nir: add type information to load uniform/input and store output intrinsics
[mesa.git] / src / compiler / nir / nir.h
1 /*
2 * Copyright © 2014 Connor Abbott
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Connor Abbott (cwabbott0@gmail.com)
25 *
26 */
27
28 #ifndef NIR_H
29 #define NIR_H
30
31 #include "util/hash_table.h"
32 #include "compiler/glsl/list.h"
33 #include "GL/gl.h" /* GLenum */
34 #include "util/list.h"
35 #include "util/ralloc.h"
36 #include "util/set.h"
37 #include "util/bitscan.h"
38 #include "util/bitset.h"
39 #include "util/macros.h"
40 #include "compiler/nir_types.h"
41 #include "compiler/shader_enums.h"
42 #include "compiler/shader_info.h"
43 #include <stdio.h>
44
45 #ifndef NDEBUG
46 #include "util/debug.h"
47 #endif /* NDEBUG */
48
49 #include "nir_opcodes.h"
50
51 #if defined(_WIN32) && !defined(snprintf)
52 #define snprintf _snprintf
53 #endif
54
55 #ifdef __cplusplus
56 extern "C" {
57 #endif
58
59 #define NIR_FALSE 0u
60 #define NIR_TRUE (~0u)
61 #define NIR_MAX_VEC_COMPONENTS 4
62 #define NIR_MAX_MATRIX_COLUMNS 4
63 typedef uint8_t nir_component_mask_t;
64
65 /** Defines a cast function
66 *
67 * This macro defines a cast function from in_type to out_type where
68 * out_type is some structure type that contains a field of type out_type.
69 *
70 * Note that you have to be a bit careful as the generated cast function
71 * destroys constness.
72 */
73 #define NIR_DEFINE_CAST(name, in_type, out_type, field, \
74 type_field, type_value) \
75 static inline out_type * \
76 name(const in_type *parent) \
77 { \
78 assert(parent && parent->type_field == type_value); \
79 return exec_node_data(out_type, parent, field); \
80 }
81
82 struct nir_function;
83 struct nir_shader;
84 struct nir_instr;
85 struct nir_builder;
86
87
88 /**
89 * Description of built-in state associated with a uniform
90 *
91 * \sa nir_variable::state_slots
92 */
93 typedef struct {
94 gl_state_index16 tokens[STATE_LENGTH];
95 int swizzle;
96 } nir_state_slot;
97
98 typedef enum {
99 nir_var_shader_in = (1 << 0),
100 nir_var_shader_out = (1 << 1),
101 nir_var_shader_temp = (1 << 2),
102 nir_var_function_temp = (1 << 3),
103 nir_var_uniform = (1 << 4),
104 nir_var_mem_ubo = (1 << 5),
105 nir_var_system_value = (1 << 6),
106 nir_var_mem_ssbo = (1 << 7),
107 nir_var_mem_shared = (1 << 8),
108 nir_var_mem_global = (1 << 9),
109 nir_var_all = ~0,
110 } nir_variable_mode;
111
112 /**
113 * Rounding modes.
114 */
115 typedef enum {
116 nir_rounding_mode_undef = 0,
117 nir_rounding_mode_rtne = 1, /* round to nearest even */
118 nir_rounding_mode_ru = 2, /* round up */
119 nir_rounding_mode_rd = 3, /* round down */
120 nir_rounding_mode_rtz = 4, /* round towards zero */
121 } nir_rounding_mode;
122
123 typedef union {
124 bool b;
125 float f32;
126 double f64;
127 int8_t i8;
128 uint8_t u8;
129 int16_t i16;
130 uint16_t u16;
131 int32_t i32;
132 uint32_t u32;
133 int64_t i64;
134 uint64_t u64;
135 } nir_const_value;
136
137 #define nir_const_value_to_array(arr, c, components, m) \
138 { \
139 for (unsigned i = 0; i < components; ++i) \
140 arr[i] = c[i].m; \
141 } while (false)
142
143 typedef struct nir_constant {
144 /**
145 * Value of the constant.
146 *
147 * The field used to back the values supplied by the constant is determined
148 * by the type associated with the \c nir_variable. Constants may be
149 * scalars, vectors, or matrices.
150 */
151 nir_const_value values[NIR_MAX_MATRIX_COLUMNS][NIR_MAX_VEC_COMPONENTS];
152
153 /* we could get this from the var->type but makes clone *much* easier to
154 * not have to care about the type.
155 */
156 unsigned num_elements;
157
158 /* Array elements / Structure Fields */
159 struct nir_constant **elements;
160 } nir_constant;
161
162 /**
163 * \brief Layout qualifiers for gl_FragDepth.
164 *
165 * The AMD/ARB_conservative_depth extensions allow gl_FragDepth to be redeclared
166 * with a layout qualifier.
167 */
168 typedef enum {
169 nir_depth_layout_none, /**< No depth layout is specified. */
170 nir_depth_layout_any,
171 nir_depth_layout_greater,
172 nir_depth_layout_less,
173 nir_depth_layout_unchanged
174 } nir_depth_layout;
175
176 /**
177 * Enum keeping track of how a variable was declared.
178 */
179 typedef enum {
180 /**
181 * Normal declaration.
182 */
183 nir_var_declared_normally = 0,
184
185 /**
186 * Variable is implicitly generated by the compiler and should not be
187 * visible via the API.
188 */
189 nir_var_hidden,
190 } nir_var_declaration_type;
191
192 /**
193 * Either a uniform, global variable, shader input, or shader output. Based on
194 * ir_variable - it should be easy to translate between the two.
195 */
196
197 typedef struct nir_variable {
198 struct exec_node node;
199
200 /**
201 * Declared type of the variable
202 */
203 const struct glsl_type *type;
204
205 /**
206 * Declared name of the variable
207 */
208 char *name;
209
210 struct nir_variable_data {
211 /**
212 * Storage class of the variable.
213 *
214 * \sa nir_variable_mode
215 */
216 nir_variable_mode mode;
217
218 /**
219 * Is the variable read-only?
220 *
221 * This is set for variables declared as \c const, shader inputs,
222 * and uniforms.
223 */
224 unsigned read_only:1;
225 unsigned centroid:1;
226 unsigned sample:1;
227 unsigned patch:1;
228 unsigned invariant:1;
229
230 /**
231 * When separate shader programs are enabled, only input/outputs between
232 * the stages of a multi-stage separate program can be safely removed
233 * from the shader interface. Other input/outputs must remains active.
234 *
235 * This is also used to make sure xfb varyings that are unused by the
236 * fragment shader are not removed.
237 */
238 unsigned always_active_io:1;
239
240 /**
241 * Interpolation mode for shader inputs / outputs
242 *
243 * \sa glsl_interp_mode
244 */
245 unsigned interpolation:2;
246
247 /**
248 * If non-zero, then this variable may be packed along with other variables
249 * into a single varying slot, so this offset should be applied when
250 * accessing components. For example, an offset of 1 means that the x
251 * component of this variable is actually stored in component y of the
252 * location specified by \c location.
253 */
254 unsigned location_frac:2;
255
256 /**
257 * If true, this variable represents an array of scalars that should
258 * be tightly packed. In other words, consecutive array elements
259 * should be stored one component apart, rather than one slot apart.
260 */
261 unsigned compact:1;
262
263 /**
264 * Whether this is a fragment shader output implicitly initialized with
265 * the previous contents of the specified render target at the
266 * framebuffer location corresponding to this shader invocation.
267 */
268 unsigned fb_fetch_output:1;
269
270 /**
271 * Non-zero if this variable is considered bindless as defined by
272 * ARB_bindless_texture.
273 */
274 unsigned bindless:1;
275
276 /**
277 * Was an explicit binding set in the shader?
278 */
279 unsigned explicit_binding:1;
280
281 /**
282 * Was a transfer feedback buffer set in the shader?
283 */
284 unsigned explicit_xfb_buffer:1;
285
286 /**
287 * Was a transfer feedback stride set in the shader?
288 */
289 unsigned explicit_xfb_stride:1;
290
291 /**
292 * Was an explicit offset set in the shader?
293 */
294 unsigned explicit_offset:1;
295
296 /**
297 * \brief Layout qualifier for gl_FragDepth.
298 *
299 * This is not equal to \c ir_depth_layout_none if and only if this
300 * variable is \c gl_FragDepth and a layout qualifier is specified.
301 */
302 nir_depth_layout depth_layout;
303
304 /**
305 * Storage location of the base of this variable
306 *
307 * The precise meaning of this field depends on the nature of the variable.
308 *
309 * - Vertex shader input: one of the values from \c gl_vert_attrib.
310 * - Vertex shader output: one of the values from \c gl_varying_slot.
311 * - Geometry shader input: one of the values from \c gl_varying_slot.
312 * - Geometry shader output: one of the values from \c gl_varying_slot.
313 * - Fragment shader input: one of the values from \c gl_varying_slot.
314 * - Fragment shader output: one of the values from \c gl_frag_result.
315 * - Uniforms: Per-stage uniform slot number for default uniform block.
316 * - Uniforms: Index within the uniform block definition for UBO members.
317 * - Non-UBO Uniforms: uniform slot number.
318 * - Other: This field is not currently used.
319 *
320 * If the variable is a uniform, shader input, or shader output, and the
321 * slot has not been assigned, the value will be -1.
322 */
323 int location;
324
325 /**
326 * The actual location of the variable in the IR. Only valid for inputs
327 * and outputs.
328 */
329 unsigned int driver_location;
330
331 /**
332 * Vertex stream output identifier.
333 *
334 * For packed outputs, bit 31 is set and bits [2*i+1,2*i] indicate the
335 * stream of the i-th component.
336 */
337 unsigned stream;
338
339 /**
340 * output index for dual source blending.
341 */
342 int index;
343
344 /**
345 * Descriptor set binding for sampler or UBO.
346 */
347 int descriptor_set;
348
349 /**
350 * Initial binding point for a sampler or UBO.
351 *
352 * For array types, this represents the binding point for the first element.
353 */
354 int binding;
355
356 /**
357 * Location an atomic counter or transform feedback is stored at.
358 */
359 unsigned offset;
360
361 /**
362 * Transform feedback buffer.
363 */
364 unsigned xfb_buffer;
365
366 /**
367 * Transform feedback stride.
368 */
369 unsigned xfb_stride;
370
371 /**
372 * How the variable was declared. See nir_var_declaration_type.
373 *
374 * This is used to detect variables generated by the compiler, so should
375 * not be visible via the API.
376 */
377 unsigned how_declared:2;
378
379 /**
380 * ARB_shader_image_load_store qualifiers.
381 */
382 struct {
383 enum gl_access_qualifier access;
384
385 /** Image internal format if specified explicitly, otherwise GL_NONE. */
386 GLenum format;
387 } image;
388 } data;
389
390 /**
391 * Built-in state that backs this uniform
392 *
393 * Once set at variable creation, \c state_slots must remain invariant.
394 * This is because, ideally, this array would be shared by all clones of
395 * this variable in the IR tree. In other words, we'd really like for it
396 * to be a fly-weight.
397 *
398 * If the variable is not a uniform, \c num_state_slots will be zero and
399 * \c state_slots will be \c NULL.
400 */
401 /*@{*/
402 unsigned num_state_slots; /**< Number of state slots used */
403 nir_state_slot *state_slots; /**< State descriptors. */
404 /*@}*/
405
406 /**
407 * Constant expression assigned in the initializer of the variable
408 *
409 * This field should only be used temporarily by creators of NIR shaders
410 * and then lower_constant_initializers can be used to get rid of them.
411 * Most of the rest of NIR ignores this field or asserts that it's NULL.
412 */
413 nir_constant *constant_initializer;
414
415 /**
416 * For variables that are in an interface block or are an instance of an
417 * interface block, this is the \c GLSL_TYPE_INTERFACE type for that block.
418 *
419 * \sa ir_variable::location
420 */
421 const struct glsl_type *interface_type;
422
423 /**
424 * Description of per-member data for per-member struct variables
425 *
426 * This is used for variables which are actually an amalgamation of
427 * multiple entities such as a struct of built-in values or a struct of
428 * inputs each with their own layout specifier. This is only allowed on
429 * variables with a struct or array of array of struct type.
430 */
431 unsigned num_members;
432 struct nir_variable_data *members;
433 } nir_variable;
434
435 #define nir_foreach_variable(var, var_list) \
436 foreach_list_typed(nir_variable, var, node, var_list)
437
438 #define nir_foreach_variable_safe(var, var_list) \
439 foreach_list_typed_safe(nir_variable, var, node, var_list)
440
441 static inline bool
442 nir_variable_is_global(const nir_variable *var)
443 {
444 return var->data.mode != nir_var_function_temp;
445 }
446
447 typedef struct nir_register {
448 struct exec_node node;
449
450 unsigned num_components; /** < number of vector components */
451 unsigned num_array_elems; /** < size of array (0 for no array) */
452
453 /* The bit-size of each channel; must be one of 8, 16, 32, or 64 */
454 uint8_t bit_size;
455
456 /** generic register index. */
457 unsigned index;
458
459 /** only for debug purposes, can be NULL */
460 const char *name;
461
462 /** set of nir_srcs where this register is used (read from) */
463 struct list_head uses;
464
465 /** set of nir_dests where this register is defined (written to) */
466 struct list_head defs;
467
468 /** set of nir_ifs where this register is used as a condition */
469 struct list_head if_uses;
470 } nir_register;
471
472 #define nir_foreach_register(reg, reg_list) \
473 foreach_list_typed(nir_register, reg, node, reg_list)
474 #define nir_foreach_register_safe(reg, reg_list) \
475 foreach_list_typed_safe(nir_register, reg, node, reg_list)
476
477 typedef enum PACKED {
478 nir_instr_type_alu,
479 nir_instr_type_deref,
480 nir_instr_type_call,
481 nir_instr_type_tex,
482 nir_instr_type_intrinsic,
483 nir_instr_type_load_const,
484 nir_instr_type_jump,
485 nir_instr_type_ssa_undef,
486 nir_instr_type_phi,
487 nir_instr_type_parallel_copy,
488 } nir_instr_type;
489
490 typedef struct nir_instr {
491 struct exec_node node;
492 struct nir_block *block;
493 nir_instr_type type;
494
495 /* A temporary for optimization and analysis passes to use for storing
496 * flags. For instance, DCE uses this to store the "dead/live" info.
497 */
498 uint8_t pass_flags;
499
500 /** generic instruction index. */
501 unsigned index;
502 } nir_instr;
503
504 static inline nir_instr *
505 nir_instr_next(nir_instr *instr)
506 {
507 struct exec_node *next = exec_node_get_next(&instr->node);
508 if (exec_node_is_tail_sentinel(next))
509 return NULL;
510 else
511 return exec_node_data(nir_instr, next, node);
512 }
513
514 static inline nir_instr *
515 nir_instr_prev(nir_instr *instr)
516 {
517 struct exec_node *prev = exec_node_get_prev(&instr->node);
518 if (exec_node_is_head_sentinel(prev))
519 return NULL;
520 else
521 return exec_node_data(nir_instr, prev, node);
522 }
523
524 static inline bool
525 nir_instr_is_first(const nir_instr *instr)
526 {
527 return exec_node_is_head_sentinel(exec_node_get_prev_const(&instr->node));
528 }
529
530 static inline bool
531 nir_instr_is_last(const nir_instr *instr)
532 {
533 return exec_node_is_tail_sentinel(exec_node_get_next_const(&instr->node));
534 }
535
536 typedef struct nir_ssa_def {
537 /** for debugging only, can be NULL */
538 const char* name;
539
540 /** generic SSA definition index. */
541 unsigned index;
542
543 /** Index into the live_in and live_out bitfields */
544 unsigned live_index;
545
546 /** Instruction which produces this SSA value. */
547 nir_instr *parent_instr;
548
549 /** set of nir_instrs where this register is used (read from) */
550 struct list_head uses;
551
552 /** set of nir_ifs where this register is used as a condition */
553 struct list_head if_uses;
554
555 uint8_t num_components;
556
557 /* The bit-size of each channel; must be one of 8, 16, 32, or 64 */
558 uint8_t bit_size;
559 } nir_ssa_def;
560
561 struct nir_src;
562
563 typedef struct {
564 nir_register *reg;
565 struct nir_src *indirect; /** < NULL for no indirect offset */
566 unsigned base_offset;
567
568 /* TODO use-def chain goes here */
569 } nir_reg_src;
570
571 typedef struct {
572 nir_instr *parent_instr;
573 struct list_head def_link;
574
575 nir_register *reg;
576 struct nir_src *indirect; /** < NULL for no indirect offset */
577 unsigned base_offset;
578
579 /* TODO def-use chain goes here */
580 } nir_reg_dest;
581
582 struct nir_if;
583
584 typedef struct nir_src {
585 union {
586 /** Instruction that consumes this value as a source. */
587 nir_instr *parent_instr;
588 struct nir_if *parent_if;
589 };
590
591 struct list_head use_link;
592
593 union {
594 nir_reg_src reg;
595 nir_ssa_def *ssa;
596 };
597
598 bool is_ssa;
599 } nir_src;
600
601 static inline nir_src
602 nir_src_init(void)
603 {
604 nir_src src = { { NULL } };
605 return src;
606 }
607
608 #define NIR_SRC_INIT nir_src_init()
609
610 #define nir_foreach_use(src, reg_or_ssa_def) \
611 list_for_each_entry(nir_src, src, &(reg_or_ssa_def)->uses, use_link)
612
613 #define nir_foreach_use_safe(src, reg_or_ssa_def) \
614 list_for_each_entry_safe(nir_src, src, &(reg_or_ssa_def)->uses, use_link)
615
616 #define nir_foreach_if_use(src, reg_or_ssa_def) \
617 list_for_each_entry(nir_src, src, &(reg_or_ssa_def)->if_uses, use_link)
618
619 #define nir_foreach_if_use_safe(src, reg_or_ssa_def) \
620 list_for_each_entry_safe(nir_src, src, &(reg_or_ssa_def)->if_uses, use_link)
621
622 typedef struct {
623 union {
624 nir_reg_dest reg;
625 nir_ssa_def ssa;
626 };
627
628 bool is_ssa;
629 } nir_dest;
630
631 static inline nir_dest
632 nir_dest_init(void)
633 {
634 nir_dest dest = { { { NULL } } };
635 return dest;
636 }
637
638 #define NIR_DEST_INIT nir_dest_init()
639
640 #define nir_foreach_def(dest, reg) \
641 list_for_each_entry(nir_dest, dest, &(reg)->defs, reg.def_link)
642
643 #define nir_foreach_def_safe(dest, reg) \
644 list_for_each_entry_safe(nir_dest, dest, &(reg)->defs, reg.def_link)
645
646 static inline nir_src
647 nir_src_for_ssa(nir_ssa_def *def)
648 {
649 nir_src src = NIR_SRC_INIT;
650
651 src.is_ssa = true;
652 src.ssa = def;
653
654 return src;
655 }
656
657 static inline nir_src
658 nir_src_for_reg(nir_register *reg)
659 {
660 nir_src src = NIR_SRC_INIT;
661
662 src.is_ssa = false;
663 src.reg.reg = reg;
664 src.reg.indirect = NULL;
665 src.reg.base_offset = 0;
666
667 return src;
668 }
669
670 static inline nir_dest
671 nir_dest_for_reg(nir_register *reg)
672 {
673 nir_dest dest = NIR_DEST_INIT;
674
675 dest.reg.reg = reg;
676
677 return dest;
678 }
679
680 static inline unsigned
681 nir_src_bit_size(nir_src src)
682 {
683 return src.is_ssa ? src.ssa->bit_size : src.reg.reg->bit_size;
684 }
685
686 static inline unsigned
687 nir_src_num_components(nir_src src)
688 {
689 return src.is_ssa ? src.ssa->num_components : src.reg.reg->num_components;
690 }
691
692 static inline bool
693 nir_src_is_const(nir_src src)
694 {
695 return src.is_ssa &&
696 src.ssa->parent_instr->type == nir_instr_type_load_const;
697 }
698
699 int64_t nir_src_as_int(nir_src src);
700 uint64_t nir_src_as_uint(nir_src src);
701 bool nir_src_as_bool(nir_src src);
702 double nir_src_as_float(nir_src src);
703 int64_t nir_src_comp_as_int(nir_src src, unsigned component);
704 uint64_t nir_src_comp_as_uint(nir_src src, unsigned component);
705 bool nir_src_comp_as_bool(nir_src src, unsigned component);
706 double nir_src_comp_as_float(nir_src src, unsigned component);
707
708 static inline unsigned
709 nir_dest_bit_size(nir_dest dest)
710 {
711 return dest.is_ssa ? dest.ssa.bit_size : dest.reg.reg->bit_size;
712 }
713
714 static inline unsigned
715 nir_dest_num_components(nir_dest dest)
716 {
717 return dest.is_ssa ? dest.ssa.num_components : dest.reg.reg->num_components;
718 }
719
720 void nir_src_copy(nir_src *dest, const nir_src *src, void *instr_or_if);
721 void nir_dest_copy(nir_dest *dest, const nir_dest *src, nir_instr *instr);
722
723 typedef struct {
724 nir_src src;
725
726 /**
727 * \name input modifiers
728 */
729 /*@{*/
730 /**
731 * For inputs interpreted as floating point, flips the sign bit. For
732 * inputs interpreted as integers, performs the two's complement negation.
733 */
734 bool negate;
735
736 /**
737 * Clears the sign bit for floating point values, and computes the integer
738 * absolute value for integers. Note that the negate modifier acts after
739 * the absolute value modifier, therefore if both are set then all inputs
740 * will become negative.
741 */
742 bool abs;
743 /*@}*/
744
745 /**
746 * For each input component, says which component of the register it is
747 * chosen from. Note that which elements of the swizzle are used and which
748 * are ignored are based on the write mask for most opcodes - for example,
749 * a statement like "foo.xzw = bar.zyx" would have a writemask of 1101b and
750 * a swizzle of {2, x, 1, 0} where x means "don't care."
751 */
752 uint8_t swizzle[NIR_MAX_VEC_COMPONENTS];
753 } nir_alu_src;
754
755 typedef struct {
756 nir_dest dest;
757
758 /**
759 * \name saturate output modifier
760 *
761 * Only valid for opcodes that output floating-point numbers. Clamps the
762 * output to between 0.0 and 1.0 inclusive.
763 */
764
765 bool saturate;
766
767 unsigned write_mask : NIR_MAX_VEC_COMPONENTS; /* ignored if dest.is_ssa is true */
768 } nir_alu_dest;
769
770 /** NIR sized and unsized types
771 *
772 * The values in this enum are carefully chosen so that the sized type is
773 * just the unsized type OR the number of bits.
774 */
775 typedef enum {
776 nir_type_invalid = 0, /* Not a valid type */
777 nir_type_int = 2,
778 nir_type_uint = 4,
779 nir_type_bool = 6,
780 nir_type_float = 128,
781 nir_type_bool1 = 1 | nir_type_bool,
782 nir_type_bool32 = 32 | nir_type_bool,
783 nir_type_int1 = 1 | nir_type_int,
784 nir_type_int8 = 8 | nir_type_int,
785 nir_type_int16 = 16 | nir_type_int,
786 nir_type_int32 = 32 | nir_type_int,
787 nir_type_int64 = 64 | nir_type_int,
788 nir_type_uint1 = 1 | nir_type_uint,
789 nir_type_uint8 = 8 | nir_type_uint,
790 nir_type_uint16 = 16 | nir_type_uint,
791 nir_type_uint32 = 32 | nir_type_uint,
792 nir_type_uint64 = 64 | nir_type_uint,
793 nir_type_float16 = 16 | nir_type_float,
794 nir_type_float32 = 32 | nir_type_float,
795 nir_type_float64 = 64 | nir_type_float,
796 } nir_alu_type;
797
798 #define NIR_ALU_TYPE_SIZE_MASK 0x79
799 #define NIR_ALU_TYPE_BASE_TYPE_MASK 0x86
800
801 static inline unsigned
802 nir_alu_type_get_type_size(nir_alu_type type)
803 {
804 return type & NIR_ALU_TYPE_SIZE_MASK;
805 }
806
807 static inline unsigned
808 nir_alu_type_get_base_type(nir_alu_type type)
809 {
810 return type & NIR_ALU_TYPE_BASE_TYPE_MASK;
811 }
812
813 static inline nir_alu_type
814 nir_get_nir_type_for_glsl_base_type(enum glsl_base_type base_type)
815 {
816 switch (base_type) {
817 case GLSL_TYPE_BOOL:
818 return nir_type_bool1;
819 break;
820 case GLSL_TYPE_UINT:
821 return nir_type_uint32;
822 break;
823 case GLSL_TYPE_INT:
824 return nir_type_int32;
825 break;
826 case GLSL_TYPE_UINT16:
827 return nir_type_uint16;
828 break;
829 case GLSL_TYPE_INT16:
830 return nir_type_int16;
831 break;
832 case GLSL_TYPE_UINT8:
833 return nir_type_uint8;
834 case GLSL_TYPE_INT8:
835 return nir_type_int8;
836 case GLSL_TYPE_UINT64:
837 return nir_type_uint64;
838 break;
839 case GLSL_TYPE_INT64:
840 return nir_type_int64;
841 break;
842 case GLSL_TYPE_FLOAT:
843 return nir_type_float32;
844 break;
845 case GLSL_TYPE_FLOAT16:
846 return nir_type_float16;
847 break;
848 case GLSL_TYPE_DOUBLE:
849 return nir_type_float64;
850 break;
851 default:
852 unreachable("unknown type");
853 }
854 }
855
856 static inline nir_alu_type
857 nir_get_nir_type_for_glsl_type(const struct glsl_type *type)
858 {
859 return nir_get_nir_type_for_glsl_base_type(glsl_get_base_type(type));
860 }
861
862 nir_op nir_type_conversion_op(nir_alu_type src, nir_alu_type dst,
863 nir_rounding_mode rnd);
864
865 static inline nir_op
866 nir_op_vec(unsigned components)
867 {
868 switch (components) {
869 case 1: return nir_op_mov;
870 case 2: return nir_op_vec2;
871 case 3: return nir_op_vec3;
872 case 4: return nir_op_vec4;
873 default: unreachable("bad component count");
874 }
875 }
876
877 typedef enum {
878 /**
879 * Operation where the first two sources are commutative.
880 *
881 * For 2-source operations, this just mathematical commutativity. Some
882 * 3-source operations, like ffma, are only commutative in the first two
883 * sources.
884 */
885 NIR_OP_IS_2SRC_COMMUTATIVE = (1 << 0),
886 NIR_OP_IS_ASSOCIATIVE = (1 << 1),
887 } nir_op_algebraic_property;
888
889 typedef struct {
890 const char *name;
891
892 unsigned num_inputs;
893
894 /**
895 * The number of components in the output
896 *
897 * If non-zero, this is the size of the output and input sizes are
898 * explicitly given; swizzle and writemask are still in effect, but if
899 * the output component is masked out, then the input component may
900 * still be in use.
901 *
902 * If zero, the opcode acts in the standard, per-component manner; the
903 * operation is performed on each component (except the ones that are
904 * masked out) with the input being taken from the input swizzle for
905 * that component.
906 *
907 * The size of some of the inputs may be given (i.e. non-zero) even
908 * though output_size is zero; in that case, the inputs with a zero
909 * size act per-component, while the inputs with non-zero size don't.
910 */
911 unsigned output_size;
912
913 /**
914 * The type of vector that the instruction outputs. Note that the
915 * staurate modifier is only allowed on outputs with the float type.
916 */
917
918 nir_alu_type output_type;
919
920 /**
921 * The number of components in each input
922 */
923 unsigned input_sizes[NIR_MAX_VEC_COMPONENTS];
924
925 /**
926 * The type of vector that each input takes. Note that negate and
927 * absolute value are only allowed on inputs with int or float type and
928 * behave differently on the two.
929 */
930 nir_alu_type input_types[NIR_MAX_VEC_COMPONENTS];
931
932 nir_op_algebraic_property algebraic_properties;
933
934 /* Whether this represents a numeric conversion opcode */
935 bool is_conversion;
936 } nir_op_info;
937
938 extern const nir_op_info nir_op_infos[nir_num_opcodes];
939
940 typedef struct nir_alu_instr {
941 nir_instr instr;
942 nir_op op;
943
944 /** Indicates that this ALU instruction generates an exact value
945 *
946 * This is kind of a mixture of GLSL "precise" and "invariant" and not
947 * really equivalent to either. This indicates that the value generated by
948 * this operation is high-precision and any code transformations that touch
949 * it must ensure that the resulting value is bit-for-bit identical to the
950 * original.
951 */
952 bool exact;
953
954 nir_alu_dest dest;
955 nir_alu_src src[];
956 } nir_alu_instr;
957
958 void nir_alu_src_copy(nir_alu_src *dest, const nir_alu_src *src,
959 nir_alu_instr *instr);
960 void nir_alu_dest_copy(nir_alu_dest *dest, const nir_alu_dest *src,
961 nir_alu_instr *instr);
962
963 /* is this source channel used? */
964 static inline bool
965 nir_alu_instr_channel_used(const nir_alu_instr *instr, unsigned src,
966 unsigned channel)
967 {
968 if (nir_op_infos[instr->op].input_sizes[src] > 0)
969 return channel < nir_op_infos[instr->op].input_sizes[src];
970
971 return (instr->dest.write_mask >> channel) & 1;
972 }
973
974 static inline nir_component_mask_t
975 nir_alu_instr_src_read_mask(const nir_alu_instr *instr, unsigned src)
976 {
977 nir_component_mask_t read_mask = 0;
978 for (unsigned c = 0; c < NIR_MAX_VEC_COMPONENTS; c++) {
979 if (!nir_alu_instr_channel_used(instr, src, c))
980 continue;
981
982 read_mask |= (1 << instr->src[src].swizzle[c]);
983 }
984 return read_mask;
985 }
986
987 /*
988 * For instructions whose destinations are SSA, get the number of channels
989 * used for a source
990 */
991 static inline unsigned
992 nir_ssa_alu_instr_src_components(const nir_alu_instr *instr, unsigned src)
993 {
994 assert(instr->dest.dest.is_ssa);
995
996 if (nir_op_infos[instr->op].input_sizes[src] > 0)
997 return nir_op_infos[instr->op].input_sizes[src];
998
999 return instr->dest.dest.ssa.num_components;
1000 }
1001
1002 bool nir_const_value_negative_equal(const nir_const_value *c1,
1003 const nir_const_value *c2,
1004 unsigned components,
1005 nir_alu_type base_type,
1006 unsigned bits);
1007
1008 bool nir_alu_srcs_equal(const nir_alu_instr *alu1, const nir_alu_instr *alu2,
1009 unsigned src1, unsigned src2);
1010
1011 bool nir_alu_srcs_negative_equal(const nir_alu_instr *alu1,
1012 const nir_alu_instr *alu2,
1013 unsigned src1, unsigned src2);
1014
1015 typedef enum {
1016 nir_deref_type_var,
1017 nir_deref_type_array,
1018 nir_deref_type_array_wildcard,
1019 nir_deref_type_ptr_as_array,
1020 nir_deref_type_struct,
1021 nir_deref_type_cast,
1022 } nir_deref_type;
1023
1024 typedef struct {
1025 nir_instr instr;
1026
1027 /** The type of this deref instruction */
1028 nir_deref_type deref_type;
1029
1030 /** The mode of the underlying variable */
1031 nir_variable_mode mode;
1032
1033 /** The dereferenced type of the resulting pointer value */
1034 const struct glsl_type *type;
1035
1036 union {
1037 /** Variable being dereferenced if deref_type is a deref_var */
1038 nir_variable *var;
1039
1040 /** Parent deref if deref_type is not deref_var */
1041 nir_src parent;
1042 };
1043
1044 /** Additional deref parameters */
1045 union {
1046 struct {
1047 nir_src index;
1048 } arr;
1049
1050 struct {
1051 unsigned index;
1052 } strct;
1053
1054 struct {
1055 unsigned ptr_stride;
1056 } cast;
1057 };
1058
1059 /** Destination to store the resulting "pointer" */
1060 nir_dest dest;
1061 } nir_deref_instr;
1062
1063 static inline nir_deref_instr *nir_src_as_deref(nir_src src);
1064
1065 static inline nir_deref_instr *
1066 nir_deref_instr_parent(const nir_deref_instr *instr)
1067 {
1068 if (instr->deref_type == nir_deref_type_var)
1069 return NULL;
1070 else
1071 return nir_src_as_deref(instr->parent);
1072 }
1073
1074 static inline nir_variable *
1075 nir_deref_instr_get_variable(const nir_deref_instr *instr)
1076 {
1077 while (instr->deref_type != nir_deref_type_var) {
1078 if (instr->deref_type == nir_deref_type_cast)
1079 return NULL;
1080
1081 instr = nir_deref_instr_parent(instr);
1082 }
1083
1084 return instr->var;
1085 }
1086
1087 bool nir_deref_instr_has_indirect(nir_deref_instr *instr);
1088 bool nir_deref_instr_has_complex_use(nir_deref_instr *instr);
1089
1090 bool nir_deref_instr_remove_if_unused(nir_deref_instr *instr);
1091
1092 unsigned nir_deref_instr_ptr_as_array_stride(nir_deref_instr *instr);
1093
1094 typedef struct {
1095 nir_instr instr;
1096
1097 struct nir_function *callee;
1098
1099 unsigned num_params;
1100 nir_src params[];
1101 } nir_call_instr;
1102
1103 #include "nir_intrinsics.h"
1104
1105 #define NIR_INTRINSIC_MAX_CONST_INDEX 4
1106
1107 /** Represents an intrinsic
1108 *
1109 * An intrinsic is an instruction type for handling things that are
1110 * more-or-less regular operations but don't just consume and produce SSA
1111 * values like ALU operations do. Intrinsics are not for things that have
1112 * special semantic meaning such as phi nodes and parallel copies.
1113 * Examples of intrinsics include variable load/store operations, system
1114 * value loads, and the like. Even though texturing more-or-less falls
1115 * under this category, texturing is its own instruction type because
1116 * trying to represent texturing with intrinsics would lead to a
1117 * combinatorial explosion of intrinsic opcodes.
1118 *
1119 * By having a single instruction type for handling a lot of different
1120 * cases, optimization passes can look for intrinsics and, for the most
1121 * part, completely ignore them. Each intrinsic type also has a few
1122 * possible flags that govern whether or not they can be reordered or
1123 * eliminated. That way passes like dead code elimination can still work
1124 * on intrisics without understanding the meaning of each.
1125 *
1126 * Each intrinsic has some number of constant indices, some number of
1127 * variables, and some number of sources. What these sources, variables,
1128 * and indices mean depends on the intrinsic and is documented with the
1129 * intrinsic declaration in nir_intrinsics.h. Intrinsics and texture
1130 * instructions are the only types of instruction that can operate on
1131 * variables.
1132 */
1133 typedef struct {
1134 nir_instr instr;
1135
1136 nir_intrinsic_op intrinsic;
1137
1138 nir_dest dest;
1139
1140 /** number of components if this is a vectorized intrinsic
1141 *
1142 * Similarly to ALU operations, some intrinsics are vectorized.
1143 * An intrinsic is vectorized if nir_intrinsic_infos.dest_components == 0.
1144 * For vectorized intrinsics, the num_components field specifies the
1145 * number of destination components and the number of source components
1146 * for all sources with nir_intrinsic_infos.src_components[i] == 0.
1147 */
1148 uint8_t num_components;
1149
1150 int const_index[NIR_INTRINSIC_MAX_CONST_INDEX];
1151
1152 nir_src src[];
1153 } nir_intrinsic_instr;
1154
1155 static inline nir_variable *
1156 nir_intrinsic_get_var(nir_intrinsic_instr *intrin, unsigned i)
1157 {
1158 return nir_deref_instr_get_variable(nir_src_as_deref(intrin->src[i]));
1159 }
1160
1161 /**
1162 * \name NIR intrinsics semantic flags
1163 *
1164 * information about what the compiler can do with the intrinsics.
1165 *
1166 * \sa nir_intrinsic_info::flags
1167 */
1168 typedef enum {
1169 /**
1170 * whether the intrinsic can be safely eliminated if none of its output
1171 * value is not being used.
1172 */
1173 NIR_INTRINSIC_CAN_ELIMINATE = (1 << 0),
1174
1175 /**
1176 * Whether the intrinsic can be reordered with respect to any other
1177 * intrinsic, i.e. whether the only reordering dependencies of the
1178 * intrinsic are due to the register reads/writes.
1179 */
1180 NIR_INTRINSIC_CAN_REORDER = (1 << 1),
1181 } nir_intrinsic_semantic_flag;
1182
1183 /**
1184 * \name NIR intrinsics const-index flag
1185 *
1186 * Indicates the usage of a const_index slot.
1187 *
1188 * \sa nir_intrinsic_info::index_map
1189 */
1190 typedef enum {
1191 /**
1192 * Generally instructions that take a offset src argument, can encode
1193 * a constant 'base' value which is added to the offset.
1194 */
1195 NIR_INTRINSIC_BASE = 1,
1196
1197 /**
1198 * For store instructions, a writemask for the store.
1199 */
1200 NIR_INTRINSIC_WRMASK = 2,
1201
1202 /**
1203 * The stream-id for GS emit_vertex/end_primitive intrinsics.
1204 */
1205 NIR_INTRINSIC_STREAM_ID = 3,
1206
1207 /**
1208 * The clip-plane id for load_user_clip_plane intrinsic.
1209 */
1210 NIR_INTRINSIC_UCP_ID = 4,
1211
1212 /**
1213 * The amount of data, starting from BASE, that this instruction may
1214 * access. This is used to provide bounds if the offset is not constant.
1215 */
1216 NIR_INTRINSIC_RANGE = 5,
1217
1218 /**
1219 * The Vulkan descriptor set for vulkan_resource_index intrinsic.
1220 */
1221 NIR_INTRINSIC_DESC_SET = 6,
1222
1223 /**
1224 * The Vulkan descriptor set binding for vulkan_resource_index intrinsic.
1225 */
1226 NIR_INTRINSIC_BINDING = 7,
1227
1228 /**
1229 * Component offset.
1230 */
1231 NIR_INTRINSIC_COMPONENT = 8,
1232
1233 /**
1234 * Interpolation mode (only meaningful for FS inputs).
1235 */
1236 NIR_INTRINSIC_INTERP_MODE = 9,
1237
1238 /**
1239 * A binary nir_op to use when performing a reduction or scan operation
1240 */
1241 NIR_INTRINSIC_REDUCTION_OP = 10,
1242
1243 /**
1244 * Cluster size for reduction operations
1245 */
1246 NIR_INTRINSIC_CLUSTER_SIZE = 11,
1247
1248 /**
1249 * Parameter index for a load_param intrinsic
1250 */
1251 NIR_INTRINSIC_PARAM_IDX = 12,
1252
1253 /**
1254 * Image dimensionality for image intrinsics
1255 *
1256 * One of GLSL_SAMPLER_DIM_*
1257 */
1258 NIR_INTRINSIC_IMAGE_DIM = 13,
1259
1260 /**
1261 * Non-zero if we are accessing an array image
1262 */
1263 NIR_INTRINSIC_IMAGE_ARRAY = 14,
1264
1265 /**
1266 * Image format for image intrinsics
1267 */
1268 NIR_INTRINSIC_FORMAT = 15,
1269
1270 /**
1271 * Access qualifiers for image and memory access intrinsics
1272 */
1273 NIR_INTRINSIC_ACCESS = 16,
1274
1275 /**
1276 * Alignment for offsets and addresses
1277 *
1278 * These two parameters, specify an alignment in terms of a multiplier and
1279 * an offset. The offset or address parameter X of the intrinsic is
1280 * guaranteed to satisfy the following:
1281 *
1282 * (X - align_offset) % align_mul == 0
1283 */
1284 NIR_INTRINSIC_ALIGN_MUL = 17,
1285 NIR_INTRINSIC_ALIGN_OFFSET = 18,
1286
1287 /**
1288 * The Vulkan descriptor type for a vulkan_resource_[re]index intrinsic.
1289 */
1290 NIR_INTRINSIC_DESC_TYPE = 19,
1291
1292 /**
1293 * The nir_alu_type of a uniform/input/output
1294 */
1295 NIR_INTRINSIC_TYPE = 20,
1296
1297 NIR_INTRINSIC_NUM_INDEX_FLAGS,
1298
1299 } nir_intrinsic_index_flag;
1300
1301 #define NIR_INTRINSIC_MAX_INPUTS 5
1302
1303 typedef struct {
1304 const char *name;
1305
1306 unsigned num_srcs; /** < number of register/SSA inputs */
1307
1308 /** number of components of each input register
1309 *
1310 * If this value is 0, the number of components is given by the
1311 * num_components field of nir_intrinsic_instr. If this value is -1, the
1312 * intrinsic consumes however many components are provided and it is not
1313 * validated at all.
1314 */
1315 int src_components[NIR_INTRINSIC_MAX_INPUTS];
1316
1317 bool has_dest;
1318
1319 /** number of components of the output register
1320 *
1321 * If this value is 0, the number of components is given by the
1322 * num_components field of nir_intrinsic_instr.
1323 */
1324 unsigned dest_components;
1325
1326 /** bitfield of legal bit sizes */
1327 unsigned dest_bit_sizes;
1328
1329 /** the number of constant indices used by the intrinsic */
1330 unsigned num_indices;
1331
1332 /** indicates the usage of intr->const_index[n] */
1333 unsigned index_map[NIR_INTRINSIC_NUM_INDEX_FLAGS];
1334
1335 /** semantic flags for calls to this intrinsic */
1336 nir_intrinsic_semantic_flag flags;
1337 } nir_intrinsic_info;
1338
1339 extern const nir_intrinsic_info nir_intrinsic_infos[nir_num_intrinsics];
1340
1341 static inline unsigned
1342 nir_intrinsic_src_components(nir_intrinsic_instr *intr, unsigned srcn)
1343 {
1344 const nir_intrinsic_info *info = &nir_intrinsic_infos[intr->intrinsic];
1345 assert(srcn < info->num_srcs);
1346 if (info->src_components[srcn] > 0)
1347 return info->src_components[srcn];
1348 else if (info->src_components[srcn] == 0)
1349 return intr->num_components;
1350 else
1351 return nir_src_num_components(intr->src[srcn]);
1352 }
1353
1354 static inline unsigned
1355 nir_intrinsic_dest_components(nir_intrinsic_instr *intr)
1356 {
1357 const nir_intrinsic_info *info = &nir_intrinsic_infos[intr->intrinsic];
1358 if (!info->has_dest)
1359 return 0;
1360 else if (info->dest_components)
1361 return info->dest_components;
1362 else
1363 return intr->num_components;
1364 }
1365
1366 #define INTRINSIC_IDX_ACCESSORS(name, flag, type) \
1367 static inline type \
1368 nir_intrinsic_##name(const nir_intrinsic_instr *instr) \
1369 { \
1370 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic]; \
1371 assert(info->index_map[NIR_INTRINSIC_##flag] > 0); \
1372 return (type)instr->const_index[info->index_map[NIR_INTRINSIC_##flag] - 1]; \
1373 } \
1374 static inline void \
1375 nir_intrinsic_set_##name(nir_intrinsic_instr *instr, type val) \
1376 { \
1377 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic]; \
1378 assert(info->index_map[NIR_INTRINSIC_##flag] > 0); \
1379 instr->const_index[info->index_map[NIR_INTRINSIC_##flag] - 1] = val; \
1380 }
1381
1382 INTRINSIC_IDX_ACCESSORS(write_mask, WRMASK, unsigned)
1383 INTRINSIC_IDX_ACCESSORS(base, BASE, int)
1384 INTRINSIC_IDX_ACCESSORS(stream_id, STREAM_ID, unsigned)
1385 INTRINSIC_IDX_ACCESSORS(ucp_id, UCP_ID, unsigned)
1386 INTRINSIC_IDX_ACCESSORS(range, RANGE, unsigned)
1387 INTRINSIC_IDX_ACCESSORS(desc_set, DESC_SET, unsigned)
1388 INTRINSIC_IDX_ACCESSORS(binding, BINDING, unsigned)
1389 INTRINSIC_IDX_ACCESSORS(component, COMPONENT, unsigned)
1390 INTRINSIC_IDX_ACCESSORS(interp_mode, INTERP_MODE, unsigned)
1391 INTRINSIC_IDX_ACCESSORS(reduction_op, REDUCTION_OP, unsigned)
1392 INTRINSIC_IDX_ACCESSORS(cluster_size, CLUSTER_SIZE, unsigned)
1393 INTRINSIC_IDX_ACCESSORS(param_idx, PARAM_IDX, unsigned)
1394 INTRINSIC_IDX_ACCESSORS(image_dim, IMAGE_DIM, enum glsl_sampler_dim)
1395 INTRINSIC_IDX_ACCESSORS(image_array, IMAGE_ARRAY, bool)
1396 INTRINSIC_IDX_ACCESSORS(access, ACCESS, enum gl_access_qualifier)
1397 INTRINSIC_IDX_ACCESSORS(format, FORMAT, unsigned)
1398 INTRINSIC_IDX_ACCESSORS(align_mul, ALIGN_MUL, unsigned)
1399 INTRINSIC_IDX_ACCESSORS(align_offset, ALIGN_OFFSET, unsigned)
1400 INTRINSIC_IDX_ACCESSORS(desc_type, DESC_TYPE, unsigned)
1401 INTRINSIC_IDX_ACCESSORS(type, TYPE, nir_alu_type)
1402
1403 static inline void
1404 nir_intrinsic_set_align(nir_intrinsic_instr *intrin,
1405 unsigned align_mul, unsigned align_offset)
1406 {
1407 assert(util_is_power_of_two_nonzero(align_mul));
1408 assert(align_offset < align_mul);
1409 nir_intrinsic_set_align_mul(intrin, align_mul);
1410 nir_intrinsic_set_align_offset(intrin, align_offset);
1411 }
1412
1413 /** Returns a simple alignment for a load/store intrinsic offset
1414 *
1415 * Instead of the full mul+offset alignment scheme provided by the ALIGN_MUL
1416 * and ALIGN_OFFSET parameters, this helper takes both into account and
1417 * provides a single simple alignment parameter. The offset X is guaranteed
1418 * to satisfy X % align == 0.
1419 */
1420 static inline unsigned
1421 nir_intrinsic_align(const nir_intrinsic_instr *intrin)
1422 {
1423 const unsigned align_mul = nir_intrinsic_align_mul(intrin);
1424 const unsigned align_offset = nir_intrinsic_align_offset(intrin);
1425 assert(align_offset < align_mul);
1426 return align_offset ? 1 << (ffs(align_offset) - 1) : align_mul;
1427 }
1428
1429 /* Converts a image_deref_* intrinsic into a image_* one */
1430 void nir_rewrite_image_intrinsic(nir_intrinsic_instr *instr,
1431 nir_ssa_def *handle, bool bindless);
1432
1433 /**
1434 * \group texture information
1435 *
1436 * This gives semantic information about textures which is useful to the
1437 * frontend, the backend, and lowering passes, but not the optimizer.
1438 */
1439
1440 typedef enum {
1441 nir_tex_src_coord,
1442 nir_tex_src_projector,
1443 nir_tex_src_comparator, /* shadow comparator */
1444 nir_tex_src_offset,
1445 nir_tex_src_bias,
1446 nir_tex_src_lod,
1447 nir_tex_src_min_lod,
1448 nir_tex_src_ms_index, /* MSAA sample index */
1449 nir_tex_src_ms_mcs, /* MSAA compression value */
1450 nir_tex_src_ddx,
1451 nir_tex_src_ddy,
1452 nir_tex_src_texture_deref, /* < deref pointing to the texture */
1453 nir_tex_src_sampler_deref, /* < deref pointing to the sampler */
1454 nir_tex_src_texture_offset, /* < dynamically uniform indirect offset */
1455 nir_tex_src_sampler_offset, /* < dynamically uniform indirect offset */
1456 nir_tex_src_texture_handle, /* < bindless texture handle */
1457 nir_tex_src_sampler_handle, /* < bindless sampler handle */
1458 nir_tex_src_plane, /* < selects plane for planar textures */
1459 nir_num_tex_src_types
1460 } nir_tex_src_type;
1461
1462 typedef struct {
1463 nir_src src;
1464 nir_tex_src_type src_type;
1465 } nir_tex_src;
1466
1467 typedef enum {
1468 nir_texop_tex, /**< Regular texture look-up */
1469 nir_texop_txb, /**< Texture look-up with LOD bias */
1470 nir_texop_txl, /**< Texture look-up with explicit LOD */
1471 nir_texop_txd, /**< Texture look-up with partial derivatives */
1472 nir_texop_txf, /**< Texel fetch with explicit LOD */
1473 nir_texop_txf_ms, /**< Multisample texture fetch */
1474 nir_texop_txf_ms_fb, /**< Multisample texture fetch from framebuffer */
1475 nir_texop_txf_ms_mcs, /**< Multisample compression value fetch */
1476 nir_texop_txs, /**< Texture size */
1477 nir_texop_lod, /**< Texture lod query */
1478 nir_texop_tg4, /**< Texture gather */
1479 nir_texop_query_levels, /**< Texture levels query */
1480 nir_texop_texture_samples, /**< Texture samples query */
1481 nir_texop_samples_identical, /**< Query whether all samples are definitely
1482 * identical.
1483 */
1484 } nir_texop;
1485
1486 typedef struct {
1487 nir_instr instr;
1488
1489 enum glsl_sampler_dim sampler_dim;
1490 nir_alu_type dest_type;
1491
1492 nir_texop op;
1493 nir_dest dest;
1494 nir_tex_src *src;
1495 unsigned num_srcs, coord_components;
1496 bool is_array, is_shadow;
1497
1498 /**
1499 * If is_shadow is true, whether this is the old-style shadow that outputs 4
1500 * components or the new-style shadow that outputs 1 component.
1501 */
1502 bool is_new_style_shadow;
1503
1504 /* gather component selector */
1505 unsigned component : 2;
1506
1507 /* gather offsets */
1508 int8_t tg4_offsets[4][2];
1509
1510 /* True if the texture index or handle is not dynamically uniform */
1511 bool texture_non_uniform;
1512
1513 /* True if the sampler index or handle is not dynamically uniform */
1514 bool sampler_non_uniform;
1515
1516 /** The texture index
1517 *
1518 * If this texture instruction has a nir_tex_src_texture_offset source,
1519 * then the texture index is given by texture_index + texture_offset.
1520 */
1521 unsigned texture_index;
1522
1523 /** The size of the texture array or 0 if it's not an array */
1524 unsigned texture_array_size;
1525
1526 /** The sampler index
1527 *
1528 * The following operations do not require a sampler and, as such, this
1529 * field should be ignored:
1530 * - nir_texop_txf
1531 * - nir_texop_txf_ms
1532 * - nir_texop_txs
1533 * - nir_texop_lod
1534 * - nir_texop_query_levels
1535 * - nir_texop_texture_samples
1536 * - nir_texop_samples_identical
1537 *
1538 * If this texture instruction has a nir_tex_src_sampler_offset source,
1539 * then the sampler index is given by sampler_index + sampler_offset.
1540 */
1541 unsigned sampler_index;
1542 } nir_tex_instr;
1543
1544 static inline unsigned
1545 nir_tex_instr_dest_size(const nir_tex_instr *instr)
1546 {
1547 switch (instr->op) {
1548 case nir_texop_txs: {
1549 unsigned ret;
1550 switch (instr->sampler_dim) {
1551 case GLSL_SAMPLER_DIM_1D:
1552 case GLSL_SAMPLER_DIM_BUF:
1553 ret = 1;
1554 break;
1555 case GLSL_SAMPLER_DIM_2D:
1556 case GLSL_SAMPLER_DIM_CUBE:
1557 case GLSL_SAMPLER_DIM_MS:
1558 case GLSL_SAMPLER_DIM_RECT:
1559 case GLSL_SAMPLER_DIM_EXTERNAL:
1560 case GLSL_SAMPLER_DIM_SUBPASS:
1561 ret = 2;
1562 break;
1563 case GLSL_SAMPLER_DIM_3D:
1564 ret = 3;
1565 break;
1566 default:
1567 unreachable("not reached");
1568 }
1569 if (instr->is_array)
1570 ret++;
1571 return ret;
1572 }
1573
1574 case nir_texop_lod:
1575 return 2;
1576
1577 case nir_texop_texture_samples:
1578 case nir_texop_query_levels:
1579 case nir_texop_samples_identical:
1580 return 1;
1581
1582 default:
1583 if (instr->is_shadow && instr->is_new_style_shadow)
1584 return 1;
1585
1586 return 4;
1587 }
1588 }
1589
1590 /* Returns true if this texture operation queries something about the texture
1591 * rather than actually sampling it.
1592 */
1593 static inline bool
1594 nir_tex_instr_is_query(const nir_tex_instr *instr)
1595 {
1596 switch (instr->op) {
1597 case nir_texop_txs:
1598 case nir_texop_lod:
1599 case nir_texop_texture_samples:
1600 case nir_texop_query_levels:
1601 case nir_texop_txf_ms_mcs:
1602 return true;
1603 case nir_texop_tex:
1604 case nir_texop_txb:
1605 case nir_texop_txl:
1606 case nir_texop_txd:
1607 case nir_texop_txf:
1608 case nir_texop_txf_ms:
1609 case nir_texop_txf_ms_fb:
1610 case nir_texop_tg4:
1611 return false;
1612 default:
1613 unreachable("Invalid texture opcode");
1614 }
1615 }
1616
1617 static inline bool
1618 nir_alu_instr_is_comparison(const nir_alu_instr *instr)
1619 {
1620 switch (instr->op) {
1621 case nir_op_flt:
1622 case nir_op_fge:
1623 case nir_op_feq:
1624 case nir_op_fne:
1625 case nir_op_ilt:
1626 case nir_op_ult:
1627 case nir_op_ige:
1628 case nir_op_uge:
1629 case nir_op_ieq:
1630 case nir_op_ine:
1631 case nir_op_i2b1:
1632 case nir_op_f2b1:
1633 case nir_op_inot:
1634 case nir_op_fnot:
1635 return true;
1636 default:
1637 return false;
1638 }
1639 }
1640
1641 static inline nir_alu_type
1642 nir_tex_instr_src_type(const nir_tex_instr *instr, unsigned src)
1643 {
1644 switch (instr->src[src].src_type) {
1645 case nir_tex_src_coord:
1646 switch (instr->op) {
1647 case nir_texop_txf:
1648 case nir_texop_txf_ms:
1649 case nir_texop_txf_ms_fb:
1650 case nir_texop_txf_ms_mcs:
1651 case nir_texop_samples_identical:
1652 return nir_type_int;
1653
1654 default:
1655 return nir_type_float;
1656 }
1657
1658 case nir_tex_src_lod:
1659 switch (instr->op) {
1660 case nir_texop_txs:
1661 case nir_texop_txf:
1662 return nir_type_int;
1663
1664 default:
1665 return nir_type_float;
1666 }
1667
1668 case nir_tex_src_projector:
1669 case nir_tex_src_comparator:
1670 case nir_tex_src_bias:
1671 case nir_tex_src_ddx:
1672 case nir_tex_src_ddy:
1673 return nir_type_float;
1674
1675 case nir_tex_src_offset:
1676 case nir_tex_src_ms_index:
1677 case nir_tex_src_texture_offset:
1678 case nir_tex_src_sampler_offset:
1679 return nir_type_int;
1680
1681 default:
1682 unreachable("Invalid texture source type");
1683 }
1684 }
1685
1686 static inline unsigned
1687 nir_tex_instr_src_size(const nir_tex_instr *instr, unsigned src)
1688 {
1689 if (instr->src[src].src_type == nir_tex_src_coord)
1690 return instr->coord_components;
1691
1692 /* The MCS value is expected to be a vec4 returned by a txf_ms_mcs */
1693 if (instr->src[src].src_type == nir_tex_src_ms_mcs)
1694 return 4;
1695
1696 if (instr->src[src].src_type == nir_tex_src_ddx ||
1697 instr->src[src].src_type == nir_tex_src_ddy) {
1698 if (instr->is_array)
1699 return instr->coord_components - 1;
1700 else
1701 return instr->coord_components;
1702 }
1703
1704 /* Usual APIs don't allow cube + offset, but we allow it, with 2 coords for
1705 * the offset, since a cube maps to a single face.
1706 */
1707 if (instr->src[src].src_type == nir_tex_src_offset) {
1708 if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE)
1709 return 2;
1710 else if (instr->is_array)
1711 return instr->coord_components - 1;
1712 else
1713 return instr->coord_components;
1714 }
1715
1716 return 1;
1717 }
1718
1719 static inline int
1720 nir_tex_instr_src_index(const nir_tex_instr *instr, nir_tex_src_type type)
1721 {
1722 for (unsigned i = 0; i < instr->num_srcs; i++)
1723 if (instr->src[i].src_type == type)
1724 return (int) i;
1725
1726 return -1;
1727 }
1728
1729 void nir_tex_instr_add_src(nir_tex_instr *tex,
1730 nir_tex_src_type src_type,
1731 nir_src src);
1732
1733 void nir_tex_instr_remove_src(nir_tex_instr *tex, unsigned src_idx);
1734
1735 bool nir_tex_instr_has_explicit_tg4_offsets(nir_tex_instr *tex);
1736
1737 typedef struct {
1738 nir_instr instr;
1739
1740 nir_ssa_def def;
1741
1742 nir_const_value value[];
1743 } nir_load_const_instr;
1744
1745 #define nir_const_load_to_arr(arr, l, m) \
1746 { \
1747 nir_const_value_to_array(arr, l->value, l->def.num_components, m); \
1748 } while (false);
1749
1750 typedef enum {
1751 nir_jump_return,
1752 nir_jump_break,
1753 nir_jump_continue,
1754 } nir_jump_type;
1755
1756 typedef struct {
1757 nir_instr instr;
1758 nir_jump_type type;
1759 } nir_jump_instr;
1760
1761 /* creates a new SSA variable in an undefined state */
1762
1763 typedef struct {
1764 nir_instr instr;
1765 nir_ssa_def def;
1766 } nir_ssa_undef_instr;
1767
1768 typedef struct {
1769 struct exec_node node;
1770
1771 /* The predecessor block corresponding to this source */
1772 struct nir_block *pred;
1773
1774 nir_src src;
1775 } nir_phi_src;
1776
1777 #define nir_foreach_phi_src(phi_src, phi) \
1778 foreach_list_typed(nir_phi_src, phi_src, node, &(phi)->srcs)
1779 #define nir_foreach_phi_src_safe(phi_src, phi) \
1780 foreach_list_typed_safe(nir_phi_src, phi_src, node, &(phi)->srcs)
1781
1782 typedef struct {
1783 nir_instr instr;
1784
1785 struct exec_list srcs; /** < list of nir_phi_src */
1786
1787 nir_dest dest;
1788 } nir_phi_instr;
1789
1790 typedef struct {
1791 struct exec_node node;
1792 nir_src src;
1793 nir_dest dest;
1794 } nir_parallel_copy_entry;
1795
1796 #define nir_foreach_parallel_copy_entry(entry, pcopy) \
1797 foreach_list_typed(nir_parallel_copy_entry, entry, node, &(pcopy)->entries)
1798
1799 typedef struct {
1800 nir_instr instr;
1801
1802 /* A list of nir_parallel_copy_entrys. The sources of all of the
1803 * entries are copied to the corresponding destinations "in parallel".
1804 * In other words, if we have two entries: a -> b and b -> a, the values
1805 * get swapped.
1806 */
1807 struct exec_list entries;
1808 } nir_parallel_copy_instr;
1809
1810 NIR_DEFINE_CAST(nir_instr_as_alu, nir_instr, nir_alu_instr, instr,
1811 type, nir_instr_type_alu)
1812 NIR_DEFINE_CAST(nir_instr_as_deref, nir_instr, nir_deref_instr, instr,
1813 type, nir_instr_type_deref)
1814 NIR_DEFINE_CAST(nir_instr_as_call, nir_instr, nir_call_instr, instr,
1815 type, nir_instr_type_call)
1816 NIR_DEFINE_CAST(nir_instr_as_jump, nir_instr, nir_jump_instr, instr,
1817 type, nir_instr_type_jump)
1818 NIR_DEFINE_CAST(nir_instr_as_tex, nir_instr, nir_tex_instr, instr,
1819 type, nir_instr_type_tex)
1820 NIR_DEFINE_CAST(nir_instr_as_intrinsic, nir_instr, nir_intrinsic_instr, instr,
1821 type, nir_instr_type_intrinsic)
1822 NIR_DEFINE_CAST(nir_instr_as_load_const, nir_instr, nir_load_const_instr, instr,
1823 type, nir_instr_type_load_const)
1824 NIR_DEFINE_CAST(nir_instr_as_ssa_undef, nir_instr, nir_ssa_undef_instr, instr,
1825 type, nir_instr_type_ssa_undef)
1826 NIR_DEFINE_CAST(nir_instr_as_phi, nir_instr, nir_phi_instr, instr,
1827 type, nir_instr_type_phi)
1828 NIR_DEFINE_CAST(nir_instr_as_parallel_copy, nir_instr,
1829 nir_parallel_copy_instr, instr,
1830 type, nir_instr_type_parallel_copy)
1831
1832 /*
1833 * Control flow
1834 *
1835 * Control flow consists of a tree of control flow nodes, which include
1836 * if-statements and loops. The leaves of the tree are basic blocks, lists of
1837 * instructions that always run start-to-finish. Each basic block also keeps
1838 * track of its successors (blocks which may run immediately after the current
1839 * block) and predecessors (blocks which could have run immediately before the
1840 * current block). Each function also has a start block and an end block which
1841 * all return statements point to (which is always empty). Together, all the
1842 * blocks with their predecessors and successors make up the control flow
1843 * graph (CFG) of the function. There are helpers that modify the tree of
1844 * control flow nodes while modifying the CFG appropriately; these should be
1845 * used instead of modifying the tree directly.
1846 */
1847
1848 typedef enum {
1849 nir_cf_node_block,
1850 nir_cf_node_if,
1851 nir_cf_node_loop,
1852 nir_cf_node_function
1853 } nir_cf_node_type;
1854
1855 typedef struct nir_cf_node {
1856 struct exec_node node;
1857 nir_cf_node_type type;
1858 struct nir_cf_node *parent;
1859 } nir_cf_node;
1860
1861 typedef struct nir_block {
1862 nir_cf_node cf_node;
1863
1864 struct exec_list instr_list; /** < list of nir_instr */
1865
1866 /** generic block index; generated by nir_index_blocks */
1867 unsigned index;
1868
1869 /*
1870 * Each block can only have up to 2 successors, so we put them in a simple
1871 * array - no need for anything more complicated.
1872 */
1873 struct nir_block *successors[2];
1874
1875 /* Set of nir_block predecessors in the CFG */
1876 struct set *predecessors;
1877
1878 /*
1879 * this node's immediate dominator in the dominance tree - set to NULL for
1880 * the start block.
1881 */
1882 struct nir_block *imm_dom;
1883
1884 /* This node's children in the dominance tree */
1885 unsigned num_dom_children;
1886 struct nir_block **dom_children;
1887
1888 /* Set of nir_blocks on the dominance frontier of this block */
1889 struct set *dom_frontier;
1890
1891 /*
1892 * These two indices have the property that dom_{pre,post}_index for each
1893 * child of this block in the dominance tree will always be between
1894 * dom_pre_index and dom_post_index for this block, which makes testing if
1895 * a given block is dominated by another block an O(1) operation.
1896 */
1897 unsigned dom_pre_index, dom_post_index;
1898
1899 /* live in and out for this block; used for liveness analysis */
1900 BITSET_WORD *live_in;
1901 BITSET_WORD *live_out;
1902 } nir_block;
1903
1904 static inline nir_instr *
1905 nir_block_first_instr(nir_block *block)
1906 {
1907 struct exec_node *head = exec_list_get_head(&block->instr_list);
1908 return exec_node_data(nir_instr, head, node);
1909 }
1910
1911 static inline nir_instr *
1912 nir_block_last_instr(nir_block *block)
1913 {
1914 struct exec_node *tail = exec_list_get_tail(&block->instr_list);
1915 return exec_node_data(nir_instr, tail, node);
1916 }
1917
1918 static inline bool
1919 nir_block_ends_in_jump(nir_block *block)
1920 {
1921 return !exec_list_is_empty(&block->instr_list) &&
1922 nir_block_last_instr(block)->type == nir_instr_type_jump;
1923 }
1924
1925 #define nir_foreach_instr(instr, block) \
1926 foreach_list_typed(nir_instr, instr, node, &(block)->instr_list)
1927 #define nir_foreach_instr_reverse(instr, block) \
1928 foreach_list_typed_reverse(nir_instr, instr, node, &(block)->instr_list)
1929 #define nir_foreach_instr_safe(instr, block) \
1930 foreach_list_typed_safe(nir_instr, instr, node, &(block)->instr_list)
1931 #define nir_foreach_instr_reverse_safe(instr, block) \
1932 foreach_list_typed_reverse_safe(nir_instr, instr, node, &(block)->instr_list)
1933
1934 typedef enum {
1935 nir_selection_control_none = 0x0,
1936 nir_selection_control_flatten = 0x1,
1937 nir_selection_control_dont_flatten = 0x2,
1938 } nir_selection_control;
1939
1940 typedef struct nir_if {
1941 nir_cf_node cf_node;
1942 nir_src condition;
1943 nir_selection_control control;
1944
1945 struct exec_list then_list; /** < list of nir_cf_node */
1946 struct exec_list else_list; /** < list of nir_cf_node */
1947 } nir_if;
1948
1949 typedef struct {
1950 nir_if *nif;
1951
1952 /** Instruction that generates nif::condition. */
1953 nir_instr *conditional_instr;
1954
1955 /** Block within ::nif that has the break instruction. */
1956 nir_block *break_block;
1957
1958 /** Last block for the then- or else-path that does not contain the break. */
1959 nir_block *continue_from_block;
1960
1961 /** True when ::break_block is in the else-path of ::nif. */
1962 bool continue_from_then;
1963 bool induction_rhs;
1964
1965 /* This is true if the terminators exact trip count is unknown. For
1966 * example:
1967 *
1968 * for (int i = 0; i < imin(x, 4); i++)
1969 * ...
1970 *
1971 * Here loop analysis would have set a max_trip_count of 4 however we dont
1972 * know for sure that this is the exact trip count.
1973 */
1974 bool exact_trip_count_unknown;
1975
1976 struct list_head loop_terminator_link;
1977 } nir_loop_terminator;
1978
1979 typedef struct {
1980 /* Estimated cost (in number of instructions) of the loop */
1981 unsigned instr_cost;
1982
1983 /* Guessed trip count based on array indexing */
1984 unsigned guessed_trip_count;
1985
1986 /* Maximum number of times the loop is run (if known) */
1987 unsigned max_trip_count;
1988
1989 /* Do we know the exact number of times the loop will be run */
1990 bool exact_trip_count_known;
1991
1992 /* Unroll the loop regardless of its size */
1993 bool force_unroll;
1994
1995 /* Does the loop contain complex loop terminators, continues or other
1996 * complex behaviours? If this is true we can't rely on
1997 * loop_terminator_list to be complete or accurate.
1998 */
1999 bool complex_loop;
2000
2001 nir_loop_terminator *limiting_terminator;
2002
2003 /* A list of loop_terminators terminating this loop. */
2004 struct list_head loop_terminator_list;
2005 } nir_loop_info;
2006
2007 typedef enum {
2008 nir_loop_control_none = 0x0,
2009 nir_loop_control_unroll = 0x1,
2010 nir_loop_control_dont_unroll = 0x2,
2011 } nir_loop_control;
2012
2013 typedef struct {
2014 nir_cf_node cf_node;
2015
2016 struct exec_list body; /** < list of nir_cf_node */
2017
2018 nir_loop_info *info;
2019 nir_loop_control control;
2020 bool partially_unrolled;
2021 } nir_loop;
2022
2023 /**
2024 * Various bits of metadata that can may be created or required by
2025 * optimization and analysis passes
2026 */
2027 typedef enum {
2028 nir_metadata_none = 0x0,
2029 nir_metadata_block_index = 0x1,
2030 nir_metadata_dominance = 0x2,
2031 nir_metadata_live_ssa_defs = 0x4,
2032 nir_metadata_not_properly_reset = 0x8,
2033 nir_metadata_loop_analysis = 0x10,
2034 } nir_metadata;
2035
2036 typedef struct {
2037 nir_cf_node cf_node;
2038
2039 /** pointer to the function of which this is an implementation */
2040 struct nir_function *function;
2041
2042 struct exec_list body; /** < list of nir_cf_node */
2043
2044 nir_block *end_block;
2045
2046 /** list for all local variables in the function */
2047 struct exec_list locals;
2048
2049 /** list of local registers in the function */
2050 struct exec_list registers;
2051
2052 /** next available local register index */
2053 unsigned reg_alloc;
2054
2055 /** next available SSA value index */
2056 unsigned ssa_alloc;
2057
2058 /* total number of basic blocks, only valid when block_index_dirty = false */
2059 unsigned num_blocks;
2060
2061 nir_metadata valid_metadata;
2062 } nir_function_impl;
2063
2064 ATTRIBUTE_RETURNS_NONNULL static inline nir_block *
2065 nir_start_block(nir_function_impl *impl)
2066 {
2067 return (nir_block *) impl->body.head_sentinel.next;
2068 }
2069
2070 ATTRIBUTE_RETURNS_NONNULL static inline nir_block *
2071 nir_impl_last_block(nir_function_impl *impl)
2072 {
2073 return (nir_block *) impl->body.tail_sentinel.prev;
2074 }
2075
2076 static inline nir_cf_node *
2077 nir_cf_node_next(nir_cf_node *node)
2078 {
2079 struct exec_node *next = exec_node_get_next(&node->node);
2080 if (exec_node_is_tail_sentinel(next))
2081 return NULL;
2082 else
2083 return exec_node_data(nir_cf_node, next, node);
2084 }
2085
2086 static inline nir_cf_node *
2087 nir_cf_node_prev(nir_cf_node *node)
2088 {
2089 struct exec_node *prev = exec_node_get_prev(&node->node);
2090 if (exec_node_is_head_sentinel(prev))
2091 return NULL;
2092 else
2093 return exec_node_data(nir_cf_node, prev, node);
2094 }
2095
2096 static inline bool
2097 nir_cf_node_is_first(const nir_cf_node *node)
2098 {
2099 return exec_node_is_head_sentinel(node->node.prev);
2100 }
2101
2102 static inline bool
2103 nir_cf_node_is_last(const nir_cf_node *node)
2104 {
2105 return exec_node_is_tail_sentinel(node->node.next);
2106 }
2107
2108 NIR_DEFINE_CAST(nir_cf_node_as_block, nir_cf_node, nir_block, cf_node,
2109 type, nir_cf_node_block)
2110 NIR_DEFINE_CAST(nir_cf_node_as_if, nir_cf_node, nir_if, cf_node,
2111 type, nir_cf_node_if)
2112 NIR_DEFINE_CAST(nir_cf_node_as_loop, nir_cf_node, nir_loop, cf_node,
2113 type, nir_cf_node_loop)
2114 NIR_DEFINE_CAST(nir_cf_node_as_function, nir_cf_node,
2115 nir_function_impl, cf_node, type, nir_cf_node_function)
2116
2117 static inline nir_block *
2118 nir_if_first_then_block(nir_if *if_stmt)
2119 {
2120 struct exec_node *head = exec_list_get_head(&if_stmt->then_list);
2121 return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
2122 }
2123
2124 static inline nir_block *
2125 nir_if_last_then_block(nir_if *if_stmt)
2126 {
2127 struct exec_node *tail = exec_list_get_tail(&if_stmt->then_list);
2128 return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
2129 }
2130
2131 static inline nir_block *
2132 nir_if_first_else_block(nir_if *if_stmt)
2133 {
2134 struct exec_node *head = exec_list_get_head(&if_stmt->else_list);
2135 return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
2136 }
2137
2138 static inline nir_block *
2139 nir_if_last_else_block(nir_if *if_stmt)
2140 {
2141 struct exec_node *tail = exec_list_get_tail(&if_stmt->else_list);
2142 return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
2143 }
2144
2145 static inline nir_block *
2146 nir_loop_first_block(nir_loop *loop)
2147 {
2148 struct exec_node *head = exec_list_get_head(&loop->body);
2149 return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
2150 }
2151
2152 static inline nir_block *
2153 nir_loop_last_block(nir_loop *loop)
2154 {
2155 struct exec_node *tail = exec_list_get_tail(&loop->body);
2156 return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
2157 }
2158
2159 /**
2160 * Return true if this list of cf_nodes contains a single empty block.
2161 */
2162 static inline bool
2163 nir_cf_list_is_empty_block(struct exec_list *cf_list)
2164 {
2165 if (exec_list_is_singular(cf_list)) {
2166 struct exec_node *head = exec_list_get_head(cf_list);
2167 nir_block *block =
2168 nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
2169 return exec_list_is_empty(&block->instr_list);
2170 }
2171 return false;
2172 }
2173
2174 typedef struct {
2175 uint8_t num_components;
2176 uint8_t bit_size;
2177 } nir_parameter;
2178
2179 typedef struct nir_function {
2180 struct exec_node node;
2181
2182 const char *name;
2183 struct nir_shader *shader;
2184
2185 unsigned num_params;
2186 nir_parameter *params;
2187
2188 /** The implementation of this function.
2189 *
2190 * If the function is only declared and not implemented, this is NULL.
2191 */
2192 nir_function_impl *impl;
2193
2194 bool is_entrypoint;
2195 } nir_function;
2196
2197 typedef enum {
2198 nir_lower_imul64 = (1 << 0),
2199 nir_lower_isign64 = (1 << 1),
2200 /** Lower all int64 modulus and division opcodes */
2201 nir_lower_divmod64 = (1 << 2),
2202 /** Lower all 64-bit umul_high and imul_high opcodes */
2203 nir_lower_imul_high64 = (1 << 3),
2204 nir_lower_mov64 = (1 << 4),
2205 nir_lower_icmp64 = (1 << 5),
2206 nir_lower_iadd64 = (1 << 6),
2207 nir_lower_iabs64 = (1 << 7),
2208 nir_lower_ineg64 = (1 << 8),
2209 nir_lower_logic64 = (1 << 9),
2210 nir_lower_minmax64 = (1 << 10),
2211 nir_lower_shift64 = (1 << 11),
2212 nir_lower_imul_2x32_64 = (1 << 12),
2213 } nir_lower_int64_options;
2214
2215 typedef enum {
2216 nir_lower_drcp = (1 << 0),
2217 nir_lower_dsqrt = (1 << 1),
2218 nir_lower_drsq = (1 << 2),
2219 nir_lower_dtrunc = (1 << 3),
2220 nir_lower_dfloor = (1 << 4),
2221 nir_lower_dceil = (1 << 5),
2222 nir_lower_dfract = (1 << 6),
2223 nir_lower_dround_even = (1 << 7),
2224 nir_lower_dmod = (1 << 8),
2225 nir_lower_fp64_full_software = (1 << 9),
2226 } nir_lower_doubles_options;
2227
2228 typedef struct nir_shader_compiler_options {
2229 bool lower_fdiv;
2230 bool lower_ffma;
2231 bool fuse_ffma;
2232 bool lower_flrp16;
2233 bool lower_flrp32;
2234 /** Lowers flrp when it does not support doubles */
2235 bool lower_flrp64;
2236 bool lower_fpow;
2237 bool lower_fsat;
2238 bool lower_fsqrt;
2239 bool lower_fmod16;
2240 bool lower_fmod32;
2241 bool lower_fmod64;
2242 /** Lowers ibitfield_extract/ubitfield_extract to ibfe/ubfe. */
2243 bool lower_bitfield_extract;
2244 /** Lowers ibitfield_extract/ubitfield_extract to bfm, compares, shifts. */
2245 bool lower_bitfield_extract_to_shifts;
2246 /** Lowers bitfield_insert to bfi/bfm */
2247 bool lower_bitfield_insert;
2248 /** Lowers bitfield_insert to bfm, compares, and shifts. */
2249 bool lower_bitfield_insert_to_shifts;
2250 /** Lowers bitfield_reverse to shifts. */
2251 bool lower_bitfield_reverse;
2252 /** Lowers bit_count to shifts. */
2253 bool lower_bit_count;
2254 /** Lowers bfm to shifts and subtracts. */
2255 bool lower_bfm;
2256 /** Lowers ifind_msb to compare and ufind_msb */
2257 bool lower_ifind_msb;
2258 /** Lowers find_lsb to ufind_msb and logic ops */
2259 bool lower_find_lsb;
2260 bool lower_uadd_carry;
2261 bool lower_usub_borrow;
2262 /** Lowers imul_high/umul_high to 16-bit multiplies and carry operations. */
2263 bool lower_mul_high;
2264 /** lowers fneg and ineg to fsub and isub. */
2265 bool lower_negate;
2266 /** lowers fsub and isub to fadd+fneg and iadd+ineg. */
2267 bool lower_sub;
2268
2269 /* lower {slt,sge,seq,sne} to {flt,fge,feq,fne} + b2f: */
2270 bool lower_scmp;
2271
2272 /** enables rules to lower idiv by power-of-two: */
2273 bool lower_idiv;
2274
2275 /** enables rules to lower isign to imin+imax */
2276 bool lower_isign;
2277
2278 /** enables rules to lower fsign to fsub and flt */
2279 bool lower_fsign;
2280
2281 /* Does the native fdot instruction replicate its result for four
2282 * components? If so, then opt_algebraic_late will turn all fdotN
2283 * instructions into fdot_replicatedN instructions.
2284 */
2285 bool fdot_replicates;
2286
2287 /** lowers ffloor to fsub+ffract: */
2288 bool lower_ffloor;
2289
2290 /** lowers ffract to fsub+ffloor: */
2291 bool lower_ffract;
2292
2293 /** lowers fceil to fneg+ffloor+fneg: */
2294 bool lower_fceil;
2295
2296 bool lower_ftrunc;
2297
2298 bool lower_ldexp;
2299
2300 bool lower_pack_half_2x16;
2301 bool lower_pack_unorm_2x16;
2302 bool lower_pack_snorm_2x16;
2303 bool lower_pack_unorm_4x8;
2304 bool lower_pack_snorm_4x8;
2305 bool lower_unpack_half_2x16;
2306 bool lower_unpack_unorm_2x16;
2307 bool lower_unpack_snorm_2x16;
2308 bool lower_unpack_unorm_4x8;
2309 bool lower_unpack_snorm_4x8;
2310
2311 bool lower_extract_byte;
2312 bool lower_extract_word;
2313
2314 bool lower_all_io_to_temps;
2315 bool lower_all_io_to_elements;
2316
2317 /* Indicates that the driver only has zero-based vertex id */
2318 bool vertex_id_zero_based;
2319
2320 /**
2321 * If enabled, gl_BaseVertex will be lowered as:
2322 * is_indexed_draw (~0/0) & firstvertex
2323 */
2324 bool lower_base_vertex;
2325
2326 /**
2327 * If enabled, gl_HelperInvocation will be lowered as:
2328 *
2329 * !((1 << sample_id) & sample_mask_in))
2330 *
2331 * This depends on some possibly hw implementation details, which may
2332 * not be true for all hw. In particular that the FS is only executed
2333 * for covered samples or for helper invocations. So, do not blindly
2334 * enable this option.
2335 *
2336 * Note: See also issue #22 in ARB_shader_image_load_store
2337 */
2338 bool lower_helper_invocation;
2339
2340 /**
2341 * Convert gl_SampleMaskIn to gl_HelperInvocation as follows:
2342 *
2343 * gl_SampleMaskIn == 0 ---> gl_HelperInvocation
2344 * gl_SampleMaskIn != 0 ---> !gl_HelperInvocation
2345 */
2346 bool optimize_sample_mask_in;
2347
2348 bool lower_cs_local_index_from_id;
2349 bool lower_cs_local_id_from_index;
2350
2351 bool lower_device_index_to_zero;
2352
2353 /* Set if nir_lower_wpos_ytransform() should also invert gl_PointCoord. */
2354 bool lower_wpos_pntc;
2355
2356 bool lower_hadd;
2357 bool lower_add_sat;
2358
2359 /**
2360 * Should IO be re-vectorized? Some scalar ISAs still operate on vec4's
2361 * for IO purposes and would prefer loads/stores be vectorized.
2362 */
2363 bool vectorize_io;
2364
2365 /**
2366 * Should nir_lower_io() create load_interpolated_input intrinsics?
2367 *
2368 * If not, it generates regular load_input intrinsics and interpolation
2369 * information must be inferred from the list of input nir_variables.
2370 */
2371 bool use_interpolated_input_intrinsics;
2372
2373 /* Lowers when 32x32->64 bit multiplication is not supported */
2374 bool lower_mul_2x32_64;
2375
2376 unsigned max_unroll_iterations;
2377
2378 nir_lower_int64_options lower_int64_options;
2379 nir_lower_doubles_options lower_doubles_options;
2380 } nir_shader_compiler_options;
2381
2382 typedef struct nir_shader {
2383 /** list of uniforms (nir_variable) */
2384 struct exec_list uniforms;
2385
2386 /** list of inputs (nir_variable) */
2387 struct exec_list inputs;
2388
2389 /** list of outputs (nir_variable) */
2390 struct exec_list outputs;
2391
2392 /** list of shared compute variables (nir_variable) */
2393 struct exec_list shared;
2394
2395 /** Set of driver-specific options for the shader.
2396 *
2397 * The memory for the options is expected to be kept in a single static
2398 * copy by the driver.
2399 */
2400 const struct nir_shader_compiler_options *options;
2401
2402 /** Various bits of compile-time information about a given shader */
2403 struct shader_info info;
2404
2405 /** list of global variables in the shader (nir_variable) */
2406 struct exec_list globals;
2407
2408 /** list of system value variables in the shader (nir_variable) */
2409 struct exec_list system_values;
2410
2411 struct exec_list functions; /** < list of nir_function */
2412
2413 /**
2414 * the highest index a load_input_*, load_uniform_*, etc. intrinsic can
2415 * access plus one
2416 */
2417 unsigned num_inputs, num_uniforms, num_outputs, num_shared;
2418
2419 /** Size in bytes of required scratch space */
2420 unsigned scratch_size;
2421
2422 /** Constant data associated with this shader.
2423 *
2424 * Constant data is loaded through load_constant intrinsics. See also
2425 * nir_opt_large_constants.
2426 */
2427 void *constant_data;
2428 unsigned constant_data_size;
2429 } nir_shader;
2430
2431 #define nir_foreach_function(func, shader) \
2432 foreach_list_typed(nir_function, func, node, &(shader)->functions)
2433
2434 static inline nir_function_impl *
2435 nir_shader_get_entrypoint(nir_shader *shader)
2436 {
2437 nir_function *func = NULL;
2438
2439 nir_foreach_function(function, shader) {
2440 assert(func == NULL);
2441 if (function->is_entrypoint) {
2442 func = function;
2443 #ifndef NDEBUG
2444 break;
2445 #endif
2446 }
2447 }
2448
2449 if (!func)
2450 return NULL;
2451
2452 assert(func->num_params == 0);
2453 assert(func->impl);
2454 return func->impl;
2455 }
2456
2457 nir_shader *nir_shader_create(void *mem_ctx,
2458 gl_shader_stage stage,
2459 const nir_shader_compiler_options *options,
2460 shader_info *si);
2461
2462 nir_register *nir_local_reg_create(nir_function_impl *impl);
2463
2464 void nir_reg_remove(nir_register *reg);
2465
2466 /** Adds a variable to the appropriate list in nir_shader */
2467 void nir_shader_add_variable(nir_shader *shader, nir_variable *var);
2468
2469 static inline void
2470 nir_function_impl_add_variable(nir_function_impl *impl, nir_variable *var)
2471 {
2472 assert(var->data.mode == nir_var_function_temp);
2473 exec_list_push_tail(&impl->locals, &var->node);
2474 }
2475
2476 /** creates a variable, sets a few defaults, and adds it to the list */
2477 nir_variable *nir_variable_create(nir_shader *shader,
2478 nir_variable_mode mode,
2479 const struct glsl_type *type,
2480 const char *name);
2481 /** creates a local variable and adds it to the list */
2482 nir_variable *nir_local_variable_create(nir_function_impl *impl,
2483 const struct glsl_type *type,
2484 const char *name);
2485
2486 /** creates a function and adds it to the shader's list of functions */
2487 nir_function *nir_function_create(nir_shader *shader, const char *name);
2488
2489 nir_function_impl *nir_function_impl_create(nir_function *func);
2490 /** creates a function_impl that isn't tied to any particular function */
2491 nir_function_impl *nir_function_impl_create_bare(nir_shader *shader);
2492
2493 nir_block *nir_block_create(nir_shader *shader);
2494 nir_if *nir_if_create(nir_shader *shader);
2495 nir_loop *nir_loop_create(nir_shader *shader);
2496
2497 nir_function_impl *nir_cf_node_get_function(nir_cf_node *node);
2498
2499 /** requests that the given pieces of metadata be generated */
2500 void nir_metadata_require(nir_function_impl *impl, nir_metadata required, ...);
2501 /** dirties all but the preserved metadata */
2502 void nir_metadata_preserve(nir_function_impl *impl, nir_metadata preserved);
2503
2504 /** creates an instruction with default swizzle/writemask/etc. with NULL registers */
2505 nir_alu_instr *nir_alu_instr_create(nir_shader *shader, nir_op op);
2506
2507 nir_deref_instr *nir_deref_instr_create(nir_shader *shader,
2508 nir_deref_type deref_type);
2509
2510 nir_jump_instr *nir_jump_instr_create(nir_shader *shader, nir_jump_type type);
2511
2512 nir_load_const_instr *nir_load_const_instr_create(nir_shader *shader,
2513 unsigned num_components,
2514 unsigned bit_size);
2515
2516 nir_intrinsic_instr *nir_intrinsic_instr_create(nir_shader *shader,
2517 nir_intrinsic_op op);
2518
2519 nir_call_instr *nir_call_instr_create(nir_shader *shader,
2520 nir_function *callee);
2521
2522 nir_tex_instr *nir_tex_instr_create(nir_shader *shader, unsigned num_srcs);
2523
2524 nir_phi_instr *nir_phi_instr_create(nir_shader *shader);
2525
2526 nir_parallel_copy_instr *nir_parallel_copy_instr_create(nir_shader *shader);
2527
2528 nir_ssa_undef_instr *nir_ssa_undef_instr_create(nir_shader *shader,
2529 unsigned num_components,
2530 unsigned bit_size);
2531
2532 nir_const_value nir_alu_binop_identity(nir_op binop, unsigned bit_size);
2533
2534 /**
2535 * NIR Cursors and Instruction Insertion API
2536 * @{
2537 *
2538 * A tiny struct representing a point to insert/extract instructions or
2539 * control flow nodes. Helps reduce the combinatorial explosion of possible
2540 * points to insert/extract.
2541 *
2542 * \sa nir_control_flow.h
2543 */
2544 typedef enum {
2545 nir_cursor_before_block,
2546 nir_cursor_after_block,
2547 nir_cursor_before_instr,
2548 nir_cursor_after_instr,
2549 } nir_cursor_option;
2550
2551 typedef struct {
2552 nir_cursor_option option;
2553 union {
2554 nir_block *block;
2555 nir_instr *instr;
2556 };
2557 } nir_cursor;
2558
2559 static inline nir_block *
2560 nir_cursor_current_block(nir_cursor cursor)
2561 {
2562 if (cursor.option == nir_cursor_before_instr ||
2563 cursor.option == nir_cursor_after_instr) {
2564 return cursor.instr->block;
2565 } else {
2566 return cursor.block;
2567 }
2568 }
2569
2570 bool nir_cursors_equal(nir_cursor a, nir_cursor b);
2571
2572 static inline nir_cursor
2573 nir_before_block(nir_block *block)
2574 {
2575 nir_cursor cursor;
2576 cursor.option = nir_cursor_before_block;
2577 cursor.block = block;
2578 return cursor;
2579 }
2580
2581 static inline nir_cursor
2582 nir_after_block(nir_block *block)
2583 {
2584 nir_cursor cursor;
2585 cursor.option = nir_cursor_after_block;
2586 cursor.block = block;
2587 return cursor;
2588 }
2589
2590 static inline nir_cursor
2591 nir_before_instr(nir_instr *instr)
2592 {
2593 nir_cursor cursor;
2594 cursor.option = nir_cursor_before_instr;
2595 cursor.instr = instr;
2596 return cursor;
2597 }
2598
2599 static inline nir_cursor
2600 nir_after_instr(nir_instr *instr)
2601 {
2602 nir_cursor cursor;
2603 cursor.option = nir_cursor_after_instr;
2604 cursor.instr = instr;
2605 return cursor;
2606 }
2607
2608 static inline nir_cursor
2609 nir_after_block_before_jump(nir_block *block)
2610 {
2611 nir_instr *last_instr = nir_block_last_instr(block);
2612 if (last_instr && last_instr->type == nir_instr_type_jump) {
2613 return nir_before_instr(last_instr);
2614 } else {
2615 return nir_after_block(block);
2616 }
2617 }
2618
2619 static inline nir_cursor
2620 nir_before_src(nir_src *src, bool is_if_condition)
2621 {
2622 if (is_if_condition) {
2623 nir_block *prev_block =
2624 nir_cf_node_as_block(nir_cf_node_prev(&src->parent_if->cf_node));
2625 assert(!nir_block_ends_in_jump(prev_block));
2626 return nir_after_block(prev_block);
2627 } else if (src->parent_instr->type == nir_instr_type_phi) {
2628 #ifndef NDEBUG
2629 nir_phi_instr *cond_phi = nir_instr_as_phi(src->parent_instr);
2630 bool found = false;
2631 nir_foreach_phi_src(phi_src, cond_phi) {
2632 if (phi_src->src.ssa == src->ssa) {
2633 found = true;
2634 break;
2635 }
2636 }
2637 assert(found);
2638 #endif
2639 /* The LIST_ENTRY macro is a generic container-of macro, it just happens
2640 * to have a more specific name.
2641 */
2642 nir_phi_src *phi_src = LIST_ENTRY(nir_phi_src, src, src);
2643 return nir_after_block_before_jump(phi_src->pred);
2644 } else {
2645 return nir_before_instr(src->parent_instr);
2646 }
2647 }
2648
2649 static inline nir_cursor
2650 nir_before_cf_node(nir_cf_node *node)
2651 {
2652 if (node->type == nir_cf_node_block)
2653 return nir_before_block(nir_cf_node_as_block(node));
2654
2655 return nir_after_block(nir_cf_node_as_block(nir_cf_node_prev(node)));
2656 }
2657
2658 static inline nir_cursor
2659 nir_after_cf_node(nir_cf_node *node)
2660 {
2661 if (node->type == nir_cf_node_block)
2662 return nir_after_block(nir_cf_node_as_block(node));
2663
2664 return nir_before_block(nir_cf_node_as_block(nir_cf_node_next(node)));
2665 }
2666
2667 static inline nir_cursor
2668 nir_after_phis(nir_block *block)
2669 {
2670 nir_foreach_instr(instr, block) {
2671 if (instr->type != nir_instr_type_phi)
2672 return nir_before_instr(instr);
2673 }
2674 return nir_after_block(block);
2675 }
2676
2677 static inline nir_cursor
2678 nir_after_cf_node_and_phis(nir_cf_node *node)
2679 {
2680 if (node->type == nir_cf_node_block)
2681 return nir_after_block(nir_cf_node_as_block(node));
2682
2683 nir_block *block = nir_cf_node_as_block(nir_cf_node_next(node));
2684
2685 return nir_after_phis(block);
2686 }
2687
2688 static inline nir_cursor
2689 nir_before_cf_list(struct exec_list *cf_list)
2690 {
2691 nir_cf_node *first_node = exec_node_data(nir_cf_node,
2692 exec_list_get_head(cf_list), node);
2693 return nir_before_cf_node(first_node);
2694 }
2695
2696 static inline nir_cursor
2697 nir_after_cf_list(struct exec_list *cf_list)
2698 {
2699 nir_cf_node *last_node = exec_node_data(nir_cf_node,
2700 exec_list_get_tail(cf_list), node);
2701 return nir_after_cf_node(last_node);
2702 }
2703
2704 /**
2705 * Insert a NIR instruction at the given cursor.
2706 *
2707 * Note: This does not update the cursor.
2708 */
2709 void nir_instr_insert(nir_cursor cursor, nir_instr *instr);
2710
2711 static inline void
2712 nir_instr_insert_before(nir_instr *instr, nir_instr *before)
2713 {
2714 nir_instr_insert(nir_before_instr(instr), before);
2715 }
2716
2717 static inline void
2718 nir_instr_insert_after(nir_instr *instr, nir_instr *after)
2719 {
2720 nir_instr_insert(nir_after_instr(instr), after);
2721 }
2722
2723 static inline void
2724 nir_instr_insert_before_block(nir_block *block, nir_instr *before)
2725 {
2726 nir_instr_insert(nir_before_block(block), before);
2727 }
2728
2729 static inline void
2730 nir_instr_insert_after_block(nir_block *block, nir_instr *after)
2731 {
2732 nir_instr_insert(nir_after_block(block), after);
2733 }
2734
2735 static inline void
2736 nir_instr_insert_before_cf(nir_cf_node *node, nir_instr *before)
2737 {
2738 nir_instr_insert(nir_before_cf_node(node), before);
2739 }
2740
2741 static inline void
2742 nir_instr_insert_after_cf(nir_cf_node *node, nir_instr *after)
2743 {
2744 nir_instr_insert(nir_after_cf_node(node), after);
2745 }
2746
2747 static inline void
2748 nir_instr_insert_before_cf_list(struct exec_list *list, nir_instr *before)
2749 {
2750 nir_instr_insert(nir_before_cf_list(list), before);
2751 }
2752
2753 static inline void
2754 nir_instr_insert_after_cf_list(struct exec_list *list, nir_instr *after)
2755 {
2756 nir_instr_insert(nir_after_cf_list(list), after);
2757 }
2758
2759 void nir_instr_remove_v(nir_instr *instr);
2760
2761 static inline nir_cursor
2762 nir_instr_remove(nir_instr *instr)
2763 {
2764 nir_cursor cursor;
2765 nir_instr *prev = nir_instr_prev(instr);
2766 if (prev) {
2767 cursor = nir_after_instr(prev);
2768 } else {
2769 cursor = nir_before_block(instr->block);
2770 }
2771 nir_instr_remove_v(instr);
2772 return cursor;
2773 }
2774
2775 /** @} */
2776
2777 typedef bool (*nir_foreach_ssa_def_cb)(nir_ssa_def *def, void *state);
2778 typedef bool (*nir_foreach_dest_cb)(nir_dest *dest, void *state);
2779 typedef bool (*nir_foreach_src_cb)(nir_src *src, void *state);
2780 bool nir_foreach_ssa_def(nir_instr *instr, nir_foreach_ssa_def_cb cb,
2781 void *state);
2782 bool nir_foreach_dest(nir_instr *instr, nir_foreach_dest_cb cb, void *state);
2783 bool nir_foreach_src(nir_instr *instr, nir_foreach_src_cb cb, void *state);
2784
2785 nir_const_value *nir_src_as_const_value(nir_src src);
2786
2787 #define NIR_SRC_AS_(name, c_type, type_enum, cast_macro) \
2788 static inline c_type * \
2789 nir_src_as_ ## name (nir_src src) \
2790 { \
2791 return src.is_ssa && src.ssa->parent_instr->type == type_enum \
2792 ? cast_macro(src.ssa->parent_instr) : NULL; \
2793 }
2794
2795 NIR_SRC_AS_(alu_instr, nir_alu_instr, nir_instr_type_alu, nir_instr_as_alu)
2796 NIR_SRC_AS_(intrinsic, nir_intrinsic_instr,
2797 nir_instr_type_intrinsic, nir_instr_as_intrinsic)
2798 NIR_SRC_AS_(deref, nir_deref_instr, nir_instr_type_deref, nir_instr_as_deref)
2799
2800 bool nir_src_is_dynamically_uniform(nir_src src);
2801 bool nir_srcs_equal(nir_src src1, nir_src src2);
2802 void nir_instr_rewrite_src(nir_instr *instr, nir_src *src, nir_src new_src);
2803 void nir_instr_move_src(nir_instr *dest_instr, nir_src *dest, nir_src *src);
2804 void nir_if_rewrite_condition(nir_if *if_stmt, nir_src new_src);
2805 void nir_instr_rewrite_dest(nir_instr *instr, nir_dest *dest,
2806 nir_dest new_dest);
2807
2808 void nir_ssa_dest_init(nir_instr *instr, nir_dest *dest,
2809 unsigned num_components, unsigned bit_size,
2810 const char *name);
2811 void nir_ssa_def_init(nir_instr *instr, nir_ssa_def *def,
2812 unsigned num_components, unsigned bit_size,
2813 const char *name);
2814 static inline void
2815 nir_ssa_dest_init_for_type(nir_instr *instr, nir_dest *dest,
2816 const struct glsl_type *type,
2817 const char *name)
2818 {
2819 assert(glsl_type_is_vector_or_scalar(type));
2820 nir_ssa_dest_init(instr, dest, glsl_get_components(type),
2821 glsl_get_bit_size(type), name);
2822 }
2823 void nir_ssa_def_rewrite_uses(nir_ssa_def *def, nir_src new_src);
2824 void nir_ssa_def_rewrite_uses_after(nir_ssa_def *def, nir_src new_src,
2825 nir_instr *after_me);
2826
2827 nir_component_mask_t nir_ssa_def_components_read(const nir_ssa_def *def);
2828
2829 /*
2830 * finds the next basic block in source-code order, returns NULL if there is
2831 * none
2832 */
2833
2834 nir_block *nir_block_cf_tree_next(nir_block *block);
2835
2836 /* Performs the opposite of nir_block_cf_tree_next() */
2837
2838 nir_block *nir_block_cf_tree_prev(nir_block *block);
2839
2840 /* Gets the first block in a CF node in source-code order */
2841
2842 nir_block *nir_cf_node_cf_tree_first(nir_cf_node *node);
2843
2844 /* Gets the last block in a CF node in source-code order */
2845
2846 nir_block *nir_cf_node_cf_tree_last(nir_cf_node *node);
2847
2848 /* Gets the next block after a CF node in source-code order */
2849
2850 nir_block *nir_cf_node_cf_tree_next(nir_cf_node *node);
2851
2852 /* Macros for loops that visit blocks in source-code order */
2853
2854 #define nir_foreach_block(block, impl) \
2855 for (nir_block *block = nir_start_block(impl); block != NULL; \
2856 block = nir_block_cf_tree_next(block))
2857
2858 #define nir_foreach_block_safe(block, impl) \
2859 for (nir_block *block = nir_start_block(impl), \
2860 *next = nir_block_cf_tree_next(block); \
2861 block != NULL; \
2862 block = next, next = nir_block_cf_tree_next(block))
2863
2864 #define nir_foreach_block_reverse(block, impl) \
2865 for (nir_block *block = nir_impl_last_block(impl); block != NULL; \
2866 block = nir_block_cf_tree_prev(block))
2867
2868 #define nir_foreach_block_reverse_safe(block, impl) \
2869 for (nir_block *block = nir_impl_last_block(impl), \
2870 *prev = nir_block_cf_tree_prev(block); \
2871 block != NULL; \
2872 block = prev, prev = nir_block_cf_tree_prev(block))
2873
2874 #define nir_foreach_block_in_cf_node(block, node) \
2875 for (nir_block *block = nir_cf_node_cf_tree_first(node); \
2876 block != nir_cf_node_cf_tree_next(node); \
2877 block = nir_block_cf_tree_next(block))
2878
2879 /* If the following CF node is an if, this function returns that if.
2880 * Otherwise, it returns NULL.
2881 */
2882 nir_if *nir_block_get_following_if(nir_block *block);
2883
2884 nir_loop *nir_block_get_following_loop(nir_block *block);
2885
2886 void nir_index_local_regs(nir_function_impl *impl);
2887 void nir_index_ssa_defs(nir_function_impl *impl);
2888 unsigned nir_index_instrs(nir_function_impl *impl);
2889
2890 void nir_index_blocks(nir_function_impl *impl);
2891
2892 void nir_print_shader(nir_shader *shader, FILE *fp);
2893 void nir_print_shader_annotated(nir_shader *shader, FILE *fp, struct hash_table *errors);
2894 void nir_print_instr(const nir_instr *instr, FILE *fp);
2895 void nir_print_deref(const nir_deref_instr *deref, FILE *fp);
2896
2897 /** Shallow clone of a single ALU instruction. */
2898 nir_alu_instr *nir_alu_instr_clone(nir_shader *s, const nir_alu_instr *orig);
2899
2900 nir_shader *nir_shader_clone(void *mem_ctx, const nir_shader *s);
2901 nir_function_impl *nir_function_impl_clone(nir_shader *shader,
2902 const nir_function_impl *fi);
2903 nir_constant *nir_constant_clone(const nir_constant *c, nir_variable *var);
2904 nir_variable *nir_variable_clone(const nir_variable *c, nir_shader *shader);
2905
2906 nir_shader *nir_shader_serialize_deserialize(void *mem_ctx, nir_shader *s);
2907
2908 #ifndef NDEBUG
2909 void nir_validate_shader(nir_shader *shader, const char *when);
2910 void nir_metadata_set_validation_flag(nir_shader *shader);
2911 void nir_metadata_check_validation_flag(nir_shader *shader);
2912
2913 static inline bool
2914 should_skip_nir(const char *name)
2915 {
2916 static const char *list = NULL;
2917 if (!list) {
2918 /* Comma separated list of names to skip. */
2919 list = getenv("NIR_SKIP");
2920 if (!list)
2921 list = "";
2922 }
2923
2924 if (!list[0])
2925 return false;
2926
2927 return comma_separated_list_contains(list, name);
2928 }
2929
2930 static inline bool
2931 should_clone_nir(void)
2932 {
2933 static int should_clone = -1;
2934 if (should_clone < 0)
2935 should_clone = env_var_as_boolean("NIR_TEST_CLONE", false);
2936
2937 return should_clone;
2938 }
2939
2940 static inline bool
2941 should_serialize_deserialize_nir(void)
2942 {
2943 static int test_serialize = -1;
2944 if (test_serialize < 0)
2945 test_serialize = env_var_as_boolean("NIR_TEST_SERIALIZE", false);
2946
2947 return test_serialize;
2948 }
2949
2950 static inline bool
2951 should_print_nir(void)
2952 {
2953 static int should_print = -1;
2954 if (should_print < 0)
2955 should_print = env_var_as_boolean("NIR_PRINT", false);
2956
2957 return should_print;
2958 }
2959 #else
2960 static inline void nir_validate_shader(nir_shader *shader, const char *when) { (void) shader; (void)when; }
2961 static inline void nir_metadata_set_validation_flag(nir_shader *shader) { (void) shader; }
2962 static inline void nir_metadata_check_validation_flag(nir_shader *shader) { (void) shader; }
2963 static inline bool should_skip_nir(UNUSED const char *pass_name) { return false; }
2964 static inline bool should_clone_nir(void) { return false; }
2965 static inline bool should_serialize_deserialize_nir(void) { return false; }
2966 static inline bool should_print_nir(void) { return false; }
2967 #endif /* NDEBUG */
2968
2969 #define _PASS(pass, nir, do_pass) do { \
2970 if (should_skip_nir(#pass)) { \
2971 printf("skipping %s\n", #pass); \
2972 break; \
2973 } \
2974 do_pass \
2975 nir_validate_shader(nir, "after " #pass); \
2976 if (should_clone_nir()) { \
2977 nir_shader *clone = nir_shader_clone(ralloc_parent(nir), nir); \
2978 ralloc_free(nir); \
2979 nir = clone; \
2980 } \
2981 if (should_serialize_deserialize_nir()) { \
2982 void *mem_ctx = ralloc_parent(nir); \
2983 nir = nir_shader_serialize_deserialize(mem_ctx, nir); \
2984 } \
2985 } while (0)
2986
2987 #define NIR_PASS(progress, nir, pass, ...) _PASS(pass, nir, \
2988 nir_metadata_set_validation_flag(nir); \
2989 if (should_print_nir()) \
2990 printf("%s\n", #pass); \
2991 if (pass(nir, ##__VA_ARGS__)) { \
2992 progress = true; \
2993 if (should_print_nir()) \
2994 nir_print_shader(nir, stdout); \
2995 nir_metadata_check_validation_flag(nir); \
2996 } \
2997 )
2998
2999 #define NIR_PASS_V(nir, pass, ...) _PASS(pass, nir, \
3000 if (should_print_nir()) \
3001 printf("%s\n", #pass); \
3002 pass(nir, ##__VA_ARGS__); \
3003 if (should_print_nir()) \
3004 nir_print_shader(nir, stdout); \
3005 )
3006
3007 #define NIR_SKIP(name) should_skip_nir(#name)
3008
3009 void nir_calc_dominance_impl(nir_function_impl *impl);
3010 void nir_calc_dominance(nir_shader *shader);
3011
3012 nir_block *nir_dominance_lca(nir_block *b1, nir_block *b2);
3013 bool nir_block_dominates(nir_block *parent, nir_block *child);
3014
3015 void nir_dump_dom_tree_impl(nir_function_impl *impl, FILE *fp);
3016 void nir_dump_dom_tree(nir_shader *shader, FILE *fp);
3017
3018 void nir_dump_dom_frontier_impl(nir_function_impl *impl, FILE *fp);
3019 void nir_dump_dom_frontier(nir_shader *shader, FILE *fp);
3020
3021 void nir_dump_cfg_impl(nir_function_impl *impl, FILE *fp);
3022 void nir_dump_cfg(nir_shader *shader, FILE *fp);
3023
3024 int nir_gs_count_vertices(const nir_shader *shader);
3025
3026 bool nir_shrink_vec_array_vars(nir_shader *shader, nir_variable_mode modes);
3027 bool nir_split_array_vars(nir_shader *shader, nir_variable_mode modes);
3028 bool nir_split_var_copies(nir_shader *shader);
3029 bool nir_split_per_member_structs(nir_shader *shader);
3030 bool nir_split_struct_vars(nir_shader *shader, nir_variable_mode modes);
3031
3032 bool nir_lower_returns_impl(nir_function_impl *impl);
3033 bool nir_lower_returns(nir_shader *shader);
3034
3035 void nir_inline_function_impl(struct nir_builder *b,
3036 const nir_function_impl *impl,
3037 nir_ssa_def **params);
3038 bool nir_inline_functions(nir_shader *shader);
3039
3040 bool nir_propagate_invariant(nir_shader *shader);
3041
3042 void nir_lower_var_copy_instr(nir_intrinsic_instr *copy, nir_shader *shader);
3043 void nir_lower_deref_copy_instr(struct nir_builder *b,
3044 nir_intrinsic_instr *copy);
3045 bool nir_lower_var_copies(nir_shader *shader);
3046
3047 void nir_fixup_deref_modes(nir_shader *shader);
3048
3049 bool nir_lower_global_vars_to_local(nir_shader *shader);
3050
3051 typedef enum {
3052 nir_lower_direct_array_deref_of_vec_load = (1 << 0),
3053 nir_lower_indirect_array_deref_of_vec_load = (1 << 1),
3054 nir_lower_direct_array_deref_of_vec_store = (1 << 2),
3055 nir_lower_indirect_array_deref_of_vec_store = (1 << 3),
3056 } nir_lower_array_deref_of_vec_options;
3057
3058 bool nir_lower_array_deref_of_vec(nir_shader *shader, nir_variable_mode modes,
3059 nir_lower_array_deref_of_vec_options options);
3060
3061 bool nir_lower_indirect_derefs(nir_shader *shader, nir_variable_mode modes);
3062
3063 bool nir_lower_locals_to_regs(nir_shader *shader);
3064
3065 void nir_lower_io_to_temporaries(nir_shader *shader,
3066 nir_function_impl *entrypoint,
3067 bool outputs, bool inputs);
3068
3069 bool nir_lower_vars_to_scratch(nir_shader *shader,
3070 nir_variable_mode modes,
3071 int size_threshold,
3072 glsl_type_size_align_func size_align);
3073
3074 void nir_shader_gather_info(nir_shader *shader, nir_function_impl *entrypoint);
3075
3076 void nir_gather_ssa_types(nir_function_impl *impl,
3077 BITSET_WORD *float_types,
3078 BITSET_WORD *int_types);
3079
3080 void nir_assign_var_locations(struct exec_list *var_list, unsigned *size,
3081 int (*type_size)(const struct glsl_type *, bool));
3082
3083 /* Some helpers to do very simple linking */
3084 bool nir_remove_unused_varyings(nir_shader *producer, nir_shader *consumer);
3085 bool nir_remove_unused_io_vars(nir_shader *shader, struct exec_list *var_list,
3086 uint64_t *used_by_other_stage,
3087 uint64_t *used_by_other_stage_patches);
3088 void nir_compact_varyings(nir_shader *producer, nir_shader *consumer,
3089 bool default_to_smooth_interp);
3090 void nir_link_xfb_varyings(nir_shader *producer, nir_shader *consumer);
3091 bool nir_link_opt_varyings(nir_shader *producer, nir_shader *consumer);
3092
3093 typedef enum {
3094 /* If set, this forces all non-flat fragment shader inputs to be
3095 * interpolated as if with the "sample" qualifier. This requires
3096 * nir_shader_compiler_options::use_interpolated_input_intrinsics.
3097 */
3098 nir_lower_io_force_sample_interpolation = (1 << 1),
3099 } nir_lower_io_options;
3100 bool nir_lower_io(nir_shader *shader,
3101 nir_variable_mode modes,
3102 int (*type_size)(const struct glsl_type *, bool),
3103 nir_lower_io_options);
3104
3105 typedef enum {
3106 /**
3107 * An address format which is a simple 32-bit global GPU address.
3108 */
3109 nir_address_format_32bit_global,
3110
3111 /**
3112 * An address format which is a simple 64-bit global GPU address.
3113 */
3114 nir_address_format_64bit_global,
3115
3116 /**
3117 * An address format which is a bounds-checked 64-bit global GPU address.
3118 *
3119 * The address is comprised as a 32-bit vec4 where .xy are a uint64_t base
3120 * address stored with the low bits in .x and high bits in .y, .z is a
3121 * size, and .w is an offset. When the final I/O operation is lowered, .w
3122 * is checked against .z and the operation is predicated on the result.
3123 */
3124 nir_address_format_64bit_bounded_global,
3125
3126 /**
3127 * An address format which is comprised of a vec2 where the first
3128 * component is a buffer index and the second is an offset.
3129 */
3130 nir_address_format_32bit_index_offset,
3131
3132 /**
3133 * An address format which is a simple 32-bit offset.
3134 */
3135 nir_address_format_32bit_offset,
3136
3137 /**
3138 * An address format representing a purely logical addressing model. In
3139 * this model, all deref chains must be complete from the dereference
3140 * operation to the variable. Cast derefs are not allowed. These
3141 * addresses will be 32-bit scalars but the format is immaterial because
3142 * you can always chase the chain.
3143 */
3144 nir_address_format_logical,
3145 } nir_address_format;
3146
3147 static inline unsigned
3148 nir_address_format_bit_size(nir_address_format addr_format)
3149 {
3150 switch (addr_format) {
3151 case nir_address_format_32bit_global: return 32;
3152 case nir_address_format_64bit_global: return 64;
3153 case nir_address_format_64bit_bounded_global: return 32;
3154 case nir_address_format_32bit_index_offset: return 32;
3155 case nir_address_format_32bit_offset: return 32;
3156 case nir_address_format_logical: return 32;
3157 }
3158 unreachable("Invalid address format");
3159 }
3160
3161 static inline unsigned
3162 nir_address_format_num_components(nir_address_format addr_format)
3163 {
3164 switch (addr_format) {
3165 case nir_address_format_32bit_global: return 1;
3166 case nir_address_format_64bit_global: return 1;
3167 case nir_address_format_64bit_bounded_global: return 4;
3168 case nir_address_format_32bit_index_offset: return 2;
3169 case nir_address_format_32bit_offset: return 1;
3170 case nir_address_format_logical: return 1;
3171 }
3172 unreachable("Invalid address format");
3173 }
3174
3175 static inline const struct glsl_type *
3176 nir_address_format_to_glsl_type(nir_address_format addr_format)
3177 {
3178 unsigned bit_size = nir_address_format_bit_size(addr_format);
3179 assert(bit_size == 32 || bit_size == 64);
3180 return glsl_vector_type(bit_size == 32 ? GLSL_TYPE_UINT : GLSL_TYPE_UINT64,
3181 nir_address_format_num_components(addr_format));
3182 }
3183
3184 const nir_const_value *nir_address_format_null_value(nir_address_format addr_format);
3185
3186 nir_ssa_def * nir_explicit_io_address_from_deref(struct nir_builder *b,
3187 nir_deref_instr *deref,
3188 nir_ssa_def *base_addr,
3189 nir_address_format addr_format);
3190 void nir_lower_explicit_io_instr(struct nir_builder *b,
3191 nir_intrinsic_instr *io_instr,
3192 nir_ssa_def *addr,
3193 nir_address_format addr_format);
3194
3195 bool nir_lower_explicit_io(nir_shader *shader,
3196 nir_variable_mode modes,
3197 nir_address_format);
3198
3199 nir_src *nir_get_io_offset_src(nir_intrinsic_instr *instr);
3200 nir_src *nir_get_io_vertex_index_src(nir_intrinsic_instr *instr);
3201
3202 bool nir_is_per_vertex_io(const nir_variable *var, gl_shader_stage stage);
3203
3204 bool nir_lower_regs_to_ssa_impl(nir_function_impl *impl);
3205 bool nir_lower_regs_to_ssa(nir_shader *shader);
3206 bool nir_lower_vars_to_ssa(nir_shader *shader);
3207
3208 bool nir_remove_dead_derefs(nir_shader *shader);
3209 bool nir_remove_dead_derefs_impl(nir_function_impl *impl);
3210 bool nir_remove_dead_variables(nir_shader *shader, nir_variable_mode modes);
3211 bool nir_lower_constant_initializers(nir_shader *shader,
3212 nir_variable_mode modes);
3213
3214 bool nir_move_load_const(nir_shader *shader);
3215 bool nir_move_vec_src_uses_to_dest(nir_shader *shader);
3216 bool nir_lower_vec_to_movs(nir_shader *shader);
3217 void nir_lower_alpha_test(nir_shader *shader, enum compare_func func,
3218 bool alpha_to_one);
3219 bool nir_lower_alu(nir_shader *shader);
3220
3221 bool nir_lower_flrp(nir_shader *shader, unsigned lowering_mask,
3222 bool always_precise, bool have_ffma);
3223
3224 bool nir_lower_alu_to_scalar(nir_shader *shader, BITSET_WORD *lower_set);
3225 bool nir_lower_bool_to_float(nir_shader *shader);
3226 bool nir_lower_bool_to_int32(nir_shader *shader);
3227 bool nir_lower_int_to_float(nir_shader *shader);
3228 bool nir_lower_load_const_to_scalar(nir_shader *shader);
3229 bool nir_lower_read_invocation_to_scalar(nir_shader *shader);
3230 bool nir_lower_phis_to_scalar(nir_shader *shader);
3231 void nir_lower_io_arrays_to_elements(nir_shader *producer, nir_shader *consumer);
3232 void nir_lower_io_arrays_to_elements_no_indirects(nir_shader *shader,
3233 bool outputs_only);
3234 void nir_lower_io_to_scalar(nir_shader *shader, nir_variable_mode mask);
3235 void nir_lower_io_to_scalar_early(nir_shader *shader, nir_variable_mode mask);
3236 bool nir_lower_io_to_vector(nir_shader *shader, nir_variable_mode mask);
3237
3238 void nir_lower_fragcoord_wtrans(nir_shader *shader);
3239 void nir_lower_viewport_transform(nir_shader *shader);
3240 bool nir_lower_uniforms_to_ubo(nir_shader *shader, int multiplier);
3241
3242 typedef struct nir_lower_subgroups_options {
3243 uint8_t subgroup_size;
3244 uint8_t ballot_bit_size;
3245 bool lower_to_scalar:1;
3246 bool lower_vote_trivial:1;
3247 bool lower_vote_eq_to_ballot:1;
3248 bool lower_subgroup_masks:1;
3249 bool lower_shuffle:1;
3250 bool lower_shuffle_to_32bit:1;
3251 bool lower_quad:1;
3252 } nir_lower_subgroups_options;
3253
3254 bool nir_lower_subgroups(nir_shader *shader,
3255 const nir_lower_subgroups_options *options);
3256
3257 bool nir_lower_system_values(nir_shader *shader);
3258
3259 enum PACKED nir_lower_tex_packing {
3260 nir_lower_tex_packing_none = 0,
3261 /* The sampler returns up to 2 32-bit words of half floats or 16-bit signed
3262 * or unsigned ints based on the sampler type
3263 */
3264 nir_lower_tex_packing_16,
3265 /* The sampler returns 1 32-bit word of 4x8 unorm */
3266 nir_lower_tex_packing_8,
3267 };
3268
3269 typedef struct nir_lower_tex_options {
3270 /**
3271 * bitmask of (1 << GLSL_SAMPLER_DIM_x) to control for which
3272 * sampler types a texture projector is lowered.
3273 */
3274 unsigned lower_txp;
3275
3276 /**
3277 * If true, lower away nir_tex_src_offset for all texelfetch instructions.
3278 */
3279 bool lower_txf_offset;
3280
3281 /**
3282 * If true, lower away nir_tex_src_offset for all rect textures.
3283 */
3284 bool lower_rect_offset;
3285
3286 /**
3287 * If true, lower rect textures to 2D, using txs to fetch the
3288 * texture dimensions and dividing the texture coords by the
3289 * texture dims to normalize.
3290 */
3291 bool lower_rect;
3292
3293 /**
3294 * If true, convert yuv to rgb.
3295 */
3296 unsigned lower_y_uv_external;
3297 unsigned lower_y_u_v_external;
3298 unsigned lower_yx_xuxv_external;
3299 unsigned lower_xy_uxvx_external;
3300 unsigned lower_ayuv_external;
3301 unsigned lower_xyuv_external;
3302
3303 /**
3304 * To emulate certain texture wrap modes, this can be used
3305 * to saturate the specified tex coord to [0.0, 1.0]. The
3306 * bits are according to sampler #, ie. if, for example:
3307 *
3308 * (conf->saturate_s & (1 << n))
3309 *
3310 * is true, then the s coord for sampler n is saturated.
3311 *
3312 * Note that clamping must happen *after* projector lowering
3313 * so any projected texture sample instruction with a clamped
3314 * coordinate gets automatically lowered, regardless of the
3315 * 'lower_txp' setting.
3316 */
3317 unsigned saturate_s;
3318 unsigned saturate_t;
3319 unsigned saturate_r;
3320
3321 /* Bitmask of textures that need swizzling.
3322 *
3323 * If (swizzle_result & (1 << texture_index)), then the swizzle in
3324 * swizzles[texture_index] is applied to the result of the texturing
3325 * operation.
3326 */
3327 unsigned swizzle_result;
3328
3329 /* A swizzle for each texture. Values 0-3 represent x, y, z, or w swizzles
3330 * while 4 and 5 represent 0 and 1 respectively.
3331 */
3332 uint8_t swizzles[32][4];
3333
3334 /* Can be used to scale sampled values in range required by the format. */
3335 float scale_factors[32];
3336
3337 /**
3338 * Bitmap of textures that need srgb to linear conversion. If
3339 * (lower_srgb & (1 << texture_index)) then the rgb (xyz) components
3340 * of the texture are lowered to linear.
3341 */
3342 unsigned lower_srgb;
3343
3344 /**
3345 * If true, lower nir_texop_tex on shaders that doesn't support implicit
3346 * LODs to nir_texop_txl.
3347 */
3348 bool lower_tex_without_implicit_lod;
3349
3350 /**
3351 * If true, lower nir_texop_txd on cube maps with nir_texop_txl.
3352 */
3353 bool lower_txd_cube_map;
3354
3355 /**
3356 * If true, lower nir_texop_txd on 3D surfaces with nir_texop_txl.
3357 */
3358 bool lower_txd_3d;
3359
3360 /**
3361 * If true, lower nir_texop_txd on shadow samplers (except cube maps)
3362 * with nir_texop_txl. Notice that cube map shadow samplers are lowered
3363 * with lower_txd_cube_map.
3364 */
3365 bool lower_txd_shadow;
3366
3367 /**
3368 * If true, lower nir_texop_txd on all samplers to a nir_texop_txl.
3369 * Implies lower_txd_cube_map and lower_txd_shadow.
3370 */
3371 bool lower_txd;
3372
3373 /**
3374 * If true, lower nir_texop_txb that try to use shadow compare and min_lod
3375 * at the same time to a nir_texop_lod, some math, and nir_texop_tex.
3376 */
3377 bool lower_txb_shadow_clamp;
3378
3379 /**
3380 * If true, lower nir_texop_txd on shadow samplers when it uses min_lod
3381 * with nir_texop_txl. This includes cube maps.
3382 */
3383 bool lower_txd_shadow_clamp;
3384
3385 /**
3386 * If true, lower nir_texop_txd on when it uses both offset and min_lod
3387 * with nir_texop_txl. This includes cube maps.
3388 */
3389 bool lower_txd_offset_clamp;
3390
3391 /**
3392 * If true, lower nir_texop_txd with min_lod to a nir_texop_txl if the
3393 * sampler is bindless.
3394 */
3395 bool lower_txd_clamp_bindless_sampler;
3396
3397 /**
3398 * If true, lower nir_texop_txd with min_lod to a nir_texop_txl if the
3399 * sampler index is not statically determinable to be less than 16.
3400 */
3401 bool lower_txd_clamp_if_sampler_index_not_lt_16;
3402
3403 /**
3404 * If true, apply a .bagr swizzle on tg4 results to handle Broadcom's
3405 * mixed-up tg4 locations.
3406 */
3407 bool lower_tg4_broadcom_swizzle;
3408
3409 /**
3410 * If true, lowers tg4 with 4 constant offsets to 4 tg4 calls
3411 */
3412 bool lower_tg4_offsets;
3413
3414 enum nir_lower_tex_packing lower_tex_packing[32];
3415 } nir_lower_tex_options;
3416
3417 bool nir_lower_tex(nir_shader *shader,
3418 const nir_lower_tex_options *options);
3419
3420 enum nir_lower_non_uniform_access_type {
3421 nir_lower_non_uniform_ubo_access = (1 << 0),
3422 nir_lower_non_uniform_ssbo_access = (1 << 1),
3423 nir_lower_non_uniform_texture_access = (1 << 2),
3424 nir_lower_non_uniform_image_access = (1 << 3),
3425 };
3426
3427 bool nir_lower_non_uniform_access(nir_shader *shader,
3428 enum nir_lower_non_uniform_access_type);
3429
3430 bool nir_lower_idiv(nir_shader *shader);
3431
3432 bool nir_lower_clip_vs(nir_shader *shader, unsigned ucp_enables, bool use_vars);
3433 bool nir_lower_clip_fs(nir_shader *shader, unsigned ucp_enables);
3434 bool nir_lower_clip_cull_distance_arrays(nir_shader *nir);
3435
3436 bool nir_lower_frexp(nir_shader *nir);
3437
3438 void nir_lower_two_sided_color(nir_shader *shader);
3439
3440 bool nir_lower_clamp_color_outputs(nir_shader *shader);
3441
3442 void nir_lower_passthrough_edgeflags(nir_shader *shader);
3443 bool nir_lower_patch_vertices(nir_shader *nir, unsigned static_count,
3444 const gl_state_index16 *uniform_state_tokens);
3445
3446 typedef struct nir_lower_wpos_ytransform_options {
3447 gl_state_index16 state_tokens[STATE_LENGTH];
3448 bool fs_coord_origin_upper_left :1;
3449 bool fs_coord_origin_lower_left :1;
3450 bool fs_coord_pixel_center_integer :1;
3451 bool fs_coord_pixel_center_half_integer :1;
3452 } nir_lower_wpos_ytransform_options;
3453
3454 bool nir_lower_wpos_ytransform(nir_shader *shader,
3455 const nir_lower_wpos_ytransform_options *options);
3456 bool nir_lower_wpos_center(nir_shader *shader, const bool for_sample_shading);
3457
3458 bool nir_lower_fb_read(nir_shader *shader);
3459
3460 typedef struct nir_lower_drawpixels_options {
3461 gl_state_index16 texcoord_state_tokens[STATE_LENGTH];
3462 gl_state_index16 scale_state_tokens[STATE_LENGTH];
3463 gl_state_index16 bias_state_tokens[STATE_LENGTH];
3464 unsigned drawpix_sampler;
3465 unsigned pixelmap_sampler;
3466 bool pixel_maps :1;
3467 bool scale_and_bias :1;
3468 } nir_lower_drawpixels_options;
3469
3470 void nir_lower_drawpixels(nir_shader *shader,
3471 const nir_lower_drawpixels_options *options);
3472
3473 typedef struct nir_lower_bitmap_options {
3474 unsigned sampler;
3475 bool swizzle_xxxx;
3476 } nir_lower_bitmap_options;
3477
3478 void nir_lower_bitmap(nir_shader *shader, const nir_lower_bitmap_options *options);
3479
3480 bool nir_lower_atomics_to_ssbo(nir_shader *shader, unsigned ssbo_offset);
3481
3482 typedef enum {
3483 nir_lower_int_source_mods = 1 << 0,
3484 nir_lower_float_source_mods = 1 << 1,
3485 nir_lower_triop_abs = 1 << 2,
3486 nir_lower_all_source_mods = (1 << 3) - 1
3487 } nir_lower_to_source_mods_flags;
3488
3489
3490 bool nir_lower_to_source_mods(nir_shader *shader, nir_lower_to_source_mods_flags options);
3491
3492 bool nir_lower_gs_intrinsics(nir_shader *shader);
3493
3494 typedef unsigned (*nir_lower_bit_size_callback)(const nir_alu_instr *, void *);
3495
3496 bool nir_lower_bit_size(nir_shader *shader,
3497 nir_lower_bit_size_callback callback,
3498 void *callback_data);
3499
3500 nir_lower_int64_options nir_lower_int64_op_to_options_mask(nir_op opcode);
3501 bool nir_lower_int64(nir_shader *shader, nir_lower_int64_options options);
3502
3503 nir_lower_doubles_options nir_lower_doubles_op_to_options_mask(nir_op opcode);
3504 bool nir_lower_doubles(nir_shader *shader, const nir_shader *softfp64,
3505 nir_lower_doubles_options options);
3506 bool nir_lower_pack(nir_shader *shader);
3507
3508 bool nir_normalize_cubemap_coords(nir_shader *shader);
3509
3510 void nir_live_ssa_defs_impl(nir_function_impl *impl);
3511
3512 void nir_loop_analyze_impl(nir_function_impl *impl,
3513 nir_variable_mode indirect_mask);
3514
3515 bool nir_ssa_defs_interfere(nir_ssa_def *a, nir_ssa_def *b);
3516
3517 bool nir_repair_ssa_impl(nir_function_impl *impl);
3518 bool nir_repair_ssa(nir_shader *shader);
3519
3520 void nir_convert_loop_to_lcssa(nir_loop *loop);
3521
3522 /* If phi_webs_only is true, only convert SSA values involved in phi nodes to
3523 * registers. If false, convert all values (even those not involved in a phi
3524 * node) to registers.
3525 */
3526 bool nir_convert_from_ssa(nir_shader *shader, bool phi_webs_only);
3527
3528 bool nir_lower_phis_to_regs_block(nir_block *block);
3529 bool nir_lower_ssa_defs_to_regs_block(nir_block *block);
3530 bool nir_rematerialize_derefs_in_use_blocks_impl(nir_function_impl *impl);
3531
3532 bool nir_opt_comparison_pre(nir_shader *shader);
3533
3534 bool nir_opt_algebraic(nir_shader *shader);
3535 bool nir_opt_algebraic_before_ffma(nir_shader *shader);
3536 bool nir_opt_algebraic_late(nir_shader *shader);
3537 bool nir_opt_constant_folding(nir_shader *shader);
3538
3539 bool nir_opt_combine_stores(nir_shader *shader, nir_variable_mode modes);
3540
3541 bool nir_copy_prop(nir_shader *shader);
3542
3543 bool nir_opt_copy_prop_vars(nir_shader *shader);
3544
3545 bool nir_opt_cse(nir_shader *shader);
3546
3547 bool nir_opt_dce(nir_shader *shader);
3548
3549 bool nir_opt_dead_cf(nir_shader *shader);
3550
3551 bool nir_opt_dead_write_vars(nir_shader *shader);
3552
3553 bool nir_opt_deref_impl(nir_function_impl *impl);
3554 bool nir_opt_deref(nir_shader *shader);
3555
3556 bool nir_opt_find_array_copies(nir_shader *shader);
3557
3558 bool nir_opt_gcm(nir_shader *shader, bool value_number);
3559
3560 bool nir_opt_idiv_const(nir_shader *shader, unsigned min_bit_size);
3561
3562 bool nir_opt_if(nir_shader *shader, bool aggressive_last_continue);
3563
3564 bool nir_opt_intrinsics(nir_shader *shader);
3565
3566 bool nir_opt_large_constants(nir_shader *shader,
3567 glsl_type_size_align_func size_align,
3568 unsigned threshold);
3569
3570 bool nir_opt_loop_unroll(nir_shader *shader, nir_variable_mode indirect_mask);
3571
3572 bool nir_opt_move_comparisons(nir_shader *shader);
3573
3574 bool nir_opt_move_load_ubo(nir_shader *shader);
3575
3576 bool nir_opt_peephole_select(nir_shader *shader, unsigned limit,
3577 bool indirect_load_ok, bool expensive_alu_ok);
3578
3579 bool nir_opt_rematerialize_compares(nir_shader *shader);
3580
3581 bool nir_opt_remove_phis(nir_shader *shader);
3582
3583 bool nir_opt_shrink_load(nir_shader *shader);
3584
3585 bool nir_opt_trivial_continues(nir_shader *shader);
3586
3587 bool nir_opt_undef(nir_shader *shader);
3588
3589 bool nir_opt_conditional_discard(nir_shader *shader);
3590
3591 void nir_strip(nir_shader *shader);
3592
3593 void nir_sweep(nir_shader *shader);
3594
3595 void nir_remap_dual_slot_attributes(nir_shader *shader,
3596 uint64_t *dual_slot_inputs);
3597 uint64_t nir_get_single_slot_attribs_mask(uint64_t attribs, uint64_t dual_slot);
3598
3599 nir_intrinsic_op nir_intrinsic_from_system_value(gl_system_value val);
3600 gl_system_value nir_system_value_from_intrinsic(nir_intrinsic_op intrin);
3601
3602 bool nir_lower_sincos(nir_shader *shader);
3603
3604 #ifdef __cplusplus
3605 } /* extern "C" */
3606 #endif
3607
3608 #endif /* NIR_H */