nir: Add explicit_binding to nir_variable
[mesa.git] / src / compiler / nir / nir.h
1 /*
2 * Copyright © 2014 Connor Abbott
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Connor Abbott (cwabbott0@gmail.com)
25 *
26 */
27
28 #ifndef NIR_H
29 #define NIR_H
30
31 #include "util/hash_table.h"
32 #include "compiler/glsl/list.h"
33 #include "GL/gl.h" /* GLenum */
34 #include "util/list.h"
35 #include "util/ralloc.h"
36 #include "util/set.h"
37 #include "util/bitset.h"
38 #include "util/macros.h"
39 #include "compiler/nir_types.h"
40 #include "compiler/shader_enums.h"
41 #include "compiler/shader_info.h"
42 #include <stdio.h>
43
44 #ifndef NDEBUG
45 #include "util/debug.h"
46 #endif /* NDEBUG */
47
48 #include "nir_opcodes.h"
49
50 #if defined(_WIN32) && !defined(snprintf)
51 #define snprintf _snprintf
52 #endif
53
54 #ifdef __cplusplus
55 extern "C" {
56 #endif
57
58 #define NIR_FALSE 0u
59 #define NIR_TRUE (~0u)
60
61 /** Defines a cast function
62 *
63 * This macro defines a cast function from in_type to out_type where
64 * out_type is some structure type that contains a field of type out_type.
65 *
66 * Note that you have to be a bit careful as the generated cast function
67 * destroys constness.
68 */
69 #define NIR_DEFINE_CAST(name, in_type, out_type, field, \
70 type_field, type_value) \
71 static inline out_type * \
72 name(const in_type *parent) \
73 { \
74 assert(parent && parent->type_field == type_value); \
75 return exec_node_data(out_type, parent, field); \
76 }
77
78 struct nir_function;
79 struct nir_shader;
80 struct nir_instr;
81
82
83 /**
84 * Description of built-in state associated with a uniform
85 *
86 * \sa nir_variable::state_slots
87 */
88 typedef struct {
89 gl_state_index16 tokens[STATE_LENGTH];
90 int swizzle;
91 } nir_state_slot;
92
93 typedef enum {
94 nir_var_shader_in = (1 << 0),
95 nir_var_shader_out = (1 << 1),
96 nir_var_global = (1 << 2),
97 nir_var_local = (1 << 3),
98 nir_var_uniform = (1 << 4),
99 nir_var_shader_storage = (1 << 5),
100 nir_var_system_value = (1 << 6),
101 nir_var_param = (1 << 7),
102 nir_var_shared = (1 << 8),
103 nir_var_all = ~0,
104 } nir_variable_mode;
105
106 /**
107 * Rounding modes.
108 */
109 typedef enum {
110 nir_rounding_mode_undef = 0,
111 nir_rounding_mode_rtne = 1, /* round to nearest even */
112 nir_rounding_mode_ru = 2, /* round up */
113 nir_rounding_mode_rd = 3, /* round down */
114 nir_rounding_mode_rtz = 4, /* round towards zero */
115 } nir_rounding_mode;
116
117 typedef union {
118 float f32[4];
119 double f64[4];
120 int8_t i8[4];
121 uint8_t u8[4];
122 int16_t i16[4];
123 uint16_t u16[4];
124 int32_t i32[4];
125 uint32_t u32[4];
126 int64_t i64[4];
127 uint64_t u64[4];
128 } nir_const_value;
129
130 typedef struct nir_constant {
131 /**
132 * Value of the constant.
133 *
134 * The field used to back the values supplied by the constant is determined
135 * by the type associated with the \c nir_variable. Constants may be
136 * scalars, vectors, or matrices.
137 */
138 nir_const_value values[4];
139
140 /* we could get this from the var->type but makes clone *much* easier to
141 * not have to care about the type.
142 */
143 unsigned num_elements;
144
145 /* Array elements / Structure Fields */
146 struct nir_constant **elements;
147 } nir_constant;
148
149 /**
150 * \brief Layout qualifiers for gl_FragDepth.
151 *
152 * The AMD/ARB_conservative_depth extensions allow gl_FragDepth to be redeclared
153 * with a layout qualifier.
154 */
155 typedef enum {
156 nir_depth_layout_none, /**< No depth layout is specified. */
157 nir_depth_layout_any,
158 nir_depth_layout_greater,
159 nir_depth_layout_less,
160 nir_depth_layout_unchanged
161 } nir_depth_layout;
162
163 /**
164 * Either a uniform, global variable, shader input, or shader output. Based on
165 * ir_variable - it should be easy to translate between the two.
166 */
167
168 typedef struct nir_variable {
169 struct exec_node node;
170
171 /**
172 * Declared type of the variable
173 */
174 const struct glsl_type *type;
175
176 /**
177 * Declared name of the variable
178 */
179 char *name;
180
181 struct nir_variable_data {
182 /**
183 * Storage class of the variable.
184 *
185 * \sa nir_variable_mode
186 */
187 nir_variable_mode mode;
188
189 /**
190 * Is the variable read-only?
191 *
192 * This is set for variables declared as \c const, shader inputs,
193 * and uniforms.
194 */
195 unsigned read_only:1;
196 unsigned centroid:1;
197 unsigned sample:1;
198 unsigned patch:1;
199 unsigned invariant:1;
200
201 /**
202 * When separate shader programs are enabled, only input/outputs between
203 * the stages of a multi-stage separate program can be safely removed
204 * from the shader interface. Other input/outputs must remains active.
205 *
206 * This is also used to make sure xfb varyings that are unused by the
207 * fragment shader are not removed.
208 */
209 unsigned always_active_io:1;
210
211 /**
212 * Interpolation mode for shader inputs / outputs
213 *
214 * \sa glsl_interp_mode
215 */
216 unsigned interpolation:2;
217
218 /**
219 * \name ARB_fragment_coord_conventions
220 * @{
221 */
222 unsigned origin_upper_left:1;
223 unsigned pixel_center_integer:1;
224 /*@}*/
225
226 /**
227 * If non-zero, then this variable may be packed along with other variables
228 * into a single varying slot, so this offset should be applied when
229 * accessing components. For example, an offset of 1 means that the x
230 * component of this variable is actually stored in component y of the
231 * location specified by \c location.
232 */
233 unsigned location_frac:2;
234
235 /**
236 * If true, this variable represents an array of scalars that should
237 * be tightly packed. In other words, consecutive array elements
238 * should be stored one component apart, rather than one slot apart.
239 */
240 unsigned compact:1;
241
242 /**
243 * Whether this is a fragment shader output implicitly initialized with
244 * the previous contents of the specified render target at the
245 * framebuffer location corresponding to this shader invocation.
246 */
247 unsigned fb_fetch_output:1;
248
249 /**
250 * Non-zero if this variable is considered bindless as defined by
251 * ARB_bindless_texture.
252 */
253 unsigned bindless:1;
254
255 /**
256 * Was an explicit binding set in the shader?
257 */
258 unsigned explicit_binding:1;
259
260 /**
261 * \brief Layout qualifier for gl_FragDepth.
262 *
263 * This is not equal to \c ir_depth_layout_none if and only if this
264 * variable is \c gl_FragDepth and a layout qualifier is specified.
265 */
266 nir_depth_layout depth_layout;
267
268 /**
269 * Storage location of the base of this variable
270 *
271 * The precise meaning of this field depends on the nature of the variable.
272 *
273 * - Vertex shader input: one of the values from \c gl_vert_attrib.
274 * - Vertex shader output: one of the values from \c gl_varying_slot.
275 * - Geometry shader input: one of the values from \c gl_varying_slot.
276 * - Geometry shader output: one of the values from \c gl_varying_slot.
277 * - Fragment shader input: one of the values from \c gl_varying_slot.
278 * - Fragment shader output: one of the values from \c gl_frag_result.
279 * - Uniforms: Per-stage uniform slot number for default uniform block.
280 * - Uniforms: Index within the uniform block definition for UBO members.
281 * - Non-UBO Uniforms: uniform slot number.
282 * - Other: This field is not currently used.
283 *
284 * If the variable is a uniform, shader input, or shader output, and the
285 * slot has not been assigned, the value will be -1.
286 */
287 int location;
288
289 /**
290 * The actual location of the variable in the IR. Only valid for inputs
291 * and outputs.
292 */
293 unsigned int driver_location;
294
295 /**
296 * Vertex stream output identifier.
297 *
298 * For packed outputs, bit 31 is set and bits [2*i+1,2*i] indicate the
299 * stream of the i-th component.
300 */
301 unsigned stream;
302
303 /**
304 * output index for dual source blending.
305 */
306 int index;
307
308 /**
309 * Descriptor set binding for sampler or UBO.
310 */
311 int descriptor_set;
312
313 /**
314 * Initial binding point for a sampler or UBO.
315 *
316 * For array types, this represents the binding point for the first element.
317 */
318 int binding;
319
320 /**
321 * Location an atomic counter is stored at.
322 */
323 unsigned offset;
324
325 /**
326 * ARB_shader_image_load_store qualifiers.
327 */
328 struct {
329 bool read_only; /**< "readonly" qualifier. */
330 bool write_only; /**< "writeonly" qualifier. */
331 bool coherent;
332 bool _volatile;
333 bool restrict_flag;
334
335 /** Image internal format if specified explicitly, otherwise GL_NONE. */
336 GLenum format;
337 } image;
338 } data;
339
340 /**
341 * Built-in state that backs this uniform
342 *
343 * Once set at variable creation, \c state_slots must remain invariant.
344 * This is because, ideally, this array would be shared by all clones of
345 * this variable in the IR tree. In other words, we'd really like for it
346 * to be a fly-weight.
347 *
348 * If the variable is not a uniform, \c num_state_slots will be zero and
349 * \c state_slots will be \c NULL.
350 */
351 /*@{*/
352 unsigned num_state_slots; /**< Number of state slots used */
353 nir_state_slot *state_slots; /**< State descriptors. */
354 /*@}*/
355
356 /**
357 * Constant expression assigned in the initializer of the variable
358 *
359 * This field should only be used temporarily by creators of NIR shaders
360 * and then lower_constant_initializers can be used to get rid of them.
361 * Most of the rest of NIR ignores this field or asserts that it's NULL.
362 */
363 nir_constant *constant_initializer;
364
365 /**
366 * For variables that are in an interface block or are an instance of an
367 * interface block, this is the \c GLSL_TYPE_INTERFACE type for that block.
368 *
369 * \sa ir_variable::location
370 */
371 const struct glsl_type *interface_type;
372 } nir_variable;
373
374 #define nir_foreach_variable(var, var_list) \
375 foreach_list_typed(nir_variable, var, node, var_list)
376
377 #define nir_foreach_variable_safe(var, var_list) \
378 foreach_list_typed_safe(nir_variable, var, node, var_list)
379
380 static inline bool
381 nir_variable_is_global(const nir_variable *var)
382 {
383 return var->data.mode != nir_var_local && var->data.mode != nir_var_param;
384 }
385
386 typedef struct nir_register {
387 struct exec_node node;
388
389 unsigned num_components; /** < number of vector components */
390 unsigned num_array_elems; /** < size of array (0 for no array) */
391
392 /* The bit-size of each channel; must be one of 8, 16, 32, or 64 */
393 uint8_t bit_size;
394
395 /** generic register index. */
396 unsigned index;
397
398 /** only for debug purposes, can be NULL */
399 const char *name;
400
401 /** whether this register is local (per-function) or global (per-shader) */
402 bool is_global;
403
404 /**
405 * If this flag is set to true, then accessing channels >= num_components
406 * is well-defined, and simply spills over to the next array element. This
407 * is useful for backends that can do per-component accessing, in
408 * particular scalar backends. By setting this flag and making
409 * num_components equal to 1, structures can be packed tightly into
410 * registers and then registers can be accessed per-component to get to
411 * each structure member, even if it crosses vec4 boundaries.
412 */
413 bool is_packed;
414
415 /** set of nir_srcs where this register is used (read from) */
416 struct list_head uses;
417
418 /** set of nir_dests where this register is defined (written to) */
419 struct list_head defs;
420
421 /** set of nir_ifs where this register is used as a condition */
422 struct list_head if_uses;
423 } nir_register;
424
425 #define nir_foreach_register(reg, reg_list) \
426 foreach_list_typed(nir_register, reg, node, reg_list)
427 #define nir_foreach_register_safe(reg, reg_list) \
428 foreach_list_typed_safe(nir_register, reg, node, reg_list)
429
430 typedef enum {
431 nir_instr_type_alu,
432 nir_instr_type_call,
433 nir_instr_type_tex,
434 nir_instr_type_intrinsic,
435 nir_instr_type_load_const,
436 nir_instr_type_jump,
437 nir_instr_type_ssa_undef,
438 nir_instr_type_phi,
439 nir_instr_type_parallel_copy,
440 } nir_instr_type;
441
442 typedef struct nir_instr {
443 struct exec_node node;
444 nir_instr_type type;
445 struct nir_block *block;
446
447 /** generic instruction index. */
448 unsigned index;
449
450 /* A temporary for optimization and analysis passes to use for storing
451 * flags. For instance, DCE uses this to store the "dead/live" info.
452 */
453 uint8_t pass_flags;
454 } nir_instr;
455
456 static inline nir_instr *
457 nir_instr_next(nir_instr *instr)
458 {
459 struct exec_node *next = exec_node_get_next(&instr->node);
460 if (exec_node_is_tail_sentinel(next))
461 return NULL;
462 else
463 return exec_node_data(nir_instr, next, node);
464 }
465
466 static inline nir_instr *
467 nir_instr_prev(nir_instr *instr)
468 {
469 struct exec_node *prev = exec_node_get_prev(&instr->node);
470 if (exec_node_is_head_sentinel(prev))
471 return NULL;
472 else
473 return exec_node_data(nir_instr, prev, node);
474 }
475
476 static inline bool
477 nir_instr_is_first(const nir_instr *instr)
478 {
479 return exec_node_is_head_sentinel(exec_node_get_prev_const(&instr->node));
480 }
481
482 static inline bool
483 nir_instr_is_last(const nir_instr *instr)
484 {
485 return exec_node_is_tail_sentinel(exec_node_get_next_const(&instr->node));
486 }
487
488 typedef struct nir_ssa_def {
489 /** for debugging only, can be NULL */
490 const char* name;
491
492 /** generic SSA definition index. */
493 unsigned index;
494
495 /** Index into the live_in and live_out bitfields */
496 unsigned live_index;
497
498 /** Instruction which produces this SSA value. */
499 nir_instr *parent_instr;
500
501 /** set of nir_instrs where this register is used (read from) */
502 struct list_head uses;
503
504 /** set of nir_ifs where this register is used as a condition */
505 struct list_head if_uses;
506
507 uint8_t num_components;
508
509 /* The bit-size of each channel; must be one of 8, 16, 32, or 64 */
510 uint8_t bit_size;
511 } nir_ssa_def;
512
513 struct nir_src;
514
515 typedef struct {
516 nir_register *reg;
517 struct nir_src *indirect; /** < NULL for no indirect offset */
518 unsigned base_offset;
519
520 /* TODO use-def chain goes here */
521 } nir_reg_src;
522
523 typedef struct {
524 nir_instr *parent_instr;
525 struct list_head def_link;
526
527 nir_register *reg;
528 struct nir_src *indirect; /** < NULL for no indirect offset */
529 unsigned base_offset;
530
531 /* TODO def-use chain goes here */
532 } nir_reg_dest;
533
534 struct nir_if;
535
536 typedef struct nir_src {
537 union {
538 /** Instruction that consumes this value as a source. */
539 nir_instr *parent_instr;
540 struct nir_if *parent_if;
541 };
542
543 struct list_head use_link;
544
545 union {
546 nir_reg_src reg;
547 nir_ssa_def *ssa;
548 };
549
550 bool is_ssa;
551 } nir_src;
552
553 static inline nir_src
554 nir_src_init(void)
555 {
556 nir_src src = { { NULL } };
557 return src;
558 }
559
560 #define NIR_SRC_INIT nir_src_init()
561
562 #define nir_foreach_use(src, reg_or_ssa_def) \
563 list_for_each_entry(nir_src, src, &(reg_or_ssa_def)->uses, use_link)
564
565 #define nir_foreach_use_safe(src, reg_or_ssa_def) \
566 list_for_each_entry_safe(nir_src, src, &(reg_or_ssa_def)->uses, use_link)
567
568 #define nir_foreach_if_use(src, reg_or_ssa_def) \
569 list_for_each_entry(nir_src, src, &(reg_or_ssa_def)->if_uses, use_link)
570
571 #define nir_foreach_if_use_safe(src, reg_or_ssa_def) \
572 list_for_each_entry_safe(nir_src, src, &(reg_or_ssa_def)->if_uses, use_link)
573
574 typedef struct {
575 union {
576 nir_reg_dest reg;
577 nir_ssa_def ssa;
578 };
579
580 bool is_ssa;
581 } nir_dest;
582
583 static inline nir_dest
584 nir_dest_init(void)
585 {
586 nir_dest dest = { { { NULL } } };
587 return dest;
588 }
589
590 #define NIR_DEST_INIT nir_dest_init()
591
592 #define nir_foreach_def(dest, reg) \
593 list_for_each_entry(nir_dest, dest, &(reg)->defs, reg.def_link)
594
595 #define nir_foreach_def_safe(dest, reg) \
596 list_for_each_entry_safe(nir_dest, dest, &(reg)->defs, reg.def_link)
597
598 static inline nir_src
599 nir_src_for_ssa(nir_ssa_def *def)
600 {
601 nir_src src = NIR_SRC_INIT;
602
603 src.is_ssa = true;
604 src.ssa = def;
605
606 return src;
607 }
608
609 static inline nir_src
610 nir_src_for_reg(nir_register *reg)
611 {
612 nir_src src = NIR_SRC_INIT;
613
614 src.is_ssa = false;
615 src.reg.reg = reg;
616 src.reg.indirect = NULL;
617 src.reg.base_offset = 0;
618
619 return src;
620 }
621
622 static inline nir_dest
623 nir_dest_for_reg(nir_register *reg)
624 {
625 nir_dest dest = NIR_DEST_INIT;
626
627 dest.reg.reg = reg;
628
629 return dest;
630 }
631
632 static inline unsigned
633 nir_src_bit_size(nir_src src)
634 {
635 return src.is_ssa ? src.ssa->bit_size : src.reg.reg->bit_size;
636 }
637
638 static inline unsigned
639 nir_src_num_components(nir_src src)
640 {
641 return src.is_ssa ? src.ssa->num_components : src.reg.reg->num_components;
642 }
643
644 static inline unsigned
645 nir_dest_bit_size(nir_dest dest)
646 {
647 return dest.is_ssa ? dest.ssa.bit_size : dest.reg.reg->bit_size;
648 }
649
650 static inline unsigned
651 nir_dest_num_components(nir_dest dest)
652 {
653 return dest.is_ssa ? dest.ssa.num_components : dest.reg.reg->num_components;
654 }
655
656 void nir_src_copy(nir_src *dest, const nir_src *src, void *instr_or_if);
657 void nir_dest_copy(nir_dest *dest, const nir_dest *src, nir_instr *instr);
658
659 typedef struct {
660 nir_src src;
661
662 /**
663 * \name input modifiers
664 */
665 /*@{*/
666 /**
667 * For inputs interpreted as floating point, flips the sign bit. For
668 * inputs interpreted as integers, performs the two's complement negation.
669 */
670 bool negate;
671
672 /**
673 * Clears the sign bit for floating point values, and computes the integer
674 * absolute value for integers. Note that the negate modifier acts after
675 * the absolute value modifier, therefore if both are set then all inputs
676 * will become negative.
677 */
678 bool abs;
679 /*@}*/
680
681 /**
682 * For each input component, says which component of the register it is
683 * chosen from. Note that which elements of the swizzle are used and which
684 * are ignored are based on the write mask for most opcodes - for example,
685 * a statement like "foo.xzw = bar.zyx" would have a writemask of 1101b and
686 * a swizzle of {2, x, 1, 0} where x means "don't care."
687 */
688 uint8_t swizzle[4];
689 } nir_alu_src;
690
691 typedef struct {
692 nir_dest dest;
693
694 /**
695 * \name saturate output modifier
696 *
697 * Only valid for opcodes that output floating-point numbers. Clamps the
698 * output to between 0.0 and 1.0 inclusive.
699 */
700
701 bool saturate;
702
703 unsigned write_mask : 4; /* ignored if dest.is_ssa is true */
704 } nir_alu_dest;
705
706 typedef enum {
707 nir_type_invalid = 0, /* Not a valid type */
708 nir_type_float,
709 nir_type_int,
710 nir_type_uint,
711 nir_type_bool,
712 nir_type_bool32 = 32 | nir_type_bool,
713 nir_type_int8 = 8 | nir_type_int,
714 nir_type_int16 = 16 | nir_type_int,
715 nir_type_int32 = 32 | nir_type_int,
716 nir_type_int64 = 64 | nir_type_int,
717 nir_type_uint8 = 8 | nir_type_uint,
718 nir_type_uint16 = 16 | nir_type_uint,
719 nir_type_uint32 = 32 | nir_type_uint,
720 nir_type_uint64 = 64 | nir_type_uint,
721 nir_type_float16 = 16 | nir_type_float,
722 nir_type_float32 = 32 | nir_type_float,
723 nir_type_float64 = 64 | nir_type_float,
724 } nir_alu_type;
725
726 #define NIR_ALU_TYPE_SIZE_MASK 0xfffffff8
727 #define NIR_ALU_TYPE_BASE_TYPE_MASK 0x00000007
728
729 static inline unsigned
730 nir_alu_type_get_type_size(nir_alu_type type)
731 {
732 return type & NIR_ALU_TYPE_SIZE_MASK;
733 }
734
735 static inline unsigned
736 nir_alu_type_get_base_type(nir_alu_type type)
737 {
738 return type & NIR_ALU_TYPE_BASE_TYPE_MASK;
739 }
740
741 static inline nir_alu_type
742 nir_get_nir_type_for_glsl_base_type(enum glsl_base_type base_type)
743 {
744 switch (base_type) {
745 case GLSL_TYPE_BOOL:
746 return nir_type_bool32;
747 break;
748 case GLSL_TYPE_UINT:
749 return nir_type_uint32;
750 break;
751 case GLSL_TYPE_INT:
752 return nir_type_int32;
753 break;
754 case GLSL_TYPE_UINT16:
755 return nir_type_uint16;
756 break;
757 case GLSL_TYPE_INT16:
758 return nir_type_int16;
759 break;
760 case GLSL_TYPE_UINT8:
761 return nir_type_uint8;
762 case GLSL_TYPE_INT8:
763 return nir_type_int8;
764 case GLSL_TYPE_UINT64:
765 return nir_type_uint64;
766 break;
767 case GLSL_TYPE_INT64:
768 return nir_type_int64;
769 break;
770 case GLSL_TYPE_FLOAT:
771 return nir_type_float32;
772 break;
773 case GLSL_TYPE_FLOAT16:
774 return nir_type_float16;
775 break;
776 case GLSL_TYPE_DOUBLE:
777 return nir_type_float64;
778 break;
779 default:
780 unreachable("unknown type");
781 }
782 }
783
784 static inline nir_alu_type
785 nir_get_nir_type_for_glsl_type(const struct glsl_type *type)
786 {
787 return nir_get_nir_type_for_glsl_base_type(glsl_get_base_type(type));
788 }
789
790 nir_op nir_type_conversion_op(nir_alu_type src, nir_alu_type dst,
791 nir_rounding_mode rnd);
792
793 typedef enum {
794 NIR_OP_IS_COMMUTATIVE = (1 << 0),
795 NIR_OP_IS_ASSOCIATIVE = (1 << 1),
796 } nir_op_algebraic_property;
797
798 typedef struct {
799 const char *name;
800
801 unsigned num_inputs;
802
803 /**
804 * The number of components in the output
805 *
806 * If non-zero, this is the size of the output and input sizes are
807 * explicitly given; swizzle and writemask are still in effect, but if
808 * the output component is masked out, then the input component may
809 * still be in use.
810 *
811 * If zero, the opcode acts in the standard, per-component manner; the
812 * operation is performed on each component (except the ones that are
813 * masked out) with the input being taken from the input swizzle for
814 * that component.
815 *
816 * The size of some of the inputs may be given (i.e. non-zero) even
817 * though output_size is zero; in that case, the inputs with a zero
818 * size act per-component, while the inputs with non-zero size don't.
819 */
820 unsigned output_size;
821
822 /**
823 * The type of vector that the instruction outputs. Note that the
824 * staurate modifier is only allowed on outputs with the float type.
825 */
826
827 nir_alu_type output_type;
828
829 /**
830 * The number of components in each input
831 */
832 unsigned input_sizes[4];
833
834 /**
835 * The type of vector that each input takes. Note that negate and
836 * absolute value are only allowed on inputs with int or float type and
837 * behave differently on the two.
838 */
839 nir_alu_type input_types[4];
840
841 nir_op_algebraic_property algebraic_properties;
842 } nir_op_info;
843
844 extern const nir_op_info nir_op_infos[nir_num_opcodes];
845
846 typedef struct nir_alu_instr {
847 nir_instr instr;
848 nir_op op;
849
850 /** Indicates that this ALU instruction generates an exact value
851 *
852 * This is kind of a mixture of GLSL "precise" and "invariant" and not
853 * really equivalent to either. This indicates that the value generated by
854 * this operation is high-precision and any code transformations that touch
855 * it must ensure that the resulting value is bit-for-bit identical to the
856 * original.
857 */
858 bool exact;
859
860 nir_alu_dest dest;
861 nir_alu_src src[];
862 } nir_alu_instr;
863
864 void nir_alu_src_copy(nir_alu_src *dest, const nir_alu_src *src,
865 nir_alu_instr *instr);
866 void nir_alu_dest_copy(nir_alu_dest *dest, const nir_alu_dest *src,
867 nir_alu_instr *instr);
868
869 /* is this source channel used? */
870 static inline bool
871 nir_alu_instr_channel_used(const nir_alu_instr *instr, unsigned src,
872 unsigned channel)
873 {
874 if (nir_op_infos[instr->op].input_sizes[src] > 0)
875 return channel < nir_op_infos[instr->op].input_sizes[src];
876
877 return (instr->dest.write_mask >> channel) & 1;
878 }
879
880 /*
881 * For instructions whose destinations are SSA, get the number of channels
882 * used for a source
883 */
884 static inline unsigned
885 nir_ssa_alu_instr_src_components(const nir_alu_instr *instr, unsigned src)
886 {
887 assert(instr->dest.dest.is_ssa);
888
889 if (nir_op_infos[instr->op].input_sizes[src] > 0)
890 return nir_op_infos[instr->op].input_sizes[src];
891
892 return instr->dest.dest.ssa.num_components;
893 }
894
895 bool nir_alu_srcs_equal(const nir_alu_instr *alu1, const nir_alu_instr *alu2,
896 unsigned src1, unsigned src2);
897
898 typedef enum {
899 nir_deref_type_var,
900 nir_deref_type_array,
901 nir_deref_type_struct
902 } nir_deref_type;
903
904 typedef struct nir_deref {
905 nir_deref_type deref_type;
906 struct nir_deref *child;
907 const struct glsl_type *type;
908 } nir_deref;
909
910 typedef struct {
911 nir_deref deref;
912
913 nir_variable *var;
914 } nir_deref_var;
915
916 /* This enum describes how the array is referenced. If the deref is
917 * direct then the base_offset is used. If the deref is indirect then
918 * offset is given by base_offset + indirect. If the deref is a wildcard
919 * then the deref refers to all of the elements of the array at the same
920 * time. Wildcard dereferences are only ever allowed in copy_var
921 * intrinsics and the source and destination derefs must have matching
922 * wildcards.
923 */
924 typedef enum {
925 nir_deref_array_type_direct,
926 nir_deref_array_type_indirect,
927 nir_deref_array_type_wildcard,
928 } nir_deref_array_type;
929
930 typedef struct {
931 nir_deref deref;
932
933 nir_deref_array_type deref_array_type;
934 unsigned base_offset;
935 nir_src indirect;
936 } nir_deref_array;
937
938 typedef struct {
939 nir_deref deref;
940
941 unsigned index;
942 } nir_deref_struct;
943
944 NIR_DEFINE_CAST(nir_deref_as_var, nir_deref, nir_deref_var, deref,
945 deref_type, nir_deref_type_var)
946 NIR_DEFINE_CAST(nir_deref_as_array, nir_deref, nir_deref_array, deref,
947 deref_type, nir_deref_type_array)
948 NIR_DEFINE_CAST(nir_deref_as_struct, nir_deref, nir_deref_struct, deref,
949 deref_type, nir_deref_type_struct)
950
951 /* Returns the last deref in the chain. */
952 static inline nir_deref *
953 nir_deref_tail(nir_deref *deref)
954 {
955 while (deref->child)
956 deref = deref->child;
957 return deref;
958 }
959
960 typedef struct {
961 nir_instr instr;
962
963 unsigned num_params;
964 nir_deref_var **params;
965 nir_deref_var *return_deref;
966
967 struct nir_function *callee;
968 } nir_call_instr;
969
970 #include "nir_intrinsics.h"
971
972 #define NIR_INTRINSIC_MAX_CONST_INDEX 3
973
974 /** Represents an intrinsic
975 *
976 * An intrinsic is an instruction type for handling things that are
977 * more-or-less regular operations but don't just consume and produce SSA
978 * values like ALU operations do. Intrinsics are not for things that have
979 * special semantic meaning such as phi nodes and parallel copies.
980 * Examples of intrinsics include variable load/store operations, system
981 * value loads, and the like. Even though texturing more-or-less falls
982 * under this category, texturing is its own instruction type because
983 * trying to represent texturing with intrinsics would lead to a
984 * combinatorial explosion of intrinsic opcodes.
985 *
986 * By having a single instruction type for handling a lot of different
987 * cases, optimization passes can look for intrinsics and, for the most
988 * part, completely ignore them. Each intrinsic type also has a few
989 * possible flags that govern whether or not they can be reordered or
990 * eliminated. That way passes like dead code elimination can still work
991 * on intrisics without understanding the meaning of each.
992 *
993 * Each intrinsic has some number of constant indices, some number of
994 * variables, and some number of sources. What these sources, variables,
995 * and indices mean depends on the intrinsic and is documented with the
996 * intrinsic declaration in nir_intrinsics.h. Intrinsics and texture
997 * instructions are the only types of instruction that can operate on
998 * variables.
999 */
1000 typedef struct {
1001 nir_instr instr;
1002
1003 nir_intrinsic_op intrinsic;
1004
1005 nir_dest dest;
1006
1007 /** number of components if this is a vectorized intrinsic
1008 *
1009 * Similarly to ALU operations, some intrinsics are vectorized.
1010 * An intrinsic is vectorized if nir_intrinsic_infos.dest_components == 0.
1011 * For vectorized intrinsics, the num_components field specifies the
1012 * number of destination components and the number of source components
1013 * for all sources with nir_intrinsic_infos.src_components[i] == 0.
1014 */
1015 uint8_t num_components;
1016
1017 int const_index[NIR_INTRINSIC_MAX_CONST_INDEX];
1018
1019 nir_deref_var *variables[2];
1020
1021 nir_src src[];
1022 } nir_intrinsic_instr;
1023
1024 /**
1025 * \name NIR intrinsics semantic flags
1026 *
1027 * information about what the compiler can do with the intrinsics.
1028 *
1029 * \sa nir_intrinsic_info::flags
1030 */
1031 typedef enum {
1032 /**
1033 * whether the intrinsic can be safely eliminated if none of its output
1034 * value is not being used.
1035 */
1036 NIR_INTRINSIC_CAN_ELIMINATE = (1 << 0),
1037
1038 /**
1039 * Whether the intrinsic can be reordered with respect to any other
1040 * intrinsic, i.e. whether the only reordering dependencies of the
1041 * intrinsic are due to the register reads/writes.
1042 */
1043 NIR_INTRINSIC_CAN_REORDER = (1 << 1),
1044 } nir_intrinsic_semantic_flag;
1045
1046 /**
1047 * \name NIR intrinsics const-index flag
1048 *
1049 * Indicates the usage of a const_index slot.
1050 *
1051 * \sa nir_intrinsic_info::index_map
1052 */
1053 typedef enum {
1054 /**
1055 * Generally instructions that take a offset src argument, can encode
1056 * a constant 'base' value which is added to the offset.
1057 */
1058 NIR_INTRINSIC_BASE = 1,
1059
1060 /**
1061 * For store instructions, a writemask for the store.
1062 */
1063 NIR_INTRINSIC_WRMASK = 2,
1064
1065 /**
1066 * The stream-id for GS emit_vertex/end_primitive intrinsics.
1067 */
1068 NIR_INTRINSIC_STREAM_ID = 3,
1069
1070 /**
1071 * The clip-plane id for load_user_clip_plane intrinsic.
1072 */
1073 NIR_INTRINSIC_UCP_ID = 4,
1074
1075 /**
1076 * The amount of data, starting from BASE, that this instruction may
1077 * access. This is used to provide bounds if the offset is not constant.
1078 */
1079 NIR_INTRINSIC_RANGE = 5,
1080
1081 /**
1082 * The Vulkan descriptor set for vulkan_resource_index intrinsic.
1083 */
1084 NIR_INTRINSIC_DESC_SET = 6,
1085
1086 /**
1087 * The Vulkan descriptor set binding for vulkan_resource_index intrinsic.
1088 */
1089 NIR_INTRINSIC_BINDING = 7,
1090
1091 /**
1092 * Component offset.
1093 */
1094 NIR_INTRINSIC_COMPONENT = 8,
1095
1096 /**
1097 * Interpolation mode (only meaningful for FS inputs).
1098 */
1099 NIR_INTRINSIC_INTERP_MODE = 9,
1100
1101 /**
1102 * A binary nir_op to use when performing a reduction or scan operation
1103 */
1104 NIR_INTRINSIC_REDUCTION_OP = 10,
1105
1106 /**
1107 * Cluster size for reduction operations
1108 */
1109 NIR_INTRINSIC_CLUSTER_SIZE = 11,
1110
1111 NIR_INTRINSIC_NUM_INDEX_FLAGS,
1112
1113 } nir_intrinsic_index_flag;
1114
1115 #define NIR_INTRINSIC_MAX_INPUTS 4
1116
1117 typedef struct {
1118 const char *name;
1119
1120 unsigned num_srcs; /** < number of register/SSA inputs */
1121
1122 /** number of components of each input register
1123 *
1124 * If this value is 0, the number of components is given by the
1125 * num_components field of nir_intrinsic_instr.
1126 */
1127 unsigned src_components[NIR_INTRINSIC_MAX_INPUTS];
1128
1129 bool has_dest;
1130
1131 /** number of components of the output register
1132 *
1133 * If this value is 0, the number of components is given by the
1134 * num_components field of nir_intrinsic_instr.
1135 */
1136 unsigned dest_components;
1137
1138 /** the number of inputs/outputs that are variables */
1139 unsigned num_variables;
1140
1141 /** the number of constant indices used by the intrinsic */
1142 unsigned num_indices;
1143
1144 /** indicates the usage of intr->const_index[n] */
1145 unsigned index_map[NIR_INTRINSIC_NUM_INDEX_FLAGS];
1146
1147 /** semantic flags for calls to this intrinsic */
1148 nir_intrinsic_semantic_flag flags;
1149 } nir_intrinsic_info;
1150
1151 extern const nir_intrinsic_info nir_intrinsic_infos[nir_num_intrinsics];
1152
1153 static inline unsigned
1154 nir_intrinsic_src_components(nir_intrinsic_instr *intr, unsigned srcn)
1155 {
1156 const nir_intrinsic_info *info = &nir_intrinsic_infos[intr->intrinsic];
1157 assert(srcn < info->num_srcs);
1158 if (info->src_components[srcn])
1159 return info->src_components[srcn];
1160 else
1161 return intr->num_components;
1162 }
1163
1164 static inline unsigned
1165 nir_intrinsic_dest_components(nir_intrinsic_instr *intr)
1166 {
1167 const nir_intrinsic_info *info = &nir_intrinsic_infos[intr->intrinsic];
1168 if (!info->has_dest)
1169 return 0;
1170 else if (info->dest_components)
1171 return info->dest_components;
1172 else
1173 return intr->num_components;
1174 }
1175
1176 #define INTRINSIC_IDX_ACCESSORS(name, flag, type) \
1177 static inline type \
1178 nir_intrinsic_##name(const nir_intrinsic_instr *instr) \
1179 { \
1180 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic]; \
1181 assert(info->index_map[NIR_INTRINSIC_##flag] > 0); \
1182 return instr->const_index[info->index_map[NIR_INTRINSIC_##flag] - 1]; \
1183 } \
1184 static inline void \
1185 nir_intrinsic_set_##name(nir_intrinsic_instr *instr, type val) \
1186 { \
1187 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic]; \
1188 assert(info->index_map[NIR_INTRINSIC_##flag] > 0); \
1189 instr->const_index[info->index_map[NIR_INTRINSIC_##flag] - 1] = val; \
1190 }
1191
1192 INTRINSIC_IDX_ACCESSORS(write_mask, WRMASK, unsigned)
1193 INTRINSIC_IDX_ACCESSORS(base, BASE, int)
1194 INTRINSIC_IDX_ACCESSORS(stream_id, STREAM_ID, unsigned)
1195 INTRINSIC_IDX_ACCESSORS(ucp_id, UCP_ID, unsigned)
1196 INTRINSIC_IDX_ACCESSORS(range, RANGE, unsigned)
1197 INTRINSIC_IDX_ACCESSORS(desc_set, DESC_SET, unsigned)
1198 INTRINSIC_IDX_ACCESSORS(binding, BINDING, unsigned)
1199 INTRINSIC_IDX_ACCESSORS(component, COMPONENT, unsigned)
1200 INTRINSIC_IDX_ACCESSORS(interp_mode, INTERP_MODE, unsigned)
1201 INTRINSIC_IDX_ACCESSORS(reduction_op, REDUCTION_OP, unsigned)
1202 INTRINSIC_IDX_ACCESSORS(cluster_size, CLUSTER_SIZE, unsigned)
1203
1204 /**
1205 * \group texture information
1206 *
1207 * This gives semantic information about textures which is useful to the
1208 * frontend, the backend, and lowering passes, but not the optimizer.
1209 */
1210
1211 typedef enum {
1212 nir_tex_src_coord,
1213 nir_tex_src_projector,
1214 nir_tex_src_comparator, /* shadow comparator */
1215 nir_tex_src_offset,
1216 nir_tex_src_bias,
1217 nir_tex_src_lod,
1218 nir_tex_src_ms_index, /* MSAA sample index */
1219 nir_tex_src_ms_mcs, /* MSAA compression value */
1220 nir_tex_src_ddx,
1221 nir_tex_src_ddy,
1222 nir_tex_src_texture_offset, /* < dynamically uniform indirect offset */
1223 nir_tex_src_sampler_offset, /* < dynamically uniform indirect offset */
1224 nir_tex_src_plane, /* < selects plane for planar textures */
1225 nir_num_tex_src_types
1226 } nir_tex_src_type;
1227
1228 typedef struct {
1229 nir_src src;
1230 nir_tex_src_type src_type;
1231 } nir_tex_src;
1232
1233 typedef enum {
1234 nir_texop_tex, /**< Regular texture look-up */
1235 nir_texop_txb, /**< Texture look-up with LOD bias */
1236 nir_texop_txl, /**< Texture look-up with explicit LOD */
1237 nir_texop_txd, /**< Texture look-up with partial derivatives */
1238 nir_texop_txf, /**< Texel fetch with explicit LOD */
1239 nir_texop_txf_ms, /**< Multisample texture fetch */
1240 nir_texop_txf_ms_mcs, /**< Multisample compression value fetch */
1241 nir_texop_txs, /**< Texture size */
1242 nir_texop_lod, /**< Texture lod query */
1243 nir_texop_tg4, /**< Texture gather */
1244 nir_texop_query_levels, /**< Texture levels query */
1245 nir_texop_texture_samples, /**< Texture samples query */
1246 nir_texop_samples_identical, /**< Query whether all samples are definitely
1247 * identical.
1248 */
1249 } nir_texop;
1250
1251 typedef struct {
1252 nir_instr instr;
1253
1254 enum glsl_sampler_dim sampler_dim;
1255 nir_alu_type dest_type;
1256
1257 nir_texop op;
1258 nir_dest dest;
1259 nir_tex_src *src;
1260 unsigned num_srcs, coord_components;
1261 bool is_array, is_shadow;
1262
1263 /**
1264 * If is_shadow is true, whether this is the old-style shadow that outputs 4
1265 * components or the new-style shadow that outputs 1 component.
1266 */
1267 bool is_new_style_shadow;
1268
1269 /* gather component selector */
1270 unsigned component : 2;
1271
1272 /** The texture index
1273 *
1274 * If this texture instruction has a nir_tex_src_texture_offset source,
1275 * then the texture index is given by texture_index + texture_offset.
1276 */
1277 unsigned texture_index;
1278
1279 /** The size of the texture array or 0 if it's not an array */
1280 unsigned texture_array_size;
1281
1282 /** The texture deref
1283 *
1284 * If this is null, use texture_index instead.
1285 */
1286 nir_deref_var *texture;
1287
1288 /** The sampler index
1289 *
1290 * The following operations do not require a sampler and, as such, this
1291 * field should be ignored:
1292 * - nir_texop_txf
1293 * - nir_texop_txf_ms
1294 * - nir_texop_txs
1295 * - nir_texop_lod
1296 * - nir_texop_query_levels
1297 * - nir_texop_texture_samples
1298 * - nir_texop_samples_identical
1299 *
1300 * If this texture instruction has a nir_tex_src_sampler_offset source,
1301 * then the sampler index is given by sampler_index + sampler_offset.
1302 */
1303 unsigned sampler_index;
1304
1305 /** The sampler deref
1306 *
1307 * If this is null, use sampler_index instead.
1308 */
1309 nir_deref_var *sampler;
1310 } nir_tex_instr;
1311
1312 static inline unsigned
1313 nir_tex_instr_dest_size(const nir_tex_instr *instr)
1314 {
1315 switch (instr->op) {
1316 case nir_texop_txs: {
1317 unsigned ret;
1318 switch (instr->sampler_dim) {
1319 case GLSL_SAMPLER_DIM_1D:
1320 case GLSL_SAMPLER_DIM_BUF:
1321 ret = 1;
1322 break;
1323 case GLSL_SAMPLER_DIM_2D:
1324 case GLSL_SAMPLER_DIM_CUBE:
1325 case GLSL_SAMPLER_DIM_MS:
1326 case GLSL_SAMPLER_DIM_RECT:
1327 case GLSL_SAMPLER_DIM_EXTERNAL:
1328 case GLSL_SAMPLER_DIM_SUBPASS:
1329 ret = 2;
1330 break;
1331 case GLSL_SAMPLER_DIM_3D:
1332 ret = 3;
1333 break;
1334 default:
1335 unreachable("not reached");
1336 }
1337 if (instr->is_array)
1338 ret++;
1339 return ret;
1340 }
1341
1342 case nir_texop_lod:
1343 return 2;
1344
1345 case nir_texop_texture_samples:
1346 case nir_texop_query_levels:
1347 case nir_texop_samples_identical:
1348 return 1;
1349
1350 default:
1351 if (instr->is_shadow && instr->is_new_style_shadow)
1352 return 1;
1353
1354 return 4;
1355 }
1356 }
1357
1358 /* Returns true if this texture operation queries something about the texture
1359 * rather than actually sampling it.
1360 */
1361 static inline bool
1362 nir_tex_instr_is_query(const nir_tex_instr *instr)
1363 {
1364 switch (instr->op) {
1365 case nir_texop_txs:
1366 case nir_texop_lod:
1367 case nir_texop_texture_samples:
1368 case nir_texop_query_levels:
1369 case nir_texop_txf_ms_mcs:
1370 return true;
1371 case nir_texop_tex:
1372 case nir_texop_txb:
1373 case nir_texop_txl:
1374 case nir_texop_txd:
1375 case nir_texop_txf:
1376 case nir_texop_txf_ms:
1377 case nir_texop_tg4:
1378 return false;
1379 default:
1380 unreachable("Invalid texture opcode");
1381 }
1382 }
1383
1384 static inline bool
1385 nir_alu_instr_is_comparison(const nir_alu_instr *instr)
1386 {
1387 switch (instr->op) {
1388 case nir_op_flt:
1389 case nir_op_fge:
1390 case nir_op_feq:
1391 case nir_op_fne:
1392 case nir_op_ilt:
1393 case nir_op_ult:
1394 case nir_op_ige:
1395 case nir_op_uge:
1396 case nir_op_ieq:
1397 case nir_op_ine:
1398 case nir_op_i2b:
1399 case nir_op_f2b:
1400 case nir_op_inot:
1401 case nir_op_fnot:
1402 return true;
1403 default:
1404 return false;
1405 }
1406 }
1407
1408 static inline nir_alu_type
1409 nir_tex_instr_src_type(const nir_tex_instr *instr, unsigned src)
1410 {
1411 switch (instr->src[src].src_type) {
1412 case nir_tex_src_coord:
1413 switch (instr->op) {
1414 case nir_texop_txf:
1415 case nir_texop_txf_ms:
1416 case nir_texop_txf_ms_mcs:
1417 case nir_texop_samples_identical:
1418 return nir_type_int;
1419
1420 default:
1421 return nir_type_float;
1422 }
1423
1424 case nir_tex_src_lod:
1425 switch (instr->op) {
1426 case nir_texop_txs:
1427 case nir_texop_txf:
1428 return nir_type_int;
1429
1430 default:
1431 return nir_type_float;
1432 }
1433
1434 case nir_tex_src_projector:
1435 case nir_tex_src_comparator:
1436 case nir_tex_src_bias:
1437 case nir_tex_src_ddx:
1438 case nir_tex_src_ddy:
1439 return nir_type_float;
1440
1441 case nir_tex_src_offset:
1442 case nir_tex_src_ms_index:
1443 case nir_tex_src_texture_offset:
1444 case nir_tex_src_sampler_offset:
1445 return nir_type_int;
1446
1447 default:
1448 unreachable("Invalid texture source type");
1449 }
1450 }
1451
1452 static inline unsigned
1453 nir_tex_instr_src_size(const nir_tex_instr *instr, unsigned src)
1454 {
1455 if (instr->src[src].src_type == nir_tex_src_coord)
1456 return instr->coord_components;
1457
1458 /* The MCS value is expected to be a vec4 returned by a txf_ms_mcs */
1459 if (instr->src[src].src_type == nir_tex_src_ms_mcs)
1460 return 4;
1461
1462 if (instr->src[src].src_type == nir_tex_src_ddx ||
1463 instr->src[src].src_type == nir_tex_src_ddy) {
1464 if (instr->is_array)
1465 return instr->coord_components - 1;
1466 else
1467 return instr->coord_components;
1468 }
1469
1470 /* Usual APIs don't allow cube + offset, but we allow it, with 2 coords for
1471 * the offset, since a cube maps to a single face.
1472 */
1473 if (instr->src[src].src_type == nir_tex_src_offset) {
1474 if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE)
1475 return 2;
1476 else if (instr->is_array)
1477 return instr->coord_components - 1;
1478 else
1479 return instr->coord_components;
1480 }
1481
1482 return 1;
1483 }
1484
1485 static inline int
1486 nir_tex_instr_src_index(const nir_tex_instr *instr, nir_tex_src_type type)
1487 {
1488 for (unsigned i = 0; i < instr->num_srcs; i++)
1489 if (instr->src[i].src_type == type)
1490 return (int) i;
1491
1492 return -1;
1493 }
1494
1495 void nir_tex_instr_add_src(nir_tex_instr *tex,
1496 nir_tex_src_type src_type,
1497 nir_src src);
1498
1499 void nir_tex_instr_remove_src(nir_tex_instr *tex, unsigned src_idx);
1500
1501 typedef struct {
1502 nir_instr instr;
1503
1504 nir_const_value value;
1505
1506 nir_ssa_def def;
1507 } nir_load_const_instr;
1508
1509 typedef enum {
1510 nir_jump_return,
1511 nir_jump_break,
1512 nir_jump_continue,
1513 } nir_jump_type;
1514
1515 typedef struct {
1516 nir_instr instr;
1517 nir_jump_type type;
1518 } nir_jump_instr;
1519
1520 /* creates a new SSA variable in an undefined state */
1521
1522 typedef struct {
1523 nir_instr instr;
1524 nir_ssa_def def;
1525 } nir_ssa_undef_instr;
1526
1527 typedef struct {
1528 struct exec_node node;
1529
1530 /* The predecessor block corresponding to this source */
1531 struct nir_block *pred;
1532
1533 nir_src src;
1534 } nir_phi_src;
1535
1536 #define nir_foreach_phi_src(phi_src, phi) \
1537 foreach_list_typed(nir_phi_src, phi_src, node, &(phi)->srcs)
1538 #define nir_foreach_phi_src_safe(phi_src, phi) \
1539 foreach_list_typed_safe(nir_phi_src, phi_src, node, &(phi)->srcs)
1540
1541 typedef struct {
1542 nir_instr instr;
1543
1544 struct exec_list srcs; /** < list of nir_phi_src */
1545
1546 nir_dest dest;
1547 } nir_phi_instr;
1548
1549 typedef struct {
1550 struct exec_node node;
1551 nir_src src;
1552 nir_dest dest;
1553 } nir_parallel_copy_entry;
1554
1555 #define nir_foreach_parallel_copy_entry(entry, pcopy) \
1556 foreach_list_typed(nir_parallel_copy_entry, entry, node, &(pcopy)->entries)
1557
1558 typedef struct {
1559 nir_instr instr;
1560
1561 /* A list of nir_parallel_copy_entrys. The sources of all of the
1562 * entries are copied to the corresponding destinations "in parallel".
1563 * In other words, if we have two entries: a -> b and b -> a, the values
1564 * get swapped.
1565 */
1566 struct exec_list entries;
1567 } nir_parallel_copy_instr;
1568
1569 NIR_DEFINE_CAST(nir_instr_as_alu, nir_instr, nir_alu_instr, instr,
1570 type, nir_instr_type_alu)
1571 NIR_DEFINE_CAST(nir_instr_as_call, nir_instr, nir_call_instr, instr,
1572 type, nir_instr_type_call)
1573 NIR_DEFINE_CAST(nir_instr_as_jump, nir_instr, nir_jump_instr, instr,
1574 type, nir_instr_type_jump)
1575 NIR_DEFINE_CAST(nir_instr_as_tex, nir_instr, nir_tex_instr, instr,
1576 type, nir_instr_type_tex)
1577 NIR_DEFINE_CAST(nir_instr_as_intrinsic, nir_instr, nir_intrinsic_instr, instr,
1578 type, nir_instr_type_intrinsic)
1579 NIR_DEFINE_CAST(nir_instr_as_load_const, nir_instr, nir_load_const_instr, instr,
1580 type, nir_instr_type_load_const)
1581 NIR_DEFINE_CAST(nir_instr_as_ssa_undef, nir_instr, nir_ssa_undef_instr, instr,
1582 type, nir_instr_type_ssa_undef)
1583 NIR_DEFINE_CAST(nir_instr_as_phi, nir_instr, nir_phi_instr, instr,
1584 type, nir_instr_type_phi)
1585 NIR_DEFINE_CAST(nir_instr_as_parallel_copy, nir_instr,
1586 nir_parallel_copy_instr, instr,
1587 type, nir_instr_type_parallel_copy)
1588
1589 /*
1590 * Control flow
1591 *
1592 * Control flow consists of a tree of control flow nodes, which include
1593 * if-statements and loops. The leaves of the tree are basic blocks, lists of
1594 * instructions that always run start-to-finish. Each basic block also keeps
1595 * track of its successors (blocks which may run immediately after the current
1596 * block) and predecessors (blocks which could have run immediately before the
1597 * current block). Each function also has a start block and an end block which
1598 * all return statements point to (which is always empty). Together, all the
1599 * blocks with their predecessors and successors make up the control flow
1600 * graph (CFG) of the function. There are helpers that modify the tree of
1601 * control flow nodes while modifying the CFG appropriately; these should be
1602 * used instead of modifying the tree directly.
1603 */
1604
1605 typedef enum {
1606 nir_cf_node_block,
1607 nir_cf_node_if,
1608 nir_cf_node_loop,
1609 nir_cf_node_function
1610 } nir_cf_node_type;
1611
1612 typedef struct nir_cf_node {
1613 struct exec_node node;
1614 nir_cf_node_type type;
1615 struct nir_cf_node *parent;
1616 } nir_cf_node;
1617
1618 typedef struct nir_block {
1619 nir_cf_node cf_node;
1620
1621 struct exec_list instr_list; /** < list of nir_instr */
1622
1623 /** generic block index; generated by nir_index_blocks */
1624 unsigned index;
1625
1626 /*
1627 * Each block can only have up to 2 successors, so we put them in a simple
1628 * array - no need for anything more complicated.
1629 */
1630 struct nir_block *successors[2];
1631
1632 /* Set of nir_block predecessors in the CFG */
1633 struct set *predecessors;
1634
1635 /*
1636 * this node's immediate dominator in the dominance tree - set to NULL for
1637 * the start block.
1638 */
1639 struct nir_block *imm_dom;
1640
1641 /* This node's children in the dominance tree */
1642 unsigned num_dom_children;
1643 struct nir_block **dom_children;
1644
1645 /* Set of nir_blocks on the dominance frontier of this block */
1646 struct set *dom_frontier;
1647
1648 /*
1649 * These two indices have the property that dom_{pre,post}_index for each
1650 * child of this block in the dominance tree will always be between
1651 * dom_pre_index and dom_post_index for this block, which makes testing if
1652 * a given block is dominated by another block an O(1) operation.
1653 */
1654 unsigned dom_pre_index, dom_post_index;
1655
1656 /* live in and out for this block; used for liveness analysis */
1657 BITSET_WORD *live_in;
1658 BITSET_WORD *live_out;
1659 } nir_block;
1660
1661 static inline nir_instr *
1662 nir_block_first_instr(nir_block *block)
1663 {
1664 struct exec_node *head = exec_list_get_head(&block->instr_list);
1665 return exec_node_data(nir_instr, head, node);
1666 }
1667
1668 static inline nir_instr *
1669 nir_block_last_instr(nir_block *block)
1670 {
1671 struct exec_node *tail = exec_list_get_tail(&block->instr_list);
1672 return exec_node_data(nir_instr, tail, node);
1673 }
1674
1675 #define nir_foreach_instr(instr, block) \
1676 foreach_list_typed(nir_instr, instr, node, &(block)->instr_list)
1677 #define nir_foreach_instr_reverse(instr, block) \
1678 foreach_list_typed_reverse(nir_instr, instr, node, &(block)->instr_list)
1679 #define nir_foreach_instr_safe(instr, block) \
1680 foreach_list_typed_safe(nir_instr, instr, node, &(block)->instr_list)
1681 #define nir_foreach_instr_reverse_safe(instr, block) \
1682 foreach_list_typed_reverse_safe(nir_instr, instr, node, &(block)->instr_list)
1683
1684 typedef struct nir_if {
1685 nir_cf_node cf_node;
1686 nir_src condition;
1687
1688 struct exec_list then_list; /** < list of nir_cf_node */
1689 struct exec_list else_list; /** < list of nir_cf_node */
1690 } nir_if;
1691
1692 typedef struct {
1693 nir_if *nif;
1694
1695 nir_instr *conditional_instr;
1696
1697 nir_block *break_block;
1698 nir_block *continue_from_block;
1699
1700 bool continue_from_then;
1701
1702 struct list_head loop_terminator_link;
1703 } nir_loop_terminator;
1704
1705 typedef struct {
1706 /* Number of instructions in the loop */
1707 unsigned num_instructions;
1708
1709 /* How many times the loop is run (if known) */
1710 unsigned trip_count;
1711 bool is_trip_count_known;
1712
1713 /* Unroll the loop regardless of its size */
1714 bool force_unroll;
1715
1716 nir_loop_terminator *limiting_terminator;
1717
1718 /* A list of loop_terminators terminating this loop. */
1719 struct list_head loop_terminator_list;
1720 } nir_loop_info;
1721
1722 typedef struct {
1723 nir_cf_node cf_node;
1724
1725 struct exec_list body; /** < list of nir_cf_node */
1726
1727 nir_loop_info *info;
1728 } nir_loop;
1729
1730 /**
1731 * Various bits of metadata that can may be created or required by
1732 * optimization and analysis passes
1733 */
1734 typedef enum {
1735 nir_metadata_none = 0x0,
1736 nir_metadata_block_index = 0x1,
1737 nir_metadata_dominance = 0x2,
1738 nir_metadata_live_ssa_defs = 0x4,
1739 nir_metadata_not_properly_reset = 0x8,
1740 nir_metadata_loop_analysis = 0x10,
1741 } nir_metadata;
1742
1743 typedef struct {
1744 nir_cf_node cf_node;
1745
1746 /** pointer to the function of which this is an implementation */
1747 struct nir_function *function;
1748
1749 struct exec_list body; /** < list of nir_cf_node */
1750
1751 nir_block *end_block;
1752
1753 /** list for all local variables in the function */
1754 struct exec_list locals;
1755
1756 /** array of variables used as parameters */
1757 unsigned num_params;
1758 nir_variable **params;
1759
1760 /** variable used to hold the result of the function */
1761 nir_variable *return_var;
1762
1763 /** list of local registers in the function */
1764 struct exec_list registers;
1765
1766 /** next available local register index */
1767 unsigned reg_alloc;
1768
1769 /** next available SSA value index */
1770 unsigned ssa_alloc;
1771
1772 /* total number of basic blocks, only valid when block_index_dirty = false */
1773 unsigned num_blocks;
1774
1775 nir_metadata valid_metadata;
1776 } nir_function_impl;
1777
1778 ATTRIBUTE_RETURNS_NONNULL static inline nir_block *
1779 nir_start_block(nir_function_impl *impl)
1780 {
1781 return (nir_block *) impl->body.head_sentinel.next;
1782 }
1783
1784 ATTRIBUTE_RETURNS_NONNULL static inline nir_block *
1785 nir_impl_last_block(nir_function_impl *impl)
1786 {
1787 return (nir_block *) impl->body.tail_sentinel.prev;
1788 }
1789
1790 static inline nir_cf_node *
1791 nir_cf_node_next(nir_cf_node *node)
1792 {
1793 struct exec_node *next = exec_node_get_next(&node->node);
1794 if (exec_node_is_tail_sentinel(next))
1795 return NULL;
1796 else
1797 return exec_node_data(nir_cf_node, next, node);
1798 }
1799
1800 static inline nir_cf_node *
1801 nir_cf_node_prev(nir_cf_node *node)
1802 {
1803 struct exec_node *prev = exec_node_get_prev(&node->node);
1804 if (exec_node_is_head_sentinel(prev))
1805 return NULL;
1806 else
1807 return exec_node_data(nir_cf_node, prev, node);
1808 }
1809
1810 static inline bool
1811 nir_cf_node_is_first(const nir_cf_node *node)
1812 {
1813 return exec_node_is_head_sentinel(node->node.prev);
1814 }
1815
1816 static inline bool
1817 nir_cf_node_is_last(const nir_cf_node *node)
1818 {
1819 return exec_node_is_tail_sentinel(node->node.next);
1820 }
1821
1822 NIR_DEFINE_CAST(nir_cf_node_as_block, nir_cf_node, nir_block, cf_node,
1823 type, nir_cf_node_block)
1824 NIR_DEFINE_CAST(nir_cf_node_as_if, nir_cf_node, nir_if, cf_node,
1825 type, nir_cf_node_if)
1826 NIR_DEFINE_CAST(nir_cf_node_as_loop, nir_cf_node, nir_loop, cf_node,
1827 type, nir_cf_node_loop)
1828 NIR_DEFINE_CAST(nir_cf_node_as_function, nir_cf_node,
1829 nir_function_impl, cf_node, type, nir_cf_node_function)
1830
1831 static inline nir_block *
1832 nir_if_first_then_block(nir_if *if_stmt)
1833 {
1834 struct exec_node *head = exec_list_get_head(&if_stmt->then_list);
1835 return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
1836 }
1837
1838 static inline nir_block *
1839 nir_if_last_then_block(nir_if *if_stmt)
1840 {
1841 struct exec_node *tail = exec_list_get_tail(&if_stmt->then_list);
1842 return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
1843 }
1844
1845 static inline nir_block *
1846 nir_if_first_else_block(nir_if *if_stmt)
1847 {
1848 struct exec_node *head = exec_list_get_head(&if_stmt->else_list);
1849 return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
1850 }
1851
1852 static inline nir_block *
1853 nir_if_last_else_block(nir_if *if_stmt)
1854 {
1855 struct exec_node *tail = exec_list_get_tail(&if_stmt->else_list);
1856 return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
1857 }
1858
1859 static inline nir_block *
1860 nir_loop_first_block(nir_loop *loop)
1861 {
1862 struct exec_node *head = exec_list_get_head(&loop->body);
1863 return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
1864 }
1865
1866 static inline nir_block *
1867 nir_loop_last_block(nir_loop *loop)
1868 {
1869 struct exec_node *tail = exec_list_get_tail(&loop->body);
1870 return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
1871 }
1872
1873 typedef enum {
1874 nir_parameter_in,
1875 nir_parameter_out,
1876 nir_parameter_inout,
1877 } nir_parameter_type;
1878
1879 typedef struct {
1880 nir_parameter_type param_type;
1881 const struct glsl_type *type;
1882 } nir_parameter;
1883
1884 typedef struct nir_function {
1885 struct exec_node node;
1886
1887 const char *name;
1888 struct nir_shader *shader;
1889
1890 unsigned num_params;
1891 nir_parameter *params;
1892 const struct glsl_type *return_type;
1893
1894 /** The implementation of this function.
1895 *
1896 * If the function is only declared and not implemented, this is NULL.
1897 */
1898 nir_function_impl *impl;
1899 } nir_function;
1900
1901 typedef struct nir_shader_compiler_options {
1902 bool lower_fdiv;
1903 bool lower_ffma;
1904 bool fuse_ffma;
1905 bool lower_flrp32;
1906 /** Lowers flrp when it does not support doubles */
1907 bool lower_flrp64;
1908 bool lower_fpow;
1909 bool lower_fsat;
1910 bool lower_fsqrt;
1911 bool lower_fmod32;
1912 bool lower_fmod64;
1913 /** Lowers ibitfield_extract/ubitfield_extract to ibfe/ubfe. */
1914 bool lower_bitfield_extract;
1915 /** Lowers ibitfield_extract/ubitfield_extract to bfm, compares, shifts. */
1916 bool lower_bitfield_extract_to_shifts;
1917 /** Lowers bitfield_insert to bfi/bfm */
1918 bool lower_bitfield_insert;
1919 /** Lowers bitfield_insert to bfm, compares, and shifts. */
1920 bool lower_bitfield_insert_to_shifts;
1921 /** Lowers bitfield_reverse to shifts. */
1922 bool lower_bitfield_reverse;
1923 /** Lowers bit_count to shifts. */
1924 bool lower_bit_count;
1925 /** Lowers bfm to shifts and subtracts. */
1926 bool lower_bfm;
1927 /** Lowers ifind_msb to compare and ufind_msb */
1928 bool lower_ifind_msb;
1929 /** Lowers find_lsb to ufind_msb and logic ops */
1930 bool lower_find_lsb;
1931 bool lower_uadd_carry;
1932 bool lower_usub_borrow;
1933 /** Lowers imul_high/umul_high to 16-bit multiplies and carry operations. */
1934 bool lower_mul_high;
1935 /** lowers fneg and ineg to fsub and isub. */
1936 bool lower_negate;
1937 /** lowers fsub and isub to fadd+fneg and iadd+ineg. */
1938 bool lower_sub;
1939
1940 /* lower {slt,sge,seq,sne} to {flt,fge,feq,fne} + b2f: */
1941 bool lower_scmp;
1942
1943 /** enables rules to lower idiv by power-of-two: */
1944 bool lower_idiv;
1945
1946 /* lower b2f to iand */
1947 bool lower_b2f;
1948
1949 /* Does the native fdot instruction replicate its result for four
1950 * components? If so, then opt_algebraic_late will turn all fdotN
1951 * instructions into fdot_replicatedN instructions.
1952 */
1953 bool fdot_replicates;
1954
1955 /** lowers ffract to fsub+ffloor: */
1956 bool lower_ffract;
1957
1958 bool lower_ldexp;
1959
1960 bool lower_pack_half_2x16;
1961 bool lower_pack_unorm_2x16;
1962 bool lower_pack_snorm_2x16;
1963 bool lower_pack_unorm_4x8;
1964 bool lower_pack_snorm_4x8;
1965 bool lower_unpack_half_2x16;
1966 bool lower_unpack_unorm_2x16;
1967 bool lower_unpack_snorm_2x16;
1968 bool lower_unpack_unorm_4x8;
1969 bool lower_unpack_snorm_4x8;
1970
1971 bool lower_extract_byte;
1972 bool lower_extract_word;
1973
1974 bool lower_all_io_to_temps;
1975
1976 /**
1977 * Does the driver support real 32-bit integers? (Otherwise, integers
1978 * are simulated by floats.)
1979 */
1980 bool native_integers;
1981
1982 /* Indicates that the driver only has zero-based vertex id */
1983 bool vertex_id_zero_based;
1984
1985 /**
1986 * If enabled, gl_BaseVertex will be lowered as:
1987 * is_indexed_draw (~0/0) & firstvertex
1988 */
1989 bool lower_base_vertex;
1990
1991 bool lower_cs_local_index_from_id;
1992
1993 bool lower_device_index_to_zero;
1994
1995 /**
1996 * Should nir_lower_io() create load_interpolated_input intrinsics?
1997 *
1998 * If not, it generates regular load_input intrinsics and interpolation
1999 * information must be inferred from the list of input nir_variables.
2000 */
2001 bool use_interpolated_input_intrinsics;
2002
2003 /**
2004 * Do vertex shader double inputs use two locations? The Vulkan spec
2005 * requires two locations to be used, OpenGL allows a single location.
2006 */
2007 bool vs_inputs_dual_locations;
2008
2009 unsigned max_unroll_iterations;
2010 } nir_shader_compiler_options;
2011
2012 typedef struct nir_shader {
2013 /** list of uniforms (nir_variable) */
2014 struct exec_list uniforms;
2015
2016 /** list of inputs (nir_variable) */
2017 struct exec_list inputs;
2018
2019 /** list of outputs (nir_variable) */
2020 struct exec_list outputs;
2021
2022 /** list of shared compute variables (nir_variable) */
2023 struct exec_list shared;
2024
2025 /** Set of driver-specific options for the shader.
2026 *
2027 * The memory for the options is expected to be kept in a single static
2028 * copy by the driver.
2029 */
2030 const struct nir_shader_compiler_options *options;
2031
2032 /** Various bits of compile-time information about a given shader */
2033 struct shader_info info;
2034
2035 /** list of global variables in the shader (nir_variable) */
2036 struct exec_list globals;
2037
2038 /** list of system value variables in the shader (nir_variable) */
2039 struct exec_list system_values;
2040
2041 struct exec_list functions; /** < list of nir_function */
2042
2043 /** list of global register in the shader */
2044 struct exec_list registers;
2045
2046 /** next available global register index */
2047 unsigned reg_alloc;
2048
2049 /**
2050 * the highest index a load_input_*, load_uniform_*, etc. intrinsic can
2051 * access plus one
2052 */
2053 unsigned num_inputs, num_uniforms, num_outputs, num_shared;
2054 } nir_shader;
2055
2056 static inline nir_function_impl *
2057 nir_shader_get_entrypoint(nir_shader *shader)
2058 {
2059 assert(exec_list_length(&shader->functions) == 1);
2060 struct exec_node *func_node = exec_list_get_head(&shader->functions);
2061 nir_function *func = exec_node_data(nir_function, func_node, node);
2062 assert(func->return_type == glsl_void_type());
2063 assert(func->num_params == 0);
2064 assert(func->impl);
2065 return func->impl;
2066 }
2067
2068 #define nir_foreach_function(func, shader) \
2069 foreach_list_typed(nir_function, func, node, &(shader)->functions)
2070
2071 nir_shader *nir_shader_create(void *mem_ctx,
2072 gl_shader_stage stage,
2073 const nir_shader_compiler_options *options,
2074 shader_info *si);
2075
2076 /** creates a register, including assigning it an index and adding it to the list */
2077 nir_register *nir_global_reg_create(nir_shader *shader);
2078
2079 nir_register *nir_local_reg_create(nir_function_impl *impl);
2080
2081 void nir_reg_remove(nir_register *reg);
2082
2083 /** Adds a variable to the appropriate list in nir_shader */
2084 void nir_shader_add_variable(nir_shader *shader, nir_variable *var);
2085
2086 static inline void
2087 nir_function_impl_add_variable(nir_function_impl *impl, nir_variable *var)
2088 {
2089 assert(var->data.mode == nir_var_local);
2090 exec_list_push_tail(&impl->locals, &var->node);
2091 }
2092
2093 /** creates a variable, sets a few defaults, and adds it to the list */
2094 nir_variable *nir_variable_create(nir_shader *shader,
2095 nir_variable_mode mode,
2096 const struct glsl_type *type,
2097 const char *name);
2098 /** creates a local variable and adds it to the list */
2099 nir_variable *nir_local_variable_create(nir_function_impl *impl,
2100 const struct glsl_type *type,
2101 const char *name);
2102
2103 /** creates a function and adds it to the shader's list of functions */
2104 nir_function *nir_function_create(nir_shader *shader, const char *name);
2105
2106 nir_function_impl *nir_function_impl_create(nir_function *func);
2107 /** creates a function_impl that isn't tied to any particular function */
2108 nir_function_impl *nir_function_impl_create_bare(nir_shader *shader);
2109
2110 nir_block *nir_block_create(nir_shader *shader);
2111 nir_if *nir_if_create(nir_shader *shader);
2112 nir_loop *nir_loop_create(nir_shader *shader);
2113
2114 nir_function_impl *nir_cf_node_get_function(nir_cf_node *node);
2115
2116 /** requests that the given pieces of metadata be generated */
2117 void nir_metadata_require(nir_function_impl *impl, nir_metadata required, ...);
2118 /** dirties all but the preserved metadata */
2119 void nir_metadata_preserve(nir_function_impl *impl, nir_metadata preserved);
2120
2121 /** creates an instruction with default swizzle/writemask/etc. with NULL registers */
2122 nir_alu_instr *nir_alu_instr_create(nir_shader *shader, nir_op op);
2123
2124 nir_jump_instr *nir_jump_instr_create(nir_shader *shader, nir_jump_type type);
2125
2126 nir_load_const_instr *nir_load_const_instr_create(nir_shader *shader,
2127 unsigned num_components,
2128 unsigned bit_size);
2129
2130 nir_intrinsic_instr *nir_intrinsic_instr_create(nir_shader *shader,
2131 nir_intrinsic_op op);
2132
2133 nir_call_instr *nir_call_instr_create(nir_shader *shader,
2134 nir_function *callee);
2135
2136 nir_tex_instr *nir_tex_instr_create(nir_shader *shader, unsigned num_srcs);
2137
2138 nir_phi_instr *nir_phi_instr_create(nir_shader *shader);
2139
2140 nir_parallel_copy_instr *nir_parallel_copy_instr_create(nir_shader *shader);
2141
2142 nir_ssa_undef_instr *nir_ssa_undef_instr_create(nir_shader *shader,
2143 unsigned num_components,
2144 unsigned bit_size);
2145
2146 nir_deref_var *nir_deref_var_create(void *mem_ctx, nir_variable *var);
2147 nir_deref_array *nir_deref_array_create(void *mem_ctx);
2148 nir_deref_struct *nir_deref_struct_create(void *mem_ctx, unsigned field_index);
2149
2150 typedef bool (*nir_deref_foreach_leaf_cb)(nir_deref_var *deref, void *state);
2151 bool nir_deref_foreach_leaf(nir_deref_var *deref,
2152 nir_deref_foreach_leaf_cb cb, void *state);
2153
2154 nir_load_const_instr *
2155 nir_deref_get_const_initializer_load(nir_shader *shader, nir_deref_var *deref);
2156
2157 nir_const_value nir_alu_binop_identity(nir_op binop, unsigned bit_size);
2158
2159 /**
2160 * NIR Cursors and Instruction Insertion API
2161 * @{
2162 *
2163 * A tiny struct representing a point to insert/extract instructions or
2164 * control flow nodes. Helps reduce the combinatorial explosion of possible
2165 * points to insert/extract.
2166 *
2167 * \sa nir_control_flow.h
2168 */
2169 typedef enum {
2170 nir_cursor_before_block,
2171 nir_cursor_after_block,
2172 nir_cursor_before_instr,
2173 nir_cursor_after_instr,
2174 } nir_cursor_option;
2175
2176 typedef struct {
2177 nir_cursor_option option;
2178 union {
2179 nir_block *block;
2180 nir_instr *instr;
2181 };
2182 } nir_cursor;
2183
2184 static inline nir_block *
2185 nir_cursor_current_block(nir_cursor cursor)
2186 {
2187 if (cursor.option == nir_cursor_before_instr ||
2188 cursor.option == nir_cursor_after_instr) {
2189 return cursor.instr->block;
2190 } else {
2191 return cursor.block;
2192 }
2193 }
2194
2195 bool nir_cursors_equal(nir_cursor a, nir_cursor b);
2196
2197 static inline nir_cursor
2198 nir_before_block(nir_block *block)
2199 {
2200 nir_cursor cursor;
2201 cursor.option = nir_cursor_before_block;
2202 cursor.block = block;
2203 return cursor;
2204 }
2205
2206 static inline nir_cursor
2207 nir_after_block(nir_block *block)
2208 {
2209 nir_cursor cursor;
2210 cursor.option = nir_cursor_after_block;
2211 cursor.block = block;
2212 return cursor;
2213 }
2214
2215 static inline nir_cursor
2216 nir_before_instr(nir_instr *instr)
2217 {
2218 nir_cursor cursor;
2219 cursor.option = nir_cursor_before_instr;
2220 cursor.instr = instr;
2221 return cursor;
2222 }
2223
2224 static inline nir_cursor
2225 nir_after_instr(nir_instr *instr)
2226 {
2227 nir_cursor cursor;
2228 cursor.option = nir_cursor_after_instr;
2229 cursor.instr = instr;
2230 return cursor;
2231 }
2232
2233 static inline nir_cursor
2234 nir_after_block_before_jump(nir_block *block)
2235 {
2236 nir_instr *last_instr = nir_block_last_instr(block);
2237 if (last_instr && last_instr->type == nir_instr_type_jump) {
2238 return nir_before_instr(last_instr);
2239 } else {
2240 return nir_after_block(block);
2241 }
2242 }
2243
2244 static inline nir_cursor
2245 nir_before_cf_node(nir_cf_node *node)
2246 {
2247 if (node->type == nir_cf_node_block)
2248 return nir_before_block(nir_cf_node_as_block(node));
2249
2250 return nir_after_block(nir_cf_node_as_block(nir_cf_node_prev(node)));
2251 }
2252
2253 static inline nir_cursor
2254 nir_after_cf_node(nir_cf_node *node)
2255 {
2256 if (node->type == nir_cf_node_block)
2257 return nir_after_block(nir_cf_node_as_block(node));
2258
2259 return nir_before_block(nir_cf_node_as_block(nir_cf_node_next(node)));
2260 }
2261
2262 static inline nir_cursor
2263 nir_after_phis(nir_block *block)
2264 {
2265 nir_foreach_instr(instr, block) {
2266 if (instr->type != nir_instr_type_phi)
2267 return nir_before_instr(instr);
2268 }
2269 return nir_after_block(block);
2270 }
2271
2272 static inline nir_cursor
2273 nir_after_cf_node_and_phis(nir_cf_node *node)
2274 {
2275 if (node->type == nir_cf_node_block)
2276 return nir_after_block(nir_cf_node_as_block(node));
2277
2278 nir_block *block = nir_cf_node_as_block(nir_cf_node_next(node));
2279
2280 return nir_after_phis(block);
2281 }
2282
2283 static inline nir_cursor
2284 nir_before_cf_list(struct exec_list *cf_list)
2285 {
2286 nir_cf_node *first_node = exec_node_data(nir_cf_node,
2287 exec_list_get_head(cf_list), node);
2288 return nir_before_cf_node(first_node);
2289 }
2290
2291 static inline nir_cursor
2292 nir_after_cf_list(struct exec_list *cf_list)
2293 {
2294 nir_cf_node *last_node = exec_node_data(nir_cf_node,
2295 exec_list_get_tail(cf_list), node);
2296 return nir_after_cf_node(last_node);
2297 }
2298
2299 /**
2300 * Insert a NIR instruction at the given cursor.
2301 *
2302 * Note: This does not update the cursor.
2303 */
2304 void nir_instr_insert(nir_cursor cursor, nir_instr *instr);
2305
2306 static inline void
2307 nir_instr_insert_before(nir_instr *instr, nir_instr *before)
2308 {
2309 nir_instr_insert(nir_before_instr(instr), before);
2310 }
2311
2312 static inline void
2313 nir_instr_insert_after(nir_instr *instr, nir_instr *after)
2314 {
2315 nir_instr_insert(nir_after_instr(instr), after);
2316 }
2317
2318 static inline void
2319 nir_instr_insert_before_block(nir_block *block, nir_instr *before)
2320 {
2321 nir_instr_insert(nir_before_block(block), before);
2322 }
2323
2324 static inline void
2325 nir_instr_insert_after_block(nir_block *block, nir_instr *after)
2326 {
2327 nir_instr_insert(nir_after_block(block), after);
2328 }
2329
2330 static inline void
2331 nir_instr_insert_before_cf(nir_cf_node *node, nir_instr *before)
2332 {
2333 nir_instr_insert(nir_before_cf_node(node), before);
2334 }
2335
2336 static inline void
2337 nir_instr_insert_after_cf(nir_cf_node *node, nir_instr *after)
2338 {
2339 nir_instr_insert(nir_after_cf_node(node), after);
2340 }
2341
2342 static inline void
2343 nir_instr_insert_before_cf_list(struct exec_list *list, nir_instr *before)
2344 {
2345 nir_instr_insert(nir_before_cf_list(list), before);
2346 }
2347
2348 static inline void
2349 nir_instr_insert_after_cf_list(struct exec_list *list, nir_instr *after)
2350 {
2351 nir_instr_insert(nir_after_cf_list(list), after);
2352 }
2353
2354 void nir_instr_remove_v(nir_instr *instr);
2355
2356 static inline nir_cursor
2357 nir_instr_remove(nir_instr *instr)
2358 {
2359 nir_cursor cursor;
2360 nir_instr *prev = nir_instr_prev(instr);
2361 if (prev) {
2362 cursor = nir_after_instr(prev);
2363 } else {
2364 cursor = nir_before_block(instr->block);
2365 }
2366 nir_instr_remove_v(instr);
2367 return cursor;
2368 }
2369
2370 /** @} */
2371
2372 typedef bool (*nir_foreach_ssa_def_cb)(nir_ssa_def *def, void *state);
2373 typedef bool (*nir_foreach_dest_cb)(nir_dest *dest, void *state);
2374 typedef bool (*nir_foreach_src_cb)(nir_src *src, void *state);
2375 bool nir_foreach_ssa_def(nir_instr *instr, nir_foreach_ssa_def_cb cb,
2376 void *state);
2377 bool nir_foreach_dest(nir_instr *instr, nir_foreach_dest_cb cb, void *state);
2378 bool nir_foreach_src(nir_instr *instr, nir_foreach_src_cb cb, void *state);
2379
2380 nir_const_value *nir_src_as_const_value(nir_src src);
2381 bool nir_src_is_dynamically_uniform(nir_src src);
2382 bool nir_srcs_equal(nir_src src1, nir_src src2);
2383 void nir_instr_rewrite_src(nir_instr *instr, nir_src *src, nir_src new_src);
2384 void nir_instr_move_src(nir_instr *dest_instr, nir_src *dest, nir_src *src);
2385 void nir_if_rewrite_condition(nir_if *if_stmt, nir_src new_src);
2386 void nir_instr_rewrite_dest(nir_instr *instr, nir_dest *dest,
2387 nir_dest new_dest);
2388 void nir_instr_rewrite_deref(nir_instr *instr, nir_deref_var **deref,
2389 nir_deref_var *new_deref);
2390
2391 void nir_ssa_dest_init(nir_instr *instr, nir_dest *dest,
2392 unsigned num_components, unsigned bit_size,
2393 const char *name);
2394 void nir_ssa_def_init(nir_instr *instr, nir_ssa_def *def,
2395 unsigned num_components, unsigned bit_size,
2396 const char *name);
2397 static inline void
2398 nir_ssa_dest_init_for_type(nir_instr *instr, nir_dest *dest,
2399 const struct glsl_type *type,
2400 const char *name)
2401 {
2402 assert(glsl_type_is_vector_or_scalar(type));
2403 nir_ssa_dest_init(instr, dest, glsl_get_components(type),
2404 glsl_get_bit_size(type), name);
2405 }
2406 void nir_ssa_def_rewrite_uses(nir_ssa_def *def, nir_src new_src);
2407 void nir_ssa_def_rewrite_uses_after(nir_ssa_def *def, nir_src new_src,
2408 nir_instr *after_me);
2409
2410 uint8_t nir_ssa_def_components_read(const nir_ssa_def *def);
2411
2412 /*
2413 * finds the next basic block in source-code order, returns NULL if there is
2414 * none
2415 */
2416
2417 nir_block *nir_block_cf_tree_next(nir_block *block);
2418
2419 /* Performs the opposite of nir_block_cf_tree_next() */
2420
2421 nir_block *nir_block_cf_tree_prev(nir_block *block);
2422
2423 /* Gets the first block in a CF node in source-code order */
2424
2425 nir_block *nir_cf_node_cf_tree_first(nir_cf_node *node);
2426
2427 /* Gets the last block in a CF node in source-code order */
2428
2429 nir_block *nir_cf_node_cf_tree_last(nir_cf_node *node);
2430
2431 /* Gets the next block after a CF node in source-code order */
2432
2433 nir_block *nir_cf_node_cf_tree_next(nir_cf_node *node);
2434
2435 /* Macros for loops that visit blocks in source-code order */
2436
2437 #define nir_foreach_block(block, impl) \
2438 for (nir_block *block = nir_start_block(impl); block != NULL; \
2439 block = nir_block_cf_tree_next(block))
2440
2441 #define nir_foreach_block_safe(block, impl) \
2442 for (nir_block *block = nir_start_block(impl), \
2443 *next = nir_block_cf_tree_next(block); \
2444 block != NULL; \
2445 block = next, next = nir_block_cf_tree_next(block))
2446
2447 #define nir_foreach_block_reverse(block, impl) \
2448 for (nir_block *block = nir_impl_last_block(impl); block != NULL; \
2449 block = nir_block_cf_tree_prev(block))
2450
2451 #define nir_foreach_block_reverse_safe(block, impl) \
2452 for (nir_block *block = nir_impl_last_block(impl), \
2453 *prev = nir_block_cf_tree_prev(block); \
2454 block != NULL; \
2455 block = prev, prev = nir_block_cf_tree_prev(block))
2456
2457 #define nir_foreach_block_in_cf_node(block, node) \
2458 for (nir_block *block = nir_cf_node_cf_tree_first(node); \
2459 block != nir_cf_node_cf_tree_next(node); \
2460 block = nir_block_cf_tree_next(block))
2461
2462 /* If the following CF node is an if, this function returns that if.
2463 * Otherwise, it returns NULL.
2464 */
2465 nir_if *nir_block_get_following_if(nir_block *block);
2466
2467 nir_loop *nir_block_get_following_loop(nir_block *block);
2468
2469 void nir_index_local_regs(nir_function_impl *impl);
2470 void nir_index_global_regs(nir_shader *shader);
2471 void nir_index_ssa_defs(nir_function_impl *impl);
2472 unsigned nir_index_instrs(nir_function_impl *impl);
2473
2474 void nir_index_blocks(nir_function_impl *impl);
2475
2476 void nir_print_shader(nir_shader *shader, FILE *fp);
2477 void nir_print_shader_annotated(nir_shader *shader, FILE *fp, struct hash_table *errors);
2478 void nir_print_instr(const nir_instr *instr, FILE *fp);
2479
2480 nir_shader *nir_shader_clone(void *mem_ctx, const nir_shader *s);
2481 nir_function_impl *nir_function_impl_clone(const nir_function_impl *fi);
2482 nir_constant *nir_constant_clone(const nir_constant *c, nir_variable *var);
2483 nir_variable *nir_variable_clone(const nir_variable *c, nir_shader *shader);
2484 nir_deref *nir_deref_clone(const nir_deref *deref, void *mem_ctx);
2485 nir_deref_var *nir_deref_var_clone(const nir_deref_var *deref, void *mem_ctx);
2486
2487 nir_shader *nir_shader_serialize_deserialize(void *mem_ctx, nir_shader *s);
2488
2489 #ifndef NDEBUG
2490 void nir_validate_shader(nir_shader *shader);
2491 void nir_metadata_set_validation_flag(nir_shader *shader);
2492 void nir_metadata_check_validation_flag(nir_shader *shader);
2493
2494 static inline bool
2495 should_clone_nir(void)
2496 {
2497 static int should_clone = -1;
2498 if (should_clone < 0)
2499 should_clone = env_var_as_boolean("NIR_TEST_CLONE", false);
2500
2501 return should_clone;
2502 }
2503
2504 static inline bool
2505 should_serialize_deserialize_nir(void)
2506 {
2507 static int test_serialize = -1;
2508 if (test_serialize < 0)
2509 test_serialize = env_var_as_boolean("NIR_TEST_SERIALIZE", false);
2510
2511 return test_serialize;
2512 }
2513
2514 static inline bool
2515 should_print_nir(void)
2516 {
2517 static int should_print = -1;
2518 if (should_print < 0)
2519 should_print = env_var_as_boolean("NIR_PRINT", false);
2520
2521 return should_print;
2522 }
2523 #else
2524 static inline void nir_validate_shader(nir_shader *shader) { (void) shader; }
2525 static inline void nir_metadata_set_validation_flag(nir_shader *shader) { (void) shader; }
2526 static inline void nir_metadata_check_validation_flag(nir_shader *shader) { (void) shader; }
2527 static inline bool should_clone_nir(void) { return false; }
2528 static inline bool should_serialize_deserialize_nir(void) { return false; }
2529 static inline bool should_print_nir(void) { return false; }
2530 #endif /* NDEBUG */
2531
2532 #define _PASS(nir, do_pass) do { \
2533 do_pass \
2534 nir_validate_shader(nir); \
2535 if (should_clone_nir()) { \
2536 nir_shader *clone = nir_shader_clone(ralloc_parent(nir), nir); \
2537 ralloc_free(nir); \
2538 nir = clone; \
2539 } \
2540 if (should_serialize_deserialize_nir()) { \
2541 void *mem_ctx = ralloc_parent(nir); \
2542 nir = nir_shader_serialize_deserialize(mem_ctx, nir); \
2543 } \
2544 } while (0)
2545
2546 #define NIR_PASS(progress, nir, pass, ...) _PASS(nir, \
2547 nir_metadata_set_validation_flag(nir); \
2548 if (should_print_nir()) \
2549 printf("%s\n", #pass); \
2550 if (pass(nir, ##__VA_ARGS__)) { \
2551 progress = true; \
2552 if (should_print_nir()) \
2553 nir_print_shader(nir, stdout); \
2554 nir_metadata_check_validation_flag(nir); \
2555 } \
2556 )
2557
2558 #define NIR_PASS_V(nir, pass, ...) _PASS(nir, \
2559 if (should_print_nir()) \
2560 printf("%s\n", #pass); \
2561 pass(nir, ##__VA_ARGS__); \
2562 if (should_print_nir()) \
2563 nir_print_shader(nir, stdout); \
2564 )
2565
2566 void nir_calc_dominance_impl(nir_function_impl *impl);
2567 void nir_calc_dominance(nir_shader *shader);
2568
2569 nir_block *nir_dominance_lca(nir_block *b1, nir_block *b2);
2570 bool nir_block_dominates(nir_block *parent, nir_block *child);
2571
2572 void nir_dump_dom_tree_impl(nir_function_impl *impl, FILE *fp);
2573 void nir_dump_dom_tree(nir_shader *shader, FILE *fp);
2574
2575 void nir_dump_dom_frontier_impl(nir_function_impl *impl, FILE *fp);
2576 void nir_dump_dom_frontier(nir_shader *shader, FILE *fp);
2577
2578 void nir_dump_cfg_impl(nir_function_impl *impl, FILE *fp);
2579 void nir_dump_cfg(nir_shader *shader, FILE *fp);
2580
2581 int nir_gs_count_vertices(const nir_shader *shader);
2582
2583 bool nir_split_var_copies(nir_shader *shader);
2584
2585 bool nir_lower_returns_impl(nir_function_impl *impl);
2586 bool nir_lower_returns(nir_shader *shader);
2587
2588 bool nir_inline_functions(nir_shader *shader);
2589
2590 bool nir_propagate_invariant(nir_shader *shader);
2591
2592 void nir_lower_var_copy_instr(nir_intrinsic_instr *copy, nir_shader *shader);
2593 bool nir_lower_var_copies(nir_shader *shader);
2594
2595 bool nir_lower_global_vars_to_local(nir_shader *shader);
2596
2597 bool nir_lower_indirect_derefs(nir_shader *shader, nir_variable_mode modes);
2598
2599 bool nir_lower_locals_to_regs(nir_shader *shader);
2600
2601 void nir_lower_io_to_temporaries(nir_shader *shader,
2602 nir_function_impl *entrypoint,
2603 bool outputs, bool inputs);
2604
2605 void nir_shader_gather_info(nir_shader *shader, nir_function_impl *entrypoint);
2606
2607 void nir_assign_var_locations(struct exec_list *var_list, unsigned *size,
2608 int (*type_size)(const struct glsl_type *));
2609
2610 /* Some helpers to do very simple linking */
2611 bool nir_remove_unused_varyings(nir_shader *producer, nir_shader *consumer);
2612 void nir_compact_varyings(nir_shader *producer, nir_shader *consumer,
2613 bool default_to_smooth_interp);
2614
2615 typedef enum {
2616 /* If set, this forces all non-flat fragment shader inputs to be
2617 * interpolated as if with the "sample" qualifier. This requires
2618 * nir_shader_compiler_options::use_interpolated_input_intrinsics.
2619 */
2620 nir_lower_io_force_sample_interpolation = (1 << 1),
2621 } nir_lower_io_options;
2622 bool nir_lower_io(nir_shader *shader,
2623 nir_variable_mode modes,
2624 int (*type_size)(const struct glsl_type *),
2625 nir_lower_io_options);
2626 nir_src *nir_get_io_offset_src(nir_intrinsic_instr *instr);
2627 nir_src *nir_get_io_vertex_index_src(nir_intrinsic_instr *instr);
2628
2629 bool nir_is_per_vertex_io(const nir_variable *var, gl_shader_stage stage);
2630
2631 void nir_lower_io_types(nir_shader *shader);
2632 bool nir_lower_regs_to_ssa_impl(nir_function_impl *impl);
2633 bool nir_lower_regs_to_ssa(nir_shader *shader);
2634 bool nir_lower_vars_to_ssa(nir_shader *shader);
2635
2636 bool nir_remove_dead_variables(nir_shader *shader, nir_variable_mode modes);
2637 bool nir_lower_constant_initializers(nir_shader *shader,
2638 nir_variable_mode modes);
2639
2640 bool nir_move_load_const(nir_shader *shader);
2641 bool nir_move_vec_src_uses_to_dest(nir_shader *shader);
2642 bool nir_lower_vec_to_movs(nir_shader *shader);
2643 void nir_lower_alpha_test(nir_shader *shader, enum compare_func func,
2644 bool alpha_to_one);
2645 bool nir_lower_alu(nir_shader *shader);
2646 bool nir_lower_alu_to_scalar(nir_shader *shader);
2647 bool nir_lower_load_const_to_scalar(nir_shader *shader);
2648 bool nir_lower_read_invocation_to_scalar(nir_shader *shader);
2649 bool nir_lower_phis_to_scalar(nir_shader *shader);
2650 void nir_lower_io_arrays_to_elements(nir_shader *producer, nir_shader *consumer);
2651 void nir_lower_io_arrays_to_elements_no_indirects(nir_shader *shader,
2652 bool outputs_only);
2653 void nir_lower_io_to_scalar(nir_shader *shader, nir_variable_mode mask);
2654 void nir_lower_io_to_scalar_early(nir_shader *shader, nir_variable_mode mask);
2655
2656 typedef struct nir_lower_subgroups_options {
2657 uint8_t subgroup_size;
2658 uint8_t ballot_bit_size;
2659 bool lower_to_scalar:1;
2660 bool lower_vote_trivial:1;
2661 bool lower_vote_eq_to_ballot:1;
2662 bool lower_subgroup_masks:1;
2663 bool lower_shuffle:1;
2664 bool lower_shuffle_to_32bit:1;
2665 bool lower_quad:1;
2666 } nir_lower_subgroups_options;
2667
2668 bool nir_lower_subgroups(nir_shader *shader,
2669 const nir_lower_subgroups_options *options);
2670
2671 bool nir_lower_system_values(nir_shader *shader);
2672
2673 typedef struct nir_lower_tex_options {
2674 /**
2675 * bitmask of (1 << GLSL_SAMPLER_DIM_x) to control for which
2676 * sampler types a texture projector is lowered.
2677 */
2678 unsigned lower_txp;
2679
2680 /**
2681 * If true, lower away nir_tex_src_offset for all texelfetch instructions.
2682 */
2683 bool lower_txf_offset;
2684
2685 /**
2686 * If true, lower away nir_tex_src_offset for all rect textures.
2687 */
2688 bool lower_rect_offset;
2689
2690 /**
2691 * If true, lower rect textures to 2D, using txs to fetch the
2692 * texture dimensions and dividing the texture coords by the
2693 * texture dims to normalize.
2694 */
2695 bool lower_rect;
2696
2697 /**
2698 * If true, convert yuv to rgb.
2699 */
2700 unsigned lower_y_uv_external;
2701 unsigned lower_y_u_v_external;
2702 unsigned lower_yx_xuxv_external;
2703 unsigned lower_xy_uxvx_external;
2704
2705 /**
2706 * To emulate certain texture wrap modes, this can be used
2707 * to saturate the specified tex coord to [0.0, 1.0]. The
2708 * bits are according to sampler #, ie. if, for example:
2709 *
2710 * (conf->saturate_s & (1 << n))
2711 *
2712 * is true, then the s coord for sampler n is saturated.
2713 *
2714 * Note that clamping must happen *after* projector lowering
2715 * so any projected texture sample instruction with a clamped
2716 * coordinate gets automatically lowered, regardless of the
2717 * 'lower_txp' setting.
2718 */
2719 unsigned saturate_s;
2720 unsigned saturate_t;
2721 unsigned saturate_r;
2722
2723 /* Bitmask of textures that need swizzling.
2724 *
2725 * If (swizzle_result & (1 << texture_index)), then the swizzle in
2726 * swizzles[texture_index] is applied to the result of the texturing
2727 * operation.
2728 */
2729 unsigned swizzle_result;
2730
2731 /* A swizzle for each texture. Values 0-3 represent x, y, z, or w swizzles
2732 * while 4 and 5 represent 0 and 1 respectively.
2733 */
2734 uint8_t swizzles[32][4];
2735
2736 /**
2737 * Bitmap of textures that need srgb to linear conversion. If
2738 * (lower_srgb & (1 << texture_index)) then the rgb (xyz) components
2739 * of the texture are lowered to linear.
2740 */
2741 unsigned lower_srgb;
2742
2743 /**
2744 * If true, lower nir_texop_txd on cube maps with nir_texop_txl.
2745 */
2746 bool lower_txd_cube_map;
2747
2748 /**
2749 * If true, lower nir_texop_txd on shadow samplers (except cube maps)
2750 * with nir_texop_txl. Notice that cube map shadow samplers are lowered
2751 * with lower_txd_cube_map.
2752 */
2753 bool lower_txd_shadow;
2754
2755 /**
2756 * If true, lower nir_texop_txd on all samplers to a nir_texop_txl.
2757 * Implies lower_txd_cube_map and lower_txd_shadow.
2758 */
2759 bool lower_txd;
2760 } nir_lower_tex_options;
2761
2762 bool nir_lower_tex(nir_shader *shader,
2763 const nir_lower_tex_options *options);
2764
2765 bool nir_lower_idiv(nir_shader *shader);
2766
2767 bool nir_lower_clip_vs(nir_shader *shader, unsigned ucp_enables);
2768 bool nir_lower_clip_fs(nir_shader *shader, unsigned ucp_enables);
2769 bool nir_lower_clip_cull_distance_arrays(nir_shader *nir);
2770
2771 void nir_lower_two_sided_color(nir_shader *shader);
2772
2773 bool nir_lower_clamp_color_outputs(nir_shader *shader);
2774
2775 void nir_lower_passthrough_edgeflags(nir_shader *shader);
2776 void nir_lower_tes_patch_vertices(nir_shader *tes, unsigned patch_vertices);
2777
2778 typedef struct nir_lower_wpos_ytransform_options {
2779 gl_state_index16 state_tokens[STATE_LENGTH];
2780 bool fs_coord_origin_upper_left :1;
2781 bool fs_coord_origin_lower_left :1;
2782 bool fs_coord_pixel_center_integer :1;
2783 bool fs_coord_pixel_center_half_integer :1;
2784 } nir_lower_wpos_ytransform_options;
2785
2786 bool nir_lower_wpos_ytransform(nir_shader *shader,
2787 const nir_lower_wpos_ytransform_options *options);
2788 bool nir_lower_wpos_center(nir_shader *shader, const bool for_sample_shading);
2789
2790 typedef struct nir_lower_drawpixels_options {
2791 gl_state_index16 texcoord_state_tokens[STATE_LENGTH];
2792 gl_state_index16 scale_state_tokens[STATE_LENGTH];
2793 gl_state_index16 bias_state_tokens[STATE_LENGTH];
2794 unsigned drawpix_sampler;
2795 unsigned pixelmap_sampler;
2796 bool pixel_maps :1;
2797 bool scale_and_bias :1;
2798 } nir_lower_drawpixels_options;
2799
2800 void nir_lower_drawpixels(nir_shader *shader,
2801 const nir_lower_drawpixels_options *options);
2802
2803 typedef struct nir_lower_bitmap_options {
2804 unsigned sampler;
2805 bool swizzle_xxxx;
2806 } nir_lower_bitmap_options;
2807
2808 void nir_lower_bitmap(nir_shader *shader, const nir_lower_bitmap_options *options);
2809
2810 bool nir_lower_atomics_to_ssbo(nir_shader *shader, unsigned ssbo_offset);
2811 bool nir_lower_to_source_mods(nir_shader *shader);
2812
2813 bool nir_lower_gs_intrinsics(nir_shader *shader);
2814
2815 typedef unsigned (*nir_lower_bit_size_callback)(const nir_alu_instr *, void *);
2816
2817 bool nir_lower_bit_size(nir_shader *shader,
2818 nir_lower_bit_size_callback callback,
2819 void *callback_data);
2820
2821 typedef enum {
2822 nir_lower_imul64 = (1 << 0),
2823 nir_lower_isign64 = (1 << 1),
2824 /** Lower all int64 modulus and division opcodes */
2825 nir_lower_divmod64 = (1 << 2),
2826 } nir_lower_int64_options;
2827
2828 bool nir_lower_int64(nir_shader *shader, nir_lower_int64_options options);
2829
2830 typedef enum {
2831 nir_lower_drcp = (1 << 0),
2832 nir_lower_dsqrt = (1 << 1),
2833 nir_lower_drsq = (1 << 2),
2834 nir_lower_dtrunc = (1 << 3),
2835 nir_lower_dfloor = (1 << 4),
2836 nir_lower_dceil = (1 << 5),
2837 nir_lower_dfract = (1 << 6),
2838 nir_lower_dround_even = (1 << 7),
2839 nir_lower_dmod = (1 << 8)
2840 } nir_lower_doubles_options;
2841
2842 bool nir_lower_doubles(nir_shader *shader, nir_lower_doubles_options options);
2843 bool nir_lower_pack(nir_shader *shader);
2844
2845 bool nir_normalize_cubemap_coords(nir_shader *shader);
2846
2847 void nir_live_ssa_defs_impl(nir_function_impl *impl);
2848
2849 void nir_loop_analyze_impl(nir_function_impl *impl,
2850 nir_variable_mode indirect_mask);
2851
2852 bool nir_ssa_defs_interfere(nir_ssa_def *a, nir_ssa_def *b);
2853
2854 bool nir_repair_ssa_impl(nir_function_impl *impl);
2855 bool nir_repair_ssa(nir_shader *shader);
2856
2857 void nir_convert_loop_to_lcssa(nir_loop *loop);
2858
2859 /* If phi_webs_only is true, only convert SSA values involved in phi nodes to
2860 * registers. If false, convert all values (even those not involved in a phi
2861 * node) to registers.
2862 */
2863 bool nir_convert_from_ssa(nir_shader *shader, bool phi_webs_only);
2864
2865 bool nir_lower_phis_to_regs_block(nir_block *block);
2866 bool nir_lower_ssa_defs_to_regs_block(nir_block *block);
2867
2868 bool nir_opt_algebraic(nir_shader *shader);
2869 bool nir_opt_algebraic_before_ffma(nir_shader *shader);
2870 bool nir_opt_algebraic_late(nir_shader *shader);
2871 bool nir_opt_constant_folding(nir_shader *shader);
2872
2873 bool nir_opt_global_to_local(nir_shader *shader);
2874
2875 bool nir_copy_prop(nir_shader *shader);
2876
2877 bool nir_opt_copy_prop_vars(nir_shader *shader);
2878
2879 bool nir_opt_cse(nir_shader *shader);
2880
2881 bool nir_opt_dce(nir_shader *shader);
2882
2883 bool nir_opt_dead_cf(nir_shader *shader);
2884
2885 bool nir_opt_gcm(nir_shader *shader, bool value_number);
2886
2887 bool nir_opt_if(nir_shader *shader);
2888
2889 bool nir_opt_intrinsics(nir_shader *shader);
2890
2891 bool nir_opt_loop_unroll(nir_shader *shader, nir_variable_mode indirect_mask);
2892
2893 bool nir_opt_move_comparisons(nir_shader *shader);
2894
2895 bool nir_opt_move_load_ubo(nir_shader *shader);
2896
2897 bool nir_opt_peephole_select(nir_shader *shader, unsigned limit);
2898
2899 bool nir_opt_remove_phis(nir_shader *shader);
2900
2901 bool nir_opt_shrink_load(nir_shader *shader);
2902
2903 bool nir_opt_trivial_continues(nir_shader *shader);
2904
2905 bool nir_opt_undef(nir_shader *shader);
2906
2907 bool nir_opt_conditional_discard(nir_shader *shader);
2908
2909 void nir_sweep(nir_shader *shader);
2910
2911 nir_intrinsic_op nir_intrinsic_from_system_value(gl_system_value val);
2912 gl_system_value nir_system_value_from_intrinsic(nir_intrinsic_op intrin);
2913
2914 #ifdef __cplusplus
2915 } /* extern "C" */
2916 #endif
2917
2918 #endif /* NIR_H */