ac119981ec9922f305a997b0cc0a4f22213d94fd
[mesa.git] / src / compiler / nir / nir.h
1 /*
2 * Copyright © 2014 Connor Abbott
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Connor Abbott (cwabbott0@gmail.com)
25 *
26 */
27
28 #pragma once
29
30 #include "util/hash_table.h"
31 #include "compiler/glsl/list.h"
32 #include "GL/gl.h" /* GLenum */
33 #include "util/list.h"
34 #include "util/ralloc.h"
35 #include "util/set.h"
36 #include "util/bitset.h"
37 #include "util/macros.h"
38 #include "compiler/nir_types.h"
39 #include "compiler/shader_enums.h"
40 #include <stdio.h>
41
42 #include "nir_opcodes.h"
43
44 #ifdef __cplusplus
45 extern "C" {
46 #endif
47
48 struct gl_program;
49 struct gl_shader_program;
50
51 #define NIR_FALSE 0u
52 #define NIR_TRUE (~0u)
53
54 /** Defines a cast function
55 *
56 * This macro defines a cast function from in_type to out_type where
57 * out_type is some structure type that contains a field of type out_type.
58 *
59 * Note that you have to be a bit careful as the generated cast function
60 * destroys constness.
61 */
62 #define NIR_DEFINE_CAST(name, in_type, out_type, field) \
63 static inline out_type * \
64 name(const in_type *parent) \
65 { \
66 return exec_node_data(out_type, parent, field); \
67 }
68
69 struct nir_function;
70 struct nir_shader;
71 struct nir_instr;
72
73
74 /**
75 * Description of built-in state associated with a uniform
76 *
77 * \sa nir_variable::state_slots
78 */
79 typedef struct {
80 int tokens[5];
81 int swizzle;
82 } nir_state_slot;
83
84 typedef enum {
85 nir_var_shader_in = (1 << 0),
86 nir_var_shader_out = (1 << 1),
87 nir_var_global = (1 << 2),
88 nir_var_local = (1 << 3),
89 nir_var_uniform = (1 << 4),
90 nir_var_shader_storage = (1 << 5),
91 nir_var_system_value = (1 << 6),
92 nir_var_param = (1 << 7),
93 nir_var_shared = (1 << 8),
94 nir_var_all = ~0,
95 } nir_variable_mode;
96
97 /**
98 * Data stored in an nir_constant
99 */
100 union nir_constant_data {
101 unsigned u[16];
102 int i[16];
103 float f[16];
104 bool b[16];
105 double d[16];
106 };
107
108 typedef struct nir_constant {
109 /**
110 * Value of the constant.
111 *
112 * The field used to back the values supplied by the constant is determined
113 * by the type associated with the \c nir_variable. Constants may be
114 * scalars, vectors, or matrices.
115 */
116 union nir_constant_data value;
117
118 /* we could get this from the var->type but makes clone *much* easier to
119 * not have to care about the type.
120 */
121 unsigned num_elements;
122
123 /* Array elements / Structure Fields */
124 struct nir_constant **elements;
125 } nir_constant;
126
127 /**
128 * \brief Layout qualifiers for gl_FragDepth.
129 *
130 * The AMD/ARB_conservative_depth extensions allow gl_FragDepth to be redeclared
131 * with a layout qualifier.
132 */
133 typedef enum {
134 nir_depth_layout_none, /**< No depth layout is specified. */
135 nir_depth_layout_any,
136 nir_depth_layout_greater,
137 nir_depth_layout_less,
138 nir_depth_layout_unchanged
139 } nir_depth_layout;
140
141 /**
142 * Either a uniform, global variable, shader input, or shader output. Based on
143 * ir_variable - it should be easy to translate between the two.
144 */
145
146 typedef struct nir_variable {
147 struct exec_node node;
148
149 /**
150 * Declared type of the variable
151 */
152 const struct glsl_type *type;
153
154 /**
155 * Declared name of the variable
156 */
157 char *name;
158
159 struct nir_variable_data {
160 /**
161 * Storage class of the variable.
162 *
163 * \sa nir_variable_mode
164 */
165 nir_variable_mode mode;
166
167 /**
168 * Is the variable read-only?
169 *
170 * This is set for variables declared as \c const, shader inputs,
171 * and uniforms.
172 */
173 unsigned read_only:1;
174 unsigned centroid:1;
175 unsigned sample:1;
176 unsigned patch:1;
177 unsigned invariant:1;
178
179 /**
180 * Interpolation mode for shader inputs / outputs
181 *
182 * \sa glsl_interp_mode
183 */
184 unsigned interpolation:2;
185
186 /**
187 * \name ARB_fragment_coord_conventions
188 * @{
189 */
190 unsigned origin_upper_left:1;
191 unsigned pixel_center_integer:1;
192 /*@}*/
193
194 /**
195 * Was the location explicitly set in the shader?
196 *
197 * If the location is explicitly set in the shader, it \b cannot be changed
198 * by the linker or by the API (e.g., calls to \c glBindAttribLocation have
199 * no effect).
200 */
201 unsigned explicit_location:1;
202 unsigned explicit_index:1;
203
204 /**
205 * Was an initial binding explicitly set in the shader?
206 *
207 * If so, constant_initializer contains an integer nir_constant
208 * representing the initial binding point.
209 */
210 unsigned explicit_binding:1;
211
212 /**
213 * Does this variable have an initializer?
214 *
215 * This is used by the linker to cross-validiate initializers of global
216 * variables.
217 */
218 unsigned has_initializer:1;
219
220 /**
221 * If non-zero, then this variable may be packed along with other variables
222 * into a single varying slot, so this offset should be applied when
223 * accessing components. For example, an offset of 1 means that the x
224 * component of this variable is actually stored in component y of the
225 * location specified by \c location.
226 */
227 unsigned location_frac:2;
228
229 /**
230 * \brief Layout qualifier for gl_FragDepth.
231 *
232 * This is not equal to \c ir_depth_layout_none if and only if this
233 * variable is \c gl_FragDepth and a layout qualifier is specified.
234 */
235 nir_depth_layout depth_layout;
236
237 /**
238 * Storage location of the base of this variable
239 *
240 * The precise meaning of this field depends on the nature of the variable.
241 *
242 * - Vertex shader input: one of the values from \c gl_vert_attrib.
243 * - Vertex shader output: one of the values from \c gl_varying_slot.
244 * - Geometry shader input: one of the values from \c gl_varying_slot.
245 * - Geometry shader output: one of the values from \c gl_varying_slot.
246 * - Fragment shader input: one of the values from \c gl_varying_slot.
247 * - Fragment shader output: one of the values from \c gl_frag_result.
248 * - Uniforms: Per-stage uniform slot number for default uniform block.
249 * - Uniforms: Index within the uniform block definition for UBO members.
250 * - Non-UBO Uniforms: uniform slot number.
251 * - Other: This field is not currently used.
252 *
253 * If the variable is a uniform, shader input, or shader output, and the
254 * slot has not been assigned, the value will be -1.
255 */
256 int location;
257
258 /**
259 * The actual location of the variable in the IR. Only valid for inputs
260 * and outputs.
261 */
262 unsigned int driver_location;
263
264 /**
265 * output index for dual source blending.
266 */
267 int index;
268
269 /**
270 * Descriptor set binding for sampler or UBO.
271 */
272 int descriptor_set;
273
274 /**
275 * Initial binding point for a sampler or UBO.
276 *
277 * For array types, this represents the binding point for the first element.
278 */
279 int binding;
280
281 /**
282 * Location an atomic counter is stored at.
283 */
284 unsigned offset;
285
286 /**
287 * ARB_shader_image_load_store qualifiers.
288 */
289 struct {
290 bool read_only; /**< "readonly" qualifier. */
291 bool write_only; /**< "writeonly" qualifier. */
292 bool coherent;
293 bool _volatile;
294 bool restrict_flag;
295
296 /** Image internal format if specified explicitly, otherwise GL_NONE. */
297 GLenum format;
298 } image;
299
300 /**
301 * Highest element accessed with a constant expression array index
302 *
303 * Not used for non-array variables.
304 */
305 unsigned max_array_access;
306
307 } data;
308
309 /**
310 * Built-in state that backs this uniform
311 *
312 * Once set at variable creation, \c state_slots must remain invariant.
313 * This is because, ideally, this array would be shared by all clones of
314 * this variable in the IR tree. In other words, we'd really like for it
315 * to be a fly-weight.
316 *
317 * If the variable is not a uniform, \c num_state_slots will be zero and
318 * \c state_slots will be \c NULL.
319 */
320 /*@{*/
321 unsigned num_state_slots; /**< Number of state slots used */
322 nir_state_slot *state_slots; /**< State descriptors. */
323 /*@}*/
324
325 /**
326 * Constant expression assigned in the initializer of the variable
327 */
328 nir_constant *constant_initializer;
329
330 /**
331 * For variables that are in an interface block or are an instance of an
332 * interface block, this is the \c GLSL_TYPE_INTERFACE type for that block.
333 *
334 * \sa ir_variable::location
335 */
336 const struct glsl_type *interface_type;
337 } nir_variable;
338
339 #define nir_foreach_variable(var, var_list) \
340 foreach_list_typed(nir_variable, var, node, var_list)
341
342 #define nir_foreach_variable_safe(var, var_list) \
343 foreach_list_typed_safe(nir_variable, var, node, var_list)
344
345 static inline bool
346 nir_variable_is_global(const nir_variable *var)
347 {
348 return var->data.mode != nir_var_local && var->data.mode != nir_var_param;
349 }
350
351 typedef struct nir_register {
352 struct exec_node node;
353
354 unsigned num_components; /** < number of vector components */
355 unsigned num_array_elems; /** < size of array (0 for no array) */
356
357 /* The bit-size of each channel; must be one of 8, 16, 32, or 64 */
358 uint8_t bit_size;
359
360 /** generic register index. */
361 unsigned index;
362
363 /** only for debug purposes, can be NULL */
364 const char *name;
365
366 /** whether this register is local (per-function) or global (per-shader) */
367 bool is_global;
368
369 /**
370 * If this flag is set to true, then accessing channels >= num_components
371 * is well-defined, and simply spills over to the next array element. This
372 * is useful for backends that can do per-component accessing, in
373 * particular scalar backends. By setting this flag and making
374 * num_components equal to 1, structures can be packed tightly into
375 * registers and then registers can be accessed per-component to get to
376 * each structure member, even if it crosses vec4 boundaries.
377 */
378 bool is_packed;
379
380 /** set of nir_src's where this register is used (read from) */
381 struct list_head uses;
382
383 /** set of nir_dest's where this register is defined (written to) */
384 struct list_head defs;
385
386 /** set of nir_if's where this register is used as a condition */
387 struct list_head if_uses;
388 } nir_register;
389
390 typedef enum {
391 nir_instr_type_alu,
392 nir_instr_type_call,
393 nir_instr_type_tex,
394 nir_instr_type_intrinsic,
395 nir_instr_type_load_const,
396 nir_instr_type_jump,
397 nir_instr_type_ssa_undef,
398 nir_instr_type_phi,
399 nir_instr_type_parallel_copy,
400 } nir_instr_type;
401
402 typedef struct nir_instr {
403 struct exec_node node;
404 nir_instr_type type;
405 struct nir_block *block;
406
407 /** generic instruction index. */
408 unsigned index;
409
410 /* A temporary for optimization and analysis passes to use for storing
411 * flags. For instance, DCE uses this to store the "dead/live" info.
412 */
413 uint8_t pass_flags;
414 } nir_instr;
415
416 static inline nir_instr *
417 nir_instr_next(nir_instr *instr)
418 {
419 struct exec_node *next = exec_node_get_next(&instr->node);
420 if (exec_node_is_tail_sentinel(next))
421 return NULL;
422 else
423 return exec_node_data(nir_instr, next, node);
424 }
425
426 static inline nir_instr *
427 nir_instr_prev(nir_instr *instr)
428 {
429 struct exec_node *prev = exec_node_get_prev(&instr->node);
430 if (exec_node_is_head_sentinel(prev))
431 return NULL;
432 else
433 return exec_node_data(nir_instr, prev, node);
434 }
435
436 static inline bool
437 nir_instr_is_first(nir_instr *instr)
438 {
439 return exec_node_is_head_sentinel(exec_node_get_prev(&instr->node));
440 }
441
442 static inline bool
443 nir_instr_is_last(nir_instr *instr)
444 {
445 return exec_node_is_tail_sentinel(exec_node_get_next(&instr->node));
446 }
447
448 typedef struct nir_ssa_def {
449 /** for debugging only, can be NULL */
450 const char* name;
451
452 /** generic SSA definition index. */
453 unsigned index;
454
455 /** Index into the live_in and live_out bitfields */
456 unsigned live_index;
457
458 nir_instr *parent_instr;
459
460 /** set of nir_instr's where this register is used (read from) */
461 struct list_head uses;
462
463 /** set of nir_if's where this register is used as a condition */
464 struct list_head if_uses;
465
466 uint8_t num_components;
467
468 /* The bit-size of each channel; must be one of 8, 16, 32, or 64 */
469 uint8_t bit_size;
470 } nir_ssa_def;
471
472 struct nir_src;
473
474 typedef struct {
475 nir_register *reg;
476 struct nir_src *indirect; /** < NULL for no indirect offset */
477 unsigned base_offset;
478
479 /* TODO use-def chain goes here */
480 } nir_reg_src;
481
482 typedef struct {
483 nir_instr *parent_instr;
484 struct list_head def_link;
485
486 nir_register *reg;
487 struct nir_src *indirect; /** < NULL for no indirect offset */
488 unsigned base_offset;
489
490 /* TODO def-use chain goes here */
491 } nir_reg_dest;
492
493 struct nir_if;
494
495 typedef struct nir_src {
496 union {
497 nir_instr *parent_instr;
498 struct nir_if *parent_if;
499 };
500
501 struct list_head use_link;
502
503 union {
504 nir_reg_src reg;
505 nir_ssa_def *ssa;
506 };
507
508 bool is_ssa;
509 } nir_src;
510
511 static inline nir_src
512 nir_src_init(void)
513 {
514 nir_src src = { { NULL } };
515 return src;
516 }
517
518 #define NIR_SRC_INIT nir_src_init()
519
520 #define nir_foreach_use(src, reg_or_ssa_def) \
521 list_for_each_entry(nir_src, src, &(reg_or_ssa_def)->uses, use_link)
522
523 #define nir_foreach_use_safe(src, reg_or_ssa_def) \
524 list_for_each_entry_safe(nir_src, src, &(reg_or_ssa_def)->uses, use_link)
525
526 #define nir_foreach_if_use(src, reg_or_ssa_def) \
527 list_for_each_entry(nir_src, src, &(reg_or_ssa_def)->if_uses, use_link)
528
529 #define nir_foreach_if_use_safe(src, reg_or_ssa_def) \
530 list_for_each_entry_safe(nir_src, src, &(reg_or_ssa_def)->if_uses, use_link)
531
532 typedef struct {
533 union {
534 nir_reg_dest reg;
535 nir_ssa_def ssa;
536 };
537
538 bool is_ssa;
539 } nir_dest;
540
541 static inline nir_dest
542 nir_dest_init(void)
543 {
544 nir_dest dest = { { { NULL } } };
545 return dest;
546 }
547
548 #define NIR_DEST_INIT nir_dest_init()
549
550 #define nir_foreach_def(dest, reg) \
551 list_for_each_entry(nir_dest, dest, &(reg)->defs, reg.def_link)
552
553 #define nir_foreach_def_safe(dest, reg) \
554 list_for_each_entry_safe(nir_dest, dest, &(reg)->defs, reg.def_link)
555
556 static inline nir_src
557 nir_src_for_ssa(nir_ssa_def *def)
558 {
559 nir_src src = NIR_SRC_INIT;
560
561 src.is_ssa = true;
562 src.ssa = def;
563
564 return src;
565 }
566
567 static inline nir_src
568 nir_src_for_reg(nir_register *reg)
569 {
570 nir_src src = NIR_SRC_INIT;
571
572 src.is_ssa = false;
573 src.reg.reg = reg;
574 src.reg.indirect = NULL;
575 src.reg.base_offset = 0;
576
577 return src;
578 }
579
580 static inline nir_dest
581 nir_dest_for_reg(nir_register *reg)
582 {
583 nir_dest dest = NIR_DEST_INIT;
584
585 dest.reg.reg = reg;
586
587 return dest;
588 }
589
590 static inline unsigned
591 nir_src_bit_size(nir_src src)
592 {
593 return src.is_ssa ? src.ssa->bit_size : src.reg.reg->bit_size;
594 }
595
596 static inline unsigned
597 nir_dest_bit_size(nir_dest dest)
598 {
599 return dest.is_ssa ? dest.ssa.bit_size : dest.reg.reg->bit_size;
600 }
601
602 void nir_src_copy(nir_src *dest, const nir_src *src, void *instr_or_if);
603 void nir_dest_copy(nir_dest *dest, const nir_dest *src, nir_instr *instr);
604
605 typedef struct {
606 nir_src src;
607
608 /**
609 * \name input modifiers
610 */
611 /*@{*/
612 /**
613 * For inputs interpreted as floating point, flips the sign bit. For
614 * inputs interpreted as integers, performs the two's complement negation.
615 */
616 bool negate;
617
618 /**
619 * Clears the sign bit for floating point values, and computes the integer
620 * absolute value for integers. Note that the negate modifier acts after
621 * the absolute value modifier, therefore if both are set then all inputs
622 * will become negative.
623 */
624 bool abs;
625 /*@}*/
626
627 /**
628 * For each input component, says which component of the register it is
629 * chosen from. Note that which elements of the swizzle are used and which
630 * are ignored are based on the write mask for most opcodes - for example,
631 * a statement like "foo.xzw = bar.zyx" would have a writemask of 1101b and
632 * a swizzle of {2, x, 1, 0} where x means "don't care."
633 */
634 uint8_t swizzle[4];
635 } nir_alu_src;
636
637 typedef struct {
638 nir_dest dest;
639
640 /**
641 * \name saturate output modifier
642 *
643 * Only valid for opcodes that output floating-point numbers. Clamps the
644 * output to between 0.0 and 1.0 inclusive.
645 */
646
647 bool saturate;
648
649 unsigned write_mask : 4; /* ignored if dest.is_ssa is true */
650 } nir_alu_dest;
651
652 typedef enum {
653 nir_type_invalid = 0, /* Not a valid type */
654 nir_type_float,
655 nir_type_int,
656 nir_type_uint,
657 nir_type_bool,
658 nir_type_bool32 = 32 | nir_type_bool,
659 nir_type_int8 = 8 | nir_type_int,
660 nir_type_int16 = 16 | nir_type_int,
661 nir_type_int32 = 32 | nir_type_int,
662 nir_type_int64 = 64 | nir_type_int,
663 nir_type_uint8 = 8 | nir_type_uint,
664 nir_type_uint16 = 16 | nir_type_uint,
665 nir_type_uint32 = 32 | nir_type_uint,
666 nir_type_uint64 = 64 | nir_type_uint,
667 nir_type_float16 = 16 | nir_type_float,
668 nir_type_float32 = 32 | nir_type_float,
669 nir_type_float64 = 64 | nir_type_float,
670 } nir_alu_type;
671
672 #define NIR_ALU_TYPE_SIZE_MASK 0xfffffff8
673 #define NIR_ALU_TYPE_BASE_TYPE_MASK 0x00000007
674
675 static inline unsigned
676 nir_alu_type_get_type_size(nir_alu_type type)
677 {
678 return type & NIR_ALU_TYPE_SIZE_MASK;
679 }
680
681 static inline unsigned
682 nir_alu_type_get_base_type(nir_alu_type type)
683 {
684 return type & NIR_ALU_TYPE_BASE_TYPE_MASK;
685 }
686
687 typedef enum {
688 NIR_OP_IS_COMMUTATIVE = (1 << 0),
689 NIR_OP_IS_ASSOCIATIVE = (1 << 1),
690 } nir_op_algebraic_property;
691
692 typedef struct {
693 const char *name;
694
695 unsigned num_inputs;
696
697 /**
698 * The number of components in the output
699 *
700 * If non-zero, this is the size of the output and input sizes are
701 * explicitly given; swizzle and writemask are still in effect, but if
702 * the output component is masked out, then the input component may
703 * still be in use.
704 *
705 * If zero, the opcode acts in the standard, per-component manner; the
706 * operation is performed on each component (except the ones that are
707 * masked out) with the input being taken from the input swizzle for
708 * that component.
709 *
710 * The size of some of the inputs may be given (i.e. non-zero) even
711 * though output_size is zero; in that case, the inputs with a zero
712 * size act per-component, while the inputs with non-zero size don't.
713 */
714 unsigned output_size;
715
716 /**
717 * The type of vector that the instruction outputs. Note that the
718 * staurate modifier is only allowed on outputs with the float type.
719 */
720
721 nir_alu_type output_type;
722
723 /**
724 * The number of components in each input
725 */
726 unsigned input_sizes[4];
727
728 /**
729 * The type of vector that each input takes. Note that negate and
730 * absolute value are only allowed on inputs with int or float type and
731 * behave differently on the two.
732 */
733 nir_alu_type input_types[4];
734
735 nir_op_algebraic_property algebraic_properties;
736 } nir_op_info;
737
738 extern const nir_op_info nir_op_infos[nir_num_opcodes];
739
740 typedef struct nir_alu_instr {
741 nir_instr instr;
742 nir_op op;
743
744 /** Indicates that this ALU instruction generates an exact value
745 *
746 * This is kind of a mixture of GLSL "precise" and "invariant" and not
747 * really equivalent to either. This indicates that the value generated by
748 * this operation is high-precision and any code transformations that touch
749 * it must ensure that the resulting value is bit-for-bit identical to the
750 * original.
751 */
752 bool exact;
753
754 nir_alu_dest dest;
755 nir_alu_src src[];
756 } nir_alu_instr;
757
758 void nir_alu_src_copy(nir_alu_src *dest, const nir_alu_src *src,
759 nir_alu_instr *instr);
760 void nir_alu_dest_copy(nir_alu_dest *dest, const nir_alu_dest *src,
761 nir_alu_instr *instr);
762
763 /* is this source channel used? */
764 static inline bool
765 nir_alu_instr_channel_used(nir_alu_instr *instr, unsigned src, unsigned channel)
766 {
767 if (nir_op_infos[instr->op].input_sizes[src] > 0)
768 return channel < nir_op_infos[instr->op].input_sizes[src];
769
770 return (instr->dest.write_mask >> channel) & 1;
771 }
772
773 /*
774 * For instructions whose destinations are SSA, get the number of channels
775 * used for a source
776 */
777 static inline unsigned
778 nir_ssa_alu_instr_src_components(const nir_alu_instr *instr, unsigned src)
779 {
780 assert(instr->dest.dest.is_ssa);
781
782 if (nir_op_infos[instr->op].input_sizes[src] > 0)
783 return nir_op_infos[instr->op].input_sizes[src];
784
785 return instr->dest.dest.ssa.num_components;
786 }
787
788 typedef enum {
789 nir_deref_type_var,
790 nir_deref_type_array,
791 nir_deref_type_struct
792 } nir_deref_type;
793
794 typedef struct nir_deref {
795 nir_deref_type deref_type;
796 struct nir_deref *child;
797 const struct glsl_type *type;
798 } nir_deref;
799
800 typedef struct {
801 nir_deref deref;
802
803 nir_variable *var;
804 } nir_deref_var;
805
806 /* This enum describes how the array is referenced. If the deref is
807 * direct then the base_offset is used. If the deref is indirect then
808 * offset is given by base_offset + indirect. If the deref is a wildcard
809 * then the deref refers to all of the elements of the array at the same
810 * time. Wildcard dereferences are only ever allowed in copy_var
811 * intrinsics and the source and destination derefs must have matching
812 * wildcards.
813 */
814 typedef enum {
815 nir_deref_array_type_direct,
816 nir_deref_array_type_indirect,
817 nir_deref_array_type_wildcard,
818 } nir_deref_array_type;
819
820 typedef struct {
821 nir_deref deref;
822
823 nir_deref_array_type deref_array_type;
824 unsigned base_offset;
825 nir_src indirect;
826 } nir_deref_array;
827
828 typedef struct {
829 nir_deref deref;
830
831 unsigned index;
832 } nir_deref_struct;
833
834 NIR_DEFINE_CAST(nir_deref_as_var, nir_deref, nir_deref_var, deref)
835 NIR_DEFINE_CAST(nir_deref_as_array, nir_deref, nir_deref_array, deref)
836 NIR_DEFINE_CAST(nir_deref_as_struct, nir_deref, nir_deref_struct, deref)
837
838 /* Returns the last deref in the chain. */
839 static inline nir_deref *
840 nir_deref_tail(nir_deref *deref)
841 {
842 while (deref->child)
843 deref = deref->child;
844 return deref;
845 }
846
847 typedef struct {
848 nir_instr instr;
849
850 unsigned num_params;
851 nir_deref_var **params;
852 nir_deref_var *return_deref;
853
854 struct nir_function *callee;
855 } nir_call_instr;
856
857 #define INTRINSIC(name, num_srcs, src_components, has_dest, dest_components, \
858 num_variables, num_indices, idx0, idx1, idx2, flags) \
859 nir_intrinsic_##name,
860
861 #define LAST_INTRINSIC(name) nir_last_intrinsic = nir_intrinsic_##name,
862
863 typedef enum {
864 #include "nir_intrinsics.h"
865 nir_num_intrinsics = nir_last_intrinsic + 1
866 } nir_intrinsic_op;
867
868 #undef INTRINSIC
869 #undef LAST_INTRINSIC
870
871 #define NIR_INTRINSIC_MAX_CONST_INDEX 3
872
873 /** Represents an intrinsic
874 *
875 * An intrinsic is an instruction type for handling things that are
876 * more-or-less regular operations but don't just consume and produce SSA
877 * values like ALU operations do. Intrinsics are not for things that have
878 * special semantic meaning such as phi nodes and parallel copies.
879 * Examples of intrinsics include variable load/store operations, system
880 * value loads, and the like. Even though texturing more-or-less falls
881 * under this category, texturing is its own instruction type because
882 * trying to represent texturing with intrinsics would lead to a
883 * combinatorial explosion of intrinsic opcodes.
884 *
885 * By having a single instruction type for handling a lot of different
886 * cases, optimization passes can look for intrinsics and, for the most
887 * part, completely ignore them. Each intrinsic type also has a few
888 * possible flags that govern whether or not they can be reordered or
889 * eliminated. That way passes like dead code elimination can still work
890 * on intrisics without understanding the meaning of each.
891 *
892 * Each intrinsic has some number of constant indices, some number of
893 * variables, and some number of sources. What these sources, variables,
894 * and indices mean depends on the intrinsic and is documented with the
895 * intrinsic declaration in nir_intrinsics.h. Intrinsics and texture
896 * instructions are the only types of instruction that can operate on
897 * variables.
898 */
899 typedef struct {
900 nir_instr instr;
901
902 nir_intrinsic_op intrinsic;
903
904 nir_dest dest;
905
906 /** number of components if this is a vectorized intrinsic
907 *
908 * Similarly to ALU operations, some intrinsics are vectorized.
909 * An intrinsic is vectorized if nir_intrinsic_infos.dest_components == 0.
910 * For vectorized intrinsics, the num_components field specifies the
911 * number of destination components and the number of source components
912 * for all sources with nir_intrinsic_infos.src_components[i] == 0.
913 */
914 uint8_t num_components;
915
916 int const_index[NIR_INTRINSIC_MAX_CONST_INDEX];
917
918 nir_deref_var *variables[2];
919
920 nir_src src[];
921 } nir_intrinsic_instr;
922
923 /**
924 * \name NIR intrinsics semantic flags
925 *
926 * information about what the compiler can do with the intrinsics.
927 *
928 * \sa nir_intrinsic_info::flags
929 */
930 typedef enum {
931 /**
932 * whether the intrinsic can be safely eliminated if none of its output
933 * value is not being used.
934 */
935 NIR_INTRINSIC_CAN_ELIMINATE = (1 << 0),
936
937 /**
938 * Whether the intrinsic can be reordered with respect to any other
939 * intrinsic, i.e. whether the only reordering dependencies of the
940 * intrinsic are due to the register reads/writes.
941 */
942 NIR_INTRINSIC_CAN_REORDER = (1 << 1),
943 } nir_intrinsic_semantic_flag;
944
945 /**
946 * \name NIR intrinsics const-index flag
947 *
948 * Indicates the usage of a const_index slot.
949 *
950 * \sa nir_intrinsic_info::index_map
951 */
952 typedef enum {
953 /**
954 * Generally instructions that take a offset src argument, can encode
955 * a constant 'base' value which is added to the offset.
956 */
957 NIR_INTRINSIC_BASE = 1,
958
959 /**
960 * For store instructions, a writemask for the store.
961 */
962 NIR_INTRINSIC_WRMASK = 2,
963
964 /**
965 * The stream-id for GS emit_vertex/end_primitive intrinsics.
966 */
967 NIR_INTRINSIC_STREAM_ID = 3,
968
969 /**
970 * The clip-plane id for load_user_clip_plane intrinsic.
971 */
972 NIR_INTRINSIC_UCP_ID = 4,
973
974 /**
975 * The amount of data, starting from BASE, that this instruction may
976 * access. This is used to provide bounds if the offset is not constant.
977 */
978 NIR_INTRINSIC_RANGE = 5,
979
980 /**
981 * The Vulkan descriptor set for vulkan_resource_index intrinsic.
982 */
983 NIR_INTRINSIC_DESC_SET = 6,
984
985 /**
986 * The Vulkan descriptor set binding for vulkan_resource_index intrinsic.
987 */
988 NIR_INTRINSIC_BINDING = 7,
989
990 /**
991 * Component offset.
992 */
993 NIR_INTRINSIC_COMPONENT = 8,
994
995 /**
996 * Interpolation mode (only meaningful for FS inputs).
997 */
998 NIR_INTRINSIC_INTERP_MODE = 9,
999
1000 NIR_INTRINSIC_NUM_INDEX_FLAGS,
1001
1002 } nir_intrinsic_index_flag;
1003
1004 #define NIR_INTRINSIC_MAX_INPUTS 4
1005
1006 typedef struct {
1007 const char *name;
1008
1009 unsigned num_srcs; /** < number of register/SSA inputs */
1010
1011 /** number of components of each input register
1012 *
1013 * If this value is 0, the number of components is given by the
1014 * num_components field of nir_intrinsic_instr.
1015 */
1016 unsigned src_components[NIR_INTRINSIC_MAX_INPUTS];
1017
1018 bool has_dest;
1019
1020 /** number of components of the output register
1021 *
1022 * If this value is 0, the number of components is given by the
1023 * num_components field of nir_intrinsic_instr.
1024 */
1025 unsigned dest_components;
1026
1027 /** the number of inputs/outputs that are variables */
1028 unsigned num_variables;
1029
1030 /** the number of constant indices used by the intrinsic */
1031 unsigned num_indices;
1032
1033 /** indicates the usage of intr->const_index[n] */
1034 unsigned index_map[NIR_INTRINSIC_NUM_INDEX_FLAGS];
1035
1036 /** semantic flags for calls to this intrinsic */
1037 nir_intrinsic_semantic_flag flags;
1038 } nir_intrinsic_info;
1039
1040 extern const nir_intrinsic_info nir_intrinsic_infos[nir_num_intrinsics];
1041
1042
1043 #define INTRINSIC_IDX_ACCESSORS(name, flag, type) \
1044 static inline type \
1045 nir_intrinsic_##name(nir_intrinsic_instr *instr) \
1046 { \
1047 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic]; \
1048 assert(info->index_map[NIR_INTRINSIC_##flag] > 0); \
1049 return instr->const_index[info->index_map[NIR_INTRINSIC_##flag] - 1]; \
1050 } \
1051 static inline void \
1052 nir_intrinsic_set_##name(nir_intrinsic_instr *instr, type val) \
1053 { \
1054 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic]; \
1055 assert(info->index_map[NIR_INTRINSIC_##flag] > 0); \
1056 instr->const_index[info->index_map[NIR_INTRINSIC_##flag] - 1] = val; \
1057 }
1058
1059 INTRINSIC_IDX_ACCESSORS(write_mask, WRMASK, unsigned)
1060 INTRINSIC_IDX_ACCESSORS(base, BASE, int)
1061 INTRINSIC_IDX_ACCESSORS(stream_id, STREAM_ID, unsigned)
1062 INTRINSIC_IDX_ACCESSORS(ucp_id, UCP_ID, unsigned)
1063 INTRINSIC_IDX_ACCESSORS(range, RANGE, unsigned)
1064 INTRINSIC_IDX_ACCESSORS(desc_set, DESC_SET, unsigned)
1065 INTRINSIC_IDX_ACCESSORS(binding, BINDING, unsigned)
1066 INTRINSIC_IDX_ACCESSORS(component, COMPONENT, unsigned)
1067 INTRINSIC_IDX_ACCESSORS(interp_mode, INTERP_MODE, unsigned)
1068
1069 /**
1070 * \group texture information
1071 *
1072 * This gives semantic information about textures which is useful to the
1073 * frontend, the backend, and lowering passes, but not the optimizer.
1074 */
1075
1076 typedef enum {
1077 nir_tex_src_coord,
1078 nir_tex_src_projector,
1079 nir_tex_src_comparitor, /* shadow comparitor */
1080 nir_tex_src_offset,
1081 nir_tex_src_bias,
1082 nir_tex_src_lod,
1083 nir_tex_src_ms_index, /* MSAA sample index */
1084 nir_tex_src_ms_mcs, /* MSAA compression value */
1085 nir_tex_src_ddx,
1086 nir_tex_src_ddy,
1087 nir_tex_src_texture_offset, /* < dynamically uniform indirect offset */
1088 nir_tex_src_sampler_offset, /* < dynamically uniform indirect offset */
1089 nir_tex_src_plane, /* < selects plane for planar textures */
1090 nir_num_tex_src_types
1091 } nir_tex_src_type;
1092
1093 typedef struct {
1094 nir_src src;
1095 nir_tex_src_type src_type;
1096 } nir_tex_src;
1097
1098 typedef enum {
1099 nir_texop_tex, /**< Regular texture look-up */
1100 nir_texop_txb, /**< Texture look-up with LOD bias */
1101 nir_texop_txl, /**< Texture look-up with explicit LOD */
1102 nir_texop_txd, /**< Texture look-up with partial derivatvies */
1103 nir_texop_txf, /**< Texel fetch with explicit LOD */
1104 nir_texop_txf_ms, /**< Multisample texture fetch */
1105 nir_texop_txf_ms_mcs, /**< Multisample compression value fetch */
1106 nir_texop_txs, /**< Texture size */
1107 nir_texop_lod, /**< Texture lod query */
1108 nir_texop_tg4, /**< Texture gather */
1109 nir_texop_query_levels, /**< Texture levels query */
1110 nir_texop_texture_samples, /**< Texture samples query */
1111 nir_texop_samples_identical, /**< Query whether all samples are definitely
1112 * identical.
1113 */
1114 } nir_texop;
1115
1116 typedef struct {
1117 nir_instr instr;
1118
1119 enum glsl_sampler_dim sampler_dim;
1120 nir_alu_type dest_type;
1121
1122 nir_texop op;
1123 nir_dest dest;
1124 nir_tex_src *src;
1125 unsigned num_srcs, coord_components;
1126 bool is_array, is_shadow;
1127
1128 /**
1129 * If is_shadow is true, whether this is the old-style shadow that outputs 4
1130 * components or the new-style shadow that outputs 1 component.
1131 */
1132 bool is_new_style_shadow;
1133
1134 /* gather component selector */
1135 unsigned component : 2;
1136
1137 /** The texture index
1138 *
1139 * If this texture instruction has a nir_tex_src_texture_offset source,
1140 * then the texture index is given by texture_index + texture_offset.
1141 */
1142 unsigned texture_index;
1143
1144 /** The size of the texture array or 0 if it's not an array */
1145 unsigned texture_array_size;
1146
1147 /** The texture deref
1148 *
1149 * If this is null, use texture_index instead.
1150 */
1151 nir_deref_var *texture;
1152
1153 /** The sampler index
1154 *
1155 * The following operations do not require a sampler and, as such, this
1156 * field should be ignored:
1157 * - nir_texop_txf
1158 * - nir_texop_txf_ms
1159 * - nir_texop_txs
1160 * - nir_texop_lod
1161 * - nir_texop_tg4
1162 * - nir_texop_query_levels
1163 * - nir_texop_texture_samples
1164 * - nir_texop_samples_identical
1165 *
1166 * If this texture instruction has a nir_tex_src_sampler_offset source,
1167 * then the sampler index is given by sampler_index + sampler_offset.
1168 */
1169 unsigned sampler_index;
1170
1171 /** The sampler deref
1172 *
1173 * If this is null, use sampler_index instead.
1174 */
1175 nir_deref_var *sampler;
1176 } nir_tex_instr;
1177
1178 static inline unsigned
1179 nir_tex_instr_dest_size(nir_tex_instr *instr)
1180 {
1181 switch (instr->op) {
1182 case nir_texop_txs: {
1183 unsigned ret;
1184 switch (instr->sampler_dim) {
1185 case GLSL_SAMPLER_DIM_1D:
1186 case GLSL_SAMPLER_DIM_BUF:
1187 ret = 1;
1188 break;
1189 case GLSL_SAMPLER_DIM_2D:
1190 case GLSL_SAMPLER_DIM_CUBE:
1191 case GLSL_SAMPLER_DIM_MS:
1192 case GLSL_SAMPLER_DIM_RECT:
1193 case GLSL_SAMPLER_DIM_EXTERNAL:
1194 ret = 2;
1195 break;
1196 case GLSL_SAMPLER_DIM_3D:
1197 ret = 3;
1198 break;
1199 default:
1200 unreachable("not reached");
1201 }
1202 if (instr->is_array)
1203 ret++;
1204 return ret;
1205 }
1206
1207 case nir_texop_lod:
1208 return 2;
1209
1210 case nir_texop_texture_samples:
1211 case nir_texop_query_levels:
1212 case nir_texop_samples_identical:
1213 return 1;
1214
1215 default:
1216 if (instr->is_shadow && instr->is_new_style_shadow)
1217 return 1;
1218
1219 return 4;
1220 }
1221 }
1222
1223 /* Returns true if this texture operation queries something about the texture
1224 * rather than actually sampling it.
1225 */
1226 static inline bool
1227 nir_tex_instr_is_query(nir_tex_instr *instr)
1228 {
1229 switch (instr->op) {
1230 case nir_texop_txs:
1231 case nir_texop_lod:
1232 case nir_texop_texture_samples:
1233 case nir_texop_query_levels:
1234 case nir_texop_txf_ms_mcs:
1235 return true;
1236 case nir_texop_tex:
1237 case nir_texop_txb:
1238 case nir_texop_txl:
1239 case nir_texop_txd:
1240 case nir_texop_txf:
1241 case nir_texop_txf_ms:
1242 case nir_texop_tg4:
1243 return false;
1244 default:
1245 unreachable("Invalid texture opcode");
1246 }
1247 }
1248
1249 static inline unsigned
1250 nir_tex_instr_src_size(nir_tex_instr *instr, unsigned src)
1251 {
1252 if (instr->src[src].src_type == nir_tex_src_coord)
1253 return instr->coord_components;
1254
1255 /* The MCS value is expected to be a vec4 returned by a txf_ms_mcs */
1256 if (instr->src[src].src_type == nir_tex_src_ms_mcs)
1257 return 4;
1258
1259 if (instr->src[src].src_type == nir_tex_src_offset ||
1260 instr->src[src].src_type == nir_tex_src_ddx ||
1261 instr->src[src].src_type == nir_tex_src_ddy) {
1262 if (instr->is_array)
1263 return instr->coord_components - 1;
1264 else
1265 return instr->coord_components;
1266 }
1267
1268 return 1;
1269 }
1270
1271 static inline int
1272 nir_tex_instr_src_index(nir_tex_instr *instr, nir_tex_src_type type)
1273 {
1274 for (unsigned i = 0; i < instr->num_srcs; i++)
1275 if (instr->src[i].src_type == type)
1276 return (int) i;
1277
1278 return -1;
1279 }
1280
1281 typedef union {
1282 float f32[4];
1283 double f64[4];
1284 int32_t i32[4];
1285 uint32_t u32[4];
1286 int64_t i64[4];
1287 uint64_t u64[4];
1288 } nir_const_value;
1289
1290 typedef struct {
1291 nir_instr instr;
1292
1293 nir_const_value value;
1294
1295 nir_ssa_def def;
1296 } nir_load_const_instr;
1297
1298 typedef enum {
1299 nir_jump_return,
1300 nir_jump_break,
1301 nir_jump_continue,
1302 } nir_jump_type;
1303
1304 typedef struct {
1305 nir_instr instr;
1306 nir_jump_type type;
1307 } nir_jump_instr;
1308
1309 /* creates a new SSA variable in an undefined state */
1310
1311 typedef struct {
1312 nir_instr instr;
1313 nir_ssa_def def;
1314 } nir_ssa_undef_instr;
1315
1316 typedef struct {
1317 struct exec_node node;
1318
1319 /* The predecessor block corresponding to this source */
1320 struct nir_block *pred;
1321
1322 nir_src src;
1323 } nir_phi_src;
1324
1325 #define nir_foreach_phi_src(phi_src, phi) \
1326 foreach_list_typed(nir_phi_src, phi_src, node, &(phi)->srcs)
1327 #define nir_foreach_phi_src_safe(phi_src, phi) \
1328 foreach_list_typed_safe(nir_phi_src, phi_src, node, &(phi)->srcs)
1329
1330 typedef struct {
1331 nir_instr instr;
1332
1333 struct exec_list srcs; /** < list of nir_phi_src */
1334
1335 nir_dest dest;
1336 } nir_phi_instr;
1337
1338 typedef struct {
1339 struct exec_node node;
1340 nir_src src;
1341 nir_dest dest;
1342 } nir_parallel_copy_entry;
1343
1344 #define nir_foreach_parallel_copy_entry(entry, pcopy) \
1345 foreach_list_typed(nir_parallel_copy_entry, entry, node, &(pcopy)->entries)
1346
1347 typedef struct {
1348 nir_instr instr;
1349
1350 /* A list of nir_parallel_copy_entry's. The sources of all of the
1351 * entries are copied to the corresponding destinations "in parallel".
1352 * In other words, if we have two entries: a -> b and b -> a, the values
1353 * get swapped.
1354 */
1355 struct exec_list entries;
1356 } nir_parallel_copy_instr;
1357
1358 NIR_DEFINE_CAST(nir_instr_as_alu, nir_instr, nir_alu_instr, instr)
1359 NIR_DEFINE_CAST(nir_instr_as_call, nir_instr, nir_call_instr, instr)
1360 NIR_DEFINE_CAST(nir_instr_as_jump, nir_instr, nir_jump_instr, instr)
1361 NIR_DEFINE_CAST(nir_instr_as_tex, nir_instr, nir_tex_instr, instr)
1362 NIR_DEFINE_CAST(nir_instr_as_intrinsic, nir_instr, nir_intrinsic_instr, instr)
1363 NIR_DEFINE_CAST(nir_instr_as_load_const, nir_instr, nir_load_const_instr, instr)
1364 NIR_DEFINE_CAST(nir_instr_as_ssa_undef, nir_instr, nir_ssa_undef_instr, instr)
1365 NIR_DEFINE_CAST(nir_instr_as_phi, nir_instr, nir_phi_instr, instr)
1366 NIR_DEFINE_CAST(nir_instr_as_parallel_copy, nir_instr,
1367 nir_parallel_copy_instr, instr)
1368
1369 /*
1370 * Control flow
1371 *
1372 * Control flow consists of a tree of control flow nodes, which include
1373 * if-statements and loops. The leaves of the tree are basic blocks, lists of
1374 * instructions that always run start-to-finish. Each basic block also keeps
1375 * track of its successors (blocks which may run immediately after the current
1376 * block) and predecessors (blocks which could have run immediately before the
1377 * current block). Each function also has a start block and an end block which
1378 * all return statements point to (which is always empty). Together, all the
1379 * blocks with their predecessors and successors make up the control flow
1380 * graph (CFG) of the function. There are helpers that modify the tree of
1381 * control flow nodes while modifying the CFG appropriately; these should be
1382 * used instead of modifying the tree directly.
1383 */
1384
1385 typedef enum {
1386 nir_cf_node_block,
1387 nir_cf_node_if,
1388 nir_cf_node_loop,
1389 nir_cf_node_function
1390 } nir_cf_node_type;
1391
1392 typedef struct nir_cf_node {
1393 struct exec_node node;
1394 nir_cf_node_type type;
1395 struct nir_cf_node *parent;
1396 } nir_cf_node;
1397
1398 typedef struct nir_block {
1399 nir_cf_node cf_node;
1400
1401 struct exec_list instr_list; /** < list of nir_instr */
1402
1403 /** generic block index; generated by nir_index_blocks */
1404 unsigned index;
1405
1406 /*
1407 * Each block can only have up to 2 successors, so we put them in a simple
1408 * array - no need for anything more complicated.
1409 */
1410 struct nir_block *successors[2];
1411
1412 /* Set of nir_block predecessors in the CFG */
1413 struct set *predecessors;
1414
1415 /*
1416 * this node's immediate dominator in the dominance tree - set to NULL for
1417 * the start block.
1418 */
1419 struct nir_block *imm_dom;
1420
1421 /* This node's children in the dominance tree */
1422 unsigned num_dom_children;
1423 struct nir_block **dom_children;
1424
1425 /* Set of nir_block's on the dominance frontier of this block */
1426 struct set *dom_frontier;
1427
1428 /*
1429 * These two indices have the property that dom_{pre,post}_index for each
1430 * child of this block in the dominance tree will always be between
1431 * dom_pre_index and dom_post_index for this block, which makes testing if
1432 * a given block is dominated by another block an O(1) operation.
1433 */
1434 unsigned dom_pre_index, dom_post_index;
1435
1436 /* live in and out for this block; used for liveness analysis */
1437 BITSET_WORD *live_in;
1438 BITSET_WORD *live_out;
1439 } nir_block;
1440
1441 static inline nir_instr *
1442 nir_block_first_instr(nir_block *block)
1443 {
1444 struct exec_node *head = exec_list_get_head(&block->instr_list);
1445 return exec_node_data(nir_instr, head, node);
1446 }
1447
1448 static inline nir_instr *
1449 nir_block_last_instr(nir_block *block)
1450 {
1451 struct exec_node *tail = exec_list_get_tail(&block->instr_list);
1452 return exec_node_data(nir_instr, tail, node);
1453 }
1454
1455 #define nir_foreach_instr(instr, block) \
1456 foreach_list_typed(nir_instr, instr, node, &(block)->instr_list)
1457 #define nir_foreach_instr_reverse(instr, block) \
1458 foreach_list_typed_reverse(nir_instr, instr, node, &(block)->instr_list)
1459 #define nir_foreach_instr_safe(instr, block) \
1460 foreach_list_typed_safe(nir_instr, instr, node, &(block)->instr_list)
1461 #define nir_foreach_instr_reverse_safe(instr, block) \
1462 foreach_list_typed_reverse_safe(nir_instr, instr, node, &(block)->instr_list)
1463
1464 typedef struct nir_if {
1465 nir_cf_node cf_node;
1466 nir_src condition;
1467
1468 struct exec_list then_list; /** < list of nir_cf_node */
1469 struct exec_list else_list; /** < list of nir_cf_node */
1470 } nir_if;
1471
1472 static inline nir_cf_node *
1473 nir_if_first_then_node(nir_if *if_stmt)
1474 {
1475 struct exec_node *head = exec_list_get_head(&if_stmt->then_list);
1476 return exec_node_data(nir_cf_node, head, node);
1477 }
1478
1479 static inline nir_cf_node *
1480 nir_if_last_then_node(nir_if *if_stmt)
1481 {
1482 struct exec_node *tail = exec_list_get_tail(&if_stmt->then_list);
1483 return exec_node_data(nir_cf_node, tail, node);
1484 }
1485
1486 static inline nir_cf_node *
1487 nir_if_first_else_node(nir_if *if_stmt)
1488 {
1489 struct exec_node *head = exec_list_get_head(&if_stmt->else_list);
1490 return exec_node_data(nir_cf_node, head, node);
1491 }
1492
1493 static inline nir_cf_node *
1494 nir_if_last_else_node(nir_if *if_stmt)
1495 {
1496 struct exec_node *tail = exec_list_get_tail(&if_stmt->else_list);
1497 return exec_node_data(nir_cf_node, tail, node);
1498 }
1499
1500 typedef struct {
1501 nir_cf_node cf_node;
1502
1503 struct exec_list body; /** < list of nir_cf_node */
1504 } nir_loop;
1505
1506 static inline nir_cf_node *
1507 nir_loop_first_cf_node(nir_loop *loop)
1508 {
1509 return exec_node_data(nir_cf_node, exec_list_get_head(&loop->body), node);
1510 }
1511
1512 static inline nir_cf_node *
1513 nir_loop_last_cf_node(nir_loop *loop)
1514 {
1515 return exec_node_data(nir_cf_node, exec_list_get_tail(&loop->body), node);
1516 }
1517
1518 /**
1519 * Various bits of metadata that can may be created or required by
1520 * optimization and analysis passes
1521 */
1522 typedef enum {
1523 nir_metadata_none = 0x0,
1524 nir_metadata_block_index = 0x1,
1525 nir_metadata_dominance = 0x2,
1526 nir_metadata_live_ssa_defs = 0x4,
1527 nir_metadata_not_properly_reset = 0x8,
1528 } nir_metadata;
1529
1530 typedef struct {
1531 nir_cf_node cf_node;
1532
1533 /** pointer to the function of which this is an implementation */
1534 struct nir_function *function;
1535
1536 struct exec_list body; /** < list of nir_cf_node */
1537
1538 nir_block *end_block;
1539
1540 /** list for all local variables in the function */
1541 struct exec_list locals;
1542
1543 /** array of variables used as parameters */
1544 unsigned num_params;
1545 nir_variable **params;
1546
1547 /** variable used to hold the result of the function */
1548 nir_variable *return_var;
1549
1550 /** list of local registers in the function */
1551 struct exec_list registers;
1552
1553 /** next available local register index */
1554 unsigned reg_alloc;
1555
1556 /** next available SSA value index */
1557 unsigned ssa_alloc;
1558
1559 /* total number of basic blocks, only valid when block_index_dirty = false */
1560 unsigned num_blocks;
1561
1562 nir_metadata valid_metadata;
1563 } nir_function_impl;
1564
1565 ATTRIBUTE_RETURNS_NONNULL static inline nir_block *
1566 nir_start_block(nir_function_impl *impl)
1567 {
1568 return (nir_block *) impl->body.head;
1569 }
1570
1571 ATTRIBUTE_RETURNS_NONNULL static inline nir_block *
1572 nir_impl_last_block(nir_function_impl *impl)
1573 {
1574 return (nir_block *) impl->body.tail_pred;
1575 }
1576
1577 static inline nir_cf_node *
1578 nir_cf_node_next(nir_cf_node *node)
1579 {
1580 struct exec_node *next = exec_node_get_next(&node->node);
1581 if (exec_node_is_tail_sentinel(next))
1582 return NULL;
1583 else
1584 return exec_node_data(nir_cf_node, next, node);
1585 }
1586
1587 static inline nir_cf_node *
1588 nir_cf_node_prev(nir_cf_node *node)
1589 {
1590 struct exec_node *prev = exec_node_get_prev(&node->node);
1591 if (exec_node_is_head_sentinel(prev))
1592 return NULL;
1593 else
1594 return exec_node_data(nir_cf_node, prev, node);
1595 }
1596
1597 static inline bool
1598 nir_cf_node_is_first(const nir_cf_node *node)
1599 {
1600 return exec_node_is_head_sentinel(node->node.prev);
1601 }
1602
1603 static inline bool
1604 nir_cf_node_is_last(const nir_cf_node *node)
1605 {
1606 return exec_node_is_tail_sentinel(node->node.next);
1607 }
1608
1609 NIR_DEFINE_CAST(nir_cf_node_as_block, nir_cf_node, nir_block, cf_node)
1610 NIR_DEFINE_CAST(nir_cf_node_as_if, nir_cf_node, nir_if, cf_node)
1611 NIR_DEFINE_CAST(nir_cf_node_as_loop, nir_cf_node, nir_loop, cf_node)
1612 NIR_DEFINE_CAST(nir_cf_node_as_function, nir_cf_node, nir_function_impl, cf_node)
1613
1614 typedef enum {
1615 nir_parameter_in,
1616 nir_parameter_out,
1617 nir_parameter_inout,
1618 } nir_parameter_type;
1619
1620 typedef struct {
1621 nir_parameter_type param_type;
1622 const struct glsl_type *type;
1623 } nir_parameter;
1624
1625 typedef struct nir_function {
1626 struct exec_node node;
1627
1628 const char *name;
1629 struct nir_shader *shader;
1630
1631 unsigned num_params;
1632 nir_parameter *params;
1633 const struct glsl_type *return_type;
1634
1635 /** The implementation of this function.
1636 *
1637 * If the function is only declared and not implemented, this is NULL.
1638 */
1639 nir_function_impl *impl;
1640 } nir_function;
1641
1642 typedef struct nir_shader_compiler_options {
1643 bool lower_fdiv;
1644 bool lower_ffma;
1645 bool fuse_ffma;
1646 bool lower_flrp32;
1647 /** Lowers flrp when it does not support doubles */
1648 bool lower_flrp64;
1649 bool lower_fpow;
1650 bool lower_fsat;
1651 bool lower_fsqrt;
1652 bool lower_fmod32;
1653 bool lower_fmod64;
1654 bool lower_bitfield_extract;
1655 bool lower_bitfield_insert;
1656 bool lower_uadd_carry;
1657 bool lower_usub_borrow;
1658 /** lowers fneg and ineg to fsub and isub. */
1659 bool lower_negate;
1660 /** lowers fsub and isub to fadd+fneg and iadd+ineg. */
1661 bool lower_sub;
1662
1663 /* lower {slt,sge,seq,sne} to {flt,fge,feq,fne} + b2f: */
1664 bool lower_scmp;
1665
1666 /** enables rules to lower idiv by power-of-two: */
1667 bool lower_idiv;
1668
1669 /* Does the native fdot instruction replicate its result for four
1670 * components? If so, then opt_algebraic_late will turn all fdotN
1671 * instructions into fdot_replicatedN instructions.
1672 */
1673 bool fdot_replicates;
1674
1675 /** lowers ffract to fsub+ffloor: */
1676 bool lower_ffract;
1677
1678 bool lower_pack_half_2x16;
1679 bool lower_pack_unorm_2x16;
1680 bool lower_pack_snorm_2x16;
1681 bool lower_pack_unorm_4x8;
1682 bool lower_pack_snorm_4x8;
1683 bool lower_unpack_half_2x16;
1684 bool lower_unpack_unorm_2x16;
1685 bool lower_unpack_snorm_2x16;
1686 bool lower_unpack_unorm_4x8;
1687 bool lower_unpack_snorm_4x8;
1688
1689 bool lower_extract_byte;
1690 bool lower_extract_word;
1691
1692 /**
1693 * Does the driver support real 32-bit integers? (Otherwise, integers
1694 * are simulated by floats.)
1695 */
1696 bool native_integers;
1697
1698 /* Indicates that the driver only has zero-based vertex id */
1699 bool vertex_id_zero_based;
1700
1701 bool lower_cs_local_index_from_id;
1702 } nir_shader_compiler_options;
1703
1704 typedef struct nir_shader_info {
1705 const char *name;
1706
1707 /* Descriptive name provided by the client; may be NULL */
1708 const char *label;
1709
1710 /* Number of textures used by this shader */
1711 unsigned num_textures;
1712 /* Number of uniform buffers used by this shader */
1713 unsigned num_ubos;
1714 /* Number of atomic buffers used by this shader */
1715 unsigned num_abos;
1716 /* Number of shader storage buffers used by this shader */
1717 unsigned num_ssbos;
1718 /* Number of images used by this shader */
1719 unsigned num_images;
1720
1721 /* Which inputs are actually read */
1722 uint64_t inputs_read;
1723 /* Which inputs are actually read and are double */
1724 uint64_t double_inputs_read;
1725 /* Which outputs are actually written */
1726 uint64_t outputs_written;
1727 /* Which system values are actually read */
1728 uint64_t system_values_read;
1729
1730 /* Which patch inputs are actually read */
1731 uint32_t patch_inputs_read;
1732 /* Which patch outputs are actually written */
1733 uint32_t patch_outputs_written;
1734
1735 /* Whether or not this shader ever uses textureGather() */
1736 bool uses_texture_gather;
1737
1738 /* Whether or not this shader uses the gl_ClipDistance output */
1739 bool uses_clip_distance_out;
1740
1741 /* Whether or not separate shader objects were used */
1742 bool separate_shader;
1743
1744 /** Was this shader linked with any transform feedback varyings? */
1745 bool has_transform_feedback_varyings;
1746
1747 union {
1748 struct {
1749 /** The number of vertices recieves per input primitive */
1750 unsigned vertices_in;
1751
1752 /** The output primitive type (GL enum value) */
1753 unsigned output_primitive;
1754
1755 /** The maximum number of vertices the geometry shader might write. */
1756 unsigned vertices_out;
1757
1758 /** 1 .. MAX_GEOMETRY_SHADER_INVOCATIONS */
1759 unsigned invocations;
1760
1761 /** Whether or not this shader uses EndPrimitive */
1762 bool uses_end_primitive;
1763
1764 /** Whether or not this shader uses non-zero streams */
1765 bool uses_streams;
1766 } gs;
1767
1768 struct {
1769 bool uses_discard;
1770
1771 /**
1772 * Whether any inputs are declared with the "sample" qualifier.
1773 */
1774 bool uses_sample_qualifier;
1775
1776 /**
1777 * Whether early fragment tests are enabled as defined by
1778 * ARB_shader_image_load_store.
1779 */
1780 bool early_fragment_tests;
1781
1782 /** gl_FragDepth layout for ARB_conservative_depth. */
1783 enum gl_frag_depth_layout depth_layout;
1784 } fs;
1785
1786 struct {
1787 unsigned local_size[3];
1788 } cs;
1789
1790 struct {
1791 /** The number of vertices in the TCS output patch. */
1792 unsigned vertices_out;
1793 } tcs;
1794 };
1795 } nir_shader_info;
1796
1797 typedef struct nir_shader {
1798 /** list of uniforms (nir_variable) */
1799 struct exec_list uniforms;
1800
1801 /** list of inputs (nir_variable) */
1802 struct exec_list inputs;
1803
1804 /** list of outputs (nir_variable) */
1805 struct exec_list outputs;
1806
1807 /** list of shared compute variables (nir_variable) */
1808 struct exec_list shared;
1809
1810 /** Set of driver-specific options for the shader.
1811 *
1812 * The memory for the options is expected to be kept in a single static
1813 * copy by the driver.
1814 */
1815 const struct nir_shader_compiler_options *options;
1816
1817 /** Various bits of compile-time information about a given shader */
1818 struct nir_shader_info info;
1819
1820 /** list of global variables in the shader (nir_variable) */
1821 struct exec_list globals;
1822
1823 /** list of system value variables in the shader (nir_variable) */
1824 struct exec_list system_values;
1825
1826 struct exec_list functions; /** < list of nir_function */
1827
1828 /** list of global register in the shader */
1829 struct exec_list registers;
1830
1831 /** next available global register index */
1832 unsigned reg_alloc;
1833
1834 /**
1835 * the highest index a load_input_*, load_uniform_*, etc. intrinsic can
1836 * access plus one
1837 */
1838 unsigned num_inputs, num_uniforms, num_outputs, num_shared;
1839
1840 /** The shader stage, such as MESA_SHADER_VERTEX. */
1841 gl_shader_stage stage;
1842 } nir_shader;
1843
1844 static inline nir_function *
1845 nir_shader_get_entrypoint(nir_shader *shader)
1846 {
1847 assert(exec_list_length(&shader->functions) == 1);
1848 struct exec_node *func_node = exec_list_get_head(&shader->functions);
1849 nir_function *func = exec_node_data(nir_function, func_node, node);
1850 assert(func->return_type == glsl_void_type());
1851 assert(func->num_params == 0);
1852 return func;
1853 }
1854
1855 #define nir_foreach_function(func, shader) \
1856 foreach_list_typed(nir_function, func, node, &(shader)->functions)
1857
1858 nir_shader *nir_shader_create(void *mem_ctx,
1859 gl_shader_stage stage,
1860 const nir_shader_compiler_options *options);
1861
1862 /** creates a register, including assigning it an index and adding it to the list */
1863 nir_register *nir_global_reg_create(nir_shader *shader);
1864
1865 nir_register *nir_local_reg_create(nir_function_impl *impl);
1866
1867 void nir_reg_remove(nir_register *reg);
1868
1869 /** Adds a variable to the appropreate list in nir_shader */
1870 void nir_shader_add_variable(nir_shader *shader, nir_variable *var);
1871
1872 static inline void
1873 nir_function_impl_add_variable(nir_function_impl *impl, nir_variable *var)
1874 {
1875 assert(var->data.mode == nir_var_local);
1876 exec_list_push_tail(&impl->locals, &var->node);
1877 }
1878
1879 /** creates a variable, sets a few defaults, and adds it to the list */
1880 nir_variable *nir_variable_create(nir_shader *shader,
1881 nir_variable_mode mode,
1882 const struct glsl_type *type,
1883 const char *name);
1884 /** creates a local variable and adds it to the list */
1885 nir_variable *nir_local_variable_create(nir_function_impl *impl,
1886 const struct glsl_type *type,
1887 const char *name);
1888
1889 /** creates a function and adds it to the shader's list of functions */
1890 nir_function *nir_function_create(nir_shader *shader, const char *name);
1891
1892 nir_function_impl *nir_function_impl_create(nir_function *func);
1893 /** creates a function_impl that isn't tied to any particular function */
1894 nir_function_impl *nir_function_impl_create_bare(nir_shader *shader);
1895
1896 nir_block *nir_block_create(nir_shader *shader);
1897 nir_if *nir_if_create(nir_shader *shader);
1898 nir_loop *nir_loop_create(nir_shader *shader);
1899
1900 nir_function_impl *nir_cf_node_get_function(nir_cf_node *node);
1901
1902 /** requests that the given pieces of metadata be generated */
1903 void nir_metadata_require(nir_function_impl *impl, nir_metadata required);
1904 /** dirties all but the preserved metadata */
1905 void nir_metadata_preserve(nir_function_impl *impl, nir_metadata preserved);
1906
1907 /** creates an instruction with default swizzle/writemask/etc. with NULL registers */
1908 nir_alu_instr *nir_alu_instr_create(nir_shader *shader, nir_op op);
1909
1910 nir_jump_instr *nir_jump_instr_create(nir_shader *shader, nir_jump_type type);
1911
1912 nir_load_const_instr *nir_load_const_instr_create(nir_shader *shader,
1913 unsigned num_components,
1914 unsigned bit_size);
1915
1916 nir_intrinsic_instr *nir_intrinsic_instr_create(nir_shader *shader,
1917 nir_intrinsic_op op);
1918
1919 nir_call_instr *nir_call_instr_create(nir_shader *shader,
1920 nir_function *callee);
1921
1922 nir_tex_instr *nir_tex_instr_create(nir_shader *shader, unsigned num_srcs);
1923
1924 nir_phi_instr *nir_phi_instr_create(nir_shader *shader);
1925
1926 nir_parallel_copy_instr *nir_parallel_copy_instr_create(nir_shader *shader);
1927
1928 nir_ssa_undef_instr *nir_ssa_undef_instr_create(nir_shader *shader,
1929 unsigned num_components,
1930 unsigned bit_size);
1931
1932 nir_deref_var *nir_deref_var_create(void *mem_ctx, nir_variable *var);
1933 nir_deref_array *nir_deref_array_create(void *mem_ctx);
1934 nir_deref_struct *nir_deref_struct_create(void *mem_ctx, unsigned field_index);
1935
1936 nir_deref *nir_copy_deref(void *mem_ctx, nir_deref *deref);
1937
1938 nir_load_const_instr *
1939 nir_deref_get_const_initializer_load(nir_shader *shader, nir_deref_var *deref);
1940
1941 /**
1942 * NIR Cursors and Instruction Insertion API
1943 * @{
1944 *
1945 * A tiny struct representing a point to insert/extract instructions or
1946 * control flow nodes. Helps reduce the combinatorial explosion of possible
1947 * points to insert/extract.
1948 *
1949 * \sa nir_control_flow.h
1950 */
1951 typedef enum {
1952 nir_cursor_before_block,
1953 nir_cursor_after_block,
1954 nir_cursor_before_instr,
1955 nir_cursor_after_instr,
1956 } nir_cursor_option;
1957
1958 typedef struct {
1959 nir_cursor_option option;
1960 union {
1961 nir_block *block;
1962 nir_instr *instr;
1963 };
1964 } nir_cursor;
1965
1966 static inline nir_block *
1967 nir_cursor_current_block(nir_cursor cursor)
1968 {
1969 if (cursor.option == nir_cursor_before_instr ||
1970 cursor.option == nir_cursor_after_instr) {
1971 return cursor.instr->block;
1972 } else {
1973 return cursor.block;
1974 }
1975 }
1976
1977 bool nir_cursors_equal(nir_cursor a, nir_cursor b);
1978
1979 static inline nir_cursor
1980 nir_before_block(nir_block *block)
1981 {
1982 nir_cursor cursor;
1983 cursor.option = nir_cursor_before_block;
1984 cursor.block = block;
1985 return cursor;
1986 }
1987
1988 static inline nir_cursor
1989 nir_after_block(nir_block *block)
1990 {
1991 nir_cursor cursor;
1992 cursor.option = nir_cursor_after_block;
1993 cursor.block = block;
1994 return cursor;
1995 }
1996
1997 static inline nir_cursor
1998 nir_before_instr(nir_instr *instr)
1999 {
2000 nir_cursor cursor;
2001 cursor.option = nir_cursor_before_instr;
2002 cursor.instr = instr;
2003 return cursor;
2004 }
2005
2006 static inline nir_cursor
2007 nir_after_instr(nir_instr *instr)
2008 {
2009 nir_cursor cursor;
2010 cursor.option = nir_cursor_after_instr;
2011 cursor.instr = instr;
2012 return cursor;
2013 }
2014
2015 static inline nir_cursor
2016 nir_after_block_before_jump(nir_block *block)
2017 {
2018 nir_instr *last_instr = nir_block_last_instr(block);
2019 if (last_instr && last_instr->type == nir_instr_type_jump) {
2020 return nir_before_instr(last_instr);
2021 } else {
2022 return nir_after_block(block);
2023 }
2024 }
2025
2026 static inline nir_cursor
2027 nir_before_cf_node(nir_cf_node *node)
2028 {
2029 if (node->type == nir_cf_node_block)
2030 return nir_before_block(nir_cf_node_as_block(node));
2031
2032 return nir_after_block(nir_cf_node_as_block(nir_cf_node_prev(node)));
2033 }
2034
2035 static inline nir_cursor
2036 nir_after_cf_node(nir_cf_node *node)
2037 {
2038 if (node->type == nir_cf_node_block)
2039 return nir_after_block(nir_cf_node_as_block(node));
2040
2041 return nir_before_block(nir_cf_node_as_block(nir_cf_node_next(node)));
2042 }
2043
2044 static inline nir_cursor
2045 nir_after_cf_node_and_phis(nir_cf_node *node)
2046 {
2047 if (node->type == nir_cf_node_block)
2048 return nir_after_block(nir_cf_node_as_block(node));
2049
2050 nir_block *block = nir_cf_node_as_block(nir_cf_node_next(node));
2051 assert(block->cf_node.type == nir_cf_node_block);
2052
2053 nir_foreach_instr(instr, block) {
2054 if (instr->type != nir_instr_type_phi)
2055 return nir_before_instr(instr);
2056 }
2057 return nir_after_block(block);
2058 }
2059
2060 static inline nir_cursor
2061 nir_before_cf_list(struct exec_list *cf_list)
2062 {
2063 nir_cf_node *first_node = exec_node_data(nir_cf_node,
2064 exec_list_get_head(cf_list), node);
2065 return nir_before_cf_node(first_node);
2066 }
2067
2068 static inline nir_cursor
2069 nir_after_cf_list(struct exec_list *cf_list)
2070 {
2071 nir_cf_node *last_node = exec_node_data(nir_cf_node,
2072 exec_list_get_tail(cf_list), node);
2073 return nir_after_cf_node(last_node);
2074 }
2075
2076 /**
2077 * Insert a NIR instruction at the given cursor.
2078 *
2079 * Note: This does not update the cursor.
2080 */
2081 void nir_instr_insert(nir_cursor cursor, nir_instr *instr);
2082
2083 static inline void
2084 nir_instr_insert_before(nir_instr *instr, nir_instr *before)
2085 {
2086 nir_instr_insert(nir_before_instr(instr), before);
2087 }
2088
2089 static inline void
2090 nir_instr_insert_after(nir_instr *instr, nir_instr *after)
2091 {
2092 nir_instr_insert(nir_after_instr(instr), after);
2093 }
2094
2095 static inline void
2096 nir_instr_insert_before_block(nir_block *block, nir_instr *before)
2097 {
2098 nir_instr_insert(nir_before_block(block), before);
2099 }
2100
2101 static inline void
2102 nir_instr_insert_after_block(nir_block *block, nir_instr *after)
2103 {
2104 nir_instr_insert(nir_after_block(block), after);
2105 }
2106
2107 static inline void
2108 nir_instr_insert_before_cf(nir_cf_node *node, nir_instr *before)
2109 {
2110 nir_instr_insert(nir_before_cf_node(node), before);
2111 }
2112
2113 static inline void
2114 nir_instr_insert_after_cf(nir_cf_node *node, nir_instr *after)
2115 {
2116 nir_instr_insert(nir_after_cf_node(node), after);
2117 }
2118
2119 static inline void
2120 nir_instr_insert_before_cf_list(struct exec_list *list, nir_instr *before)
2121 {
2122 nir_instr_insert(nir_before_cf_list(list), before);
2123 }
2124
2125 static inline void
2126 nir_instr_insert_after_cf_list(struct exec_list *list, nir_instr *after)
2127 {
2128 nir_instr_insert(nir_after_cf_list(list), after);
2129 }
2130
2131 void nir_instr_remove(nir_instr *instr);
2132
2133 /** @} */
2134
2135 typedef bool (*nir_foreach_ssa_def_cb)(nir_ssa_def *def, void *state);
2136 typedef bool (*nir_foreach_dest_cb)(nir_dest *dest, void *state);
2137 typedef bool (*nir_foreach_src_cb)(nir_src *src, void *state);
2138 bool nir_foreach_ssa_def(nir_instr *instr, nir_foreach_ssa_def_cb cb,
2139 void *state);
2140 bool nir_foreach_dest(nir_instr *instr, nir_foreach_dest_cb cb, void *state);
2141 bool nir_foreach_src(nir_instr *instr, nir_foreach_src_cb cb, void *state);
2142
2143 nir_const_value *nir_src_as_const_value(nir_src src);
2144 bool nir_src_is_dynamically_uniform(nir_src src);
2145 bool nir_srcs_equal(nir_src src1, nir_src src2);
2146 void nir_instr_rewrite_src(nir_instr *instr, nir_src *src, nir_src new_src);
2147 void nir_instr_move_src(nir_instr *dest_instr, nir_src *dest, nir_src *src);
2148 void nir_if_rewrite_condition(nir_if *if_stmt, nir_src new_src);
2149 void nir_instr_rewrite_dest(nir_instr *instr, nir_dest *dest,
2150 nir_dest new_dest);
2151
2152 void nir_ssa_dest_init(nir_instr *instr, nir_dest *dest,
2153 unsigned num_components, unsigned bit_size,
2154 const char *name);
2155 void nir_ssa_def_init(nir_instr *instr, nir_ssa_def *def,
2156 unsigned num_components, unsigned bit_size,
2157 const char *name);
2158 void nir_ssa_def_rewrite_uses(nir_ssa_def *def, nir_src new_src);
2159 void nir_ssa_def_rewrite_uses_after(nir_ssa_def *def, nir_src new_src,
2160 nir_instr *after_me);
2161
2162 uint8_t nir_ssa_def_components_read(nir_ssa_def *def);
2163
2164 /*
2165 * finds the next basic block in source-code order, returns NULL if there is
2166 * none
2167 */
2168
2169 nir_block *nir_block_cf_tree_next(nir_block *block);
2170
2171 /* Performs the opposite of nir_block_cf_tree_next() */
2172
2173 nir_block *nir_block_cf_tree_prev(nir_block *block);
2174
2175 /* Gets the first block in a CF node in source-code order */
2176
2177 nir_block *nir_cf_node_cf_tree_first(nir_cf_node *node);
2178
2179 /* Gets the last block in a CF node in source-code order */
2180
2181 nir_block *nir_cf_node_cf_tree_last(nir_cf_node *node);
2182
2183 /* Gets the next block after a CF node in source-code order */
2184
2185 nir_block *nir_cf_node_cf_tree_next(nir_cf_node *node);
2186
2187 /* Macros for loops that visit blocks in source-code order */
2188
2189 #define nir_foreach_block(block, impl) \
2190 for (nir_block *block = nir_start_block(impl); block != NULL; \
2191 block = nir_block_cf_tree_next(block))
2192
2193 #define nir_foreach_block_safe(block, impl) \
2194 for (nir_block *block = nir_start_block(impl), \
2195 *next = nir_block_cf_tree_next(block); \
2196 block != NULL; \
2197 block = next, next = nir_block_cf_tree_next(block))
2198
2199 #define nir_foreach_block_reverse(block, impl) \
2200 for (nir_block *block = nir_impl_last_block(impl); block != NULL; \
2201 block = nir_block_cf_tree_prev(block))
2202
2203 #define nir_foreach_block_reverse_safe(block, impl) \
2204 for (nir_block *block = nir_impl_last_block(impl), \
2205 *prev = nir_block_cf_tree_prev(block); \
2206 block != NULL; \
2207 block = prev, prev = nir_block_cf_tree_prev(block))
2208
2209 #define nir_foreach_block_in_cf_node(block, node) \
2210 for (nir_block *block = nir_cf_node_cf_tree_first(node); \
2211 block != nir_cf_node_cf_tree_next(node); \
2212 block = nir_block_cf_tree_next(block))
2213
2214 /* If the following CF node is an if, this function returns that if.
2215 * Otherwise, it returns NULL.
2216 */
2217 nir_if *nir_block_get_following_if(nir_block *block);
2218
2219 nir_loop *nir_block_get_following_loop(nir_block *block);
2220
2221 void nir_index_local_regs(nir_function_impl *impl);
2222 void nir_index_global_regs(nir_shader *shader);
2223 void nir_index_ssa_defs(nir_function_impl *impl);
2224 unsigned nir_index_instrs(nir_function_impl *impl);
2225
2226 void nir_index_blocks(nir_function_impl *impl);
2227
2228 void nir_print_shader(nir_shader *shader, FILE *fp);
2229 void nir_print_shader_annotated(nir_shader *shader, FILE *fp, struct hash_table *errors);
2230 void nir_print_instr(const nir_instr *instr, FILE *fp);
2231
2232 nir_shader *nir_shader_clone(void *mem_ctx, const nir_shader *s);
2233 nir_function_impl *nir_function_impl_clone(const nir_function_impl *fi);
2234 nir_constant *nir_constant_clone(const nir_constant *c, nir_variable *var);
2235 nir_variable *nir_variable_clone(const nir_variable *c, nir_shader *shader);
2236
2237 #ifdef DEBUG
2238 void nir_validate_shader(nir_shader *shader);
2239 void nir_metadata_set_validation_flag(nir_shader *shader);
2240 void nir_metadata_check_validation_flag(nir_shader *shader);
2241
2242 #include "util/debug.h"
2243 static inline bool
2244 should_clone_nir(void)
2245 {
2246 static int should_clone = -1;
2247 if (should_clone < 0)
2248 should_clone = env_var_as_boolean("NIR_TEST_CLONE", false);
2249
2250 return should_clone;
2251 }
2252 #else
2253 static inline void nir_validate_shader(nir_shader *shader) { (void) shader; }
2254 static inline void nir_metadata_set_validation_flag(nir_shader *shader) { (void) shader; }
2255 static inline void nir_metadata_check_validation_flag(nir_shader *shader) { (void) shader; }
2256 static inline bool should_clone_nir(void) { return false; }
2257 #endif /* DEBUG */
2258
2259 #define _PASS(nir, do_pass) do { \
2260 do_pass \
2261 nir_validate_shader(nir); \
2262 if (should_clone_nir()) { \
2263 nir_shader *clone = nir_shader_clone(ralloc_parent(nir), nir); \
2264 ralloc_free(nir); \
2265 nir = clone; \
2266 } \
2267 } while (0)
2268
2269 #define NIR_PASS(progress, nir, pass, ...) _PASS(nir, \
2270 nir_metadata_set_validation_flag(nir); \
2271 if (pass(nir, ##__VA_ARGS__)) { \
2272 progress = true; \
2273 nir_metadata_check_validation_flag(nir); \
2274 } \
2275 )
2276
2277 #define NIR_PASS_V(nir, pass, ...) _PASS(nir, \
2278 pass(nir, ##__VA_ARGS__); \
2279 )
2280
2281 void nir_calc_dominance_impl(nir_function_impl *impl);
2282 void nir_calc_dominance(nir_shader *shader);
2283
2284 nir_block *nir_dominance_lca(nir_block *b1, nir_block *b2);
2285 bool nir_block_dominates(nir_block *parent, nir_block *child);
2286
2287 void nir_dump_dom_tree_impl(nir_function_impl *impl, FILE *fp);
2288 void nir_dump_dom_tree(nir_shader *shader, FILE *fp);
2289
2290 void nir_dump_dom_frontier_impl(nir_function_impl *impl, FILE *fp);
2291 void nir_dump_dom_frontier(nir_shader *shader, FILE *fp);
2292
2293 void nir_dump_cfg_impl(nir_function_impl *impl, FILE *fp);
2294 void nir_dump_cfg(nir_shader *shader, FILE *fp);
2295
2296 int nir_gs_count_vertices(const nir_shader *shader);
2297
2298 bool nir_split_var_copies(nir_shader *shader);
2299
2300 bool nir_lower_returns_impl(nir_function_impl *impl);
2301 bool nir_lower_returns(nir_shader *shader);
2302
2303 bool nir_inline_functions(nir_shader *shader);
2304
2305 bool nir_propagate_invariant(nir_shader *shader);
2306
2307 void nir_lower_var_copy_instr(nir_intrinsic_instr *copy, void *mem_ctx);
2308 void nir_lower_var_copies(nir_shader *shader);
2309
2310 bool nir_lower_global_vars_to_local(nir_shader *shader);
2311
2312 bool nir_lower_indirect_derefs(nir_shader *shader, nir_variable_mode modes);
2313
2314 bool nir_lower_locals_to_regs(nir_shader *shader);
2315
2316 void nir_lower_io_to_temporaries(nir_shader *shader, nir_function *entrypoint,
2317 bool outputs, bool inputs);
2318
2319 void nir_shader_gather_info(nir_shader *shader, nir_function_impl *entrypoint);
2320
2321 void nir_assign_var_locations(struct exec_list *var_list, unsigned *size,
2322 unsigned base_offset,
2323 int (*type_size)(const struct glsl_type *));
2324
2325 void nir_lower_io(nir_shader *shader,
2326 nir_variable_mode modes,
2327 int (*type_size)(const struct glsl_type *));
2328 nir_src *nir_get_io_offset_src(nir_intrinsic_instr *instr);
2329 nir_src *nir_get_io_vertex_index_src(nir_intrinsic_instr *instr);
2330
2331 void nir_lower_io_types(nir_shader *shader);
2332 void nir_lower_vars_to_ssa(nir_shader *shader);
2333
2334 bool nir_remove_dead_variables(nir_shader *shader, nir_variable_mode modes);
2335
2336 void nir_move_vec_src_uses_to_dest(nir_shader *shader);
2337 bool nir_lower_vec_to_movs(nir_shader *shader);
2338 void nir_lower_alu_to_scalar(nir_shader *shader);
2339 void nir_lower_load_const_to_scalar(nir_shader *shader);
2340
2341 void nir_lower_phis_to_scalar(nir_shader *shader);
2342
2343 void nir_lower_samplers(nir_shader *shader,
2344 const struct gl_shader_program *shader_program);
2345
2346 bool nir_lower_system_values(nir_shader *shader);
2347
2348 typedef struct nir_lower_tex_options {
2349 /**
2350 * bitmask of (1 << GLSL_SAMPLER_DIM_x) to control for which
2351 * sampler types a texture projector is lowered.
2352 */
2353 unsigned lower_txp;
2354
2355 /**
2356 * If true, lower rect textures to 2D, using txs to fetch the
2357 * texture dimensions and dividing the texture coords by the
2358 * texture dims to normalize.
2359 */
2360 bool lower_rect;
2361
2362 /**
2363 * If true, convert yuv to rgb.
2364 */
2365 unsigned lower_y_uv_external;
2366 unsigned lower_y_u_v_external;
2367 unsigned lower_yx_xuxv_external;
2368
2369 /**
2370 * To emulate certain texture wrap modes, this can be used
2371 * to saturate the specified tex coord to [0.0, 1.0]. The
2372 * bits are according to sampler #, ie. if, for example:
2373 *
2374 * (conf->saturate_s & (1 << n))
2375 *
2376 * is true, then the s coord for sampler n is saturated.
2377 *
2378 * Note that clamping must happen *after* projector lowering
2379 * so any projected texture sample instruction with a clamped
2380 * coordinate gets automatically lowered, regardless of the
2381 * 'lower_txp' setting.
2382 */
2383 unsigned saturate_s;
2384 unsigned saturate_t;
2385 unsigned saturate_r;
2386
2387 /* Bitmask of textures that need swizzling.
2388 *
2389 * If (swizzle_result & (1 << texture_index)), then the swizzle in
2390 * swizzles[texture_index] is applied to the result of the texturing
2391 * operation.
2392 */
2393 unsigned swizzle_result;
2394
2395 /* A swizzle for each texture. Values 0-3 represent x, y, z, or w swizzles
2396 * while 4 and 5 represent 0 and 1 respectively.
2397 */
2398 uint8_t swizzles[32][4];
2399
2400 /**
2401 * Bitmap of textures that need srgb to linear conversion. If
2402 * (lower_srgb & (1 << texture_index)) then the rgb (xyz) components
2403 * of the texture are lowered to linear.
2404 */
2405 unsigned lower_srgb;
2406 } nir_lower_tex_options;
2407
2408 bool nir_lower_tex(nir_shader *shader,
2409 const nir_lower_tex_options *options);
2410
2411 bool nir_lower_idiv(nir_shader *shader);
2412
2413 void nir_lower_clip_vs(nir_shader *shader, unsigned ucp_enables);
2414 void nir_lower_clip_fs(nir_shader *shader, unsigned ucp_enables);
2415
2416 void nir_lower_two_sided_color(nir_shader *shader);
2417
2418 void nir_lower_clamp_color_outputs(nir_shader *shader);
2419
2420 void nir_lower_passthrough_edgeflags(nir_shader *shader);
2421
2422 typedef struct nir_lower_wpos_ytransform_options {
2423 int state_tokens[5];
2424 bool fs_coord_origin_upper_left :1;
2425 bool fs_coord_origin_lower_left :1;
2426 bool fs_coord_pixel_center_integer :1;
2427 bool fs_coord_pixel_center_half_integer :1;
2428 } nir_lower_wpos_ytransform_options;
2429
2430 bool nir_lower_wpos_ytransform(nir_shader *shader,
2431 const nir_lower_wpos_ytransform_options *options);
2432 bool nir_lower_wpos_center(nir_shader *shader);
2433
2434 typedef struct nir_lower_drawpixels_options {
2435 int texcoord_state_tokens[5];
2436 int scale_state_tokens[5];
2437 int bias_state_tokens[5];
2438 unsigned drawpix_sampler;
2439 unsigned pixelmap_sampler;
2440 bool pixel_maps :1;
2441 bool scale_and_bias :1;
2442 } nir_lower_drawpixels_options;
2443
2444 void nir_lower_drawpixels(nir_shader *shader,
2445 const nir_lower_drawpixels_options *options);
2446
2447 typedef struct nir_lower_bitmap_options {
2448 unsigned sampler;
2449 bool swizzle_xxxx;
2450 } nir_lower_bitmap_options;
2451
2452 void nir_lower_bitmap(nir_shader *shader, const nir_lower_bitmap_options *options);
2453
2454 void nir_lower_atomics(nir_shader *shader,
2455 const struct gl_shader_program *shader_program);
2456 void nir_lower_to_source_mods(nir_shader *shader);
2457
2458 bool nir_lower_gs_intrinsics(nir_shader *shader);
2459
2460 typedef enum {
2461 nir_lower_drcp = (1 << 0),
2462 nir_lower_dsqrt = (1 << 1),
2463 nir_lower_drsq = (1 << 2),
2464 nir_lower_dtrunc = (1 << 3),
2465 nir_lower_dfloor = (1 << 4),
2466 nir_lower_dceil = (1 << 5),
2467 nir_lower_dfract = (1 << 6),
2468 nir_lower_dround_even = (1 << 7),
2469 nir_lower_dmod = (1 << 8)
2470 } nir_lower_doubles_options;
2471
2472 void nir_lower_doubles(nir_shader *shader, nir_lower_doubles_options options);
2473 void nir_lower_double_pack(nir_shader *shader);
2474
2475 bool nir_normalize_cubemap_coords(nir_shader *shader);
2476
2477 void nir_live_ssa_defs_impl(nir_function_impl *impl);
2478 bool nir_ssa_defs_interfere(nir_ssa_def *a, nir_ssa_def *b);
2479
2480 void nir_convert_to_ssa_impl(nir_function_impl *impl);
2481 void nir_convert_to_ssa(nir_shader *shader);
2482
2483 bool nir_repair_ssa_impl(nir_function_impl *impl);
2484 bool nir_repair_ssa(nir_shader *shader);
2485
2486 /* If phi_webs_only is true, only convert SSA values involved in phi nodes to
2487 * registers. If false, convert all values (even those not involved in a phi
2488 * node) to registers.
2489 */
2490 void nir_convert_from_ssa(nir_shader *shader, bool phi_webs_only);
2491
2492 bool nir_opt_algebraic(nir_shader *shader);
2493 bool nir_opt_algebraic_late(nir_shader *shader);
2494 bool nir_opt_constant_folding(nir_shader *shader);
2495
2496 bool nir_opt_global_to_local(nir_shader *shader);
2497
2498 bool nir_copy_prop(nir_shader *shader);
2499
2500 bool nir_opt_cse(nir_shader *shader);
2501
2502 bool nir_opt_dce(nir_shader *shader);
2503
2504 bool nir_opt_dead_cf(nir_shader *shader);
2505
2506 void nir_opt_gcm(nir_shader *shader);
2507
2508 bool nir_opt_peephole_select(nir_shader *shader);
2509
2510 bool nir_opt_remove_phis(nir_shader *shader);
2511
2512 bool nir_opt_undef(nir_shader *shader);
2513
2514 void nir_sweep(nir_shader *shader);
2515
2516 nir_intrinsic_op nir_intrinsic_from_system_value(gl_system_value val);
2517 gl_system_value nir_system_value_from_intrinsic(nir_intrinsic_op intrin);
2518
2519 #ifdef __cplusplus
2520 } /* extern "C" */
2521 #endif