nir: add nir_get_nir_type_for_glsl_type()
[mesa.git] / src / compiler / nir / nir.h
1 /*
2 * Copyright © 2014 Connor Abbott
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Connor Abbott (cwabbott0@gmail.com)
25 *
26 */
27
28 #pragma once
29
30 #include "util/hash_table.h"
31 #include "compiler/glsl/list.h"
32 #include "GL/gl.h" /* GLenum */
33 #include "util/list.h"
34 #include "util/ralloc.h"
35 #include "util/set.h"
36 #include "util/bitset.h"
37 #include "util/macros.h"
38 #include "compiler/nir_types.h"
39 #include "compiler/shader_enums.h"
40 #include "compiler/shader_info.h"
41 #include <stdio.h>
42
43 #include "nir_opcodes.h"
44
45 #ifdef __cplusplus
46 extern "C" {
47 #endif
48
49 struct gl_program;
50 struct gl_shader_program;
51
52 #define NIR_FALSE 0u
53 #define NIR_TRUE (~0u)
54
55 /** Defines a cast function
56 *
57 * This macro defines a cast function from in_type to out_type where
58 * out_type is some structure type that contains a field of type out_type.
59 *
60 * Note that you have to be a bit careful as the generated cast function
61 * destroys constness.
62 */
63 #define NIR_DEFINE_CAST(name, in_type, out_type, field, \
64 type_field, type_value) \
65 static inline out_type * \
66 name(const in_type *parent) \
67 { \
68 assert(parent && parent->type_field == type_value); \
69 return exec_node_data(out_type, parent, field); \
70 }
71
72 struct nir_function;
73 struct nir_shader;
74 struct nir_instr;
75
76
77 /**
78 * Description of built-in state associated with a uniform
79 *
80 * \sa nir_variable::state_slots
81 */
82 typedef struct {
83 int tokens[5];
84 int swizzle;
85 } nir_state_slot;
86
87 typedef enum {
88 nir_var_shader_in = (1 << 0),
89 nir_var_shader_out = (1 << 1),
90 nir_var_global = (1 << 2),
91 nir_var_local = (1 << 3),
92 nir_var_uniform = (1 << 4),
93 nir_var_shader_storage = (1 << 5),
94 nir_var_system_value = (1 << 6),
95 nir_var_param = (1 << 7),
96 nir_var_shared = (1 << 8),
97 nir_var_all = ~0,
98 } nir_variable_mode;
99
100
101 typedef union {
102 float f32[4];
103 double f64[4];
104 int32_t i32[4];
105 uint32_t u32[4];
106 int64_t i64[4];
107 uint64_t u64[4];
108 } nir_const_value;
109
110 typedef struct nir_constant {
111 /**
112 * Value of the constant.
113 *
114 * The field used to back the values supplied by the constant is determined
115 * by the type associated with the \c nir_variable. Constants may be
116 * scalars, vectors, or matrices.
117 */
118 nir_const_value values[4];
119
120 /* we could get this from the var->type but makes clone *much* easier to
121 * not have to care about the type.
122 */
123 unsigned num_elements;
124
125 /* Array elements / Structure Fields */
126 struct nir_constant **elements;
127 } nir_constant;
128
129 /**
130 * \brief Layout qualifiers for gl_FragDepth.
131 *
132 * The AMD/ARB_conservative_depth extensions allow gl_FragDepth to be redeclared
133 * with a layout qualifier.
134 */
135 typedef enum {
136 nir_depth_layout_none, /**< No depth layout is specified. */
137 nir_depth_layout_any,
138 nir_depth_layout_greater,
139 nir_depth_layout_less,
140 nir_depth_layout_unchanged
141 } nir_depth_layout;
142
143 /**
144 * Either a uniform, global variable, shader input, or shader output. Based on
145 * ir_variable - it should be easy to translate between the two.
146 */
147
148 typedef struct nir_variable {
149 struct exec_node node;
150
151 /**
152 * Declared type of the variable
153 */
154 const struct glsl_type *type;
155
156 /**
157 * Declared name of the variable
158 */
159 char *name;
160
161 struct nir_variable_data {
162 /**
163 * Storage class of the variable.
164 *
165 * \sa nir_variable_mode
166 */
167 nir_variable_mode mode;
168
169 /**
170 * Is the variable read-only?
171 *
172 * This is set for variables declared as \c const, shader inputs,
173 * and uniforms.
174 */
175 unsigned read_only:1;
176 unsigned centroid:1;
177 unsigned sample:1;
178 unsigned patch:1;
179 unsigned invariant:1;
180
181 /**
182 * Interpolation mode for shader inputs / outputs
183 *
184 * \sa glsl_interp_mode
185 */
186 unsigned interpolation:2;
187
188 /**
189 * \name ARB_fragment_coord_conventions
190 * @{
191 */
192 unsigned origin_upper_left:1;
193 unsigned pixel_center_integer:1;
194 /*@}*/
195
196 /**
197 * If non-zero, then this variable may be packed along with other variables
198 * into a single varying slot, so this offset should be applied when
199 * accessing components. For example, an offset of 1 means that the x
200 * component of this variable is actually stored in component y of the
201 * location specified by \c location.
202 */
203 unsigned location_frac:2;
204
205 /**
206 * If true, this variable represents an array of scalars that should
207 * be tightly packed. In other words, consecutive array elements
208 * should be stored one component apart, rather than one slot apart.
209 */
210 bool compact:1;
211
212 /**
213 * Whether this is a fragment shader output implicitly initialized with
214 * the previous contents of the specified render target at the
215 * framebuffer location corresponding to this shader invocation.
216 */
217 unsigned fb_fetch_output:1;
218
219 /**
220 * \brief Layout qualifier for gl_FragDepth.
221 *
222 * This is not equal to \c ir_depth_layout_none if and only if this
223 * variable is \c gl_FragDepth and a layout qualifier is specified.
224 */
225 nir_depth_layout depth_layout;
226
227 /**
228 * Storage location of the base of this variable
229 *
230 * The precise meaning of this field depends on the nature of the variable.
231 *
232 * - Vertex shader input: one of the values from \c gl_vert_attrib.
233 * - Vertex shader output: one of the values from \c gl_varying_slot.
234 * - Geometry shader input: one of the values from \c gl_varying_slot.
235 * - Geometry shader output: one of the values from \c gl_varying_slot.
236 * - Fragment shader input: one of the values from \c gl_varying_slot.
237 * - Fragment shader output: one of the values from \c gl_frag_result.
238 * - Uniforms: Per-stage uniform slot number for default uniform block.
239 * - Uniforms: Index within the uniform block definition for UBO members.
240 * - Non-UBO Uniforms: uniform slot number.
241 * - Other: This field is not currently used.
242 *
243 * If the variable is a uniform, shader input, or shader output, and the
244 * slot has not been assigned, the value will be -1.
245 */
246 int location;
247
248 /**
249 * The actual location of the variable in the IR. Only valid for inputs
250 * and outputs.
251 */
252 unsigned int driver_location;
253
254 /**
255 * output index for dual source blending.
256 */
257 int index;
258
259 /**
260 * Descriptor set binding for sampler or UBO.
261 */
262 int descriptor_set;
263
264 /**
265 * Initial binding point for a sampler or UBO.
266 *
267 * For array types, this represents the binding point for the first element.
268 */
269 int binding;
270
271 /**
272 * Location an atomic counter is stored at.
273 */
274 unsigned offset;
275
276 /**
277 * ARB_shader_image_load_store qualifiers.
278 */
279 struct {
280 bool read_only; /**< "readonly" qualifier. */
281 bool write_only; /**< "writeonly" qualifier. */
282 bool coherent;
283 bool _volatile;
284 bool restrict_flag;
285
286 /** Image internal format if specified explicitly, otherwise GL_NONE. */
287 GLenum format;
288 } image;
289 } data;
290
291 /**
292 * Built-in state that backs this uniform
293 *
294 * Once set at variable creation, \c state_slots must remain invariant.
295 * This is because, ideally, this array would be shared by all clones of
296 * this variable in the IR tree. In other words, we'd really like for it
297 * to be a fly-weight.
298 *
299 * If the variable is not a uniform, \c num_state_slots will be zero and
300 * \c state_slots will be \c NULL.
301 */
302 /*@{*/
303 unsigned num_state_slots; /**< Number of state slots used */
304 nir_state_slot *state_slots; /**< State descriptors. */
305 /*@}*/
306
307 /**
308 * Constant expression assigned in the initializer of the variable
309 *
310 * This field should only be used temporarily by creators of NIR shaders
311 * and then lower_constant_initializers can be used to get rid of them.
312 * Most of the rest of NIR ignores this field or asserts that it's NULL.
313 */
314 nir_constant *constant_initializer;
315
316 /**
317 * For variables that are in an interface block or are an instance of an
318 * interface block, this is the \c GLSL_TYPE_INTERFACE type for that block.
319 *
320 * \sa ir_variable::location
321 */
322 const struct glsl_type *interface_type;
323 } nir_variable;
324
325 #define nir_foreach_variable(var, var_list) \
326 foreach_list_typed(nir_variable, var, node, var_list)
327
328 #define nir_foreach_variable_safe(var, var_list) \
329 foreach_list_typed_safe(nir_variable, var, node, var_list)
330
331 static inline bool
332 nir_variable_is_global(const nir_variable *var)
333 {
334 return var->data.mode != nir_var_local && var->data.mode != nir_var_param;
335 }
336
337 typedef struct nir_register {
338 struct exec_node node;
339
340 unsigned num_components; /** < number of vector components */
341 unsigned num_array_elems; /** < size of array (0 for no array) */
342
343 /* The bit-size of each channel; must be one of 8, 16, 32, or 64 */
344 uint8_t bit_size;
345
346 /** generic register index. */
347 unsigned index;
348
349 /** only for debug purposes, can be NULL */
350 const char *name;
351
352 /** whether this register is local (per-function) or global (per-shader) */
353 bool is_global;
354
355 /**
356 * If this flag is set to true, then accessing channels >= num_components
357 * is well-defined, and simply spills over to the next array element. This
358 * is useful for backends that can do per-component accessing, in
359 * particular scalar backends. By setting this flag and making
360 * num_components equal to 1, structures can be packed tightly into
361 * registers and then registers can be accessed per-component to get to
362 * each structure member, even if it crosses vec4 boundaries.
363 */
364 bool is_packed;
365
366 /** set of nir_src's where this register is used (read from) */
367 struct list_head uses;
368
369 /** set of nir_dest's where this register is defined (written to) */
370 struct list_head defs;
371
372 /** set of nir_if's where this register is used as a condition */
373 struct list_head if_uses;
374 } nir_register;
375
376 #define nir_foreach_register(reg, reg_list) \
377 foreach_list_typed(nir_register, reg, node, reg_list)
378 #define nir_foreach_register_safe(reg, reg_list) \
379 foreach_list_typed_safe(nir_register, reg, node, reg_list)
380
381 typedef enum {
382 nir_instr_type_alu,
383 nir_instr_type_call,
384 nir_instr_type_tex,
385 nir_instr_type_intrinsic,
386 nir_instr_type_load_const,
387 nir_instr_type_jump,
388 nir_instr_type_ssa_undef,
389 nir_instr_type_phi,
390 nir_instr_type_parallel_copy,
391 } nir_instr_type;
392
393 typedef struct nir_instr {
394 struct exec_node node;
395 nir_instr_type type;
396 struct nir_block *block;
397
398 /** generic instruction index. */
399 unsigned index;
400
401 /* A temporary for optimization and analysis passes to use for storing
402 * flags. For instance, DCE uses this to store the "dead/live" info.
403 */
404 uint8_t pass_flags;
405 } nir_instr;
406
407 static inline nir_instr *
408 nir_instr_next(nir_instr *instr)
409 {
410 struct exec_node *next = exec_node_get_next(&instr->node);
411 if (exec_node_is_tail_sentinel(next))
412 return NULL;
413 else
414 return exec_node_data(nir_instr, next, node);
415 }
416
417 static inline nir_instr *
418 nir_instr_prev(nir_instr *instr)
419 {
420 struct exec_node *prev = exec_node_get_prev(&instr->node);
421 if (exec_node_is_head_sentinel(prev))
422 return NULL;
423 else
424 return exec_node_data(nir_instr, prev, node);
425 }
426
427 static inline bool
428 nir_instr_is_first(nir_instr *instr)
429 {
430 return exec_node_is_head_sentinel(exec_node_get_prev(&instr->node));
431 }
432
433 static inline bool
434 nir_instr_is_last(nir_instr *instr)
435 {
436 return exec_node_is_tail_sentinel(exec_node_get_next(&instr->node));
437 }
438
439 typedef struct nir_ssa_def {
440 /** for debugging only, can be NULL */
441 const char* name;
442
443 /** generic SSA definition index. */
444 unsigned index;
445
446 /** Index into the live_in and live_out bitfields */
447 unsigned live_index;
448
449 nir_instr *parent_instr;
450
451 /** set of nir_instr's where this register is used (read from) */
452 struct list_head uses;
453
454 /** set of nir_if's where this register is used as a condition */
455 struct list_head if_uses;
456
457 uint8_t num_components;
458
459 /* The bit-size of each channel; must be one of 8, 16, 32, or 64 */
460 uint8_t bit_size;
461 } nir_ssa_def;
462
463 struct nir_src;
464
465 typedef struct {
466 nir_register *reg;
467 struct nir_src *indirect; /** < NULL for no indirect offset */
468 unsigned base_offset;
469
470 /* TODO use-def chain goes here */
471 } nir_reg_src;
472
473 typedef struct {
474 nir_instr *parent_instr;
475 struct list_head def_link;
476
477 nir_register *reg;
478 struct nir_src *indirect; /** < NULL for no indirect offset */
479 unsigned base_offset;
480
481 /* TODO def-use chain goes here */
482 } nir_reg_dest;
483
484 struct nir_if;
485
486 typedef struct nir_src {
487 union {
488 nir_instr *parent_instr;
489 struct nir_if *parent_if;
490 };
491
492 struct list_head use_link;
493
494 union {
495 nir_reg_src reg;
496 nir_ssa_def *ssa;
497 };
498
499 bool is_ssa;
500 } nir_src;
501
502 static inline nir_src
503 nir_src_init(void)
504 {
505 nir_src src = { { NULL } };
506 return src;
507 }
508
509 #define NIR_SRC_INIT nir_src_init()
510
511 #define nir_foreach_use(src, reg_or_ssa_def) \
512 list_for_each_entry(nir_src, src, &(reg_or_ssa_def)->uses, use_link)
513
514 #define nir_foreach_use_safe(src, reg_or_ssa_def) \
515 list_for_each_entry_safe(nir_src, src, &(reg_or_ssa_def)->uses, use_link)
516
517 #define nir_foreach_if_use(src, reg_or_ssa_def) \
518 list_for_each_entry(nir_src, src, &(reg_or_ssa_def)->if_uses, use_link)
519
520 #define nir_foreach_if_use_safe(src, reg_or_ssa_def) \
521 list_for_each_entry_safe(nir_src, src, &(reg_or_ssa_def)->if_uses, use_link)
522
523 typedef struct {
524 union {
525 nir_reg_dest reg;
526 nir_ssa_def ssa;
527 };
528
529 bool is_ssa;
530 } nir_dest;
531
532 static inline nir_dest
533 nir_dest_init(void)
534 {
535 nir_dest dest = { { { NULL } } };
536 return dest;
537 }
538
539 #define NIR_DEST_INIT nir_dest_init()
540
541 #define nir_foreach_def(dest, reg) \
542 list_for_each_entry(nir_dest, dest, &(reg)->defs, reg.def_link)
543
544 #define nir_foreach_def_safe(dest, reg) \
545 list_for_each_entry_safe(nir_dest, dest, &(reg)->defs, reg.def_link)
546
547 static inline nir_src
548 nir_src_for_ssa(nir_ssa_def *def)
549 {
550 nir_src src = NIR_SRC_INIT;
551
552 src.is_ssa = true;
553 src.ssa = def;
554
555 return src;
556 }
557
558 static inline nir_src
559 nir_src_for_reg(nir_register *reg)
560 {
561 nir_src src = NIR_SRC_INIT;
562
563 src.is_ssa = false;
564 src.reg.reg = reg;
565 src.reg.indirect = NULL;
566 src.reg.base_offset = 0;
567
568 return src;
569 }
570
571 static inline nir_dest
572 nir_dest_for_reg(nir_register *reg)
573 {
574 nir_dest dest = NIR_DEST_INIT;
575
576 dest.reg.reg = reg;
577
578 return dest;
579 }
580
581 static inline unsigned
582 nir_src_bit_size(nir_src src)
583 {
584 return src.is_ssa ? src.ssa->bit_size : src.reg.reg->bit_size;
585 }
586
587 static inline unsigned
588 nir_dest_bit_size(nir_dest dest)
589 {
590 return dest.is_ssa ? dest.ssa.bit_size : dest.reg.reg->bit_size;
591 }
592
593 void nir_src_copy(nir_src *dest, const nir_src *src, void *instr_or_if);
594 void nir_dest_copy(nir_dest *dest, const nir_dest *src, nir_instr *instr);
595
596 typedef struct {
597 nir_src src;
598
599 /**
600 * \name input modifiers
601 */
602 /*@{*/
603 /**
604 * For inputs interpreted as floating point, flips the sign bit. For
605 * inputs interpreted as integers, performs the two's complement negation.
606 */
607 bool negate;
608
609 /**
610 * Clears the sign bit for floating point values, and computes the integer
611 * absolute value for integers. Note that the negate modifier acts after
612 * the absolute value modifier, therefore if both are set then all inputs
613 * will become negative.
614 */
615 bool abs;
616 /*@}*/
617
618 /**
619 * For each input component, says which component of the register it is
620 * chosen from. Note that which elements of the swizzle are used and which
621 * are ignored are based on the write mask for most opcodes - for example,
622 * a statement like "foo.xzw = bar.zyx" would have a writemask of 1101b and
623 * a swizzle of {2, x, 1, 0} where x means "don't care."
624 */
625 uint8_t swizzle[4];
626 } nir_alu_src;
627
628 typedef struct {
629 nir_dest dest;
630
631 /**
632 * \name saturate output modifier
633 *
634 * Only valid for opcodes that output floating-point numbers. Clamps the
635 * output to between 0.0 and 1.0 inclusive.
636 */
637
638 bool saturate;
639
640 unsigned write_mask : 4; /* ignored if dest.is_ssa is true */
641 } nir_alu_dest;
642
643 typedef enum {
644 nir_type_invalid = 0, /* Not a valid type */
645 nir_type_float,
646 nir_type_int,
647 nir_type_uint,
648 nir_type_bool,
649 nir_type_bool32 = 32 | nir_type_bool,
650 nir_type_int8 = 8 | nir_type_int,
651 nir_type_int16 = 16 | nir_type_int,
652 nir_type_int32 = 32 | nir_type_int,
653 nir_type_int64 = 64 | nir_type_int,
654 nir_type_uint8 = 8 | nir_type_uint,
655 nir_type_uint16 = 16 | nir_type_uint,
656 nir_type_uint32 = 32 | nir_type_uint,
657 nir_type_uint64 = 64 | nir_type_uint,
658 nir_type_float16 = 16 | nir_type_float,
659 nir_type_float32 = 32 | nir_type_float,
660 nir_type_float64 = 64 | nir_type_float,
661 } nir_alu_type;
662
663 #define NIR_ALU_TYPE_SIZE_MASK 0xfffffff8
664 #define NIR_ALU_TYPE_BASE_TYPE_MASK 0x00000007
665
666 static inline unsigned
667 nir_alu_type_get_type_size(nir_alu_type type)
668 {
669 return type & NIR_ALU_TYPE_SIZE_MASK;
670 }
671
672 static inline unsigned
673 nir_alu_type_get_base_type(nir_alu_type type)
674 {
675 return type & NIR_ALU_TYPE_BASE_TYPE_MASK;
676 }
677
678 static inline nir_alu_type
679 nir_get_nir_type_for_glsl_type(const struct glsl_type *type)
680 {
681 switch (glsl_get_base_type(type)) {
682 case GLSL_TYPE_BOOL:
683 return nir_type_bool32;
684 break;
685 case GLSL_TYPE_UINT:
686 return nir_type_uint32;
687 break;
688 case GLSL_TYPE_INT:
689 return nir_type_int32;
690 break;
691 case GLSL_TYPE_FLOAT:
692 return nir_type_float32;
693 break;
694 case GLSL_TYPE_DOUBLE:
695 return nir_type_float64;
696 break;
697 default:
698 unreachable("unknown type");
699 }
700 }
701
702 typedef enum {
703 NIR_OP_IS_COMMUTATIVE = (1 << 0),
704 NIR_OP_IS_ASSOCIATIVE = (1 << 1),
705 } nir_op_algebraic_property;
706
707 typedef struct {
708 const char *name;
709
710 unsigned num_inputs;
711
712 /**
713 * The number of components in the output
714 *
715 * If non-zero, this is the size of the output and input sizes are
716 * explicitly given; swizzle and writemask are still in effect, but if
717 * the output component is masked out, then the input component may
718 * still be in use.
719 *
720 * If zero, the opcode acts in the standard, per-component manner; the
721 * operation is performed on each component (except the ones that are
722 * masked out) with the input being taken from the input swizzle for
723 * that component.
724 *
725 * The size of some of the inputs may be given (i.e. non-zero) even
726 * though output_size is zero; in that case, the inputs with a zero
727 * size act per-component, while the inputs with non-zero size don't.
728 */
729 unsigned output_size;
730
731 /**
732 * The type of vector that the instruction outputs. Note that the
733 * staurate modifier is only allowed on outputs with the float type.
734 */
735
736 nir_alu_type output_type;
737
738 /**
739 * The number of components in each input
740 */
741 unsigned input_sizes[4];
742
743 /**
744 * The type of vector that each input takes. Note that negate and
745 * absolute value are only allowed on inputs with int or float type and
746 * behave differently on the two.
747 */
748 nir_alu_type input_types[4];
749
750 nir_op_algebraic_property algebraic_properties;
751 } nir_op_info;
752
753 extern const nir_op_info nir_op_infos[nir_num_opcodes];
754
755 typedef struct nir_alu_instr {
756 nir_instr instr;
757 nir_op op;
758
759 /** Indicates that this ALU instruction generates an exact value
760 *
761 * This is kind of a mixture of GLSL "precise" and "invariant" and not
762 * really equivalent to either. This indicates that the value generated by
763 * this operation is high-precision and any code transformations that touch
764 * it must ensure that the resulting value is bit-for-bit identical to the
765 * original.
766 */
767 bool exact;
768
769 nir_alu_dest dest;
770 nir_alu_src src[];
771 } nir_alu_instr;
772
773 void nir_alu_src_copy(nir_alu_src *dest, const nir_alu_src *src,
774 nir_alu_instr *instr);
775 void nir_alu_dest_copy(nir_alu_dest *dest, const nir_alu_dest *src,
776 nir_alu_instr *instr);
777
778 /* is this source channel used? */
779 static inline bool
780 nir_alu_instr_channel_used(nir_alu_instr *instr, unsigned src, unsigned channel)
781 {
782 if (nir_op_infos[instr->op].input_sizes[src] > 0)
783 return channel < nir_op_infos[instr->op].input_sizes[src];
784
785 return (instr->dest.write_mask >> channel) & 1;
786 }
787
788 /*
789 * For instructions whose destinations are SSA, get the number of channels
790 * used for a source
791 */
792 static inline unsigned
793 nir_ssa_alu_instr_src_components(const nir_alu_instr *instr, unsigned src)
794 {
795 assert(instr->dest.dest.is_ssa);
796
797 if (nir_op_infos[instr->op].input_sizes[src] > 0)
798 return nir_op_infos[instr->op].input_sizes[src];
799
800 return instr->dest.dest.ssa.num_components;
801 }
802
803 bool nir_alu_srcs_equal(const nir_alu_instr *alu1, const nir_alu_instr *alu2,
804 unsigned src1, unsigned src2);
805
806 typedef enum {
807 nir_deref_type_var,
808 nir_deref_type_array,
809 nir_deref_type_struct
810 } nir_deref_type;
811
812 typedef struct nir_deref {
813 nir_deref_type deref_type;
814 struct nir_deref *child;
815 const struct glsl_type *type;
816 } nir_deref;
817
818 typedef struct {
819 nir_deref deref;
820
821 nir_variable *var;
822 } nir_deref_var;
823
824 /* This enum describes how the array is referenced. If the deref is
825 * direct then the base_offset is used. If the deref is indirect then
826 * offset is given by base_offset + indirect. If the deref is a wildcard
827 * then the deref refers to all of the elements of the array at the same
828 * time. Wildcard dereferences are only ever allowed in copy_var
829 * intrinsics and the source and destination derefs must have matching
830 * wildcards.
831 */
832 typedef enum {
833 nir_deref_array_type_direct,
834 nir_deref_array_type_indirect,
835 nir_deref_array_type_wildcard,
836 } nir_deref_array_type;
837
838 typedef struct {
839 nir_deref deref;
840
841 nir_deref_array_type deref_array_type;
842 unsigned base_offset;
843 nir_src indirect;
844 } nir_deref_array;
845
846 typedef struct {
847 nir_deref deref;
848
849 unsigned index;
850 } nir_deref_struct;
851
852 NIR_DEFINE_CAST(nir_deref_as_var, nir_deref, nir_deref_var, deref,
853 deref_type, nir_deref_type_var)
854 NIR_DEFINE_CAST(nir_deref_as_array, nir_deref, nir_deref_array, deref,
855 deref_type, nir_deref_type_array)
856 NIR_DEFINE_CAST(nir_deref_as_struct, nir_deref, nir_deref_struct, deref,
857 deref_type, nir_deref_type_struct)
858
859 /* Returns the last deref in the chain. */
860 static inline nir_deref *
861 nir_deref_tail(nir_deref *deref)
862 {
863 while (deref->child)
864 deref = deref->child;
865 return deref;
866 }
867
868 typedef struct {
869 nir_instr instr;
870
871 unsigned num_params;
872 nir_deref_var **params;
873 nir_deref_var *return_deref;
874
875 struct nir_function *callee;
876 } nir_call_instr;
877
878 #define INTRINSIC(name, num_srcs, src_components, has_dest, dest_components, \
879 num_variables, num_indices, idx0, idx1, idx2, flags) \
880 nir_intrinsic_##name,
881
882 #define LAST_INTRINSIC(name) nir_last_intrinsic = nir_intrinsic_##name,
883
884 typedef enum {
885 #include "nir_intrinsics.h"
886 nir_num_intrinsics = nir_last_intrinsic + 1
887 } nir_intrinsic_op;
888
889 #define NIR_INTRINSIC_MAX_CONST_INDEX 3
890
891 /** Represents an intrinsic
892 *
893 * An intrinsic is an instruction type for handling things that are
894 * more-or-less regular operations but don't just consume and produce SSA
895 * values like ALU operations do. Intrinsics are not for things that have
896 * special semantic meaning such as phi nodes and parallel copies.
897 * Examples of intrinsics include variable load/store operations, system
898 * value loads, and the like. Even though texturing more-or-less falls
899 * under this category, texturing is its own instruction type because
900 * trying to represent texturing with intrinsics would lead to a
901 * combinatorial explosion of intrinsic opcodes.
902 *
903 * By having a single instruction type for handling a lot of different
904 * cases, optimization passes can look for intrinsics and, for the most
905 * part, completely ignore them. Each intrinsic type also has a few
906 * possible flags that govern whether or not they can be reordered or
907 * eliminated. That way passes like dead code elimination can still work
908 * on intrisics without understanding the meaning of each.
909 *
910 * Each intrinsic has some number of constant indices, some number of
911 * variables, and some number of sources. What these sources, variables,
912 * and indices mean depends on the intrinsic and is documented with the
913 * intrinsic declaration in nir_intrinsics.h. Intrinsics and texture
914 * instructions are the only types of instruction that can operate on
915 * variables.
916 */
917 typedef struct {
918 nir_instr instr;
919
920 nir_intrinsic_op intrinsic;
921
922 nir_dest dest;
923
924 /** number of components if this is a vectorized intrinsic
925 *
926 * Similarly to ALU operations, some intrinsics are vectorized.
927 * An intrinsic is vectorized if nir_intrinsic_infos.dest_components == 0.
928 * For vectorized intrinsics, the num_components field specifies the
929 * number of destination components and the number of source components
930 * for all sources with nir_intrinsic_infos.src_components[i] == 0.
931 */
932 uint8_t num_components;
933
934 int const_index[NIR_INTRINSIC_MAX_CONST_INDEX];
935
936 nir_deref_var *variables[2];
937
938 nir_src src[];
939 } nir_intrinsic_instr;
940
941 /**
942 * \name NIR intrinsics semantic flags
943 *
944 * information about what the compiler can do with the intrinsics.
945 *
946 * \sa nir_intrinsic_info::flags
947 */
948 typedef enum {
949 /**
950 * whether the intrinsic can be safely eliminated if none of its output
951 * value is not being used.
952 */
953 NIR_INTRINSIC_CAN_ELIMINATE = (1 << 0),
954
955 /**
956 * Whether the intrinsic can be reordered with respect to any other
957 * intrinsic, i.e. whether the only reordering dependencies of the
958 * intrinsic are due to the register reads/writes.
959 */
960 NIR_INTRINSIC_CAN_REORDER = (1 << 1),
961 } nir_intrinsic_semantic_flag;
962
963 /**
964 * \name NIR intrinsics const-index flag
965 *
966 * Indicates the usage of a const_index slot.
967 *
968 * \sa nir_intrinsic_info::index_map
969 */
970 typedef enum {
971 /**
972 * Generally instructions that take a offset src argument, can encode
973 * a constant 'base' value which is added to the offset.
974 */
975 NIR_INTRINSIC_BASE = 1,
976
977 /**
978 * For store instructions, a writemask for the store.
979 */
980 NIR_INTRINSIC_WRMASK = 2,
981
982 /**
983 * The stream-id for GS emit_vertex/end_primitive intrinsics.
984 */
985 NIR_INTRINSIC_STREAM_ID = 3,
986
987 /**
988 * The clip-plane id for load_user_clip_plane intrinsic.
989 */
990 NIR_INTRINSIC_UCP_ID = 4,
991
992 /**
993 * The amount of data, starting from BASE, that this instruction may
994 * access. This is used to provide bounds if the offset is not constant.
995 */
996 NIR_INTRINSIC_RANGE = 5,
997
998 /**
999 * The Vulkan descriptor set for vulkan_resource_index intrinsic.
1000 */
1001 NIR_INTRINSIC_DESC_SET = 6,
1002
1003 /**
1004 * The Vulkan descriptor set binding for vulkan_resource_index intrinsic.
1005 */
1006 NIR_INTRINSIC_BINDING = 7,
1007
1008 /**
1009 * Component offset.
1010 */
1011 NIR_INTRINSIC_COMPONENT = 8,
1012
1013 /**
1014 * Interpolation mode (only meaningful for FS inputs).
1015 */
1016 NIR_INTRINSIC_INTERP_MODE = 9,
1017
1018 NIR_INTRINSIC_NUM_INDEX_FLAGS,
1019
1020 } nir_intrinsic_index_flag;
1021
1022 #define NIR_INTRINSIC_MAX_INPUTS 4
1023
1024 typedef struct {
1025 const char *name;
1026
1027 unsigned num_srcs; /** < number of register/SSA inputs */
1028
1029 /** number of components of each input register
1030 *
1031 * If this value is 0, the number of components is given by the
1032 * num_components field of nir_intrinsic_instr.
1033 */
1034 unsigned src_components[NIR_INTRINSIC_MAX_INPUTS];
1035
1036 bool has_dest;
1037
1038 /** number of components of the output register
1039 *
1040 * If this value is 0, the number of components is given by the
1041 * num_components field of nir_intrinsic_instr.
1042 */
1043 unsigned dest_components;
1044
1045 /** the number of inputs/outputs that are variables */
1046 unsigned num_variables;
1047
1048 /** the number of constant indices used by the intrinsic */
1049 unsigned num_indices;
1050
1051 /** indicates the usage of intr->const_index[n] */
1052 unsigned index_map[NIR_INTRINSIC_NUM_INDEX_FLAGS];
1053
1054 /** semantic flags for calls to this intrinsic */
1055 nir_intrinsic_semantic_flag flags;
1056 } nir_intrinsic_info;
1057
1058 extern const nir_intrinsic_info nir_intrinsic_infos[nir_num_intrinsics];
1059
1060
1061 #define INTRINSIC_IDX_ACCESSORS(name, flag, type) \
1062 static inline type \
1063 nir_intrinsic_##name(nir_intrinsic_instr *instr) \
1064 { \
1065 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic]; \
1066 assert(info->index_map[NIR_INTRINSIC_##flag] > 0); \
1067 return instr->const_index[info->index_map[NIR_INTRINSIC_##flag] - 1]; \
1068 } \
1069 static inline void \
1070 nir_intrinsic_set_##name(nir_intrinsic_instr *instr, type val) \
1071 { \
1072 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic]; \
1073 assert(info->index_map[NIR_INTRINSIC_##flag] > 0); \
1074 instr->const_index[info->index_map[NIR_INTRINSIC_##flag] - 1] = val; \
1075 }
1076
1077 INTRINSIC_IDX_ACCESSORS(write_mask, WRMASK, unsigned)
1078 INTRINSIC_IDX_ACCESSORS(base, BASE, int)
1079 INTRINSIC_IDX_ACCESSORS(stream_id, STREAM_ID, unsigned)
1080 INTRINSIC_IDX_ACCESSORS(ucp_id, UCP_ID, unsigned)
1081 INTRINSIC_IDX_ACCESSORS(range, RANGE, unsigned)
1082 INTRINSIC_IDX_ACCESSORS(desc_set, DESC_SET, unsigned)
1083 INTRINSIC_IDX_ACCESSORS(binding, BINDING, unsigned)
1084 INTRINSIC_IDX_ACCESSORS(component, COMPONENT, unsigned)
1085 INTRINSIC_IDX_ACCESSORS(interp_mode, INTERP_MODE, unsigned)
1086
1087 /**
1088 * \group texture information
1089 *
1090 * This gives semantic information about textures which is useful to the
1091 * frontend, the backend, and lowering passes, but not the optimizer.
1092 */
1093
1094 typedef enum {
1095 nir_tex_src_coord,
1096 nir_tex_src_projector,
1097 nir_tex_src_comparator, /* shadow comparator */
1098 nir_tex_src_offset,
1099 nir_tex_src_bias,
1100 nir_tex_src_lod,
1101 nir_tex_src_ms_index, /* MSAA sample index */
1102 nir_tex_src_ms_mcs, /* MSAA compression value */
1103 nir_tex_src_ddx,
1104 nir_tex_src_ddy,
1105 nir_tex_src_texture_offset, /* < dynamically uniform indirect offset */
1106 nir_tex_src_sampler_offset, /* < dynamically uniform indirect offset */
1107 nir_tex_src_plane, /* < selects plane for planar textures */
1108 nir_num_tex_src_types
1109 } nir_tex_src_type;
1110
1111 typedef struct {
1112 nir_src src;
1113 nir_tex_src_type src_type;
1114 } nir_tex_src;
1115
1116 typedef enum {
1117 nir_texop_tex, /**< Regular texture look-up */
1118 nir_texop_txb, /**< Texture look-up with LOD bias */
1119 nir_texop_txl, /**< Texture look-up with explicit LOD */
1120 nir_texop_txd, /**< Texture look-up with partial derivatvies */
1121 nir_texop_txf, /**< Texel fetch with explicit LOD */
1122 nir_texop_txf_ms, /**< Multisample texture fetch */
1123 nir_texop_txf_ms_mcs, /**< Multisample compression value fetch */
1124 nir_texop_txs, /**< Texture size */
1125 nir_texop_lod, /**< Texture lod query */
1126 nir_texop_tg4, /**< Texture gather */
1127 nir_texop_query_levels, /**< Texture levels query */
1128 nir_texop_texture_samples, /**< Texture samples query */
1129 nir_texop_samples_identical, /**< Query whether all samples are definitely
1130 * identical.
1131 */
1132 } nir_texop;
1133
1134 typedef struct {
1135 nir_instr instr;
1136
1137 enum glsl_sampler_dim sampler_dim;
1138 nir_alu_type dest_type;
1139
1140 nir_texop op;
1141 nir_dest dest;
1142 nir_tex_src *src;
1143 unsigned num_srcs, coord_components;
1144 bool is_array, is_shadow;
1145
1146 /**
1147 * If is_shadow is true, whether this is the old-style shadow that outputs 4
1148 * components or the new-style shadow that outputs 1 component.
1149 */
1150 bool is_new_style_shadow;
1151
1152 /* gather component selector */
1153 unsigned component : 2;
1154
1155 /** The texture index
1156 *
1157 * If this texture instruction has a nir_tex_src_texture_offset source,
1158 * then the texture index is given by texture_index + texture_offset.
1159 */
1160 unsigned texture_index;
1161
1162 /** The size of the texture array or 0 if it's not an array */
1163 unsigned texture_array_size;
1164
1165 /** The texture deref
1166 *
1167 * If this is null, use texture_index instead.
1168 */
1169 nir_deref_var *texture;
1170
1171 /** The sampler index
1172 *
1173 * The following operations do not require a sampler and, as such, this
1174 * field should be ignored:
1175 * - nir_texop_txf
1176 * - nir_texop_txf_ms
1177 * - nir_texop_txs
1178 * - nir_texop_lod
1179 * - nir_texop_tg4
1180 * - nir_texop_query_levels
1181 * - nir_texop_texture_samples
1182 * - nir_texop_samples_identical
1183 *
1184 * If this texture instruction has a nir_tex_src_sampler_offset source,
1185 * then the sampler index is given by sampler_index + sampler_offset.
1186 */
1187 unsigned sampler_index;
1188
1189 /** The sampler deref
1190 *
1191 * If this is null, use sampler_index instead.
1192 */
1193 nir_deref_var *sampler;
1194 } nir_tex_instr;
1195
1196 static inline unsigned
1197 nir_tex_instr_dest_size(nir_tex_instr *instr)
1198 {
1199 switch (instr->op) {
1200 case nir_texop_txs: {
1201 unsigned ret;
1202 switch (instr->sampler_dim) {
1203 case GLSL_SAMPLER_DIM_1D:
1204 case GLSL_SAMPLER_DIM_BUF:
1205 ret = 1;
1206 break;
1207 case GLSL_SAMPLER_DIM_2D:
1208 case GLSL_SAMPLER_DIM_CUBE:
1209 case GLSL_SAMPLER_DIM_MS:
1210 case GLSL_SAMPLER_DIM_RECT:
1211 case GLSL_SAMPLER_DIM_EXTERNAL:
1212 case GLSL_SAMPLER_DIM_SUBPASS:
1213 ret = 2;
1214 break;
1215 case GLSL_SAMPLER_DIM_3D:
1216 ret = 3;
1217 break;
1218 default:
1219 unreachable("not reached");
1220 }
1221 if (instr->is_array)
1222 ret++;
1223 return ret;
1224 }
1225
1226 case nir_texop_lod:
1227 return 2;
1228
1229 case nir_texop_texture_samples:
1230 case nir_texop_query_levels:
1231 case nir_texop_samples_identical:
1232 return 1;
1233
1234 default:
1235 if (instr->is_shadow && instr->is_new_style_shadow)
1236 return 1;
1237
1238 return 4;
1239 }
1240 }
1241
1242 /* Returns true if this texture operation queries something about the texture
1243 * rather than actually sampling it.
1244 */
1245 static inline bool
1246 nir_tex_instr_is_query(nir_tex_instr *instr)
1247 {
1248 switch (instr->op) {
1249 case nir_texop_txs:
1250 case nir_texop_lod:
1251 case nir_texop_texture_samples:
1252 case nir_texop_query_levels:
1253 case nir_texop_txf_ms_mcs:
1254 return true;
1255 case nir_texop_tex:
1256 case nir_texop_txb:
1257 case nir_texop_txl:
1258 case nir_texop_txd:
1259 case nir_texop_txf:
1260 case nir_texop_txf_ms:
1261 case nir_texop_tg4:
1262 return false;
1263 default:
1264 unreachable("Invalid texture opcode");
1265 }
1266 }
1267
1268 static inline nir_alu_type
1269 nir_tex_instr_src_type(nir_tex_instr *instr, unsigned src)
1270 {
1271 switch (instr->src[src].src_type) {
1272 case nir_tex_src_coord:
1273 switch (instr->op) {
1274 case nir_texop_txf:
1275 case nir_texop_txf_ms:
1276 case nir_texop_txf_ms_mcs:
1277 case nir_texop_samples_identical:
1278 return nir_type_int;
1279
1280 default:
1281 return nir_type_float;
1282 }
1283
1284 case nir_tex_src_lod:
1285 switch (instr->op) {
1286 case nir_texop_txs:
1287 case nir_texop_txf:
1288 return nir_type_int;
1289
1290 default:
1291 return nir_type_float;
1292 }
1293
1294 case nir_tex_src_projector:
1295 case nir_tex_src_comparator:
1296 case nir_tex_src_bias:
1297 case nir_tex_src_ddx:
1298 case nir_tex_src_ddy:
1299 return nir_type_float;
1300
1301 case nir_tex_src_offset:
1302 case nir_tex_src_ms_index:
1303 case nir_tex_src_texture_offset:
1304 case nir_tex_src_sampler_offset:
1305 return nir_type_int;
1306
1307 default:
1308 unreachable("Invalid texture source type");
1309 }
1310 }
1311
1312 static inline unsigned
1313 nir_tex_instr_src_size(nir_tex_instr *instr, unsigned src)
1314 {
1315 if (instr->src[src].src_type == nir_tex_src_coord)
1316 return instr->coord_components;
1317
1318 /* The MCS value is expected to be a vec4 returned by a txf_ms_mcs */
1319 if (instr->src[src].src_type == nir_tex_src_ms_mcs)
1320 return 4;
1321
1322 if (instr->src[src].src_type == nir_tex_src_offset ||
1323 instr->src[src].src_type == nir_tex_src_ddx ||
1324 instr->src[src].src_type == nir_tex_src_ddy) {
1325 if (instr->is_array)
1326 return instr->coord_components - 1;
1327 else
1328 return instr->coord_components;
1329 }
1330
1331 return 1;
1332 }
1333
1334 static inline int
1335 nir_tex_instr_src_index(nir_tex_instr *instr, nir_tex_src_type type)
1336 {
1337 for (unsigned i = 0; i < instr->num_srcs; i++)
1338 if (instr->src[i].src_type == type)
1339 return (int) i;
1340
1341 return -1;
1342 }
1343
1344 void nir_tex_instr_remove_src(nir_tex_instr *tex, unsigned src_idx);
1345
1346 typedef struct {
1347 nir_instr instr;
1348
1349 nir_const_value value;
1350
1351 nir_ssa_def def;
1352 } nir_load_const_instr;
1353
1354 typedef enum {
1355 nir_jump_return,
1356 nir_jump_break,
1357 nir_jump_continue,
1358 } nir_jump_type;
1359
1360 typedef struct {
1361 nir_instr instr;
1362 nir_jump_type type;
1363 } nir_jump_instr;
1364
1365 /* creates a new SSA variable in an undefined state */
1366
1367 typedef struct {
1368 nir_instr instr;
1369 nir_ssa_def def;
1370 } nir_ssa_undef_instr;
1371
1372 typedef struct {
1373 struct exec_node node;
1374
1375 /* The predecessor block corresponding to this source */
1376 struct nir_block *pred;
1377
1378 nir_src src;
1379 } nir_phi_src;
1380
1381 #define nir_foreach_phi_src(phi_src, phi) \
1382 foreach_list_typed(nir_phi_src, phi_src, node, &(phi)->srcs)
1383 #define nir_foreach_phi_src_safe(phi_src, phi) \
1384 foreach_list_typed_safe(nir_phi_src, phi_src, node, &(phi)->srcs)
1385
1386 typedef struct {
1387 nir_instr instr;
1388
1389 struct exec_list srcs; /** < list of nir_phi_src */
1390
1391 nir_dest dest;
1392 } nir_phi_instr;
1393
1394 typedef struct {
1395 struct exec_node node;
1396 nir_src src;
1397 nir_dest dest;
1398 } nir_parallel_copy_entry;
1399
1400 #define nir_foreach_parallel_copy_entry(entry, pcopy) \
1401 foreach_list_typed(nir_parallel_copy_entry, entry, node, &(pcopy)->entries)
1402
1403 typedef struct {
1404 nir_instr instr;
1405
1406 /* A list of nir_parallel_copy_entry's. The sources of all of the
1407 * entries are copied to the corresponding destinations "in parallel".
1408 * In other words, if we have two entries: a -> b and b -> a, the values
1409 * get swapped.
1410 */
1411 struct exec_list entries;
1412 } nir_parallel_copy_instr;
1413
1414 NIR_DEFINE_CAST(nir_instr_as_alu, nir_instr, nir_alu_instr, instr,
1415 type, nir_instr_type_alu)
1416 NIR_DEFINE_CAST(nir_instr_as_call, nir_instr, nir_call_instr, instr,
1417 type, nir_instr_type_call)
1418 NIR_DEFINE_CAST(nir_instr_as_jump, nir_instr, nir_jump_instr, instr,
1419 type, nir_instr_type_jump)
1420 NIR_DEFINE_CAST(nir_instr_as_tex, nir_instr, nir_tex_instr, instr,
1421 type, nir_instr_type_tex)
1422 NIR_DEFINE_CAST(nir_instr_as_intrinsic, nir_instr, nir_intrinsic_instr, instr,
1423 type, nir_instr_type_intrinsic)
1424 NIR_DEFINE_CAST(nir_instr_as_load_const, nir_instr, nir_load_const_instr, instr,
1425 type, nir_instr_type_load_const)
1426 NIR_DEFINE_CAST(nir_instr_as_ssa_undef, nir_instr, nir_ssa_undef_instr, instr,
1427 type, nir_instr_type_ssa_undef)
1428 NIR_DEFINE_CAST(nir_instr_as_phi, nir_instr, nir_phi_instr, instr,
1429 type, nir_instr_type_phi)
1430 NIR_DEFINE_CAST(nir_instr_as_parallel_copy, nir_instr,
1431 nir_parallel_copy_instr, instr,
1432 type, nir_instr_type_parallel_copy)
1433
1434 /*
1435 * Control flow
1436 *
1437 * Control flow consists of a tree of control flow nodes, which include
1438 * if-statements and loops. The leaves of the tree are basic blocks, lists of
1439 * instructions that always run start-to-finish. Each basic block also keeps
1440 * track of its successors (blocks which may run immediately after the current
1441 * block) and predecessors (blocks which could have run immediately before the
1442 * current block). Each function also has a start block and an end block which
1443 * all return statements point to (which is always empty). Together, all the
1444 * blocks with their predecessors and successors make up the control flow
1445 * graph (CFG) of the function. There are helpers that modify the tree of
1446 * control flow nodes while modifying the CFG appropriately; these should be
1447 * used instead of modifying the tree directly.
1448 */
1449
1450 typedef enum {
1451 nir_cf_node_block,
1452 nir_cf_node_if,
1453 nir_cf_node_loop,
1454 nir_cf_node_function
1455 } nir_cf_node_type;
1456
1457 typedef struct nir_cf_node {
1458 struct exec_node node;
1459 nir_cf_node_type type;
1460 struct nir_cf_node *parent;
1461 } nir_cf_node;
1462
1463 typedef struct nir_block {
1464 nir_cf_node cf_node;
1465
1466 struct exec_list instr_list; /** < list of nir_instr */
1467
1468 /** generic block index; generated by nir_index_blocks */
1469 unsigned index;
1470
1471 /*
1472 * Each block can only have up to 2 successors, so we put them in a simple
1473 * array - no need for anything more complicated.
1474 */
1475 struct nir_block *successors[2];
1476
1477 /* Set of nir_block predecessors in the CFG */
1478 struct set *predecessors;
1479
1480 /*
1481 * this node's immediate dominator in the dominance tree - set to NULL for
1482 * the start block.
1483 */
1484 struct nir_block *imm_dom;
1485
1486 /* This node's children in the dominance tree */
1487 unsigned num_dom_children;
1488 struct nir_block **dom_children;
1489
1490 /* Set of nir_block's on the dominance frontier of this block */
1491 struct set *dom_frontier;
1492
1493 /*
1494 * These two indices have the property that dom_{pre,post}_index for each
1495 * child of this block in the dominance tree will always be between
1496 * dom_pre_index and dom_post_index for this block, which makes testing if
1497 * a given block is dominated by another block an O(1) operation.
1498 */
1499 unsigned dom_pre_index, dom_post_index;
1500
1501 /* live in and out for this block; used for liveness analysis */
1502 BITSET_WORD *live_in;
1503 BITSET_WORD *live_out;
1504 } nir_block;
1505
1506 static inline nir_instr *
1507 nir_block_first_instr(nir_block *block)
1508 {
1509 struct exec_node *head = exec_list_get_head(&block->instr_list);
1510 return exec_node_data(nir_instr, head, node);
1511 }
1512
1513 static inline nir_instr *
1514 nir_block_last_instr(nir_block *block)
1515 {
1516 struct exec_node *tail = exec_list_get_tail(&block->instr_list);
1517 return exec_node_data(nir_instr, tail, node);
1518 }
1519
1520 #define nir_foreach_instr(instr, block) \
1521 foreach_list_typed(nir_instr, instr, node, &(block)->instr_list)
1522 #define nir_foreach_instr_reverse(instr, block) \
1523 foreach_list_typed_reverse(nir_instr, instr, node, &(block)->instr_list)
1524 #define nir_foreach_instr_safe(instr, block) \
1525 foreach_list_typed_safe(nir_instr, instr, node, &(block)->instr_list)
1526 #define nir_foreach_instr_reverse_safe(instr, block) \
1527 foreach_list_typed_reverse_safe(nir_instr, instr, node, &(block)->instr_list)
1528
1529 typedef struct nir_if {
1530 nir_cf_node cf_node;
1531 nir_src condition;
1532
1533 struct exec_list then_list; /** < list of nir_cf_node */
1534 struct exec_list else_list; /** < list of nir_cf_node */
1535 } nir_if;
1536
1537 typedef struct {
1538 nir_if *nif;
1539
1540 nir_instr *conditional_instr;
1541
1542 nir_block *break_block;
1543 nir_block *continue_from_block;
1544
1545 bool continue_from_then;
1546
1547 struct list_head loop_terminator_link;
1548 } nir_loop_terminator;
1549
1550 typedef struct {
1551 /* Number of instructions in the loop */
1552 unsigned num_instructions;
1553
1554 /* How many times the loop is run (if known) */
1555 unsigned trip_count;
1556 bool is_trip_count_known;
1557
1558 /* Unroll the loop regardless of its size */
1559 bool force_unroll;
1560
1561 nir_loop_terminator *limiting_terminator;
1562
1563 /* A list of loop_terminators terminating this loop. */
1564 struct list_head loop_terminator_list;
1565 } nir_loop_info;
1566
1567 typedef struct {
1568 nir_cf_node cf_node;
1569
1570 struct exec_list body; /** < list of nir_cf_node */
1571
1572 nir_loop_info *info;
1573 } nir_loop;
1574
1575 /**
1576 * Various bits of metadata that can may be created or required by
1577 * optimization and analysis passes
1578 */
1579 typedef enum {
1580 nir_metadata_none = 0x0,
1581 nir_metadata_block_index = 0x1,
1582 nir_metadata_dominance = 0x2,
1583 nir_metadata_live_ssa_defs = 0x4,
1584 nir_metadata_not_properly_reset = 0x8,
1585 nir_metadata_loop_analysis = 0x10,
1586 } nir_metadata;
1587
1588 typedef struct {
1589 nir_cf_node cf_node;
1590
1591 /** pointer to the function of which this is an implementation */
1592 struct nir_function *function;
1593
1594 struct exec_list body; /** < list of nir_cf_node */
1595
1596 nir_block *end_block;
1597
1598 /** list for all local variables in the function */
1599 struct exec_list locals;
1600
1601 /** array of variables used as parameters */
1602 unsigned num_params;
1603 nir_variable **params;
1604
1605 /** variable used to hold the result of the function */
1606 nir_variable *return_var;
1607
1608 /** list of local registers in the function */
1609 struct exec_list registers;
1610
1611 /** next available local register index */
1612 unsigned reg_alloc;
1613
1614 /** next available SSA value index */
1615 unsigned ssa_alloc;
1616
1617 /* total number of basic blocks, only valid when block_index_dirty = false */
1618 unsigned num_blocks;
1619
1620 nir_metadata valid_metadata;
1621 } nir_function_impl;
1622
1623 ATTRIBUTE_RETURNS_NONNULL static inline nir_block *
1624 nir_start_block(nir_function_impl *impl)
1625 {
1626 return (nir_block *) impl->body.head_sentinel.next;
1627 }
1628
1629 ATTRIBUTE_RETURNS_NONNULL static inline nir_block *
1630 nir_impl_last_block(nir_function_impl *impl)
1631 {
1632 return (nir_block *) impl->body.tail_sentinel.prev;
1633 }
1634
1635 static inline nir_cf_node *
1636 nir_cf_node_next(nir_cf_node *node)
1637 {
1638 struct exec_node *next = exec_node_get_next(&node->node);
1639 if (exec_node_is_tail_sentinel(next))
1640 return NULL;
1641 else
1642 return exec_node_data(nir_cf_node, next, node);
1643 }
1644
1645 static inline nir_cf_node *
1646 nir_cf_node_prev(nir_cf_node *node)
1647 {
1648 struct exec_node *prev = exec_node_get_prev(&node->node);
1649 if (exec_node_is_head_sentinel(prev))
1650 return NULL;
1651 else
1652 return exec_node_data(nir_cf_node, prev, node);
1653 }
1654
1655 static inline bool
1656 nir_cf_node_is_first(const nir_cf_node *node)
1657 {
1658 return exec_node_is_head_sentinel(node->node.prev);
1659 }
1660
1661 static inline bool
1662 nir_cf_node_is_last(const nir_cf_node *node)
1663 {
1664 return exec_node_is_tail_sentinel(node->node.next);
1665 }
1666
1667 NIR_DEFINE_CAST(nir_cf_node_as_block, nir_cf_node, nir_block, cf_node,
1668 type, nir_cf_node_block)
1669 NIR_DEFINE_CAST(nir_cf_node_as_if, nir_cf_node, nir_if, cf_node,
1670 type, nir_cf_node_if)
1671 NIR_DEFINE_CAST(nir_cf_node_as_loop, nir_cf_node, nir_loop, cf_node,
1672 type, nir_cf_node_loop)
1673 NIR_DEFINE_CAST(nir_cf_node_as_function, nir_cf_node,
1674 nir_function_impl, cf_node, type, nir_cf_node_function)
1675
1676 static inline nir_block *
1677 nir_if_first_then_block(nir_if *if_stmt)
1678 {
1679 struct exec_node *head = exec_list_get_head(&if_stmt->then_list);
1680 return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
1681 }
1682
1683 static inline nir_block *
1684 nir_if_last_then_block(nir_if *if_stmt)
1685 {
1686 struct exec_node *tail = exec_list_get_tail(&if_stmt->then_list);
1687 return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
1688 }
1689
1690 static inline nir_block *
1691 nir_if_first_else_block(nir_if *if_stmt)
1692 {
1693 struct exec_node *head = exec_list_get_head(&if_stmt->else_list);
1694 return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
1695 }
1696
1697 static inline nir_block *
1698 nir_if_last_else_block(nir_if *if_stmt)
1699 {
1700 struct exec_node *tail = exec_list_get_tail(&if_stmt->else_list);
1701 return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
1702 }
1703
1704 static inline nir_block *
1705 nir_loop_first_block(nir_loop *loop)
1706 {
1707 struct exec_node *head = exec_list_get_head(&loop->body);
1708 return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
1709 }
1710
1711 static inline nir_block *
1712 nir_loop_last_block(nir_loop *loop)
1713 {
1714 struct exec_node *tail = exec_list_get_tail(&loop->body);
1715 return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
1716 }
1717
1718 typedef enum {
1719 nir_parameter_in,
1720 nir_parameter_out,
1721 nir_parameter_inout,
1722 } nir_parameter_type;
1723
1724 typedef struct {
1725 nir_parameter_type param_type;
1726 const struct glsl_type *type;
1727 } nir_parameter;
1728
1729 typedef struct nir_function {
1730 struct exec_node node;
1731
1732 const char *name;
1733 struct nir_shader *shader;
1734
1735 unsigned num_params;
1736 nir_parameter *params;
1737 const struct glsl_type *return_type;
1738
1739 /** The implementation of this function.
1740 *
1741 * If the function is only declared and not implemented, this is NULL.
1742 */
1743 nir_function_impl *impl;
1744 } nir_function;
1745
1746 typedef struct nir_shader_compiler_options {
1747 bool lower_fdiv;
1748 bool lower_ffma;
1749 bool fuse_ffma;
1750 bool lower_flrp32;
1751 /** Lowers flrp when it does not support doubles */
1752 bool lower_flrp64;
1753 bool lower_fpow;
1754 bool lower_fsat;
1755 bool lower_fsqrt;
1756 bool lower_fmod32;
1757 bool lower_fmod64;
1758 bool lower_bitfield_extract;
1759 bool lower_bitfield_insert;
1760 bool lower_uadd_carry;
1761 bool lower_usub_borrow;
1762 /** lowers fneg and ineg to fsub and isub. */
1763 bool lower_negate;
1764 /** lowers fsub and isub to fadd+fneg and iadd+ineg. */
1765 bool lower_sub;
1766
1767 /* lower {slt,sge,seq,sne} to {flt,fge,feq,fne} + b2f: */
1768 bool lower_scmp;
1769
1770 /** enables rules to lower idiv by power-of-two: */
1771 bool lower_idiv;
1772
1773 /* Does the native fdot instruction replicate its result for four
1774 * components? If so, then opt_algebraic_late will turn all fdotN
1775 * instructions into fdot_replicatedN instructions.
1776 */
1777 bool fdot_replicates;
1778
1779 /** lowers ffract to fsub+ffloor: */
1780 bool lower_ffract;
1781
1782 bool lower_pack_half_2x16;
1783 bool lower_pack_unorm_2x16;
1784 bool lower_pack_snorm_2x16;
1785 bool lower_pack_unorm_4x8;
1786 bool lower_pack_snorm_4x8;
1787 bool lower_unpack_half_2x16;
1788 bool lower_unpack_unorm_2x16;
1789 bool lower_unpack_snorm_2x16;
1790 bool lower_unpack_unorm_4x8;
1791 bool lower_unpack_snorm_4x8;
1792
1793 bool lower_extract_byte;
1794 bool lower_extract_word;
1795
1796 /**
1797 * Does the driver support real 32-bit integers? (Otherwise, integers
1798 * are simulated by floats.)
1799 */
1800 bool native_integers;
1801
1802 /* Indicates that the driver only has zero-based vertex id */
1803 bool vertex_id_zero_based;
1804
1805 bool lower_cs_local_index_from_id;
1806
1807 /**
1808 * Should nir_lower_io() create load_interpolated_input intrinsics?
1809 *
1810 * If not, it generates regular load_input intrinsics and interpolation
1811 * information must be inferred from the list of input nir_variables.
1812 */
1813 bool use_interpolated_input_intrinsics;
1814
1815 unsigned max_unroll_iterations;
1816 } nir_shader_compiler_options;
1817
1818 typedef struct nir_shader {
1819 /** list of uniforms (nir_variable) */
1820 struct exec_list uniforms;
1821
1822 /** list of inputs (nir_variable) */
1823 struct exec_list inputs;
1824
1825 /** list of outputs (nir_variable) */
1826 struct exec_list outputs;
1827
1828 /** list of shared compute variables (nir_variable) */
1829 struct exec_list shared;
1830
1831 /** Set of driver-specific options for the shader.
1832 *
1833 * The memory for the options is expected to be kept in a single static
1834 * copy by the driver.
1835 */
1836 const struct nir_shader_compiler_options *options;
1837
1838 /** Various bits of compile-time information about a given shader */
1839 struct shader_info *info;
1840
1841 /** list of global variables in the shader (nir_variable) */
1842 struct exec_list globals;
1843
1844 /** list of system value variables in the shader (nir_variable) */
1845 struct exec_list system_values;
1846
1847 struct exec_list functions; /** < list of nir_function */
1848
1849 /** list of global register in the shader */
1850 struct exec_list registers;
1851
1852 /** next available global register index */
1853 unsigned reg_alloc;
1854
1855 /**
1856 * the highest index a load_input_*, load_uniform_*, etc. intrinsic can
1857 * access plus one
1858 */
1859 unsigned num_inputs, num_uniforms, num_outputs, num_shared;
1860
1861 /** The shader stage, such as MESA_SHADER_VERTEX. */
1862 gl_shader_stage stage;
1863 } nir_shader;
1864
1865 static inline nir_function_impl *
1866 nir_shader_get_entrypoint(nir_shader *shader)
1867 {
1868 assert(exec_list_length(&shader->functions) == 1);
1869 struct exec_node *func_node = exec_list_get_head(&shader->functions);
1870 nir_function *func = exec_node_data(nir_function, func_node, node);
1871 assert(func->return_type == glsl_void_type());
1872 assert(func->num_params == 0);
1873 assert(func->impl);
1874 return func->impl;
1875 }
1876
1877 #define nir_foreach_function(func, shader) \
1878 foreach_list_typed(nir_function, func, node, &(shader)->functions)
1879
1880 nir_shader *nir_shader_create(void *mem_ctx,
1881 gl_shader_stage stage,
1882 const nir_shader_compiler_options *options,
1883 shader_info *si);
1884
1885 /** creates a register, including assigning it an index and adding it to the list */
1886 nir_register *nir_global_reg_create(nir_shader *shader);
1887
1888 nir_register *nir_local_reg_create(nir_function_impl *impl);
1889
1890 void nir_reg_remove(nir_register *reg);
1891
1892 /** Adds a variable to the appropreate list in nir_shader */
1893 void nir_shader_add_variable(nir_shader *shader, nir_variable *var);
1894
1895 static inline void
1896 nir_function_impl_add_variable(nir_function_impl *impl, nir_variable *var)
1897 {
1898 assert(var->data.mode == nir_var_local);
1899 exec_list_push_tail(&impl->locals, &var->node);
1900 }
1901
1902 /** creates a variable, sets a few defaults, and adds it to the list */
1903 nir_variable *nir_variable_create(nir_shader *shader,
1904 nir_variable_mode mode,
1905 const struct glsl_type *type,
1906 const char *name);
1907 /** creates a local variable and adds it to the list */
1908 nir_variable *nir_local_variable_create(nir_function_impl *impl,
1909 const struct glsl_type *type,
1910 const char *name);
1911
1912 /** creates a function and adds it to the shader's list of functions */
1913 nir_function *nir_function_create(nir_shader *shader, const char *name);
1914
1915 nir_function_impl *nir_function_impl_create(nir_function *func);
1916 /** creates a function_impl that isn't tied to any particular function */
1917 nir_function_impl *nir_function_impl_create_bare(nir_shader *shader);
1918
1919 nir_block *nir_block_create(nir_shader *shader);
1920 nir_if *nir_if_create(nir_shader *shader);
1921 nir_loop *nir_loop_create(nir_shader *shader);
1922
1923 nir_function_impl *nir_cf_node_get_function(nir_cf_node *node);
1924
1925 /** requests that the given pieces of metadata be generated */
1926 void nir_metadata_require(nir_function_impl *impl, nir_metadata required, ...);
1927 /** dirties all but the preserved metadata */
1928 void nir_metadata_preserve(nir_function_impl *impl, nir_metadata preserved);
1929
1930 /** creates an instruction with default swizzle/writemask/etc. with NULL registers */
1931 nir_alu_instr *nir_alu_instr_create(nir_shader *shader, nir_op op);
1932
1933 nir_jump_instr *nir_jump_instr_create(nir_shader *shader, nir_jump_type type);
1934
1935 nir_load_const_instr *nir_load_const_instr_create(nir_shader *shader,
1936 unsigned num_components,
1937 unsigned bit_size);
1938
1939 nir_intrinsic_instr *nir_intrinsic_instr_create(nir_shader *shader,
1940 nir_intrinsic_op op);
1941
1942 nir_call_instr *nir_call_instr_create(nir_shader *shader,
1943 nir_function *callee);
1944
1945 nir_tex_instr *nir_tex_instr_create(nir_shader *shader, unsigned num_srcs);
1946
1947 nir_phi_instr *nir_phi_instr_create(nir_shader *shader);
1948
1949 nir_parallel_copy_instr *nir_parallel_copy_instr_create(nir_shader *shader);
1950
1951 nir_ssa_undef_instr *nir_ssa_undef_instr_create(nir_shader *shader,
1952 unsigned num_components,
1953 unsigned bit_size);
1954
1955 nir_deref_var *nir_deref_var_create(void *mem_ctx, nir_variable *var);
1956 nir_deref_array *nir_deref_array_create(void *mem_ctx);
1957 nir_deref_struct *nir_deref_struct_create(void *mem_ctx, unsigned field_index);
1958
1959 typedef bool (*nir_deref_foreach_leaf_cb)(nir_deref_var *deref, void *state);
1960 bool nir_deref_foreach_leaf(nir_deref_var *deref,
1961 nir_deref_foreach_leaf_cb cb, void *state);
1962
1963 nir_load_const_instr *
1964 nir_deref_get_const_initializer_load(nir_shader *shader, nir_deref_var *deref);
1965
1966 /**
1967 * NIR Cursors and Instruction Insertion API
1968 * @{
1969 *
1970 * A tiny struct representing a point to insert/extract instructions or
1971 * control flow nodes. Helps reduce the combinatorial explosion of possible
1972 * points to insert/extract.
1973 *
1974 * \sa nir_control_flow.h
1975 */
1976 typedef enum {
1977 nir_cursor_before_block,
1978 nir_cursor_after_block,
1979 nir_cursor_before_instr,
1980 nir_cursor_after_instr,
1981 } nir_cursor_option;
1982
1983 typedef struct {
1984 nir_cursor_option option;
1985 union {
1986 nir_block *block;
1987 nir_instr *instr;
1988 };
1989 } nir_cursor;
1990
1991 static inline nir_block *
1992 nir_cursor_current_block(nir_cursor cursor)
1993 {
1994 if (cursor.option == nir_cursor_before_instr ||
1995 cursor.option == nir_cursor_after_instr) {
1996 return cursor.instr->block;
1997 } else {
1998 return cursor.block;
1999 }
2000 }
2001
2002 bool nir_cursors_equal(nir_cursor a, nir_cursor b);
2003
2004 static inline nir_cursor
2005 nir_before_block(nir_block *block)
2006 {
2007 nir_cursor cursor;
2008 cursor.option = nir_cursor_before_block;
2009 cursor.block = block;
2010 return cursor;
2011 }
2012
2013 static inline nir_cursor
2014 nir_after_block(nir_block *block)
2015 {
2016 nir_cursor cursor;
2017 cursor.option = nir_cursor_after_block;
2018 cursor.block = block;
2019 return cursor;
2020 }
2021
2022 static inline nir_cursor
2023 nir_before_instr(nir_instr *instr)
2024 {
2025 nir_cursor cursor;
2026 cursor.option = nir_cursor_before_instr;
2027 cursor.instr = instr;
2028 return cursor;
2029 }
2030
2031 static inline nir_cursor
2032 nir_after_instr(nir_instr *instr)
2033 {
2034 nir_cursor cursor;
2035 cursor.option = nir_cursor_after_instr;
2036 cursor.instr = instr;
2037 return cursor;
2038 }
2039
2040 static inline nir_cursor
2041 nir_after_block_before_jump(nir_block *block)
2042 {
2043 nir_instr *last_instr = nir_block_last_instr(block);
2044 if (last_instr && last_instr->type == nir_instr_type_jump) {
2045 return nir_before_instr(last_instr);
2046 } else {
2047 return nir_after_block(block);
2048 }
2049 }
2050
2051 static inline nir_cursor
2052 nir_before_cf_node(nir_cf_node *node)
2053 {
2054 if (node->type == nir_cf_node_block)
2055 return nir_before_block(nir_cf_node_as_block(node));
2056
2057 return nir_after_block(nir_cf_node_as_block(nir_cf_node_prev(node)));
2058 }
2059
2060 static inline nir_cursor
2061 nir_after_cf_node(nir_cf_node *node)
2062 {
2063 if (node->type == nir_cf_node_block)
2064 return nir_after_block(nir_cf_node_as_block(node));
2065
2066 return nir_before_block(nir_cf_node_as_block(nir_cf_node_next(node)));
2067 }
2068
2069 static inline nir_cursor
2070 nir_after_phis(nir_block *block)
2071 {
2072 nir_foreach_instr(instr, block) {
2073 if (instr->type != nir_instr_type_phi)
2074 return nir_before_instr(instr);
2075 }
2076 return nir_after_block(block);
2077 }
2078
2079 static inline nir_cursor
2080 nir_after_cf_node_and_phis(nir_cf_node *node)
2081 {
2082 if (node->type == nir_cf_node_block)
2083 return nir_after_block(nir_cf_node_as_block(node));
2084
2085 nir_block *block = nir_cf_node_as_block(nir_cf_node_next(node));
2086
2087 return nir_after_phis(block);
2088 }
2089
2090 static inline nir_cursor
2091 nir_before_cf_list(struct exec_list *cf_list)
2092 {
2093 nir_cf_node *first_node = exec_node_data(nir_cf_node,
2094 exec_list_get_head(cf_list), node);
2095 return nir_before_cf_node(first_node);
2096 }
2097
2098 static inline nir_cursor
2099 nir_after_cf_list(struct exec_list *cf_list)
2100 {
2101 nir_cf_node *last_node = exec_node_data(nir_cf_node,
2102 exec_list_get_tail(cf_list), node);
2103 return nir_after_cf_node(last_node);
2104 }
2105
2106 /**
2107 * Insert a NIR instruction at the given cursor.
2108 *
2109 * Note: This does not update the cursor.
2110 */
2111 void nir_instr_insert(nir_cursor cursor, nir_instr *instr);
2112
2113 static inline void
2114 nir_instr_insert_before(nir_instr *instr, nir_instr *before)
2115 {
2116 nir_instr_insert(nir_before_instr(instr), before);
2117 }
2118
2119 static inline void
2120 nir_instr_insert_after(nir_instr *instr, nir_instr *after)
2121 {
2122 nir_instr_insert(nir_after_instr(instr), after);
2123 }
2124
2125 static inline void
2126 nir_instr_insert_before_block(nir_block *block, nir_instr *before)
2127 {
2128 nir_instr_insert(nir_before_block(block), before);
2129 }
2130
2131 static inline void
2132 nir_instr_insert_after_block(nir_block *block, nir_instr *after)
2133 {
2134 nir_instr_insert(nir_after_block(block), after);
2135 }
2136
2137 static inline void
2138 nir_instr_insert_before_cf(nir_cf_node *node, nir_instr *before)
2139 {
2140 nir_instr_insert(nir_before_cf_node(node), before);
2141 }
2142
2143 static inline void
2144 nir_instr_insert_after_cf(nir_cf_node *node, nir_instr *after)
2145 {
2146 nir_instr_insert(nir_after_cf_node(node), after);
2147 }
2148
2149 static inline void
2150 nir_instr_insert_before_cf_list(struct exec_list *list, nir_instr *before)
2151 {
2152 nir_instr_insert(nir_before_cf_list(list), before);
2153 }
2154
2155 static inline void
2156 nir_instr_insert_after_cf_list(struct exec_list *list, nir_instr *after)
2157 {
2158 nir_instr_insert(nir_after_cf_list(list), after);
2159 }
2160
2161 void nir_instr_remove(nir_instr *instr);
2162
2163 /** @} */
2164
2165 typedef bool (*nir_foreach_ssa_def_cb)(nir_ssa_def *def, void *state);
2166 typedef bool (*nir_foreach_dest_cb)(nir_dest *dest, void *state);
2167 typedef bool (*nir_foreach_src_cb)(nir_src *src, void *state);
2168 bool nir_foreach_ssa_def(nir_instr *instr, nir_foreach_ssa_def_cb cb,
2169 void *state);
2170 bool nir_foreach_dest(nir_instr *instr, nir_foreach_dest_cb cb, void *state);
2171 bool nir_foreach_src(nir_instr *instr, nir_foreach_src_cb cb, void *state);
2172
2173 nir_const_value *nir_src_as_const_value(nir_src src);
2174 bool nir_src_is_dynamically_uniform(nir_src src);
2175 bool nir_srcs_equal(nir_src src1, nir_src src2);
2176 void nir_instr_rewrite_src(nir_instr *instr, nir_src *src, nir_src new_src);
2177 void nir_instr_move_src(nir_instr *dest_instr, nir_src *dest, nir_src *src);
2178 void nir_if_rewrite_condition(nir_if *if_stmt, nir_src new_src);
2179 void nir_instr_rewrite_dest(nir_instr *instr, nir_dest *dest,
2180 nir_dest new_dest);
2181
2182 void nir_ssa_dest_init(nir_instr *instr, nir_dest *dest,
2183 unsigned num_components, unsigned bit_size,
2184 const char *name);
2185 void nir_ssa_def_init(nir_instr *instr, nir_ssa_def *def,
2186 unsigned num_components, unsigned bit_size,
2187 const char *name);
2188 void nir_ssa_def_rewrite_uses(nir_ssa_def *def, nir_src new_src);
2189 void nir_ssa_def_rewrite_uses_after(nir_ssa_def *def, nir_src new_src,
2190 nir_instr *after_me);
2191
2192 uint8_t nir_ssa_def_components_read(nir_ssa_def *def);
2193
2194 /*
2195 * finds the next basic block in source-code order, returns NULL if there is
2196 * none
2197 */
2198
2199 nir_block *nir_block_cf_tree_next(nir_block *block);
2200
2201 /* Performs the opposite of nir_block_cf_tree_next() */
2202
2203 nir_block *nir_block_cf_tree_prev(nir_block *block);
2204
2205 /* Gets the first block in a CF node in source-code order */
2206
2207 nir_block *nir_cf_node_cf_tree_first(nir_cf_node *node);
2208
2209 /* Gets the last block in a CF node in source-code order */
2210
2211 nir_block *nir_cf_node_cf_tree_last(nir_cf_node *node);
2212
2213 /* Gets the next block after a CF node in source-code order */
2214
2215 nir_block *nir_cf_node_cf_tree_next(nir_cf_node *node);
2216
2217 /* Macros for loops that visit blocks in source-code order */
2218
2219 #define nir_foreach_block(block, impl) \
2220 for (nir_block *block = nir_start_block(impl); block != NULL; \
2221 block = nir_block_cf_tree_next(block))
2222
2223 #define nir_foreach_block_safe(block, impl) \
2224 for (nir_block *block = nir_start_block(impl), \
2225 *next = nir_block_cf_tree_next(block); \
2226 block != NULL; \
2227 block = next, next = nir_block_cf_tree_next(block))
2228
2229 #define nir_foreach_block_reverse(block, impl) \
2230 for (nir_block *block = nir_impl_last_block(impl); block != NULL; \
2231 block = nir_block_cf_tree_prev(block))
2232
2233 #define nir_foreach_block_reverse_safe(block, impl) \
2234 for (nir_block *block = nir_impl_last_block(impl), \
2235 *prev = nir_block_cf_tree_prev(block); \
2236 block != NULL; \
2237 block = prev, prev = nir_block_cf_tree_prev(block))
2238
2239 #define nir_foreach_block_in_cf_node(block, node) \
2240 for (nir_block *block = nir_cf_node_cf_tree_first(node); \
2241 block != nir_cf_node_cf_tree_next(node); \
2242 block = nir_block_cf_tree_next(block))
2243
2244 /* If the following CF node is an if, this function returns that if.
2245 * Otherwise, it returns NULL.
2246 */
2247 nir_if *nir_block_get_following_if(nir_block *block);
2248
2249 nir_loop *nir_block_get_following_loop(nir_block *block);
2250
2251 void nir_index_local_regs(nir_function_impl *impl);
2252 void nir_index_global_regs(nir_shader *shader);
2253 void nir_index_ssa_defs(nir_function_impl *impl);
2254 unsigned nir_index_instrs(nir_function_impl *impl);
2255
2256 void nir_index_blocks(nir_function_impl *impl);
2257
2258 void nir_print_shader(nir_shader *shader, FILE *fp);
2259 void nir_print_shader_annotated(nir_shader *shader, FILE *fp, struct hash_table *errors);
2260 void nir_print_instr(const nir_instr *instr, FILE *fp);
2261
2262 nir_shader *nir_shader_clone(void *mem_ctx, const nir_shader *s);
2263 nir_function_impl *nir_function_impl_clone(const nir_function_impl *fi);
2264 nir_constant *nir_constant_clone(const nir_constant *c, nir_variable *var);
2265 nir_variable *nir_variable_clone(const nir_variable *c, nir_shader *shader);
2266 nir_deref *nir_deref_clone(const nir_deref *deref, void *mem_ctx);
2267 nir_deref_var *nir_deref_var_clone(const nir_deref_var *deref, void *mem_ctx);
2268
2269 #ifdef DEBUG
2270 void nir_validate_shader(nir_shader *shader);
2271 void nir_metadata_set_validation_flag(nir_shader *shader);
2272 void nir_metadata_check_validation_flag(nir_shader *shader);
2273
2274 #include "util/debug.h"
2275 static inline bool
2276 should_clone_nir(void)
2277 {
2278 static int should_clone = -1;
2279 if (should_clone < 0)
2280 should_clone = env_var_as_boolean("NIR_TEST_CLONE", false);
2281
2282 return should_clone;
2283 }
2284 #else
2285 static inline void nir_validate_shader(nir_shader *shader) { (void) shader; }
2286 static inline void nir_metadata_set_validation_flag(nir_shader *shader) { (void) shader; }
2287 static inline void nir_metadata_check_validation_flag(nir_shader *shader) { (void) shader; }
2288 static inline bool should_clone_nir(void) { return false; }
2289 #endif /* DEBUG */
2290
2291 #define _PASS(nir, do_pass) do { \
2292 do_pass \
2293 nir_validate_shader(nir); \
2294 if (should_clone_nir()) { \
2295 nir_shader *clone = nir_shader_clone(ralloc_parent(nir), nir); \
2296 ralloc_free(nir); \
2297 nir = clone; \
2298 } \
2299 } while (0)
2300
2301 #define NIR_PASS(progress, nir, pass, ...) _PASS(nir, \
2302 nir_metadata_set_validation_flag(nir); \
2303 if (pass(nir, ##__VA_ARGS__)) { \
2304 progress = true; \
2305 nir_metadata_check_validation_flag(nir); \
2306 } \
2307 )
2308
2309 #define NIR_PASS_V(nir, pass, ...) _PASS(nir, \
2310 pass(nir, ##__VA_ARGS__); \
2311 )
2312
2313 void nir_calc_dominance_impl(nir_function_impl *impl);
2314 void nir_calc_dominance(nir_shader *shader);
2315
2316 nir_block *nir_dominance_lca(nir_block *b1, nir_block *b2);
2317 bool nir_block_dominates(nir_block *parent, nir_block *child);
2318
2319 void nir_dump_dom_tree_impl(nir_function_impl *impl, FILE *fp);
2320 void nir_dump_dom_tree(nir_shader *shader, FILE *fp);
2321
2322 void nir_dump_dom_frontier_impl(nir_function_impl *impl, FILE *fp);
2323 void nir_dump_dom_frontier(nir_shader *shader, FILE *fp);
2324
2325 void nir_dump_cfg_impl(nir_function_impl *impl, FILE *fp);
2326 void nir_dump_cfg(nir_shader *shader, FILE *fp);
2327
2328 int nir_gs_count_vertices(const nir_shader *shader);
2329
2330 bool nir_split_var_copies(nir_shader *shader);
2331
2332 bool nir_lower_returns_impl(nir_function_impl *impl);
2333 bool nir_lower_returns(nir_shader *shader);
2334
2335 bool nir_inline_functions(nir_shader *shader);
2336
2337 bool nir_propagate_invariant(nir_shader *shader);
2338
2339 void nir_lower_var_copy_instr(nir_intrinsic_instr *copy, nir_shader *shader);
2340 void nir_lower_var_copies(nir_shader *shader);
2341
2342 bool nir_lower_global_vars_to_local(nir_shader *shader);
2343
2344 bool nir_lower_indirect_derefs(nir_shader *shader, nir_variable_mode modes);
2345
2346 bool nir_lower_locals_to_regs(nir_shader *shader);
2347
2348 void nir_lower_io_to_temporaries(nir_shader *shader,
2349 nir_function_impl *entrypoint,
2350 bool outputs, bool inputs);
2351
2352 void nir_shader_gather_info(nir_shader *shader, nir_function_impl *entrypoint);
2353
2354 void nir_assign_var_locations(struct exec_list *var_list, unsigned *size,
2355 int (*type_size)(const struct glsl_type *));
2356
2357 typedef enum {
2358 /* If set, this forces all non-flat fragment shader inputs to be
2359 * interpolated as if with the "sample" qualifier. This requires
2360 * nir_shader_compiler_options::use_interpolated_input_intrinsics.
2361 */
2362 nir_lower_io_force_sample_interpolation = (1 << 1),
2363 } nir_lower_io_options;
2364 void nir_lower_io(nir_shader *shader,
2365 nir_variable_mode modes,
2366 int (*type_size)(const struct glsl_type *),
2367 nir_lower_io_options);
2368 nir_src *nir_get_io_offset_src(nir_intrinsic_instr *instr);
2369 nir_src *nir_get_io_vertex_index_src(nir_intrinsic_instr *instr);
2370
2371 bool nir_is_per_vertex_io(nir_variable *var, gl_shader_stage stage);
2372
2373 void nir_lower_io_types(nir_shader *shader);
2374 void nir_lower_regs_to_ssa_impl(nir_function_impl *impl);
2375 void nir_lower_regs_to_ssa(nir_shader *shader);
2376 void nir_lower_vars_to_ssa(nir_shader *shader);
2377
2378 bool nir_remove_dead_variables(nir_shader *shader, nir_variable_mode modes);
2379 bool nir_lower_constant_initializers(nir_shader *shader,
2380 nir_variable_mode modes);
2381
2382 void nir_move_vec_src_uses_to_dest(nir_shader *shader);
2383 bool nir_lower_vec_to_movs(nir_shader *shader);
2384 bool nir_lower_alu_to_scalar(nir_shader *shader);
2385 void nir_lower_load_const_to_scalar(nir_shader *shader);
2386
2387 bool nir_lower_phis_to_scalar(nir_shader *shader);
2388 void nir_lower_io_to_scalar(nir_shader *shader, nir_variable_mode mask);
2389
2390 void nir_lower_samplers(nir_shader *shader,
2391 const struct gl_shader_program *shader_program);
2392
2393 bool nir_lower_system_values(nir_shader *shader);
2394
2395 typedef struct nir_lower_tex_options {
2396 /**
2397 * bitmask of (1 << GLSL_SAMPLER_DIM_x) to control for which
2398 * sampler types a texture projector is lowered.
2399 */
2400 unsigned lower_txp;
2401
2402 /**
2403 * If true, lower away nir_tex_src_offset for all texelfetch instructions.
2404 */
2405 bool lower_txf_offset;
2406
2407 /**
2408 * If true, lower away nir_tex_src_offset for all rect textures.
2409 */
2410 bool lower_rect_offset;
2411
2412 /**
2413 * If true, lower rect textures to 2D, using txs to fetch the
2414 * texture dimensions and dividing the texture coords by the
2415 * texture dims to normalize.
2416 */
2417 bool lower_rect;
2418
2419 /**
2420 * If true, convert yuv to rgb.
2421 */
2422 unsigned lower_y_uv_external;
2423 unsigned lower_y_u_v_external;
2424 unsigned lower_yx_xuxv_external;
2425
2426 /**
2427 * To emulate certain texture wrap modes, this can be used
2428 * to saturate the specified tex coord to [0.0, 1.0]. The
2429 * bits are according to sampler #, ie. if, for example:
2430 *
2431 * (conf->saturate_s & (1 << n))
2432 *
2433 * is true, then the s coord for sampler n is saturated.
2434 *
2435 * Note that clamping must happen *after* projector lowering
2436 * so any projected texture sample instruction with a clamped
2437 * coordinate gets automatically lowered, regardless of the
2438 * 'lower_txp' setting.
2439 */
2440 unsigned saturate_s;
2441 unsigned saturate_t;
2442 unsigned saturate_r;
2443
2444 /* Bitmask of textures that need swizzling.
2445 *
2446 * If (swizzle_result & (1 << texture_index)), then the swizzle in
2447 * swizzles[texture_index] is applied to the result of the texturing
2448 * operation.
2449 */
2450 unsigned swizzle_result;
2451
2452 /* A swizzle for each texture. Values 0-3 represent x, y, z, or w swizzles
2453 * while 4 and 5 represent 0 and 1 respectively.
2454 */
2455 uint8_t swizzles[32][4];
2456
2457 /**
2458 * Bitmap of textures that need srgb to linear conversion. If
2459 * (lower_srgb & (1 << texture_index)) then the rgb (xyz) components
2460 * of the texture are lowered to linear.
2461 */
2462 unsigned lower_srgb;
2463
2464 /**
2465 * If true, lower nir_texop_txd on cube maps with nir_texop_txl.
2466 */
2467 bool lower_txd_cube_map;
2468
2469 /**
2470 * If true, lower nir_texop_txd on shadow samplers (except cube maps)
2471 * with nir_texop_txl. Notice that cube map shadow samplers are lowered
2472 * with lower_txd_cube_map.
2473 */
2474 bool lower_txd_shadow;
2475 } nir_lower_tex_options;
2476
2477 bool nir_lower_tex(nir_shader *shader,
2478 const nir_lower_tex_options *options);
2479
2480 bool nir_lower_idiv(nir_shader *shader);
2481
2482 void nir_lower_clip_vs(nir_shader *shader, unsigned ucp_enables);
2483 void nir_lower_clip_fs(nir_shader *shader, unsigned ucp_enables);
2484 void nir_lower_clip_cull_distance_arrays(nir_shader *nir);
2485
2486 void nir_lower_two_sided_color(nir_shader *shader);
2487
2488 void nir_lower_clamp_color_outputs(nir_shader *shader);
2489
2490 void nir_lower_passthrough_edgeflags(nir_shader *shader);
2491
2492 typedef struct nir_lower_wpos_ytransform_options {
2493 int state_tokens[5];
2494 bool fs_coord_origin_upper_left :1;
2495 bool fs_coord_origin_lower_left :1;
2496 bool fs_coord_pixel_center_integer :1;
2497 bool fs_coord_pixel_center_half_integer :1;
2498 } nir_lower_wpos_ytransform_options;
2499
2500 bool nir_lower_wpos_ytransform(nir_shader *shader,
2501 const nir_lower_wpos_ytransform_options *options);
2502 bool nir_lower_wpos_center(nir_shader *shader);
2503
2504 typedef struct nir_lower_drawpixels_options {
2505 int texcoord_state_tokens[5];
2506 int scale_state_tokens[5];
2507 int bias_state_tokens[5];
2508 unsigned drawpix_sampler;
2509 unsigned pixelmap_sampler;
2510 bool pixel_maps :1;
2511 bool scale_and_bias :1;
2512 } nir_lower_drawpixels_options;
2513
2514 void nir_lower_drawpixels(nir_shader *shader,
2515 const nir_lower_drawpixels_options *options);
2516
2517 typedef struct nir_lower_bitmap_options {
2518 unsigned sampler;
2519 bool swizzle_xxxx;
2520 } nir_lower_bitmap_options;
2521
2522 void nir_lower_bitmap(nir_shader *shader, const nir_lower_bitmap_options *options);
2523
2524 void nir_lower_atomics(nir_shader *shader,
2525 const struct gl_shader_program *shader_program);
2526 void nir_lower_to_source_mods(nir_shader *shader);
2527
2528 bool nir_lower_gs_intrinsics(nir_shader *shader);
2529
2530 typedef enum {
2531 nir_lower_drcp = (1 << 0),
2532 nir_lower_dsqrt = (1 << 1),
2533 nir_lower_drsq = (1 << 2),
2534 nir_lower_dtrunc = (1 << 3),
2535 nir_lower_dfloor = (1 << 4),
2536 nir_lower_dceil = (1 << 5),
2537 nir_lower_dfract = (1 << 6),
2538 nir_lower_dround_even = (1 << 7),
2539 nir_lower_dmod = (1 << 8)
2540 } nir_lower_doubles_options;
2541
2542 void nir_lower_doubles(nir_shader *shader, nir_lower_doubles_options options);
2543 void nir_lower_double_pack(nir_shader *shader);
2544
2545 bool nir_normalize_cubemap_coords(nir_shader *shader);
2546
2547 void nir_live_ssa_defs_impl(nir_function_impl *impl);
2548
2549 void nir_loop_analyze_impl(nir_function_impl *impl,
2550 nir_variable_mode indirect_mask);
2551
2552 bool nir_ssa_defs_interfere(nir_ssa_def *a, nir_ssa_def *b);
2553
2554 bool nir_repair_ssa_impl(nir_function_impl *impl);
2555 bool nir_repair_ssa(nir_shader *shader);
2556
2557 void nir_convert_loop_to_lcssa(nir_loop *loop);
2558
2559 /* If phi_webs_only is true, only convert SSA values involved in phi nodes to
2560 * registers. If false, convert all values (even those not involved in a phi
2561 * node) to registers.
2562 */
2563 void nir_convert_from_ssa(nir_shader *shader, bool phi_webs_only);
2564
2565 bool nir_lower_phis_to_regs_block(nir_block *block);
2566 bool nir_lower_ssa_defs_to_regs_block(nir_block *block);
2567
2568 bool nir_opt_algebraic(nir_shader *shader);
2569 bool nir_opt_algebraic_late(nir_shader *shader);
2570 bool nir_opt_constant_folding(nir_shader *shader);
2571
2572 bool nir_opt_global_to_local(nir_shader *shader);
2573
2574 bool nir_copy_prop(nir_shader *shader);
2575
2576 bool nir_opt_copy_prop_vars(nir_shader *shader);
2577
2578 bool nir_opt_cse(nir_shader *shader);
2579
2580 bool nir_opt_dce(nir_shader *shader);
2581
2582 bool nir_opt_dead_cf(nir_shader *shader);
2583
2584 bool nir_opt_gcm(nir_shader *shader, bool value_number);
2585
2586 bool nir_opt_if(nir_shader *shader);
2587
2588 bool nir_opt_loop_unroll(nir_shader *shader, nir_variable_mode indirect_mask);
2589
2590 bool nir_opt_peephole_select(nir_shader *shader, unsigned limit);
2591
2592 bool nir_opt_remove_phis(nir_shader *shader);
2593
2594 bool nir_opt_trivial_continues(nir_shader *shader);
2595
2596 bool nir_opt_undef(nir_shader *shader);
2597
2598 bool nir_opt_conditional_discard(nir_shader *shader);
2599
2600 void nir_sweep(nir_shader *shader);
2601
2602 nir_intrinsic_op nir_intrinsic_from_system_value(gl_system_value val);
2603 gl_system_value nir_system_value_from_intrinsic(nir_intrinsic_op intrin);
2604
2605 #ifdef __cplusplus
2606 } /* extern "C" */
2607 #endif