nir/algebraic: Simplify fsat of fsign
[mesa.git] / src / compiler / nir / nir.h
1 /*
2 * Copyright © 2014 Connor Abbott
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Connor Abbott (cwabbott0@gmail.com)
25 *
26 */
27
28 #ifndef NIR_H
29 #define NIR_H
30
31 #include "util/hash_table.h"
32 #include "compiler/glsl/list.h"
33 #include "GL/gl.h" /* GLenum */
34 #include "util/list.h"
35 #include "util/ralloc.h"
36 #include "util/set.h"
37 #include "util/bitset.h"
38 #include "util/macros.h"
39 #include "compiler/nir_types.h"
40 #include "compiler/shader_enums.h"
41 #include "compiler/shader_info.h"
42 #include <stdio.h>
43
44 #ifndef NDEBUG
45 #include "util/debug.h"
46 #endif /* NDEBUG */
47
48 #include "nir_opcodes.h"
49
50 #if defined(_WIN32) && !defined(snprintf)
51 #define snprintf _snprintf
52 #endif
53
54 #ifdef __cplusplus
55 extern "C" {
56 #endif
57
58 #define NIR_FALSE 0u
59 #define NIR_TRUE (~0u)
60 #define NIR_MAX_VEC_COMPONENTS 4
61 typedef uint8_t nir_component_mask_t;
62
63 /** Defines a cast function
64 *
65 * This macro defines a cast function from in_type to out_type where
66 * out_type is some structure type that contains a field of type out_type.
67 *
68 * Note that you have to be a bit careful as the generated cast function
69 * destroys constness.
70 */
71 #define NIR_DEFINE_CAST(name, in_type, out_type, field, \
72 type_field, type_value) \
73 static inline out_type * \
74 name(const in_type *parent) \
75 { \
76 assert(parent && parent->type_field == type_value); \
77 return exec_node_data(out_type, parent, field); \
78 }
79
80 struct nir_function;
81 struct nir_shader;
82 struct nir_instr;
83 struct nir_builder;
84
85
86 /**
87 * Description of built-in state associated with a uniform
88 *
89 * \sa nir_variable::state_slots
90 */
91 typedef struct {
92 gl_state_index16 tokens[STATE_LENGTH];
93 int swizzle;
94 } nir_state_slot;
95
96 typedef enum {
97 nir_var_shader_in = (1 << 0),
98 nir_var_shader_out = (1 << 1),
99 nir_var_global = (1 << 2),
100 nir_var_local = (1 << 3),
101 nir_var_uniform = (1 << 4),
102 nir_var_shader_storage = (1 << 5),
103 nir_var_system_value = (1 << 6),
104 nir_var_shared = (1 << 8),
105 nir_var_all = ~0,
106 } nir_variable_mode;
107
108 /**
109 * Rounding modes.
110 */
111 typedef enum {
112 nir_rounding_mode_undef = 0,
113 nir_rounding_mode_rtne = 1, /* round to nearest even */
114 nir_rounding_mode_ru = 2, /* round up */
115 nir_rounding_mode_rd = 3, /* round down */
116 nir_rounding_mode_rtz = 4, /* round towards zero */
117 } nir_rounding_mode;
118
119 typedef union {
120 float f32[NIR_MAX_VEC_COMPONENTS];
121 double f64[NIR_MAX_VEC_COMPONENTS];
122 int8_t i8[NIR_MAX_VEC_COMPONENTS];
123 uint8_t u8[NIR_MAX_VEC_COMPONENTS];
124 int16_t i16[NIR_MAX_VEC_COMPONENTS];
125 uint16_t u16[NIR_MAX_VEC_COMPONENTS];
126 int32_t i32[NIR_MAX_VEC_COMPONENTS];
127 uint32_t u32[NIR_MAX_VEC_COMPONENTS];
128 int64_t i64[NIR_MAX_VEC_COMPONENTS];
129 uint64_t u64[NIR_MAX_VEC_COMPONENTS];
130 } nir_const_value;
131
132 typedef struct nir_constant {
133 /**
134 * Value of the constant.
135 *
136 * The field used to back the values supplied by the constant is determined
137 * by the type associated with the \c nir_variable. Constants may be
138 * scalars, vectors, or matrices.
139 */
140 nir_const_value values[NIR_MAX_VEC_COMPONENTS];
141
142 /* we could get this from the var->type but makes clone *much* easier to
143 * not have to care about the type.
144 */
145 unsigned num_elements;
146
147 /* Array elements / Structure Fields */
148 struct nir_constant **elements;
149 } nir_constant;
150
151 /**
152 * \brief Layout qualifiers for gl_FragDepth.
153 *
154 * The AMD/ARB_conservative_depth extensions allow gl_FragDepth to be redeclared
155 * with a layout qualifier.
156 */
157 typedef enum {
158 nir_depth_layout_none, /**< No depth layout is specified. */
159 nir_depth_layout_any,
160 nir_depth_layout_greater,
161 nir_depth_layout_less,
162 nir_depth_layout_unchanged
163 } nir_depth_layout;
164
165 /**
166 * Enum keeping track of how a variable was declared.
167 */
168 typedef enum {
169 /**
170 * Normal declaration.
171 */
172 nir_var_declared_normally = 0,
173
174 /**
175 * Variable is implicitly generated by the compiler and should not be
176 * visible via the API.
177 */
178 nir_var_hidden,
179 } nir_var_declaration_type;
180
181 /**
182 * Either a uniform, global variable, shader input, or shader output. Based on
183 * ir_variable - it should be easy to translate between the two.
184 */
185
186 typedef struct nir_variable {
187 struct exec_node node;
188
189 /**
190 * Declared type of the variable
191 */
192 const struct glsl_type *type;
193
194 /**
195 * Declared name of the variable
196 */
197 char *name;
198
199 struct nir_variable_data {
200 /**
201 * Storage class of the variable.
202 *
203 * \sa nir_variable_mode
204 */
205 nir_variable_mode mode;
206
207 /**
208 * Is the variable read-only?
209 *
210 * This is set for variables declared as \c const, shader inputs,
211 * and uniforms.
212 */
213 unsigned read_only:1;
214 unsigned centroid:1;
215 unsigned sample:1;
216 unsigned patch:1;
217 unsigned invariant:1;
218
219 /**
220 * When separate shader programs are enabled, only input/outputs between
221 * the stages of a multi-stage separate program can be safely removed
222 * from the shader interface. Other input/outputs must remains active.
223 *
224 * This is also used to make sure xfb varyings that are unused by the
225 * fragment shader are not removed.
226 */
227 unsigned always_active_io:1;
228
229 /**
230 * Interpolation mode for shader inputs / outputs
231 *
232 * \sa glsl_interp_mode
233 */
234 unsigned interpolation:2;
235
236 /**
237 * \name ARB_fragment_coord_conventions
238 * @{
239 */
240 unsigned origin_upper_left:1;
241 unsigned pixel_center_integer:1;
242 /*@}*/
243
244 /**
245 * If non-zero, then this variable may be packed along with other variables
246 * into a single varying slot, so this offset should be applied when
247 * accessing components. For example, an offset of 1 means that the x
248 * component of this variable is actually stored in component y of the
249 * location specified by \c location.
250 */
251 unsigned location_frac:2;
252
253 /**
254 * If true, this variable represents an array of scalars that should
255 * be tightly packed. In other words, consecutive array elements
256 * should be stored one component apart, rather than one slot apart.
257 */
258 unsigned compact:1;
259
260 /**
261 * Whether this is a fragment shader output implicitly initialized with
262 * the previous contents of the specified render target at the
263 * framebuffer location corresponding to this shader invocation.
264 */
265 unsigned fb_fetch_output:1;
266
267 /**
268 * Non-zero if this variable is considered bindless as defined by
269 * ARB_bindless_texture.
270 */
271 unsigned bindless:1;
272
273 /**
274 * Was an explicit binding set in the shader?
275 */
276 unsigned explicit_binding:1;
277
278 /**
279 * Was a transfer feedback buffer set in the shader?
280 */
281 unsigned explicit_xfb_buffer:1;
282
283 /**
284 * Was a transfer feedback stride set in the shader?
285 */
286 unsigned explicit_xfb_stride:1;
287
288 /**
289 * Was an explicit offset set in the shader?
290 */
291 unsigned explicit_offset:1;
292
293 /**
294 * \brief Layout qualifier for gl_FragDepth.
295 *
296 * This is not equal to \c ir_depth_layout_none if and only if this
297 * variable is \c gl_FragDepth and a layout qualifier is specified.
298 */
299 nir_depth_layout depth_layout;
300
301 /**
302 * Storage location of the base of this variable
303 *
304 * The precise meaning of this field depends on the nature of the variable.
305 *
306 * - Vertex shader input: one of the values from \c gl_vert_attrib.
307 * - Vertex shader output: one of the values from \c gl_varying_slot.
308 * - Geometry shader input: one of the values from \c gl_varying_slot.
309 * - Geometry shader output: one of the values from \c gl_varying_slot.
310 * - Fragment shader input: one of the values from \c gl_varying_slot.
311 * - Fragment shader output: one of the values from \c gl_frag_result.
312 * - Uniforms: Per-stage uniform slot number for default uniform block.
313 * - Uniforms: Index within the uniform block definition for UBO members.
314 * - Non-UBO Uniforms: uniform slot number.
315 * - Other: This field is not currently used.
316 *
317 * If the variable is a uniform, shader input, or shader output, and the
318 * slot has not been assigned, the value will be -1.
319 */
320 int location;
321
322 /**
323 * The actual location of the variable in the IR. Only valid for inputs
324 * and outputs.
325 */
326 unsigned int driver_location;
327
328 /**
329 * Vertex stream output identifier.
330 *
331 * For packed outputs, bit 31 is set and bits [2*i+1,2*i] indicate the
332 * stream of the i-th component.
333 */
334 unsigned stream;
335
336 /**
337 * output index for dual source blending.
338 */
339 int index;
340
341 /**
342 * Descriptor set binding for sampler or UBO.
343 */
344 int descriptor_set;
345
346 /**
347 * Initial binding point for a sampler or UBO.
348 *
349 * For array types, this represents the binding point for the first element.
350 */
351 int binding;
352
353 /**
354 * Location an atomic counter or transform feedback is stored at.
355 */
356 unsigned offset;
357
358 /**
359 * Transform feedback buffer.
360 */
361 unsigned xfb_buffer;
362
363 /**
364 * Transform feedback stride.
365 */
366 unsigned xfb_stride;
367
368 /**
369 * How the variable was declared. See nir_var_declaration_type.
370 *
371 * This is used to detect variables generated by the compiler, so should
372 * not be visible via the API.
373 */
374 unsigned how_declared:2;
375
376 /**
377 * ARB_shader_image_load_store qualifiers.
378 */
379 struct {
380 enum gl_access_qualifier access;
381
382 /** Image internal format if specified explicitly, otherwise GL_NONE. */
383 GLenum format;
384 } image;
385 } data;
386
387 /**
388 * Built-in state that backs this uniform
389 *
390 * Once set at variable creation, \c state_slots must remain invariant.
391 * This is because, ideally, this array would be shared by all clones of
392 * this variable in the IR tree. In other words, we'd really like for it
393 * to be a fly-weight.
394 *
395 * If the variable is not a uniform, \c num_state_slots will be zero and
396 * \c state_slots will be \c NULL.
397 */
398 /*@{*/
399 unsigned num_state_slots; /**< Number of state slots used */
400 nir_state_slot *state_slots; /**< State descriptors. */
401 /*@}*/
402
403 /**
404 * Constant expression assigned in the initializer of the variable
405 *
406 * This field should only be used temporarily by creators of NIR shaders
407 * and then lower_constant_initializers can be used to get rid of them.
408 * Most of the rest of NIR ignores this field or asserts that it's NULL.
409 */
410 nir_constant *constant_initializer;
411
412 /**
413 * For variables that are in an interface block or are an instance of an
414 * interface block, this is the \c GLSL_TYPE_INTERFACE type for that block.
415 *
416 * \sa ir_variable::location
417 */
418 const struct glsl_type *interface_type;
419
420 /**
421 * Description of per-member data for per-member struct variables
422 *
423 * This is used for variables which are actually an amalgamation of
424 * multiple entities such as a struct of built-in values or a struct of
425 * inputs each with their own layout specifier. This is only allowed on
426 * variables with a struct or array of array of struct type.
427 */
428 unsigned num_members;
429 struct nir_variable_data *members;
430 } nir_variable;
431
432 #define nir_foreach_variable(var, var_list) \
433 foreach_list_typed(nir_variable, var, node, var_list)
434
435 #define nir_foreach_variable_safe(var, var_list) \
436 foreach_list_typed_safe(nir_variable, var, node, var_list)
437
438 static inline bool
439 nir_variable_is_global(const nir_variable *var)
440 {
441 return var->data.mode != nir_var_local;
442 }
443
444 typedef struct nir_register {
445 struct exec_node node;
446
447 unsigned num_components; /** < number of vector components */
448 unsigned num_array_elems; /** < size of array (0 for no array) */
449
450 /* The bit-size of each channel; must be one of 8, 16, 32, or 64 */
451 uint8_t bit_size;
452
453 /** generic register index. */
454 unsigned index;
455
456 /** only for debug purposes, can be NULL */
457 const char *name;
458
459 /** whether this register is local (per-function) or global (per-shader) */
460 bool is_global;
461
462 /**
463 * If this flag is set to true, then accessing channels >= num_components
464 * is well-defined, and simply spills over to the next array element. This
465 * is useful for backends that can do per-component accessing, in
466 * particular scalar backends. By setting this flag and making
467 * num_components equal to 1, structures can be packed tightly into
468 * registers and then registers can be accessed per-component to get to
469 * each structure member, even if it crosses vec4 boundaries.
470 */
471 bool is_packed;
472
473 /** set of nir_srcs where this register is used (read from) */
474 struct list_head uses;
475
476 /** set of nir_dests where this register is defined (written to) */
477 struct list_head defs;
478
479 /** set of nir_ifs where this register is used as a condition */
480 struct list_head if_uses;
481 } nir_register;
482
483 #define nir_foreach_register(reg, reg_list) \
484 foreach_list_typed(nir_register, reg, node, reg_list)
485 #define nir_foreach_register_safe(reg, reg_list) \
486 foreach_list_typed_safe(nir_register, reg, node, reg_list)
487
488 typedef enum {
489 nir_instr_type_alu,
490 nir_instr_type_deref,
491 nir_instr_type_call,
492 nir_instr_type_tex,
493 nir_instr_type_intrinsic,
494 nir_instr_type_load_const,
495 nir_instr_type_jump,
496 nir_instr_type_ssa_undef,
497 nir_instr_type_phi,
498 nir_instr_type_parallel_copy,
499 } nir_instr_type;
500
501 typedef struct nir_instr {
502 struct exec_node node;
503 nir_instr_type type;
504 struct nir_block *block;
505
506 /** generic instruction index. */
507 unsigned index;
508
509 /* A temporary for optimization and analysis passes to use for storing
510 * flags. For instance, DCE uses this to store the "dead/live" info.
511 */
512 uint8_t pass_flags;
513 } nir_instr;
514
515 static inline nir_instr *
516 nir_instr_next(nir_instr *instr)
517 {
518 struct exec_node *next = exec_node_get_next(&instr->node);
519 if (exec_node_is_tail_sentinel(next))
520 return NULL;
521 else
522 return exec_node_data(nir_instr, next, node);
523 }
524
525 static inline nir_instr *
526 nir_instr_prev(nir_instr *instr)
527 {
528 struct exec_node *prev = exec_node_get_prev(&instr->node);
529 if (exec_node_is_head_sentinel(prev))
530 return NULL;
531 else
532 return exec_node_data(nir_instr, prev, node);
533 }
534
535 static inline bool
536 nir_instr_is_first(const nir_instr *instr)
537 {
538 return exec_node_is_head_sentinel(exec_node_get_prev_const(&instr->node));
539 }
540
541 static inline bool
542 nir_instr_is_last(const nir_instr *instr)
543 {
544 return exec_node_is_tail_sentinel(exec_node_get_next_const(&instr->node));
545 }
546
547 typedef struct nir_ssa_def {
548 /** for debugging only, can be NULL */
549 const char* name;
550
551 /** generic SSA definition index. */
552 unsigned index;
553
554 /** Index into the live_in and live_out bitfields */
555 unsigned live_index;
556
557 /** Instruction which produces this SSA value. */
558 nir_instr *parent_instr;
559
560 /** set of nir_instrs where this register is used (read from) */
561 struct list_head uses;
562
563 /** set of nir_ifs where this register is used as a condition */
564 struct list_head if_uses;
565
566 uint8_t num_components;
567
568 /* The bit-size of each channel; must be one of 8, 16, 32, or 64 */
569 uint8_t bit_size;
570 } nir_ssa_def;
571
572 struct nir_src;
573
574 typedef struct {
575 nir_register *reg;
576 struct nir_src *indirect; /** < NULL for no indirect offset */
577 unsigned base_offset;
578
579 /* TODO use-def chain goes here */
580 } nir_reg_src;
581
582 typedef struct {
583 nir_instr *parent_instr;
584 struct list_head def_link;
585
586 nir_register *reg;
587 struct nir_src *indirect; /** < NULL for no indirect offset */
588 unsigned base_offset;
589
590 /* TODO def-use chain goes here */
591 } nir_reg_dest;
592
593 struct nir_if;
594
595 typedef struct nir_src {
596 union {
597 /** Instruction that consumes this value as a source. */
598 nir_instr *parent_instr;
599 struct nir_if *parent_if;
600 };
601
602 struct list_head use_link;
603
604 union {
605 nir_reg_src reg;
606 nir_ssa_def *ssa;
607 };
608
609 bool is_ssa;
610 } nir_src;
611
612 static inline nir_src
613 nir_src_init(void)
614 {
615 nir_src src = { { NULL } };
616 return src;
617 }
618
619 #define NIR_SRC_INIT nir_src_init()
620
621 #define nir_foreach_use(src, reg_or_ssa_def) \
622 list_for_each_entry(nir_src, src, &(reg_or_ssa_def)->uses, use_link)
623
624 #define nir_foreach_use_safe(src, reg_or_ssa_def) \
625 list_for_each_entry_safe(nir_src, src, &(reg_or_ssa_def)->uses, use_link)
626
627 #define nir_foreach_if_use(src, reg_or_ssa_def) \
628 list_for_each_entry(nir_src, src, &(reg_or_ssa_def)->if_uses, use_link)
629
630 #define nir_foreach_if_use_safe(src, reg_or_ssa_def) \
631 list_for_each_entry_safe(nir_src, src, &(reg_or_ssa_def)->if_uses, use_link)
632
633 typedef struct {
634 union {
635 nir_reg_dest reg;
636 nir_ssa_def ssa;
637 };
638
639 bool is_ssa;
640 } nir_dest;
641
642 static inline nir_dest
643 nir_dest_init(void)
644 {
645 nir_dest dest = { { { NULL } } };
646 return dest;
647 }
648
649 #define NIR_DEST_INIT nir_dest_init()
650
651 #define nir_foreach_def(dest, reg) \
652 list_for_each_entry(nir_dest, dest, &(reg)->defs, reg.def_link)
653
654 #define nir_foreach_def_safe(dest, reg) \
655 list_for_each_entry_safe(nir_dest, dest, &(reg)->defs, reg.def_link)
656
657 static inline nir_src
658 nir_src_for_ssa(nir_ssa_def *def)
659 {
660 nir_src src = NIR_SRC_INIT;
661
662 src.is_ssa = true;
663 src.ssa = def;
664
665 return src;
666 }
667
668 static inline nir_src
669 nir_src_for_reg(nir_register *reg)
670 {
671 nir_src src = NIR_SRC_INIT;
672
673 src.is_ssa = false;
674 src.reg.reg = reg;
675 src.reg.indirect = NULL;
676 src.reg.base_offset = 0;
677
678 return src;
679 }
680
681 static inline nir_dest
682 nir_dest_for_reg(nir_register *reg)
683 {
684 nir_dest dest = NIR_DEST_INIT;
685
686 dest.reg.reg = reg;
687
688 return dest;
689 }
690
691 static inline unsigned
692 nir_src_bit_size(nir_src src)
693 {
694 return src.is_ssa ? src.ssa->bit_size : src.reg.reg->bit_size;
695 }
696
697 static inline unsigned
698 nir_src_num_components(nir_src src)
699 {
700 return src.is_ssa ? src.ssa->num_components : src.reg.reg->num_components;
701 }
702
703 static inline unsigned
704 nir_dest_bit_size(nir_dest dest)
705 {
706 return dest.is_ssa ? dest.ssa.bit_size : dest.reg.reg->bit_size;
707 }
708
709 static inline unsigned
710 nir_dest_num_components(nir_dest dest)
711 {
712 return dest.is_ssa ? dest.ssa.num_components : dest.reg.reg->num_components;
713 }
714
715 void nir_src_copy(nir_src *dest, const nir_src *src, void *instr_or_if);
716 void nir_dest_copy(nir_dest *dest, const nir_dest *src, nir_instr *instr);
717
718 typedef struct {
719 nir_src src;
720
721 /**
722 * \name input modifiers
723 */
724 /*@{*/
725 /**
726 * For inputs interpreted as floating point, flips the sign bit. For
727 * inputs interpreted as integers, performs the two's complement negation.
728 */
729 bool negate;
730
731 /**
732 * Clears the sign bit for floating point values, and computes the integer
733 * absolute value for integers. Note that the negate modifier acts after
734 * the absolute value modifier, therefore if both are set then all inputs
735 * will become negative.
736 */
737 bool abs;
738 /*@}*/
739
740 /**
741 * For each input component, says which component of the register it is
742 * chosen from. Note that which elements of the swizzle are used and which
743 * are ignored are based on the write mask for most opcodes - for example,
744 * a statement like "foo.xzw = bar.zyx" would have a writemask of 1101b and
745 * a swizzle of {2, x, 1, 0} where x means "don't care."
746 */
747 uint8_t swizzle[NIR_MAX_VEC_COMPONENTS];
748 } nir_alu_src;
749
750 typedef struct {
751 nir_dest dest;
752
753 /**
754 * \name saturate output modifier
755 *
756 * Only valid for opcodes that output floating-point numbers. Clamps the
757 * output to between 0.0 and 1.0 inclusive.
758 */
759
760 bool saturate;
761
762 unsigned write_mask : NIR_MAX_VEC_COMPONENTS; /* ignored if dest.is_ssa is true */
763 } nir_alu_dest;
764
765 typedef enum {
766 nir_type_invalid = 0, /* Not a valid type */
767 nir_type_float,
768 nir_type_int,
769 nir_type_uint,
770 nir_type_bool,
771 nir_type_bool32 = 32 | nir_type_bool,
772 nir_type_int8 = 8 | nir_type_int,
773 nir_type_int16 = 16 | nir_type_int,
774 nir_type_int32 = 32 | nir_type_int,
775 nir_type_int64 = 64 | nir_type_int,
776 nir_type_uint8 = 8 | nir_type_uint,
777 nir_type_uint16 = 16 | nir_type_uint,
778 nir_type_uint32 = 32 | nir_type_uint,
779 nir_type_uint64 = 64 | nir_type_uint,
780 nir_type_float16 = 16 | nir_type_float,
781 nir_type_float32 = 32 | nir_type_float,
782 nir_type_float64 = 64 | nir_type_float,
783 } nir_alu_type;
784
785 #define NIR_ALU_TYPE_SIZE_MASK 0xfffffff8
786 #define NIR_ALU_TYPE_BASE_TYPE_MASK 0x00000007
787
788 static inline unsigned
789 nir_alu_type_get_type_size(nir_alu_type type)
790 {
791 return type & NIR_ALU_TYPE_SIZE_MASK;
792 }
793
794 static inline unsigned
795 nir_alu_type_get_base_type(nir_alu_type type)
796 {
797 return type & NIR_ALU_TYPE_BASE_TYPE_MASK;
798 }
799
800 static inline nir_alu_type
801 nir_get_nir_type_for_glsl_base_type(enum glsl_base_type base_type)
802 {
803 switch (base_type) {
804 case GLSL_TYPE_BOOL:
805 return nir_type_bool32;
806 break;
807 case GLSL_TYPE_UINT:
808 return nir_type_uint32;
809 break;
810 case GLSL_TYPE_INT:
811 return nir_type_int32;
812 break;
813 case GLSL_TYPE_UINT16:
814 return nir_type_uint16;
815 break;
816 case GLSL_TYPE_INT16:
817 return nir_type_int16;
818 break;
819 case GLSL_TYPE_UINT8:
820 return nir_type_uint8;
821 case GLSL_TYPE_INT8:
822 return nir_type_int8;
823 case GLSL_TYPE_UINT64:
824 return nir_type_uint64;
825 break;
826 case GLSL_TYPE_INT64:
827 return nir_type_int64;
828 break;
829 case GLSL_TYPE_FLOAT:
830 return nir_type_float32;
831 break;
832 case GLSL_TYPE_FLOAT16:
833 return nir_type_float16;
834 break;
835 case GLSL_TYPE_DOUBLE:
836 return nir_type_float64;
837 break;
838 default:
839 unreachable("unknown type");
840 }
841 }
842
843 static inline nir_alu_type
844 nir_get_nir_type_for_glsl_type(const struct glsl_type *type)
845 {
846 return nir_get_nir_type_for_glsl_base_type(glsl_get_base_type(type));
847 }
848
849 nir_op nir_type_conversion_op(nir_alu_type src, nir_alu_type dst,
850 nir_rounding_mode rnd);
851
852 typedef enum {
853 NIR_OP_IS_COMMUTATIVE = (1 << 0),
854 NIR_OP_IS_ASSOCIATIVE = (1 << 1),
855 } nir_op_algebraic_property;
856
857 typedef struct {
858 const char *name;
859
860 unsigned num_inputs;
861
862 /**
863 * The number of components in the output
864 *
865 * If non-zero, this is the size of the output and input sizes are
866 * explicitly given; swizzle and writemask are still in effect, but if
867 * the output component is masked out, then the input component may
868 * still be in use.
869 *
870 * If zero, the opcode acts in the standard, per-component manner; the
871 * operation is performed on each component (except the ones that are
872 * masked out) with the input being taken from the input swizzle for
873 * that component.
874 *
875 * The size of some of the inputs may be given (i.e. non-zero) even
876 * though output_size is zero; in that case, the inputs with a zero
877 * size act per-component, while the inputs with non-zero size don't.
878 */
879 unsigned output_size;
880
881 /**
882 * The type of vector that the instruction outputs. Note that the
883 * staurate modifier is only allowed on outputs with the float type.
884 */
885
886 nir_alu_type output_type;
887
888 /**
889 * The number of components in each input
890 */
891 unsigned input_sizes[NIR_MAX_VEC_COMPONENTS];
892
893 /**
894 * The type of vector that each input takes. Note that negate and
895 * absolute value are only allowed on inputs with int or float type and
896 * behave differently on the two.
897 */
898 nir_alu_type input_types[NIR_MAX_VEC_COMPONENTS];
899
900 nir_op_algebraic_property algebraic_properties;
901 } nir_op_info;
902
903 extern const nir_op_info nir_op_infos[nir_num_opcodes];
904
905 typedef struct nir_alu_instr {
906 nir_instr instr;
907 nir_op op;
908
909 /** Indicates that this ALU instruction generates an exact value
910 *
911 * This is kind of a mixture of GLSL "precise" and "invariant" and not
912 * really equivalent to either. This indicates that the value generated by
913 * this operation is high-precision and any code transformations that touch
914 * it must ensure that the resulting value is bit-for-bit identical to the
915 * original.
916 */
917 bool exact;
918
919 nir_alu_dest dest;
920 nir_alu_src src[];
921 } nir_alu_instr;
922
923 void nir_alu_src_copy(nir_alu_src *dest, const nir_alu_src *src,
924 nir_alu_instr *instr);
925 void nir_alu_dest_copy(nir_alu_dest *dest, const nir_alu_dest *src,
926 nir_alu_instr *instr);
927
928 /* is this source channel used? */
929 static inline bool
930 nir_alu_instr_channel_used(const nir_alu_instr *instr, unsigned src,
931 unsigned channel)
932 {
933 if (nir_op_infos[instr->op].input_sizes[src] > 0)
934 return channel < nir_op_infos[instr->op].input_sizes[src];
935
936 return (instr->dest.write_mask >> channel) & 1;
937 }
938
939 /*
940 * For instructions whose destinations are SSA, get the number of channels
941 * used for a source
942 */
943 static inline unsigned
944 nir_ssa_alu_instr_src_components(const nir_alu_instr *instr, unsigned src)
945 {
946 assert(instr->dest.dest.is_ssa);
947
948 if (nir_op_infos[instr->op].input_sizes[src] > 0)
949 return nir_op_infos[instr->op].input_sizes[src];
950
951 return instr->dest.dest.ssa.num_components;
952 }
953
954 bool nir_alu_srcs_equal(const nir_alu_instr *alu1, const nir_alu_instr *alu2,
955 unsigned src1, unsigned src2);
956
957 typedef enum {
958 nir_deref_type_var,
959 nir_deref_type_array,
960 nir_deref_type_array_wildcard,
961 nir_deref_type_struct,
962 nir_deref_type_cast,
963 } nir_deref_type;
964
965 typedef struct {
966 nir_instr instr;
967
968 /** The type of this deref instruction */
969 nir_deref_type deref_type;
970
971 /** The mode of the underlying variable */
972 nir_variable_mode mode;
973
974 /** The dereferenced type of the resulting pointer value */
975 const struct glsl_type *type;
976
977 union {
978 /** Variable being dereferenced if deref_type is a deref_var */
979 nir_variable *var;
980
981 /** Parent deref if deref_type is not deref_var */
982 nir_src parent;
983 };
984
985 /** Additional deref parameters */
986 union {
987 struct {
988 nir_src index;
989 } arr;
990
991 struct {
992 unsigned index;
993 } strct;
994 };
995
996 /** Destination to store the resulting "pointer" */
997 nir_dest dest;
998 } nir_deref_instr;
999
1000 NIR_DEFINE_CAST(nir_instr_as_deref, nir_instr, nir_deref_instr, instr,
1001 type, nir_instr_type_deref)
1002
1003 static inline nir_deref_instr *
1004 nir_src_as_deref(nir_src src)
1005 {
1006 if (!src.is_ssa)
1007 return NULL;
1008
1009 if (src.ssa->parent_instr->type != nir_instr_type_deref)
1010 return NULL;
1011
1012 return nir_instr_as_deref(src.ssa->parent_instr);
1013 }
1014
1015 static inline nir_deref_instr *
1016 nir_deref_instr_parent(const nir_deref_instr *instr)
1017 {
1018 if (instr->deref_type == nir_deref_type_var)
1019 return NULL;
1020 else
1021 return nir_src_as_deref(instr->parent);
1022 }
1023
1024 static inline nir_variable *
1025 nir_deref_instr_get_variable(const nir_deref_instr *instr)
1026 {
1027 while (instr->deref_type != nir_deref_type_var) {
1028 if (instr->deref_type == nir_deref_type_cast)
1029 return NULL;
1030
1031 instr = nir_deref_instr_parent(instr);
1032 }
1033
1034 return instr->var;
1035 }
1036
1037 bool nir_deref_instr_has_indirect(nir_deref_instr *instr);
1038
1039 bool nir_deref_instr_remove_if_unused(nir_deref_instr *instr);
1040
1041 typedef struct {
1042 nir_instr instr;
1043
1044 struct nir_function *callee;
1045
1046 unsigned num_params;
1047 nir_src params[];
1048 } nir_call_instr;
1049
1050 #include "nir_intrinsics.h"
1051
1052 #define NIR_INTRINSIC_MAX_CONST_INDEX 4
1053
1054 /** Represents an intrinsic
1055 *
1056 * An intrinsic is an instruction type for handling things that are
1057 * more-or-less regular operations but don't just consume and produce SSA
1058 * values like ALU operations do. Intrinsics are not for things that have
1059 * special semantic meaning such as phi nodes and parallel copies.
1060 * Examples of intrinsics include variable load/store operations, system
1061 * value loads, and the like. Even though texturing more-or-less falls
1062 * under this category, texturing is its own instruction type because
1063 * trying to represent texturing with intrinsics would lead to a
1064 * combinatorial explosion of intrinsic opcodes.
1065 *
1066 * By having a single instruction type for handling a lot of different
1067 * cases, optimization passes can look for intrinsics and, for the most
1068 * part, completely ignore them. Each intrinsic type also has a few
1069 * possible flags that govern whether or not they can be reordered or
1070 * eliminated. That way passes like dead code elimination can still work
1071 * on intrisics without understanding the meaning of each.
1072 *
1073 * Each intrinsic has some number of constant indices, some number of
1074 * variables, and some number of sources. What these sources, variables,
1075 * and indices mean depends on the intrinsic and is documented with the
1076 * intrinsic declaration in nir_intrinsics.h. Intrinsics and texture
1077 * instructions are the only types of instruction that can operate on
1078 * variables.
1079 */
1080 typedef struct {
1081 nir_instr instr;
1082
1083 nir_intrinsic_op intrinsic;
1084
1085 nir_dest dest;
1086
1087 /** number of components if this is a vectorized intrinsic
1088 *
1089 * Similarly to ALU operations, some intrinsics are vectorized.
1090 * An intrinsic is vectorized if nir_intrinsic_infos.dest_components == 0.
1091 * For vectorized intrinsics, the num_components field specifies the
1092 * number of destination components and the number of source components
1093 * for all sources with nir_intrinsic_infos.src_components[i] == 0.
1094 */
1095 uint8_t num_components;
1096
1097 int const_index[NIR_INTRINSIC_MAX_CONST_INDEX];
1098
1099 nir_src src[];
1100 } nir_intrinsic_instr;
1101
1102 static inline nir_variable *
1103 nir_intrinsic_get_var(nir_intrinsic_instr *intrin, unsigned i)
1104 {
1105 return nir_deref_instr_get_variable(nir_src_as_deref(intrin->src[i]));
1106 }
1107
1108 /**
1109 * \name NIR intrinsics semantic flags
1110 *
1111 * information about what the compiler can do with the intrinsics.
1112 *
1113 * \sa nir_intrinsic_info::flags
1114 */
1115 typedef enum {
1116 /**
1117 * whether the intrinsic can be safely eliminated if none of its output
1118 * value is not being used.
1119 */
1120 NIR_INTRINSIC_CAN_ELIMINATE = (1 << 0),
1121
1122 /**
1123 * Whether the intrinsic can be reordered with respect to any other
1124 * intrinsic, i.e. whether the only reordering dependencies of the
1125 * intrinsic are due to the register reads/writes.
1126 */
1127 NIR_INTRINSIC_CAN_REORDER = (1 << 1),
1128 } nir_intrinsic_semantic_flag;
1129
1130 /**
1131 * \name NIR intrinsics const-index flag
1132 *
1133 * Indicates the usage of a const_index slot.
1134 *
1135 * \sa nir_intrinsic_info::index_map
1136 */
1137 typedef enum {
1138 /**
1139 * Generally instructions that take a offset src argument, can encode
1140 * a constant 'base' value which is added to the offset.
1141 */
1142 NIR_INTRINSIC_BASE = 1,
1143
1144 /**
1145 * For store instructions, a writemask for the store.
1146 */
1147 NIR_INTRINSIC_WRMASK = 2,
1148
1149 /**
1150 * The stream-id for GS emit_vertex/end_primitive intrinsics.
1151 */
1152 NIR_INTRINSIC_STREAM_ID = 3,
1153
1154 /**
1155 * The clip-plane id for load_user_clip_plane intrinsic.
1156 */
1157 NIR_INTRINSIC_UCP_ID = 4,
1158
1159 /**
1160 * The amount of data, starting from BASE, that this instruction may
1161 * access. This is used to provide bounds if the offset is not constant.
1162 */
1163 NIR_INTRINSIC_RANGE = 5,
1164
1165 /**
1166 * The Vulkan descriptor set for vulkan_resource_index intrinsic.
1167 */
1168 NIR_INTRINSIC_DESC_SET = 6,
1169
1170 /**
1171 * The Vulkan descriptor set binding for vulkan_resource_index intrinsic.
1172 */
1173 NIR_INTRINSIC_BINDING = 7,
1174
1175 /**
1176 * Component offset.
1177 */
1178 NIR_INTRINSIC_COMPONENT = 8,
1179
1180 /**
1181 * Interpolation mode (only meaningful for FS inputs).
1182 */
1183 NIR_INTRINSIC_INTERP_MODE = 9,
1184
1185 /**
1186 * A binary nir_op to use when performing a reduction or scan operation
1187 */
1188 NIR_INTRINSIC_REDUCTION_OP = 10,
1189
1190 /**
1191 * Cluster size for reduction operations
1192 */
1193 NIR_INTRINSIC_CLUSTER_SIZE = 11,
1194
1195 /**
1196 * Parameter index for a load_param intrinsic
1197 */
1198 NIR_INTRINSIC_PARAM_IDX = 12,
1199
1200 /**
1201 * Image dimensionality for image intrinsics
1202 *
1203 * One of GLSL_SAMPLER_DIM_*
1204 */
1205 NIR_INTRINSIC_IMAGE_DIM = 13,
1206
1207 /**
1208 * Non-zero if we are accessing an array image
1209 */
1210 NIR_INTRINSIC_IMAGE_ARRAY = 14,
1211
1212 /**
1213 * Image format for image intrinsics
1214 */
1215 NIR_INTRINSIC_FORMAT = 15,
1216
1217 /**
1218 * Access qualifiers for image intrinsics
1219 */
1220 NIR_INTRINSIC_ACCESS = 16,
1221
1222 NIR_INTRINSIC_NUM_INDEX_FLAGS,
1223
1224 } nir_intrinsic_index_flag;
1225
1226 #define NIR_INTRINSIC_MAX_INPUTS 5
1227
1228 typedef struct {
1229 const char *name;
1230
1231 unsigned num_srcs; /** < number of register/SSA inputs */
1232
1233 /** number of components of each input register
1234 *
1235 * If this value is 0, the number of components is given by the
1236 * num_components field of nir_intrinsic_instr.
1237 */
1238 unsigned src_components[NIR_INTRINSIC_MAX_INPUTS];
1239
1240 bool has_dest;
1241
1242 /** number of components of the output register
1243 *
1244 * If this value is 0, the number of components is given by the
1245 * num_components field of nir_intrinsic_instr.
1246 */
1247 unsigned dest_components;
1248
1249 /** the number of constant indices used by the intrinsic */
1250 unsigned num_indices;
1251
1252 /** indicates the usage of intr->const_index[n] */
1253 unsigned index_map[NIR_INTRINSIC_NUM_INDEX_FLAGS];
1254
1255 /** semantic flags for calls to this intrinsic */
1256 nir_intrinsic_semantic_flag flags;
1257 } nir_intrinsic_info;
1258
1259 extern const nir_intrinsic_info nir_intrinsic_infos[nir_num_intrinsics];
1260
1261 static inline unsigned
1262 nir_intrinsic_src_components(nir_intrinsic_instr *intr, unsigned srcn)
1263 {
1264 const nir_intrinsic_info *info = &nir_intrinsic_infos[intr->intrinsic];
1265 assert(srcn < info->num_srcs);
1266 if (info->src_components[srcn])
1267 return info->src_components[srcn];
1268 else
1269 return intr->num_components;
1270 }
1271
1272 static inline unsigned
1273 nir_intrinsic_dest_components(nir_intrinsic_instr *intr)
1274 {
1275 const nir_intrinsic_info *info = &nir_intrinsic_infos[intr->intrinsic];
1276 if (!info->has_dest)
1277 return 0;
1278 else if (info->dest_components)
1279 return info->dest_components;
1280 else
1281 return intr->num_components;
1282 }
1283
1284 #define INTRINSIC_IDX_ACCESSORS(name, flag, type) \
1285 static inline type \
1286 nir_intrinsic_##name(const nir_intrinsic_instr *instr) \
1287 { \
1288 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic]; \
1289 assert(info->index_map[NIR_INTRINSIC_##flag] > 0); \
1290 return (type)instr->const_index[info->index_map[NIR_INTRINSIC_##flag] - 1]; \
1291 } \
1292 static inline void \
1293 nir_intrinsic_set_##name(nir_intrinsic_instr *instr, type val) \
1294 { \
1295 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic]; \
1296 assert(info->index_map[NIR_INTRINSIC_##flag] > 0); \
1297 instr->const_index[info->index_map[NIR_INTRINSIC_##flag] - 1] = val; \
1298 }
1299
1300 INTRINSIC_IDX_ACCESSORS(write_mask, WRMASK, unsigned)
1301 INTRINSIC_IDX_ACCESSORS(base, BASE, int)
1302 INTRINSIC_IDX_ACCESSORS(stream_id, STREAM_ID, unsigned)
1303 INTRINSIC_IDX_ACCESSORS(ucp_id, UCP_ID, unsigned)
1304 INTRINSIC_IDX_ACCESSORS(range, RANGE, unsigned)
1305 INTRINSIC_IDX_ACCESSORS(desc_set, DESC_SET, unsigned)
1306 INTRINSIC_IDX_ACCESSORS(binding, BINDING, unsigned)
1307 INTRINSIC_IDX_ACCESSORS(component, COMPONENT, unsigned)
1308 INTRINSIC_IDX_ACCESSORS(interp_mode, INTERP_MODE, unsigned)
1309 INTRINSIC_IDX_ACCESSORS(reduction_op, REDUCTION_OP, unsigned)
1310 INTRINSIC_IDX_ACCESSORS(cluster_size, CLUSTER_SIZE, unsigned)
1311 INTRINSIC_IDX_ACCESSORS(param_idx, PARAM_IDX, unsigned)
1312 INTRINSIC_IDX_ACCESSORS(image_dim, IMAGE_DIM, enum glsl_sampler_dim)
1313 INTRINSIC_IDX_ACCESSORS(image_array, IMAGE_ARRAY, bool)
1314 INTRINSIC_IDX_ACCESSORS(access, ACCESS, enum gl_access_qualifier)
1315 INTRINSIC_IDX_ACCESSORS(format, FORMAT, unsigned)
1316
1317 /**
1318 * \group texture information
1319 *
1320 * This gives semantic information about textures which is useful to the
1321 * frontend, the backend, and lowering passes, but not the optimizer.
1322 */
1323
1324 typedef enum {
1325 nir_tex_src_coord,
1326 nir_tex_src_projector,
1327 nir_tex_src_comparator, /* shadow comparator */
1328 nir_tex_src_offset,
1329 nir_tex_src_bias,
1330 nir_tex_src_lod,
1331 nir_tex_src_ms_index, /* MSAA sample index */
1332 nir_tex_src_ms_mcs, /* MSAA compression value */
1333 nir_tex_src_ddx,
1334 nir_tex_src_ddy,
1335 nir_tex_src_texture_deref, /* < deref pointing to the texture */
1336 nir_tex_src_sampler_deref, /* < deref pointing to the sampler */
1337 nir_tex_src_texture_offset, /* < dynamically uniform indirect offset */
1338 nir_tex_src_sampler_offset, /* < dynamically uniform indirect offset */
1339 nir_tex_src_plane, /* < selects plane for planar textures */
1340 nir_num_tex_src_types
1341 } nir_tex_src_type;
1342
1343 typedef struct {
1344 nir_src src;
1345 nir_tex_src_type src_type;
1346 } nir_tex_src;
1347
1348 typedef enum {
1349 nir_texop_tex, /**< Regular texture look-up */
1350 nir_texop_txb, /**< Texture look-up with LOD bias */
1351 nir_texop_txl, /**< Texture look-up with explicit LOD */
1352 nir_texop_txd, /**< Texture look-up with partial derivatives */
1353 nir_texop_txf, /**< Texel fetch with explicit LOD */
1354 nir_texop_txf_ms, /**< Multisample texture fetch */
1355 nir_texop_txf_ms_mcs, /**< Multisample compression value fetch */
1356 nir_texop_txs, /**< Texture size */
1357 nir_texop_lod, /**< Texture lod query */
1358 nir_texop_tg4, /**< Texture gather */
1359 nir_texop_query_levels, /**< Texture levels query */
1360 nir_texop_texture_samples, /**< Texture samples query */
1361 nir_texop_samples_identical, /**< Query whether all samples are definitely
1362 * identical.
1363 */
1364 } nir_texop;
1365
1366 typedef struct {
1367 nir_instr instr;
1368
1369 enum glsl_sampler_dim sampler_dim;
1370 nir_alu_type dest_type;
1371
1372 nir_texop op;
1373 nir_dest dest;
1374 nir_tex_src *src;
1375 unsigned num_srcs, coord_components;
1376 bool is_array, is_shadow;
1377
1378 /**
1379 * If is_shadow is true, whether this is the old-style shadow that outputs 4
1380 * components or the new-style shadow that outputs 1 component.
1381 */
1382 bool is_new_style_shadow;
1383
1384 /* gather component selector */
1385 unsigned component : 2;
1386
1387 /** The texture index
1388 *
1389 * If this texture instruction has a nir_tex_src_texture_offset source,
1390 * then the texture index is given by texture_index + texture_offset.
1391 */
1392 unsigned texture_index;
1393
1394 /** The size of the texture array or 0 if it's not an array */
1395 unsigned texture_array_size;
1396
1397 /** The sampler index
1398 *
1399 * The following operations do not require a sampler and, as such, this
1400 * field should be ignored:
1401 * - nir_texop_txf
1402 * - nir_texop_txf_ms
1403 * - nir_texop_txs
1404 * - nir_texop_lod
1405 * - nir_texop_query_levels
1406 * - nir_texop_texture_samples
1407 * - nir_texop_samples_identical
1408 *
1409 * If this texture instruction has a nir_tex_src_sampler_offset source,
1410 * then the sampler index is given by sampler_index + sampler_offset.
1411 */
1412 unsigned sampler_index;
1413 } nir_tex_instr;
1414
1415 static inline unsigned
1416 nir_tex_instr_dest_size(const nir_tex_instr *instr)
1417 {
1418 switch (instr->op) {
1419 case nir_texop_txs: {
1420 unsigned ret;
1421 switch (instr->sampler_dim) {
1422 case GLSL_SAMPLER_DIM_1D:
1423 case GLSL_SAMPLER_DIM_BUF:
1424 ret = 1;
1425 break;
1426 case GLSL_SAMPLER_DIM_2D:
1427 case GLSL_SAMPLER_DIM_CUBE:
1428 case GLSL_SAMPLER_DIM_MS:
1429 case GLSL_SAMPLER_DIM_RECT:
1430 case GLSL_SAMPLER_DIM_EXTERNAL:
1431 case GLSL_SAMPLER_DIM_SUBPASS:
1432 ret = 2;
1433 break;
1434 case GLSL_SAMPLER_DIM_3D:
1435 ret = 3;
1436 break;
1437 default:
1438 unreachable("not reached");
1439 }
1440 if (instr->is_array)
1441 ret++;
1442 return ret;
1443 }
1444
1445 case nir_texop_lod:
1446 return 2;
1447
1448 case nir_texop_texture_samples:
1449 case nir_texop_query_levels:
1450 case nir_texop_samples_identical:
1451 return 1;
1452
1453 default:
1454 if (instr->is_shadow && instr->is_new_style_shadow)
1455 return 1;
1456
1457 return 4;
1458 }
1459 }
1460
1461 /* Returns true if this texture operation queries something about the texture
1462 * rather than actually sampling it.
1463 */
1464 static inline bool
1465 nir_tex_instr_is_query(const nir_tex_instr *instr)
1466 {
1467 switch (instr->op) {
1468 case nir_texop_txs:
1469 case nir_texop_lod:
1470 case nir_texop_texture_samples:
1471 case nir_texop_query_levels:
1472 case nir_texop_txf_ms_mcs:
1473 return true;
1474 case nir_texop_tex:
1475 case nir_texop_txb:
1476 case nir_texop_txl:
1477 case nir_texop_txd:
1478 case nir_texop_txf:
1479 case nir_texop_txf_ms:
1480 case nir_texop_tg4:
1481 return false;
1482 default:
1483 unreachable("Invalid texture opcode");
1484 }
1485 }
1486
1487 static inline bool
1488 nir_alu_instr_is_comparison(const nir_alu_instr *instr)
1489 {
1490 switch (instr->op) {
1491 case nir_op_flt:
1492 case nir_op_fge:
1493 case nir_op_feq:
1494 case nir_op_fne:
1495 case nir_op_ilt:
1496 case nir_op_ult:
1497 case nir_op_ige:
1498 case nir_op_uge:
1499 case nir_op_ieq:
1500 case nir_op_ine:
1501 case nir_op_i2b:
1502 case nir_op_f2b:
1503 case nir_op_inot:
1504 case nir_op_fnot:
1505 return true;
1506 default:
1507 return false;
1508 }
1509 }
1510
1511 static inline nir_alu_type
1512 nir_tex_instr_src_type(const nir_tex_instr *instr, unsigned src)
1513 {
1514 switch (instr->src[src].src_type) {
1515 case nir_tex_src_coord:
1516 switch (instr->op) {
1517 case nir_texop_txf:
1518 case nir_texop_txf_ms:
1519 case nir_texop_txf_ms_mcs:
1520 case nir_texop_samples_identical:
1521 return nir_type_int;
1522
1523 default:
1524 return nir_type_float;
1525 }
1526
1527 case nir_tex_src_lod:
1528 switch (instr->op) {
1529 case nir_texop_txs:
1530 case nir_texop_txf:
1531 return nir_type_int;
1532
1533 default:
1534 return nir_type_float;
1535 }
1536
1537 case nir_tex_src_projector:
1538 case nir_tex_src_comparator:
1539 case nir_tex_src_bias:
1540 case nir_tex_src_ddx:
1541 case nir_tex_src_ddy:
1542 return nir_type_float;
1543
1544 case nir_tex_src_offset:
1545 case nir_tex_src_ms_index:
1546 case nir_tex_src_texture_offset:
1547 case nir_tex_src_sampler_offset:
1548 return nir_type_int;
1549
1550 default:
1551 unreachable("Invalid texture source type");
1552 }
1553 }
1554
1555 static inline unsigned
1556 nir_tex_instr_src_size(const nir_tex_instr *instr, unsigned src)
1557 {
1558 if (instr->src[src].src_type == nir_tex_src_coord)
1559 return instr->coord_components;
1560
1561 /* The MCS value is expected to be a vec4 returned by a txf_ms_mcs */
1562 if (instr->src[src].src_type == nir_tex_src_ms_mcs)
1563 return 4;
1564
1565 if (instr->src[src].src_type == nir_tex_src_ddx ||
1566 instr->src[src].src_type == nir_tex_src_ddy) {
1567 if (instr->is_array)
1568 return instr->coord_components - 1;
1569 else
1570 return instr->coord_components;
1571 }
1572
1573 /* Usual APIs don't allow cube + offset, but we allow it, with 2 coords for
1574 * the offset, since a cube maps to a single face.
1575 */
1576 if (instr->src[src].src_type == nir_tex_src_offset) {
1577 if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE)
1578 return 2;
1579 else if (instr->is_array)
1580 return instr->coord_components - 1;
1581 else
1582 return instr->coord_components;
1583 }
1584
1585 return 1;
1586 }
1587
1588 static inline int
1589 nir_tex_instr_src_index(const nir_tex_instr *instr, nir_tex_src_type type)
1590 {
1591 for (unsigned i = 0; i < instr->num_srcs; i++)
1592 if (instr->src[i].src_type == type)
1593 return (int) i;
1594
1595 return -1;
1596 }
1597
1598 void nir_tex_instr_add_src(nir_tex_instr *tex,
1599 nir_tex_src_type src_type,
1600 nir_src src);
1601
1602 void nir_tex_instr_remove_src(nir_tex_instr *tex, unsigned src_idx);
1603
1604 typedef struct {
1605 nir_instr instr;
1606
1607 nir_const_value value;
1608
1609 nir_ssa_def def;
1610 } nir_load_const_instr;
1611
1612 typedef enum {
1613 nir_jump_return,
1614 nir_jump_break,
1615 nir_jump_continue,
1616 } nir_jump_type;
1617
1618 typedef struct {
1619 nir_instr instr;
1620 nir_jump_type type;
1621 } nir_jump_instr;
1622
1623 /* creates a new SSA variable in an undefined state */
1624
1625 typedef struct {
1626 nir_instr instr;
1627 nir_ssa_def def;
1628 } nir_ssa_undef_instr;
1629
1630 typedef struct {
1631 struct exec_node node;
1632
1633 /* The predecessor block corresponding to this source */
1634 struct nir_block *pred;
1635
1636 nir_src src;
1637 } nir_phi_src;
1638
1639 #define nir_foreach_phi_src(phi_src, phi) \
1640 foreach_list_typed(nir_phi_src, phi_src, node, &(phi)->srcs)
1641 #define nir_foreach_phi_src_safe(phi_src, phi) \
1642 foreach_list_typed_safe(nir_phi_src, phi_src, node, &(phi)->srcs)
1643
1644 typedef struct {
1645 nir_instr instr;
1646
1647 struct exec_list srcs; /** < list of nir_phi_src */
1648
1649 nir_dest dest;
1650 } nir_phi_instr;
1651
1652 typedef struct {
1653 struct exec_node node;
1654 nir_src src;
1655 nir_dest dest;
1656 } nir_parallel_copy_entry;
1657
1658 #define nir_foreach_parallel_copy_entry(entry, pcopy) \
1659 foreach_list_typed(nir_parallel_copy_entry, entry, node, &(pcopy)->entries)
1660
1661 typedef struct {
1662 nir_instr instr;
1663
1664 /* A list of nir_parallel_copy_entrys. The sources of all of the
1665 * entries are copied to the corresponding destinations "in parallel".
1666 * In other words, if we have two entries: a -> b and b -> a, the values
1667 * get swapped.
1668 */
1669 struct exec_list entries;
1670 } nir_parallel_copy_instr;
1671
1672 NIR_DEFINE_CAST(nir_instr_as_alu, nir_instr, nir_alu_instr, instr,
1673 type, nir_instr_type_alu)
1674 NIR_DEFINE_CAST(nir_instr_as_call, nir_instr, nir_call_instr, instr,
1675 type, nir_instr_type_call)
1676 NIR_DEFINE_CAST(nir_instr_as_jump, nir_instr, nir_jump_instr, instr,
1677 type, nir_instr_type_jump)
1678 NIR_DEFINE_CAST(nir_instr_as_tex, nir_instr, nir_tex_instr, instr,
1679 type, nir_instr_type_tex)
1680 NIR_DEFINE_CAST(nir_instr_as_intrinsic, nir_instr, nir_intrinsic_instr, instr,
1681 type, nir_instr_type_intrinsic)
1682 NIR_DEFINE_CAST(nir_instr_as_load_const, nir_instr, nir_load_const_instr, instr,
1683 type, nir_instr_type_load_const)
1684 NIR_DEFINE_CAST(nir_instr_as_ssa_undef, nir_instr, nir_ssa_undef_instr, instr,
1685 type, nir_instr_type_ssa_undef)
1686 NIR_DEFINE_CAST(nir_instr_as_phi, nir_instr, nir_phi_instr, instr,
1687 type, nir_instr_type_phi)
1688 NIR_DEFINE_CAST(nir_instr_as_parallel_copy, nir_instr,
1689 nir_parallel_copy_instr, instr,
1690 type, nir_instr_type_parallel_copy)
1691
1692 /*
1693 * Control flow
1694 *
1695 * Control flow consists of a tree of control flow nodes, which include
1696 * if-statements and loops. The leaves of the tree are basic blocks, lists of
1697 * instructions that always run start-to-finish. Each basic block also keeps
1698 * track of its successors (blocks which may run immediately after the current
1699 * block) and predecessors (blocks which could have run immediately before the
1700 * current block). Each function also has a start block and an end block which
1701 * all return statements point to (which is always empty). Together, all the
1702 * blocks with their predecessors and successors make up the control flow
1703 * graph (CFG) of the function. There are helpers that modify the tree of
1704 * control flow nodes while modifying the CFG appropriately; these should be
1705 * used instead of modifying the tree directly.
1706 */
1707
1708 typedef enum {
1709 nir_cf_node_block,
1710 nir_cf_node_if,
1711 nir_cf_node_loop,
1712 nir_cf_node_function
1713 } nir_cf_node_type;
1714
1715 typedef struct nir_cf_node {
1716 struct exec_node node;
1717 nir_cf_node_type type;
1718 struct nir_cf_node *parent;
1719 } nir_cf_node;
1720
1721 typedef struct nir_block {
1722 nir_cf_node cf_node;
1723
1724 struct exec_list instr_list; /** < list of nir_instr */
1725
1726 /** generic block index; generated by nir_index_blocks */
1727 unsigned index;
1728
1729 /*
1730 * Each block can only have up to 2 successors, so we put them in a simple
1731 * array - no need for anything more complicated.
1732 */
1733 struct nir_block *successors[2];
1734
1735 /* Set of nir_block predecessors in the CFG */
1736 struct set *predecessors;
1737
1738 /*
1739 * this node's immediate dominator in the dominance tree - set to NULL for
1740 * the start block.
1741 */
1742 struct nir_block *imm_dom;
1743
1744 /* This node's children in the dominance tree */
1745 unsigned num_dom_children;
1746 struct nir_block **dom_children;
1747
1748 /* Set of nir_blocks on the dominance frontier of this block */
1749 struct set *dom_frontier;
1750
1751 /*
1752 * These two indices have the property that dom_{pre,post}_index for each
1753 * child of this block in the dominance tree will always be between
1754 * dom_pre_index and dom_post_index for this block, which makes testing if
1755 * a given block is dominated by another block an O(1) operation.
1756 */
1757 unsigned dom_pre_index, dom_post_index;
1758
1759 /* live in and out for this block; used for liveness analysis */
1760 BITSET_WORD *live_in;
1761 BITSET_WORD *live_out;
1762 } nir_block;
1763
1764 static inline nir_instr *
1765 nir_block_first_instr(nir_block *block)
1766 {
1767 struct exec_node *head = exec_list_get_head(&block->instr_list);
1768 return exec_node_data(nir_instr, head, node);
1769 }
1770
1771 static inline nir_instr *
1772 nir_block_last_instr(nir_block *block)
1773 {
1774 struct exec_node *tail = exec_list_get_tail(&block->instr_list);
1775 return exec_node_data(nir_instr, tail, node);
1776 }
1777
1778 static inline bool
1779 nir_block_ends_in_jump(nir_block *block)
1780 {
1781 return !exec_list_is_empty(&block->instr_list) &&
1782 nir_block_last_instr(block)->type == nir_instr_type_jump;
1783 }
1784
1785 #define nir_foreach_instr(instr, block) \
1786 foreach_list_typed(nir_instr, instr, node, &(block)->instr_list)
1787 #define nir_foreach_instr_reverse(instr, block) \
1788 foreach_list_typed_reverse(nir_instr, instr, node, &(block)->instr_list)
1789 #define nir_foreach_instr_safe(instr, block) \
1790 foreach_list_typed_safe(nir_instr, instr, node, &(block)->instr_list)
1791 #define nir_foreach_instr_reverse_safe(instr, block) \
1792 foreach_list_typed_reverse_safe(nir_instr, instr, node, &(block)->instr_list)
1793
1794 typedef struct nir_if {
1795 nir_cf_node cf_node;
1796 nir_src condition;
1797
1798 struct exec_list then_list; /** < list of nir_cf_node */
1799 struct exec_list else_list; /** < list of nir_cf_node */
1800 } nir_if;
1801
1802 typedef struct {
1803 nir_if *nif;
1804
1805 nir_instr *conditional_instr;
1806
1807 nir_block *break_block;
1808 nir_block *continue_from_block;
1809
1810 bool continue_from_then;
1811
1812 struct list_head loop_terminator_link;
1813 } nir_loop_terminator;
1814
1815 typedef struct {
1816 /* Number of instructions in the loop */
1817 unsigned num_instructions;
1818
1819 /* How many times the loop is run (if known) */
1820 unsigned trip_count;
1821 bool is_trip_count_known;
1822
1823 /* Unroll the loop regardless of its size */
1824 bool force_unroll;
1825
1826 /* Does the loop contain complex loop terminators, continues or other
1827 * complex behaviours? If this is true we can't rely on
1828 * loop_terminator_list to be complete or accurate.
1829 */
1830 bool complex_loop;
1831
1832 nir_loop_terminator *limiting_terminator;
1833
1834 /* A list of loop_terminators terminating this loop. */
1835 struct list_head loop_terminator_list;
1836 } nir_loop_info;
1837
1838 typedef struct {
1839 nir_cf_node cf_node;
1840
1841 struct exec_list body; /** < list of nir_cf_node */
1842
1843 nir_loop_info *info;
1844 } nir_loop;
1845
1846 /**
1847 * Various bits of metadata that can may be created or required by
1848 * optimization and analysis passes
1849 */
1850 typedef enum {
1851 nir_metadata_none = 0x0,
1852 nir_metadata_block_index = 0x1,
1853 nir_metadata_dominance = 0x2,
1854 nir_metadata_live_ssa_defs = 0x4,
1855 nir_metadata_not_properly_reset = 0x8,
1856 nir_metadata_loop_analysis = 0x10,
1857 } nir_metadata;
1858
1859 typedef struct {
1860 nir_cf_node cf_node;
1861
1862 /** pointer to the function of which this is an implementation */
1863 struct nir_function *function;
1864
1865 struct exec_list body; /** < list of nir_cf_node */
1866
1867 nir_block *end_block;
1868
1869 /** list for all local variables in the function */
1870 struct exec_list locals;
1871
1872 /** list of local registers in the function */
1873 struct exec_list registers;
1874
1875 /** next available local register index */
1876 unsigned reg_alloc;
1877
1878 /** next available SSA value index */
1879 unsigned ssa_alloc;
1880
1881 /* total number of basic blocks, only valid when block_index_dirty = false */
1882 unsigned num_blocks;
1883
1884 nir_metadata valid_metadata;
1885 } nir_function_impl;
1886
1887 ATTRIBUTE_RETURNS_NONNULL static inline nir_block *
1888 nir_start_block(nir_function_impl *impl)
1889 {
1890 return (nir_block *) impl->body.head_sentinel.next;
1891 }
1892
1893 ATTRIBUTE_RETURNS_NONNULL static inline nir_block *
1894 nir_impl_last_block(nir_function_impl *impl)
1895 {
1896 return (nir_block *) impl->body.tail_sentinel.prev;
1897 }
1898
1899 static inline nir_cf_node *
1900 nir_cf_node_next(nir_cf_node *node)
1901 {
1902 struct exec_node *next = exec_node_get_next(&node->node);
1903 if (exec_node_is_tail_sentinel(next))
1904 return NULL;
1905 else
1906 return exec_node_data(nir_cf_node, next, node);
1907 }
1908
1909 static inline nir_cf_node *
1910 nir_cf_node_prev(nir_cf_node *node)
1911 {
1912 struct exec_node *prev = exec_node_get_prev(&node->node);
1913 if (exec_node_is_head_sentinel(prev))
1914 return NULL;
1915 else
1916 return exec_node_data(nir_cf_node, prev, node);
1917 }
1918
1919 static inline bool
1920 nir_cf_node_is_first(const nir_cf_node *node)
1921 {
1922 return exec_node_is_head_sentinel(node->node.prev);
1923 }
1924
1925 static inline bool
1926 nir_cf_node_is_last(const nir_cf_node *node)
1927 {
1928 return exec_node_is_tail_sentinel(node->node.next);
1929 }
1930
1931 NIR_DEFINE_CAST(nir_cf_node_as_block, nir_cf_node, nir_block, cf_node,
1932 type, nir_cf_node_block)
1933 NIR_DEFINE_CAST(nir_cf_node_as_if, nir_cf_node, nir_if, cf_node,
1934 type, nir_cf_node_if)
1935 NIR_DEFINE_CAST(nir_cf_node_as_loop, nir_cf_node, nir_loop, cf_node,
1936 type, nir_cf_node_loop)
1937 NIR_DEFINE_CAST(nir_cf_node_as_function, nir_cf_node,
1938 nir_function_impl, cf_node, type, nir_cf_node_function)
1939
1940 static inline nir_block *
1941 nir_if_first_then_block(nir_if *if_stmt)
1942 {
1943 struct exec_node *head = exec_list_get_head(&if_stmt->then_list);
1944 return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
1945 }
1946
1947 static inline nir_block *
1948 nir_if_last_then_block(nir_if *if_stmt)
1949 {
1950 struct exec_node *tail = exec_list_get_tail(&if_stmt->then_list);
1951 return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
1952 }
1953
1954 static inline nir_block *
1955 nir_if_first_else_block(nir_if *if_stmt)
1956 {
1957 struct exec_node *head = exec_list_get_head(&if_stmt->else_list);
1958 return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
1959 }
1960
1961 static inline nir_block *
1962 nir_if_last_else_block(nir_if *if_stmt)
1963 {
1964 struct exec_node *tail = exec_list_get_tail(&if_stmt->else_list);
1965 return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
1966 }
1967
1968 static inline nir_block *
1969 nir_loop_first_block(nir_loop *loop)
1970 {
1971 struct exec_node *head = exec_list_get_head(&loop->body);
1972 return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
1973 }
1974
1975 static inline nir_block *
1976 nir_loop_last_block(nir_loop *loop)
1977 {
1978 struct exec_node *tail = exec_list_get_tail(&loop->body);
1979 return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
1980 }
1981
1982 typedef struct {
1983 uint8_t num_components;
1984 uint8_t bit_size;
1985 } nir_parameter;
1986
1987 typedef struct nir_function {
1988 struct exec_node node;
1989
1990 const char *name;
1991 struct nir_shader *shader;
1992
1993 unsigned num_params;
1994 nir_parameter *params;
1995
1996 /** The implementation of this function.
1997 *
1998 * If the function is only declared and not implemented, this is NULL.
1999 */
2000 nir_function_impl *impl;
2001 } nir_function;
2002
2003 typedef struct nir_shader_compiler_options {
2004 bool lower_fdiv;
2005 bool lower_ffma;
2006 bool fuse_ffma;
2007 bool lower_flrp32;
2008 /** Lowers flrp when it does not support doubles */
2009 bool lower_flrp64;
2010 bool lower_fpow;
2011 bool lower_fsat;
2012 bool lower_fsqrt;
2013 bool lower_fmod32;
2014 bool lower_fmod64;
2015 /** Lowers ibitfield_extract/ubitfield_extract to ibfe/ubfe. */
2016 bool lower_bitfield_extract;
2017 /** Lowers ibitfield_extract/ubitfield_extract to bfm, compares, shifts. */
2018 bool lower_bitfield_extract_to_shifts;
2019 /** Lowers bitfield_insert to bfi/bfm */
2020 bool lower_bitfield_insert;
2021 /** Lowers bitfield_insert to bfm, compares, and shifts. */
2022 bool lower_bitfield_insert_to_shifts;
2023 /** Lowers bitfield_reverse to shifts. */
2024 bool lower_bitfield_reverse;
2025 /** Lowers bit_count to shifts. */
2026 bool lower_bit_count;
2027 /** Lowers bfm to shifts and subtracts. */
2028 bool lower_bfm;
2029 /** Lowers ifind_msb to compare and ufind_msb */
2030 bool lower_ifind_msb;
2031 /** Lowers find_lsb to ufind_msb and logic ops */
2032 bool lower_find_lsb;
2033 bool lower_uadd_carry;
2034 bool lower_usub_borrow;
2035 /** Lowers imul_high/umul_high to 16-bit multiplies and carry operations. */
2036 bool lower_mul_high;
2037 /** lowers fneg and ineg to fsub and isub. */
2038 bool lower_negate;
2039 /** lowers fsub and isub to fadd+fneg and iadd+ineg. */
2040 bool lower_sub;
2041
2042 /* lower {slt,sge,seq,sne} to {flt,fge,feq,fne} + b2f: */
2043 bool lower_scmp;
2044
2045 /** enables rules to lower idiv by power-of-two: */
2046 bool lower_idiv;
2047
2048 /* lower b2f to iand */
2049 bool lower_b2f;
2050
2051 /* Does the native fdot instruction replicate its result for four
2052 * components? If so, then opt_algebraic_late will turn all fdotN
2053 * instructions into fdot_replicatedN instructions.
2054 */
2055 bool fdot_replicates;
2056
2057 /** lowers ffract to fsub+ffloor: */
2058 bool lower_ffract;
2059
2060 bool lower_ldexp;
2061
2062 bool lower_pack_half_2x16;
2063 bool lower_pack_unorm_2x16;
2064 bool lower_pack_snorm_2x16;
2065 bool lower_pack_unorm_4x8;
2066 bool lower_pack_snorm_4x8;
2067 bool lower_unpack_half_2x16;
2068 bool lower_unpack_unorm_2x16;
2069 bool lower_unpack_snorm_2x16;
2070 bool lower_unpack_unorm_4x8;
2071 bool lower_unpack_snorm_4x8;
2072
2073 bool lower_extract_byte;
2074 bool lower_extract_word;
2075
2076 bool lower_all_io_to_temps;
2077
2078 /**
2079 * Does the driver support real 32-bit integers? (Otherwise, integers
2080 * are simulated by floats.)
2081 */
2082 bool native_integers;
2083
2084 /* Indicates that the driver only has zero-based vertex id */
2085 bool vertex_id_zero_based;
2086
2087 /**
2088 * If enabled, gl_BaseVertex will be lowered as:
2089 * is_indexed_draw (~0/0) & firstvertex
2090 */
2091 bool lower_base_vertex;
2092
2093 /**
2094 * If enabled, gl_HelperInvocation will be lowered as:
2095 *
2096 * !((1 << sample_id) & sample_mask_in))
2097 *
2098 * This depends on some possibly hw implementation details, which may
2099 * not be true for all hw. In particular that the FS is only executed
2100 * for covered samples or for helper invocations. So, do not blindly
2101 * enable this option.
2102 *
2103 * Note: See also issue #22 in ARB_shader_image_load_store
2104 */
2105 bool lower_helper_invocation;
2106
2107 bool lower_cs_local_index_from_id;
2108
2109 bool lower_device_index_to_zero;
2110
2111 /* Set if nir_lower_wpos_ytransform() should also invert gl_PointCoord. */
2112 bool lower_wpos_pntc;
2113
2114 /**
2115 * Should nir_lower_io() create load_interpolated_input intrinsics?
2116 *
2117 * If not, it generates regular load_input intrinsics and interpolation
2118 * information must be inferred from the list of input nir_variables.
2119 */
2120 bool use_interpolated_input_intrinsics;
2121
2122 unsigned max_unroll_iterations;
2123 } nir_shader_compiler_options;
2124
2125 typedef struct nir_shader {
2126 /** list of uniforms (nir_variable) */
2127 struct exec_list uniforms;
2128
2129 /** list of inputs (nir_variable) */
2130 struct exec_list inputs;
2131
2132 /** list of outputs (nir_variable) */
2133 struct exec_list outputs;
2134
2135 /** list of shared compute variables (nir_variable) */
2136 struct exec_list shared;
2137
2138 /** Set of driver-specific options for the shader.
2139 *
2140 * The memory for the options is expected to be kept in a single static
2141 * copy by the driver.
2142 */
2143 const struct nir_shader_compiler_options *options;
2144
2145 /** Various bits of compile-time information about a given shader */
2146 struct shader_info info;
2147
2148 /** list of global variables in the shader (nir_variable) */
2149 struct exec_list globals;
2150
2151 /** list of system value variables in the shader (nir_variable) */
2152 struct exec_list system_values;
2153
2154 struct exec_list functions; /** < list of nir_function */
2155
2156 /** list of global register in the shader */
2157 struct exec_list registers;
2158
2159 /** next available global register index */
2160 unsigned reg_alloc;
2161
2162 /**
2163 * the highest index a load_input_*, load_uniform_*, etc. intrinsic can
2164 * access plus one
2165 */
2166 unsigned num_inputs, num_uniforms, num_outputs, num_shared;
2167
2168 /** Constant data associated with this shader.
2169 *
2170 * Constant data is loaded through load_constant intrinsics. See also
2171 * nir_opt_large_constants.
2172 */
2173 void *constant_data;
2174 unsigned constant_data_size;
2175 } nir_shader;
2176
2177 static inline nir_function_impl *
2178 nir_shader_get_entrypoint(nir_shader *shader)
2179 {
2180 assert(exec_list_length(&shader->functions) == 1);
2181 struct exec_node *func_node = exec_list_get_head(&shader->functions);
2182 nir_function *func = exec_node_data(nir_function, func_node, node);
2183 assert(func->num_params == 0);
2184 assert(func->impl);
2185 return func->impl;
2186 }
2187
2188 #define nir_foreach_function(func, shader) \
2189 foreach_list_typed(nir_function, func, node, &(shader)->functions)
2190
2191 nir_shader *nir_shader_create(void *mem_ctx,
2192 gl_shader_stage stage,
2193 const nir_shader_compiler_options *options,
2194 shader_info *si);
2195
2196 /** creates a register, including assigning it an index and adding it to the list */
2197 nir_register *nir_global_reg_create(nir_shader *shader);
2198
2199 nir_register *nir_local_reg_create(nir_function_impl *impl);
2200
2201 void nir_reg_remove(nir_register *reg);
2202
2203 /** Adds a variable to the appropriate list in nir_shader */
2204 void nir_shader_add_variable(nir_shader *shader, nir_variable *var);
2205
2206 static inline void
2207 nir_function_impl_add_variable(nir_function_impl *impl, nir_variable *var)
2208 {
2209 assert(var->data.mode == nir_var_local);
2210 exec_list_push_tail(&impl->locals, &var->node);
2211 }
2212
2213 /** creates a variable, sets a few defaults, and adds it to the list */
2214 nir_variable *nir_variable_create(nir_shader *shader,
2215 nir_variable_mode mode,
2216 const struct glsl_type *type,
2217 const char *name);
2218 /** creates a local variable and adds it to the list */
2219 nir_variable *nir_local_variable_create(nir_function_impl *impl,
2220 const struct glsl_type *type,
2221 const char *name);
2222
2223 /** creates a function and adds it to the shader's list of functions */
2224 nir_function *nir_function_create(nir_shader *shader, const char *name);
2225
2226 nir_function_impl *nir_function_impl_create(nir_function *func);
2227 /** creates a function_impl that isn't tied to any particular function */
2228 nir_function_impl *nir_function_impl_create_bare(nir_shader *shader);
2229
2230 nir_block *nir_block_create(nir_shader *shader);
2231 nir_if *nir_if_create(nir_shader *shader);
2232 nir_loop *nir_loop_create(nir_shader *shader);
2233
2234 nir_function_impl *nir_cf_node_get_function(nir_cf_node *node);
2235
2236 /** requests that the given pieces of metadata be generated */
2237 void nir_metadata_require(nir_function_impl *impl, nir_metadata required, ...);
2238 /** dirties all but the preserved metadata */
2239 void nir_metadata_preserve(nir_function_impl *impl, nir_metadata preserved);
2240
2241 /** creates an instruction with default swizzle/writemask/etc. with NULL registers */
2242 nir_alu_instr *nir_alu_instr_create(nir_shader *shader, nir_op op);
2243
2244 nir_deref_instr *nir_deref_instr_create(nir_shader *shader,
2245 nir_deref_type deref_type);
2246
2247 nir_jump_instr *nir_jump_instr_create(nir_shader *shader, nir_jump_type type);
2248
2249 nir_load_const_instr *nir_load_const_instr_create(nir_shader *shader,
2250 unsigned num_components,
2251 unsigned bit_size);
2252
2253 nir_intrinsic_instr *nir_intrinsic_instr_create(nir_shader *shader,
2254 nir_intrinsic_op op);
2255
2256 nir_call_instr *nir_call_instr_create(nir_shader *shader,
2257 nir_function *callee);
2258
2259 nir_tex_instr *nir_tex_instr_create(nir_shader *shader, unsigned num_srcs);
2260
2261 nir_phi_instr *nir_phi_instr_create(nir_shader *shader);
2262
2263 nir_parallel_copy_instr *nir_parallel_copy_instr_create(nir_shader *shader);
2264
2265 nir_ssa_undef_instr *nir_ssa_undef_instr_create(nir_shader *shader,
2266 unsigned num_components,
2267 unsigned bit_size);
2268
2269 nir_const_value nir_alu_binop_identity(nir_op binop, unsigned bit_size);
2270
2271 /**
2272 * NIR Cursors and Instruction Insertion API
2273 * @{
2274 *
2275 * A tiny struct representing a point to insert/extract instructions or
2276 * control flow nodes. Helps reduce the combinatorial explosion of possible
2277 * points to insert/extract.
2278 *
2279 * \sa nir_control_flow.h
2280 */
2281 typedef enum {
2282 nir_cursor_before_block,
2283 nir_cursor_after_block,
2284 nir_cursor_before_instr,
2285 nir_cursor_after_instr,
2286 } nir_cursor_option;
2287
2288 typedef struct {
2289 nir_cursor_option option;
2290 union {
2291 nir_block *block;
2292 nir_instr *instr;
2293 };
2294 } nir_cursor;
2295
2296 static inline nir_block *
2297 nir_cursor_current_block(nir_cursor cursor)
2298 {
2299 if (cursor.option == nir_cursor_before_instr ||
2300 cursor.option == nir_cursor_after_instr) {
2301 return cursor.instr->block;
2302 } else {
2303 return cursor.block;
2304 }
2305 }
2306
2307 bool nir_cursors_equal(nir_cursor a, nir_cursor b);
2308
2309 static inline nir_cursor
2310 nir_before_block(nir_block *block)
2311 {
2312 nir_cursor cursor;
2313 cursor.option = nir_cursor_before_block;
2314 cursor.block = block;
2315 return cursor;
2316 }
2317
2318 static inline nir_cursor
2319 nir_after_block(nir_block *block)
2320 {
2321 nir_cursor cursor;
2322 cursor.option = nir_cursor_after_block;
2323 cursor.block = block;
2324 return cursor;
2325 }
2326
2327 static inline nir_cursor
2328 nir_before_instr(nir_instr *instr)
2329 {
2330 nir_cursor cursor;
2331 cursor.option = nir_cursor_before_instr;
2332 cursor.instr = instr;
2333 return cursor;
2334 }
2335
2336 static inline nir_cursor
2337 nir_after_instr(nir_instr *instr)
2338 {
2339 nir_cursor cursor;
2340 cursor.option = nir_cursor_after_instr;
2341 cursor.instr = instr;
2342 return cursor;
2343 }
2344
2345 static inline nir_cursor
2346 nir_after_block_before_jump(nir_block *block)
2347 {
2348 nir_instr *last_instr = nir_block_last_instr(block);
2349 if (last_instr && last_instr->type == nir_instr_type_jump) {
2350 return nir_before_instr(last_instr);
2351 } else {
2352 return nir_after_block(block);
2353 }
2354 }
2355
2356 static inline nir_cursor
2357 nir_before_src(nir_src *src, bool is_if_condition)
2358 {
2359 if (is_if_condition) {
2360 nir_block *prev_block =
2361 nir_cf_node_as_block(nir_cf_node_prev(&src->parent_if->cf_node));
2362 assert(!nir_block_ends_in_jump(prev_block));
2363 return nir_after_block(prev_block);
2364 } else if (src->parent_instr->type == nir_instr_type_phi) {
2365 #ifndef NDEBUG
2366 nir_phi_instr *cond_phi = nir_instr_as_phi(src->parent_instr);
2367 bool found = false;
2368 nir_foreach_phi_src(phi_src, cond_phi) {
2369 if (phi_src->src.ssa == src->ssa) {
2370 found = true;
2371 break;
2372 }
2373 }
2374 assert(found);
2375 #endif
2376 /* The LIST_ENTRY macro is a generic container-of macro, it just happens
2377 * to have a more specific name.
2378 */
2379 nir_phi_src *phi_src = LIST_ENTRY(nir_phi_src, src, src);
2380 return nir_after_block_before_jump(phi_src->pred);
2381 } else {
2382 return nir_before_instr(src->parent_instr);
2383 }
2384 }
2385
2386 static inline nir_cursor
2387 nir_before_cf_node(nir_cf_node *node)
2388 {
2389 if (node->type == nir_cf_node_block)
2390 return nir_before_block(nir_cf_node_as_block(node));
2391
2392 return nir_after_block(nir_cf_node_as_block(nir_cf_node_prev(node)));
2393 }
2394
2395 static inline nir_cursor
2396 nir_after_cf_node(nir_cf_node *node)
2397 {
2398 if (node->type == nir_cf_node_block)
2399 return nir_after_block(nir_cf_node_as_block(node));
2400
2401 return nir_before_block(nir_cf_node_as_block(nir_cf_node_next(node)));
2402 }
2403
2404 static inline nir_cursor
2405 nir_after_phis(nir_block *block)
2406 {
2407 nir_foreach_instr(instr, block) {
2408 if (instr->type != nir_instr_type_phi)
2409 return nir_before_instr(instr);
2410 }
2411 return nir_after_block(block);
2412 }
2413
2414 static inline nir_cursor
2415 nir_after_cf_node_and_phis(nir_cf_node *node)
2416 {
2417 if (node->type == nir_cf_node_block)
2418 return nir_after_block(nir_cf_node_as_block(node));
2419
2420 nir_block *block = nir_cf_node_as_block(nir_cf_node_next(node));
2421
2422 return nir_after_phis(block);
2423 }
2424
2425 static inline nir_cursor
2426 nir_before_cf_list(struct exec_list *cf_list)
2427 {
2428 nir_cf_node *first_node = exec_node_data(nir_cf_node,
2429 exec_list_get_head(cf_list), node);
2430 return nir_before_cf_node(first_node);
2431 }
2432
2433 static inline nir_cursor
2434 nir_after_cf_list(struct exec_list *cf_list)
2435 {
2436 nir_cf_node *last_node = exec_node_data(nir_cf_node,
2437 exec_list_get_tail(cf_list), node);
2438 return nir_after_cf_node(last_node);
2439 }
2440
2441 /**
2442 * Insert a NIR instruction at the given cursor.
2443 *
2444 * Note: This does not update the cursor.
2445 */
2446 void nir_instr_insert(nir_cursor cursor, nir_instr *instr);
2447
2448 static inline void
2449 nir_instr_insert_before(nir_instr *instr, nir_instr *before)
2450 {
2451 nir_instr_insert(nir_before_instr(instr), before);
2452 }
2453
2454 static inline void
2455 nir_instr_insert_after(nir_instr *instr, nir_instr *after)
2456 {
2457 nir_instr_insert(nir_after_instr(instr), after);
2458 }
2459
2460 static inline void
2461 nir_instr_insert_before_block(nir_block *block, nir_instr *before)
2462 {
2463 nir_instr_insert(nir_before_block(block), before);
2464 }
2465
2466 static inline void
2467 nir_instr_insert_after_block(nir_block *block, nir_instr *after)
2468 {
2469 nir_instr_insert(nir_after_block(block), after);
2470 }
2471
2472 static inline void
2473 nir_instr_insert_before_cf(nir_cf_node *node, nir_instr *before)
2474 {
2475 nir_instr_insert(nir_before_cf_node(node), before);
2476 }
2477
2478 static inline void
2479 nir_instr_insert_after_cf(nir_cf_node *node, nir_instr *after)
2480 {
2481 nir_instr_insert(nir_after_cf_node(node), after);
2482 }
2483
2484 static inline void
2485 nir_instr_insert_before_cf_list(struct exec_list *list, nir_instr *before)
2486 {
2487 nir_instr_insert(nir_before_cf_list(list), before);
2488 }
2489
2490 static inline void
2491 nir_instr_insert_after_cf_list(struct exec_list *list, nir_instr *after)
2492 {
2493 nir_instr_insert(nir_after_cf_list(list), after);
2494 }
2495
2496 void nir_instr_remove_v(nir_instr *instr);
2497
2498 static inline nir_cursor
2499 nir_instr_remove(nir_instr *instr)
2500 {
2501 nir_cursor cursor;
2502 nir_instr *prev = nir_instr_prev(instr);
2503 if (prev) {
2504 cursor = nir_after_instr(prev);
2505 } else {
2506 cursor = nir_before_block(instr->block);
2507 }
2508 nir_instr_remove_v(instr);
2509 return cursor;
2510 }
2511
2512 /** @} */
2513
2514 typedef bool (*nir_foreach_ssa_def_cb)(nir_ssa_def *def, void *state);
2515 typedef bool (*nir_foreach_dest_cb)(nir_dest *dest, void *state);
2516 typedef bool (*nir_foreach_src_cb)(nir_src *src, void *state);
2517 bool nir_foreach_ssa_def(nir_instr *instr, nir_foreach_ssa_def_cb cb,
2518 void *state);
2519 bool nir_foreach_dest(nir_instr *instr, nir_foreach_dest_cb cb, void *state);
2520 bool nir_foreach_src(nir_instr *instr, nir_foreach_src_cb cb, void *state);
2521
2522 nir_const_value *nir_src_as_const_value(nir_src src);
2523
2524 static inline struct nir_instr *
2525 nir_src_instr(const struct nir_src *src)
2526 {
2527 return src->is_ssa ? src->ssa->parent_instr : NULL;
2528 }
2529
2530 #define NIR_SRC_AS_(name, c_type, type_enum, cast_macro) \
2531 static inline c_type * \
2532 nir_src_as_ ## name (struct nir_src *src) \
2533 { \
2534 return src->is_ssa && src->ssa->parent_instr->type == type_enum \
2535 ? cast_macro(src->ssa->parent_instr) : NULL; \
2536 } \
2537 static inline const c_type * \
2538 nir_src_as_ ## name ## _const(const struct nir_src *src) \
2539 { \
2540 return src->is_ssa && src->ssa->parent_instr->type == type_enum \
2541 ? cast_macro(src->ssa->parent_instr) : NULL; \
2542 }
2543
2544 NIR_SRC_AS_(alu_instr, nir_alu_instr, nir_instr_type_alu, nir_instr_as_alu)
2545
2546 bool nir_src_is_dynamically_uniform(nir_src src);
2547 bool nir_srcs_equal(nir_src src1, nir_src src2);
2548 void nir_instr_rewrite_src(nir_instr *instr, nir_src *src, nir_src new_src);
2549 void nir_instr_move_src(nir_instr *dest_instr, nir_src *dest, nir_src *src);
2550 void nir_if_rewrite_condition(nir_if *if_stmt, nir_src new_src);
2551 void nir_instr_rewrite_dest(nir_instr *instr, nir_dest *dest,
2552 nir_dest new_dest);
2553
2554 void nir_ssa_dest_init(nir_instr *instr, nir_dest *dest,
2555 unsigned num_components, unsigned bit_size,
2556 const char *name);
2557 void nir_ssa_def_init(nir_instr *instr, nir_ssa_def *def,
2558 unsigned num_components, unsigned bit_size,
2559 const char *name);
2560 static inline void
2561 nir_ssa_dest_init_for_type(nir_instr *instr, nir_dest *dest,
2562 const struct glsl_type *type,
2563 const char *name)
2564 {
2565 assert(glsl_type_is_vector_or_scalar(type));
2566 nir_ssa_dest_init(instr, dest, glsl_get_components(type),
2567 glsl_get_bit_size(type), name);
2568 }
2569 void nir_ssa_def_rewrite_uses(nir_ssa_def *def, nir_src new_src);
2570 void nir_ssa_def_rewrite_uses_after(nir_ssa_def *def, nir_src new_src,
2571 nir_instr *after_me);
2572
2573 nir_component_mask_t nir_ssa_def_components_read(const nir_ssa_def *def);
2574
2575 /*
2576 * finds the next basic block in source-code order, returns NULL if there is
2577 * none
2578 */
2579
2580 nir_block *nir_block_cf_tree_next(nir_block *block);
2581
2582 /* Performs the opposite of nir_block_cf_tree_next() */
2583
2584 nir_block *nir_block_cf_tree_prev(nir_block *block);
2585
2586 /* Gets the first block in a CF node in source-code order */
2587
2588 nir_block *nir_cf_node_cf_tree_first(nir_cf_node *node);
2589
2590 /* Gets the last block in a CF node in source-code order */
2591
2592 nir_block *nir_cf_node_cf_tree_last(nir_cf_node *node);
2593
2594 /* Gets the next block after a CF node in source-code order */
2595
2596 nir_block *nir_cf_node_cf_tree_next(nir_cf_node *node);
2597
2598 /* Macros for loops that visit blocks in source-code order */
2599
2600 #define nir_foreach_block(block, impl) \
2601 for (nir_block *block = nir_start_block(impl); block != NULL; \
2602 block = nir_block_cf_tree_next(block))
2603
2604 #define nir_foreach_block_safe(block, impl) \
2605 for (nir_block *block = nir_start_block(impl), \
2606 *next = nir_block_cf_tree_next(block); \
2607 block != NULL; \
2608 block = next, next = nir_block_cf_tree_next(block))
2609
2610 #define nir_foreach_block_reverse(block, impl) \
2611 for (nir_block *block = nir_impl_last_block(impl); block != NULL; \
2612 block = nir_block_cf_tree_prev(block))
2613
2614 #define nir_foreach_block_reverse_safe(block, impl) \
2615 for (nir_block *block = nir_impl_last_block(impl), \
2616 *prev = nir_block_cf_tree_prev(block); \
2617 block != NULL; \
2618 block = prev, prev = nir_block_cf_tree_prev(block))
2619
2620 #define nir_foreach_block_in_cf_node(block, node) \
2621 for (nir_block *block = nir_cf_node_cf_tree_first(node); \
2622 block != nir_cf_node_cf_tree_next(node); \
2623 block = nir_block_cf_tree_next(block))
2624
2625 /* If the following CF node is an if, this function returns that if.
2626 * Otherwise, it returns NULL.
2627 */
2628 nir_if *nir_block_get_following_if(nir_block *block);
2629
2630 nir_loop *nir_block_get_following_loop(nir_block *block);
2631
2632 void nir_index_local_regs(nir_function_impl *impl);
2633 void nir_index_global_regs(nir_shader *shader);
2634 void nir_index_ssa_defs(nir_function_impl *impl);
2635 unsigned nir_index_instrs(nir_function_impl *impl);
2636
2637 void nir_index_blocks(nir_function_impl *impl);
2638
2639 void nir_print_shader(nir_shader *shader, FILE *fp);
2640 void nir_print_shader_annotated(nir_shader *shader, FILE *fp, struct hash_table *errors);
2641 void nir_print_instr(const nir_instr *instr, FILE *fp);
2642
2643 nir_shader *nir_shader_clone(void *mem_ctx, const nir_shader *s);
2644 nir_function_impl *nir_function_impl_clone(const nir_function_impl *fi);
2645 nir_constant *nir_constant_clone(const nir_constant *c, nir_variable *var);
2646 nir_variable *nir_variable_clone(const nir_variable *c, nir_shader *shader);
2647
2648 nir_shader *nir_shader_serialize_deserialize(void *mem_ctx, nir_shader *s);
2649
2650 #ifndef NDEBUG
2651 void nir_validate_shader(nir_shader *shader);
2652 void nir_metadata_set_validation_flag(nir_shader *shader);
2653 void nir_metadata_check_validation_flag(nir_shader *shader);
2654
2655 static inline bool
2656 should_clone_nir(void)
2657 {
2658 static int should_clone = -1;
2659 if (should_clone < 0)
2660 should_clone = env_var_as_boolean("NIR_TEST_CLONE", false);
2661
2662 return should_clone;
2663 }
2664
2665 static inline bool
2666 should_serialize_deserialize_nir(void)
2667 {
2668 static int test_serialize = -1;
2669 if (test_serialize < 0)
2670 test_serialize = env_var_as_boolean("NIR_TEST_SERIALIZE", false);
2671
2672 return test_serialize;
2673 }
2674
2675 static inline bool
2676 should_print_nir(void)
2677 {
2678 static int should_print = -1;
2679 if (should_print < 0)
2680 should_print = env_var_as_boolean("NIR_PRINT", false);
2681
2682 return should_print;
2683 }
2684 #else
2685 static inline void nir_validate_shader(nir_shader *shader) { (void) shader; }
2686 static inline void nir_metadata_set_validation_flag(nir_shader *shader) { (void) shader; }
2687 static inline void nir_metadata_check_validation_flag(nir_shader *shader) { (void) shader; }
2688 static inline bool should_clone_nir(void) { return false; }
2689 static inline bool should_serialize_deserialize_nir(void) { return false; }
2690 static inline bool should_print_nir(void) { return false; }
2691 #endif /* NDEBUG */
2692
2693 #define _PASS(nir, do_pass) do { \
2694 do_pass \
2695 nir_validate_shader(nir); \
2696 if (should_clone_nir()) { \
2697 nir_shader *clone = nir_shader_clone(ralloc_parent(nir), nir); \
2698 ralloc_free(nir); \
2699 nir = clone; \
2700 } \
2701 if (should_serialize_deserialize_nir()) { \
2702 void *mem_ctx = ralloc_parent(nir); \
2703 nir = nir_shader_serialize_deserialize(mem_ctx, nir); \
2704 } \
2705 } while (0)
2706
2707 #define NIR_PASS(progress, nir, pass, ...) _PASS(nir, \
2708 nir_metadata_set_validation_flag(nir); \
2709 if (should_print_nir()) \
2710 printf("%s\n", #pass); \
2711 if (pass(nir, ##__VA_ARGS__)) { \
2712 progress = true; \
2713 if (should_print_nir()) \
2714 nir_print_shader(nir, stdout); \
2715 nir_metadata_check_validation_flag(nir); \
2716 } \
2717 )
2718
2719 #define NIR_PASS_V(nir, pass, ...) _PASS(nir, \
2720 if (should_print_nir()) \
2721 printf("%s\n", #pass); \
2722 pass(nir, ##__VA_ARGS__); \
2723 if (should_print_nir()) \
2724 nir_print_shader(nir, stdout); \
2725 )
2726
2727 void nir_calc_dominance_impl(nir_function_impl *impl);
2728 void nir_calc_dominance(nir_shader *shader);
2729
2730 nir_block *nir_dominance_lca(nir_block *b1, nir_block *b2);
2731 bool nir_block_dominates(nir_block *parent, nir_block *child);
2732
2733 void nir_dump_dom_tree_impl(nir_function_impl *impl, FILE *fp);
2734 void nir_dump_dom_tree(nir_shader *shader, FILE *fp);
2735
2736 void nir_dump_dom_frontier_impl(nir_function_impl *impl, FILE *fp);
2737 void nir_dump_dom_frontier(nir_shader *shader, FILE *fp);
2738
2739 void nir_dump_cfg_impl(nir_function_impl *impl, FILE *fp);
2740 void nir_dump_cfg(nir_shader *shader, FILE *fp);
2741
2742 int nir_gs_count_vertices(const nir_shader *shader);
2743
2744 bool nir_shrink_vec_array_vars(nir_shader *shader, nir_variable_mode modes);
2745 bool nir_split_array_vars(nir_shader *shader, nir_variable_mode modes);
2746 bool nir_split_var_copies(nir_shader *shader);
2747 bool nir_split_per_member_structs(nir_shader *shader);
2748 bool nir_split_struct_vars(nir_shader *shader, nir_variable_mode modes);
2749
2750 bool nir_lower_returns_impl(nir_function_impl *impl);
2751 bool nir_lower_returns(nir_shader *shader);
2752
2753 bool nir_inline_functions(nir_shader *shader);
2754
2755 bool nir_propagate_invariant(nir_shader *shader);
2756
2757 void nir_lower_var_copy_instr(nir_intrinsic_instr *copy, nir_shader *shader);
2758 void nir_lower_deref_copy_instr(struct nir_builder *b,
2759 nir_intrinsic_instr *copy);
2760 bool nir_lower_var_copies(nir_shader *shader);
2761
2762 void nir_fixup_deref_modes(nir_shader *shader);
2763
2764 bool nir_lower_global_vars_to_local(nir_shader *shader);
2765
2766 bool nir_lower_indirect_derefs(nir_shader *shader, nir_variable_mode modes);
2767
2768 bool nir_lower_locals_to_regs(nir_shader *shader);
2769
2770 void nir_lower_io_to_temporaries(nir_shader *shader,
2771 nir_function_impl *entrypoint,
2772 bool outputs, bool inputs);
2773
2774 void nir_shader_gather_info(nir_shader *shader, nir_function_impl *entrypoint);
2775
2776 void nir_assign_var_locations(struct exec_list *var_list, unsigned *size,
2777 int (*type_size)(const struct glsl_type *));
2778
2779 /* Some helpers to do very simple linking */
2780 bool nir_remove_unused_varyings(nir_shader *producer, nir_shader *consumer);
2781 void nir_compact_varyings(nir_shader *producer, nir_shader *consumer,
2782 bool default_to_smooth_interp);
2783
2784 typedef enum {
2785 /* If set, this forces all non-flat fragment shader inputs to be
2786 * interpolated as if with the "sample" qualifier. This requires
2787 * nir_shader_compiler_options::use_interpolated_input_intrinsics.
2788 */
2789 nir_lower_io_force_sample_interpolation = (1 << 1),
2790 } nir_lower_io_options;
2791 bool nir_lower_io(nir_shader *shader,
2792 nir_variable_mode modes,
2793 int (*type_size)(const struct glsl_type *),
2794 nir_lower_io_options);
2795 nir_src *nir_get_io_offset_src(nir_intrinsic_instr *instr);
2796 nir_src *nir_get_io_vertex_index_src(nir_intrinsic_instr *instr);
2797
2798 bool nir_is_per_vertex_io(const nir_variable *var, gl_shader_stage stage);
2799
2800 bool nir_lower_regs_to_ssa_impl(nir_function_impl *impl);
2801 bool nir_lower_regs_to_ssa(nir_shader *shader);
2802 bool nir_lower_vars_to_ssa(nir_shader *shader);
2803
2804 bool nir_remove_dead_derefs(nir_shader *shader);
2805 bool nir_remove_dead_derefs_impl(nir_function_impl *impl);
2806 bool nir_remove_dead_variables(nir_shader *shader, nir_variable_mode modes);
2807 bool nir_lower_constant_initializers(nir_shader *shader,
2808 nir_variable_mode modes);
2809
2810 bool nir_move_load_const(nir_shader *shader);
2811 bool nir_move_vec_src_uses_to_dest(nir_shader *shader);
2812 bool nir_lower_vec_to_movs(nir_shader *shader);
2813 void nir_lower_alpha_test(nir_shader *shader, enum compare_func func,
2814 bool alpha_to_one);
2815 bool nir_lower_alu(nir_shader *shader);
2816 bool nir_lower_alu_to_scalar(nir_shader *shader);
2817 bool nir_lower_load_const_to_scalar(nir_shader *shader);
2818 bool nir_lower_read_invocation_to_scalar(nir_shader *shader);
2819 bool nir_lower_phis_to_scalar(nir_shader *shader);
2820 void nir_lower_io_arrays_to_elements(nir_shader *producer, nir_shader *consumer);
2821 void nir_lower_io_arrays_to_elements_no_indirects(nir_shader *shader,
2822 bool outputs_only);
2823 void nir_lower_io_to_scalar(nir_shader *shader, nir_variable_mode mask);
2824 void nir_lower_io_to_scalar_early(nir_shader *shader, nir_variable_mode mask);
2825
2826 typedef struct nir_lower_subgroups_options {
2827 uint8_t subgroup_size;
2828 uint8_t ballot_bit_size;
2829 bool lower_to_scalar:1;
2830 bool lower_vote_trivial:1;
2831 bool lower_vote_eq_to_ballot:1;
2832 bool lower_subgroup_masks:1;
2833 bool lower_shuffle:1;
2834 bool lower_shuffle_to_32bit:1;
2835 bool lower_quad:1;
2836 } nir_lower_subgroups_options;
2837
2838 bool nir_lower_subgroups(nir_shader *shader,
2839 const nir_lower_subgroups_options *options);
2840
2841 bool nir_lower_system_values(nir_shader *shader);
2842
2843 typedef struct nir_lower_tex_options {
2844 /**
2845 * bitmask of (1 << GLSL_SAMPLER_DIM_x) to control for which
2846 * sampler types a texture projector is lowered.
2847 */
2848 unsigned lower_txp;
2849
2850 /**
2851 * If true, lower away nir_tex_src_offset for all texelfetch instructions.
2852 */
2853 bool lower_txf_offset;
2854
2855 /**
2856 * If true, lower away nir_tex_src_offset for all rect textures.
2857 */
2858 bool lower_rect_offset;
2859
2860 /**
2861 * If true, lower rect textures to 2D, using txs to fetch the
2862 * texture dimensions and dividing the texture coords by the
2863 * texture dims to normalize.
2864 */
2865 bool lower_rect;
2866
2867 /**
2868 * If true, convert yuv to rgb.
2869 */
2870 unsigned lower_y_uv_external;
2871 unsigned lower_y_u_v_external;
2872 unsigned lower_yx_xuxv_external;
2873 unsigned lower_xy_uxvx_external;
2874
2875 /**
2876 * To emulate certain texture wrap modes, this can be used
2877 * to saturate the specified tex coord to [0.0, 1.0]. The
2878 * bits are according to sampler #, ie. if, for example:
2879 *
2880 * (conf->saturate_s & (1 << n))
2881 *
2882 * is true, then the s coord for sampler n is saturated.
2883 *
2884 * Note that clamping must happen *after* projector lowering
2885 * so any projected texture sample instruction with a clamped
2886 * coordinate gets automatically lowered, regardless of the
2887 * 'lower_txp' setting.
2888 */
2889 unsigned saturate_s;
2890 unsigned saturate_t;
2891 unsigned saturate_r;
2892
2893 /* Bitmask of textures that need swizzling.
2894 *
2895 * If (swizzle_result & (1 << texture_index)), then the swizzle in
2896 * swizzles[texture_index] is applied to the result of the texturing
2897 * operation.
2898 */
2899 unsigned swizzle_result;
2900
2901 /* A swizzle for each texture. Values 0-3 represent x, y, z, or w swizzles
2902 * while 4 and 5 represent 0 and 1 respectively.
2903 */
2904 uint8_t swizzles[32][4];
2905
2906 /**
2907 * Bitmap of textures that need srgb to linear conversion. If
2908 * (lower_srgb & (1 << texture_index)) then the rgb (xyz) components
2909 * of the texture are lowered to linear.
2910 */
2911 unsigned lower_srgb;
2912
2913 /**
2914 * If true, lower nir_texop_txd on cube maps with nir_texop_txl.
2915 */
2916 bool lower_txd_cube_map;
2917
2918 /**
2919 * If true, lower nir_texop_txd on shadow samplers (except cube maps)
2920 * with nir_texop_txl. Notice that cube map shadow samplers are lowered
2921 * with lower_txd_cube_map.
2922 */
2923 bool lower_txd_shadow;
2924
2925 /**
2926 * If true, lower nir_texop_txd on all samplers to a nir_texop_txl.
2927 * Implies lower_txd_cube_map and lower_txd_shadow.
2928 */
2929 bool lower_txd;
2930 } nir_lower_tex_options;
2931
2932 bool nir_lower_tex(nir_shader *shader,
2933 const nir_lower_tex_options *options);
2934
2935 bool nir_lower_idiv(nir_shader *shader);
2936
2937 bool nir_lower_clip_vs(nir_shader *shader, unsigned ucp_enables);
2938 bool nir_lower_clip_fs(nir_shader *shader, unsigned ucp_enables);
2939 bool nir_lower_clip_cull_distance_arrays(nir_shader *nir);
2940
2941 void nir_lower_two_sided_color(nir_shader *shader);
2942
2943 bool nir_lower_clamp_color_outputs(nir_shader *shader);
2944
2945 void nir_lower_passthrough_edgeflags(nir_shader *shader);
2946 bool nir_lower_patch_vertices(nir_shader *nir, unsigned static_count,
2947 const gl_state_index16 *uniform_state_tokens);
2948
2949 typedef struct nir_lower_wpos_ytransform_options {
2950 gl_state_index16 state_tokens[STATE_LENGTH];
2951 bool fs_coord_origin_upper_left :1;
2952 bool fs_coord_origin_lower_left :1;
2953 bool fs_coord_pixel_center_integer :1;
2954 bool fs_coord_pixel_center_half_integer :1;
2955 } nir_lower_wpos_ytransform_options;
2956
2957 bool nir_lower_wpos_ytransform(nir_shader *shader,
2958 const nir_lower_wpos_ytransform_options *options);
2959 bool nir_lower_wpos_center(nir_shader *shader, const bool for_sample_shading);
2960
2961 typedef struct nir_lower_drawpixels_options {
2962 gl_state_index16 texcoord_state_tokens[STATE_LENGTH];
2963 gl_state_index16 scale_state_tokens[STATE_LENGTH];
2964 gl_state_index16 bias_state_tokens[STATE_LENGTH];
2965 unsigned drawpix_sampler;
2966 unsigned pixelmap_sampler;
2967 bool pixel_maps :1;
2968 bool scale_and_bias :1;
2969 } nir_lower_drawpixels_options;
2970
2971 void nir_lower_drawpixels(nir_shader *shader,
2972 const nir_lower_drawpixels_options *options);
2973
2974 typedef struct nir_lower_bitmap_options {
2975 unsigned sampler;
2976 bool swizzle_xxxx;
2977 } nir_lower_bitmap_options;
2978
2979 void nir_lower_bitmap(nir_shader *shader, const nir_lower_bitmap_options *options);
2980
2981 bool nir_lower_atomics_to_ssbo(nir_shader *shader, unsigned ssbo_offset);
2982 bool nir_lower_to_source_mods(nir_shader *shader);
2983
2984 bool nir_lower_gs_intrinsics(nir_shader *shader);
2985
2986 typedef unsigned (*nir_lower_bit_size_callback)(const nir_alu_instr *, void *);
2987
2988 bool nir_lower_bit_size(nir_shader *shader,
2989 nir_lower_bit_size_callback callback,
2990 void *callback_data);
2991
2992 typedef enum {
2993 nir_lower_imul64 = (1 << 0),
2994 nir_lower_isign64 = (1 << 1),
2995 /** Lower all int64 modulus and division opcodes */
2996 nir_lower_divmod64 = (1 << 2),
2997 } nir_lower_int64_options;
2998
2999 bool nir_lower_int64(nir_shader *shader, nir_lower_int64_options options);
3000
3001 typedef enum {
3002 nir_lower_drcp = (1 << 0),
3003 nir_lower_dsqrt = (1 << 1),
3004 nir_lower_drsq = (1 << 2),
3005 nir_lower_dtrunc = (1 << 3),
3006 nir_lower_dfloor = (1 << 4),
3007 nir_lower_dceil = (1 << 5),
3008 nir_lower_dfract = (1 << 6),
3009 nir_lower_dround_even = (1 << 7),
3010 nir_lower_dmod = (1 << 8)
3011 } nir_lower_doubles_options;
3012
3013 bool nir_lower_doubles(nir_shader *shader, nir_lower_doubles_options options);
3014 bool nir_lower_pack(nir_shader *shader);
3015
3016 bool nir_normalize_cubemap_coords(nir_shader *shader);
3017
3018 void nir_live_ssa_defs_impl(nir_function_impl *impl);
3019
3020 void nir_loop_analyze_impl(nir_function_impl *impl,
3021 nir_variable_mode indirect_mask);
3022
3023 bool nir_ssa_defs_interfere(nir_ssa_def *a, nir_ssa_def *b);
3024
3025 bool nir_repair_ssa_impl(nir_function_impl *impl);
3026 bool nir_repair_ssa(nir_shader *shader);
3027
3028 void nir_convert_loop_to_lcssa(nir_loop *loop);
3029
3030 /* If phi_webs_only is true, only convert SSA values involved in phi nodes to
3031 * registers. If false, convert all values (even those not involved in a phi
3032 * node) to registers.
3033 */
3034 bool nir_convert_from_ssa(nir_shader *shader, bool phi_webs_only);
3035
3036 bool nir_lower_phis_to_regs_block(nir_block *block);
3037 bool nir_lower_ssa_defs_to_regs_block(nir_block *block);
3038 bool nir_rematerialize_derefs_in_use_blocks_impl(nir_function_impl *impl);
3039
3040 bool nir_opt_algebraic(nir_shader *shader);
3041 bool nir_opt_algebraic_before_ffma(nir_shader *shader);
3042 bool nir_opt_algebraic_late(nir_shader *shader);
3043 bool nir_opt_constant_folding(nir_shader *shader);
3044
3045 bool nir_opt_global_to_local(nir_shader *shader);
3046
3047 bool nir_copy_prop(nir_shader *shader);
3048
3049 bool nir_opt_copy_prop_vars(nir_shader *shader);
3050
3051 bool nir_opt_cse(nir_shader *shader);
3052
3053 bool nir_opt_dce(nir_shader *shader);
3054
3055 bool nir_opt_dead_cf(nir_shader *shader);
3056
3057 bool nir_opt_find_array_copies(nir_shader *shader);
3058
3059 bool nir_opt_gcm(nir_shader *shader, bool value_number);
3060
3061 bool nir_opt_if(nir_shader *shader);
3062
3063 bool nir_opt_intrinsics(nir_shader *shader);
3064
3065 bool nir_opt_large_constants(nir_shader *shader,
3066 glsl_type_size_align_func size_align,
3067 unsigned threshold);
3068
3069 bool nir_opt_loop_unroll(nir_shader *shader, nir_variable_mode indirect_mask);
3070
3071 bool nir_opt_move_comparisons(nir_shader *shader);
3072
3073 bool nir_opt_move_load_ubo(nir_shader *shader);
3074
3075 bool nir_opt_peephole_select(nir_shader *shader, unsigned limit);
3076
3077 bool nir_opt_remove_phis_impl(nir_function_impl *impl);
3078 bool nir_opt_remove_phis(nir_shader *shader);
3079
3080 bool nir_opt_shrink_load(nir_shader *shader);
3081
3082 bool nir_opt_trivial_continues(nir_shader *shader);
3083
3084 bool nir_opt_undef(nir_shader *shader);
3085
3086 bool nir_opt_conditional_discard(nir_shader *shader);
3087
3088 void nir_sweep(nir_shader *shader);
3089
3090 void nir_remap_dual_slot_attributes(nir_shader *shader,
3091 uint64_t *dual_slot_inputs);
3092 uint64_t nir_get_single_slot_attribs_mask(uint64_t attribs, uint64_t dual_slot);
3093
3094 nir_intrinsic_op nir_intrinsic_from_system_value(gl_system_value val);
3095 gl_system_value nir_system_value_from_intrinsic(nir_intrinsic_op intrin);
3096
3097 #ifdef __cplusplus
3098 } /* extern "C" */
3099 #endif
3100
3101 #endif /* NIR_H */