_elems; /** < size of array (0 for no array) */
450
451 /* The bit-size of each channel; must be one of 8, 16, 32, or 64 */
452 uint8_t bit_size;
453
454 /** generic register index. */
455 unsigned index;
456
457 /** only for debug purposes, can be NULL */
458 const char *name;
459
460 /** whether this register is local (per-function) or global (per-shader) */
461 bool is_global;
462
463 /**
464 * If this flag is set to true, then accessing channels >= num_components
465 * is well-defined, and simply spills over to the next array element. This
466 * is useful for backends that can do per-component accessing, in
467 * particular scalar backends. By setting this flag and making
468 * num_components equal to 1, structures can be packed tightly into
469 * registers and then registers can be accessed per-component to get to
470 * each structure member, even if it crosses vec4 boundaries.
471 */
472 bool is_packed;
473
474 /** set of nir_srcs where this register is used (read from) */
475 struct list_head uses;
476
477 /** set of nir_dests where this register is defined (written to) */
478 struct list_head defs;
479
480 /** set of nir_ifs where this register is used as a condition */
481 struct list_head if_uses;
482 } nir_register;
483
484 #define nir_foreach_register(reg, reg_list) \
485 foreach_list_typed(nir_register, reg, node, reg_list)
486 #define nir_foreach_register_safe(reg, reg_list) \
487 foreach_list_typed_safe(nir_register, reg, node, reg_list)
488
489 typedef enum {
490 nir_instr_type_alu,
491 nir_instr_type_deref,
492 nir_instr_type_call,
493 nir_instr_type_tex,
494 nir_instr_type_intrinsic,
495 nir_instr_type_load_const,
496 nir_instr_type_jump,
497 nir_instr_type_ssa_undef,
498 nir_instr_type_phi,
499 nir_instr_type_parallel_copy,
500 } nir_instr_type;
501
502 typedef struct nir_instr {
503 struct exec_node node;
504 nir_instr_type type;
505 struct nir_block *block;
506
507 /** generic instruction index. */
508 unsigned index;
509
510 /* A temporary for optimization and analysis passes to use for storing
511 * flags. For instance, DCE uses this to store the "dead/live" info.
512 */
513 uint8_t pass_flags;
514 } nir_instr;
515
516 static inline nir_instr *
517 nir_instr_next(nir_instr *instr)
518 {
519 struct exec_node *next = exec_node_get_next(&instr->node);
520 if (exec_node_is_tail_sentinel(next))
521 return NULL;
522 else
523 return exec_node_data(nir_instr, next, node);
524 }
525
526 static inline nir_instr *
527 nir_instr_prev(nir_instr *instr)
528 {
529 struct exec_node *prev = exec_node_get_prev(&instr->node);
530 if (exec_node_is_head_sentinel(prev))
531 return NULL;
532 else
533 return exec_node_data(nir_instr, prev, node);
534 }
535
536 static inline bool
537 nir_instr_is_first(const nir_instr *instr)
538 {
539 return exec_node_is_head_sentinel(exec_node_get_prev_const(&instr->node));
540 }
541
542 static inline bool
543 nir_instr_is_last(const nir_instr *instr)
544 {
545 return exec_node_is_tail_sentinel(exec_node_get_next_const(&instr->node));
546 }
547
548 typedef struct nir_ssa_def {
549 /** for debugging only, can be NULL */
550 const char* name;
551
552 /** generic SSA definition index. */
553 unsigned index;
554
555 /** Index into the live_in and live_out bitfields */
556 unsigned live_index;
557
558 /** Instruction which produces this SSA value. */
559 nir_instr *parent_instr;
560
561 /** set of nir_instrs where this register is used (read from) */
562 struct list_head uses;
563
564 /** set of nir_ifs where this register is used as a condition */
565 struct list_head if_uses;
566
567 uint8_t num_components;
568
569 /* The bit-size of each channel; must be one of 8, 16, 32, or 64 */
570 uint8_t bit_size;
571 } nir_ssa_def;
572
573 struct nir_src;
574
575 typedef struct {
576 nir_register *reg;
577 struct nir_src *indirect; /** < NULL for no indirect offset */
578 unsigned base_offset;
579
580 /* TODO use-def chain goes here */
581 } nir_reg_src;
582
583 typedef struct {
584 nir_instr *parent_instr;
585 struct list_head def_link;
586
587 nir_register *reg;
588 struct nir_src *indirect; /** < NULL for no indirect offset */
589 unsigned base_offset;
590
591 /* TODO def-use chain goes here */
592 } nir_reg_dest;
593
594 struct nir_if;
595
596 typedef struct nir_src {
597 union {
598 /** Instruction that consumes this value as a source. */
599 nir_instr *parent_instr;
600 struct nir_if *parent_if;
601 };
602
603 struct list_head use_link;
604
605 union {
606 nir_reg_src reg;
607 nir_ssa_def *ssa;
608 };
609
610 bool is_ssa;
611 } nir_src;
612
613 static inline nir_src
614 nir_src_init(void)
615 {
616 nir_src src = { { NULL } };
617 return src;
618 }
619
620 #define NIR_SRC_INIT nir_src_init()
621
622 #define nir_foreach_use(src, reg_or_ssa_def) \
623 list_for_each_entry(nir_src, src, &(reg_or_ssa_def)->uses, use_link)
624
625 #define nir_foreach_use_safe(src, reg_or_ssa_def) \
626 list_for_each_entry_safe(nir_src, src, &(reg_or_ssa_def)->uses, use_link)
627
628 #define nir_foreach_if_use(src, reg_or_ssa_def) \
629 list_for_each_entry(nir_src, src, &(reg_or_ssa_def)->if_uses, use_link)
630
631 #define nir_foreach_if_use_safe(src, reg_or_ssa_def) \
632 list_for_each_entry_safe(nir_src, src, &(reg_or_ssa_def)->if_uses, use_link)
633
634 typedef struct {
635 union {
636 nir_reg_dest reg;
637 nir_ssa_def ssa;
638 };
639
640 bool is_ssa;
641 } nir_dest;
642
643 static inline nir_dest
644 nir_dest_init(void)
645 {
646 nir_dest dest = { { { NULL } } };
647 return dest;
648 }
649
650 #define NIR_DEST_INIT nir_dest_init()
651
652 #define nir_foreach_def(dest, reg) \
653 list_for_each_entry(nir_dest, dest, &(reg)->defs, reg.def_link)
654
655 #define nir_foreach_def_safe(dest, reg) \
656 list_for_each_entry_safe(nir_dest, dest, &(reg)->defs, reg.def_link)
657
658 static inline nir_src
659 nir_src_for_ssa(nir_ssa_def *def)
660 {
661 nir_src src = NIR_SRC_INIT;
662
663 src.is_ssa = true;
664 src.ssa = def;
665
666 return src;
667 }
668
669 static inline nir_src
670 nir_src_for_reg(nir_register *reg)
671 {
672 nir_src src = NIR_SRC_INIT;
673
674 src.is_ssa = false;
675 src.reg.reg = reg;
676 src.reg.indirect = NULL;
677 src.reg.base_offset = 0;
678
679 return src;
680 }
681
682 static inline nir_dest
683 nir_dest_for_reg(nir_register *reg)
684 {
685 nir_dest dest = NIR_DEST_INIT;
686
687 dest.reg.reg = reg;
688
689 return dest;
690 }
691
692 static inline unsigned
693 nir_src_bit_size(nir_src src)
694 {
695 return src.is_ssa ? src.ssa->bit_size : src.reg.reg->bit_size;
696 }
697
698 static inline unsigned
699 nir_src_num_components(nir_src src)
700 {
701 return src.is_ssa ? src.ssa->num_components : src.reg.reg->num_components;
702 }
703
704 static inline bool
705 nir_src_is_const(nir_src src)
706 {
707 return src.is_ssa &&
708 src.ssa->parent_instr->type == nir_instr_type_load_const;
709 }
710
711 int64_t nir_src_as_int(nir_src src);
712 uint64_t nir_src_as_uint(nir_src src);
713 bool nir_src_as_bool(nir_src src);
714 double nir_src_as_float(nir_src src);
715 int64_t nir_src_comp_as_int(nir_src src, unsigned component);
716 uint64_t nir_src_comp_as_uint(nir_src src, unsigned component);
717 bool nir_src_comp_as_bool(nir_src src, unsigned component);
718 double nir_src_comp_as_float(nir_src src, unsigned component);
719
720 static inline unsigned
721 nir_dest_bit_size(nir_dest dest)
722 {
723 return dest.is_ssa ? dest.ssa.bit_size : dest.reg.reg->bit_size;
724 }
725
726 static inline unsigned
727 nir_dest_num_components(nir_dest dest)
728 {
729 return dest.is_ssa ? dest.ssa.num_components : dest.reg.reg->num_components;
730 }
731
732 void nir_src_copy(nir_src *dest, const nir_src *src, void *instr_or_if);
733 void nir_dest_copy(nir_dest *dest, const nir_dest *src, nir_instr *instr);
734
735 typedef struct {
736 nir_src src;
737
738 /**
739 * \name input modifiers
740 */
741 /*@{*/
742 /**
743 * For inputs interpreted as floating point, flips the sign bit. For
744 * inputs interpreted as integers, performs the two's complement negation.
745 */
746 bool negate;
747
748 /**
749 * Clears the sign bit for floating point values, and computes the integer
750 * absolute value for integers. Note that the negate modifier acts after
751 * the absolute value modifier, therefore if both are set then all inputs
752 * will become negative.
753 */
754 bool abs;
755 /*@}*/
756
757 /**
758 * For each input component, says which component of the register it is
759 * chosen from. Note that which elements of the swizzle are used and which
760 * are ignored are based on the write mask for most opcodes - for example,
761 * a statement like "foo.xzw = bar.zyx" would have a writemask of 1101b and
762 * a swizzle of {2, x, 1, 0} where x means "don't care."
763 */
764 uint8_t swizzle[NIR_MAX_VEC_COMPONENTS];
765 } nir_alu_src;
766
767 typedef struct {
768 nir_dest dest;
769
770 /**
771 * \name saturate output modifier
772 *
773 * Only valid for opcodes that output floating-point numbers. Clamps the
774 * output to between 0.0 and 1.0 inclusive.
775 */
776
777 bool saturate;
778
779 unsigned write_mask : NIR_MAX_VEC_COMPONENTS; /* ignored if dest.is_ssa is true */
780 } nir_alu_dest;
781
782 typedef enum {
783 nir_type_invalid = 0, /* Not a valid type */
784 nir_type_float,
785 nir_type_int,
786 nir_type_uint,
787 nir_type_bool,
788 nir_type_bool32 = 32 | nir_type_bool,
789 nir_type_int8 = 8 | nir_type_int,
790 nir_type_int16 = 16 | nir_type_int,
791 nir_type_int32 = 32 | nir_type_int,
792 nir_type_int64 = 64 | nir_type_int,
793 nir_type_uint8 = 8 | nir_type_uint,
794 nir_type_uint16 = 16 | nir_type_uint,
795 nir_type_uint32 = 32 | nir_type_uint,
796 nir_type_uint64 = 64 | nir_type_uint,
797 nir_type_float16 = 16 | nir_type_float,
798 nir_type_float32 = 32 | nir_type_float,
799 nir_type_float64 = 64 | nir_type_float,
800 } nir_alu_type;
801
802 #define NIR_ALU_TYPE_SIZE_MASK 0xfffffff8
803 #define NIR_ALU_TYPE_BASE_TYPE_MASK 0x00000007
804
805 static inline unsigned
806 nir_alu_type_get_type_size(nir_alu_type type)
807 {
808 return type & NIR_ALU_TYPE_SIZE_MASK;
809 }
810
811 static inline unsigned
812 nir_alu_type_get_base_type(nir_alu_type type)
813 {
814 return type & NIR_ALU_TYPE_BASE_TYPE_MASK;
815 }
816
817 static inline nir_alu_type
818 nir_get_nir_type_for_glsl_base_type(enum glsl_base_type base_type)
819 {
820 switch (base_type) {
821 case GLSL_TYPE_BOOL:
822 return nir_type_bool32;
823 break;
824 case GLSL_TYPE_UINT:
825 return nir_type_uint32;
826 break;
827 case GLSL_TYPE_INT:
828 return nir_type_int32;
829 break;
830 case GLSL_TYPE_UINT16:
831 return nir_type_uint16;
832 break;
833 case GLSL_TYPE_INT16:
834 return nir_type_int16;
835 break;
836 case GLSL_TYPE_UINT8:
837 return nir_type_uint8;
838 case GLSL_TYPE_INT8:
839 return nir_type_int8;
840 case GLSL_TYPE_UINT64:
841 return nir_type_uint64;
842 break;
843 case GLSL_TYPE_INT64:
844 return nir_type_int64;
845 break;
846 case GLSL_TYPE_FLOAT:
847 return nir_type_float32;
848 break;
849 case GLSL_TYPE_FLOAT16:
850 return nir_type_float16;
851 break;
852 case GLSL_TYPE_DOUBLE:
853 return nir_type_float64;
854 break;
855 default:
856 unreachable("unknown type");
857 }
858 }
859
860 static inline nir_alu_type
861 nir_get_nir_type_for_glsl_type(const struct glsl_type *type)
862 {
863 return nir_get_nir_type_for_glsl_base_type(glsl_get_base_type(type));
864 }
865
866 nir_op nir_type_conversion_op(nir_alu_type src, nir_alu_type dst,
867 nir_rounding_mode rnd);
868
869 typedef enum {
870 NIR_OP_IS_COMMUTATIVE = (1 << 0),
871 NIR_OP_IS_ASSOCIATIVE = (1 << 1),
872 } nir_op_algebraic_property;
873
874 typedef struct {
875 const char *name;
876
877 unsigned num_inputs;
878
879 /**
880 * The number of components in the output
881 *
882 * If non-zero, this is the size of the output and input sizes are
883 * explicitly given; swizzle and writemask are still in effect, but if
884 * the output component is masked out, then the input component may
885 * still be in use.
886 *
887 * If zero, the opcode acts in the standard, per-component manner; the
888 * operation is performed on each component (except the ones that are
889 * masked out) with the input being taken from the input swizzle for
890 * that component.
891 *
892 * The size of some of the inputs may be given (i.e. non-zero) even
893 * though output_size is zero; in that case, the inputs with a zero
894 * size act per-component, while the inputs with non-zero size don't.
895 */
896 unsigned output_size;
897
898 /**
899 * The type of vector that the instruction outputs. Note that the
900 * staurate modifier is only allowed on outputs with the float type.
901 */
902
903 nir_alu_type output_type;
904
905 /**
906 * The number of components in each input
907 */
908 unsigned input_sizes[NIR_MAX_VEC_COMPONENTS];
909
910 /**
911 * The type of vector that each input takes. Note that negate and
912 * absolute value are only allowed on inputs with int or float type and
913 * behave differently on the two.
914 */
915 nir_alu_type input_types[NIR_MAX_VEC_COMPONENTS];
916
917 nir_op_algebraic_property algebraic_properties;
918 } nir_op_info;
919
920 extern const nir_op_info nir_op_infos[nir_num_opcodes];
921
922 typedef struct nir_alu_instr {
923 nir_instr instr;
924 nir_op op;
925
926 /** Indicates that this ALU instruction generates an exact value
927 *
928 * This is kind of a mixture of GLSL "precise" and "invariant" and not
929 * really equivalent to either. This indicates that the value generated by
930 * this operation is high-precision and any code transformations that touch
931 * it must ensure that the resulting value is bit-for-bit identical to the
932 * original.
933 */
934 bool exact;
935
936 nir_alu_dest dest;
937 nir_alu_src src[];
938 } nir_alu_instr;
939
940 void nir_alu_src_copy(nir_alu_src *dest, const nir_alu_src *src,
941 nir_alu_instr *instr);
942 void nir_alu_dest_copy(nir_alu_dest *dest, const nir_alu_dest *src,
943 nir_alu_instr *instr);
944
945 /* is this source channel used? */
946 static inline bool
947 nir_alu_instr_channel_used(const nir_alu_instr *instr, unsigned src,
948 unsigned channel)
949 {
950 if (nir_op_infos[instr->op].input_sizes[src] > 0)
951 return channel < nir_op_infos[instr->op].input_sizes[src];
952
953 return (instr->dest.write_mask >> channel) & 1;
954 }
955
956 static inline nir_component_mask_t
957 nir_alu_instr_src_read_mask(const nir_alu_instr *instr, unsigned src)
958 {
959 nir_component_mask_t read_mask = 0;
960 for (unsigned c = 0; c < NIR_MAX_VEC_COMPONENTS; c++) {
961 if (!nir_alu_instr_channel_used(instr, src, c))
962 continue;
963
964 read_mask |= (1 << instr->src[src].swizzle[c]);
965 }
966 return read_mask;
967 }
968
969 /*
970 * For instructions whose destinations are SSA, get the number of channels
971 * used for a source
972 */
973 static inline unsigned
974 nir_ssa_alu_instr_src_components(const nir_alu_instr *instr, unsigned src)
975 {
976 assert(instr->dest.dest.is_ssa);
977
978 if (nir_op_infos[instr->op].input_sizes[src] > 0)
979 return nir_op_infos[instr->op].input_sizes[src];
980
981 return instr->dest.dest.ssa.num_components;
982 }
983
984 bool nir_alu_srcs_equal(const nir_alu_instr *alu1, const nir_alu_instr *alu2,
985 unsigned src1, unsigned src2);
986
987 typedef enum {
988 nir_deref_type_var,
989 nir_deref_type_array,
990 nir_deref_type_array_wildcard,
991 nir_deref_type_struct,
992 nir_deref_type_cast,
993 } nir_deref_type;
994
995 typedef struct {
996 nir_instr instr;
997
998 /** The type of this deref instruction */
999 nir_deref_type deref_type;
1000
1001 /** The mode of the underlying variable */
1002 nir_variable_mode mode;
1003
1004 /** The dereferenced type of the resulting pointer value */
1005 const struct glsl_type *type;
1006
1007 union {
1008 /** Variable being dereferenced if deref_type is a deref_var */
1009 nir_variable *var;
1010
1011 /** Parent deref if deref_type is not deref_var */
1012 nir_src parent;
1013 };
1014
1015 /** Additional deref parameters */
1016 union {
1017 struct {
1018 nir_src index;
1019 } arr;
1020
1021 struct {
1022 unsigned index;
1023 } strct;
1024 };
1025
1026 /** Destination to store the resulting "pointer" */
1027 nir_dest dest;
1028 } nir_deref_instr;
1029
1030 NIR_DEFINE_CAST(nir_instr_as_deref, nir_instr, nir_deref_instr, instr,
1031 type, nir_instr_type_deref)
1032
1033 static inline nir_deref_instr *
1034 nir_src_as_deref(nir_src src)
1035 {
1036 if (!src.is_ssa)
1037 return NULL;
1038
1039 if (src.ssa->parent_instr->type != nir_instr_type_deref)
1040 return NULL;
1041
1042 return nir_instr_as_deref(src.ssa->parent_instr);
1043 }
1044
1045 static inline nir_deref_instr *
1046 nir_deref_instr_parent(const nir_deref_instr *instr)
1047 {
1048 if (instr->deref_type == nir_deref_type_var)
1049 return NULL;
1050 else
1051 return nir_src_as_deref(instr->parent);
1052 }
1053
1054 static inline nir_variable *
1055 nir_deref_instr_get_variable(const nir_deref_instr *instr)
1056 {
1057 while (instr->deref_type != nir_deref_type_var) {
1058 if (instr->deref_type == nir_deref_type_cast)
1059 return NULL;
1060
1061 instr = nir_deref_instr_parent(instr);
1062 }
1063
1064 return instr->var;
1065 }
1066
1067 bool nir_deref_instr_has_indirect(nir_deref_instr *instr);
1068
1069 bool nir_deref_instr_remove_if_unused(nir_deref_instr *instr);
1070
1071 typedef struct {
1072 nir_instr instr;
1073
1074 struct nir_function *callee;
1075
1076 unsigned num_params;
1077 nir_src params[];
1078 } nir_call_instr;
1079
1080 #include "nir_intrinsics.h"
1081
1082 #define NIR_INTRINSIC_MAX_CONST_INDEX 4
1083
1084 /** Represents an intrinsic
1085 *
1086 * An intrinsic is an instruction type for handling things that are
1087 * more-or-less regular operations but don't just consume and produce SSA
1088 * values like ALU operations do. Intrinsics are not for things that have
1089 * special semantic meaning such as phi nodes and parallel copies.
1090 * Examples of intrinsics include variable load/store operations, system
1091 * value loads, and the like. Even though texturing more-or-less falls
1092 * under this category, texturing is its own instruction type because
1093 * trying to represent texturing with intrinsics would lead to a
1094 * combinatorial explosion of intrinsic opcodes.
1095 *
1096 * By having a single instruction type for handling a lot of different
1097 * cases, optimization passes can look for intrinsics and, for the most
1098 * part, completely ignore them. Each intrinsic type also has a few
1099 * possible flags that govern whether or not they can be reordered or
1100 * eliminated. That way passes like dead code elimination can still work
1101 * on intrisics without understanding the meaning of each.
1102 *
1103 * Each intrinsic has some number of constant indices, some number of
1104 * variables, and some number of sources. What these sources, variables,
1105 * and indices mean depends on the intrinsic and is documented with the
1106 * intrinsic declaration in nir_intrinsics.h. Intrinsics and texture
1107 * instructions are the only types of instruction that can operate on
1108 * variables.
1109 */
1110 typedef struct {
1111 nir_instr instr;
1112
1113 nir_intrinsic_op intrinsic;
1114
1115 nir_dest dest;
1116
1117 /** number of components if this is a vectorized intrinsic
1118 *
1119 * Similarly to ALU operations, some intrinsics are vectorized.
1120 * An intrinsic is vectorized if nir_intrinsic_infos.dest_components == 0.
1121 * For vectorized intrinsics, the num_components field specifies the
1122 * number of destination components and the number of source components
1123 * for all sources with nir_intrinsic_infos.src_components[i] == 0.
1124 */
1125 uint8_t num_components;
1126
1127 int const_index[NIR_INTRINSIC_MAX_CONST_INDEX];
1128
1129 nir_src src[];
1130 } nir_intrinsic_instr;
1131
1132 static inline nir_variable *
1133 nir_intrinsic_get_var(nir_intrinsic_instr *intrin, unsigned i)
1134 {
1135 return nir_deref_instr_get_variable(nir_src_as_deref(intrin->src[i]));
1136 }
1137
1138 /**
1139 * \name NIR intrinsics semantic flags
1140 *
1141 * information about what the compiler can do with the intrinsics.
1142 *
1143 * \sa nir_intrinsic_info::flags
1144 */
1145 typedef enum {
1146 /**
1147 * whether the intrinsic can be safely eliminated if none of its output
1148 * value is not being used.
1149 */
1150 NIR_INTRINSIC_CAN_ELIMINATE = (1 << 0),
1151
1152 /**
1153 * Whether the intrinsic can be reordered with respect to any other
1154 * intrinsic, i.e. whether the only reordering dependencies of the
1155 * intrinsic are due to the register reads/writes.
1156 */
1157 NIR_INTRINSIC_CAN_REORDER = (1 << 1),
1158 } nir_intrinsic_semantic_flag;
1159
1160 /**
1161 * \name NIR intrinsics const-index flag
1162 *
1163 * Indicates the usage of a const_index slot.
1164 *
1165 * \sa nir_intrinsic_info::index_map
1166 */
1167 typedef enum {
1168 /**
1169 * Generally instructions that take a offset src argument, can encode
1170 * a constant 'base' value which is added to the offset.
1171 */
1172 NIR_INTRINSIC_BASE = 1,
1173
1174 /**
1175 * For store instructions, a writemask for the store.
1176 */
1177 NIR_INTRINSIC_WRMASK = 2,
1178
1179 /**
1180 * The stream-id for GS emit_vertex/end_primitive intrinsics.
1181 */
1182 NIR_INTRINSIC_STREAM_ID = 3,
1183
1184 /**
1185 * The clip-plane id for load_user_clip_plane intrinsic.
1186 */
1187 NIR_INTRINSIC_UCP_ID = 4,
1188
1189 /**
1190 * The amount of data, starting from BASE, that this instruction may
1191 * access. This is used to provide bounds if the offset is not constant.
1192 */
1193 NIR_INTRINSIC_RANGE = 5,
1194
1195 /**
1196 * The Vulkan descriptor set for vulkan_resource_index intrinsic.
1197 */
1198 NIR_INTRINSIC_DESC_SET = 6,
1199
1200 /**
1201 * The Vulkan descriptor set binding for vulkan_resource_index intrinsic.
1202 */
1203 NIR_INTRINSIC_BINDING = 7,
1204
1205 /**
1206 * Component offset.
1207 */
1208 NIR_INTRINSIC_COMPONENT = 8,
1209
1210 /**
1211 * Interpolation mode (only meaningful for FS inputs).
1212 */
1213 NIR_INTRINSIC_INTERP_MODE = 9,
1214
1215 /**
1216 * A binary nir_op to use when performing a reduction or scan operation
1217 */
1218 NIR_INTRINSIC_REDUCTION_OP = 10,
1219
1220 /**
1221 * Cluster size for reduction operations
1222 */
1223 NIR_INTRINSIC_CLUSTER_SIZE = 11,
1224
1225 /**
1226 * Parameter index for a load_param intrinsic
1227 */
1228 NIR_INTRINSIC_PARAM_IDX = 12,
1229
1230 /**
1231 * Image dimensionality for image intrinsics
1232 *
1233 * One of GLSL_SAMPLER_DIM_*
1234 */
1235 NIR_INTRINSIC_IMAGE_DIM = 13,
1236
1237 /**
1238 * Non-zero if we are accessing an array image
1239 */
1240 NIR_INTRINSIC_IMAGE_ARRAY = 14,
1241
1242 /**
1243 * Image format for image intrinsics
1244 */
1245 NIR_INTRINSIC_FORMAT = 15,
1246
1247 /**
1248 * Access qualifiers for image intrinsics
1249 */
1250 NIR_INTRINSIC_ACCESS = 16,
1251
1252 /**
1253 * Alignment for offsets and addresses
1254 *
1255 * These two parameters, specify an alignment in terms of a multiplier and
1256 * an offset. The offset or address parameter X of the intrinsic is
1257 * guaranteed to satisfy the following:
1258 *
1259 * (X - align_offset) % align_mul == 0
1260 */
1261 NIR_INTRINSIC_ALIGN_MUL = 17,
1262 NIR_INTRINSIC_ALIGN_OFFSET = 18,
1263
1264 NIR_INTRINSIC_NUM_INDEX_FLAGS,
1265
1266 } nir_intrinsic_index_flag;
1267
1268 #define NIR_INTRINSIC_MAX_INPUTS 5
1269
1270 typedef struct {
1271 const char *name;
1272
1273 unsigned num_srcs; /** < number of register/SSA inputs */
1274
1275 /** number of components of each input register
1276 *
1277 * If this value is 0, the number of components is given by the
1278 * num_components field of nir_intrinsic_instr.
1279 */
1280 unsigned src_components[NIR_INTRINSIC_MAX_INPUTS];
1281
1282 bool has_dest;
1283
1284 /** number of components of the output register
1285 *
1286 * If this value is 0, the number of components is given by the
1287 * num_components field of nir_intrinsic_instr.
1288 */
1289 unsigned dest_components;
1290
1291 /** the number of constant indices used by the intrinsic */
1292 unsigned num_indices;
1293
1294 /** indicates the usage of intr->const_index[n] */
1295 unsigned index_map[NIR_INTRINSIC_NUM_INDEX_FLAGS];
1296
1297 /** semantic flags for calls to this intrinsic */
1298 nir_intrinsic_semantic_flag flags;
1299 } nir_intrinsic_info;
1300
1301 extern const nir_intrinsic_info nir_intrinsic_infos[nir_num_intrinsics];
1302
1303 static inline unsigned
1304 nir_intrinsic_src_components(nir_intrinsic_instr *intr, unsigned srcn)
1305 {
1306 const nir_intrinsic_info *info = &nir_intrinsic_infos[intr->intrinsic];
1307 assert(srcn < info->num_srcs);
1308 if (info->src_components[srcn])
1309 return info->src_components[srcn];
1310 else
1311 return intr->num_components;
1312 }
1313
1314 static inline unsigned
1315 nir_intrinsic_dest_components(nir_intrinsic_instr *intr)
1316 {
1317 const nir_intrinsic_info *info = &nir_intrinsic_infos[intr->intrinsic];
1318 if (!info->has_dest)
1319 return 0;
1320 else if (info->dest_components)
1321 return info->dest_components;
1322 else
1323 return intr->num_components;
1324 }
1325
1326 #define INTRINSIC_IDX_ACCESSORS(name, flag, type) \
1327 static inline type \
1328 nir_intrinsic_##name(const nir_intrinsic_instr *instr) \
1329 { \
1330 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic]; \
1331 assert(info->index_map[NIR_INTRINSIC_##flag] > 0); \
1332 return (type)instr->const_index[info->index_map[NIR_INTRINSIC_##flag] - 1]; \
1333 } \
1334 static inline void \
1335 nir_intrinsic_set_##name(nir_intrinsic_instr *instr, type val) \
1336 { \
1337 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic]; \
1338 assert(info->index_map[NIR_INTRINSIC_##flag] > 0); \
1339 instr->const_index[info->index_map[NIR_INTRINSIC_##flag] - 1] = val; \
1340 }
1341
1342 INTRINSIC_IDX_ACCESSORS(write_mask, WRMASK, unsigned)
1343 INTRINSIC_IDX_ACCESSORS(base, BASE, int)
1344 INTRINSIC_IDX_ACCESSORS(stream_id, STREAM_ID, unsigned)
1345 INTRINSIC_IDX_ACCESSORS(ucp_id, UCP_ID, unsigned)
1346 INTRINSIC_IDX_ACCESSORS(range, RANGE, unsigned)
1347 INTRINSIC_IDX_ACCESSORS(desc_set, DESC_SET, unsigned)
1348 INTRINSIC_IDX_ACCESSORS(binding, BINDING, unsigned)
1349 INTRINSIC_IDX_ACCESSORS(component, COMPONENT, unsigned)
1350 INTRINSIC_IDX_ACCESSORS(interp_mode, INTERP_MODE, unsigned)
1351 INTRINSIC_IDX_ACCESSORS(reduction_op, REDUCTION_OP, unsigned)
1352 INTRINSIC_IDX_ACCESSORS(cluster_size, CLUSTER_SIZE, unsigned)
1353 INTRINSIC_IDX_ACCESSORS(param_idx, PARAM_IDX, unsigned)
1354 INTRINSIC_IDX_ACCESSORS(image_dim, IMAGE_DIM, enum glsl_sampler_dim)
1355 INTRINSIC_IDX_ACCESSORS(image_array, IMAGE_ARRAY, bool)
1356 INTRINSIC_IDX_ACCESSORS(access, ACCESS, enum gl_access_qualifier)
1357 INTRINSIC_IDX_ACCESSORS(format, FORMAT, unsigned)
1358 INTRINSIC_IDX_ACCESSORS(align_mul, ALIGN_MUL, unsigned)
1359 INTRINSIC_IDX_ACCESSORS(align_offset, ALIGN_OFFSET, unsigned)
1360
1361 static inline void
1362 nir_intrinsic_set_align(nir_intrinsic_instr *intrin,
1363 unsigned align_mul, unsigned align_offset)
1364 {
1365 assert(util_is_power_of_two_nonzero(align_mul));
1366 assert(align_offset < align_mul);
1367 nir_intrinsic_set_align_mul(intrin, align_mul);
1368 nir_intrinsic_set_align_offset(intrin, align_offset);
1369 }
1370
1371 /** Returns a simple alignment for a load/store intrinsic offset
1372 *
1373 * Instead of the full mul+offset alignment scheme provided by the ALIGN_MUL
1374 * and ALIGN_OFFSET parameters, this helper takes both into account and
1375 * provides a single simple alignment parameter. The offset X is guaranteed
1376 * to satisfy X % align == 0.
1377 */
1378 static inline unsigned
1379 nir_intrinsic_align(const nir_intrinsic_instr *intrin)
1380 {
1381 const unsigned align_mul = nir_intrinsic_align_mul(intrin);
1382 const unsigned align_offset = nir_intrinsic_align_offset(intrin);
1383 assert(align_offset < align_mul);
1384 return align_offset ? 1 << (ffs(align_offset) - 1) : align_mul;
1385 }
1386
1387 /**
1388 * \group texture information
1389 *
1390 * This gives semantic information about textures which is useful to the
1391 * frontend, the backend, and lowering passes, but not the optimizer.
1392 */
1393
1394 typedef enum {
1395 nir_tex_src_coord,
1396 nir_tex_src_projector,
1397 nir_tex_src_comparator, /* shadow comparator */
1398 nir_tex_src_offset,
1399 nir_tex_src_bias,
1400 nir_tex_src_lod,
1401 nir_tex_src_min_lod,
1402 nir_tex_src_ms_index, /* MSAA sample index */
1403 nir_tex_src_ms_mcs, /* MSAA compression value */
1404 nir_tex_src_ddx,
1405 nir_tex_src_ddy,
1406 nir_tex_src_texture_deref, /* < deref pointing to the texture */
1407 nir_tex_src_sampler_deref, /* < deref pointing to the sampler */
1408 nir_tex_src_texture_offset, /* < dynamically uniform indirect offset */
1409 nir_tex_src_sampler_offset, /* < dynamically uniform indirect offset */
1410 nir_tex_src_plane, /* < selects plane for planar textures */
1411 nir_num_tex_src_types
1412 } nir_tex_src_type;
1413
1414 typedef struct {
1415 nir_src src;
1416 nir_tex_src_type src_type;
1417 } nir_tex_src;
1418
1419 typedef enum {
1420 nir_texop_tex, /**< Regular texture look-up */
1421 nir_texop_txb, /**< Texture look-up with LOD bias */
1422 nir_texop_txl, /**< Texture look-up with explicit LOD */
1423 nir_texop_txd, /**< Texture look-up with partial derivatives */
1424 nir_texop_txf, /**< Texel fetch with explicit LOD */
1425 nir_texop_txf_ms, /**< Multisample texture fetch */
1426 nir_texop_txf_ms_mcs, /**< Multisample compression value fetch */
1427 nir_texop_txs, /**< Texture size */
1428 nir_texop_lod, /**< Texture lod query */
1429 nir_texop_tg4, /**< Texture gather */
1430 nir_texop_query_levels, /**< Texture levels query */
1431 nir_texop_texture_samples, /**< Texture samples query */
1432 nir_texop_samples_identical, /**< Query whether all samples are definitely
1433 * identical.
1434 */
1435 } nir_texop;
1436
1437 typedef struct {
1438 nir_instr instr;
1439
1440 enum glsl_sampler_dim sampler_dim;
1441 nir_alu_type dest_type;
1442
1443 nir_texop op;
1444 nir_dest dest;
1445 nir_tex_src *src;
1446 unsigned num_srcs, coord_components;
1447 bool is_array, is_shadow;
1448
1449 /**
1450 * If is_shadow is true, whether this is the old-style shadow that outputs 4
1451 * components or the new-style shadow that outputs 1 component.
1452 */
1453 bool is_new_style_shadow;
1454
1455 /* gather component selector */
1456 unsigned component : 2;
1457
1458 /** The texture index
1459 *
1460 * If this texture instruction has a nir_tex_src_texture_offset source,
1461 * then the texture index is given by texture_index + texture_offset.
1462 */
1463 unsigned texture_index;
1464
1465 /** The size of the texture array or 0 if it's not an array */
1466 unsigned texture_array_size;
1467
1468 /** The sampler index
1469 *
1470 * The following operations do not require a sampler and, as such, this
1471 * field should be ignored:
1472 * - nir_texop_txf
1473 * - nir_texop_txf_ms
1474 * - nir_texop_txs
1475 * - nir_texop_lod
1476 * - nir_texop_query_levels
1477 * - nir_texop_texture_samples
1478 * - nir_texop_samples_identical
1479 *
1480 * If this texture instruction has a nir_tex_src_sampler_offset source,
1481 * then the sampler index is given by sampler_index + sampler_offset.
1482 */
1483 unsigned sampler_index;
1484 } nir_tex_instr;
1485
1486 static inline unsigned
1487 nir_tex_instr_dest_size(const nir_tex_instr *instr)
1488 {
1489 switch (instr->op) {
1490 case nir_texop_txs: {
1491 unsigned ret;
1492 switch (instr->sampler_dim) {
1493 case GLSL_SAMPLER_DIM_1D:
1494 case GLSL_SAMPLER_DIM_BUF:
1495 ret = 1;
1496 break;
1497 case GLSL_SAMPLER_DIM_2D:
1498 case GLSL_SAMPLER_DIM_CUBE:
1499 case GLSL_SAMPLER_DIM_MS:
1500 case GLSL_SAMPLER_DIM_RECT:
1501 case GLSL_SAMPLER_DIM_EXTERNAL:
1502 case GLSL_SAMPLER_DIM_SUBPASS:
1503 ret = 2;
1504 break;
1505 case GLSL_SAMPLER_DIM_3D:
1506 ret = 3;
1507 break;
1508 default:
1509 unreachable("not reached");
1510 }
1511 if (instr->is_array)
1512 ret++;
1513 return ret;
1514 }
1515
1516 case nir_texop_lod:
1517 return 2;
1518
1519 case nir_texop_texture_samples:
1520 case nir_texop_query_levels:
1521 case nir_texop_samples_identical:
1522 return 1;
1523
1524 default:
1525 if (instr->is_shadow && instr->is_new_style_shadow)
1526 return 1;
1527
1528 return 4;
1529 }
1530 }
1531
1532 /* Returns true if this texture operation queries something about the texture
1533 * rather than actually sampling it.
1534 */
1535 static inline bool
1536 nir_tex_instr_is_query(const nir_tex_instr *instr)
1537 {
1538 switch (instr->op) {
1539 case nir_texop_txs:
1540 case nir_texop_lod:
1541 case nir_texop_texture_samples:
1542 case nir_texop_query_levels:
1543 case nir_texop_txf_ms_mcs:
1544 return true;
1545 case nir_texop_tex:
1546 case nir_texop_txb:
1547 case nir_texop_txl:
1548 case nir_texop_txd:
1549 case nir_texop_txf:
1550 case nir_texop_txf_ms:
1551 case nir_texop_tg4:
1552 return false;
1553 default:
1554 unreachable("Invalid texture opcode");
1555 }
1556 }
1557
1558 static inline bool
1559 nir_alu_instr_is_comparison(const nir_alu_instr *instr)
1560 {
1561 switch (instr->op) {
1562 case nir_op_flt:
1563 case nir_op_fge:
1564 case nir_op_feq:
1565 case nir_op_fne:
1566 case nir_op_ilt:
1567 case nir_op_ult:
1568 case nir_op_ige:
1569 case nir_op_uge:
1570 case nir_op_ieq:
1571 case nir_op_ine:
1572 case nir_op_i2b32:
1573 case nir_op_f2b32:
1574 case nir_op_inot:
1575 case nir_op_fnot:
1576 return true;
1577 default:
1578 return false;
1579 }
1580 }
1581
1582 static inline nir_alu_type
1583 nir_tex_instr_src_type(const nir_tex_instr *instr, unsigned src)
1584 {
1585 switch (instr->src[src].src_type) {
1586 case nir_tex_src_coord:
1587 switch (instr->op) {
1588 case nir_texop_txf:
1589 case nir_texop_txf_ms:
1590 case nir_texop_txf_ms_mcs:
1591 case nir_texop_samples_identical:
1592 return nir_type_int;
1593
1594 default:
1595 return nir_type_float;
1596 }
1597
1598 case nir_tex_src_lod:
1599 switch (instr->op) {
1600 case nir_texop_txs:
1601 case nir_texop_txf:
1602 return nir_type_int;
1603
1604 default:
1605 return nir_type_float;
1606 }
1607
1608 case nir_tex_src_projector:
1609 case nir_tex_src_comparator:
1610 case nir_tex_src_bias:
1611 case nir_tex_src_ddx:
1612 case nir_tex_src_ddy:
1613 return nir_type_float;
1614
1615 case nir_tex_src_offset:
1616 case nir_tex_src_ms_index:
1617 case nir_tex_src_texture_offset:
1618 case nir_tex_src_sampler_offset:
1619 return nir_type_int;
1620
1621 default:
1622 unreachable("Invalid texture source type");
1623 }
1624 }
1625
1626 static inline unsigned
1627 nir_tex_instr_src_size(const nir_tex_instr *instr, unsigned src)
1628 {
1629 if (instr->src[src].src_type == nir_tex_src_coord)
1630 return instr->coord_components;
1631
1632 /* The MCS value is expected to be a vec4 returned by a txf_ms_mcs */
1633 if (instr->src[src].src_type == nir_tex_src_ms_mcs)
1634 return 4;
1635
1636 if (instr->src[src].src_type == nir_tex_src_ddx ||
1637 instr->src[src].src_type == nir_tex_src_ddy) {
1638 if (instr->is_array)
1639 return instr->coord_components - 1;
1640 else
1641 return instr->coord_components;
1642 }
1643
1644 /* Usual APIs don't allow cube + offset, but we allow it, with 2 coords for
1645 * the offset, since a cube maps to a single face.
1646 */
1647 if (instr->src[src].src_type == nir_tex_src_offset) {
1648 if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE)
1649 return 2;
1650 else if (instr->is_array)
1651 return instr->coord_components - 1;
1652 else
1653 return instr->coord_components;
1654 }
1655
1656 return 1;
1657 }
1658
1659 static inline int
1660 nir_tex_instr_src_index(const nir_tex_instr *instr, nir_tex_src_type type)
1661 {
1662 for (unsigned i = 0; i < instr->num_srcs; i++)
1663 if (instr->src[i].src_type == type)
1664 return (int) i;
1665
1666 return -1;
1667 }
1668
1669 void nir_tex_instr_add_src(nir_tex_instr *tex,
1670 nir_tex_src_type src_type,
1671 nir_src src);
1672
1673 void nir_tex_instr_remove_src(nir_tex_instr *tex, unsigned src_idx);
1674
1675 typedef struct {
1676 nir_instr instr;
1677
1678 nir_const_value value;
1679
1680 nir_ssa_def def;
1681 } nir_load_const_instr;
1682
1683 typedef enum {
1684 nir_jump_return,
1685 nir_jump_break,
1686 nir_jump_continue,
1687 } nir_jump_type;
1688
1689 typedef struct {
1690 nir_instr instr;
1691 nir_jump_type type;
1692 } nir_jump_instr;
1693
1694 /* creates a new SSA variable in an undefined state */
1695
1696 typedef struct {
1697 nir_instr instr;
1698 nir_ssa_def def;
1699 } nir_ssa_undef_instr;
1700
1701 typedef struct {
1702 struct exec_node node;
1703
1704 /* The predecessor block corresponding to this source */
1705 struct nir_block *pred;
1706
1707 nir_src src;
1708 } nir_phi_src;
1709
1710 #define nir_foreach_phi_src(phi_src, phi) \
1711 foreach_list_typed(nir_phi_src, phi_src, node, &(phi)->srcs)
1712 #define nir_foreach_phi_src_safe(phi_src, phi) \
1713 foreach_list_typed_safe(nir_phi_src, phi_src, node, &(phi)->srcs)
1714
1715 typedef struct {
1716 nir_instr instr;
1717
1718 struct exec_list srcs; /** < list of nir_phi_src */
1719
1720 nir_dest dest;
1721 } nir_phi_instr;
1722
1723 typedef struct {
1724 struct exec_node node;
1725 nir_src src;
1726 nir_dest dest;
1727 } nir_parallel_copy_entry;
1728
1729 #define nir_foreach_parallel_copy_entry(entry, pcopy) \
1730 foreach_list_typed(nir_parallel_copy_entry, entry, node, &(pcopy)->entries)
1731
1732 typedef struct {
1733 nir_instr instr;
1734
1735 /* A list of nir_parallel_copy_entrys. The sources of all of the
1736 * entries are copied to the corresponding destinations "in parallel".
1737 * In other words, if we have two entries: a -> b and b -> a, the values
1738 * get swapped.
1739 */
1740 struct exec_list entries;
1741 } nir_parallel_copy_instr;
1742
1743 NIR_DEFINE_CAST(nir_instr_as_alu, nir_instr, nir_alu_instr, instr,
1744 type, nir_instr_type_alu)
1745 NIR_DEFINE_CAST(nir_instr_as_call, nir_instr, nir_call_instr, instr,
1746 type, nir_instr_type_call)
1747 NIR_DEFINE_CAST(nir_instr_as_jump, nir_instr, nir_jump_instr, instr,
1748 type, nir_instr_type_jump)
1749 NIR_DEFINE_CAST(nir_instr_as_tex, nir_instr, nir_tex_instr, instr,
1750 type, nir_instr_type_tex)
1751 NIR_DEFINE_CAST(nir_instr_as_intrinsic, nir_instr, nir_intrinsic_instr, instr,
1752 type, nir_instr_type_intrinsic)
1753 NIR_DEFINE_CAST(nir_instr_as_load_const, nir_instr, nir_load_const_instr, instr,
1754 type, nir_instr_type_load_const)
1755 NIR_DEFINE_CAST(nir_instr_as_ssa_undef, nir_instr, nir_ssa_undef_instr, instr,
1756 type, nir_instr_type_ssa_undef)
1757 NIR_DEFINE_CAST(nir_instr_as_phi, nir_instr, nir_phi_instr, instr,
1758 type, nir_instr_type_phi)
1759 NIR_DEFINE_CAST(nir_instr_as_parallel_copy, nir_instr,
1760 nir_parallel_copy_instr, instr,
1761 type, nir_instr_type_parallel_copy)
1762
1763 /*
1764 * Control flow
1765 *
1766 * Control flow consists of a tree of control flow nodes, which include
1767 * if-statements and loops. The leaves of the tree are basic blocks, lists of
1768 * instructions that always run start-to-finish. Each basic block also keeps
1769 * track of its successors (blocks which may run immediately after the current
1770 * block) and predecessors (blocks which could have run immediately before the
1771 * current block). Each function also has a start block and an end block which
1772 * all return statements point to (which is always empty). Together, all the
1773 * blocks with their predecessors and successors make up the control flow
1774 * graph (CFG) of the function. There are helpers that modify the tree of
1775 * control flow nodes while modifying the CFG appropriately; these should be
1776 * used instead of modifying the tree directly.
1777 */
1778
1779 typedef enum {
1780 nir_cf_node_block,
1781 nir_cf_node_if,
1782 nir_cf_node_loop,
1783 nir_cf_node_function
1784 } nir_cf_node_type;
1785
1786 typedef struct nir_cf_node {
1787 struct exec_node node;
1788 nir_cf_node_type type;
1789 struct nir_cf_node *parent;
1790 } nir_cf_node;
1791
1792 typedef struct nir_block {
1793 nir_cf_node cf_node;
1794
1795 struct exec_list instr_list; /** < list of nir_instr */
1796
1797 /** generic block index; generated by nir_index_blocks */
1798 unsigned index;
1799
1800 /*
1801 * Each block can only have up to 2 successors, so we put them in a simple
1802 * array - no need for anything more complicated.
1803 */
1804 struct nir_block *successors[2];
1805
1806 /* Set of nir_block predecessors in the CFG */
1807 struct set *predecessors;
1808
1809 /*
1810 * this node's immediate dominator in the dominance tree - set to NULL for
1811 * the start block.
1812 */
1813 struct nir_block *imm_dom;
1814
1815 /* This node's children in the dominance tree */
1816 unsigned num_dom_children;
1817 struct nir_block **dom_children;
1818
1819 /* Set of nir_blocks on the dominance frontier of this block */
1820 struct set *dom_frontier;
1821
1822 /*
1823 * These two indices have the property that dom_{pre,post}_index for each
1824 * child of this block in the dominance tree will always be between
1825 * dom_pre_index and dom_post_index for this block, which makes testing if
1826 * a given block is dominated by another block an O(1) operation.
1827 */
1828 unsigned dom_pre_index, dom_post_index;
1829
1830 /* live in and out for this block; used for liveness analysis */
1831 BITSET_WORD *live_in;
1832 BITSET_WORD *live_out;
1833 } nir_block;
1834
1835 static inline nir_instr *
1836 nir_block_first_instr(nir_block *block)
1837 {
1838 struct exec_node *head = exec_list_get_head(&block->instr_list);
1839 return exec_node_data(nir_instr, head, node);
1840 }
1841
1842 static inline nir_instr *
1843 nir_block_last_instr(nir_block *block)
1844 {
1845 struct exec_node *tail = exec_list_get_tail(&block->instr_list);
1846 return exec_node_data(nir_instr, tail, node);
1847 }
1848
1849 static inline bool
1850 nir_block_ends_in_jump(nir_block *block)
1851 {
1852 return !exec_list_is_empty(&block->instr_list) &&
1853 nir_block_last_instr(block)->type == nir_instr_type_jump;
1854 }
1855
1856 #define nir_foreach_instr(instr, block) \
1857 foreach_list_typed(nir_instr, instr, node, &(block)->instr_list)
1858 #define nir_foreach_instr_reverse(instr, block) \
1859 foreach_list_typed_reverse(nir_instr, instr, node, &(block)->instr_list)
1860 #define nir_foreach_instr_safe(instr, block) \
1861 foreach_list_typed_safe(nir_instr, instr, node, &(block)->instr_list)
1862 #define nir_foreach_instr_reverse_safe(instr, block) \
1863 foreach_list_typed_reverse_safe(nir_instr, instr, node, &(block)->instr_list)
1864
1865 typedef struct nir_if {
1866 nir_cf_node cf_node;
1867 nir_src condition;
1868
1869 struct exec_list then_list; /** < list of nir_cf_node */
1870 struct exec_list else_list; /** < list of nir_cf_node */
1871 } nir_if;
1872
1873 typedef struct {
1874 nir_if *nif;
1875
1876 nir_instr *conditional_instr;
1877
1878 nir_block *break_block;
1879 nir_block *continue_from_block;
1880
1881 bool continue_from_then;
1882
1883 struct list_head loop_terminator_link;
1884 } nir_loop_terminator;
1885
1886 typedef struct {
1887 /* Number of instructions in the loop */
1888 unsigned num_instructions;
1889
1890 /* Maximum number of times the loop is run (if known) */
1891 unsigned max_trip_count;
1892
1893 /* Do we know the exact number of times the loop will be run */
1894 bool exact_trip_count_known;
1895
1896 /* Unroll the loop regardless of its size */
1897 bool force_unroll;
1898
1899 /* Does the loop contain complex loop terminators, continues or other
1900 * complex behaviours? If this is true we can't rely on
1901 * loop_terminator_list to be complete or accurate.
1902 */
1903 bool complex_loop;
1904
1905 nir_loop_terminator *limiting_terminator;
1906
1907 /* A list of loop_terminators terminating this loop. */
1908 struct list_head loop_terminator_list;
1909 } nir_loop_info;
1910
1911 typedef struct {
1912 nir_cf_node cf_node;
1913
1914 struct exec_list body; /** < list of nir_cf_node */
1915
1916 nir_loop_info *info;
1917 } nir_loop;
1918
1919 /**
1920 * Various bits of metadata that can may be created or required by
1921 * optimization and analysis passes
1922 */
1923 typedef enum {
1924 nir_metadata_none = 0x0,
1925 nir_metadata_block_index = 0x1,
1926 nir_metadata_dominance = 0x2,
1927 nir_metadata_live_ssa_defs = 0x4,
1928 nir_metadata_not_properly_reset = 0x8,
1929 nir_metadata_loop_analysis = 0x10,
1930 } nir_metadata;
1931
1932 typedef struct {
1933 nir_cf_node cf_node;
1934
1935 /** pointer to the function of which this is an implementation */
1936 struct nir_function *function;
1937
1938 struct exec_list body; /** < list of nir_cf_node */
1939
1940 nir_block *end_block;
1941
1942 /** list for all local variables in the function */
1943 struct exec_list locals;
1944
1945 /** list of local registers in the function */
1946 struct exec_list registers;
1947
1948 /** next available local register index */
1949 unsigned reg_alloc;
1950
1951 /** next available SSA value index */
1952 unsigned ssa_alloc;
1953
1954 /* total number of basic blocks, only valid when block_index_dirty = false */
1955 unsigned num_blocks;
1956
1957 nir_metadata valid_metadata;
1958 } nir_function_impl;
1959
1960 ATTRIBUTE_RETURNS_NONNULL static inline nir_block *
1961 nir_start_block(nir_function_impl *impl)
1962 {
1963 return (nir_block *) impl->body.head_sentinel.next;
1964 }
1965
1966 ATTRIBUTE_RETURNS_NONNULL static inline nir_block *
1967 nir_impl_last_block(nir_function_impl *impl)
1968 {
1969 return (nir_block *) impl->body.tail_sentinel.prev;
1970 }
1971
1972 static inline nir_cf_node *
1973 nir_cf_node_next(nir_cf_node *node)
1974 {
1975 struct exec_node *next = exec_node_get_next(&node->node);
1976 if (exec_node_is_tail_sentinel(next))
1977 return NULL;
1978 else
1979 return exec_node_data(nir_cf_node, next, node);
1980 }
1981
1982 static inline nir_cf_node *
1983 nir_cf_node_prev(nir_cf_node *node)
1984 {
1985 struct exec_node *prev = exec_node_get_prev(&node->node);
1986 if (exec_node_is_head_sentinel(prev))
1987 return NULL;
1988 else
1989 return exec_node_data(nir_cf_node, prev, node);
1990 }
1991
1992 static inline bool
1993 nir_cf_node_is_first(const nir_cf_node *node)
1994 {
1995 return exec_node_is_head_sentinel(node->node.prev);
1996 }
1997
1998 static inline bool
1999 nir_cf_node_is_last(const nir_cf_node *node)
2000 {
2001 return exec_node_is_tail_sentinel(node->node.next);
2002 }
2003
2004 NIR_DEFINE_CAST(nir_cf_node_as_block, nir_cf_node, nir_block, cf_node,
2005 type, nir_cf_node_block)
2006 NIR_DEFINE_CAST(nir_cf_node_as_if, nir_cf_node, nir_if, cf_node,
2007 type, nir_cf_node_if)
2008 NIR_DEFINE_CAST(nir_cf_node_as_loop, nir_cf_node, nir_loop, cf_node,
2009 type, nir_cf_node_loop)
2010 NIR_DEFINE_CAST(nir_cf_node_as_function, nir_cf_node,
2011 nir_function_impl, cf_node, type, nir_cf_node_function)
2012
2013 static inline nir_block *
2014 nir_if_first_then_block(nir_if *if_stmt)
2015 {
2016 struct exec_node *head = exec_list_get_head(&if_stmt->then_list);
2017 return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
2018 }
2019
2020 static inline nir_block *
2021 nir_if_last_then_block(nir_if *if_stmt)
2022 {
2023 struct exec_node *tail = exec_list_get_tail(&if_stmt->then_list);
2024 return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
2025 }
2026
2027 static inline nir_block *
2028 nir_if_first_else_block(nir_if *if_stmt)
2029 {
2030 struct exec_node *head = exec_list_get_head(&if_stmt->else_list);
2031 return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
2032 }
2033
2034 static inline nir_block *
2035 nir_if_last_else_block(nir_if *if_stmt)
2036 {
2037 struct exec_node *tail = exec_list_get_tail(&if_stmt->else_list);
2038 return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
2039 }
2040
2041 static inline nir_block *
2042 nir_loop_first_block(nir_loop *loop)
2043 {
2044 struct exec_node *head = exec_list_get_head(&loop->body);
2045 return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
2046 }
2047
2048 static inline nir_block *
2049 nir_loop_last_block(nir_loop *loop)
2050 {
2051 struct exec_node *tail = exec_list_get_tail(&loop->body);
2052 return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
2053 }
2054
2055 typedef struct {
2056 uint8_t num_components;
2057 uint8_t bit_size;
2058 } nir_parameter;
2059
2060 typedef struct nir_function {
2061 struct exec_node node;
2062
2063 const char *name;
2064 struct nir_shader *shader;
2065
2066 unsigned num_params;
2067 nir_parameter *params;
2068
2069 /** The implementation of this function.
2070 *
2071 * If the function is only declared and not implemented, this is NULL.
2072 */
2073 nir_function_impl *impl;
2074 } nir_function;
2075
2076 typedef struct nir_shader_compiler_options {
2077 bool lower_fdiv;
2078 bool lower_ffma;
2079 bool fuse_ffma;
2080 bool lower_flrp32;
2081 /** Lowers flrp when it does not support doubles */
2082 bool lower_flrp64;
2083 bool lower_fpow;
2084 bool lower_fsat;
2085 bool lower_fsqrt;
2086 bool lower_fmod32;
2087 bool lower_fmod64;
2088 /** Lowers ibitfield_extract/ubitfield_extract to ibfe/ubfe. */
2089 bool lower_bitfield_extract;
2090 /** Lowers ibitfield_extract/ubitfield_extract to bfm, compares, shifts. */
2091 bool lower_bitfield_extract_to_shifts;
2092 /** Lowers bitfield_insert to bfi/bfm */
2093 bool lower_bitfield_insert;
2094 /** Lowers bitfield_insert to bfm, compares, and shifts. */
2095 bool lower_bitfield_insert_to_shifts;
2096 /** Lowers bitfield_reverse to shifts. */
2097 bool lower_bitfield_reverse;
2098 /** Lowers bit_count to shifts. */
2099 bool lower_bit_count;
2100 /** Lowers bfm to shifts and subtracts. */
2101 bool lower_bfm;
2102 /** Lowers ifind_msb to compare and ufind_msb */
2103 bool lower_ifind_msb;
2104 /** Lowers find_lsb to ufind_msb and logic ops */
2105 bool lower_find_lsb;
2106 bool lower_uadd_carry;
2107 bool lower_usub_borrow;
2108 /** Lowers imul_high/umul_high to 16-bit multiplies and carry operations. */
2109 bool lower_mul_high;
2110 /** lowers fneg and ineg to fsub and isub. */
2111 bool lower_negate;
2112 /** lowers fsub and isub to fadd+fneg and iadd+ineg. */
2113 bool lower_sub;
2114
2115 /* lower {slt,sge,seq,sne} to {flt,fge,feq,fne} + b2f: */
2116 bool lower_scmp;
2117
2118 /** enables rules to lower idiv by power-of-two: */
2119 bool lower_idiv;
2120
2121 /* lower b2f to iand */
2122 bool lower_b2f;
2123
2124 /* Does the native fdot instruction replicate its result for four
2125 * components? If so, then opt_algebraic_late will turn all fdotN
2126 * instructions into fdot_replicatedN instructions.
2127 */
2128 bool fdot_replicates;
2129
2130 /** lowers ffloor to fsub+ffract: */
2131 bool lower_ffloor;
2132
2133 /** lowers ffract to fsub+ffloor: */
2134 bool lower_ffract;
2135
2136 /** lowers fceil to fneg+ffloor+fneg: */
2137 bool lower_fceil;
2138
2139 bool lower_ldexp;
2140
2141 bool lower_pack_half_2x16;
2142 bool lower_pack_unorm_2x16;
2143 bool lower_pack_snorm_2x16;
2144 bool lower_pack_unorm_4x8;
2145 bool lower_pack_snorm_4x8;
2146 bool lower_unpack_half_2x16;
2147 bool lower_unpack_unorm_2x16;
2148 bool lower_unpack_snorm_2x16;
2149 bool lower_unpack_unorm_4x8;
2150 bool lower_unpack_snorm_4x8;
2151
2152 bool lower_extract_byte;
2153 bool lower_extract_word;
2154
2155 bool lower_all_io_to_temps;
2156
2157 /**
2158 * Does the driver support real 32-bit integers? (Otherwise, integers
2159 * are simulated by floats.)
2160 */
2161 bool native_integers;
2162
2163 /* Indicates that the driver only has zero-based vertex id */
2164 bool vertex_id_zero_based;
2165
2166 /**
2167 * If enabled, gl_BaseVertex will be lowered as:
2168 * is_indexed_draw (~0/0) & firstvertex
2169 */
2170 bool lower_base_vertex;
2171
2172 /**
2173 * If enabled, gl_HelperInvocation will be lowered as:
2174 *
2175 * !((1 << sample_id) & sample_mask_in))
2176 *
2177 * This depends on some possibly hw implementation details, which may
2178 * not be true for all hw. In particular that the FS is only executed
2179 * for covered samples or for helper invocations. So, do not blindly
2180 * enable this option.
2181 *
2182 * Note: See also issue #22 in ARB_shader_image_load_store
2183 */
2184 bool lower_helper_invocation;
2185
2186 bool lower_cs_local_index_from_id;
2187 bool lower_cs_local_id_from_index;
2188
2189 bool lower_device_index_to_zero;
2190
2191 /* Set if nir_lower_wpos_ytransform() should also invert gl_PointCoord. */
2192 bool lower_wpos_pntc;
2193
2194 /**
2195 * Should nir_lower_io() create load_interpolated_input intrinsics?
2196 *
2197 * If not, it generates regular load_input intrinsics and interpolation
2198 * information must be inferred from the list of input nir_variables.
2199 */
2200 bool use_interpolated_input_intrinsics;
2201
2202 unsigned max_unroll_iterations;
2203 } nir_shader_compiler_options;
2204
2205 typedef struct nir_shader {
2206 /** list of uniforms (nir_variable) */
2207 struct exec_list uniforms;
2208
2209 /** list of inputs (nir_variable) */
2210 struct exec_list inputs;
2211
2212 /** list of outputs (nir_variable) */
2213 struct exec_list outputs;
2214
2215 /** list of shared compute variables (nir_variable) */
2216 struct exec_list shared;
2217
2218 /** Set of driver-specific options for the shader.
2219 *
2220 * The memory for the options is expected to be kept in a single static
2221 * copy by the driver.
2222 */
2223 const struct nir_shader_compiler_options *options;
2224
2225 /** Various bits of compile-time information about a given shader */
2226 struct shader_info info;
2227
2228 /** list of global variables in the shader (nir_variable) */
2229 struct exec_list globals;
2230
2231 /** list of system value variables in the shader (nir_variable) */
2232 struct exec_list system_values;
2233
2234 struct exec_list functions; /** < list of nir_function */
2235
2236 /** list of global register in the shader */
2237 struct exec_list registers;
2238
2239 /** next available global register index */
2240 unsigned reg_alloc;
2241
2242 /**
2243 * the highest index a load_input_*, load_uniform_*, etc. intrinsic can
2244 * access plus one
2245 */
2246 unsigned num_inputs, num_uniforms, num_outputs, num_shared;
2247
2248 /** Constant data associated with this shader.
2249 *
2250 * Constant data is loaded through load_constant intrinsics. See also
2251 * nir_opt_large_constants.
2252 */
2253 void *constant_data;
2254 unsigned constant_data_size;
2255 } nir_shader;
2256
2257 static inline nir_function_impl *
2258 nir_shader_get_entrypoint(nir_shader *shader)
2259 {
2260 assert(exec_list_length(&shader->functions) == 1);
2261 struct exec_node *func_node = exec_list_get_head(&shader->functions);
2262 nir_function *func = exec_node_data(nir_function, func_node, node);
2263 assert(func->num_params == 0);
2264 assert(func->impl);
2265 return func->impl;
2266 }
2267
2268 #define nir_foreach_function(func, shader) \
2269 foreach_list_typed(nir_function, func, node, &(shader)->functions)
2270
2271 nir_shader *nir_shader_create(void *mem_ctx,
2272 gl_shader_stage stage,
2273 const nir_shader_compiler_options *options,
2274 shader_info *si);
2275
2276 /** creates a register, including assigning it an index and adding it to the list */
2277 nir_register *nir_global_reg_create(nir_shader *shader);
2278
2279 nir_register *nir_local_reg_create(nir_function_impl *impl);
2280
2281 void nir_reg_remove(nir_register *reg);
2282
2283 /** Adds a variable to the appropriate list in nir_shader */
2284 void nir_shader_add_variable(nir_shader *shader, nir_variable *var);
2285
2286 static inline void
2287 nir_function_impl_add_variable(nir_function_impl *impl, nir_variable *var)
2288 {
2289 assert(var->data.mode == nir_var_local);
2290 exec_list_push_tail(&impl->locals, &var->node);
2291 }
2292
2293 /** creates a variable, sets a few defaults, and adds it to the list */
2294 nir_variable *nir_variable_create(nir_shader *shader,
2295 nir_variable_mode mode,
2296 const struct glsl_type *type,
2297 const char *name);
2298 /** creates a local variable and adds it to the list */
2299 nir_variable *nir_local_variable_create(nir_function_impl *impl,
2300 const struct glsl_type *type,
2301 const char *name);
2302
2303 /** creates a function and adds it to the shader's list of functions */
2304 nir_function *nir_function_create(nir_shader *shader, const char *name);
2305
2306 nir_function_impl *nir_function_impl_create(nir_function *func);
2307 /** creates a function_impl that isn't tied to any particular function */
2308 nir_function_impl *nir_function_impl_create_bare(nir_shader *shader);
2309
2310 nir_block *nir_block_create(nir_shader *shader);
2311 nir_if *nir_if_create(nir_shader *shader);
2312 nir_loop *nir_loop_create(nir_shader *shader);
2313
2314 nir_function_impl *nir_cf_node_get_function(nir_cf_node *node);
2315
2316 /** requests that the given pieces of metadata be generated */
2317 void nir_metadata_require(nir_function_impl *impl, nir_metadata required, ...);
2318 /** dirties all but the preserved metadata */
2319 void nir_metadata_preserve(nir_function_impl *impl, nir_metadata preserved);
2320
2321 /** creates an instruction with default swizzle/writemask/etc. with NULL registers */
2322 nir_alu_instr *nir_alu_instr_create(nir_shader *shader, nir_op op);
2323
2324 nir_deref_instr *nir_deref_instr_create(nir_shader *shader,
2325 nir_deref_type deref_type);
2326
2327 nir_jump_instr *nir_jump_instr_create(nir_shader *shader, nir_jump_type type);
2328
2329 nir_load_const_instr *nir_load_const_instr_create(nir_shader *shader,
2330 unsigned num_components,
2331 unsigned bit_size);
2332
2333 nir_intrinsic_instr *nir_intrinsic_instr_create(nir_shader *shader,
2334 nir_intrinsic_op op);
2335
2336 nir_call_instr *nir_call_instr_create(nir_shader *shader,
2337 nir_function *callee);
2338
2339 nir_tex_instr *nir_tex_instr_create(nir_shader *shader, unsigned num_srcs);
2340
2341 nir_phi_instr *nir_phi_instr_create(nir_shader *shader);
2342
2343 nir_parallel_copy_instr *nir_parallel_copy_instr_create(nir_shader *shader);
2344
2345 nir_ssa_undef_instr *nir_ssa_undef_instr_create(nir_shader *shader,
2346 unsigned num_components,
2347 unsigned bit_size);
2348
2349 nir_const_value nir_alu_binop_identity(nir_op binop, unsigned bit_size);
2350
2351 /**
2352 * NIR Cursors and Instruction Insertion API
2353 * @{
2354 *
2355 * A tiny struct representing a point to insert/extract instructions or
2356 * control flow nodes. Helps reduce the combinatorial explosion of possible
2357 * points to insert/extract.
2358 *
2359 * \sa nir_control_flow.h
2360 */
2361 typedef enum {
2362 nir_cursor_before_block,
2363 nir_cursor_after_block,
2364 nir_cursor_before_instr,
2365 nir_cursor_after_instr,
2366 } nir_cursor_option;
2367
2368 typedef struct {
2369 nir_cursor_option option;
2370 union {
2371 nir_block *block;
2372 nir_instr *instr;
2373 };
2374 } nir_cursor;
2375
2376 static inline nir_block *
2377 nir_cursor_current_block(nir_cursor cursor)
2378 {
2379 if (cursor.option == nir_cursor_before_instr ||
2380 cursor.option == nir_cursor_after_instr) {
2381 return cursor.instr->block;
2382 } else {
2383 return cursor.block;
2384 }
2385 }
2386
2387 bool nir_cursors_equal(nir_cursor a, nir_cursor b);
2388
2389 static inline nir_cursor
2390 nir_before_block(nir_block *block)
2391 {
2392 nir_cursor cursor;
2393 cursor.option = nir_cursor_before_block;
2394 cursor.block = block;
2395 return cursor;
2396 }
2397
2398 static inline nir_cursor
2399 nir_after_block(nir_block *block)
2400 {
2401 nir_cursor cursor;
2402 cursor.option = nir_cursor_after_block;
2403 cursor.block = block;
2404 return cursor;
2405 }
2406
2407 static inline nir_cursor
2408 nir_before_instr(nir_instr *instr)
2409 {
2410 nir_cursor cursor;
2411 cursor.option = nir_cursor_before_instr;
2412 cursor.instr = instr;
2413 return cursor;
2414 }
2415
2416 static inline nir_cursor
2417 nir_after_instr(nir_instr *instr)
2418 {
2419 nir_cursor cursor;
2420 cursor.option = nir_cursor_after_instr;
2421 cursor.instr = instr;
2422 return cursor;
2423 }
2424
2425 static inline nir_cursor
2426 nir_after_block_before_jump(nir_block *block)
2427 {
2428 nir_instr *last_instr = nir_block_last_instr(block);
2429 if (last_instr && last_instr->type == nir_instr_type_jump) {
2430 return nir_before_instr(last_instr);
2431 } else {
2432 return nir_after_block(block);
2433 }
2434 }
2435
2436 static inline nir_cursor
2437 nir_before_src(nir_src *src, bool is_if_condition)
2438 {
2439 if (is_if_condition) {
2440 nir_block *prev_block =
2441 nir_cf_node_as_block(nir_cf_node_prev(&src->parent_if->cf_node));
2442 assert(!nir_block_ends_in_jump(prev_block));
2443 return nir_after_block(prev_block);
2444 } else if (src->parent_instr->type == nir_instr_type_phi) {
2445 #ifndef NDEBUG
2446 nir_phi_instr *cond_phi = nir_instr_as_phi(src->parent_instr);
2447 bool found = false;
2448 nir_foreach_phi_src(phi_src, cond_phi) {
2449 if (phi_src->src.ssa == src->ssa) {
2450 found = true;
2451 break;
2452 }
2453 }
2454 assert(found);
2455 #endif
2456 /* The LIST_ENTRY macro is a generic container-of macro, it just happens
2457 * to have a more specific name.
2458 */
2459 nir_phi_src *phi_src = LIST_ENTRY(nir_phi_src, src, src);
2460 return nir_after_block_before_jump(phi_src->pred);
2461 } else {
2462 return nir_before_instr(src->parent_instr);
2463 }
2464 }
2465
2466 static inline nir_cursor
2467 nir_before_cf_node(nir_cf_node *node)
2468 {
2469 if (node->type == nir_cf_node_block)
2470 return nir_before_block(nir_cf_node_as_block(node));
2471
2472 return nir_after_block(nir_cf_node_as_block(nir_cf_node_prev(node)));
2473 }
2474
2475 static inline nir_cursor
2476 nir_after_cf_node(nir_cf_node *node)
2477 {
2478 if (node->type == nir_cf_node_block)
2479 return nir_after_block(nir_cf_node_as_block(node));
2480
2481 return nir_before_block(nir_cf_node_as_block(nir_cf_node_next(node)));
2482 }
2483
2484 static inline nir_cursor
2485 nir_after_phis(nir_block *block)
2486 {
2487 nir_foreach_instr(instr, block) {
2488 if (instr->type != nir_instr_type_phi)
2489 return nir_before_instr(instr);
2490 }
2491 return nir_after_block(block);
2492 }
2493
2494 static inline nir_cursor
2495 nir_after_cf_node_and_phis(nir_cf_node *node)
2496 {
2497 if (node->type == nir_cf_node_block)
2498 return nir_after_block(nir_cf_node_as_block(node));
2499
2500 nir_block *block = nir_cf_node_as_block(nir_cf_node_next(node));
2501
2502 return nir_after_phis(block);
2503 }
2504
2505 static inline nir_cursor
2506 nir_before_cf_list(struct exec_list *cf_list)
2507 {
2508 nir_cf_node *first_node = exec_node_data(nir_cf_node,
2509 exec_list_get_head(cf_list), node);
2510 return nir_before_cf_node(first_node);
2511 }
2512
2513 static inline nir_cursor
2514 nir_after_cf_list(struct exec_list *cf_list)
2515 {
2516 nir_cf_node *last_node = exec_node_data(nir_cf_node,
2517 exec_list_get_tail(cf_list), node);
2518 return nir_after_cf_node(last_node);
2519 }
2520
2521 /**
2522 * Insert a NIR instruction at the given cursor.
2523 *
2524 * Note: This does not update the cursor.
2525 */
2526 void nir_instr_insert(nir_cursor cursor, nir_instr *instr);
2527
2528 static inline void
2529 nir_instr_insert_before(nir_instr *instr, nir_instr *before)
2530 {
2531 nir_instr_insert(nir_before_instr(instr), before);
2532 }
2533
2534 static inline void
2535 nir_instr_insert_after(nir_instr *instr, nir_instr *after)
2536 {
2537 nir_instr_insert(nir_after_instr(instr), after);
2538 }
2539
2540 static inline void
2541 nir_instr_insert_before_block(nir_block *block, nir_instr *before)
2542 {
2543 nir_instr_insert(nir_before_block(block), before);
2544 }
2545
2546 static inline void
2547 nir_instr_insert_after_block(nir_block *block, nir_instr *after)
2548 {
2549 nir_instr_insert(nir_after_block(block), after);
2550 }
2551
2552 static inline void
2553 nir_instr_insert_before_cf(nir_cf_node *node, nir_instr *before)
2554 {
2555 nir_instr_insert(nir_before_cf_node(node), before);
2556 }
2557
2558 static inline void
2559 nir_instr_insert_after_cf(nir_cf_node *node, nir_instr *after)
2560 {
2561 nir_instr_insert(nir_after_cf_node(node), after);
2562 }
2563
2564 static inline void
2565 nir_instr_insert_before_cf_list(struct exec_list *list, nir_instr *before)
2566 {
2567 nir_instr_insert(nir_before_cf_list(list), before);
2568 }
2569
2570 static inline void
2571 nir_instr_insert_after_cf_list(struct exec_list *list, nir_instr *after)
2572 {
2573 nir_instr_insert(nir_after_cf_list(list), after);
2574 }
2575
2576 void nir_instr_remove_v(nir_instr *instr);
2577
2578 static inline nir_cursor
2579 nir_instr_remove(nir_instr *instr)
2580 {
2581 nir_cursor cursor;
2582 nir_instr *prev = nir_instr_prev(instr);
2583 if (prev) {
2584 cursor = nir_after_instr(prev);
2585 } else {
2586 cursor = nir_before_block(instr->block);
2587 }
2588 nir_instr_remove_v(instr);
2589 return cursor;
2590 }
2591
2592 /** @} */
2593
2594 typedef bool (*nir_foreach_ssa_def_cb)(nir_ssa_def *def, void *state);
2595 typedef bool (*nir_foreach_dest_cb)(nir_dest *dest, void *state);
2596 typedef bool (*nir_foreach_src_cb)(nir_src *src, void *state);
2597 bool nir_foreach_ssa_def(nir_instr *instr, nir_foreach_ssa_def_cb cb,
2598 void *state);
2599 bool nir_foreach_dest(nir_instr *instr, nir_foreach_dest_cb cb, void *state);
2600 bool nir_foreach_src(nir_instr *instr, nir_foreach_src_cb cb, void *state);
2601
2602 nir_const_value *nir_src_as_const_value(nir_src src);
2603
2604 static inline struct nir_instr *
2605 nir_src_instr(const struct nir_src *src)
2606 {
2607 return src->is_ssa ? src->ssa->parent_instr : NULL;
2608 }
2609
2610 #define NIR_SRC_AS_(name, c_type, type_enum, cast_macro) \
2611 static inline c_type * \
2612 nir_src_as_ ## name (struct nir_src *src) \
2613 { \
2614 return src->is_ssa && src->ssa->parent_instr->type == type_enum \
2615 ? cast_macro(src->ssa->parent_instr) : NULL; \
2616 } \
2617 static inline const c_type * \
2618 nir_src_as_ ## name ## _const(const struct nir_src *src) \
2619 { \
2620 return src->is_ssa && src->ssa->parent_instr->type == type_enum \
2621 ? cast_macro(src->ssa->parent_instr) : NULL; \
2622 }
2623
2624 NIR_SRC_AS_(alu_instr, nir_alu_instr, nir_instr_type_alu, nir_instr_as_alu)
2625
2626 bool nir_src_is_dynamically_uniform(nir_src src);
2627 bool nir_srcs_equal(nir_src src1, nir_src src2);
2628 void nir_instr_rewrite_src(nir_instr *instr, nir_src *src, nir_src new_src);
2629 void nir_instr_move_src(nir_instr *dest_instr, nir_src *dest, nir_src *src);
2630 void nir_if_rewrite_condition(nir_if *if_stmt, nir_src new_src);
2631 void nir_instr_rewrite_dest(nir_instr *instr, nir_dest *dest,
2632 nir_dest new_dest);
2633
2634 void nir_ssa_dest_init(nir_instr *instr, nir_dest *dest,
2635 unsigned num_components, unsigned bit_size,
2636 const char *name);
2637 void nir_ssa_def_init(nir_instr *instr, nir_ssa_def *def,
2638 unsigned num_components, unsigned bit_size,
2639 const char *name);
2640 static inline void
2641 nir_ssa_dest_init_for_type(nir_instr *instr, nir_dest *dest,
2642 const struct glsl_type *type,
2643 const char *name)
2644 {
2645 assert(glsl_type_is_vector_or_scalar(type));
2646 nir_ssa_dest_init(instr, dest, glsl_get_components(type),
2647 glsl_get_bit_size(type), name);
2648 }
2649 void nir_ssa_def_rewrite_uses(nir_ssa_def *def, nir_src new_src);
2650 void nir_ssa_def_rewrite_uses_after(nir_ssa_def *def, nir_src new_src,
2651 nir_instr *after_me);
2652
2653 nir_component_mask_t nir_ssa_def_components_read(const nir_ssa_def *def);
2654
2655 /*
2656 * finds the next basic block in source-code order, returns NULL if there is
2657 * none
2658 */
2659
2660 nir_block *nir_block_cf_tree_next(nir_block *block);
2661
2662 /* Performs the opposite of nir_block_cf_tree_next() */
2663
2664 nir_block *nir_block_cf_tree_prev(nir_block *block);
2665
2666 /* Gets the first block in a CF node in source-code order */
2667
2668 nir_block *nir_cf_node_cf_tree_first(nir_cf_node *node);
2669
2670 /* Gets the last block in a CF node in source-code order */
2671
2672 nir_block *nir_cf_node_cf_tree_last(nir_cf_node *node);
2673
2674 /* Gets the next block after a CF node in source-code order */
2675
2676 nir_block *nir_cf_node_cf_tree_next(nir_cf_node *node);
2677
2678 /* Macros for loops that visit blocks in source-code order */
2679
2680 #define nir_foreach_block(block, impl) \
2681 for (nir_block *block = nir_start_block(impl); block != NULL; \
2682 block = nir_block_cf_tree_next(block))
2683
2684 #define nir_foreach_block_safe(block, impl) \
2685 for (nir_block *block = nir_start_block(impl), \
2686 *next = nir_block_cf_tree_next(block); \
2687 block != NULL; \
2688 block = next, next = nir_block_cf_tree_next(block))
2689
2690 #define nir_foreach_block_reverse(block, impl) \
2691 for (nir_block *block = nir_impl_last_block(impl); block != NULL; \
2692 block = nir_block_cf_tree_prev(block))
2693
2694 #define nir_foreach_block_reverse_safe(block, impl) \
2695 for (nir_block *block = nir_impl_last_block(impl), \
2696 *prev = nir_block_cf_tree_prev(block); \
2697 block != NULL; \
2698 block = prev, prev = nir_block_cf_tree_prev(block))
2699
2700 #define nir_foreach_block_in_cf_node(block, node) \
2701 for (nir_block *block = nir_cf_node_cf_tree_first(node); \
2702 block != nir_cf_node_cf_tree_next(node); \
2703 block = nir_block_cf_tree_next(block))
2704
2705 /* If the following CF node is an if, this function returns that if.
2706 * Otherwise, it returns NULL.
2707 */
2708 nir_if *nir_block_get_following_if(nir_block *block);
2709
2710 nir_loop *nir_block_get_following_loop(nir_block *block);
2711
2712 void nir_index_local_regs(nir_function_impl *impl);
2713 void nir_index_global_regs(nir_shader *shader);
2714 void nir_index_ssa_defs(nir_function_impl *impl);
2715 unsigned nir_index_instrs(nir_function_impl *impl);
2716
2717 void nir_index_blocks(nir_function_impl *impl);
2718
2719 void nir_print_shader(nir_shader *shader, FILE *fp);
2720 void nir_print_shader_annotated(nir_shader *shader, FILE *fp, struct hash_table *errors);
2721 void nir_print_instr(const nir_instr *instr, FILE *fp);
2722
2723 nir_shader *nir_shader_clone(void *mem_ctx, const nir_shader *s);
2724 nir_function_impl *nir_function_impl_clone(const nir_function_impl *fi);
2725 nir_constant *nir_constant_clone(const nir_constant *c, nir_variable *var);
2726 nir_variable *nir_variable_clone(const nir_variable *c, nir_shader *shader);
2727
2728 nir_shader *nir_shader_serialize_deserialize(void *mem_ctx, nir_shader *s);
2729
2730 #ifndef NDEBUG
2731 void nir_validate_shader(nir_shader *shader, const char *when);
2732 void nir_metadata_set_validation_flag(nir_shader *shader);
2733 void nir_metadata_check_validation_flag(nir_shader *shader);
2734
2735 static inline bool
2736 should_clone_nir(void)
2737 {
2738 static int should_clone = -1;
2739 if (should_clone < 0)
2740 should_clone = env_var_as_boolean("NIR_TEST_CLONE", false);
2741
2742 return should_clone;
2743 }
2744
2745 static inline bool
2746 should_serialize_deserialize_nir(void)
2747 {
2748 static int test_serialize = -1;
2749 if (test_serialize < 0)
2750 test_serialize = env_var_as_boolean("NIR_TEST_SERIALIZE", false);
2751
2752 return test_serialize;
2753 }
2754
2755 static inline bool
2756 should_print_nir(void)
2757 {
2758 static int should_print = -1;
2759 if (should_print < 0)
2760 should_print = env_var_as_boolean("NIR_PRINT", false);
2761
2762 return should_print;
2763 }
2764 #else
2765 static inline void nir_validate_shader(nir_shader *shader, const char *when) { (void) shader; (void)when; }
2766 static inline void nir_metadata_set_validation_flag(nir_shader *shader) { (void) shader; }
2767 static inline void nir_metadata_check_validation_flag(nir_shader *shader) { (void) shader; }
2768 static inline bool should_clone_nir(void) { return false; }
2769 static inline bool should_serialize_deserialize_nir(void) { return false; }
2770 static inline bool should_print_nir(void) { return false; }
2771 #endif /* NDEBUG */
2772
2773 #define _PASS(pass, nir, do_pass) do { \
2774 do_pass \
2775 nir_validate_shader(nir, "after " #pass); \
2776 if (should_clone_nir()) { \
2777 nir_shader *clone = nir_shader_clone(ralloc_parent(nir), nir); \
2778 ralloc_free(nir); \
2779 nir = clone; \
2780 } \
2781 if (should_serialize_deserialize_nir()) { \
2782 void *mem_ctx = ralloc_parent(nir); \
2783 nir = nir_shader_serialize_deserialize(mem_ctx, nir); \
2784 } \
2785 } while (0)
2786
2787 #define NIR_PASS(progress, nir, pass, ...) _PASS(pass, nir, \
2788 nir_metadata_set_validation_flag(nir); \
2789 if (should_print_nir()) \
2790 printf("%s\n", #pass); \
2791 if (pass(nir, ##__VA_ARGS__)) { \
2792 progress = true; \
2793 if (should_print_nir()) \
2794 nir_print_shader(nir, stdout); \
2795 nir_metadata_check_validation_flag(nir); \
2796 } \
2797 )
2798
2799 #define NIR_PASS_V(nir, pass, ...) _PASS(pass, nir, \
2800 if (should_print_nir()) \
2801 printf("%s\n", #pass); \
2802 pass(nir, ##__VA_ARGS__); \
2803 if (should_print_nir()) \
2804 nir_print_shader(nir, stdout); \
2805 )
2806
2807 void nir_calc_dominance_impl(nir_function_impl *impl);
2808 void nir_calc_dominance(nir_shader *shader);
2809
2810 nir_block *nir_dominance_lca(nir_block *b1, nir_block *b2);
2811 bool nir_block_dominates(nir_block *parent, nir_block *child);
2812
2813 void nir_dump_dom_tree_impl(nir_function_impl *impl, FILE *fp);
2814 void nir_dump_dom_tree(nir_shader *shader, FILE *fp);
2815
2816 void nir_dump_dom_frontier_impl(nir_function_impl *impl, FILE *fp);
2817 void nir_dump_dom_frontier(nir_shader *shader, FILE *fp);
2818
2819 void nir_dump_cfg_impl(nir_function_impl *impl, FILE *fp);
2820 void nir_dump_cfg(nir_shader *shader, FILE *fp);
2821
2822 int nir_gs_count_vertices(const nir_shader *shader);
2823
2824 bool nir_shrink_vec_array_vars(nir_shader *shader, nir_variable_mode modes);
2825 bool nir_split_array_vars(nir_shader *shader, nir_variable_mode modes);
2826 bool nir_split_var_copies(nir_shader *shader);
2827 bool nir_split_per_member_structs(nir_shader *shader);
2828 bool nir_split_struct_vars(nir_shader *shader, nir_variable_mode modes);
2829
2830 bool nir_lower_returns_impl(nir_function_impl *impl);
2831 bool nir_lower_returns(nir_shader *shader);
2832
2833 bool nir_inline_functions(nir_shader *shader);
2834
2835 bool nir_propagate_invariant(nir_shader *shader);
2836
2837 void nir_lower_var_copy_instr(nir_intrinsic_instr *copy, nir_shader *shader);
2838 void nir_lower_deref_copy_instr(struct nir_builder *b,
2839 nir_intrinsic_instr *copy);
2840 bool nir_lower_var_copies(nir_shader *shader);
2841
2842 void nir_fixup_deref_modes(nir_shader *shader);
2843
2844 bool nir_lower_global_vars_to_local(nir_shader *shader);
2845
2846 bool nir_lower_indirect_derefs(nir_shader *shader, nir_variable_mode modes);
2847
2848 bool nir_lower_locals_to_regs(nir_shader *shader);
2849
2850 void nir_lower_io_to_temporaries(nir_shader *shader,
2851 nir_function_impl *entrypoint,
2852 bool outputs, bool inputs);
2853
2854 void nir_shader_gather_info(nir_shader *shader, nir_function_impl *entrypoint);
2855
2856 void nir_assign_var_locations(struct exec_list *var_list, unsigned *size,
2857 int (*type_size)(const struct glsl_type *));
2858
2859 /* Some helpers to do very simple linking */
2860 bool nir_remove_unused_varyings(nir_shader *producer, nir_shader *consumer);
2861 bool nir_remove_unused_io_vars(nir_shader *shader, struct exec_list *var_list,
2862 uint64_t *used_by_other_stage,
2863 uint64_t *used_by_other_stage_patches);
2864 void nir_compact_varyings(nir_shader *producer, nir_shader *consumer,
2865 bool default_to_smooth_interp);
2866 void nir_link_xfb_varyings(nir_shader *producer, nir_shader *consumer);
2867 bool nir_link_constant_varyings(nir_shader *producer, nir_shader *consumer);
2868
2869 typedef enum {
2870 /* If set, this forces all non-flat fragment shader inputs to be
2871 * interpolated as if with the "sample" qualifier. This requires
2872 * nir_shader_compiler_options::use_interpolated_input_intrinsics.
2873 */
2874 nir_lower_io_force_sample_interpolation = (1 << 1),
2875 } nir_lower_io_options;
2876 bool nir_lower_io(nir_shader *shader,
2877 nir_variable_mode modes,
2878 int (*type_size)(const struct glsl_type *),
2879 nir_lower_io_options);
2880 nir_src *nir_get_io_offset_src(nir_intrinsic_instr *instr);
2881 nir_src *nir_get_io_vertex_index_src(nir_intrinsic_instr *instr);
2882
2883 bool nir_is_per_vertex_io(const nir_variable *var, gl_shader_stage stage);
2884
2885 bool nir_lower_regs_to_ssa_impl(nir_function_impl *impl);
2886 bool nir_lower_regs_to_ssa(nir_shader *shader);
2887 bool nir_lower_vars_to_ssa(nir_shader *shader);
2888
2889 bool nir_remove_dead_derefs(nir_shader *shader);
2890 bool nir_remove_dead_derefs_impl(nir_function_impl *impl);
2891 bool nir_remove_dead_variables(nir_shader *shader, nir_variable_mode modes);
2892 bool nir_lower_constant_initializers(nir_shader *shader,
2893 nir_variable_mode modes);
2894
2895 bool nir_move_load_const(nir_shader *shader);
2896 bool nir_move_vec_src_uses_to_dest(nir_shader *shader);
2897 bool nir_lower_vec_to_movs(nir_shader *shader);
2898 void nir_lower_alpha_test(nir_shader *shader, enum compare_func func,
2899 bool alpha_to_one);
2900 bool nir_lower_alu(nir_shader *shader);
2901 bool nir_lower_alu_to_scalar(nir_shader *shader);
2902 bool nir_lower_load_const_to_scalar(nir_shader *shader);
2903 bool nir_lower_read_invocation_to_scalar(nir_shader *shader);
2904 bool nir_lower_phis_to_scalar(nir_shader *shader);
2905 void nir_lower_io_arrays_to_elements(nir_shader *producer, nir_shader *consumer);
2906 void nir_lower_io_arrays_to_elements_no_indirects(nir_shader *shader,
2907 bool outputs_only);
2908 void nir_lower_io_to_scalar(nir_shader *shader, nir_variable_mode mask);
2909 void nir_lower_io_to_scalar_early(nir_shader *shader, nir_variable_mode mask);
2910
2911 typedef struct nir_lower_subgroups_options {
2912 uint8_t subgroup_size;
2913 uint8_t ballot_bit_size;
2914 bool lower_to_scalar:1;
2915 bool lower_vote_trivial:1;
2916 bool lower_vote_eq_to_ballot:1;
2917 bool lower_subgroup_masks:1;
2918 bool lower_shuffle:1;
2919 bool lower_shuffle_to_32bit:1;
2920 bool lower_quad:1;
2921 } nir_lower_subgroups_options;
2922
2923 bool nir_lower_subgroups(nir_shader *shader,
2924 const nir_lower_subgroups_options *options);
2925
2926 bool nir_lower_system_values(nir_shader *shader);
2927
2928 typedef struct nir_lower_tex_options {
2929 /**
2930 * bitmask of (1 << GLSL_SAMPLER_DIM_x) to control for which
2931 * sampler types a texture projector is lowered.
2932 */
2933 unsigned lower_txp;
2934
2935 /**
2936 * If true, lower away nir_tex_src_offset for all texelfetch instructions.
2937 */
2938 bool lower_txf_offset;
2939
2940 /**
2941 * If true, lower away nir_tex_src_offset for all rect textures.
2942 */
2943 bool lower_rect_offset;
2944
2945 /**
2946 * If true, lower rect textures to 2D, using txs to fetch the
2947 * texture dimensions and dividing the texture coords by the
2948 * texture dims to normalize.
2949 */
2950 bool lower_rect;
2951
2952 /**
2953 * If true, convert yuv to rgb.
2954 */
2955 unsigned lower_y_uv_external;
2956 unsigned lower_y_u_v_external;
2957 unsigned lower_yx_xuxv_external;
2958 unsigned lower_xy_uxvx_external;
2959 unsigned lower_ayuv_external;
2960
2961 /**
2962 * To emulate certain texture wrap modes, this can be used
2963 * to saturate the specified tex coord to [0.0, 1.0]. The
2964 * bits are according to sampler #, ie. if, for example:
2965 *
2966 * (conf->saturate_s & (1 << n))
2967 *
2968 * is true, then the s coord for sampler n is saturated.
2969 *
2970 * Note that clamping must happen *after* projector lowering
2971 * so any projected texture sample instruction with a clamped
2972 * coordinate gets automatically lowered, regardless of the
2973 * 'lower_txp' setting.
2974 */
2975 unsigned saturate_s;
2976 unsigned saturate_t;
2977 unsigned saturate_r;
2978
2979 /* Bitmask of textures that need swizzling.
2980 *
2981 * If (swizzle_result & (1 << texture_index)), then the swizzle in
2982 * swizzles[texture_index] is applied to the result of the texturing
2983 * operation.
2984 */
2985 unsigned swizzle_result;
2986
2987 /* A swizzle for each texture. Values 0-3 represent x, y, z, or w swizzles
2988 * while 4 and 5 represent 0 and 1 respectively.
2989 */
2990 uint8_t swizzles[32][4];
2991
2992 /**
2993 * Bitmap of textures that need srgb to linear conversion. If
2994 * (lower_srgb & (1 << texture_index)) then the rgb (xyz) components
2995 * of the texture are lowered to linear.
2996 */
2997 unsigned lower_srgb;
2998
2999 /**
3000 * If true, lower nir_texop_txd on cube maps with nir_texop_txl.
3001 */
3002 bool lower_txd_cube_map;
3003
3004 /**
3005 * If true, lower nir_texop_txd on shadow samplers (except cube maps)
3006 * with nir_texop_txl. Notice that cube map shadow samplers are lowered
3007 * with lower_txd_cube_map.
3008 */
3009 bool lower_txd_shadow;
3010
3011 /**
3012 * If true, lower nir_texop_txd on all samplers to a nir_texop_txl.
3013 * Implies lower_txd_cube_map and lower_txd_shadow.
3014 */
3015 bool lower_txd;
3016
3017 /**
3018 * If true, lower nir_texop_txb that try to use shadow compare and min_lod
3019 * at the same time to a nir_texop_lod, some math, and nir_texop_tex.
3020 */
3021 bool lower_txb_shadow_clamp;
3022
3023 /**
3024 * If true, lower nir_texop_txd on shadow samplers when it uses min_lod
3025 * with nir_texop_txl. This includes cube maps.
3026 */
3027 bool lower_txd_shadow_clamp;
3028
3029 /**
3030 * If true, lower nir_texop_txd on when it uses both offset and min_lod
3031 * with nir_texop_txl. This includes cube maps.
3032 */
3033 bool lower_txd_offset_clamp;
3034 } nir_lower_tex_options;
3035
3036 bool nir_lower_tex(nir_shader *shader,
3037 const nir_lower_tex_options *options);
3038
3039 bool nir_lower_idiv(nir_shader *shader);
3040
3041 bool nir_lower_clip_vs(nir_shader *shader, unsigned ucp_enables, bool use_vars);
3042 bool nir_lower_clip_fs(nir_shader *shader, unsigned ucp_enables);
3043 bool nir_lower_clip_cull_distance_arrays(nir_shader *nir);
3044
3045 void nir_lower_two_sided_color(nir_shader *shader);
3046
3047 bool nir_lower_clamp_color_outputs(nir_shader *shader);
3048
3049 void nir_lower_passthrough_edgeflags(nir_shader *shader);
3050 bool nir_lower_patch_vertices(nir_shader *nir, unsigned static_count,
3051 const gl_state_index16 *uniform_state_tokens);
3052
3053 typedef struct nir_lower_wpos_ytransform_options {
3054 gl_state_index16 state_tokens[STATE_LENGTH];
3055 bool fs_coord_origin_upper_left :1;
3056 bool fs_coord_origin_lower_left :1;
3057 bool fs_coord_pixel_center_integer :1;
3058 bool fs_coord_pixel_center_half_integer :1;
3059 } nir_lower_wpos_ytransform_options;
3060
3061 bool nir_lower_wpos_ytransform(nir_shader *shader,
3062 const nir_lower_wpos_ytransform_options *options);
3063 bool nir_lower_wpos_center(nir_shader *shader, const bool for_sample_shading);
3064
3065 typedef struct nir_lower_drawpixels_options {
3066 gl_state_index16 texcoord_state_tokens[STATE_LENGTH];
3067 gl_state_index16 scale_state_tokens[STATE_LENGTH];
3068 gl_state_index16 bias_state_tokens[STATE_LENGTH];
3069 unsigned drawpix_sampler;
3070 unsigned pixelmap_sampler;
3071 bool pixel_maps :1;
3072 bool scale_and_bias :1;
3073 } nir_lower_drawpixels_options;
3074
3075 void nir_lower_drawpixels(nir_shader *shader,
3076 const nir_lower_drawpixels_options *options);
3077
3078 typedef struct nir_lower_bitmap_options {
3079 unsigned sampler;
3080 bool swizzle_xxxx;
3081 } nir_lower_bitmap_options;
3082
3083 void nir_lower_bitmap(nir_shader *shader, const nir_lower_bitmap_options *options);
3084
3085 bool nir_lower_atomics_to_ssbo(nir_shader *shader, unsigned ssbo_offset);
3086
3087 typedef enum {
3088 nir_lower_int_source_mods = 1 << 0,
3089 nir_lower_float_source_mods = 1 << 1,
3090 nir_lower_all_source_mods = (1 << 2) - 1
3091 } nir_lower_to_source_mods_flags;
3092
3093
3094 bool nir_lower_to_source_mods(nir_shader *shader, nir_lower_to_source_mods_flags options);
3095
3096 bool nir_lower_gs_intrinsics(nir_shader *shader);
3097
3098 typedef unsigned (*nir_lower_bit_size_callback)(const nir_alu_instr *, void *);
3099
3100 bool nir_lower_bit_size(nir_shader *shader,
3101 nir_lower_bit_size_callback callback,
3102 void *callback_data);
3103
3104 typedef enum {
3105 nir_lower_imul64 = (1 << 0),
3106 nir_lower_isign64 = (1 << 1),
3107 /** Lower all int64 modulus and division opcodes */
3108 nir_lower_divmod64 = (1 << 2),
3109 /** Lower all 64-bit umul_high and imul_high opcodes */
3110 nir_lower_imul_high64 = (1 << 3),
3111 } nir_lower_int64_options;
3112
3113 bool nir_lower_int64(nir_shader *shader, nir_lower_int64_options options);
3114
3115 typedef enum {
3116 nir_lower_drcp = (1 << 0),
3117 nir_lower_dsqrt = (1 << 1),
3118 nir_lower_drsq = (1 << 2),
3119 nir_lower_dtrunc = (1 << 3),
3120 nir_lower_dfloor = (1 << 4),
3121 nir_lower_dceil = (1 << 5),
3122 nir_lower_dfract = (1 << 6),
3123 nir_lower_dround_even = (1 << 7),
3124 nir_lower_dmod = (1 << 8)
3125 } nir_lower_doubles_options;
3126
3127 bool nir_lower_doubles(nir_shader *shader, nir_lower_doubles_options options);
3128 bool nir_lower_pack(nir_shader *shader);
3129
3130 bool nir_normalize_cubemap_coords(nir_shader *shader);
3131
3132 void nir_live_ssa_defs_impl(nir_function_impl *impl);
3133
3134 void nir_loop_analyze_impl(nir_function_impl *impl,
3135 nir_variable_mode indirect_mask);
3136
3137 bool nir_ssa_defs_interfere(nir_ssa_def *a, nir_ssa_def *b);
3138
3139 bool nir_repair_ssa_impl(nir_function_impl *impl);
3140 bool nir_repair_ssa(nir_shader *shader);
3141
3142 void nir_convert_loop_to_lcssa(nir_loop *loop);
3143
3144 /* If phi_webs_only is true, only convert SSA values involved in phi nodes to
3145 * registers. If false, convert all values (even those not involved in a phi
3146 * node) to registers.
3147 */
3148 bool nir_convert_from_ssa(nir_shader *shader, bool phi_webs_only);
3149
3150 bool nir_lower_phis_to_regs_block(nir_block *block);
3151 bool nir_lower_ssa_defs_to_regs_block(nir_block *block);
3152 bool nir_rematerialize_derefs_in_use_blocks_impl(nir_function_impl *impl);
3153
3154 bool nir_opt_algebraic(nir_shader *shader);
3155 bool nir_opt_algebraic_before_ffma(nir_shader *shader);
3156 bool nir_opt_algebraic_late(nir_shader *shader);
3157 bool nir_opt_constant_folding(nir_shader *shader);
3158
3159 bool nir_opt_global_to_local(nir_shader *shader);
3160
3161 bool nir_copy_prop(nir_shader *shader);
3162
3163 bool nir_opt_copy_prop_vars(nir_shader *shader);
3164
3165 bool nir_opt_cse(nir_shader *shader);
3166
3167 bool nir_opt_dce(nir_shader *shader);
3168
3169 bool nir_opt_dead_cf(nir_shader *shader);
3170
3171 bool nir_opt_dead_write_vars(nir_shader *shader);
3172
3173 bool nir_opt_find_array_copies(nir_shader *shader);
3174
3175 bool nir_opt_gcm(nir_shader *shader, bool value_number);
3176
3177 bool nir_opt_idiv_const(nir_shader *shader, unsigned min_bit_size);
3178
3179 bool nir_opt_if(nir_shader *shader);
3180
3181 bool nir_opt_intrinsics(nir_shader *shader);
3182
3183 bool nir_opt_large_constants(nir_shader *shader,
3184 glsl_type_size_align_func size_align,
3185 unsigned threshold);
3186
3187 bool nir_opt_loop_unroll(nir_shader *shader, nir_variable_mode indirect_mask);
3188
3189 bool nir_opt_move_comparisons(nir_shader *shader);
3190
3191 bool nir_opt_move_load_ubo(nir_shader *shader);
3192
3193 bool nir_opt_peephole_select(nir_shader *shader, unsigned limit);
3194
3195 bool nir_opt_remove_phis_impl(nir_function_impl *impl);
3196 bool nir_opt_remove_phis(nir_shader *shader);
3197
3198 bool nir_opt_shrink_load(nir_shader *shader);
3199
3200 bool nir_opt_trivial_continues(nir_shader *shader);
3201
3202 bool nir_opt_undef(nir_shader *shader);
3203
3204 bool nir_opt_conditional_discard(nir_shader *shader);
3205
3206 void nir_sweep(nir_shader *shader);
3207
3208 void nir_remap_dual_slot_attributes(nir_shader *shader,
3209 uint64_t *dual_slot_inputs);
3210 uint64_t nir_get_single_slot_attribs_mask(uint64_t attribs, uint64_t dual_slot);
3211
3212 nir_intrinsic_op nir_intrinsic_from_system_value(gl_system_value val);
3213 gl_system_value nir_system_value_from_intrinsic(nir_intrinsic_op intrin);
3214
3215 #ifdef __cplusplus
3216 } /* extern "C" */
3217 #endif
3218
3219 #endif /* NIR_H */