nir: pack nir_variable::data::xfb_*
[mesa.git] / src / compiler / nir / nir.h
1 /*
2 * Copyright © 2014 Connor Abbott
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Connor Abbott (cwabbott0@gmail.com)
25 *
26 */
27
28 #ifndef NIR_H
29 #define NIR_H
30
31 #include "util/hash_table.h"
32 #include "compiler/glsl/list.h"
33 #include "GL/gl.h" /* GLenum */
34 #include "util/list.h"
35 #include "util/ralloc.h"
36 #include "util/set.h"
37 #include "util/bitscan.h"
38 #include "util/bitset.h"
39 #include "util/macros.h"
40 #include "compiler/nir_types.h"
41 #include "compiler/shader_enums.h"
42 #include "compiler/shader_info.h"
43 #include <stdio.h>
44
45 #ifndef NDEBUG
46 #include "util/debug.h"
47 #endif /* NDEBUG */
48
49 #include "nir_opcodes.h"
50
51 #if defined(_WIN32) && !defined(snprintf)
52 #define snprintf _snprintf
53 #endif
54
55 #ifdef __cplusplus
56 extern "C" {
57 #endif
58
59 #define NIR_FALSE 0u
60 #define NIR_TRUE (~0u)
61 #define NIR_MAX_VEC_COMPONENTS 4
62 #define NIR_MAX_MATRIX_COLUMNS 4
63 #define NIR_STREAM_PACKED (1 << 8)
64 typedef uint8_t nir_component_mask_t;
65
66 /** Defines a cast function
67 *
68 * This macro defines a cast function from in_type to out_type where
69 * out_type is some structure type that contains a field of type out_type.
70 *
71 * Note that you have to be a bit careful as the generated cast function
72 * destroys constness.
73 */
74 #define NIR_DEFINE_CAST(name, in_type, out_type, field, \
75 type_field, type_value) \
76 static inline out_type * \
77 name(const in_type *parent) \
78 { \
79 assert(parent && parent->type_field == type_value); \
80 return exec_node_data(out_type, parent, field); \
81 }
82
83 struct nir_function;
84 struct nir_shader;
85 struct nir_instr;
86 struct nir_builder;
87
88
89 /**
90 * Description of built-in state associated with a uniform
91 *
92 * \sa nir_variable::state_slots
93 */
94 typedef struct {
95 gl_state_index16 tokens[STATE_LENGTH];
96 int swizzle;
97 } nir_state_slot;
98
99 typedef enum {
100 nir_var_shader_in = (1 << 0),
101 nir_var_shader_out = (1 << 1),
102 nir_var_shader_temp = (1 << 2),
103 nir_var_function_temp = (1 << 3),
104 nir_var_uniform = (1 << 4),
105 nir_var_mem_ubo = (1 << 5),
106 nir_var_system_value = (1 << 6),
107 nir_var_mem_ssbo = (1 << 7),
108 nir_var_mem_shared = (1 << 8),
109 nir_var_mem_global = (1 << 9),
110 nir_var_all = ~0,
111 } nir_variable_mode;
112
113 /**
114 * Rounding modes.
115 */
116 typedef enum {
117 nir_rounding_mode_undef = 0,
118 nir_rounding_mode_rtne = 1, /* round to nearest even */
119 nir_rounding_mode_ru = 2, /* round up */
120 nir_rounding_mode_rd = 3, /* round down */
121 nir_rounding_mode_rtz = 4, /* round towards zero */
122 } nir_rounding_mode;
123
124 typedef union {
125 bool b;
126 float f32;
127 double f64;
128 int8_t i8;
129 uint8_t u8;
130 int16_t i16;
131 uint16_t u16;
132 int32_t i32;
133 uint32_t u32;
134 int64_t i64;
135 uint64_t u64;
136 } nir_const_value;
137
138 #define nir_const_value_to_array(arr, c, components, m) \
139 { \
140 for (unsigned i = 0; i < components; ++i) \
141 arr[i] = c[i].m; \
142 } while (false)
143
144 static inline nir_const_value
145 nir_const_value_for_raw_uint(uint64_t x, unsigned bit_size)
146 {
147 nir_const_value v;
148 memset(&v, 0, sizeof(v));
149
150 switch (bit_size) {
151 case 1: v.b = x; break;
152 case 8: v.u8 = x; break;
153 case 16: v.u16 = x; break;
154 case 32: v.u32 = x; break;
155 case 64: v.u64 = x; break;
156 default:
157 unreachable("Invalid bit size");
158 }
159
160 return v;
161 }
162
163 static inline nir_const_value
164 nir_const_value_for_int(int64_t i, unsigned bit_size)
165 {
166 nir_const_value v;
167 memset(&v, 0, sizeof(v));
168
169 assert(bit_size <= 64);
170 if (bit_size < 64) {
171 assert(i >= (-(1ll << (bit_size - 1))));
172 assert(i < (1ll << (bit_size - 1)));
173 }
174
175 return nir_const_value_for_raw_uint(i, bit_size);
176 }
177
178 static inline nir_const_value
179 nir_const_value_for_uint(uint64_t u, unsigned bit_size)
180 {
181 nir_const_value v;
182 memset(&v, 0, sizeof(v));
183
184 assert(bit_size <= 64);
185 if (bit_size < 64)
186 assert(u < (1ull << bit_size));
187
188 return nir_const_value_for_raw_uint(u, bit_size);
189 }
190
191 static inline nir_const_value
192 nir_const_value_for_bool(bool b, unsigned bit_size)
193 {
194 /* Booleans use a 0/-1 convention */
195 return nir_const_value_for_int(-(int)b, bit_size);
196 }
197
198 /* This one isn't inline because it requires half-float conversion */
199 nir_const_value nir_const_value_for_float(double b, unsigned bit_size);
200
201 static inline int64_t
202 nir_const_value_as_int(nir_const_value value, unsigned bit_size)
203 {
204 switch (bit_size) {
205 /* int1_t uses 0/-1 convention */
206 case 1: return -(int)value.b;
207 case 8: return value.i8;
208 case 16: return value.i16;
209 case 32: return value.i32;
210 case 64: return value.i64;
211 default:
212 unreachable("Invalid bit size");
213 }
214 }
215
216 static inline uint64_t
217 nir_const_value_as_uint(nir_const_value value, unsigned bit_size)
218 {
219 switch (bit_size) {
220 case 1: return value.b;
221 case 8: return value.u8;
222 case 16: return value.u16;
223 case 32: return value.u32;
224 case 64: return value.u64;
225 default:
226 unreachable("Invalid bit size");
227 }
228 }
229
230 static inline bool
231 nir_const_value_as_bool(nir_const_value value, unsigned bit_size)
232 {
233 int64_t i = nir_const_value_as_int(value, bit_size);
234
235 /* Booleans of any size use 0/-1 convention */
236 assert(i == 0 || i == -1);
237
238 return i;
239 }
240
241 /* This one isn't inline because it requires half-float conversion */
242 double nir_const_value_as_float(nir_const_value value, unsigned bit_size);
243
244 typedef struct nir_constant {
245 /**
246 * Value of the constant.
247 *
248 * The field used to back the values supplied by the constant is determined
249 * by the type associated with the \c nir_variable. Constants may be
250 * scalars, vectors, or matrices.
251 */
252 nir_const_value values[NIR_MAX_VEC_COMPONENTS];
253
254 /* we could get this from the var->type but makes clone *much* easier to
255 * not have to care about the type.
256 */
257 unsigned num_elements;
258
259 /* Array elements / Structure Fields */
260 struct nir_constant **elements;
261 } nir_constant;
262
263 /**
264 * \brief Layout qualifiers for gl_FragDepth.
265 *
266 * The AMD/ARB_conservative_depth extensions allow gl_FragDepth to be redeclared
267 * with a layout qualifier.
268 */
269 typedef enum {
270 nir_depth_layout_none, /**< No depth layout is specified. */
271 nir_depth_layout_any,
272 nir_depth_layout_greater,
273 nir_depth_layout_less,
274 nir_depth_layout_unchanged
275 } nir_depth_layout;
276
277 /**
278 * Enum keeping track of how a variable was declared.
279 */
280 typedef enum {
281 /**
282 * Normal declaration.
283 */
284 nir_var_declared_normally = 0,
285
286 /**
287 * Variable is implicitly generated by the compiler and should not be
288 * visible via the API.
289 */
290 nir_var_hidden,
291 } nir_var_declaration_type;
292
293 /**
294 * Either a uniform, global variable, shader input, or shader output. Based on
295 * ir_variable - it should be easy to translate between the two.
296 */
297
298 typedef struct nir_variable {
299 struct exec_node node;
300
301 /**
302 * Declared type of the variable
303 */
304 const struct glsl_type *type;
305
306 /**
307 * Declared name of the variable
308 */
309 char *name;
310
311 struct nir_variable_data {
312 /**
313 * Storage class of the variable.
314 *
315 * \sa nir_variable_mode
316 */
317 nir_variable_mode mode;
318
319 /**
320 * Is the variable read-only?
321 *
322 * This is set for variables declared as \c const, shader inputs,
323 * and uniforms.
324 */
325 unsigned read_only:1;
326 unsigned centroid:1;
327 unsigned sample:1;
328 unsigned patch:1;
329 unsigned invariant:1;
330
331 /**
332 * Can this variable be coalesced with another?
333 *
334 * This is set by nir_lower_io_to_temporaries to say that any
335 * copies involving this variable should stay put. Propagating it can
336 * duplicate the resulting load/store, which is not wanted, and may
337 * result in a load/store of the variable with an indirect offset which
338 * the backend may not be able to handle.
339 */
340 unsigned cannot_coalesce:1;
341
342 /**
343 * When separate shader programs are enabled, only input/outputs between
344 * the stages of a multi-stage separate program can be safely removed
345 * from the shader interface. Other input/outputs must remains active.
346 *
347 * This is also used to make sure xfb varyings that are unused by the
348 * fragment shader are not removed.
349 */
350 unsigned always_active_io:1;
351
352 /**
353 * Interpolation mode for shader inputs / outputs
354 *
355 * \sa glsl_interp_mode
356 */
357 unsigned interpolation:2;
358
359 /**
360 * If non-zero, then this variable may be packed along with other variables
361 * into a single varying slot, so this offset should be applied when
362 * accessing components. For example, an offset of 1 means that the x
363 * component of this variable is actually stored in component y of the
364 * location specified by \c location.
365 */
366 unsigned location_frac:2;
367
368 /**
369 * If true, this variable represents an array of scalars that should
370 * be tightly packed. In other words, consecutive array elements
371 * should be stored one component apart, rather than one slot apart.
372 */
373 unsigned compact:1;
374
375 /**
376 * Whether this is a fragment shader output implicitly initialized with
377 * the previous contents of the specified render target at the
378 * framebuffer location corresponding to this shader invocation.
379 */
380 unsigned fb_fetch_output:1;
381
382 /**
383 * Non-zero if this variable is considered bindless as defined by
384 * ARB_bindless_texture.
385 */
386 unsigned bindless:1;
387
388 /**
389 * Was an explicit binding set in the shader?
390 */
391 unsigned explicit_binding:1;
392
393 /**
394 * Was a transfer feedback buffer set in the shader?
395 */
396 unsigned explicit_xfb_buffer:1;
397
398 /**
399 * Was a transfer feedback stride set in the shader?
400 */
401 unsigned explicit_xfb_stride:1;
402
403 /**
404 * Was an explicit offset set in the shader?
405 */
406 unsigned explicit_offset:1;
407
408 /**
409 * How the variable was declared. See nir_var_declaration_type.
410 *
411 * This is used to detect variables generated by the compiler, so should
412 * not be visible via the API.
413 */
414 unsigned how_declared:2;
415
416 /**
417 * \brief Layout qualifier for gl_FragDepth.
418 *
419 * This is not equal to \c ir_depth_layout_none if and only if this
420 * variable is \c gl_FragDepth and a layout qualifier is specified.
421 */
422 nir_depth_layout depth_layout;
423
424 /**
425 * Storage location of the base of this variable
426 *
427 * The precise meaning of this field depends on the nature of the variable.
428 *
429 * - Vertex shader input: one of the values from \c gl_vert_attrib.
430 * - Vertex shader output: one of the values from \c gl_varying_slot.
431 * - Geometry shader input: one of the values from \c gl_varying_slot.
432 * - Geometry shader output: one of the values from \c gl_varying_slot.
433 * - Fragment shader input: one of the values from \c gl_varying_slot.
434 * - Fragment shader output: one of the values from \c gl_frag_result.
435 * - Uniforms: Per-stage uniform slot number for default uniform block.
436 * - Uniforms: Index within the uniform block definition for UBO members.
437 * - Non-UBO Uniforms: uniform slot number.
438 * - Other: This field is not currently used.
439 *
440 * If the variable is a uniform, shader input, or shader output, and the
441 * slot has not been assigned, the value will be -1.
442 */
443 int location;
444
445 /**
446 * The actual location of the variable in the IR. Only valid for inputs
447 * and outputs.
448 */
449 unsigned int driver_location;
450
451 /**
452 * Vertex stream output identifier.
453 *
454 * For packed outputs, NIR_STREAM_PACKED is set and bits [2*i+1,2*i]
455 * indicate the stream of the i-th component.
456 */
457 unsigned stream:9;
458
459 /**
460 * output index for dual source blending.
461 */
462 int index;
463
464 /**
465 * Descriptor set binding for sampler or UBO.
466 */
467 int descriptor_set;
468
469 /**
470 * Initial binding point for a sampler or UBO.
471 *
472 * For array types, this represents the binding point for the first element.
473 */
474 unsigned binding;
475
476 /**
477 * Location an atomic counter or transform feedback is stored at.
478 */
479 unsigned offset;
480
481 union {
482 /**
483 * ARB_shader_image_load_store qualifiers.
484 */
485 struct {
486 enum gl_access_qualifier access;
487
488 /** Image internal format if specified explicitly, otherwise GL_NONE. */
489 GLenum format;
490 } image;
491
492 struct {
493 /**
494 * Transform feedback buffer.
495 */
496 uint16_t buffer:2;
497
498 /**
499 * Transform feedback stride.
500 */
501 uint16_t stride;
502 } xfb;
503 };
504 } data;
505
506 /* Number of nir_variable_data members */
507 unsigned num_members;
508
509 /**
510 * Built-in state that backs this uniform
511 *
512 * Once set at variable creation, \c state_slots must remain invariant.
513 * This is because, ideally, this array would be shared by all clones of
514 * this variable in the IR tree. In other words, we'd really like for it
515 * to be a fly-weight.
516 *
517 * If the variable is not a uniform, \c num_state_slots will be zero and
518 * \c state_slots will be \c NULL.
519 */
520 /*@{*/
521 unsigned num_state_slots; /**< Number of state slots used */
522 nir_state_slot *state_slots; /**< State descriptors. */
523 /*@}*/
524
525 /**
526 * Constant expression assigned in the initializer of the variable
527 *
528 * This field should only be used temporarily by creators of NIR shaders
529 * and then lower_constant_initializers can be used to get rid of them.
530 * Most of the rest of NIR ignores this field or asserts that it's NULL.
531 */
532 nir_constant *constant_initializer;
533
534 /**
535 * For variables that are in an interface block or are an instance of an
536 * interface block, this is the \c GLSL_TYPE_INTERFACE type for that block.
537 *
538 * \sa ir_variable::location
539 */
540 const struct glsl_type *interface_type;
541
542 /**
543 * Description of per-member data for per-member struct variables
544 *
545 * This is used for variables which are actually an amalgamation of
546 * multiple entities such as a struct of built-in values or a struct of
547 * inputs each with their own layout specifier. This is only allowed on
548 * variables with a struct or array of array of struct type.
549 */
550 struct nir_variable_data *members;
551 } nir_variable;
552
553 #define nir_foreach_variable(var, var_list) \
554 foreach_list_typed(nir_variable, var, node, var_list)
555
556 #define nir_foreach_variable_safe(var, var_list) \
557 foreach_list_typed_safe(nir_variable, var, node, var_list)
558
559 static inline bool
560 nir_variable_is_global(const nir_variable *var)
561 {
562 return var->data.mode != nir_var_function_temp;
563 }
564
565 typedef struct nir_register {
566 struct exec_node node;
567
568 unsigned num_components; /** < number of vector components */
569 unsigned num_array_elems; /** < size of array (0 for no array) */
570
571 /* The bit-size of each channel; must be one of 8, 16, 32, or 64 */
572 uint8_t bit_size;
573
574 /** generic register index. */
575 unsigned index;
576
577 /** only for debug purposes, can be NULL */
578 const char *name;
579
580 /** set of nir_srcs where this register is used (read from) */
581 struct list_head uses;
582
583 /** set of nir_dests where this register is defined (written to) */
584 struct list_head defs;
585
586 /** set of nir_ifs where this register is used as a condition */
587 struct list_head if_uses;
588 } nir_register;
589
590 #define nir_foreach_register(reg, reg_list) \
591 foreach_list_typed(nir_register, reg, node, reg_list)
592 #define nir_foreach_register_safe(reg, reg_list) \
593 foreach_list_typed_safe(nir_register, reg, node, reg_list)
594
595 typedef enum PACKED {
596 nir_instr_type_alu,
597 nir_instr_type_deref,
598 nir_instr_type_call,
599 nir_instr_type_tex,
600 nir_instr_type_intrinsic,
601 nir_instr_type_load_const,
602 nir_instr_type_jump,
603 nir_instr_type_ssa_undef,
604 nir_instr_type_phi,
605 nir_instr_type_parallel_copy,
606 } nir_instr_type;
607
608 typedef struct nir_instr {
609 struct exec_node node;
610 struct nir_block *block;
611 nir_instr_type type;
612
613 /* A temporary for optimization and analysis passes to use for storing
614 * flags. For instance, DCE uses this to store the "dead/live" info.
615 */
616 uint8_t pass_flags;
617
618 /** generic instruction index. */
619 unsigned index;
620 } nir_instr;
621
622 static inline nir_instr *
623 nir_instr_next(nir_instr *instr)
624 {
625 struct exec_node *next = exec_node_get_next(&instr->node);
626 if (exec_node_is_tail_sentinel(next))
627 return NULL;
628 else
629 return exec_node_data(nir_instr, next, node);
630 }
631
632 static inline nir_instr *
633 nir_instr_prev(nir_instr *instr)
634 {
635 struct exec_node *prev = exec_node_get_prev(&instr->node);
636 if (exec_node_is_head_sentinel(prev))
637 return NULL;
638 else
639 return exec_node_data(nir_instr, prev, node);
640 }
641
642 static inline bool
643 nir_instr_is_first(const nir_instr *instr)
644 {
645 return exec_node_is_head_sentinel(exec_node_get_prev_const(&instr->node));
646 }
647
648 static inline bool
649 nir_instr_is_last(const nir_instr *instr)
650 {
651 return exec_node_is_tail_sentinel(exec_node_get_next_const(&instr->node));
652 }
653
654 typedef struct nir_ssa_def {
655 /** for debugging only, can be NULL */
656 const char* name;
657
658 /** generic SSA definition index. */
659 unsigned index;
660
661 /** Index into the live_in and live_out bitfields */
662 unsigned live_index;
663
664 /** Instruction which produces this SSA value. */
665 nir_instr *parent_instr;
666
667 /** set of nir_instrs where this register is used (read from) */
668 struct list_head uses;
669
670 /** set of nir_ifs where this register is used as a condition */
671 struct list_head if_uses;
672
673 uint8_t num_components;
674
675 /* The bit-size of each channel; must be one of 8, 16, 32, or 64 */
676 uint8_t bit_size;
677 } nir_ssa_def;
678
679 struct nir_src;
680
681 typedef struct {
682 nir_register *reg;
683 struct nir_src *indirect; /** < NULL for no indirect offset */
684 unsigned base_offset;
685
686 /* TODO use-def chain goes here */
687 } nir_reg_src;
688
689 typedef struct {
690 nir_instr *parent_instr;
691 struct list_head def_link;
692
693 nir_register *reg;
694 struct nir_src *indirect; /** < NULL for no indirect offset */
695 unsigned base_offset;
696
697 /* TODO def-use chain goes here */
698 } nir_reg_dest;
699
700 struct nir_if;
701
702 typedef struct nir_src {
703 union {
704 /** Instruction that consumes this value as a source. */
705 nir_instr *parent_instr;
706 struct nir_if *parent_if;
707 };
708
709 struct list_head use_link;
710
711 union {
712 nir_reg_src reg;
713 nir_ssa_def *ssa;
714 };
715
716 bool is_ssa;
717 } nir_src;
718
719 static inline nir_src
720 nir_src_init(void)
721 {
722 nir_src src = { { NULL } };
723 return src;
724 }
725
726 #define NIR_SRC_INIT nir_src_init()
727
728 #define nir_foreach_use(src, reg_or_ssa_def) \
729 list_for_each_entry(nir_src, src, &(reg_or_ssa_def)->uses, use_link)
730
731 #define nir_foreach_use_safe(src, reg_or_ssa_def) \
732 list_for_each_entry_safe(nir_src, src, &(reg_or_ssa_def)->uses, use_link)
733
734 #define nir_foreach_if_use(src, reg_or_ssa_def) \
735 list_for_each_entry(nir_src, src, &(reg_or_ssa_def)->if_uses, use_link)
736
737 #define nir_foreach_if_use_safe(src, reg_or_ssa_def) \
738 list_for_each_entry_safe(nir_src, src, &(reg_or_ssa_def)->if_uses, use_link)
739
740 typedef struct {
741 union {
742 nir_reg_dest reg;
743 nir_ssa_def ssa;
744 };
745
746 bool is_ssa;
747 } nir_dest;
748
749 static inline nir_dest
750 nir_dest_init(void)
751 {
752 nir_dest dest = { { { NULL } } };
753 return dest;
754 }
755
756 #define NIR_DEST_INIT nir_dest_init()
757
758 #define nir_foreach_def(dest, reg) \
759 list_for_each_entry(nir_dest, dest, &(reg)->defs, reg.def_link)
760
761 #define nir_foreach_def_safe(dest, reg) \
762 list_for_each_entry_safe(nir_dest, dest, &(reg)->defs, reg.def_link)
763
764 static inline nir_src
765 nir_src_for_ssa(nir_ssa_def *def)
766 {
767 nir_src src = NIR_SRC_INIT;
768
769 src.is_ssa = true;
770 src.ssa = def;
771
772 return src;
773 }
774
775 static inline nir_src
776 nir_src_for_reg(nir_register *reg)
777 {
778 nir_src src = NIR_SRC_INIT;
779
780 src.is_ssa = false;
781 src.reg.reg = reg;
782 src.reg.indirect = NULL;
783 src.reg.base_offset = 0;
784
785 return src;
786 }
787
788 static inline nir_dest
789 nir_dest_for_reg(nir_register *reg)
790 {
791 nir_dest dest = NIR_DEST_INIT;
792
793 dest.reg.reg = reg;
794
795 return dest;
796 }
797
798 static inline unsigned
799 nir_src_bit_size(nir_src src)
800 {
801 return src.is_ssa ? src.ssa->bit_size : src.reg.reg->bit_size;
802 }
803
804 static inline unsigned
805 nir_src_num_components(nir_src src)
806 {
807 return src.is_ssa ? src.ssa->num_components : src.reg.reg->num_components;
808 }
809
810 static inline bool
811 nir_src_is_const(nir_src src)
812 {
813 return src.is_ssa &&
814 src.ssa->parent_instr->type == nir_instr_type_load_const;
815 }
816
817 static inline unsigned
818 nir_dest_bit_size(nir_dest dest)
819 {
820 return dest.is_ssa ? dest.ssa.bit_size : dest.reg.reg->bit_size;
821 }
822
823 static inline unsigned
824 nir_dest_num_components(nir_dest dest)
825 {
826 return dest.is_ssa ? dest.ssa.num_components : dest.reg.reg->num_components;
827 }
828
829 void nir_src_copy(nir_src *dest, const nir_src *src, void *instr_or_if);
830 void nir_dest_copy(nir_dest *dest, const nir_dest *src, nir_instr *instr);
831
832 typedef struct {
833 nir_src src;
834
835 /**
836 * \name input modifiers
837 */
838 /*@{*/
839 /**
840 * For inputs interpreted as floating point, flips the sign bit. For
841 * inputs interpreted as integers, performs the two's complement negation.
842 */
843 bool negate;
844
845 /**
846 * Clears the sign bit for floating point values, and computes the integer
847 * absolute value for integers. Note that the negate modifier acts after
848 * the absolute value modifier, therefore if both are set then all inputs
849 * will become negative.
850 */
851 bool abs;
852 /*@}*/
853
854 /**
855 * For each input component, says which component of the register it is
856 * chosen from. Note that which elements of the swizzle are used and which
857 * are ignored are based on the write mask for most opcodes - for example,
858 * a statement like "foo.xzw = bar.zyx" would have a writemask of 1101b and
859 * a swizzle of {2, x, 1, 0} where x means "don't care."
860 */
861 uint8_t swizzle[NIR_MAX_VEC_COMPONENTS];
862 } nir_alu_src;
863
864 typedef struct {
865 nir_dest dest;
866
867 /**
868 * \name saturate output modifier
869 *
870 * Only valid for opcodes that output floating-point numbers. Clamps the
871 * output to between 0.0 and 1.0 inclusive.
872 */
873
874 bool saturate;
875
876 unsigned write_mask : NIR_MAX_VEC_COMPONENTS; /* ignored if dest.is_ssa is true */
877 } nir_alu_dest;
878
879 /** NIR sized and unsized types
880 *
881 * The values in this enum are carefully chosen so that the sized type is
882 * just the unsized type OR the number of bits.
883 */
884 typedef enum {
885 nir_type_invalid = 0, /* Not a valid type */
886 nir_type_int = 2,
887 nir_type_uint = 4,
888 nir_type_bool = 6,
889 nir_type_float = 128,
890 nir_type_bool1 = 1 | nir_type_bool,
891 nir_type_bool32 = 32 | nir_type_bool,
892 nir_type_int1 = 1 | nir_type_int,
893 nir_type_int8 = 8 | nir_type_int,
894 nir_type_int16 = 16 | nir_type_int,
895 nir_type_int32 = 32 | nir_type_int,
896 nir_type_int64 = 64 | nir_type_int,
897 nir_type_uint1 = 1 | nir_type_uint,
898 nir_type_uint8 = 8 | nir_type_uint,
899 nir_type_uint16 = 16 | nir_type_uint,
900 nir_type_uint32 = 32 | nir_type_uint,
901 nir_type_uint64 = 64 | nir_type_uint,
902 nir_type_float16 = 16 | nir_type_float,
903 nir_type_float32 = 32 | nir_type_float,
904 nir_type_float64 = 64 | nir_type_float,
905 } nir_alu_type;
906
907 #define NIR_ALU_TYPE_SIZE_MASK 0x79
908 #define NIR_ALU_TYPE_BASE_TYPE_MASK 0x86
909
910 static inline unsigned
911 nir_alu_type_get_type_size(nir_alu_type type)
912 {
913 return type & NIR_ALU_TYPE_SIZE_MASK;
914 }
915
916 static inline unsigned
917 nir_alu_type_get_base_type(nir_alu_type type)
918 {
919 return type & NIR_ALU_TYPE_BASE_TYPE_MASK;
920 }
921
922 static inline nir_alu_type
923 nir_get_nir_type_for_glsl_base_type(enum glsl_base_type base_type)
924 {
925 switch (base_type) {
926 case GLSL_TYPE_BOOL:
927 return nir_type_bool1;
928 break;
929 case GLSL_TYPE_UINT:
930 return nir_type_uint32;
931 break;
932 case GLSL_TYPE_INT:
933 return nir_type_int32;
934 break;
935 case GLSL_TYPE_UINT16:
936 return nir_type_uint16;
937 break;
938 case GLSL_TYPE_INT16:
939 return nir_type_int16;
940 break;
941 case GLSL_TYPE_UINT8:
942 return nir_type_uint8;
943 case GLSL_TYPE_INT8:
944 return nir_type_int8;
945 case GLSL_TYPE_UINT64:
946 return nir_type_uint64;
947 break;
948 case GLSL_TYPE_INT64:
949 return nir_type_int64;
950 break;
951 case GLSL_TYPE_FLOAT:
952 return nir_type_float32;
953 break;
954 case GLSL_TYPE_FLOAT16:
955 return nir_type_float16;
956 break;
957 case GLSL_TYPE_DOUBLE:
958 return nir_type_float64;
959 break;
960
961 case GLSL_TYPE_SAMPLER:
962 case GLSL_TYPE_IMAGE:
963 case GLSL_TYPE_ATOMIC_UINT:
964 case GLSL_TYPE_STRUCT:
965 case GLSL_TYPE_INTERFACE:
966 case GLSL_TYPE_ARRAY:
967 case GLSL_TYPE_VOID:
968 case GLSL_TYPE_SUBROUTINE:
969 case GLSL_TYPE_FUNCTION:
970 case GLSL_TYPE_ERROR:
971 return nir_type_invalid;
972 }
973
974 unreachable("unknown type");
975 }
976
977 static inline nir_alu_type
978 nir_get_nir_type_for_glsl_type(const struct glsl_type *type)
979 {
980 return nir_get_nir_type_for_glsl_base_type(glsl_get_base_type(type));
981 }
982
983 nir_op nir_type_conversion_op(nir_alu_type src, nir_alu_type dst,
984 nir_rounding_mode rnd);
985
986 static inline nir_op
987 nir_op_vec(unsigned components)
988 {
989 switch (components) {
990 case 1: return nir_op_mov;
991 case 2: return nir_op_vec2;
992 case 3: return nir_op_vec3;
993 case 4: return nir_op_vec4;
994 default: unreachable("bad component count");
995 }
996 }
997
998 static inline bool
999 nir_is_float_control_signed_zero_inf_nan_preserve(unsigned execution_mode, unsigned bit_size)
1000 {
1001 return (16 == bit_size && execution_mode & FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP16) ||
1002 (32 == bit_size && execution_mode & FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP32) ||
1003 (64 == bit_size && execution_mode & FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP64);
1004 }
1005
1006 static inline bool
1007 nir_is_denorm_flush_to_zero(unsigned execution_mode, unsigned bit_size)
1008 {
1009 return (16 == bit_size && execution_mode & FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP16) ||
1010 (32 == bit_size && execution_mode & FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP32) ||
1011 (64 == bit_size && execution_mode & FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP64);
1012 }
1013
1014 static inline bool
1015 nir_is_denorm_preserve(unsigned execution_mode, unsigned bit_size)
1016 {
1017 return (16 == bit_size && execution_mode & FLOAT_CONTROLS_DENORM_PRESERVE_FP16) ||
1018 (32 == bit_size && execution_mode & FLOAT_CONTROLS_DENORM_PRESERVE_FP32) ||
1019 (64 == bit_size && execution_mode & FLOAT_CONTROLS_DENORM_PRESERVE_FP64);
1020 }
1021
1022 static inline bool
1023 nir_is_rounding_mode_rtne(unsigned execution_mode, unsigned bit_size)
1024 {
1025 return (16 == bit_size && execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP16) ||
1026 (32 == bit_size && execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP32) ||
1027 (64 == bit_size && execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP64);
1028 }
1029
1030 static inline bool
1031 nir_is_rounding_mode_rtz(unsigned execution_mode, unsigned bit_size)
1032 {
1033 return (16 == bit_size && execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP16) ||
1034 (32 == bit_size && execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP32) ||
1035 (64 == bit_size && execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP64);
1036 }
1037
1038 static inline bool
1039 nir_has_any_rounding_mode_rtz(unsigned execution_mode)
1040 {
1041 return (execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP16) ||
1042 (execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP32) ||
1043 (execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP64);
1044 }
1045
1046 static inline bool
1047 nir_has_any_rounding_mode_rtne(unsigned execution_mode)
1048 {
1049 return (execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP16) ||
1050 (execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP32) ||
1051 (execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP64);
1052 }
1053
1054 static inline nir_rounding_mode
1055 nir_get_rounding_mode_from_float_controls(unsigned execution_mode,
1056 nir_alu_type type)
1057 {
1058 if (nir_alu_type_get_base_type(type) != nir_type_float)
1059 return nir_rounding_mode_undef;
1060
1061 unsigned bit_size = nir_alu_type_get_type_size(type);
1062
1063 if (nir_is_rounding_mode_rtz(execution_mode, bit_size))
1064 return nir_rounding_mode_rtz;
1065 if (nir_is_rounding_mode_rtne(execution_mode, bit_size))
1066 return nir_rounding_mode_rtne;
1067 return nir_rounding_mode_undef;
1068 }
1069
1070 static inline bool
1071 nir_has_any_rounding_mode_enabled(unsigned execution_mode)
1072 {
1073 bool result =
1074 nir_has_any_rounding_mode_rtne(execution_mode) ||
1075 nir_has_any_rounding_mode_rtz(execution_mode);
1076 return result;
1077 }
1078
1079 typedef enum {
1080 /**
1081 * Operation where the first two sources are commutative.
1082 *
1083 * For 2-source operations, this just mathematical commutativity. Some
1084 * 3-source operations, like ffma, are only commutative in the first two
1085 * sources.
1086 */
1087 NIR_OP_IS_2SRC_COMMUTATIVE = (1 << 0),
1088 NIR_OP_IS_ASSOCIATIVE = (1 << 1),
1089 } nir_op_algebraic_property;
1090
1091 typedef struct {
1092 const char *name;
1093
1094 unsigned num_inputs;
1095
1096 /**
1097 * The number of components in the output
1098 *
1099 * If non-zero, this is the size of the output and input sizes are
1100 * explicitly given; swizzle and writemask are still in effect, but if
1101 * the output component is masked out, then the input component may
1102 * still be in use.
1103 *
1104 * If zero, the opcode acts in the standard, per-component manner; the
1105 * operation is performed on each component (except the ones that are
1106 * masked out) with the input being taken from the input swizzle for
1107 * that component.
1108 *
1109 * The size of some of the inputs may be given (i.e. non-zero) even
1110 * though output_size is zero; in that case, the inputs with a zero
1111 * size act per-component, while the inputs with non-zero size don't.
1112 */
1113 unsigned output_size;
1114
1115 /**
1116 * The type of vector that the instruction outputs. Note that the
1117 * staurate modifier is only allowed on outputs with the float type.
1118 */
1119
1120 nir_alu_type output_type;
1121
1122 /**
1123 * The number of components in each input
1124 */
1125 unsigned input_sizes[NIR_MAX_VEC_COMPONENTS];
1126
1127 /**
1128 * The type of vector that each input takes. Note that negate and
1129 * absolute value are only allowed on inputs with int or float type and
1130 * behave differently on the two.
1131 */
1132 nir_alu_type input_types[NIR_MAX_VEC_COMPONENTS];
1133
1134 nir_op_algebraic_property algebraic_properties;
1135
1136 /* Whether this represents a numeric conversion opcode */
1137 bool is_conversion;
1138 } nir_op_info;
1139
1140 extern const nir_op_info nir_op_infos[nir_num_opcodes];
1141
1142 typedef struct nir_alu_instr {
1143 nir_instr instr;
1144 nir_op op;
1145
1146 /** Indicates that this ALU instruction generates an exact value
1147 *
1148 * This is kind of a mixture of GLSL "precise" and "invariant" and not
1149 * really equivalent to either. This indicates that the value generated by
1150 * this operation is high-precision and any code transformations that touch
1151 * it must ensure that the resulting value is bit-for-bit identical to the
1152 * original.
1153 */
1154 bool exact:1;
1155
1156 /**
1157 * Indicates that this instruction do not cause wrapping to occur, in the
1158 * form of overflow or underflow.
1159 */
1160 bool no_signed_wrap:1;
1161 bool no_unsigned_wrap:1;
1162
1163 nir_alu_dest dest;
1164 nir_alu_src src[];
1165 } nir_alu_instr;
1166
1167 void nir_alu_src_copy(nir_alu_src *dest, const nir_alu_src *src,
1168 nir_alu_instr *instr);
1169 void nir_alu_dest_copy(nir_alu_dest *dest, const nir_alu_dest *src,
1170 nir_alu_instr *instr);
1171
1172 /* is this source channel used? */
1173 static inline bool
1174 nir_alu_instr_channel_used(const nir_alu_instr *instr, unsigned src,
1175 unsigned channel)
1176 {
1177 if (nir_op_infos[instr->op].input_sizes[src] > 0)
1178 return channel < nir_op_infos[instr->op].input_sizes[src];
1179
1180 return (instr->dest.write_mask >> channel) & 1;
1181 }
1182
1183 static inline nir_component_mask_t
1184 nir_alu_instr_src_read_mask(const nir_alu_instr *instr, unsigned src)
1185 {
1186 nir_component_mask_t read_mask = 0;
1187 for (unsigned c = 0; c < NIR_MAX_VEC_COMPONENTS; c++) {
1188 if (!nir_alu_instr_channel_used(instr, src, c))
1189 continue;
1190
1191 read_mask |= (1 << instr->src[src].swizzle[c]);
1192 }
1193 return read_mask;
1194 }
1195
1196 /**
1197 * Get the number of channels used for a source
1198 */
1199 static inline unsigned
1200 nir_ssa_alu_instr_src_components(const nir_alu_instr *instr, unsigned src)
1201 {
1202 if (nir_op_infos[instr->op].input_sizes[src] > 0)
1203 return nir_op_infos[instr->op].input_sizes[src];
1204
1205 return nir_dest_num_components(instr->dest.dest);
1206 }
1207
1208 static inline bool
1209 nir_alu_instr_is_comparison(const nir_alu_instr *instr)
1210 {
1211 switch (instr->op) {
1212 case nir_op_flt:
1213 case nir_op_fge:
1214 case nir_op_feq:
1215 case nir_op_fne:
1216 case nir_op_ilt:
1217 case nir_op_ult:
1218 case nir_op_ige:
1219 case nir_op_uge:
1220 case nir_op_ieq:
1221 case nir_op_ine:
1222 case nir_op_i2b1:
1223 case nir_op_f2b1:
1224 case nir_op_inot:
1225 return true;
1226 default:
1227 return false;
1228 }
1229 }
1230
1231 bool nir_const_value_negative_equal(nir_const_value c1, nir_const_value c2,
1232 nir_alu_type full_type);
1233
1234 bool nir_alu_srcs_equal(const nir_alu_instr *alu1, const nir_alu_instr *alu2,
1235 unsigned src1, unsigned src2);
1236
1237 bool nir_alu_srcs_negative_equal(const nir_alu_instr *alu1,
1238 const nir_alu_instr *alu2,
1239 unsigned src1, unsigned src2);
1240
1241 typedef enum {
1242 nir_deref_type_var,
1243 nir_deref_type_array,
1244 nir_deref_type_array_wildcard,
1245 nir_deref_type_ptr_as_array,
1246 nir_deref_type_struct,
1247 nir_deref_type_cast,
1248 } nir_deref_type;
1249
1250 typedef struct {
1251 nir_instr instr;
1252
1253 /** The type of this deref instruction */
1254 nir_deref_type deref_type;
1255
1256 /** The mode of the underlying variable */
1257 nir_variable_mode mode;
1258
1259 /** The dereferenced type of the resulting pointer value */
1260 const struct glsl_type *type;
1261
1262 union {
1263 /** Variable being dereferenced if deref_type is a deref_var */
1264 nir_variable *var;
1265
1266 /** Parent deref if deref_type is not deref_var */
1267 nir_src parent;
1268 };
1269
1270 /** Additional deref parameters */
1271 union {
1272 struct {
1273 nir_src index;
1274 } arr;
1275
1276 struct {
1277 unsigned index;
1278 } strct;
1279
1280 struct {
1281 unsigned ptr_stride;
1282 } cast;
1283 };
1284
1285 /** Destination to store the resulting "pointer" */
1286 nir_dest dest;
1287 } nir_deref_instr;
1288
1289 static inline nir_deref_instr *nir_src_as_deref(nir_src src);
1290
1291 static inline nir_deref_instr *
1292 nir_deref_instr_parent(const nir_deref_instr *instr)
1293 {
1294 if (instr->deref_type == nir_deref_type_var)
1295 return NULL;
1296 else
1297 return nir_src_as_deref(instr->parent);
1298 }
1299
1300 static inline nir_variable *
1301 nir_deref_instr_get_variable(const nir_deref_instr *instr)
1302 {
1303 while (instr->deref_type != nir_deref_type_var) {
1304 if (instr->deref_type == nir_deref_type_cast)
1305 return NULL;
1306
1307 instr = nir_deref_instr_parent(instr);
1308 }
1309
1310 return instr->var;
1311 }
1312
1313 bool nir_deref_instr_has_indirect(nir_deref_instr *instr);
1314 bool nir_deref_instr_is_known_out_of_bounds(nir_deref_instr *instr);
1315 bool nir_deref_instr_has_complex_use(nir_deref_instr *instr);
1316
1317 bool nir_deref_instr_remove_if_unused(nir_deref_instr *instr);
1318
1319 unsigned nir_deref_instr_ptr_as_array_stride(nir_deref_instr *instr);
1320
1321 typedef struct {
1322 nir_instr instr;
1323
1324 struct nir_function *callee;
1325
1326 unsigned num_params;
1327 nir_src params[];
1328 } nir_call_instr;
1329
1330 #include "nir_intrinsics.h"
1331
1332 #define NIR_INTRINSIC_MAX_CONST_INDEX 4
1333
1334 /** Represents an intrinsic
1335 *
1336 * An intrinsic is an instruction type for handling things that are
1337 * more-or-less regular operations but don't just consume and produce SSA
1338 * values like ALU operations do. Intrinsics are not for things that have
1339 * special semantic meaning such as phi nodes and parallel copies.
1340 * Examples of intrinsics include variable load/store operations, system
1341 * value loads, and the like. Even though texturing more-or-less falls
1342 * under this category, texturing is its own instruction type because
1343 * trying to represent texturing with intrinsics would lead to a
1344 * combinatorial explosion of intrinsic opcodes.
1345 *
1346 * By having a single instruction type for handling a lot of different
1347 * cases, optimization passes can look for intrinsics and, for the most
1348 * part, completely ignore them. Each intrinsic type also has a few
1349 * possible flags that govern whether or not they can be reordered or
1350 * eliminated. That way passes like dead code elimination can still work
1351 * on intrisics without understanding the meaning of each.
1352 *
1353 * Each intrinsic has some number of constant indices, some number of
1354 * variables, and some number of sources. What these sources, variables,
1355 * and indices mean depends on the intrinsic and is documented with the
1356 * intrinsic declaration in nir_intrinsics.h. Intrinsics and texture
1357 * instructions are the only types of instruction that can operate on
1358 * variables.
1359 */
1360 typedef struct {
1361 nir_instr instr;
1362
1363 nir_intrinsic_op intrinsic;
1364
1365 nir_dest dest;
1366
1367 /** number of components if this is a vectorized intrinsic
1368 *
1369 * Similarly to ALU operations, some intrinsics are vectorized.
1370 * An intrinsic is vectorized if nir_intrinsic_infos.dest_components == 0.
1371 * For vectorized intrinsics, the num_components field specifies the
1372 * number of destination components and the number of source components
1373 * for all sources with nir_intrinsic_infos.src_components[i] == 0.
1374 */
1375 uint8_t num_components;
1376
1377 int const_index[NIR_INTRINSIC_MAX_CONST_INDEX];
1378
1379 nir_src src[];
1380 } nir_intrinsic_instr;
1381
1382 static inline nir_variable *
1383 nir_intrinsic_get_var(nir_intrinsic_instr *intrin, unsigned i)
1384 {
1385 return nir_deref_instr_get_variable(nir_src_as_deref(intrin->src[i]));
1386 }
1387
1388 typedef enum {
1389 /* Memory ordering. */
1390 NIR_MEMORY_ACQUIRE = 1 << 0,
1391 NIR_MEMORY_RELEASE = 1 << 1,
1392
1393 /* Memory visibility operations. */
1394 NIR_MEMORY_MAKE_AVAILABLE = 1 << 3,
1395 NIR_MEMORY_MAKE_VISIBLE = 1 << 4,
1396 } nir_memory_semantics;
1397
1398 typedef enum {
1399 NIR_SCOPE_DEVICE,
1400 NIR_SCOPE_QUEUE_FAMILY,
1401 NIR_SCOPE_WORKGROUP,
1402 NIR_SCOPE_SUBGROUP,
1403 NIR_SCOPE_INVOCATION,
1404 } nir_scope;
1405
1406 /**
1407 * \name NIR intrinsics semantic flags
1408 *
1409 * information about what the compiler can do with the intrinsics.
1410 *
1411 * \sa nir_intrinsic_info::flags
1412 */
1413 typedef enum {
1414 /**
1415 * whether the intrinsic can be safely eliminated if none of its output
1416 * value is not being used.
1417 */
1418 NIR_INTRINSIC_CAN_ELIMINATE = (1 << 0),
1419
1420 /**
1421 * Whether the intrinsic can be reordered with respect to any other
1422 * intrinsic, i.e. whether the only reordering dependencies of the
1423 * intrinsic are due to the register reads/writes.
1424 */
1425 NIR_INTRINSIC_CAN_REORDER = (1 << 1),
1426 } nir_intrinsic_semantic_flag;
1427
1428 /**
1429 * \name NIR intrinsics const-index flag
1430 *
1431 * Indicates the usage of a const_index slot.
1432 *
1433 * \sa nir_intrinsic_info::index_map
1434 */
1435 typedef enum {
1436 /**
1437 * Generally instructions that take a offset src argument, can encode
1438 * a constant 'base' value which is added to the offset.
1439 */
1440 NIR_INTRINSIC_BASE = 1,
1441
1442 /**
1443 * For store instructions, a writemask for the store.
1444 */
1445 NIR_INTRINSIC_WRMASK,
1446
1447 /**
1448 * The stream-id for GS emit_vertex/end_primitive intrinsics.
1449 */
1450 NIR_INTRINSIC_STREAM_ID,
1451
1452 /**
1453 * The clip-plane id for load_user_clip_plane intrinsic.
1454 */
1455 NIR_INTRINSIC_UCP_ID,
1456
1457 /**
1458 * The amount of data, starting from BASE, that this instruction may
1459 * access. This is used to provide bounds if the offset is not constant.
1460 */
1461 NIR_INTRINSIC_RANGE,
1462
1463 /**
1464 * The Vulkan descriptor set for vulkan_resource_index intrinsic.
1465 */
1466 NIR_INTRINSIC_DESC_SET,
1467
1468 /**
1469 * The Vulkan descriptor set binding for vulkan_resource_index intrinsic.
1470 */
1471 NIR_INTRINSIC_BINDING,
1472
1473 /**
1474 * Component offset.
1475 */
1476 NIR_INTRINSIC_COMPONENT,
1477
1478 /**
1479 * Interpolation mode (only meaningful for FS inputs).
1480 */
1481 NIR_INTRINSIC_INTERP_MODE,
1482
1483 /**
1484 * A binary nir_op to use when performing a reduction or scan operation
1485 */
1486 NIR_INTRINSIC_REDUCTION_OP,
1487
1488 /**
1489 * Cluster size for reduction operations
1490 */
1491 NIR_INTRINSIC_CLUSTER_SIZE,
1492
1493 /**
1494 * Parameter index for a load_param intrinsic
1495 */
1496 NIR_INTRINSIC_PARAM_IDX,
1497
1498 /**
1499 * Image dimensionality for image intrinsics
1500 *
1501 * One of GLSL_SAMPLER_DIM_*
1502 */
1503 NIR_INTRINSIC_IMAGE_DIM,
1504
1505 /**
1506 * Non-zero if we are accessing an array image
1507 */
1508 NIR_INTRINSIC_IMAGE_ARRAY,
1509
1510 /**
1511 * Image format for image intrinsics
1512 */
1513 NIR_INTRINSIC_FORMAT,
1514
1515 /**
1516 * Access qualifiers for image and memory access intrinsics
1517 */
1518 NIR_INTRINSIC_ACCESS,
1519
1520 /**
1521 * Alignment for offsets and addresses
1522 *
1523 * These two parameters, specify an alignment in terms of a multiplier and
1524 * an offset. The offset or address parameter X of the intrinsic is
1525 * guaranteed to satisfy the following:
1526 *
1527 * (X - align_offset) % align_mul == 0
1528 */
1529 NIR_INTRINSIC_ALIGN_MUL,
1530 NIR_INTRINSIC_ALIGN_OFFSET,
1531
1532 /**
1533 * The Vulkan descriptor type for a vulkan_resource_[re]index intrinsic.
1534 */
1535 NIR_INTRINSIC_DESC_TYPE,
1536
1537 /**
1538 * The nir_alu_type of a uniform/input/output
1539 */
1540 NIR_INTRINSIC_TYPE,
1541
1542 /**
1543 * The swizzle mask for the instructions
1544 * SwizzleInvocationsAMD and SwizzleInvocationsMaskedAMD
1545 */
1546 NIR_INTRINSIC_SWIZZLE_MASK,
1547
1548 /* Separate source/dest access flags for copies */
1549 NIR_INTRINSIC_SRC_ACCESS,
1550 NIR_INTRINSIC_DST_ACCESS,
1551
1552 /* Driver location for nir_load_patch_location_ir3 */
1553 NIR_INTRINSIC_DRIVER_LOCATION,
1554
1555 /**
1556 * Mask of nir_memory_semantics, includes ordering and visibility.
1557 */
1558 NIR_INTRINSIC_MEMORY_SEMANTICS,
1559
1560 /**
1561 * Mask of nir_variable_modes affected by the memory operation.
1562 */
1563 NIR_INTRINSIC_MEMORY_MODES,
1564
1565 /**
1566 * Value of nir_scope.
1567 */
1568 NIR_INTRINSIC_MEMORY_SCOPE,
1569
1570 NIR_INTRINSIC_NUM_INDEX_FLAGS,
1571
1572 } nir_intrinsic_index_flag;
1573
1574 #define NIR_INTRINSIC_MAX_INPUTS 5
1575
1576 typedef struct {
1577 const char *name;
1578
1579 unsigned num_srcs; /** < number of register/SSA inputs */
1580
1581 /** number of components of each input register
1582 *
1583 * If this value is 0, the number of components is given by the
1584 * num_components field of nir_intrinsic_instr. If this value is -1, the
1585 * intrinsic consumes however many components are provided and it is not
1586 * validated at all.
1587 */
1588 int src_components[NIR_INTRINSIC_MAX_INPUTS];
1589
1590 bool has_dest;
1591
1592 /** number of components of the output register
1593 *
1594 * If this value is 0, the number of components is given by the
1595 * num_components field of nir_intrinsic_instr.
1596 */
1597 unsigned dest_components;
1598
1599 /** bitfield of legal bit sizes */
1600 unsigned dest_bit_sizes;
1601
1602 /** the number of constant indices used by the intrinsic */
1603 unsigned num_indices;
1604
1605 /** indicates the usage of intr->const_index[n] */
1606 unsigned index_map[NIR_INTRINSIC_NUM_INDEX_FLAGS];
1607
1608 /** semantic flags for calls to this intrinsic */
1609 nir_intrinsic_semantic_flag flags;
1610 } nir_intrinsic_info;
1611
1612 extern const nir_intrinsic_info nir_intrinsic_infos[nir_num_intrinsics];
1613
1614 static inline unsigned
1615 nir_intrinsic_src_components(nir_intrinsic_instr *intr, unsigned srcn)
1616 {
1617 const nir_intrinsic_info *info = &nir_intrinsic_infos[intr->intrinsic];
1618 assert(srcn < info->num_srcs);
1619 if (info->src_components[srcn] > 0)
1620 return info->src_components[srcn];
1621 else if (info->src_components[srcn] == 0)
1622 return intr->num_components;
1623 else
1624 return nir_src_num_components(intr->src[srcn]);
1625 }
1626
1627 static inline unsigned
1628 nir_intrinsic_dest_components(nir_intrinsic_instr *intr)
1629 {
1630 const nir_intrinsic_info *info = &nir_intrinsic_infos[intr->intrinsic];
1631 if (!info->has_dest)
1632 return 0;
1633 else if (info->dest_components)
1634 return info->dest_components;
1635 else
1636 return intr->num_components;
1637 }
1638
1639 #define INTRINSIC_IDX_ACCESSORS(name, flag, type) \
1640 static inline type \
1641 nir_intrinsic_##name(const nir_intrinsic_instr *instr) \
1642 { \
1643 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic]; \
1644 assert(info->index_map[NIR_INTRINSIC_##flag] > 0); \
1645 return (type)instr->const_index[info->index_map[NIR_INTRINSIC_##flag] - 1]; \
1646 } \
1647 static inline void \
1648 nir_intrinsic_set_##name(nir_intrinsic_instr *instr, type val) \
1649 { \
1650 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic]; \
1651 assert(info->index_map[NIR_INTRINSIC_##flag] > 0); \
1652 instr->const_index[info->index_map[NIR_INTRINSIC_##flag] - 1] = val; \
1653 }
1654
1655 INTRINSIC_IDX_ACCESSORS(write_mask, WRMASK, unsigned)
1656 INTRINSIC_IDX_ACCESSORS(base, BASE, int)
1657 INTRINSIC_IDX_ACCESSORS(stream_id, STREAM_ID, unsigned)
1658 INTRINSIC_IDX_ACCESSORS(ucp_id, UCP_ID, unsigned)
1659 INTRINSIC_IDX_ACCESSORS(range, RANGE, unsigned)
1660 INTRINSIC_IDX_ACCESSORS(desc_set, DESC_SET, unsigned)
1661 INTRINSIC_IDX_ACCESSORS(binding, BINDING, unsigned)
1662 INTRINSIC_IDX_ACCESSORS(component, COMPONENT, unsigned)
1663 INTRINSIC_IDX_ACCESSORS(interp_mode, INTERP_MODE, unsigned)
1664 INTRINSIC_IDX_ACCESSORS(reduction_op, REDUCTION_OP, unsigned)
1665 INTRINSIC_IDX_ACCESSORS(cluster_size, CLUSTER_SIZE, unsigned)
1666 INTRINSIC_IDX_ACCESSORS(param_idx, PARAM_IDX, unsigned)
1667 INTRINSIC_IDX_ACCESSORS(image_dim, IMAGE_DIM, enum glsl_sampler_dim)
1668 INTRINSIC_IDX_ACCESSORS(image_array, IMAGE_ARRAY, bool)
1669 INTRINSIC_IDX_ACCESSORS(access, ACCESS, enum gl_access_qualifier)
1670 INTRINSIC_IDX_ACCESSORS(src_access, SRC_ACCESS, enum gl_access_qualifier)
1671 INTRINSIC_IDX_ACCESSORS(dst_access, DST_ACCESS, enum gl_access_qualifier)
1672 INTRINSIC_IDX_ACCESSORS(format, FORMAT, unsigned)
1673 INTRINSIC_IDX_ACCESSORS(align_mul, ALIGN_MUL, unsigned)
1674 INTRINSIC_IDX_ACCESSORS(align_offset, ALIGN_OFFSET, unsigned)
1675 INTRINSIC_IDX_ACCESSORS(desc_type, DESC_TYPE, unsigned)
1676 INTRINSIC_IDX_ACCESSORS(type, TYPE, nir_alu_type)
1677 INTRINSIC_IDX_ACCESSORS(swizzle_mask, SWIZZLE_MASK, unsigned)
1678 INTRINSIC_IDX_ACCESSORS(driver_location, DRIVER_LOCATION, unsigned)
1679 INTRINSIC_IDX_ACCESSORS(memory_semantics, MEMORY_SEMANTICS, nir_memory_semantics)
1680 INTRINSIC_IDX_ACCESSORS(memory_modes, MEMORY_MODES, nir_variable_mode)
1681 INTRINSIC_IDX_ACCESSORS(memory_scope, MEMORY_SCOPE, nir_scope)
1682
1683 static inline void
1684 nir_intrinsic_set_align(nir_intrinsic_instr *intrin,
1685 unsigned align_mul, unsigned align_offset)
1686 {
1687 assert(util_is_power_of_two_nonzero(align_mul));
1688 assert(align_offset < align_mul);
1689 nir_intrinsic_set_align_mul(intrin, align_mul);
1690 nir_intrinsic_set_align_offset(intrin, align_offset);
1691 }
1692
1693 /** Returns a simple alignment for a load/store intrinsic offset
1694 *
1695 * Instead of the full mul+offset alignment scheme provided by the ALIGN_MUL
1696 * and ALIGN_OFFSET parameters, this helper takes both into account and
1697 * provides a single simple alignment parameter. The offset X is guaranteed
1698 * to satisfy X % align == 0.
1699 */
1700 static inline unsigned
1701 nir_intrinsic_align(const nir_intrinsic_instr *intrin)
1702 {
1703 const unsigned align_mul = nir_intrinsic_align_mul(intrin);
1704 const unsigned align_offset = nir_intrinsic_align_offset(intrin);
1705 assert(align_offset < align_mul);
1706 return align_offset ? 1 << (ffs(align_offset) - 1) : align_mul;
1707 }
1708
1709 /* Converts a image_deref_* intrinsic into a image_* one */
1710 void nir_rewrite_image_intrinsic(nir_intrinsic_instr *instr,
1711 nir_ssa_def *handle, bool bindless);
1712
1713 /* Determine if an intrinsic can be arbitrarily reordered and eliminated. */
1714 static inline bool
1715 nir_intrinsic_can_reorder(nir_intrinsic_instr *instr)
1716 {
1717 if (instr->intrinsic == nir_intrinsic_load_deref ||
1718 instr->intrinsic == nir_intrinsic_load_ssbo ||
1719 instr->intrinsic == nir_intrinsic_bindless_image_load ||
1720 instr->intrinsic == nir_intrinsic_image_deref_load ||
1721 instr->intrinsic == nir_intrinsic_image_load) {
1722 return nir_intrinsic_access(instr) & ACCESS_CAN_REORDER;
1723 } else {
1724 const nir_intrinsic_info *info =
1725 &nir_intrinsic_infos[instr->intrinsic];
1726 return (info->flags & NIR_INTRINSIC_CAN_ELIMINATE) &&
1727 (info->flags & NIR_INTRINSIC_CAN_REORDER);
1728 }
1729 }
1730
1731 /**
1732 * \group texture information
1733 *
1734 * This gives semantic information about textures which is useful to the
1735 * frontend, the backend, and lowering passes, but not the optimizer.
1736 */
1737
1738 typedef enum {
1739 nir_tex_src_coord,
1740 nir_tex_src_projector,
1741 nir_tex_src_comparator, /* shadow comparator */
1742 nir_tex_src_offset,
1743 nir_tex_src_bias,
1744 nir_tex_src_lod,
1745 nir_tex_src_min_lod,
1746 nir_tex_src_ms_index, /* MSAA sample index */
1747 nir_tex_src_ms_mcs, /* MSAA compression value */
1748 nir_tex_src_ddx,
1749 nir_tex_src_ddy,
1750 nir_tex_src_texture_deref, /* < deref pointing to the texture */
1751 nir_tex_src_sampler_deref, /* < deref pointing to the sampler */
1752 nir_tex_src_texture_offset, /* < dynamically uniform indirect offset */
1753 nir_tex_src_sampler_offset, /* < dynamically uniform indirect offset */
1754 nir_tex_src_texture_handle, /* < bindless texture handle */
1755 nir_tex_src_sampler_handle, /* < bindless sampler handle */
1756 nir_tex_src_plane, /* < selects plane for planar textures */
1757 nir_num_tex_src_types
1758 } nir_tex_src_type;
1759
1760 typedef struct {
1761 nir_src src;
1762 nir_tex_src_type src_type;
1763 } nir_tex_src;
1764
1765 typedef enum {
1766 nir_texop_tex, /**< Regular texture look-up */
1767 nir_texop_txb, /**< Texture look-up with LOD bias */
1768 nir_texop_txl, /**< Texture look-up with explicit LOD */
1769 nir_texop_txd, /**< Texture look-up with partial derivatives */
1770 nir_texop_txf, /**< Texel fetch with explicit LOD */
1771 nir_texop_txf_ms, /**< Multisample texture fetch */
1772 nir_texop_txf_ms_fb, /**< Multisample texture fetch from framebuffer */
1773 nir_texop_txf_ms_mcs, /**< Multisample compression value fetch */
1774 nir_texop_txs, /**< Texture size */
1775 nir_texop_lod, /**< Texture lod query */
1776 nir_texop_tg4, /**< Texture gather */
1777 nir_texop_query_levels, /**< Texture levels query */
1778 nir_texop_texture_samples, /**< Texture samples query */
1779 nir_texop_samples_identical, /**< Query whether all samples are definitely
1780 * identical.
1781 */
1782 nir_texop_tex_prefetch, /**< Regular texture look-up, eligible for pre-dispatch */
1783 } nir_texop;
1784
1785 typedef struct {
1786 nir_instr instr;
1787
1788 enum glsl_sampler_dim sampler_dim;
1789 nir_alu_type dest_type;
1790
1791 nir_texop op;
1792 nir_dest dest;
1793 nir_tex_src *src;
1794 unsigned num_srcs, coord_components;
1795 bool is_array, is_shadow;
1796
1797 /**
1798 * If is_shadow is true, whether this is the old-style shadow that outputs 4
1799 * components or the new-style shadow that outputs 1 component.
1800 */
1801 bool is_new_style_shadow;
1802
1803 /* gather component selector */
1804 unsigned component : 2;
1805
1806 /* gather offsets */
1807 int8_t tg4_offsets[4][2];
1808
1809 /* True if the texture index or handle is not dynamically uniform */
1810 bool texture_non_uniform;
1811
1812 /* True if the sampler index or handle is not dynamically uniform */
1813 bool sampler_non_uniform;
1814
1815 /** The texture index
1816 *
1817 * If this texture instruction has a nir_tex_src_texture_offset source,
1818 * then the texture index is given by texture_index + texture_offset.
1819 */
1820 unsigned texture_index;
1821
1822 /** The size of the texture array or 0 if it's not an array */
1823 unsigned texture_array_size;
1824
1825 /** The sampler index
1826 *
1827 * The following operations do not require a sampler and, as such, this
1828 * field should be ignored:
1829 * - nir_texop_txf
1830 * - nir_texop_txf_ms
1831 * - nir_texop_txs
1832 * - nir_texop_lod
1833 * - nir_texop_query_levels
1834 * - nir_texop_texture_samples
1835 * - nir_texop_samples_identical
1836 *
1837 * If this texture instruction has a nir_tex_src_sampler_offset source,
1838 * then the sampler index is given by sampler_index + sampler_offset.
1839 */
1840 unsigned sampler_index;
1841 } nir_tex_instr;
1842
1843 static inline unsigned
1844 nir_tex_instr_dest_size(const nir_tex_instr *instr)
1845 {
1846 switch (instr->op) {
1847 case nir_texop_txs: {
1848 unsigned ret;
1849 switch (instr->sampler_dim) {
1850 case GLSL_SAMPLER_DIM_1D:
1851 case GLSL_SAMPLER_DIM_BUF:
1852 ret = 1;
1853 break;
1854 case GLSL_SAMPLER_DIM_2D:
1855 case GLSL_SAMPLER_DIM_CUBE:
1856 case GLSL_SAMPLER_DIM_MS:
1857 case GLSL_SAMPLER_DIM_RECT:
1858 case GLSL_SAMPLER_DIM_EXTERNAL:
1859 case GLSL_SAMPLER_DIM_SUBPASS:
1860 ret = 2;
1861 break;
1862 case GLSL_SAMPLER_DIM_3D:
1863 ret = 3;
1864 break;
1865 default:
1866 unreachable("not reached");
1867 }
1868 if (instr->is_array)
1869 ret++;
1870 return ret;
1871 }
1872
1873 case nir_texop_lod:
1874 return 2;
1875
1876 case nir_texop_texture_samples:
1877 case nir_texop_query_levels:
1878 case nir_texop_samples_identical:
1879 return 1;
1880
1881 default:
1882 if (instr->is_shadow && instr->is_new_style_shadow)
1883 return 1;
1884
1885 return 4;
1886 }
1887 }
1888
1889 /* Returns true if this texture operation queries something about the texture
1890 * rather than actually sampling it.
1891 */
1892 static inline bool
1893 nir_tex_instr_is_query(const nir_tex_instr *instr)
1894 {
1895 switch (instr->op) {
1896 case nir_texop_txs:
1897 case nir_texop_lod:
1898 case nir_texop_texture_samples:
1899 case nir_texop_query_levels:
1900 case nir_texop_txf_ms_mcs:
1901 return true;
1902 case nir_texop_tex:
1903 case nir_texop_txb:
1904 case nir_texop_txl:
1905 case nir_texop_txd:
1906 case nir_texop_txf:
1907 case nir_texop_txf_ms:
1908 case nir_texop_txf_ms_fb:
1909 case nir_texop_tg4:
1910 return false;
1911 default:
1912 unreachable("Invalid texture opcode");
1913 }
1914 }
1915
1916 static inline bool
1917 nir_tex_instr_has_implicit_derivative(const nir_tex_instr *instr)
1918 {
1919 switch (instr->op) {
1920 case nir_texop_tex:
1921 case nir_texop_txb:
1922 case nir_texop_lod:
1923 return true;
1924 default:
1925 return false;
1926 }
1927 }
1928
1929 static inline nir_alu_type
1930 nir_tex_instr_src_type(const nir_tex_instr *instr, unsigned src)
1931 {
1932 switch (instr->src[src].src_type) {
1933 case nir_tex_src_coord:
1934 switch (instr->op) {
1935 case nir_texop_txf:
1936 case nir_texop_txf_ms:
1937 case nir_texop_txf_ms_fb:
1938 case nir_texop_txf_ms_mcs:
1939 case nir_texop_samples_identical:
1940 return nir_type_int;
1941
1942 default:
1943 return nir_type_float;
1944 }
1945
1946 case nir_tex_src_lod:
1947 switch (instr->op) {
1948 case nir_texop_txs:
1949 case nir_texop_txf:
1950 return nir_type_int;
1951
1952 default:
1953 return nir_type_float;
1954 }
1955
1956 case nir_tex_src_projector:
1957 case nir_tex_src_comparator:
1958 case nir_tex_src_bias:
1959 case nir_tex_src_min_lod:
1960 case nir_tex_src_ddx:
1961 case nir_tex_src_ddy:
1962 return nir_type_float;
1963
1964 case nir_tex_src_offset:
1965 case nir_tex_src_ms_index:
1966 case nir_tex_src_plane:
1967 return nir_type_int;
1968
1969 case nir_tex_src_ms_mcs:
1970 case nir_tex_src_texture_deref:
1971 case nir_tex_src_sampler_deref:
1972 case nir_tex_src_texture_offset:
1973 case nir_tex_src_sampler_offset:
1974 case nir_tex_src_texture_handle:
1975 case nir_tex_src_sampler_handle:
1976 return nir_type_uint;
1977
1978 case nir_num_tex_src_types:
1979 unreachable("nir_num_tex_src_types is not a valid source type");
1980 }
1981
1982 unreachable("Invalid texture source type");
1983 }
1984
1985 static inline unsigned
1986 nir_tex_instr_src_size(const nir_tex_instr *instr, unsigned src)
1987 {
1988 if (instr->src[src].src_type == nir_tex_src_coord)
1989 return instr->coord_components;
1990
1991 /* The MCS value is expected to be a vec4 returned by a txf_ms_mcs */
1992 if (instr->src[src].src_type == nir_tex_src_ms_mcs)
1993 return 4;
1994
1995 if (instr->src[src].src_type == nir_tex_src_ddx ||
1996 instr->src[src].src_type == nir_tex_src_ddy) {
1997 if (instr->is_array)
1998 return instr->coord_components - 1;
1999 else
2000 return instr->coord_components;
2001 }
2002
2003 /* Usual APIs don't allow cube + offset, but we allow it, with 2 coords for
2004 * the offset, since a cube maps to a single face.
2005 */
2006 if (instr->src[src].src_type == nir_tex_src_offset) {
2007 if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE)
2008 return 2;
2009 else if (instr->is_array)
2010 return instr->coord_components - 1;
2011 else
2012 return instr->coord_components;
2013 }
2014
2015 return 1;
2016 }
2017
2018 static inline int
2019 nir_tex_instr_src_index(const nir_tex_instr *instr, nir_tex_src_type type)
2020 {
2021 for (unsigned i = 0; i < instr->num_srcs; i++)
2022 if (instr->src[i].src_type == type)
2023 return (int) i;
2024
2025 return -1;
2026 }
2027
2028 void nir_tex_instr_add_src(nir_tex_instr *tex,
2029 nir_tex_src_type src_type,
2030 nir_src src);
2031
2032 void nir_tex_instr_remove_src(nir_tex_instr *tex, unsigned src_idx);
2033
2034 bool nir_tex_instr_has_explicit_tg4_offsets(nir_tex_instr *tex);
2035
2036 typedef struct {
2037 nir_instr instr;
2038
2039 nir_ssa_def def;
2040
2041 nir_const_value value[];
2042 } nir_load_const_instr;
2043
2044 typedef enum {
2045 nir_jump_return,
2046 nir_jump_break,
2047 nir_jump_continue,
2048 } nir_jump_type;
2049
2050 typedef struct {
2051 nir_instr instr;
2052 nir_jump_type type;
2053 } nir_jump_instr;
2054
2055 /* creates a new SSA variable in an undefined state */
2056
2057 typedef struct {
2058 nir_instr instr;
2059 nir_ssa_def def;
2060 } nir_ssa_undef_instr;
2061
2062 typedef struct {
2063 struct exec_node node;
2064
2065 /* The predecessor block corresponding to this source */
2066 struct nir_block *pred;
2067
2068 nir_src src;
2069 } nir_phi_src;
2070
2071 #define nir_foreach_phi_src(phi_src, phi) \
2072 foreach_list_typed(nir_phi_src, phi_src, node, &(phi)->srcs)
2073 #define nir_foreach_phi_src_safe(phi_src, phi) \
2074 foreach_list_typed_safe(nir_phi_src, phi_src, node, &(phi)->srcs)
2075
2076 typedef struct {
2077 nir_instr instr;
2078
2079 struct exec_list srcs; /** < list of nir_phi_src */
2080
2081 nir_dest dest;
2082 } nir_phi_instr;
2083
2084 typedef struct {
2085 struct exec_node node;
2086 nir_src src;
2087 nir_dest dest;
2088 } nir_parallel_copy_entry;
2089
2090 #define nir_foreach_parallel_copy_entry(entry, pcopy) \
2091 foreach_list_typed(nir_parallel_copy_entry, entry, node, &(pcopy)->entries)
2092
2093 typedef struct {
2094 nir_instr instr;
2095
2096 /* A list of nir_parallel_copy_entrys. The sources of all of the
2097 * entries are copied to the corresponding destinations "in parallel".
2098 * In other words, if we have two entries: a -> b and b -> a, the values
2099 * get swapped.
2100 */
2101 struct exec_list entries;
2102 } nir_parallel_copy_instr;
2103
2104 NIR_DEFINE_CAST(nir_instr_as_alu, nir_instr, nir_alu_instr, instr,
2105 type, nir_instr_type_alu)
2106 NIR_DEFINE_CAST(nir_instr_as_deref, nir_instr, nir_deref_instr, instr,
2107 type, nir_instr_type_deref)
2108 NIR_DEFINE_CAST(nir_instr_as_call, nir_instr, nir_call_instr, instr,
2109 type, nir_instr_type_call)
2110 NIR_DEFINE_CAST(nir_instr_as_jump, nir_instr, nir_jump_instr, instr,
2111 type, nir_instr_type_jump)
2112 NIR_DEFINE_CAST(nir_instr_as_tex, nir_instr, nir_tex_instr, instr,
2113 type, nir_instr_type_tex)
2114 NIR_DEFINE_CAST(nir_instr_as_intrinsic, nir_instr, nir_intrinsic_instr, instr,
2115 type, nir_instr_type_intrinsic)
2116 NIR_DEFINE_CAST(nir_instr_as_load_const, nir_instr, nir_load_const_instr, instr,
2117 type, nir_instr_type_load_const)
2118 NIR_DEFINE_CAST(nir_instr_as_ssa_undef, nir_instr, nir_ssa_undef_instr, instr,
2119 type, nir_instr_type_ssa_undef)
2120 NIR_DEFINE_CAST(nir_instr_as_phi, nir_instr, nir_phi_instr, instr,
2121 type, nir_instr_type_phi)
2122 NIR_DEFINE_CAST(nir_instr_as_parallel_copy, nir_instr,
2123 nir_parallel_copy_instr, instr,
2124 type, nir_instr_type_parallel_copy)
2125
2126
2127 #define NIR_DEFINE_SRC_AS_CONST(type, suffix) \
2128 static inline type \
2129 nir_src_comp_as_##suffix(nir_src src, unsigned comp) \
2130 { \
2131 assert(nir_src_is_const(src)); \
2132 nir_load_const_instr *load = \
2133 nir_instr_as_load_const(src.ssa->parent_instr); \
2134 assert(comp < load->def.num_components); \
2135 return nir_const_value_as_##suffix(load->value[comp], \
2136 load->def.bit_size); \
2137 } \
2138 \
2139 static inline type \
2140 nir_src_as_##suffix(nir_src src) \
2141 { \
2142 assert(nir_src_num_components(src) == 1); \
2143 return nir_src_comp_as_##suffix(src, 0); \
2144 }
2145
2146 NIR_DEFINE_SRC_AS_CONST(int64_t, int)
2147 NIR_DEFINE_SRC_AS_CONST(uint64_t, uint)
2148 NIR_DEFINE_SRC_AS_CONST(bool, bool)
2149 NIR_DEFINE_SRC_AS_CONST(double, float)
2150
2151 #undef NIR_DEFINE_SRC_AS_CONST
2152
2153
2154 typedef struct {
2155 nir_ssa_def *def;
2156 unsigned comp;
2157 } nir_ssa_scalar;
2158
2159 static inline bool
2160 nir_ssa_scalar_is_const(nir_ssa_scalar s)
2161 {
2162 return s.def->parent_instr->type == nir_instr_type_load_const;
2163 }
2164
2165 static inline nir_const_value
2166 nir_ssa_scalar_as_const_value(nir_ssa_scalar s)
2167 {
2168 assert(s.comp < s.def->num_components);
2169 nir_load_const_instr *load = nir_instr_as_load_const(s.def->parent_instr);
2170 return load->value[s.comp];
2171 }
2172
2173 #define NIR_DEFINE_SCALAR_AS_CONST(type, suffix) \
2174 static inline type \
2175 nir_ssa_scalar_as_##suffix(nir_ssa_scalar s) \
2176 { \
2177 return nir_const_value_as_##suffix( \
2178 nir_ssa_scalar_as_const_value(s), s.def->bit_size); \
2179 }
2180
2181 NIR_DEFINE_SCALAR_AS_CONST(int64_t, int)
2182 NIR_DEFINE_SCALAR_AS_CONST(uint64_t, uint)
2183 NIR_DEFINE_SCALAR_AS_CONST(bool, bool)
2184 NIR_DEFINE_SCALAR_AS_CONST(double, float)
2185
2186 #undef NIR_DEFINE_SCALAR_AS_CONST
2187
2188 static inline bool
2189 nir_ssa_scalar_is_alu(nir_ssa_scalar s)
2190 {
2191 return s.def->parent_instr->type == nir_instr_type_alu;
2192 }
2193
2194 static inline nir_op
2195 nir_ssa_scalar_alu_op(nir_ssa_scalar s)
2196 {
2197 return nir_instr_as_alu(s.def->parent_instr)->op;
2198 }
2199
2200 static inline nir_ssa_scalar
2201 nir_ssa_scalar_chase_alu_src(nir_ssa_scalar s, unsigned alu_src_idx)
2202 {
2203 nir_ssa_scalar out = { NULL, 0 };
2204
2205 nir_alu_instr *alu = nir_instr_as_alu(s.def->parent_instr);
2206 assert(alu_src_idx < nir_op_infos[alu->op].num_inputs);
2207
2208 /* Our component must be written */
2209 assert(s.comp < s.def->num_components);
2210 assert(alu->dest.write_mask & (1u << s.comp));
2211
2212 assert(alu->src[alu_src_idx].src.is_ssa);
2213 out.def = alu->src[alu_src_idx].src.ssa;
2214
2215 if (nir_op_infos[alu->op].input_sizes[alu_src_idx] == 0) {
2216 /* The ALU src is unsized so the source component follows the
2217 * destination component.
2218 */
2219 out.comp = alu->src[alu_src_idx].swizzle[s.comp];
2220 } else {
2221 /* This is a sized source so all source components work together to
2222 * produce all the destination components. Since we need to return a
2223 * scalar, this only works if the source is a scalar.
2224 */
2225 assert(nir_op_infos[alu->op].input_sizes[alu_src_idx] == 1);
2226 out.comp = alu->src[alu_src_idx].swizzle[0];
2227 }
2228 assert(out.comp < out.def->num_components);
2229
2230 return out;
2231 }
2232
2233
2234 /*
2235 * Control flow
2236 *
2237 * Control flow consists of a tree of control flow nodes, which include
2238 * if-statements and loops. The leaves of the tree are basic blocks, lists of
2239 * instructions that always run start-to-finish. Each basic block also keeps
2240 * track of its successors (blocks which may run immediately after the current
2241 * block) and predecessors (blocks which could have run immediately before the
2242 * current block). Each function also has a start block and an end block which
2243 * all return statements point to (which is always empty). Together, all the
2244 * blocks with their predecessors and successors make up the control flow
2245 * graph (CFG) of the function. There are helpers that modify the tree of
2246 * control flow nodes while modifying the CFG appropriately; these should be
2247 * used instead of modifying the tree directly.
2248 */
2249
2250 typedef enum {
2251 nir_cf_node_block,
2252 nir_cf_node_if,
2253 nir_cf_node_loop,
2254 nir_cf_node_function
2255 } nir_cf_node_type;
2256
2257 typedef struct nir_cf_node {
2258 struct exec_node node;
2259 nir_cf_node_type type;
2260 struct nir_cf_node *parent;
2261 } nir_cf_node;
2262
2263 typedef struct nir_block {
2264 nir_cf_node cf_node;
2265
2266 struct exec_list instr_list; /** < list of nir_instr */
2267
2268 /** generic block index; generated by nir_index_blocks */
2269 unsigned index;
2270
2271 /*
2272 * Each block can only have up to 2 successors, so we put them in a simple
2273 * array - no need for anything more complicated.
2274 */
2275 struct nir_block *successors[2];
2276
2277 /* Set of nir_block predecessors in the CFG */
2278 struct set *predecessors;
2279
2280 /*
2281 * this node's immediate dominator in the dominance tree - set to NULL for
2282 * the start block.
2283 */
2284 struct nir_block *imm_dom;
2285
2286 /* This node's children in the dominance tree */
2287 unsigned num_dom_children;
2288 struct nir_block **dom_children;
2289
2290 /* Set of nir_blocks on the dominance frontier of this block */
2291 struct set *dom_frontier;
2292
2293 /*
2294 * These two indices have the property that dom_{pre,post}_index for each
2295 * child of this block in the dominance tree will always be between
2296 * dom_pre_index and dom_post_index for this block, which makes testing if
2297 * a given block is dominated by another block an O(1) operation.
2298 */
2299 unsigned dom_pre_index, dom_post_index;
2300
2301 /* live in and out for this block; used for liveness analysis */
2302 BITSET_WORD *live_in;
2303 BITSET_WORD *live_out;
2304 } nir_block;
2305
2306 static inline nir_instr *
2307 nir_block_first_instr(nir_block *block)
2308 {
2309 struct exec_node *head = exec_list_get_head(&block->instr_list);
2310 return exec_node_data(nir_instr, head, node);
2311 }
2312
2313 static inline nir_instr *
2314 nir_block_last_instr(nir_block *block)
2315 {
2316 struct exec_node *tail = exec_list_get_tail(&block->instr_list);
2317 return exec_node_data(nir_instr, tail, node);
2318 }
2319
2320 static inline bool
2321 nir_block_ends_in_jump(nir_block *block)
2322 {
2323 return !exec_list_is_empty(&block->instr_list) &&
2324 nir_block_last_instr(block)->type == nir_instr_type_jump;
2325 }
2326
2327 #define nir_foreach_instr(instr, block) \
2328 foreach_list_typed(nir_instr, instr, node, &(block)->instr_list)
2329 #define nir_foreach_instr_reverse(instr, block) \
2330 foreach_list_typed_reverse(nir_instr, instr, node, &(block)->instr_list)
2331 #define nir_foreach_instr_safe(instr, block) \
2332 foreach_list_typed_safe(nir_instr, instr, node, &(block)->instr_list)
2333 #define nir_foreach_instr_reverse_safe(instr, block) \
2334 foreach_list_typed_reverse_safe(nir_instr, instr, node, &(block)->instr_list)
2335
2336 typedef enum {
2337 nir_selection_control_none = 0x0,
2338 nir_selection_control_flatten = 0x1,
2339 nir_selection_control_dont_flatten = 0x2,
2340 } nir_selection_control;
2341
2342 typedef struct nir_if {
2343 nir_cf_node cf_node;
2344 nir_src condition;
2345 nir_selection_control control;
2346
2347 struct exec_list then_list; /** < list of nir_cf_node */
2348 struct exec_list else_list; /** < list of nir_cf_node */
2349 } nir_if;
2350
2351 typedef struct {
2352 nir_if *nif;
2353
2354 /** Instruction that generates nif::condition. */
2355 nir_instr *conditional_instr;
2356
2357 /** Block within ::nif that has the break instruction. */
2358 nir_block *break_block;
2359
2360 /** Last block for the then- or else-path that does not contain the break. */
2361 nir_block *continue_from_block;
2362
2363 /** True when ::break_block is in the else-path of ::nif. */
2364 bool continue_from_then;
2365 bool induction_rhs;
2366
2367 /* This is true if the terminators exact trip count is unknown. For
2368 * example:
2369 *
2370 * for (int i = 0; i < imin(x, 4); i++)
2371 * ...
2372 *
2373 * Here loop analysis would have set a max_trip_count of 4 however we dont
2374 * know for sure that this is the exact trip count.
2375 */
2376 bool exact_trip_count_unknown;
2377
2378 struct list_head loop_terminator_link;
2379 } nir_loop_terminator;
2380
2381 typedef struct {
2382 /* Estimated cost (in number of instructions) of the loop */
2383 unsigned instr_cost;
2384
2385 /* Guessed trip count based on array indexing */
2386 unsigned guessed_trip_count;
2387
2388 /* Maximum number of times the loop is run (if known) */
2389 unsigned max_trip_count;
2390
2391 /* Do we know the exact number of times the loop will be run */
2392 bool exact_trip_count_known;
2393
2394 /* Unroll the loop regardless of its size */
2395 bool force_unroll;
2396
2397 /* Does the loop contain complex loop terminators, continues or other
2398 * complex behaviours? If this is true we can't rely on
2399 * loop_terminator_list to be complete or accurate.
2400 */
2401 bool complex_loop;
2402
2403 nir_loop_terminator *limiting_terminator;
2404
2405 /* A list of loop_terminators terminating this loop. */
2406 struct list_head loop_terminator_list;
2407 } nir_loop_info;
2408
2409 typedef enum {
2410 nir_loop_control_none = 0x0,
2411 nir_loop_control_unroll = 0x1,
2412 nir_loop_control_dont_unroll = 0x2,
2413 } nir_loop_control;
2414
2415 typedef struct {
2416 nir_cf_node cf_node;
2417
2418 struct exec_list body; /** < list of nir_cf_node */
2419
2420 nir_loop_info *info;
2421 nir_loop_control control;
2422 bool partially_unrolled;
2423 } nir_loop;
2424
2425 /**
2426 * Various bits of metadata that can may be created or required by
2427 * optimization and analysis passes
2428 */
2429 typedef enum {
2430 nir_metadata_none = 0x0,
2431 nir_metadata_block_index = 0x1,
2432 nir_metadata_dominance = 0x2,
2433 nir_metadata_live_ssa_defs = 0x4,
2434 nir_metadata_not_properly_reset = 0x8,
2435 nir_metadata_loop_analysis = 0x10,
2436 } nir_metadata;
2437
2438 typedef struct {
2439 nir_cf_node cf_node;
2440
2441 /** pointer to the function of which this is an implementation */
2442 struct nir_function *function;
2443
2444 struct exec_list body; /** < list of nir_cf_node */
2445
2446 nir_block *end_block;
2447
2448 /** list for all local variables in the function */
2449 struct exec_list locals;
2450
2451 /** list of local registers in the function */
2452 struct exec_list registers;
2453
2454 /** next available local register index */
2455 unsigned reg_alloc;
2456
2457 /** next available SSA value index */
2458 unsigned ssa_alloc;
2459
2460 /* total number of basic blocks, only valid when block_index_dirty = false */
2461 unsigned num_blocks;
2462
2463 nir_metadata valid_metadata;
2464 } nir_function_impl;
2465
2466 ATTRIBUTE_RETURNS_NONNULL static inline nir_block *
2467 nir_start_block(nir_function_impl *impl)
2468 {
2469 return (nir_block *) impl->body.head_sentinel.next;
2470 }
2471
2472 ATTRIBUTE_RETURNS_NONNULL static inline nir_block *
2473 nir_impl_last_block(nir_function_impl *impl)
2474 {
2475 return (nir_block *) impl->body.tail_sentinel.prev;
2476 }
2477
2478 static inline nir_cf_node *
2479 nir_cf_node_next(nir_cf_node *node)
2480 {
2481 struct exec_node *next = exec_node_get_next(&node->node);
2482 if (exec_node_is_tail_sentinel(next))
2483 return NULL;
2484 else
2485 return exec_node_data(nir_cf_node, next, node);
2486 }
2487
2488 static inline nir_cf_node *
2489 nir_cf_node_prev(nir_cf_node *node)
2490 {
2491 struct exec_node *prev = exec_node_get_prev(&node->node);
2492 if (exec_node_is_head_sentinel(prev))
2493 return NULL;
2494 else
2495 return exec_node_data(nir_cf_node, prev, node);
2496 }
2497
2498 static inline bool
2499 nir_cf_node_is_first(const nir_cf_node *node)
2500 {
2501 return exec_node_is_head_sentinel(node->node.prev);
2502 }
2503
2504 static inline bool
2505 nir_cf_node_is_last(const nir_cf_node *node)
2506 {
2507 return exec_node_is_tail_sentinel(node->node.next);
2508 }
2509
2510 NIR_DEFINE_CAST(nir_cf_node_as_block, nir_cf_node, nir_block, cf_node,
2511 type, nir_cf_node_block)
2512 NIR_DEFINE_CAST(nir_cf_node_as_if, nir_cf_node, nir_if, cf_node,
2513 type, nir_cf_node_if)
2514 NIR_DEFINE_CAST(nir_cf_node_as_loop, nir_cf_node, nir_loop, cf_node,
2515 type, nir_cf_node_loop)
2516 NIR_DEFINE_CAST(nir_cf_node_as_function, nir_cf_node,
2517 nir_function_impl, cf_node, type, nir_cf_node_function)
2518
2519 static inline nir_block *
2520 nir_if_first_then_block(nir_if *if_stmt)
2521 {
2522 struct exec_node *head = exec_list_get_head(&if_stmt->then_list);
2523 return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
2524 }
2525
2526 static inline nir_block *
2527 nir_if_last_then_block(nir_if *if_stmt)
2528 {
2529 struct exec_node *tail = exec_list_get_tail(&if_stmt->then_list);
2530 return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
2531 }
2532
2533 static inline nir_block *
2534 nir_if_first_else_block(nir_if *if_stmt)
2535 {
2536 struct exec_node *head = exec_list_get_head(&if_stmt->else_list);
2537 return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
2538 }
2539
2540 static inline nir_block *
2541 nir_if_last_else_block(nir_if *if_stmt)
2542 {
2543 struct exec_node *tail = exec_list_get_tail(&if_stmt->else_list);
2544 return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
2545 }
2546
2547 static inline nir_block *
2548 nir_loop_first_block(nir_loop *loop)
2549 {
2550 struct exec_node *head = exec_list_get_head(&loop->body);
2551 return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
2552 }
2553
2554 static inline nir_block *
2555 nir_loop_last_block(nir_loop *loop)
2556 {
2557 struct exec_node *tail = exec_list_get_tail(&loop->body);
2558 return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
2559 }
2560
2561 /**
2562 * Return true if this list of cf_nodes contains a single empty block.
2563 */
2564 static inline bool
2565 nir_cf_list_is_empty_block(struct exec_list *cf_list)
2566 {
2567 if (exec_list_is_singular(cf_list)) {
2568 struct exec_node *head = exec_list_get_head(cf_list);
2569 nir_block *block =
2570 nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
2571 return exec_list_is_empty(&block->instr_list);
2572 }
2573 return false;
2574 }
2575
2576 typedef struct {
2577 uint8_t num_components;
2578 uint8_t bit_size;
2579 } nir_parameter;
2580
2581 typedef struct nir_function {
2582 struct exec_node node;
2583
2584 const char *name;
2585 struct nir_shader *shader;
2586
2587 unsigned num_params;
2588 nir_parameter *params;
2589
2590 /** The implementation of this function.
2591 *
2592 * If the function is only declared and not implemented, this is NULL.
2593 */
2594 nir_function_impl *impl;
2595
2596 bool is_entrypoint;
2597 } nir_function;
2598
2599 typedef enum {
2600 nir_lower_imul64 = (1 << 0),
2601 nir_lower_isign64 = (1 << 1),
2602 /** Lower all int64 modulus and division opcodes */
2603 nir_lower_divmod64 = (1 << 2),
2604 /** Lower all 64-bit umul_high and imul_high opcodes */
2605 nir_lower_imul_high64 = (1 << 3),
2606 nir_lower_mov64 = (1 << 4),
2607 nir_lower_icmp64 = (1 << 5),
2608 nir_lower_iadd64 = (1 << 6),
2609 nir_lower_iabs64 = (1 << 7),
2610 nir_lower_ineg64 = (1 << 8),
2611 nir_lower_logic64 = (1 << 9),
2612 nir_lower_minmax64 = (1 << 10),
2613 nir_lower_shift64 = (1 << 11),
2614 nir_lower_imul_2x32_64 = (1 << 12),
2615 nir_lower_extract64 = (1 << 13),
2616 } nir_lower_int64_options;
2617
2618 typedef enum {
2619 nir_lower_drcp = (1 << 0),
2620 nir_lower_dsqrt = (1 << 1),
2621 nir_lower_drsq = (1 << 2),
2622 nir_lower_dtrunc = (1 << 3),
2623 nir_lower_dfloor = (1 << 4),
2624 nir_lower_dceil = (1 << 5),
2625 nir_lower_dfract = (1 << 6),
2626 nir_lower_dround_even = (1 << 7),
2627 nir_lower_dmod = (1 << 8),
2628 nir_lower_dsub = (1 << 9),
2629 nir_lower_ddiv = (1 << 10),
2630 nir_lower_fp64_full_software = (1 << 11),
2631 } nir_lower_doubles_options;
2632
2633 typedef enum {
2634 nir_divergence_single_prim_per_subgroup = (1 << 0),
2635 nir_divergence_single_patch_per_tcs_subgroup = (1 << 1),
2636 nir_divergence_single_patch_per_tes_subgroup = (1 << 2),
2637 nir_divergence_view_index_uniform = (1 << 3),
2638 } nir_divergence_options;
2639
2640 typedef struct nir_shader_compiler_options {
2641 bool lower_fdiv;
2642 bool lower_ffma;
2643 bool fuse_ffma;
2644 bool lower_flrp16;
2645 bool lower_flrp32;
2646 /** Lowers flrp when it does not support doubles */
2647 bool lower_flrp64;
2648 bool lower_fpow;
2649 bool lower_fsat;
2650 bool lower_fsqrt;
2651 bool lower_sincos;
2652 bool lower_fmod;
2653 /** Lowers ibitfield_extract/ubitfield_extract to ibfe/ubfe. */
2654 bool lower_bitfield_extract;
2655 /** Lowers ibitfield_extract/ubitfield_extract to compares, shifts. */
2656 bool lower_bitfield_extract_to_shifts;
2657 /** Lowers bitfield_insert to bfi/bfm */
2658 bool lower_bitfield_insert;
2659 /** Lowers bitfield_insert to compares, and shifts. */
2660 bool lower_bitfield_insert_to_shifts;
2661 /** Lowers bitfield_insert to bfm/bitfield_select. */
2662 bool lower_bitfield_insert_to_bitfield_select;
2663 /** Lowers bitfield_reverse to shifts. */
2664 bool lower_bitfield_reverse;
2665 /** Lowers bit_count to shifts. */
2666 bool lower_bit_count;
2667 /** Lowers ifind_msb to compare and ufind_msb */
2668 bool lower_ifind_msb;
2669 /** Lowers find_lsb to ufind_msb and logic ops */
2670 bool lower_find_lsb;
2671 bool lower_uadd_carry;
2672 bool lower_usub_borrow;
2673 /** Lowers imul_high/umul_high to 16-bit multiplies and carry operations. */
2674 bool lower_mul_high;
2675 /** lowers fneg and ineg to fsub and isub. */
2676 bool lower_negate;
2677 /** lowers fsub and isub to fadd+fneg and iadd+ineg. */
2678 bool lower_sub;
2679
2680 /* lower {slt,sge,seq,sne} to {flt,fge,feq,fne} + b2f: */
2681 bool lower_scmp;
2682
2683 /* lower fall_equalN/fany_nequalN (ex:fany_nequal4 to sne+fdot4+fsat) */
2684 bool lower_vector_cmp;
2685
2686 /** enables rules to lower idiv by power-of-two: */
2687 bool lower_idiv;
2688
2689 /** enable rules to avoid bit ops */
2690 bool lower_bitops;
2691
2692 /** enables rules to lower isign to imin+imax */
2693 bool lower_isign;
2694
2695 /** enables rules to lower fsign to fsub and flt */
2696 bool lower_fsign;
2697
2698 /* lower fdph to fdot4 */
2699 bool lower_fdph;
2700
2701 /** lower fdot to fmul and fsum/fadd. */
2702 bool lower_fdot;
2703
2704 /* Does the native fdot instruction replicate its result for four
2705 * components? If so, then opt_algebraic_late will turn all fdotN
2706 * instructions into fdot_replicatedN instructions.
2707 */
2708 bool fdot_replicates;
2709
2710 /** lowers ffloor to fsub+ffract: */
2711 bool lower_ffloor;
2712
2713 /** lowers ffract to fsub+ffloor: */
2714 bool lower_ffract;
2715
2716 /** lowers fceil to fneg+ffloor+fneg: */
2717 bool lower_fceil;
2718
2719 bool lower_ftrunc;
2720
2721 bool lower_ldexp;
2722
2723 bool lower_pack_half_2x16;
2724 bool lower_pack_unorm_2x16;
2725 bool lower_pack_snorm_2x16;
2726 bool lower_pack_unorm_4x8;
2727 bool lower_pack_snorm_4x8;
2728 bool lower_unpack_half_2x16;
2729 bool lower_unpack_unorm_2x16;
2730 bool lower_unpack_snorm_2x16;
2731 bool lower_unpack_unorm_4x8;
2732 bool lower_unpack_snorm_4x8;
2733
2734 bool lower_extract_byte;
2735 bool lower_extract_word;
2736
2737 bool lower_all_io_to_temps;
2738 bool lower_all_io_to_elements;
2739
2740 /* Indicates that the driver only has zero-based vertex id */
2741 bool vertex_id_zero_based;
2742
2743 /**
2744 * If enabled, gl_BaseVertex will be lowered as:
2745 * is_indexed_draw (~0/0) & firstvertex
2746 */
2747 bool lower_base_vertex;
2748
2749 /**
2750 * If enabled, gl_HelperInvocation will be lowered as:
2751 *
2752 * !((1 << sample_id) & sample_mask_in))
2753 *
2754 * This depends on some possibly hw implementation details, which may
2755 * not be true for all hw. In particular that the FS is only executed
2756 * for covered samples or for helper invocations. So, do not blindly
2757 * enable this option.
2758 *
2759 * Note: See also issue #22 in ARB_shader_image_load_store
2760 */
2761 bool lower_helper_invocation;
2762
2763 /**
2764 * Convert gl_SampleMaskIn to gl_HelperInvocation as follows:
2765 *
2766 * gl_SampleMaskIn == 0 ---> gl_HelperInvocation
2767 * gl_SampleMaskIn != 0 ---> !gl_HelperInvocation
2768 */
2769 bool optimize_sample_mask_in;
2770
2771 bool lower_cs_local_index_from_id;
2772 bool lower_cs_local_id_from_index;
2773
2774 bool lower_device_index_to_zero;
2775
2776 /* Set if nir_lower_wpos_ytransform() should also invert gl_PointCoord. */
2777 bool lower_wpos_pntc;
2778
2779 bool lower_hadd;
2780 bool lower_add_sat;
2781
2782 /**
2783 * Should IO be re-vectorized? Some scalar ISAs still operate on vec4's
2784 * for IO purposes and would prefer loads/stores be vectorized.
2785 */
2786 bool vectorize_io;
2787 bool lower_to_scalar;
2788
2789 /**
2790 * Should nir_lower_io() create load_interpolated_input intrinsics?
2791 *
2792 * If not, it generates regular load_input intrinsics and interpolation
2793 * information must be inferred from the list of input nir_variables.
2794 */
2795 bool use_interpolated_input_intrinsics;
2796
2797 /* Lowers when 32x32->64 bit multiplication is not supported */
2798 bool lower_mul_2x32_64;
2799
2800 /* Lowers when rotate instruction is not supported */
2801 bool lower_rotate;
2802
2803 /**
2804 * Backend supports imul24, and would like to use it (when possible)
2805 * for address/offset calculation. If true, driver should call
2806 * nir_lower_amul(). (If not set, amul will automatically be lowered
2807 * to imul.)
2808 */
2809 bool has_imul24;
2810
2811 /**
2812 * Is this the Intel vec4 backend?
2813 *
2814 * Used to inhibit algebraic optimizations that are known to be harmful on
2815 * the Intel vec4 backend. This is generally applicable to any
2816 * optimization that might cause more immediate values to be used in
2817 * 3-source (e.g., ffma and flrp) instructions.
2818 */
2819 bool intel_vec4;
2820
2821 unsigned max_unroll_iterations;
2822
2823 nir_lower_int64_options lower_int64_options;
2824 nir_lower_doubles_options lower_doubles_options;
2825 } nir_shader_compiler_options;
2826
2827 typedef struct nir_shader {
2828 /** list of uniforms (nir_variable) */
2829 struct exec_list uniforms;
2830
2831 /** list of inputs (nir_variable) */
2832 struct exec_list inputs;
2833
2834 /** list of outputs (nir_variable) */
2835 struct exec_list outputs;
2836
2837 /** list of shared compute variables (nir_variable) */
2838 struct exec_list shared;
2839
2840 /** Set of driver-specific options for the shader.
2841 *
2842 * The memory for the options is expected to be kept in a single static
2843 * copy by the driver.
2844 */
2845 const struct nir_shader_compiler_options *options;
2846
2847 /** Various bits of compile-time information about a given shader */
2848 struct shader_info info;
2849
2850 /** list of global variables in the shader (nir_variable) */
2851 struct exec_list globals;
2852
2853 /** list of system value variables in the shader (nir_variable) */
2854 struct exec_list system_values;
2855
2856 struct exec_list functions; /** < list of nir_function */
2857
2858 /**
2859 * the highest index a load_input_*, load_uniform_*, etc. intrinsic can
2860 * access plus one
2861 */
2862 unsigned num_inputs, num_uniforms, num_outputs, num_shared;
2863
2864 /** Size in bytes of required scratch space */
2865 unsigned scratch_size;
2866
2867 /** Constant data associated with this shader.
2868 *
2869 * Constant data is loaded through load_constant intrinsics. See also
2870 * nir_opt_large_constants.
2871 */
2872 void *constant_data;
2873 unsigned constant_data_size;
2874 } nir_shader;
2875
2876 #define nir_foreach_function(func, shader) \
2877 foreach_list_typed(nir_function, func, node, &(shader)->functions)
2878
2879 static inline nir_function_impl *
2880 nir_shader_get_entrypoint(nir_shader *shader)
2881 {
2882 nir_function *func = NULL;
2883
2884 nir_foreach_function(function, shader) {
2885 assert(func == NULL);
2886 if (function->is_entrypoint) {
2887 func = function;
2888 #ifndef NDEBUG
2889 break;
2890 #endif
2891 }
2892 }
2893
2894 if (!func)
2895 return NULL;
2896
2897 assert(func->num_params == 0);
2898 assert(func->impl);
2899 return func->impl;
2900 }
2901
2902 nir_shader *nir_shader_create(void *mem_ctx,
2903 gl_shader_stage stage,
2904 const nir_shader_compiler_options *options,
2905 shader_info *si);
2906
2907 nir_register *nir_local_reg_create(nir_function_impl *impl);
2908
2909 void nir_reg_remove(nir_register *reg);
2910
2911 /** Adds a variable to the appropriate list in nir_shader */
2912 void nir_shader_add_variable(nir_shader *shader, nir_variable *var);
2913
2914 static inline void
2915 nir_function_impl_add_variable(nir_function_impl *impl, nir_variable *var)
2916 {
2917 assert(var->data.mode == nir_var_function_temp);
2918 exec_list_push_tail(&impl->locals, &var->node);
2919 }
2920
2921 /** creates a variable, sets a few defaults, and adds it to the list */
2922 nir_variable *nir_variable_create(nir_shader *shader,
2923 nir_variable_mode mode,
2924 const struct glsl_type *type,
2925 const char *name);
2926 /** creates a local variable and adds it to the list */
2927 nir_variable *nir_local_variable_create(nir_function_impl *impl,
2928 const struct glsl_type *type,
2929 const char *name);
2930
2931 /** creates a function and adds it to the shader's list of functions */
2932 nir_function *nir_function_create(nir_shader *shader, const char *name);
2933
2934 nir_function_impl *nir_function_impl_create(nir_function *func);
2935 /** creates a function_impl that isn't tied to any particular function */
2936 nir_function_impl *nir_function_impl_create_bare(nir_shader *shader);
2937
2938 nir_block *nir_block_create(nir_shader *shader);
2939 nir_if *nir_if_create(nir_shader *shader);
2940 nir_loop *nir_loop_create(nir_shader *shader);
2941
2942 nir_function_impl *nir_cf_node_get_function(nir_cf_node *node);
2943
2944 /** requests that the given pieces of metadata be generated */
2945 void nir_metadata_require(nir_function_impl *impl, nir_metadata required, ...);
2946 /** dirties all but the preserved metadata */
2947 void nir_metadata_preserve(nir_function_impl *impl, nir_metadata preserved);
2948
2949 /** creates an instruction with default swizzle/writemask/etc. with NULL registers */
2950 nir_alu_instr *nir_alu_instr_create(nir_shader *shader, nir_op op);
2951
2952 nir_deref_instr *nir_deref_instr_create(nir_shader *shader,
2953 nir_deref_type deref_type);
2954
2955 nir_jump_instr *nir_jump_instr_create(nir_shader *shader, nir_jump_type type);
2956
2957 nir_load_const_instr *nir_load_const_instr_create(nir_shader *shader,
2958 unsigned num_components,
2959 unsigned bit_size);
2960
2961 nir_intrinsic_instr *nir_intrinsic_instr_create(nir_shader *shader,
2962 nir_intrinsic_op op);
2963
2964 nir_call_instr *nir_call_instr_create(nir_shader *shader,
2965 nir_function *callee);
2966
2967 nir_tex_instr *nir_tex_instr_create(nir_shader *shader, unsigned num_srcs);
2968
2969 nir_phi_instr *nir_phi_instr_create(nir_shader *shader);
2970
2971 nir_parallel_copy_instr *nir_parallel_copy_instr_create(nir_shader *shader);
2972
2973 nir_ssa_undef_instr *nir_ssa_undef_instr_create(nir_shader *shader,
2974 unsigned num_components,
2975 unsigned bit_size);
2976
2977 nir_const_value nir_alu_binop_identity(nir_op binop, unsigned bit_size);
2978
2979 /**
2980 * NIR Cursors and Instruction Insertion API
2981 * @{
2982 *
2983 * A tiny struct representing a point to insert/extract instructions or
2984 * control flow nodes. Helps reduce the combinatorial explosion of possible
2985 * points to insert/extract.
2986 *
2987 * \sa nir_control_flow.h
2988 */
2989 typedef enum {
2990 nir_cursor_before_block,
2991 nir_cursor_after_block,
2992 nir_cursor_before_instr,
2993 nir_cursor_after_instr,
2994 } nir_cursor_option;
2995
2996 typedef struct {
2997 nir_cursor_option option;
2998 union {
2999 nir_block *block;
3000 nir_instr *instr;
3001 };
3002 } nir_cursor;
3003
3004 static inline nir_block *
3005 nir_cursor_current_block(nir_cursor cursor)
3006 {
3007 if (cursor.option == nir_cursor_before_instr ||
3008 cursor.option == nir_cursor_after_instr) {
3009 return cursor.instr->block;
3010 } else {
3011 return cursor.block;
3012 }
3013 }
3014
3015 bool nir_cursors_equal(nir_cursor a, nir_cursor b);
3016
3017 static inline nir_cursor
3018 nir_before_block(nir_block *block)
3019 {
3020 nir_cursor cursor;
3021 cursor.option = nir_cursor_before_block;
3022 cursor.block = block;
3023 return cursor;
3024 }
3025
3026 static inline nir_cursor
3027 nir_after_block(nir_block *block)
3028 {
3029 nir_cursor cursor;
3030 cursor.option = nir_cursor_after_block;
3031 cursor.block = block;
3032 return cursor;
3033 }
3034
3035 static inline nir_cursor
3036 nir_before_instr(nir_instr *instr)
3037 {
3038 nir_cursor cursor;
3039 cursor.option = nir_cursor_before_instr;
3040 cursor.instr = instr;
3041 return cursor;
3042 }
3043
3044 static inline nir_cursor
3045 nir_after_instr(nir_instr *instr)
3046 {
3047 nir_cursor cursor;
3048 cursor.option = nir_cursor_after_instr;
3049 cursor.instr = instr;
3050 return cursor;
3051 }
3052
3053 static inline nir_cursor
3054 nir_after_block_before_jump(nir_block *block)
3055 {
3056 nir_instr *last_instr = nir_block_last_instr(block);
3057 if (last_instr && last_instr->type == nir_instr_type_jump) {
3058 return nir_before_instr(last_instr);
3059 } else {
3060 return nir_after_block(block);
3061 }
3062 }
3063
3064 static inline nir_cursor
3065 nir_before_src(nir_src *src, bool is_if_condition)
3066 {
3067 if (is_if_condition) {
3068 nir_block *prev_block =
3069 nir_cf_node_as_block(nir_cf_node_prev(&src->parent_if->cf_node));
3070 assert(!nir_block_ends_in_jump(prev_block));
3071 return nir_after_block(prev_block);
3072 } else if (src->parent_instr->type == nir_instr_type_phi) {
3073 #ifndef NDEBUG
3074 nir_phi_instr *cond_phi = nir_instr_as_phi(src->parent_instr);
3075 bool found = false;
3076 nir_foreach_phi_src(phi_src, cond_phi) {
3077 if (phi_src->src.ssa == src->ssa) {
3078 found = true;
3079 break;
3080 }
3081 }
3082 assert(found);
3083 #endif
3084 /* The LIST_ENTRY macro is a generic container-of macro, it just happens
3085 * to have a more specific name.
3086 */
3087 nir_phi_src *phi_src = LIST_ENTRY(nir_phi_src, src, src);
3088 return nir_after_block_before_jump(phi_src->pred);
3089 } else {
3090 return nir_before_instr(src->parent_instr);
3091 }
3092 }
3093
3094 static inline nir_cursor
3095 nir_before_cf_node(nir_cf_node *node)
3096 {
3097 if (node->type == nir_cf_node_block)
3098 return nir_before_block(nir_cf_node_as_block(node));
3099
3100 return nir_after_block(nir_cf_node_as_block(nir_cf_node_prev(node)));
3101 }
3102
3103 static inline nir_cursor
3104 nir_after_cf_node(nir_cf_node *node)
3105 {
3106 if (node->type == nir_cf_node_block)
3107 return nir_after_block(nir_cf_node_as_block(node));
3108
3109 return nir_before_block(nir_cf_node_as_block(nir_cf_node_next(node)));
3110 }
3111
3112 static inline nir_cursor
3113 nir_after_phis(nir_block *block)
3114 {
3115 nir_foreach_instr(instr, block) {
3116 if (instr->type != nir_instr_type_phi)
3117 return nir_before_instr(instr);
3118 }
3119 return nir_after_block(block);
3120 }
3121
3122 static inline nir_cursor
3123 nir_after_cf_node_and_phis(nir_cf_node *node)
3124 {
3125 if (node->type == nir_cf_node_block)
3126 return nir_after_block(nir_cf_node_as_block(node));
3127
3128 nir_block *block = nir_cf_node_as_block(nir_cf_node_next(node));
3129
3130 return nir_after_phis(block);
3131 }
3132
3133 static inline nir_cursor
3134 nir_before_cf_list(struct exec_list *cf_list)
3135 {
3136 nir_cf_node *first_node = exec_node_data(nir_cf_node,
3137 exec_list_get_head(cf_list), node);
3138 return nir_before_cf_node(first_node);
3139 }
3140
3141 static inline nir_cursor
3142 nir_after_cf_list(struct exec_list *cf_list)
3143 {
3144 nir_cf_node *last_node = exec_node_data(nir_cf_node,
3145 exec_list_get_tail(cf_list), node);
3146 return nir_after_cf_node(last_node);
3147 }
3148
3149 /**
3150 * Insert a NIR instruction at the given cursor.
3151 *
3152 * Note: This does not update the cursor.
3153 */
3154 void nir_instr_insert(nir_cursor cursor, nir_instr *instr);
3155
3156 static inline void
3157 nir_instr_insert_before(nir_instr *instr, nir_instr *before)
3158 {
3159 nir_instr_insert(nir_before_instr(instr), before);
3160 }
3161
3162 static inline void
3163 nir_instr_insert_after(nir_instr *instr, nir_instr *after)
3164 {
3165 nir_instr_insert(nir_after_instr(instr), after);
3166 }
3167
3168 static inline void
3169 nir_instr_insert_before_block(nir_block *block, nir_instr *before)
3170 {
3171 nir_instr_insert(nir_before_block(block), before);
3172 }
3173
3174 static inline void
3175 nir_instr_insert_after_block(nir_block *block, nir_instr *after)
3176 {
3177 nir_instr_insert(nir_after_block(block), after);
3178 }
3179
3180 static inline void
3181 nir_instr_insert_before_cf(nir_cf_node *node, nir_instr *before)
3182 {
3183 nir_instr_insert(nir_before_cf_node(node), before);
3184 }
3185
3186 static inline void
3187 nir_instr_insert_after_cf(nir_cf_node *node, nir_instr *after)
3188 {
3189 nir_instr_insert(nir_after_cf_node(node), after);
3190 }
3191
3192 static inline void
3193 nir_instr_insert_before_cf_list(struct exec_list *list, nir_instr *before)
3194 {
3195 nir_instr_insert(nir_before_cf_list(list), before);
3196 }
3197
3198 static inline void
3199 nir_instr_insert_after_cf_list(struct exec_list *list, nir_instr *after)
3200 {
3201 nir_instr_insert(nir_after_cf_list(list), after);
3202 }
3203
3204 void nir_instr_remove_v(nir_instr *instr);
3205
3206 static inline nir_cursor
3207 nir_instr_remove(nir_instr *instr)
3208 {
3209 nir_cursor cursor;
3210 nir_instr *prev = nir_instr_prev(instr);
3211 if (prev) {
3212 cursor = nir_after_instr(prev);
3213 } else {
3214 cursor = nir_before_block(instr->block);
3215 }
3216 nir_instr_remove_v(instr);
3217 return cursor;
3218 }
3219
3220 /** @} */
3221
3222 nir_ssa_def *nir_instr_ssa_def(nir_instr *instr);
3223
3224 typedef bool (*nir_foreach_ssa_def_cb)(nir_ssa_def *def, void *state);
3225 typedef bool (*nir_foreach_dest_cb)(nir_dest *dest, void *state);
3226 typedef bool (*nir_foreach_src_cb)(nir_src *src, void *state);
3227 bool nir_foreach_ssa_def(nir_instr *instr, nir_foreach_ssa_def_cb cb,
3228 void *state);
3229 bool nir_foreach_dest(nir_instr *instr, nir_foreach_dest_cb cb, void *state);
3230 bool nir_foreach_src(nir_instr *instr, nir_foreach_src_cb cb, void *state);
3231
3232 nir_const_value *nir_src_as_const_value(nir_src src);
3233
3234 #define NIR_SRC_AS_(name, c_type, type_enum, cast_macro) \
3235 static inline c_type * \
3236 nir_src_as_ ## name (nir_src src) \
3237 { \
3238 return src.is_ssa && src.ssa->parent_instr->type == type_enum \
3239 ? cast_macro(src.ssa->parent_instr) : NULL; \
3240 }
3241
3242 NIR_SRC_AS_(alu_instr, nir_alu_instr, nir_instr_type_alu, nir_instr_as_alu)
3243 NIR_SRC_AS_(intrinsic, nir_intrinsic_instr,
3244 nir_instr_type_intrinsic, nir_instr_as_intrinsic)
3245 NIR_SRC_AS_(deref, nir_deref_instr, nir_instr_type_deref, nir_instr_as_deref)
3246
3247 bool nir_src_is_dynamically_uniform(nir_src src);
3248 bool nir_srcs_equal(nir_src src1, nir_src src2);
3249 bool nir_instrs_equal(const nir_instr *instr1, const nir_instr *instr2);
3250 void nir_instr_rewrite_src(nir_instr *instr, nir_src *src, nir_src new_src);
3251 void nir_instr_move_src(nir_instr *dest_instr, nir_src *dest, nir_src *src);
3252 void nir_if_rewrite_condition(nir_if *if_stmt, nir_src new_src);
3253 void nir_instr_rewrite_dest(nir_instr *instr, nir_dest *dest,
3254 nir_dest new_dest);
3255
3256 void nir_ssa_dest_init(nir_instr *instr, nir_dest *dest,
3257 unsigned num_components, unsigned bit_size,
3258 const char *name);
3259 void nir_ssa_def_init(nir_instr *instr, nir_ssa_def *def,
3260 unsigned num_components, unsigned bit_size,
3261 const char *name);
3262 static inline void
3263 nir_ssa_dest_init_for_type(nir_instr *instr, nir_dest *dest,
3264 const struct glsl_type *type,
3265 const char *name)
3266 {
3267 assert(glsl_type_is_vector_or_scalar(type));
3268 nir_ssa_dest_init(instr, dest, glsl_get_components(type),
3269 glsl_get_bit_size(type), name);
3270 }
3271 void nir_ssa_def_rewrite_uses(nir_ssa_def *def, nir_src new_src);
3272 void nir_ssa_def_rewrite_uses_after(nir_ssa_def *def, nir_src new_src,
3273 nir_instr *after_me);
3274
3275 nir_component_mask_t nir_ssa_def_components_read(const nir_ssa_def *def);
3276
3277 /*
3278 * finds the next basic block in source-code order, returns NULL if there is
3279 * none
3280 */
3281
3282 nir_block *nir_block_cf_tree_next(nir_block *block);
3283
3284 /* Performs the opposite of nir_block_cf_tree_next() */
3285
3286 nir_block *nir_block_cf_tree_prev(nir_block *block);
3287
3288 /* Gets the first block in a CF node in source-code order */
3289
3290 nir_block *nir_cf_node_cf_tree_first(nir_cf_node *node);
3291
3292 /* Gets the last block in a CF node in source-code order */
3293
3294 nir_block *nir_cf_node_cf_tree_last(nir_cf_node *node);
3295
3296 /* Gets the next block after a CF node in source-code order */
3297
3298 nir_block *nir_cf_node_cf_tree_next(nir_cf_node *node);
3299
3300 /* Macros for loops that visit blocks in source-code order */
3301
3302 #define nir_foreach_block(block, impl) \
3303 for (nir_block *block = nir_start_block(impl); block != NULL; \
3304 block = nir_block_cf_tree_next(block))
3305
3306 #define nir_foreach_block_safe(block, impl) \
3307 for (nir_block *block = nir_start_block(impl), \
3308 *next = nir_block_cf_tree_next(block); \
3309 block != NULL; \
3310 block = next, next = nir_block_cf_tree_next(block))
3311
3312 #define nir_foreach_block_reverse(block, impl) \
3313 for (nir_block *block = nir_impl_last_block(impl); block != NULL; \
3314 block = nir_block_cf_tree_prev(block))
3315
3316 #define nir_foreach_block_reverse_safe(block, impl) \
3317 for (nir_block *block = nir_impl_last_block(impl), \
3318 *prev = nir_block_cf_tree_prev(block); \
3319 block != NULL; \
3320 block = prev, prev = nir_block_cf_tree_prev(block))
3321
3322 #define nir_foreach_block_in_cf_node(block, node) \
3323 for (nir_block *block = nir_cf_node_cf_tree_first(node); \
3324 block != nir_cf_node_cf_tree_next(node); \
3325 block = nir_block_cf_tree_next(block))
3326
3327 /* If the following CF node is an if, this function returns that if.
3328 * Otherwise, it returns NULL.
3329 */
3330 nir_if *nir_block_get_following_if(nir_block *block);
3331
3332 nir_loop *nir_block_get_following_loop(nir_block *block);
3333
3334 void nir_index_local_regs(nir_function_impl *impl);
3335 void nir_index_ssa_defs(nir_function_impl *impl);
3336 unsigned nir_index_instrs(nir_function_impl *impl);
3337
3338 void nir_index_blocks(nir_function_impl *impl);
3339
3340 void nir_print_shader(nir_shader *shader, FILE *fp);
3341 void nir_print_shader_annotated(nir_shader *shader, FILE *fp, struct hash_table *errors);
3342 void nir_print_instr(const nir_instr *instr, FILE *fp);
3343 void nir_print_deref(const nir_deref_instr *deref, FILE *fp);
3344
3345 /** Shallow clone of a single ALU instruction. */
3346 nir_alu_instr *nir_alu_instr_clone(nir_shader *s, const nir_alu_instr *orig);
3347
3348 nir_shader *nir_shader_clone(void *mem_ctx, const nir_shader *s);
3349 nir_function_impl *nir_function_impl_clone(nir_shader *shader,
3350 const nir_function_impl *fi);
3351 nir_constant *nir_constant_clone(const nir_constant *c, nir_variable *var);
3352 nir_variable *nir_variable_clone(const nir_variable *c, nir_shader *shader);
3353
3354 void nir_shader_replace(nir_shader *dest, nir_shader *src);
3355
3356 void nir_shader_serialize_deserialize(nir_shader *s);
3357
3358 #ifndef NDEBUG
3359 void nir_validate_shader(nir_shader *shader, const char *when);
3360 void nir_metadata_set_validation_flag(nir_shader *shader);
3361 void nir_metadata_check_validation_flag(nir_shader *shader);
3362
3363 static inline bool
3364 should_skip_nir(const char *name)
3365 {
3366 static const char *list = NULL;
3367 if (!list) {
3368 /* Comma separated list of names to skip. */
3369 list = getenv("NIR_SKIP");
3370 if (!list)
3371 list = "";
3372 }
3373
3374 if (!list[0])
3375 return false;
3376
3377 return comma_separated_list_contains(list, name);
3378 }
3379
3380 static inline bool
3381 should_clone_nir(void)
3382 {
3383 static int should_clone = -1;
3384 if (should_clone < 0)
3385 should_clone = env_var_as_boolean("NIR_TEST_CLONE", false);
3386
3387 return should_clone;
3388 }
3389
3390 static inline bool
3391 should_serialize_deserialize_nir(void)
3392 {
3393 static int test_serialize = -1;
3394 if (test_serialize < 0)
3395 test_serialize = env_var_as_boolean("NIR_TEST_SERIALIZE", false);
3396
3397 return test_serialize;
3398 }
3399
3400 static inline bool
3401 should_print_nir(void)
3402 {
3403 static int should_print = -1;
3404 if (should_print < 0)
3405 should_print = env_var_as_boolean("NIR_PRINT", false);
3406
3407 return should_print;
3408 }
3409 #else
3410 static inline void nir_validate_shader(nir_shader *shader, const char *when) { (void) shader; (void)when; }
3411 static inline void nir_metadata_set_validation_flag(nir_shader *shader) { (void) shader; }
3412 static inline void nir_metadata_check_validation_flag(nir_shader *shader) { (void) shader; }
3413 static inline bool should_skip_nir(UNUSED const char *pass_name) { return false; }
3414 static inline bool should_clone_nir(void) { return false; }
3415 static inline bool should_serialize_deserialize_nir(void) { return false; }
3416 static inline bool should_print_nir(void) { return false; }
3417 #endif /* NDEBUG */
3418
3419 #define _PASS(pass, nir, do_pass) do { \
3420 if (should_skip_nir(#pass)) { \
3421 printf("skipping %s\n", #pass); \
3422 break; \
3423 } \
3424 do_pass \
3425 nir_validate_shader(nir, "after " #pass); \
3426 if (should_clone_nir()) { \
3427 nir_shader *clone = nir_shader_clone(ralloc_parent(nir), nir); \
3428 nir_shader_replace(nir, clone); \
3429 } \
3430 if (should_serialize_deserialize_nir()) { \
3431 nir_shader_serialize_deserialize(nir); \
3432 } \
3433 } while (0)
3434
3435 #define NIR_PASS(progress, nir, pass, ...) _PASS(pass, nir, \
3436 nir_metadata_set_validation_flag(nir); \
3437 if (should_print_nir()) \
3438 printf("%s\n", #pass); \
3439 if (pass(nir, ##__VA_ARGS__)) { \
3440 progress = true; \
3441 if (should_print_nir()) \
3442 nir_print_shader(nir, stdout); \
3443 nir_metadata_check_validation_flag(nir); \
3444 } \
3445 )
3446
3447 #define NIR_PASS_V(nir, pass, ...) _PASS(pass, nir, \
3448 if (should_print_nir()) \
3449 printf("%s\n", #pass); \
3450 pass(nir, ##__VA_ARGS__); \
3451 if (should_print_nir()) \
3452 nir_print_shader(nir, stdout); \
3453 )
3454
3455 #define NIR_SKIP(name) should_skip_nir(#name)
3456
3457 /** An instruction filtering callback
3458 *
3459 * Returns true if the instruction should be processed and false otherwise.
3460 */
3461 typedef bool (*nir_instr_filter_cb)(const nir_instr *, const void *);
3462
3463 /** A simple instruction lowering callback
3464 *
3465 * Many instruction lowering passes can be written as a simple function which
3466 * takes an instruction as its input and returns a sequence of instructions
3467 * that implement the consumed instruction. This function type represents
3468 * such a lowering function. When called, a function with this prototype
3469 * should either return NULL indicating that no lowering needs to be done or
3470 * emit a sequence of instructions using the provided builder (whose cursor
3471 * will already be placed after the instruction to be lowered) and return the
3472 * resulting nir_ssa_def.
3473 */
3474 typedef nir_ssa_def *(*nir_lower_instr_cb)(struct nir_builder *,
3475 nir_instr *, void *);
3476
3477 /**
3478 * Special return value for nir_lower_instr_cb when some progress occurred
3479 * (like changing an input to the instr) that didn't result in a replacement
3480 * SSA def being generated.
3481 */
3482 #define NIR_LOWER_INSTR_PROGRESS ((nir_ssa_def *)(uintptr_t)1)
3483
3484 /** Iterate over all the instructions in a nir_function_impl and lower them
3485 * using the provided callbacks
3486 *
3487 * This function implements the guts of a standard lowering pass for you. It
3488 * iterates over all of the instructions in a nir_function_impl and calls the
3489 * filter callback on each one. If the filter callback returns true, it then
3490 * calls the lowering call back on the instruction. (Splitting it this way
3491 * allows us to avoid some save/restore work for instructions we know won't be
3492 * lowered.) If the instruction is dead after the lowering is complete, it
3493 * will be removed. If new instructions are added, the lowering callback will
3494 * also be called on them in case multiple lowerings are required.
3495 *
3496 * The metadata for the nir_function_impl will also be updated. If any blocks
3497 * are added (they cannot be removed), dominance and block indices will be
3498 * invalidated.
3499 */
3500 bool nir_function_impl_lower_instructions(nir_function_impl *impl,
3501 nir_instr_filter_cb filter,
3502 nir_lower_instr_cb lower,
3503 void *cb_data);
3504 bool nir_shader_lower_instructions(nir_shader *shader,
3505 nir_instr_filter_cb filter,
3506 nir_lower_instr_cb lower,
3507 void *cb_data);
3508
3509 void nir_calc_dominance_impl(nir_function_impl *impl);
3510 void nir_calc_dominance(nir_shader *shader);
3511
3512 nir_block *nir_dominance_lca(nir_block *b1, nir_block *b2);
3513 bool nir_block_dominates(nir_block *parent, nir_block *child);
3514 bool nir_block_is_unreachable(nir_block *block);
3515
3516 void nir_dump_dom_tree_impl(nir_function_impl *impl, FILE *fp);
3517 void nir_dump_dom_tree(nir_shader *shader, FILE *fp);
3518
3519 void nir_dump_dom_frontier_impl(nir_function_impl *impl, FILE *fp);
3520 void nir_dump_dom_frontier(nir_shader *shader, FILE *fp);
3521
3522 void nir_dump_cfg_impl(nir_function_impl *impl, FILE *fp);
3523 void nir_dump_cfg(nir_shader *shader, FILE *fp);
3524
3525 int nir_gs_count_vertices(const nir_shader *shader);
3526
3527 bool nir_shrink_vec_array_vars(nir_shader *shader, nir_variable_mode modes);
3528 bool nir_split_array_vars(nir_shader *shader, nir_variable_mode modes);
3529 bool nir_split_var_copies(nir_shader *shader);
3530 bool nir_split_per_member_structs(nir_shader *shader);
3531 bool nir_split_struct_vars(nir_shader *shader, nir_variable_mode modes);
3532
3533 bool nir_lower_returns_impl(nir_function_impl *impl);
3534 bool nir_lower_returns(nir_shader *shader);
3535
3536 void nir_inline_function_impl(struct nir_builder *b,
3537 const nir_function_impl *impl,
3538 nir_ssa_def **params);
3539 bool nir_inline_functions(nir_shader *shader);
3540
3541 bool nir_propagate_invariant(nir_shader *shader);
3542
3543 void nir_lower_var_copy_instr(nir_intrinsic_instr *copy, nir_shader *shader);
3544 void nir_lower_deref_copy_instr(struct nir_builder *b,
3545 nir_intrinsic_instr *copy);
3546 bool nir_lower_var_copies(nir_shader *shader);
3547
3548 void nir_fixup_deref_modes(nir_shader *shader);
3549
3550 bool nir_lower_global_vars_to_local(nir_shader *shader);
3551
3552 typedef enum {
3553 nir_lower_direct_array_deref_of_vec_load = (1 << 0),
3554 nir_lower_indirect_array_deref_of_vec_load = (1 << 1),
3555 nir_lower_direct_array_deref_of_vec_store = (1 << 2),
3556 nir_lower_indirect_array_deref_of_vec_store = (1 << 3),
3557 } nir_lower_array_deref_of_vec_options;
3558
3559 bool nir_lower_array_deref_of_vec(nir_shader *shader, nir_variable_mode modes,
3560 nir_lower_array_deref_of_vec_options options);
3561
3562 bool nir_lower_indirect_derefs(nir_shader *shader, nir_variable_mode modes);
3563
3564 bool nir_lower_locals_to_regs(nir_shader *shader);
3565
3566 void nir_lower_io_to_temporaries(nir_shader *shader,
3567 nir_function_impl *entrypoint,
3568 bool outputs, bool inputs);
3569
3570 bool nir_lower_vars_to_scratch(nir_shader *shader,
3571 nir_variable_mode modes,
3572 int size_threshold,
3573 glsl_type_size_align_func size_align);
3574
3575 void nir_shader_gather_info(nir_shader *shader, nir_function_impl *entrypoint);
3576
3577 void nir_gather_ssa_types(nir_function_impl *impl,
3578 BITSET_WORD *float_types,
3579 BITSET_WORD *int_types);
3580
3581 void nir_assign_var_locations(struct exec_list *var_list, unsigned *size,
3582 int (*type_size)(const struct glsl_type *, bool));
3583
3584 /* Some helpers to do very simple linking */
3585 bool nir_remove_unused_varyings(nir_shader *producer, nir_shader *consumer);
3586 bool nir_remove_unused_io_vars(nir_shader *shader, struct exec_list *var_list,
3587 uint64_t *used_by_other_stage,
3588 uint64_t *used_by_other_stage_patches);
3589 void nir_compact_varyings(nir_shader *producer, nir_shader *consumer,
3590 bool default_to_smooth_interp);
3591 void nir_link_xfb_varyings(nir_shader *producer, nir_shader *consumer);
3592 bool nir_link_opt_varyings(nir_shader *producer, nir_shader *consumer);
3593
3594 bool nir_lower_amul(nir_shader *shader,
3595 int (*type_size)(const struct glsl_type *, bool));
3596
3597 void nir_assign_io_var_locations(struct exec_list *var_list,
3598 unsigned *size,
3599 gl_shader_stage stage);
3600
3601 typedef enum {
3602 /* If set, this causes all 64-bit IO operations to be lowered on-the-fly
3603 * to 32-bit operations. This is only valid for nir_var_shader_in/out
3604 * modes.
3605 */
3606 nir_lower_io_lower_64bit_to_32 = (1 << 0),
3607
3608 /* If set, this forces all non-flat fragment shader inputs to be
3609 * interpolated as if with the "sample" qualifier. This requires
3610 * nir_shader_compiler_options::use_interpolated_input_intrinsics.
3611 */
3612 nir_lower_io_force_sample_interpolation = (1 << 1),
3613 } nir_lower_io_options;
3614 bool nir_lower_io(nir_shader *shader,
3615 nir_variable_mode modes,
3616 int (*type_size)(const struct glsl_type *, bool),
3617 nir_lower_io_options);
3618
3619 bool nir_io_add_const_offset_to_base(nir_shader *nir, nir_variable_mode mode);
3620
3621 bool
3622 nir_lower_vars_to_explicit_types(nir_shader *shader,
3623 nir_variable_mode modes,
3624 glsl_type_size_align_func type_info);
3625
3626 typedef enum {
3627 /**
3628 * An address format which is a simple 32-bit global GPU address.
3629 */
3630 nir_address_format_32bit_global,
3631
3632 /**
3633 * An address format which is a simple 64-bit global GPU address.
3634 */
3635 nir_address_format_64bit_global,
3636
3637 /**
3638 * An address format which is a bounds-checked 64-bit global GPU address.
3639 *
3640 * The address is comprised as a 32-bit vec4 where .xy are a uint64_t base
3641 * address stored with the low bits in .x and high bits in .y, .z is a
3642 * size, and .w is an offset. When the final I/O operation is lowered, .w
3643 * is checked against .z and the operation is predicated on the result.
3644 */
3645 nir_address_format_64bit_bounded_global,
3646
3647 /**
3648 * An address format which is comprised of a vec2 where the first
3649 * component is a buffer index and the second is an offset.
3650 */
3651 nir_address_format_32bit_index_offset,
3652
3653 /**
3654 * An address format which is a simple 32-bit offset.
3655 */
3656 nir_address_format_32bit_offset,
3657
3658 /**
3659 * An address format representing a purely logical addressing model. In
3660 * this model, all deref chains must be complete from the dereference
3661 * operation to the variable. Cast derefs are not allowed. These
3662 * addresses will be 32-bit scalars but the format is immaterial because
3663 * you can always chase the chain.
3664 */
3665 nir_address_format_logical,
3666 } nir_address_format;
3667
3668 static inline unsigned
3669 nir_address_format_bit_size(nir_address_format addr_format)
3670 {
3671 switch (addr_format) {
3672 case nir_address_format_32bit_global: return 32;
3673 case nir_address_format_64bit_global: return 64;
3674 case nir_address_format_64bit_bounded_global: return 32;
3675 case nir_address_format_32bit_index_offset: return 32;
3676 case nir_address_format_32bit_offset: return 32;
3677 case nir_address_format_logical: return 32;
3678 }
3679 unreachable("Invalid address format");
3680 }
3681
3682 static inline unsigned
3683 nir_address_format_num_components(nir_address_format addr_format)
3684 {
3685 switch (addr_format) {
3686 case nir_address_format_32bit_global: return 1;
3687 case nir_address_format_64bit_global: return 1;
3688 case nir_address_format_64bit_bounded_global: return 4;
3689 case nir_address_format_32bit_index_offset: return 2;
3690 case nir_address_format_32bit_offset: return 1;
3691 case nir_address_format_logical: return 1;
3692 }
3693 unreachable("Invalid address format");
3694 }
3695
3696 static inline const struct glsl_type *
3697 nir_address_format_to_glsl_type(nir_address_format addr_format)
3698 {
3699 unsigned bit_size = nir_address_format_bit_size(addr_format);
3700 assert(bit_size == 32 || bit_size == 64);
3701 return glsl_vector_type(bit_size == 32 ? GLSL_TYPE_UINT : GLSL_TYPE_UINT64,
3702 nir_address_format_num_components(addr_format));
3703 }
3704
3705 const nir_const_value *nir_address_format_null_value(nir_address_format addr_format);
3706
3707 nir_ssa_def *nir_build_addr_ieq(struct nir_builder *b, nir_ssa_def *addr0, nir_ssa_def *addr1,
3708 nir_address_format addr_format);
3709
3710 nir_ssa_def *nir_build_addr_isub(struct nir_builder *b, nir_ssa_def *addr0, nir_ssa_def *addr1,
3711 nir_address_format addr_format);
3712
3713 nir_ssa_def * nir_explicit_io_address_from_deref(struct nir_builder *b,
3714 nir_deref_instr *deref,
3715 nir_ssa_def *base_addr,
3716 nir_address_format addr_format);
3717 void nir_lower_explicit_io_instr(struct nir_builder *b,
3718 nir_intrinsic_instr *io_instr,
3719 nir_ssa_def *addr,
3720 nir_address_format addr_format);
3721
3722 bool nir_lower_explicit_io(nir_shader *shader,
3723 nir_variable_mode modes,
3724 nir_address_format);
3725
3726 nir_src *nir_get_io_offset_src(nir_intrinsic_instr *instr);
3727 nir_src *nir_get_io_vertex_index_src(nir_intrinsic_instr *instr);
3728
3729 bool nir_is_per_vertex_io(const nir_variable *var, gl_shader_stage stage);
3730
3731 bool nir_lower_regs_to_ssa_impl(nir_function_impl *impl);
3732 bool nir_lower_regs_to_ssa(nir_shader *shader);
3733 bool nir_lower_vars_to_ssa(nir_shader *shader);
3734
3735 bool nir_remove_dead_derefs(nir_shader *shader);
3736 bool nir_remove_dead_derefs_impl(nir_function_impl *impl);
3737 bool nir_remove_dead_variables(nir_shader *shader, nir_variable_mode modes);
3738 bool nir_lower_constant_initializers(nir_shader *shader,
3739 nir_variable_mode modes);
3740
3741 bool nir_move_vec_src_uses_to_dest(nir_shader *shader);
3742 bool nir_lower_vec_to_movs(nir_shader *shader);
3743 void nir_lower_alpha_test(nir_shader *shader, enum compare_func func,
3744 bool alpha_to_one,
3745 const gl_state_index16 *alpha_ref_state_tokens);
3746 bool nir_lower_alu(nir_shader *shader);
3747
3748 bool nir_lower_flrp(nir_shader *shader, unsigned lowering_mask,
3749 bool always_precise, bool have_ffma);
3750
3751 bool nir_lower_alu_to_scalar(nir_shader *shader, nir_instr_filter_cb cb, const void *data);
3752 bool nir_lower_bool_to_float(nir_shader *shader);
3753 bool nir_lower_bool_to_int32(nir_shader *shader);
3754 bool nir_lower_int_to_float(nir_shader *shader);
3755 bool nir_lower_load_const_to_scalar(nir_shader *shader);
3756 bool nir_lower_read_invocation_to_scalar(nir_shader *shader);
3757 bool nir_lower_phis_to_scalar(nir_shader *shader);
3758 void nir_lower_io_arrays_to_elements(nir_shader *producer, nir_shader *consumer);
3759 void nir_lower_io_arrays_to_elements_no_indirects(nir_shader *shader,
3760 bool outputs_only);
3761 void nir_lower_io_to_scalar(nir_shader *shader, nir_variable_mode mask);
3762 void nir_lower_io_to_scalar_early(nir_shader *shader, nir_variable_mode mask);
3763 bool nir_lower_io_to_vector(nir_shader *shader, nir_variable_mode mask);
3764
3765 void nir_lower_fragcoord_wtrans(nir_shader *shader);
3766 void nir_lower_viewport_transform(nir_shader *shader);
3767 bool nir_lower_uniforms_to_ubo(nir_shader *shader, int multiplier);
3768
3769 typedef struct nir_lower_subgroups_options {
3770 uint8_t subgroup_size;
3771 uint8_t ballot_bit_size;
3772 bool lower_to_scalar:1;
3773 bool lower_vote_trivial:1;
3774 bool lower_vote_eq_to_ballot:1;
3775 bool lower_subgroup_masks:1;
3776 bool lower_shuffle:1;
3777 bool lower_shuffle_to_32bit:1;
3778 bool lower_quad:1;
3779 } nir_lower_subgroups_options;
3780
3781 bool nir_lower_subgroups(nir_shader *shader,
3782 const nir_lower_subgroups_options *options);
3783
3784 bool nir_lower_system_values(nir_shader *shader);
3785
3786 enum PACKED nir_lower_tex_packing {
3787 nir_lower_tex_packing_none = 0,
3788 /* The sampler returns up to 2 32-bit words of half floats or 16-bit signed
3789 * or unsigned ints based on the sampler type
3790 */
3791 nir_lower_tex_packing_16,
3792 /* The sampler returns 1 32-bit word of 4x8 unorm */
3793 nir_lower_tex_packing_8,
3794 };
3795
3796 typedef struct nir_lower_tex_options {
3797 /**
3798 * bitmask of (1 << GLSL_SAMPLER_DIM_x) to control for which
3799 * sampler types a texture projector is lowered.
3800 */
3801 unsigned lower_txp;
3802
3803 /**
3804 * If true, lower away nir_tex_src_offset for all texelfetch instructions.
3805 */
3806 bool lower_txf_offset;
3807
3808 /**
3809 * If true, lower away nir_tex_src_offset for all rect textures.
3810 */
3811 bool lower_rect_offset;
3812
3813 /**
3814 * If true, lower rect textures to 2D, using txs to fetch the
3815 * texture dimensions and dividing the texture coords by the
3816 * texture dims to normalize.
3817 */
3818 bool lower_rect;
3819
3820 /**
3821 * If true, convert yuv to rgb.
3822 */
3823 unsigned lower_y_uv_external;
3824 unsigned lower_y_u_v_external;
3825 unsigned lower_yx_xuxv_external;
3826 unsigned lower_xy_uxvx_external;
3827 unsigned lower_ayuv_external;
3828 unsigned lower_xyuv_external;
3829
3830 /**
3831 * To emulate certain texture wrap modes, this can be used
3832 * to saturate the specified tex coord to [0.0, 1.0]. The
3833 * bits are according to sampler #, ie. if, for example:
3834 *
3835 * (conf->saturate_s & (1 << n))
3836 *
3837 * is true, then the s coord for sampler n is saturated.
3838 *
3839 * Note that clamping must happen *after* projector lowering
3840 * so any projected texture sample instruction with a clamped
3841 * coordinate gets automatically lowered, regardless of the
3842 * 'lower_txp' setting.
3843 */
3844 unsigned saturate_s;
3845 unsigned saturate_t;
3846 unsigned saturate_r;
3847
3848 /* Bitmask of textures that need swizzling.
3849 *
3850 * If (swizzle_result & (1 << texture_index)), then the swizzle in
3851 * swizzles[texture_index] is applied to the result of the texturing
3852 * operation.
3853 */
3854 unsigned swizzle_result;
3855
3856 /* A swizzle for each texture. Values 0-3 represent x, y, z, or w swizzles
3857 * while 4 and 5 represent 0 and 1 respectively.
3858 */
3859 uint8_t swizzles[32][4];
3860
3861 /* Can be used to scale sampled values in range required by the format. */
3862 float scale_factors[32];
3863
3864 /**
3865 * Bitmap of textures that need srgb to linear conversion. If
3866 * (lower_srgb & (1 << texture_index)) then the rgb (xyz) components
3867 * of the texture are lowered to linear.
3868 */
3869 unsigned lower_srgb;
3870
3871 /**
3872 * If true, lower nir_texop_tex on shaders that doesn't support implicit
3873 * LODs to nir_texop_txl.
3874 */
3875 bool lower_tex_without_implicit_lod;
3876
3877 /**
3878 * If true, lower nir_texop_txd on cube maps with nir_texop_txl.
3879 */
3880 bool lower_txd_cube_map;
3881
3882 /**
3883 * If true, lower nir_texop_txd on 3D surfaces with nir_texop_txl.
3884 */
3885 bool lower_txd_3d;
3886
3887 /**
3888 * If true, lower nir_texop_txd on shadow samplers (except cube maps)
3889 * with nir_texop_txl. Notice that cube map shadow samplers are lowered
3890 * with lower_txd_cube_map.
3891 */
3892 bool lower_txd_shadow;
3893
3894 /**
3895 * If true, lower nir_texop_txd on all samplers to a nir_texop_txl.
3896 * Implies lower_txd_cube_map and lower_txd_shadow.
3897 */
3898 bool lower_txd;
3899
3900 /**
3901 * If true, lower nir_texop_txb that try to use shadow compare and min_lod
3902 * at the same time to a nir_texop_lod, some math, and nir_texop_tex.
3903 */
3904 bool lower_txb_shadow_clamp;
3905
3906 /**
3907 * If true, lower nir_texop_txd on shadow samplers when it uses min_lod
3908 * with nir_texop_txl. This includes cube maps.
3909 */
3910 bool lower_txd_shadow_clamp;
3911
3912 /**
3913 * If true, lower nir_texop_txd on when it uses both offset and min_lod
3914 * with nir_texop_txl. This includes cube maps.
3915 */
3916 bool lower_txd_offset_clamp;
3917
3918 /**
3919 * If true, lower nir_texop_txd with min_lod to a nir_texop_txl if the
3920 * sampler is bindless.
3921 */
3922 bool lower_txd_clamp_bindless_sampler;
3923
3924 /**
3925 * If true, lower nir_texop_txd with min_lod to a nir_texop_txl if the
3926 * sampler index is not statically determinable to be less than 16.
3927 */
3928 bool lower_txd_clamp_if_sampler_index_not_lt_16;
3929
3930 /**
3931 * If true, lower nir_texop_txs with a non-0-lod into nir_texop_txs with
3932 * 0-lod followed by a nir_ishr.
3933 */
3934 bool lower_txs_lod;
3935
3936 /**
3937 * If true, apply a .bagr swizzle on tg4 results to handle Broadcom's
3938 * mixed-up tg4 locations.
3939 */
3940 bool lower_tg4_broadcom_swizzle;
3941
3942 /**
3943 * If true, lowers tg4 with 4 constant offsets to 4 tg4 calls
3944 */
3945 bool lower_tg4_offsets;
3946
3947 enum nir_lower_tex_packing lower_tex_packing[32];
3948 } nir_lower_tex_options;
3949
3950 bool nir_lower_tex(nir_shader *shader,
3951 const nir_lower_tex_options *options);
3952
3953 enum nir_lower_non_uniform_access_type {
3954 nir_lower_non_uniform_ubo_access = (1 << 0),
3955 nir_lower_non_uniform_ssbo_access = (1 << 1),
3956 nir_lower_non_uniform_texture_access = (1 << 2),
3957 nir_lower_non_uniform_image_access = (1 << 3),
3958 };
3959
3960 bool nir_lower_non_uniform_access(nir_shader *shader,
3961 enum nir_lower_non_uniform_access_type);
3962
3963 enum nir_lower_idiv_path {
3964 /* This path is based on NV50LegalizeSSA::handleDIV(). It is the faster of
3965 * the two but it is not exact in some cases (for example, 1091317713u /
3966 * 1034u gives 5209173 instead of 1055432) */
3967 nir_lower_idiv_fast,
3968 /* This path is based on AMDGPUTargetLowering::LowerUDIVREM() and
3969 * AMDGPUTargetLowering::LowerSDIVREM(). It requires more instructions than
3970 * the nv50 path and many of them are integer multiplications, so it is
3971 * probably slower. It should always return the correct result, though. */
3972 nir_lower_idiv_precise,
3973 };
3974
3975 bool nir_lower_idiv(nir_shader *shader, enum nir_lower_idiv_path path);
3976
3977 bool nir_lower_input_attachments(nir_shader *shader, bool use_fragcoord_sysval);
3978
3979 bool nir_lower_clip_vs(nir_shader *shader, unsigned ucp_enables,
3980 bool use_vars,
3981 bool use_clipdist_array,
3982 const gl_state_index16 clipplane_state_tokens[][STATE_LENGTH]);
3983 bool nir_lower_clip_gs(nir_shader *shader, unsigned ucp_enables,
3984 bool use_clipdist_array,
3985 const gl_state_index16 clipplane_state_tokens[][STATE_LENGTH]);
3986 bool nir_lower_clip_fs(nir_shader *shader, unsigned ucp_enables,
3987 bool use_clipdist_array);
3988 bool nir_lower_clip_cull_distance_arrays(nir_shader *nir);
3989
3990 void nir_lower_point_size_mov(nir_shader *shader,
3991 const gl_state_index16 *pointsize_state_tokens);
3992
3993 bool nir_lower_frexp(nir_shader *nir);
3994
3995 void nir_lower_two_sided_color(nir_shader *shader);
3996
3997 bool nir_lower_clamp_color_outputs(nir_shader *shader);
3998
3999 bool nir_lower_flatshade(nir_shader *shader);
4000
4001 void nir_lower_passthrough_edgeflags(nir_shader *shader);
4002 bool nir_lower_patch_vertices(nir_shader *nir, unsigned static_count,
4003 const gl_state_index16 *uniform_state_tokens);
4004
4005 typedef struct nir_lower_wpos_ytransform_options {
4006 gl_state_index16 state_tokens[STATE_LENGTH];
4007 bool fs_coord_origin_upper_left :1;
4008 bool fs_coord_origin_lower_left :1;
4009 bool fs_coord_pixel_center_integer :1;
4010 bool fs_coord_pixel_center_half_integer :1;
4011 } nir_lower_wpos_ytransform_options;
4012
4013 bool nir_lower_wpos_ytransform(nir_shader *shader,
4014 const nir_lower_wpos_ytransform_options *options);
4015 bool nir_lower_wpos_center(nir_shader *shader, const bool for_sample_shading);
4016
4017 bool nir_lower_fb_read(nir_shader *shader);
4018
4019 typedef struct nir_lower_drawpixels_options {
4020 gl_state_index16 texcoord_state_tokens[STATE_LENGTH];
4021 gl_state_index16 scale_state_tokens[STATE_LENGTH];
4022 gl_state_index16 bias_state_tokens[STATE_LENGTH];
4023 unsigned drawpix_sampler;
4024 unsigned pixelmap_sampler;
4025 bool pixel_maps :1;
4026 bool scale_and_bias :1;
4027 } nir_lower_drawpixels_options;
4028
4029 void nir_lower_drawpixels(nir_shader *shader,
4030 const nir_lower_drawpixels_options *options);
4031
4032 typedef struct nir_lower_bitmap_options {
4033 unsigned sampler;
4034 bool swizzle_xxxx;
4035 } nir_lower_bitmap_options;
4036
4037 void nir_lower_bitmap(nir_shader *shader, const nir_lower_bitmap_options *options);
4038
4039 bool nir_lower_atomics_to_ssbo(nir_shader *shader, unsigned ssbo_offset);
4040
4041 typedef enum {
4042 nir_lower_int_source_mods = 1 << 0,
4043 nir_lower_float_source_mods = 1 << 1,
4044 nir_lower_triop_abs = 1 << 2,
4045 nir_lower_all_source_mods = (1 << 3) - 1
4046 } nir_lower_to_source_mods_flags;
4047
4048
4049 bool nir_lower_to_source_mods(nir_shader *shader, nir_lower_to_source_mods_flags options);
4050
4051 bool nir_lower_gs_intrinsics(nir_shader *shader);
4052
4053 typedef unsigned (*nir_lower_bit_size_callback)(const nir_alu_instr *, void *);
4054
4055 bool nir_lower_bit_size(nir_shader *shader,
4056 nir_lower_bit_size_callback callback,
4057 void *callback_data);
4058
4059 nir_lower_int64_options nir_lower_int64_op_to_options_mask(nir_op opcode);
4060 bool nir_lower_int64(nir_shader *shader, nir_lower_int64_options options);
4061
4062 nir_lower_doubles_options nir_lower_doubles_op_to_options_mask(nir_op opcode);
4063 bool nir_lower_doubles(nir_shader *shader, const nir_shader *softfp64,
4064 nir_lower_doubles_options options);
4065 bool nir_lower_pack(nir_shader *shader);
4066
4067 bool nir_lower_point_size(nir_shader *shader, float min, float max);
4068
4069 typedef enum {
4070 nir_lower_interpolation_at_sample = (1 << 1),
4071 nir_lower_interpolation_at_offset = (1 << 2),
4072 nir_lower_interpolation_centroid = (1 << 3),
4073 nir_lower_interpolation_pixel = (1 << 4),
4074 nir_lower_interpolation_sample = (1 << 5),
4075 } nir_lower_interpolation_options;
4076
4077 bool nir_lower_interpolation(nir_shader *shader,
4078 nir_lower_interpolation_options options);
4079
4080 bool nir_normalize_cubemap_coords(nir_shader *shader);
4081
4082 void nir_live_ssa_defs_impl(nir_function_impl *impl);
4083
4084 void nir_loop_analyze_impl(nir_function_impl *impl,
4085 nir_variable_mode indirect_mask);
4086
4087 bool nir_ssa_defs_interfere(nir_ssa_def *a, nir_ssa_def *b);
4088
4089 bool nir_repair_ssa_impl(nir_function_impl *impl);
4090 bool nir_repair_ssa(nir_shader *shader);
4091
4092 void nir_convert_loop_to_lcssa(nir_loop *loop);
4093 bool nir_convert_to_lcssa(nir_shader *shader, bool skip_invariants, bool skip_bool_invariants);
4094 bool* nir_divergence_analysis(nir_shader *shader, nir_divergence_options options);
4095
4096 /* If phi_webs_only is true, only convert SSA values involved in phi nodes to
4097 * registers. If false, convert all values (even those not involved in a phi
4098 * node) to registers.
4099 */
4100 bool nir_convert_from_ssa(nir_shader *shader, bool phi_webs_only);
4101
4102 bool nir_lower_phis_to_regs_block(nir_block *block);
4103 bool nir_lower_ssa_defs_to_regs_block(nir_block *block);
4104 bool nir_rematerialize_derefs_in_use_blocks_impl(nir_function_impl *impl);
4105
4106 bool nir_lower_samplers(nir_shader *shader);
4107
4108 /* This is here for unit tests. */
4109 bool nir_opt_comparison_pre_impl(nir_function_impl *impl);
4110
4111 bool nir_opt_comparison_pre(nir_shader *shader);
4112
4113 bool nir_opt_access(nir_shader *shader);
4114 bool nir_opt_algebraic(nir_shader *shader);
4115 bool nir_opt_algebraic_before_ffma(nir_shader *shader);
4116 bool nir_opt_algebraic_late(nir_shader *shader);
4117 bool nir_opt_constant_folding(nir_shader *shader);
4118
4119 bool nir_opt_combine_stores(nir_shader *shader, nir_variable_mode modes);
4120
4121 bool nir_copy_prop(nir_shader *shader);
4122
4123 bool nir_opt_copy_prop_vars(nir_shader *shader);
4124
4125 bool nir_opt_cse(nir_shader *shader);
4126
4127 bool nir_opt_dce(nir_shader *shader);
4128
4129 bool nir_opt_dead_cf(nir_shader *shader);
4130
4131 bool nir_opt_dead_write_vars(nir_shader *shader);
4132
4133 bool nir_opt_deref_impl(nir_function_impl *impl);
4134 bool nir_opt_deref(nir_shader *shader);
4135
4136 bool nir_opt_find_array_copies(nir_shader *shader);
4137
4138 bool nir_opt_gcm(nir_shader *shader, bool value_number);
4139
4140 bool nir_opt_idiv_const(nir_shader *shader, unsigned min_bit_size);
4141
4142 bool nir_opt_if(nir_shader *shader, bool aggressive_last_continue);
4143
4144 bool nir_opt_intrinsics(nir_shader *shader);
4145
4146 bool nir_opt_large_constants(nir_shader *shader,
4147 glsl_type_size_align_func size_align,
4148 unsigned threshold);
4149
4150 bool nir_opt_loop_unroll(nir_shader *shader, nir_variable_mode indirect_mask);
4151
4152 typedef enum {
4153 nir_move_const_undef = (1 << 0),
4154 nir_move_load_ubo = (1 << 1),
4155 nir_move_load_input = (1 << 2),
4156 nir_move_comparisons = (1 << 3),
4157 } nir_move_options;
4158
4159 bool nir_can_move_instr(nir_instr *instr, nir_move_options options);
4160
4161 bool nir_opt_sink(nir_shader *shader, nir_move_options options);
4162
4163 bool nir_opt_move(nir_shader *shader, nir_move_options options);
4164
4165 bool nir_opt_peephole_select(nir_shader *shader, unsigned limit,
4166 bool indirect_load_ok, bool expensive_alu_ok);
4167
4168 bool nir_opt_rematerialize_compares(nir_shader *shader);
4169
4170 bool nir_opt_remove_phis(nir_shader *shader);
4171 bool nir_opt_remove_phis_block(nir_block *block);
4172
4173 bool nir_opt_shrink_load(nir_shader *shader);
4174
4175 bool nir_opt_trivial_continues(nir_shader *shader);
4176
4177 bool nir_opt_undef(nir_shader *shader);
4178
4179 bool nir_opt_vectorize(nir_shader *shader);
4180
4181 bool nir_opt_conditional_discard(nir_shader *shader);
4182
4183 void nir_strip(nir_shader *shader);
4184
4185 void nir_sweep(nir_shader *shader);
4186
4187 void nir_remap_dual_slot_attributes(nir_shader *shader,
4188 uint64_t *dual_slot_inputs);
4189 uint64_t nir_get_single_slot_attribs_mask(uint64_t attribs, uint64_t dual_slot);
4190
4191 nir_intrinsic_op nir_intrinsic_from_system_value(gl_system_value val);
4192 gl_system_value nir_system_value_from_intrinsic(nir_intrinsic_op intrin);
4193
4194 static inline bool
4195 nir_variable_is_in_ubo(const nir_variable *var)
4196 {
4197 return (var->data.mode == nir_var_mem_ubo &&
4198 var->interface_type != NULL);
4199 }
4200
4201 static inline bool
4202 nir_variable_is_in_ssbo(const nir_variable *var)
4203 {
4204 return (var->data.mode == nir_var_mem_ssbo &&
4205 var->interface_type != NULL);
4206 }
4207
4208 static inline bool
4209 nir_variable_is_in_block(const nir_variable *var)
4210 {
4211 return nir_variable_is_in_ubo(var) || nir_variable_is_in_ssbo(var);
4212 }
4213
4214 #ifdef __cplusplus
4215 } /* extern "C" */
4216 #endif
4217
4218 #endif /* NIR_H */