nir: fix crash in loop unroll corner case
[mesa.git] / src / compiler / nir / nir.h
1 /*
2 * Copyright © 2014 Connor Abbott
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Connor Abbott (cwabbott0@gmail.com)
25 *
26 */
27
28 #ifndef NIR_H
29 #define NIR_H
30
31 #include "util/hash_table.h"
32 #include "compiler/glsl/list.h"
33 #include "GL/gl.h" /* GLenum */
34 #include "util/list.h"
35 #include "util/ralloc.h"
36 #include "util/set.h"
37 #include "util/bitset.h"
38 #include "util/macros.h"
39 #include "compiler/nir_types.h"
40 #include "compiler/shader_enums.h"
41 #include "compiler/shader_info.h"
42 #include <stdio.h>
43
44 #ifndef NDEBUG
45 #include "util/debug.h"
46 #endif /* NDEBUG */
47
48 #include "nir_opcodes.h"
49
50 #if defined(_WIN32) && !defined(snprintf)
51 #define snprintf _snprintf
52 #endif
53
54 #ifdef __cplusplus
55 extern "C" {
56 #endif
57
58 struct gl_program;
59 struct gl_shader_program;
60
61 #define NIR_FALSE 0u
62 #define NIR_TRUE (~0u)
63
64 /** Defines a cast function
65 *
66 * This macro defines a cast function from in_type to out_type where
67 * out_type is some structure type that contains a field of type out_type.
68 *
69 * Note that you have to be a bit careful as the generated cast function
70 * destroys constness.
71 */
72 #define NIR_DEFINE_CAST(name, in_type, out_type, field, \
73 type_field, type_value) \
74 static inline out_type * \
75 name(const in_type *parent) \
76 { \
77 assert(parent && parent->type_field == type_value); \
78 return exec_node_data(out_type, parent, field); \
79 }
80
81 struct nir_function;
82 struct nir_shader;
83 struct nir_instr;
84
85
86 /**
87 * Description of built-in state associated with a uniform
88 *
89 * \sa nir_variable::state_slots
90 */
91 typedef struct {
92 gl_state_index16 tokens[STATE_LENGTH];
93 int swizzle;
94 } nir_state_slot;
95
96 typedef enum {
97 nir_var_shader_in = (1 << 0),
98 nir_var_shader_out = (1 << 1),
99 nir_var_global = (1 << 2),
100 nir_var_local = (1 << 3),
101 nir_var_uniform = (1 << 4),
102 nir_var_shader_storage = (1 << 5),
103 nir_var_system_value = (1 << 6),
104 nir_var_param = (1 << 7),
105 nir_var_shared = (1 << 8),
106 nir_var_all = ~0,
107 } nir_variable_mode;
108
109 /**
110 * Rounding modes.
111 */
112 typedef enum {
113 nir_rounding_mode_undef = 0,
114 nir_rounding_mode_rtne = 1, /* round to nearest even */
115 nir_rounding_mode_ru = 2, /* round up */
116 nir_rounding_mode_rd = 3, /* round down */
117 nir_rounding_mode_rtz = 4, /* round towards zero */
118 } nir_rounding_mode;
119
120 typedef union {
121 float f32[4];
122 double f64[4];
123 int8_t i8[4];
124 uint8_t u8[4];
125 int16_t i16[4];
126 uint16_t u16[4];
127 int32_t i32[4];
128 uint32_t u32[4];
129 int64_t i64[4];
130 uint64_t u64[4];
131 } nir_const_value;
132
133 typedef struct nir_constant {
134 /**
135 * Value of the constant.
136 *
137 * The field used to back the values supplied by the constant is determined
138 * by the type associated with the \c nir_variable. Constants may be
139 * scalars, vectors, or matrices.
140 */
141 nir_const_value values[4];
142
143 /* we could get this from the var->type but makes clone *much* easier to
144 * not have to care about the type.
145 */
146 unsigned num_elements;
147
148 /* Array elements / Structure Fields */
149 struct nir_constant **elements;
150 } nir_constant;
151
152 /**
153 * \brief Layout qualifiers for gl_FragDepth.
154 *
155 * The AMD/ARB_conservative_depth extensions allow gl_FragDepth to be redeclared
156 * with a layout qualifier.
157 */
158 typedef enum {
159 nir_depth_layout_none, /**< No depth layout is specified. */
160 nir_depth_layout_any,
161 nir_depth_layout_greater,
162 nir_depth_layout_less,
163 nir_depth_layout_unchanged
164 } nir_depth_layout;
165
166 /**
167 * Either a uniform, global variable, shader input, or shader output. Based on
168 * ir_variable - it should be easy to translate between the two.
169 */
170
171 typedef struct nir_variable {
172 struct exec_node node;
173
174 /**
175 * Declared type of the variable
176 */
177 const struct glsl_type *type;
178
179 /**
180 * Declared name of the variable
181 */
182 char *name;
183
184 struct nir_variable_data {
185 /**
186 * Storage class of the variable.
187 *
188 * \sa nir_variable_mode
189 */
190 nir_variable_mode mode;
191
192 /**
193 * Is the variable read-only?
194 *
195 * This is set for variables declared as \c const, shader inputs,
196 * and uniforms.
197 */
198 unsigned read_only:1;
199 unsigned centroid:1;
200 unsigned sample:1;
201 unsigned patch:1;
202 unsigned invariant:1;
203
204 /**
205 * When separate shader programs are enabled, only input/outputs between
206 * the stages of a multi-stage separate program can be safely removed
207 * from the shader interface. Other input/outputs must remains active.
208 *
209 * This is also used to make sure xfb varyings that are unused by the
210 * fragment shader are not removed.
211 */
212 unsigned always_active_io:1;
213
214 /**
215 * Interpolation mode for shader inputs / outputs
216 *
217 * \sa glsl_interp_mode
218 */
219 unsigned interpolation:2;
220
221 /**
222 * \name ARB_fragment_coord_conventions
223 * @{
224 */
225 unsigned origin_upper_left:1;
226 unsigned pixel_center_integer:1;
227 /*@}*/
228
229 /**
230 * If non-zero, then this variable may be packed along with other variables
231 * into a single varying slot, so this offset should be applied when
232 * accessing components. For example, an offset of 1 means that the x
233 * component of this variable is actually stored in component y of the
234 * location specified by \c location.
235 */
236 unsigned location_frac:2;
237
238 /**
239 * If true, this variable represents an array of scalars that should
240 * be tightly packed. In other words, consecutive array elements
241 * should be stored one component apart, rather than one slot apart.
242 */
243 unsigned compact:1;
244
245 /**
246 * Whether this is a fragment shader output implicitly initialized with
247 * the previous contents of the specified render target at the
248 * framebuffer location corresponding to this shader invocation.
249 */
250 unsigned fb_fetch_output:1;
251
252 /**
253 * \brief Layout qualifier for gl_FragDepth.
254 *
255 * This is not equal to \c ir_depth_layout_none if and only if this
256 * variable is \c gl_FragDepth and a layout qualifier is specified.
257 */
258 nir_depth_layout depth_layout;
259
260 /**
261 * Storage location of the base of this variable
262 *
263 * The precise meaning of this field depends on the nature of the variable.
264 *
265 * - Vertex shader input: one of the values from \c gl_vert_attrib.
266 * - Vertex shader output: one of the values from \c gl_varying_slot.
267 * - Geometry shader input: one of the values from \c gl_varying_slot.
268 * - Geometry shader output: one of the values from \c gl_varying_slot.
269 * - Fragment shader input: one of the values from \c gl_varying_slot.
270 * - Fragment shader output: one of the values from \c gl_frag_result.
271 * - Uniforms: Per-stage uniform slot number for default uniform block.
272 * - Uniforms: Index within the uniform block definition for UBO members.
273 * - Non-UBO Uniforms: uniform slot number.
274 * - Other: This field is not currently used.
275 *
276 * If the variable is a uniform, shader input, or shader output, and the
277 * slot has not been assigned, the value will be -1.
278 */
279 int location;
280
281 /**
282 * The actual location of the variable in the IR. Only valid for inputs
283 * and outputs.
284 */
285 unsigned int driver_location;
286
287 /**
288 * Vertex stream output identifier.
289 *
290 * For packed outputs, bit 31 is set and bits [2*i+1,2*i] indicate the
291 * stream of the i-th component.
292 */
293 unsigned stream;
294
295 /**
296 * output index for dual source blending.
297 */
298 int index;
299
300 /**
301 * Descriptor set binding for sampler or UBO.
302 */
303 int descriptor_set;
304
305 /**
306 * Initial binding point for a sampler or UBO.
307 *
308 * For array types, this represents the binding point for the first element.
309 */
310 int binding;
311
312 /**
313 * Location an atomic counter is stored at.
314 */
315 unsigned offset;
316
317 /**
318 * ARB_shader_image_load_store qualifiers.
319 */
320 struct {
321 bool read_only; /**< "readonly" qualifier. */
322 bool write_only; /**< "writeonly" qualifier. */
323 bool coherent;
324 bool _volatile;
325 bool restrict_flag;
326
327 /** Image internal format if specified explicitly, otherwise GL_NONE. */
328 GLenum format;
329 } image;
330 } data;
331
332 /**
333 * Built-in state that backs this uniform
334 *
335 * Once set at variable creation, \c state_slots must remain invariant.
336 * This is because, ideally, this array would be shared by all clones of
337 * this variable in the IR tree. In other words, we'd really like for it
338 * to be a fly-weight.
339 *
340 * If the variable is not a uniform, \c num_state_slots will be zero and
341 * \c state_slots will be \c NULL.
342 */
343 /*@{*/
344 unsigned num_state_slots; /**< Number of state slots used */
345 nir_state_slot *state_slots; /**< State descriptors. */
346 /*@}*/
347
348 /**
349 * Constant expression assigned in the initializer of the variable
350 *
351 * This field should only be used temporarily by creators of NIR shaders
352 * and then lower_constant_initializers can be used to get rid of them.
353 * Most of the rest of NIR ignores this field or asserts that it's NULL.
354 */
355 nir_constant *constant_initializer;
356
357 /**
358 * For variables that are in an interface block or are an instance of an
359 * interface block, this is the \c GLSL_TYPE_INTERFACE type for that block.
360 *
361 * \sa ir_variable::location
362 */
363 const struct glsl_type *interface_type;
364 } nir_variable;
365
366 #define nir_foreach_variable(var, var_list) \
367 foreach_list_typed(nir_variable, var, node, var_list)
368
369 #define nir_foreach_variable_safe(var, var_list) \
370 foreach_list_typed_safe(nir_variable, var, node, var_list)
371
372 static inline bool
373 nir_variable_is_global(const nir_variable *var)
374 {
375 return var->data.mode != nir_var_local && var->data.mode != nir_var_param;
376 }
377
378 typedef struct nir_register {
379 struct exec_node node;
380
381 unsigned num_components; /** < number of vector components */
382 unsigned num_array_elems; /** < size of array (0 for no array) */
383
384 /* The bit-size of each channel; must be one of 8, 16, 32, or 64 */
385 uint8_t bit_size;
386
387 /** generic register index. */
388 unsigned index;
389
390 /** only for debug purposes, can be NULL */
391 const char *name;
392
393 /** whether this register is local (per-function) or global (per-shader) */
394 bool is_global;
395
396 /**
397 * If this flag is set to true, then accessing channels >= num_components
398 * is well-defined, and simply spills over to the next array element. This
399 * is useful for backends that can do per-component accessing, in
400 * particular scalar backends. By setting this flag and making
401 * num_components equal to 1, structures can be packed tightly into
402 * registers and then registers can be accessed per-component to get to
403 * each structure member, even if it crosses vec4 boundaries.
404 */
405 bool is_packed;
406
407 /** set of nir_srcs where this register is used (read from) */
408 struct list_head uses;
409
410 /** set of nir_dests where this register is defined (written to) */
411 struct list_head defs;
412
413 /** set of nir_ifs where this register is used as a condition */
414 struct list_head if_uses;
415 } nir_register;
416
417 #define nir_foreach_register(reg, reg_list) \
418 foreach_list_typed(nir_register, reg, node, reg_list)
419 #define nir_foreach_register_safe(reg, reg_list) \
420 foreach_list_typed_safe(nir_register, reg, node, reg_list)
421
422 typedef enum {
423 nir_instr_type_alu,
424 nir_instr_type_call,
425 nir_instr_type_tex,
426 nir_instr_type_intrinsic,
427 nir_instr_type_load_const,
428 nir_instr_type_jump,
429 nir_instr_type_ssa_undef,
430 nir_instr_type_phi,
431 nir_instr_type_parallel_copy,
432 } nir_instr_type;
433
434 typedef struct nir_instr {
435 struct exec_node node;
436 nir_instr_type type;
437 struct nir_block *block;
438
439 /** generic instruction index. */
440 unsigned index;
441
442 /* A temporary for optimization and analysis passes to use for storing
443 * flags. For instance, DCE uses this to store the "dead/live" info.
444 */
445 uint8_t pass_flags;
446 } nir_instr;
447
448 static inline nir_instr *
449 nir_instr_next(nir_instr *instr)
450 {
451 struct exec_node *next = exec_node_get_next(&instr->node);
452 if (exec_node_is_tail_sentinel(next))
453 return NULL;
454 else
455 return exec_node_data(nir_instr, next, node);
456 }
457
458 static inline nir_instr *
459 nir_instr_prev(nir_instr *instr)
460 {
461 struct exec_node *prev = exec_node_get_prev(&instr->node);
462 if (exec_node_is_head_sentinel(prev))
463 return NULL;
464 else
465 return exec_node_data(nir_instr, prev, node);
466 }
467
468 static inline bool
469 nir_instr_is_first(const nir_instr *instr)
470 {
471 return exec_node_is_head_sentinel(exec_node_get_prev_const(&instr->node));
472 }
473
474 static inline bool
475 nir_instr_is_last(const nir_instr *instr)
476 {
477 return exec_node_is_tail_sentinel(exec_node_get_next_const(&instr->node));
478 }
479
480 typedef struct nir_ssa_def {
481 /** for debugging only, can be NULL */
482 const char* name;
483
484 /** generic SSA definition index. */
485 unsigned index;
486
487 /** Index into the live_in and live_out bitfields */
488 unsigned live_index;
489
490 nir_instr *parent_instr;
491
492 /** set of nir_instrs where this register is used (read from) */
493 struct list_head uses;
494
495 /** set of nir_ifs where this register is used as a condition */
496 struct list_head if_uses;
497
498 uint8_t num_components;
499
500 /* The bit-size of each channel; must be one of 8, 16, 32, or 64 */
501 uint8_t bit_size;
502 } nir_ssa_def;
503
504 struct nir_src;
505
506 typedef struct {
507 nir_register *reg;
508 struct nir_src *indirect; /** < NULL for no indirect offset */
509 unsigned base_offset;
510
511 /* TODO use-def chain goes here */
512 } nir_reg_src;
513
514 typedef struct {
515 nir_instr *parent_instr;
516 struct list_head def_link;
517
518 nir_register *reg;
519 struct nir_src *indirect; /** < NULL for no indirect offset */
520 unsigned base_offset;
521
522 /* TODO def-use chain goes here */
523 } nir_reg_dest;
524
525 struct nir_if;
526
527 typedef struct nir_src {
528 union {
529 nir_instr *parent_instr;
530 struct nir_if *parent_if;
531 };
532
533 struct list_head use_link;
534
535 union {
536 nir_reg_src reg;
537 nir_ssa_def *ssa;
538 };
539
540 bool is_ssa;
541 } nir_src;
542
543 static inline nir_src
544 nir_src_init(void)
545 {
546 nir_src src = { { NULL } };
547 return src;
548 }
549
550 #define NIR_SRC_INIT nir_src_init()
551
552 #define nir_foreach_use(src, reg_or_ssa_def) \
553 list_for_each_entry(nir_src, src, &(reg_or_ssa_def)->uses, use_link)
554
555 #define nir_foreach_use_safe(src, reg_or_ssa_def) \
556 list_for_each_entry_safe(nir_src, src, &(reg_or_ssa_def)->uses, use_link)
557
558 #define nir_foreach_if_use(src, reg_or_ssa_def) \
559 list_for_each_entry(nir_src, src, &(reg_or_ssa_def)->if_uses, use_link)
560
561 #define nir_foreach_if_use_safe(src, reg_or_ssa_def) \
562 list_for_each_entry_safe(nir_src, src, &(reg_or_ssa_def)->if_uses, use_link)
563
564 typedef struct {
565 union {
566 nir_reg_dest reg;
567 nir_ssa_def ssa;
568 };
569
570 bool is_ssa;
571 } nir_dest;
572
573 static inline nir_dest
574 nir_dest_init(void)
575 {
576 nir_dest dest = { { { NULL } } };
577 return dest;
578 }
579
580 #define NIR_DEST_INIT nir_dest_init()
581
582 #define nir_foreach_def(dest, reg) \
583 list_for_each_entry(nir_dest, dest, &(reg)->defs, reg.def_link)
584
585 #define nir_foreach_def_safe(dest, reg) \
586 list_for_each_entry_safe(nir_dest, dest, &(reg)->defs, reg.def_link)
587
588 static inline nir_src
589 nir_src_for_ssa(nir_ssa_def *def)
590 {
591 nir_src src = NIR_SRC_INIT;
592
593 src.is_ssa = true;
594 src.ssa = def;
595
596 return src;
597 }
598
599 static inline nir_src
600 nir_src_for_reg(nir_register *reg)
601 {
602 nir_src src = NIR_SRC_INIT;
603
604 src.is_ssa = false;
605 src.reg.reg = reg;
606 src.reg.indirect = NULL;
607 src.reg.base_offset = 0;
608
609 return src;
610 }
611
612 static inline nir_dest
613 nir_dest_for_reg(nir_register *reg)
614 {
615 nir_dest dest = NIR_DEST_INIT;
616
617 dest.reg.reg = reg;
618
619 return dest;
620 }
621
622 static inline unsigned
623 nir_src_bit_size(nir_src src)
624 {
625 return src.is_ssa ? src.ssa->bit_size : src.reg.reg->bit_size;
626 }
627
628 static inline unsigned
629 nir_dest_bit_size(nir_dest dest)
630 {
631 return dest.is_ssa ? dest.ssa.bit_size : dest.reg.reg->bit_size;
632 }
633
634 void nir_src_copy(nir_src *dest, const nir_src *src, void *instr_or_if);
635 void nir_dest_copy(nir_dest *dest, const nir_dest *src, nir_instr *instr);
636
637 typedef struct {
638 nir_src src;
639
640 /**
641 * \name input modifiers
642 */
643 /*@{*/
644 /**
645 * For inputs interpreted as floating point, flips the sign bit. For
646 * inputs interpreted as integers, performs the two's complement negation.
647 */
648 bool negate;
649
650 /**
651 * Clears the sign bit for floating point values, and computes the integer
652 * absolute value for integers. Note that the negate modifier acts after
653 * the absolute value modifier, therefore if both are set then all inputs
654 * will become negative.
655 */
656 bool abs;
657 /*@}*/
658
659 /**
660 * For each input component, says which component of the register it is
661 * chosen from. Note that which elements of the swizzle are used and which
662 * are ignored are based on the write mask for most opcodes - for example,
663 * a statement like "foo.xzw = bar.zyx" would have a writemask of 1101b and
664 * a swizzle of {2, x, 1, 0} where x means "don't care."
665 */
666 uint8_t swizzle[4];
667 } nir_alu_src;
668
669 typedef struct {
670 nir_dest dest;
671
672 /**
673 * \name saturate output modifier
674 *
675 * Only valid for opcodes that output floating-point numbers. Clamps the
676 * output to between 0.0 and 1.0 inclusive.
677 */
678
679 bool saturate;
680
681 unsigned write_mask : 4; /* ignored if dest.is_ssa is true */
682 } nir_alu_dest;
683
684 typedef enum {
685 nir_type_invalid = 0, /* Not a valid type */
686 nir_type_float,
687 nir_type_int,
688 nir_type_uint,
689 nir_type_bool,
690 nir_type_bool32 = 32 | nir_type_bool,
691 nir_type_int8 = 8 | nir_type_int,
692 nir_type_int16 = 16 | nir_type_int,
693 nir_type_int32 = 32 | nir_type_int,
694 nir_type_int64 = 64 | nir_type_int,
695 nir_type_uint8 = 8 | nir_type_uint,
696 nir_type_uint16 = 16 | nir_type_uint,
697 nir_type_uint32 = 32 | nir_type_uint,
698 nir_type_uint64 = 64 | nir_type_uint,
699 nir_type_float16 = 16 | nir_type_float,
700 nir_type_float32 = 32 | nir_type_float,
701 nir_type_float64 = 64 | nir_type_float,
702 } nir_alu_type;
703
704 #define NIR_ALU_TYPE_SIZE_MASK 0xfffffff8
705 #define NIR_ALU_TYPE_BASE_TYPE_MASK 0x00000007
706
707 static inline unsigned
708 nir_alu_type_get_type_size(nir_alu_type type)
709 {
710 return type & NIR_ALU_TYPE_SIZE_MASK;
711 }
712
713 static inline unsigned
714 nir_alu_type_get_base_type(nir_alu_type type)
715 {
716 return type & NIR_ALU_TYPE_BASE_TYPE_MASK;
717 }
718
719 static inline nir_alu_type
720 nir_get_nir_type_for_glsl_base_type(enum glsl_base_type base_type)
721 {
722 switch (base_type) {
723 case GLSL_TYPE_BOOL:
724 return nir_type_bool32;
725 break;
726 case GLSL_TYPE_UINT:
727 return nir_type_uint32;
728 break;
729 case GLSL_TYPE_INT:
730 return nir_type_int32;
731 break;
732 case GLSL_TYPE_UINT16:
733 return nir_type_uint16;
734 break;
735 case GLSL_TYPE_INT16:
736 return nir_type_int16;
737 break;
738 case GLSL_TYPE_UINT8:
739 return nir_type_uint8;
740 case GLSL_TYPE_INT8:
741 return nir_type_int8;
742 case GLSL_TYPE_UINT64:
743 return nir_type_uint64;
744 break;
745 case GLSL_TYPE_INT64:
746 return nir_type_int64;
747 break;
748 case GLSL_TYPE_FLOAT:
749 return nir_type_float32;
750 break;
751 case GLSL_TYPE_FLOAT16:
752 return nir_type_float16;
753 break;
754 case GLSL_TYPE_DOUBLE:
755 return nir_type_float64;
756 break;
757 default:
758 unreachable("unknown type");
759 }
760 }
761
762 static inline nir_alu_type
763 nir_get_nir_type_for_glsl_type(const struct glsl_type *type)
764 {
765 return nir_get_nir_type_for_glsl_base_type(glsl_get_base_type(type));
766 }
767
768 nir_op nir_type_conversion_op(nir_alu_type src, nir_alu_type dst,
769 nir_rounding_mode rnd);
770
771 typedef enum {
772 NIR_OP_IS_COMMUTATIVE = (1 << 0),
773 NIR_OP_IS_ASSOCIATIVE = (1 << 1),
774 } nir_op_algebraic_property;
775
776 typedef struct {
777 const char *name;
778
779 unsigned num_inputs;
780
781 /**
782 * The number of components in the output
783 *
784 * If non-zero, this is the size of the output and input sizes are
785 * explicitly given; swizzle and writemask are still in effect, but if
786 * the output component is masked out, then the input component may
787 * still be in use.
788 *
789 * If zero, the opcode acts in the standard, per-component manner; the
790 * operation is performed on each component (except the ones that are
791 * masked out) with the input being taken from the input swizzle for
792 * that component.
793 *
794 * The size of some of the inputs may be given (i.e. non-zero) even
795 * though output_size is zero; in that case, the inputs with a zero
796 * size act per-component, while the inputs with non-zero size don't.
797 */
798 unsigned output_size;
799
800 /**
801 * The type of vector that the instruction outputs. Note that the
802 * staurate modifier is only allowed on outputs with the float type.
803 */
804
805 nir_alu_type output_type;
806
807 /**
808 * The number of components in each input
809 */
810 unsigned input_sizes[4];
811
812 /**
813 * The type of vector that each input takes. Note that negate and
814 * absolute value are only allowed on inputs with int or float type and
815 * behave differently on the two.
816 */
817 nir_alu_type input_types[4];
818
819 nir_op_algebraic_property algebraic_properties;
820 } nir_op_info;
821
822 extern const nir_op_info nir_op_infos[nir_num_opcodes];
823
824 typedef struct nir_alu_instr {
825 nir_instr instr;
826 nir_op op;
827
828 /** Indicates that this ALU instruction generates an exact value
829 *
830 * This is kind of a mixture of GLSL "precise" and "invariant" and not
831 * really equivalent to either. This indicates that the value generated by
832 * this operation is high-precision and any code transformations that touch
833 * it must ensure that the resulting value is bit-for-bit identical to the
834 * original.
835 */
836 bool exact;
837
838 nir_alu_dest dest;
839 nir_alu_src src[];
840 } nir_alu_instr;
841
842 void nir_alu_src_copy(nir_alu_src *dest, const nir_alu_src *src,
843 nir_alu_instr *instr);
844 void nir_alu_dest_copy(nir_alu_dest *dest, const nir_alu_dest *src,
845 nir_alu_instr *instr);
846
847 /* is this source channel used? */
848 static inline bool
849 nir_alu_instr_channel_used(const nir_alu_instr *instr, unsigned src,
850 unsigned channel)
851 {
852 if (nir_op_infos[instr->op].input_sizes[src] > 0)
853 return channel < nir_op_infos[instr->op].input_sizes[src];
854
855 return (instr->dest.write_mask >> channel) & 1;
856 }
857
858 /*
859 * For instructions whose destinations are SSA, get the number of channels
860 * used for a source
861 */
862 static inline unsigned
863 nir_ssa_alu_instr_src_components(const nir_alu_instr *instr, unsigned src)
864 {
865 assert(instr->dest.dest.is_ssa);
866
867 if (nir_op_infos[instr->op].input_sizes[src] > 0)
868 return nir_op_infos[instr->op].input_sizes[src];
869
870 return instr->dest.dest.ssa.num_components;
871 }
872
873 bool nir_alu_srcs_equal(const nir_alu_instr *alu1, const nir_alu_instr *alu2,
874 unsigned src1, unsigned src2);
875
876 typedef enum {
877 nir_deref_type_var,
878 nir_deref_type_array,
879 nir_deref_type_struct
880 } nir_deref_type;
881
882 typedef struct nir_deref {
883 nir_deref_type deref_type;
884 struct nir_deref *child;
885 const struct glsl_type *type;
886 } nir_deref;
887
888 typedef struct {
889 nir_deref deref;
890
891 nir_variable *var;
892 } nir_deref_var;
893
894 /* This enum describes how the array is referenced. If the deref is
895 * direct then the base_offset is used. If the deref is indirect then
896 * offset is given by base_offset + indirect. If the deref is a wildcard
897 * then the deref refers to all of the elements of the array at the same
898 * time. Wildcard dereferences are only ever allowed in copy_var
899 * intrinsics and the source and destination derefs must have matching
900 * wildcards.
901 */
902 typedef enum {
903 nir_deref_array_type_direct,
904 nir_deref_array_type_indirect,
905 nir_deref_array_type_wildcard,
906 } nir_deref_array_type;
907
908 typedef struct {
909 nir_deref deref;
910
911 nir_deref_array_type deref_array_type;
912 unsigned base_offset;
913 nir_src indirect;
914 } nir_deref_array;
915
916 typedef struct {
917 nir_deref deref;
918
919 unsigned index;
920 } nir_deref_struct;
921
922 NIR_DEFINE_CAST(nir_deref_as_var, nir_deref, nir_deref_var, deref,
923 deref_type, nir_deref_type_var)
924 NIR_DEFINE_CAST(nir_deref_as_array, nir_deref, nir_deref_array, deref,
925 deref_type, nir_deref_type_array)
926 NIR_DEFINE_CAST(nir_deref_as_struct, nir_deref, nir_deref_struct, deref,
927 deref_type, nir_deref_type_struct)
928
929 /* Returns the last deref in the chain. */
930 static inline nir_deref *
931 nir_deref_tail(nir_deref *deref)
932 {
933 while (deref->child)
934 deref = deref->child;
935 return deref;
936 }
937
938 typedef struct {
939 nir_instr instr;
940
941 unsigned num_params;
942 nir_deref_var **params;
943 nir_deref_var *return_deref;
944
945 struct nir_function *callee;
946 } nir_call_instr;
947
948 #include "nir_intrinsics.h"
949
950 #define NIR_INTRINSIC_MAX_CONST_INDEX 3
951
952 /** Represents an intrinsic
953 *
954 * An intrinsic is an instruction type for handling things that are
955 * more-or-less regular operations but don't just consume and produce SSA
956 * values like ALU operations do. Intrinsics are not for things that have
957 * special semantic meaning such as phi nodes and parallel copies.
958 * Examples of intrinsics include variable load/store operations, system
959 * value loads, and the like. Even though texturing more-or-less falls
960 * under this category, texturing is its own instruction type because
961 * trying to represent texturing with intrinsics would lead to a
962 * combinatorial explosion of intrinsic opcodes.
963 *
964 * By having a single instruction type for handling a lot of different
965 * cases, optimization passes can look for intrinsics and, for the most
966 * part, completely ignore them. Each intrinsic type also has a few
967 * possible flags that govern whether or not they can be reordered or
968 * eliminated. That way passes like dead code elimination can still work
969 * on intrisics without understanding the meaning of each.
970 *
971 * Each intrinsic has some number of constant indices, some number of
972 * variables, and some number of sources. What these sources, variables,
973 * and indices mean depends on the intrinsic and is documented with the
974 * intrinsic declaration in nir_intrinsics.h. Intrinsics and texture
975 * instructions are the only types of instruction that can operate on
976 * variables.
977 */
978 typedef struct {
979 nir_instr instr;
980
981 nir_intrinsic_op intrinsic;
982
983 nir_dest dest;
984
985 /** number of components if this is a vectorized intrinsic
986 *
987 * Similarly to ALU operations, some intrinsics are vectorized.
988 * An intrinsic is vectorized if nir_intrinsic_infos.dest_components == 0.
989 * For vectorized intrinsics, the num_components field specifies the
990 * number of destination components and the number of source components
991 * for all sources with nir_intrinsic_infos.src_components[i] == 0.
992 */
993 uint8_t num_components;
994
995 int const_index[NIR_INTRINSIC_MAX_CONST_INDEX];
996
997 nir_deref_var *variables[2];
998
999 nir_src src[];
1000 } nir_intrinsic_instr;
1001
1002 /**
1003 * \name NIR intrinsics semantic flags
1004 *
1005 * information about what the compiler can do with the intrinsics.
1006 *
1007 * \sa nir_intrinsic_info::flags
1008 */
1009 typedef enum {
1010 /**
1011 * whether the intrinsic can be safely eliminated if none of its output
1012 * value is not being used.
1013 */
1014 NIR_INTRINSIC_CAN_ELIMINATE = (1 << 0),
1015
1016 /**
1017 * Whether the intrinsic can be reordered with respect to any other
1018 * intrinsic, i.e. whether the only reordering dependencies of the
1019 * intrinsic are due to the register reads/writes.
1020 */
1021 NIR_INTRINSIC_CAN_REORDER = (1 << 1),
1022 } nir_intrinsic_semantic_flag;
1023
1024 /**
1025 * \name NIR intrinsics const-index flag
1026 *
1027 * Indicates the usage of a const_index slot.
1028 *
1029 * \sa nir_intrinsic_info::index_map
1030 */
1031 typedef enum {
1032 /**
1033 * Generally instructions that take a offset src argument, can encode
1034 * a constant 'base' value which is added to the offset.
1035 */
1036 NIR_INTRINSIC_BASE = 1,
1037
1038 /**
1039 * For store instructions, a writemask for the store.
1040 */
1041 NIR_INTRINSIC_WRMASK = 2,
1042
1043 /**
1044 * The stream-id for GS emit_vertex/end_primitive intrinsics.
1045 */
1046 NIR_INTRINSIC_STREAM_ID = 3,
1047
1048 /**
1049 * The clip-plane id for load_user_clip_plane intrinsic.
1050 */
1051 NIR_INTRINSIC_UCP_ID = 4,
1052
1053 /**
1054 * The amount of data, starting from BASE, that this instruction may
1055 * access. This is used to provide bounds if the offset is not constant.
1056 */
1057 NIR_INTRINSIC_RANGE = 5,
1058
1059 /**
1060 * The Vulkan descriptor set for vulkan_resource_index intrinsic.
1061 */
1062 NIR_INTRINSIC_DESC_SET = 6,
1063
1064 /**
1065 * The Vulkan descriptor set binding for vulkan_resource_index intrinsic.
1066 */
1067 NIR_INTRINSIC_BINDING = 7,
1068
1069 /**
1070 * Component offset.
1071 */
1072 NIR_INTRINSIC_COMPONENT = 8,
1073
1074 /**
1075 * Interpolation mode (only meaningful for FS inputs).
1076 */
1077 NIR_INTRINSIC_INTERP_MODE = 9,
1078
1079 /**
1080 * A binary nir_op to use when performing a reduction or scan operation
1081 */
1082 NIR_INTRINSIC_REDUCTION_OP = 10,
1083
1084 /**
1085 * Cluster size for reduction operations
1086 */
1087 NIR_INTRINSIC_CLUSTER_SIZE = 11,
1088
1089 NIR_INTRINSIC_NUM_INDEX_FLAGS,
1090
1091 } nir_intrinsic_index_flag;
1092
1093 #define NIR_INTRINSIC_MAX_INPUTS 4
1094
1095 typedef struct {
1096 const char *name;
1097
1098 unsigned num_srcs; /** < number of register/SSA inputs */
1099
1100 /** number of components of each input register
1101 *
1102 * If this value is 0, the number of components is given by the
1103 * num_components field of nir_intrinsic_instr.
1104 */
1105 unsigned src_components[NIR_INTRINSIC_MAX_INPUTS];
1106
1107 bool has_dest;
1108
1109 /** number of components of the output register
1110 *
1111 * If this value is 0, the number of components is given by the
1112 * num_components field of nir_intrinsic_instr.
1113 */
1114 unsigned dest_components;
1115
1116 /** the number of inputs/outputs that are variables */
1117 unsigned num_variables;
1118
1119 /** the number of constant indices used by the intrinsic */
1120 unsigned num_indices;
1121
1122 /** indicates the usage of intr->const_index[n] */
1123 unsigned index_map[NIR_INTRINSIC_NUM_INDEX_FLAGS];
1124
1125 /** semantic flags for calls to this intrinsic */
1126 nir_intrinsic_semantic_flag flags;
1127 } nir_intrinsic_info;
1128
1129 extern const nir_intrinsic_info nir_intrinsic_infos[nir_num_intrinsics];
1130
1131
1132 #define INTRINSIC_IDX_ACCESSORS(name, flag, type) \
1133 static inline type \
1134 nir_intrinsic_##name(const nir_intrinsic_instr *instr) \
1135 { \
1136 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic]; \
1137 assert(info->index_map[NIR_INTRINSIC_##flag] > 0); \
1138 return instr->const_index[info->index_map[NIR_INTRINSIC_##flag] - 1]; \
1139 } \
1140 static inline void \
1141 nir_intrinsic_set_##name(nir_intrinsic_instr *instr, type val) \
1142 { \
1143 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic]; \
1144 assert(info->index_map[NIR_INTRINSIC_##flag] > 0); \
1145 instr->const_index[info->index_map[NIR_INTRINSIC_##flag] - 1] = val; \
1146 }
1147
1148 INTRINSIC_IDX_ACCESSORS(write_mask, WRMASK, unsigned)
1149 INTRINSIC_IDX_ACCESSORS(base, BASE, int)
1150 INTRINSIC_IDX_ACCESSORS(stream_id, STREAM_ID, unsigned)
1151 INTRINSIC_IDX_ACCESSORS(ucp_id, UCP_ID, unsigned)
1152 INTRINSIC_IDX_ACCESSORS(range, RANGE, unsigned)
1153 INTRINSIC_IDX_ACCESSORS(desc_set, DESC_SET, unsigned)
1154 INTRINSIC_IDX_ACCESSORS(binding, BINDING, unsigned)
1155 INTRINSIC_IDX_ACCESSORS(component, COMPONENT, unsigned)
1156 INTRINSIC_IDX_ACCESSORS(interp_mode, INTERP_MODE, unsigned)
1157 INTRINSIC_IDX_ACCESSORS(reduction_op, REDUCTION_OP, unsigned)
1158 INTRINSIC_IDX_ACCESSORS(cluster_size, CLUSTER_SIZE, unsigned)
1159
1160 /**
1161 * \group texture information
1162 *
1163 * This gives semantic information about textures which is useful to the
1164 * frontend, the backend, and lowering passes, but not the optimizer.
1165 */
1166
1167 typedef enum {
1168 nir_tex_src_coord,
1169 nir_tex_src_projector,
1170 nir_tex_src_comparator, /* shadow comparator */
1171 nir_tex_src_offset,
1172 nir_tex_src_bias,
1173 nir_tex_src_lod,
1174 nir_tex_src_ms_index, /* MSAA sample index */
1175 nir_tex_src_ms_mcs, /* MSAA compression value */
1176 nir_tex_src_ddx,
1177 nir_tex_src_ddy,
1178 nir_tex_src_texture_offset, /* < dynamically uniform indirect offset */
1179 nir_tex_src_sampler_offset, /* < dynamically uniform indirect offset */
1180 nir_tex_src_plane, /* < selects plane for planar textures */
1181 nir_num_tex_src_types
1182 } nir_tex_src_type;
1183
1184 typedef struct {
1185 nir_src src;
1186 nir_tex_src_type src_type;
1187 } nir_tex_src;
1188
1189 typedef enum {
1190 nir_texop_tex, /**< Regular texture look-up */
1191 nir_texop_txb, /**< Texture look-up with LOD bias */
1192 nir_texop_txl, /**< Texture look-up with explicit LOD */
1193 nir_texop_txd, /**< Texture look-up with partial derivatives */
1194 nir_texop_txf, /**< Texel fetch with explicit LOD */
1195 nir_texop_txf_ms, /**< Multisample texture fetch */
1196 nir_texop_txf_ms_mcs, /**< Multisample compression value fetch */
1197 nir_texop_txs, /**< Texture size */
1198 nir_texop_lod, /**< Texture lod query */
1199 nir_texop_tg4, /**< Texture gather */
1200 nir_texop_query_levels, /**< Texture levels query */
1201 nir_texop_texture_samples, /**< Texture samples query */
1202 nir_texop_samples_identical, /**< Query whether all samples are definitely
1203 * identical.
1204 */
1205 } nir_texop;
1206
1207 typedef struct {
1208 nir_instr instr;
1209
1210 enum glsl_sampler_dim sampler_dim;
1211 nir_alu_type dest_type;
1212
1213 nir_texop op;
1214 nir_dest dest;
1215 nir_tex_src *src;
1216 unsigned num_srcs, coord_components;
1217 bool is_array, is_shadow;
1218
1219 /**
1220 * If is_shadow is true, whether this is the old-style shadow that outputs 4
1221 * components or the new-style shadow that outputs 1 component.
1222 */
1223 bool is_new_style_shadow;
1224
1225 /* gather component selector */
1226 unsigned component : 2;
1227
1228 /** The texture index
1229 *
1230 * If this texture instruction has a nir_tex_src_texture_offset source,
1231 * then the texture index is given by texture_index + texture_offset.
1232 */
1233 unsigned texture_index;
1234
1235 /** The size of the texture array or 0 if it's not an array */
1236 unsigned texture_array_size;
1237
1238 /** The texture deref
1239 *
1240 * If this is null, use texture_index instead.
1241 */
1242 nir_deref_var *texture;
1243
1244 /** The sampler index
1245 *
1246 * The following operations do not require a sampler and, as such, this
1247 * field should be ignored:
1248 * - nir_texop_txf
1249 * - nir_texop_txf_ms
1250 * - nir_texop_txs
1251 * - nir_texop_lod
1252 * - nir_texop_query_levels
1253 * - nir_texop_texture_samples
1254 * - nir_texop_samples_identical
1255 *
1256 * If this texture instruction has a nir_tex_src_sampler_offset source,
1257 * then the sampler index is given by sampler_index + sampler_offset.
1258 */
1259 unsigned sampler_index;
1260
1261 /** The sampler deref
1262 *
1263 * If this is null, use sampler_index instead.
1264 */
1265 nir_deref_var *sampler;
1266 } nir_tex_instr;
1267
1268 static inline unsigned
1269 nir_tex_instr_dest_size(const nir_tex_instr *instr)
1270 {
1271 switch (instr->op) {
1272 case nir_texop_txs: {
1273 unsigned ret;
1274 switch (instr->sampler_dim) {
1275 case GLSL_SAMPLER_DIM_1D:
1276 case GLSL_SAMPLER_DIM_BUF:
1277 ret = 1;
1278 break;
1279 case GLSL_SAMPLER_DIM_2D:
1280 case GLSL_SAMPLER_DIM_CUBE:
1281 case GLSL_SAMPLER_DIM_MS:
1282 case GLSL_SAMPLER_DIM_RECT:
1283 case GLSL_SAMPLER_DIM_EXTERNAL:
1284 case GLSL_SAMPLER_DIM_SUBPASS:
1285 ret = 2;
1286 break;
1287 case GLSL_SAMPLER_DIM_3D:
1288 ret = 3;
1289 break;
1290 default:
1291 unreachable("not reached");
1292 }
1293 if (instr->is_array)
1294 ret++;
1295 return ret;
1296 }
1297
1298 case nir_texop_lod:
1299 return 2;
1300
1301 case nir_texop_texture_samples:
1302 case nir_texop_query_levels:
1303 case nir_texop_samples_identical:
1304 return 1;
1305
1306 default:
1307 if (instr->is_shadow && instr->is_new_style_shadow)
1308 return 1;
1309
1310 return 4;
1311 }
1312 }
1313
1314 /* Returns true if this texture operation queries something about the texture
1315 * rather than actually sampling it.
1316 */
1317 static inline bool
1318 nir_tex_instr_is_query(const nir_tex_instr *instr)
1319 {
1320 switch (instr->op) {
1321 case nir_texop_txs:
1322 case nir_texop_lod:
1323 case nir_texop_texture_samples:
1324 case nir_texop_query_levels:
1325 case nir_texop_txf_ms_mcs:
1326 return true;
1327 case nir_texop_tex:
1328 case nir_texop_txb:
1329 case nir_texop_txl:
1330 case nir_texop_txd:
1331 case nir_texop_txf:
1332 case nir_texop_txf_ms:
1333 case nir_texop_tg4:
1334 return false;
1335 default:
1336 unreachable("Invalid texture opcode");
1337 }
1338 }
1339
1340 static inline nir_alu_type
1341 nir_tex_instr_src_type(const nir_tex_instr *instr, unsigned src)
1342 {
1343 switch (instr->src[src].src_type) {
1344 case nir_tex_src_coord:
1345 switch (instr->op) {
1346 case nir_texop_txf:
1347 case nir_texop_txf_ms:
1348 case nir_texop_txf_ms_mcs:
1349 case nir_texop_samples_identical:
1350 return nir_type_int;
1351
1352 default:
1353 return nir_type_float;
1354 }
1355
1356 case nir_tex_src_lod:
1357 switch (instr->op) {
1358 case nir_texop_txs:
1359 case nir_texop_txf:
1360 return nir_type_int;
1361
1362 default:
1363 return nir_type_float;
1364 }
1365
1366 case nir_tex_src_projector:
1367 case nir_tex_src_comparator:
1368 case nir_tex_src_bias:
1369 case nir_tex_src_ddx:
1370 case nir_tex_src_ddy:
1371 return nir_type_float;
1372
1373 case nir_tex_src_offset:
1374 case nir_tex_src_ms_index:
1375 case nir_tex_src_texture_offset:
1376 case nir_tex_src_sampler_offset:
1377 return nir_type_int;
1378
1379 default:
1380 unreachable("Invalid texture source type");
1381 }
1382 }
1383
1384 static inline unsigned
1385 nir_tex_instr_src_size(const nir_tex_instr *instr, unsigned src)
1386 {
1387 if (instr->src[src].src_type == nir_tex_src_coord)
1388 return instr->coord_components;
1389
1390 /* The MCS value is expected to be a vec4 returned by a txf_ms_mcs */
1391 if (instr->src[src].src_type == nir_tex_src_ms_mcs)
1392 return 4;
1393
1394 if (instr->src[src].src_type == nir_tex_src_ddx ||
1395 instr->src[src].src_type == nir_tex_src_ddy) {
1396 if (instr->is_array)
1397 return instr->coord_components - 1;
1398 else
1399 return instr->coord_components;
1400 }
1401
1402 /* Usual APIs don't allow cube + offset, but we allow it, with 2 coords for
1403 * the offset, since a cube maps to a single face.
1404 */
1405 if (instr->src[src].src_type == nir_tex_src_offset) {
1406 if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE)
1407 return 2;
1408 else if (instr->is_array)
1409 return instr->coord_components - 1;
1410 else
1411 return instr->coord_components;
1412 }
1413
1414 return 1;
1415 }
1416
1417 static inline int
1418 nir_tex_instr_src_index(const nir_tex_instr *instr, nir_tex_src_type type)
1419 {
1420 for (unsigned i = 0; i < instr->num_srcs; i++)
1421 if (instr->src[i].src_type == type)
1422 return (int) i;
1423
1424 return -1;
1425 }
1426
1427 void nir_tex_instr_add_src(nir_tex_instr *tex,
1428 nir_tex_src_type src_type,
1429 nir_src src);
1430
1431 void nir_tex_instr_remove_src(nir_tex_instr *tex, unsigned src_idx);
1432
1433 typedef struct {
1434 nir_instr instr;
1435
1436 nir_const_value value;
1437
1438 nir_ssa_def def;
1439 } nir_load_const_instr;
1440
1441 typedef enum {
1442 nir_jump_return,
1443 nir_jump_break,
1444 nir_jump_continue,
1445 } nir_jump_type;
1446
1447 typedef struct {
1448 nir_instr instr;
1449 nir_jump_type type;
1450 } nir_jump_instr;
1451
1452 /* creates a new SSA variable in an undefined state */
1453
1454 typedef struct {
1455 nir_instr instr;
1456 nir_ssa_def def;
1457 } nir_ssa_undef_instr;
1458
1459 typedef struct {
1460 struct exec_node node;
1461
1462 /* The predecessor block corresponding to this source */
1463 struct nir_block *pred;
1464
1465 nir_src src;
1466 } nir_phi_src;
1467
1468 #define nir_foreach_phi_src(phi_src, phi) \
1469 foreach_list_typed(nir_phi_src, phi_src, node, &(phi)->srcs)
1470 #define nir_foreach_phi_src_safe(phi_src, phi) \
1471 foreach_list_typed_safe(nir_phi_src, phi_src, node, &(phi)->srcs)
1472
1473 typedef struct {
1474 nir_instr instr;
1475
1476 struct exec_list srcs; /** < list of nir_phi_src */
1477
1478 nir_dest dest;
1479 } nir_phi_instr;
1480
1481 typedef struct {
1482 struct exec_node node;
1483 nir_src src;
1484 nir_dest dest;
1485 } nir_parallel_copy_entry;
1486
1487 #define nir_foreach_parallel_copy_entry(entry, pcopy) \
1488 foreach_list_typed(nir_parallel_copy_entry, entry, node, &(pcopy)->entries)
1489
1490 typedef struct {
1491 nir_instr instr;
1492
1493 /* A list of nir_parallel_copy_entrys. The sources of all of the
1494 * entries are copied to the corresponding destinations "in parallel".
1495 * In other words, if we have two entries: a -> b and b -> a, the values
1496 * get swapped.
1497 */
1498 struct exec_list entries;
1499 } nir_parallel_copy_instr;
1500
1501 NIR_DEFINE_CAST(nir_instr_as_alu, nir_instr, nir_alu_instr, instr,
1502 type, nir_instr_type_alu)
1503 NIR_DEFINE_CAST(nir_instr_as_call, nir_instr, nir_call_instr, instr,
1504 type, nir_instr_type_call)
1505 NIR_DEFINE_CAST(nir_instr_as_jump, nir_instr, nir_jump_instr, instr,
1506 type, nir_instr_type_jump)
1507 NIR_DEFINE_CAST(nir_instr_as_tex, nir_instr, nir_tex_instr, instr,
1508 type, nir_instr_type_tex)
1509 NIR_DEFINE_CAST(nir_instr_as_intrinsic, nir_instr, nir_intrinsic_instr, instr,
1510 type, nir_instr_type_intrinsic)
1511 NIR_DEFINE_CAST(nir_instr_as_load_const, nir_instr, nir_load_const_instr, instr,
1512 type, nir_instr_type_load_const)
1513 NIR_DEFINE_CAST(nir_instr_as_ssa_undef, nir_instr, nir_ssa_undef_instr, instr,
1514 type, nir_instr_type_ssa_undef)
1515 NIR_DEFINE_CAST(nir_instr_as_phi, nir_instr, nir_phi_instr, instr,
1516 type, nir_instr_type_phi)
1517 NIR_DEFINE_CAST(nir_instr_as_parallel_copy, nir_instr,
1518 nir_parallel_copy_instr, instr,
1519 type, nir_instr_type_parallel_copy)
1520
1521 /*
1522 * Control flow
1523 *
1524 * Control flow consists of a tree of control flow nodes, which include
1525 * if-statements and loops. The leaves of the tree are basic blocks, lists of
1526 * instructions that always run start-to-finish. Each basic block also keeps
1527 * track of its successors (blocks which may run immediately after the current
1528 * block) and predecessors (blocks which could have run immediately before the
1529 * current block). Each function also has a start block and an end block which
1530 * all return statements point to (which is always empty). Together, all the
1531 * blocks with their predecessors and successors make up the control flow
1532 * graph (CFG) of the function. There are helpers that modify the tree of
1533 * control flow nodes while modifying the CFG appropriately; these should be
1534 * used instead of modifying the tree directly.
1535 */
1536
1537 typedef enum {
1538 nir_cf_node_block,
1539 nir_cf_node_if,
1540 nir_cf_node_loop,
1541 nir_cf_node_function
1542 } nir_cf_node_type;
1543
1544 typedef struct nir_cf_node {
1545 struct exec_node node;
1546 nir_cf_node_type type;
1547 struct nir_cf_node *parent;
1548 } nir_cf_node;
1549
1550 typedef struct nir_block {
1551 nir_cf_node cf_node;
1552
1553 struct exec_list instr_list; /** < list of nir_instr */
1554
1555 /** generic block index; generated by nir_index_blocks */
1556 unsigned index;
1557
1558 /*
1559 * Each block can only have up to 2 successors, so we put them in a simple
1560 * array - no need for anything more complicated.
1561 */
1562 struct nir_block *successors[2];
1563
1564 /* Set of nir_block predecessors in the CFG */
1565 struct set *predecessors;
1566
1567 /*
1568 * this node's immediate dominator in the dominance tree - set to NULL for
1569 * the start block.
1570 */
1571 struct nir_block *imm_dom;
1572
1573 /* This node's children in the dominance tree */
1574 unsigned num_dom_children;
1575 struct nir_block **dom_children;
1576
1577 /* Set of nir_blocks on the dominance frontier of this block */
1578 struct set *dom_frontier;
1579
1580 /*
1581 * These two indices have the property that dom_{pre,post}_index for each
1582 * child of this block in the dominance tree will always be between
1583 * dom_pre_index and dom_post_index for this block, which makes testing if
1584 * a given block is dominated by another block an O(1) operation.
1585 */
1586 unsigned dom_pre_index, dom_post_index;
1587
1588 /* live in and out for this block; used for liveness analysis */
1589 BITSET_WORD *live_in;
1590 BITSET_WORD *live_out;
1591 } nir_block;
1592
1593 static inline nir_instr *
1594 nir_block_first_instr(nir_block *block)
1595 {
1596 struct exec_node *head = exec_list_get_head(&block->instr_list);
1597 return exec_node_data(nir_instr, head, node);
1598 }
1599
1600 static inline nir_instr *
1601 nir_block_last_instr(nir_block *block)
1602 {
1603 struct exec_node *tail = exec_list_get_tail(&block->instr_list);
1604 return exec_node_data(nir_instr, tail, node);
1605 }
1606
1607 #define nir_foreach_instr(instr, block) \
1608 foreach_list_typed(nir_instr, instr, node, &(block)->instr_list)
1609 #define nir_foreach_instr_reverse(instr, block) \
1610 foreach_list_typed_reverse(nir_instr, instr, node, &(block)->instr_list)
1611 #define nir_foreach_instr_safe(instr, block) \
1612 foreach_list_typed_safe(nir_instr, instr, node, &(block)->instr_list)
1613 #define nir_foreach_instr_reverse_safe(instr, block) \
1614 foreach_list_typed_reverse_safe(nir_instr, instr, node, &(block)->instr_list)
1615
1616 typedef struct nir_if {
1617 nir_cf_node cf_node;
1618 nir_src condition;
1619
1620 struct exec_list then_list; /** < list of nir_cf_node */
1621 struct exec_list else_list; /** < list of nir_cf_node */
1622 } nir_if;
1623
1624 typedef struct {
1625 nir_if *nif;
1626
1627 nir_instr *conditional_instr;
1628
1629 nir_block *break_block;
1630 nir_block *continue_from_block;
1631
1632 bool continue_from_then;
1633
1634 struct list_head loop_terminator_link;
1635 } nir_loop_terminator;
1636
1637 typedef struct {
1638 /* Number of instructions in the loop */
1639 unsigned num_instructions;
1640
1641 /* How many times the loop is run (if known) */
1642 unsigned trip_count;
1643 bool is_trip_count_known;
1644
1645 /* Unroll the loop regardless of its size */
1646 bool force_unroll;
1647
1648 nir_loop_terminator *limiting_terminator;
1649
1650 /* A list of loop_terminators terminating this loop. */
1651 struct list_head loop_terminator_list;
1652 } nir_loop_info;
1653
1654 typedef struct {
1655 nir_cf_node cf_node;
1656
1657 struct exec_list body; /** < list of nir_cf_node */
1658
1659 nir_loop_info *info;
1660 } nir_loop;
1661
1662 /**
1663 * Various bits of metadata that can may be created or required by
1664 * optimization and analysis passes
1665 */
1666 typedef enum {
1667 nir_metadata_none = 0x0,
1668 nir_metadata_block_index = 0x1,
1669 nir_metadata_dominance = 0x2,
1670 nir_metadata_live_ssa_defs = 0x4,
1671 nir_metadata_not_properly_reset = 0x8,
1672 nir_metadata_loop_analysis = 0x10,
1673 } nir_metadata;
1674
1675 typedef struct {
1676 nir_cf_node cf_node;
1677
1678 /** pointer to the function of which this is an implementation */
1679 struct nir_function *function;
1680
1681 struct exec_list body; /** < list of nir_cf_node */
1682
1683 nir_block *end_block;
1684
1685 /** list for all local variables in the function */
1686 struct exec_list locals;
1687
1688 /** array of variables used as parameters */
1689 unsigned num_params;
1690 nir_variable **params;
1691
1692 /** variable used to hold the result of the function */
1693 nir_variable *return_var;
1694
1695 /** list of local registers in the function */
1696 struct exec_list registers;
1697
1698 /** next available local register index */
1699 unsigned reg_alloc;
1700
1701 /** next available SSA value index */
1702 unsigned ssa_alloc;
1703
1704 /* total number of basic blocks, only valid when block_index_dirty = false */
1705 unsigned num_blocks;
1706
1707 nir_metadata valid_metadata;
1708 } nir_function_impl;
1709
1710 ATTRIBUTE_RETURNS_NONNULL static inline nir_block *
1711 nir_start_block(nir_function_impl *impl)
1712 {
1713 return (nir_block *) impl->body.head_sentinel.next;
1714 }
1715
1716 ATTRIBUTE_RETURNS_NONNULL static inline nir_block *
1717 nir_impl_last_block(nir_function_impl *impl)
1718 {
1719 return (nir_block *) impl->body.tail_sentinel.prev;
1720 }
1721
1722 static inline nir_cf_node *
1723 nir_cf_node_next(nir_cf_node *node)
1724 {
1725 struct exec_node *next = exec_node_get_next(&node->node);
1726 if (exec_node_is_tail_sentinel(next))
1727 return NULL;
1728 else
1729 return exec_node_data(nir_cf_node, next, node);
1730 }
1731
1732 static inline nir_cf_node *
1733 nir_cf_node_prev(nir_cf_node *node)
1734 {
1735 struct exec_node *prev = exec_node_get_prev(&node->node);
1736 if (exec_node_is_head_sentinel(prev))
1737 return NULL;
1738 else
1739 return exec_node_data(nir_cf_node, prev, node);
1740 }
1741
1742 static inline bool
1743 nir_cf_node_is_first(const nir_cf_node *node)
1744 {
1745 return exec_node_is_head_sentinel(node->node.prev);
1746 }
1747
1748 static inline bool
1749 nir_cf_node_is_last(const nir_cf_node *node)
1750 {
1751 return exec_node_is_tail_sentinel(node->node.next);
1752 }
1753
1754 NIR_DEFINE_CAST(nir_cf_node_as_block, nir_cf_node, nir_block, cf_node,
1755 type, nir_cf_node_block)
1756 NIR_DEFINE_CAST(nir_cf_node_as_if, nir_cf_node, nir_if, cf_node,
1757 type, nir_cf_node_if)
1758 NIR_DEFINE_CAST(nir_cf_node_as_loop, nir_cf_node, nir_loop, cf_node,
1759 type, nir_cf_node_loop)
1760 NIR_DEFINE_CAST(nir_cf_node_as_function, nir_cf_node,
1761 nir_function_impl, cf_node, type, nir_cf_node_function)
1762
1763 static inline nir_block *
1764 nir_if_first_then_block(nir_if *if_stmt)
1765 {
1766 struct exec_node *head = exec_list_get_head(&if_stmt->then_list);
1767 return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
1768 }
1769
1770 static inline nir_block *
1771 nir_if_last_then_block(nir_if *if_stmt)
1772 {
1773 struct exec_node *tail = exec_list_get_tail(&if_stmt->then_list);
1774 return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
1775 }
1776
1777 static inline nir_block *
1778 nir_if_first_else_block(nir_if *if_stmt)
1779 {
1780 struct exec_node *head = exec_list_get_head(&if_stmt->else_list);
1781 return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
1782 }
1783
1784 static inline nir_block *
1785 nir_if_last_else_block(nir_if *if_stmt)
1786 {
1787 struct exec_node *tail = exec_list_get_tail(&if_stmt->else_list);
1788 return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
1789 }
1790
1791 static inline nir_block *
1792 nir_loop_first_block(nir_loop *loop)
1793 {
1794 struct exec_node *head = exec_list_get_head(&loop->body);
1795 return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
1796 }
1797
1798 static inline nir_block *
1799 nir_loop_last_block(nir_loop *loop)
1800 {
1801 struct exec_node *tail = exec_list_get_tail(&loop->body);
1802 return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
1803 }
1804
1805 typedef enum {
1806 nir_parameter_in,
1807 nir_parameter_out,
1808 nir_parameter_inout,
1809 } nir_parameter_type;
1810
1811 typedef struct {
1812 nir_parameter_type param_type;
1813 const struct glsl_type *type;
1814 } nir_parameter;
1815
1816 typedef struct nir_function {
1817 struct exec_node node;
1818
1819 const char *name;
1820 struct nir_shader *shader;
1821
1822 unsigned num_params;
1823 nir_parameter *params;
1824 const struct glsl_type *return_type;
1825
1826 /** The implementation of this function.
1827 *
1828 * If the function is only declared and not implemented, this is NULL.
1829 */
1830 nir_function_impl *impl;
1831 } nir_function;
1832
1833 typedef struct nir_shader_compiler_options {
1834 bool lower_fdiv;
1835 bool lower_ffma;
1836 bool fuse_ffma;
1837 bool lower_flrp32;
1838 /** Lowers flrp when it does not support doubles */
1839 bool lower_flrp64;
1840 bool lower_fpow;
1841 bool lower_fsat;
1842 bool lower_fsqrt;
1843 bool lower_fmod32;
1844 bool lower_fmod64;
1845 bool lower_bitfield_extract;
1846 bool lower_bitfield_insert;
1847 bool lower_uadd_carry;
1848 bool lower_usub_borrow;
1849 /** lowers fneg and ineg to fsub and isub. */
1850 bool lower_negate;
1851 /** lowers fsub and isub to fadd+fneg and iadd+ineg. */
1852 bool lower_sub;
1853
1854 /* lower {slt,sge,seq,sne} to {flt,fge,feq,fne} + b2f: */
1855 bool lower_scmp;
1856
1857 /** enables rules to lower idiv by power-of-two: */
1858 bool lower_idiv;
1859
1860 /* Does the native fdot instruction replicate its result for four
1861 * components? If so, then opt_algebraic_late will turn all fdotN
1862 * instructions into fdot_replicatedN instructions.
1863 */
1864 bool fdot_replicates;
1865
1866 /** lowers ffract to fsub+ffloor: */
1867 bool lower_ffract;
1868
1869 bool lower_ldexp;
1870
1871 bool lower_pack_half_2x16;
1872 bool lower_pack_unorm_2x16;
1873 bool lower_pack_snorm_2x16;
1874 bool lower_pack_unorm_4x8;
1875 bool lower_pack_snorm_4x8;
1876 bool lower_unpack_half_2x16;
1877 bool lower_unpack_unorm_2x16;
1878 bool lower_unpack_snorm_2x16;
1879 bool lower_unpack_unorm_4x8;
1880 bool lower_unpack_snorm_4x8;
1881
1882 bool lower_extract_byte;
1883 bool lower_extract_word;
1884
1885 bool lower_all_io_to_temps;
1886
1887 /**
1888 * Does the driver support real 32-bit integers? (Otherwise, integers
1889 * are simulated by floats.)
1890 */
1891 bool native_integers;
1892
1893 /* Indicates that the driver only has zero-based vertex id */
1894 bool vertex_id_zero_based;
1895
1896 bool lower_cs_local_index_from_id;
1897
1898 bool lower_device_index_to_zero;
1899
1900 /**
1901 * Should nir_lower_io() create load_interpolated_input intrinsics?
1902 *
1903 * If not, it generates regular load_input intrinsics and interpolation
1904 * information must be inferred from the list of input nir_variables.
1905 */
1906 bool use_interpolated_input_intrinsics;
1907
1908 /**
1909 * Do vertex shader double inputs use two locations? The Vulkan spec
1910 * requires two locations to be used, OpenGL allows a single location.
1911 */
1912 bool vs_inputs_dual_locations;
1913
1914 unsigned max_unroll_iterations;
1915 } nir_shader_compiler_options;
1916
1917 typedef struct nir_shader {
1918 /** list of uniforms (nir_variable) */
1919 struct exec_list uniforms;
1920
1921 /** list of inputs (nir_variable) */
1922 struct exec_list inputs;
1923
1924 /** list of outputs (nir_variable) */
1925 struct exec_list outputs;
1926
1927 /** list of shared compute variables (nir_variable) */
1928 struct exec_list shared;
1929
1930 /** Set of driver-specific options for the shader.
1931 *
1932 * The memory for the options is expected to be kept in a single static
1933 * copy by the driver.
1934 */
1935 const struct nir_shader_compiler_options *options;
1936
1937 /** Various bits of compile-time information about a given shader */
1938 struct shader_info info;
1939
1940 /** list of global variables in the shader (nir_variable) */
1941 struct exec_list globals;
1942
1943 /** list of system value variables in the shader (nir_variable) */
1944 struct exec_list system_values;
1945
1946 struct exec_list functions; /** < list of nir_function */
1947
1948 /** list of global register in the shader */
1949 struct exec_list registers;
1950
1951 /** next available global register index */
1952 unsigned reg_alloc;
1953
1954 /**
1955 * the highest index a load_input_*, load_uniform_*, etc. intrinsic can
1956 * access plus one
1957 */
1958 unsigned num_inputs, num_uniforms, num_outputs, num_shared;
1959 } nir_shader;
1960
1961 static inline nir_function_impl *
1962 nir_shader_get_entrypoint(nir_shader *shader)
1963 {
1964 assert(exec_list_length(&shader->functions) == 1);
1965 struct exec_node *func_node = exec_list_get_head(&shader->functions);
1966 nir_function *func = exec_node_data(nir_function, func_node, node);
1967 assert(func->return_type == glsl_void_type());
1968 assert(func->num_params == 0);
1969 assert(func->impl);
1970 return func->impl;
1971 }
1972
1973 #define nir_foreach_function(func, shader) \
1974 foreach_list_typed(nir_function, func, node, &(shader)->functions)
1975
1976 nir_shader *nir_shader_create(void *mem_ctx,
1977 gl_shader_stage stage,
1978 const nir_shader_compiler_options *options,
1979 shader_info *si);
1980
1981 /** creates a register, including assigning it an index and adding it to the list */
1982 nir_register *nir_global_reg_create(nir_shader *shader);
1983
1984 nir_register *nir_local_reg_create(nir_function_impl *impl);
1985
1986 void nir_reg_remove(nir_register *reg);
1987
1988 /** Adds a variable to the appropriate list in nir_shader */
1989 void nir_shader_add_variable(nir_shader *shader, nir_variable *var);
1990
1991 static inline void
1992 nir_function_impl_add_variable(nir_function_impl *impl, nir_variable *var)
1993 {
1994 assert(var->data.mode == nir_var_local);
1995 exec_list_push_tail(&impl->locals, &var->node);
1996 }
1997
1998 /** creates a variable, sets a few defaults, and adds it to the list */
1999 nir_variable *nir_variable_create(nir_shader *shader,
2000 nir_variable_mode mode,
2001 const struct glsl_type *type,
2002 const char *name);
2003 /** creates a local variable and adds it to the list */
2004 nir_variable *nir_local_variable_create(nir_function_impl *impl,
2005 const struct glsl_type *type,
2006 const char *name);
2007
2008 /** creates a function and adds it to the shader's list of functions */
2009 nir_function *nir_function_create(nir_shader *shader, const char *name);
2010
2011 nir_function_impl *nir_function_impl_create(nir_function *func);
2012 /** creates a function_impl that isn't tied to any particular function */
2013 nir_function_impl *nir_function_impl_create_bare(nir_shader *shader);
2014
2015 nir_block *nir_block_create(nir_shader *shader);
2016 nir_if *nir_if_create(nir_shader *shader);
2017 nir_loop *nir_loop_create(nir_shader *shader);
2018
2019 nir_function_impl *nir_cf_node_get_function(nir_cf_node *node);
2020
2021 /** requests that the given pieces of metadata be generated */
2022 void nir_metadata_require(nir_function_impl *impl, nir_metadata required, ...);
2023 /** dirties all but the preserved metadata */
2024 void nir_metadata_preserve(nir_function_impl *impl, nir_metadata preserved);
2025
2026 /** creates an instruction with default swizzle/writemask/etc. with NULL registers */
2027 nir_alu_instr *nir_alu_instr_create(nir_shader *shader, nir_op op);
2028
2029 nir_jump_instr *nir_jump_instr_create(nir_shader *shader, nir_jump_type type);
2030
2031 nir_load_const_instr *nir_load_const_instr_create(nir_shader *shader,
2032 unsigned num_components,
2033 unsigned bit_size);
2034
2035 nir_intrinsic_instr *nir_intrinsic_instr_create(nir_shader *shader,
2036 nir_intrinsic_op op);
2037
2038 nir_call_instr *nir_call_instr_create(nir_shader *shader,
2039 nir_function *callee);
2040
2041 nir_tex_instr *nir_tex_instr_create(nir_shader *shader, unsigned num_srcs);
2042
2043 nir_phi_instr *nir_phi_instr_create(nir_shader *shader);
2044
2045 nir_parallel_copy_instr *nir_parallel_copy_instr_create(nir_shader *shader);
2046
2047 nir_ssa_undef_instr *nir_ssa_undef_instr_create(nir_shader *shader,
2048 unsigned num_components,
2049 unsigned bit_size);
2050
2051 nir_deref_var *nir_deref_var_create(void *mem_ctx, nir_variable *var);
2052 nir_deref_array *nir_deref_array_create(void *mem_ctx);
2053 nir_deref_struct *nir_deref_struct_create(void *mem_ctx, unsigned field_index);
2054
2055 typedef bool (*nir_deref_foreach_leaf_cb)(nir_deref_var *deref, void *state);
2056 bool nir_deref_foreach_leaf(nir_deref_var *deref,
2057 nir_deref_foreach_leaf_cb cb, void *state);
2058
2059 nir_load_const_instr *
2060 nir_deref_get_const_initializer_load(nir_shader *shader, nir_deref_var *deref);
2061
2062 nir_const_value nir_alu_binop_identity(nir_op binop, unsigned bit_size);
2063
2064 /**
2065 * NIR Cursors and Instruction Insertion API
2066 * @{
2067 *
2068 * A tiny struct representing a point to insert/extract instructions or
2069 * control flow nodes. Helps reduce the combinatorial explosion of possible
2070 * points to insert/extract.
2071 *
2072 * \sa nir_control_flow.h
2073 */
2074 typedef enum {
2075 nir_cursor_before_block,
2076 nir_cursor_after_block,
2077 nir_cursor_before_instr,
2078 nir_cursor_after_instr,
2079 } nir_cursor_option;
2080
2081 typedef struct {
2082 nir_cursor_option option;
2083 union {
2084 nir_block *block;
2085 nir_instr *instr;
2086 };
2087 } nir_cursor;
2088
2089 static inline nir_block *
2090 nir_cursor_current_block(nir_cursor cursor)
2091 {
2092 if (cursor.option == nir_cursor_before_instr ||
2093 cursor.option == nir_cursor_after_instr) {
2094 return cursor.instr->block;
2095 } else {
2096 return cursor.block;
2097 }
2098 }
2099
2100 bool nir_cursors_equal(nir_cursor a, nir_cursor b);
2101
2102 static inline nir_cursor
2103 nir_before_block(nir_block *block)
2104 {
2105 nir_cursor cursor;
2106 cursor.option = nir_cursor_before_block;
2107 cursor.block = block;
2108 return cursor;
2109 }
2110
2111 static inline nir_cursor
2112 nir_after_block(nir_block *block)
2113 {
2114 nir_cursor cursor;
2115 cursor.option = nir_cursor_after_block;
2116 cursor.block = block;
2117 return cursor;
2118 }
2119
2120 static inline nir_cursor
2121 nir_before_instr(nir_instr *instr)
2122 {
2123 nir_cursor cursor;
2124 cursor.option = nir_cursor_before_instr;
2125 cursor.instr = instr;
2126 return cursor;
2127 }
2128
2129 static inline nir_cursor
2130 nir_after_instr(nir_instr *instr)
2131 {
2132 nir_cursor cursor;
2133 cursor.option = nir_cursor_after_instr;
2134 cursor.instr = instr;
2135 return cursor;
2136 }
2137
2138 static inline nir_cursor
2139 nir_after_block_before_jump(nir_block *block)
2140 {
2141 nir_instr *last_instr = nir_block_last_instr(block);
2142 if (last_instr && last_instr->type == nir_instr_type_jump) {
2143 return nir_before_instr(last_instr);
2144 } else {
2145 return nir_after_block(block);
2146 }
2147 }
2148
2149 static inline nir_cursor
2150 nir_before_cf_node(nir_cf_node *node)
2151 {
2152 if (node->type == nir_cf_node_block)
2153 return nir_before_block(nir_cf_node_as_block(node));
2154
2155 return nir_after_block(nir_cf_node_as_block(nir_cf_node_prev(node)));
2156 }
2157
2158 static inline nir_cursor
2159 nir_after_cf_node(nir_cf_node *node)
2160 {
2161 if (node->type == nir_cf_node_block)
2162 return nir_after_block(nir_cf_node_as_block(node));
2163
2164 return nir_before_block(nir_cf_node_as_block(nir_cf_node_next(node)));
2165 }
2166
2167 static inline nir_cursor
2168 nir_after_phis(nir_block *block)
2169 {
2170 nir_foreach_instr(instr, block) {
2171 if (instr->type != nir_instr_type_phi)
2172 return nir_before_instr(instr);
2173 }
2174 return nir_after_block(block);
2175 }
2176
2177 static inline nir_cursor
2178 nir_after_cf_node_and_phis(nir_cf_node *node)
2179 {
2180 if (node->type == nir_cf_node_block)
2181 return nir_after_block(nir_cf_node_as_block(node));
2182
2183 nir_block *block = nir_cf_node_as_block(nir_cf_node_next(node));
2184
2185 return nir_after_phis(block);
2186 }
2187
2188 static inline nir_cursor
2189 nir_before_cf_list(struct exec_list *cf_list)
2190 {
2191 nir_cf_node *first_node = exec_node_data(nir_cf_node,
2192 exec_list_get_head(cf_list), node);
2193 return nir_before_cf_node(first_node);
2194 }
2195
2196 static inline nir_cursor
2197 nir_after_cf_list(struct exec_list *cf_list)
2198 {
2199 nir_cf_node *last_node = exec_node_data(nir_cf_node,
2200 exec_list_get_tail(cf_list), node);
2201 return nir_after_cf_node(last_node);
2202 }
2203
2204 /**
2205 * Insert a NIR instruction at the given cursor.
2206 *
2207 * Note: This does not update the cursor.
2208 */
2209 void nir_instr_insert(nir_cursor cursor, nir_instr *instr);
2210
2211 static inline void
2212 nir_instr_insert_before(nir_instr *instr, nir_instr *before)
2213 {
2214 nir_instr_insert(nir_before_instr(instr), before);
2215 }
2216
2217 static inline void
2218 nir_instr_insert_after(nir_instr *instr, nir_instr *after)
2219 {
2220 nir_instr_insert(nir_after_instr(instr), after);
2221 }
2222
2223 static inline void
2224 nir_instr_insert_before_block(nir_block *block, nir_instr *before)
2225 {
2226 nir_instr_insert(nir_before_block(block), before);
2227 }
2228
2229 static inline void
2230 nir_instr_insert_after_block(nir_block *block, nir_instr *after)
2231 {
2232 nir_instr_insert(nir_after_block(block), after);
2233 }
2234
2235 static inline void
2236 nir_instr_insert_before_cf(nir_cf_node *node, nir_instr *before)
2237 {
2238 nir_instr_insert(nir_before_cf_node(node), before);
2239 }
2240
2241 static inline void
2242 nir_instr_insert_after_cf(nir_cf_node *node, nir_instr *after)
2243 {
2244 nir_instr_insert(nir_after_cf_node(node), after);
2245 }
2246
2247 static inline void
2248 nir_instr_insert_before_cf_list(struct exec_list *list, nir_instr *before)
2249 {
2250 nir_instr_insert(nir_before_cf_list(list), before);
2251 }
2252
2253 static inline void
2254 nir_instr_insert_after_cf_list(struct exec_list *list, nir_instr *after)
2255 {
2256 nir_instr_insert(nir_after_cf_list(list), after);
2257 }
2258
2259 void nir_instr_remove(nir_instr *instr);
2260
2261 /** @} */
2262
2263 typedef bool (*nir_foreach_ssa_def_cb)(nir_ssa_def *def, void *state);
2264 typedef bool (*nir_foreach_dest_cb)(nir_dest *dest, void *state);
2265 typedef bool (*nir_foreach_src_cb)(nir_src *src, void *state);
2266 bool nir_foreach_ssa_def(nir_instr *instr, nir_foreach_ssa_def_cb cb,
2267 void *state);
2268 bool nir_foreach_dest(nir_instr *instr, nir_foreach_dest_cb cb, void *state);
2269 bool nir_foreach_src(nir_instr *instr, nir_foreach_src_cb cb, void *state);
2270
2271 nir_const_value *nir_src_as_const_value(nir_src src);
2272 bool nir_src_is_dynamically_uniform(nir_src src);
2273 bool nir_srcs_equal(nir_src src1, nir_src src2);
2274 void nir_instr_rewrite_src(nir_instr *instr, nir_src *src, nir_src new_src);
2275 void nir_instr_move_src(nir_instr *dest_instr, nir_src *dest, nir_src *src);
2276 void nir_if_rewrite_condition(nir_if *if_stmt, nir_src new_src);
2277 void nir_instr_rewrite_dest(nir_instr *instr, nir_dest *dest,
2278 nir_dest new_dest);
2279 void nir_instr_rewrite_deref(nir_instr *instr, nir_deref_var **deref,
2280 nir_deref_var *new_deref);
2281
2282 void nir_ssa_dest_init(nir_instr *instr, nir_dest *dest,
2283 unsigned num_components, unsigned bit_size,
2284 const char *name);
2285 void nir_ssa_def_init(nir_instr *instr, nir_ssa_def *def,
2286 unsigned num_components, unsigned bit_size,
2287 const char *name);
2288 static inline void
2289 nir_ssa_dest_init_for_type(nir_instr *instr, nir_dest *dest,
2290 const struct glsl_type *type,
2291 const char *name)
2292 {
2293 assert(glsl_type_is_vector_or_scalar(type));
2294 nir_ssa_dest_init(instr, dest, glsl_get_components(type),
2295 glsl_get_bit_size(type), name);
2296 }
2297 void nir_ssa_def_rewrite_uses(nir_ssa_def *def, nir_src new_src);
2298 void nir_ssa_def_rewrite_uses_after(nir_ssa_def *def, nir_src new_src,
2299 nir_instr *after_me);
2300
2301 uint8_t nir_ssa_def_components_read(const nir_ssa_def *def);
2302
2303 /*
2304 * finds the next basic block in source-code order, returns NULL if there is
2305 * none
2306 */
2307
2308 nir_block *nir_block_cf_tree_next(nir_block *block);
2309
2310 /* Performs the opposite of nir_block_cf_tree_next() */
2311
2312 nir_block *nir_block_cf_tree_prev(nir_block *block);
2313
2314 /* Gets the first block in a CF node in source-code order */
2315
2316 nir_block *nir_cf_node_cf_tree_first(nir_cf_node *node);
2317
2318 /* Gets the last block in a CF node in source-code order */
2319
2320 nir_block *nir_cf_node_cf_tree_last(nir_cf_node *node);
2321
2322 /* Gets the next block after a CF node in source-code order */
2323
2324 nir_block *nir_cf_node_cf_tree_next(nir_cf_node *node);
2325
2326 /* Macros for loops that visit blocks in source-code order */
2327
2328 #define nir_foreach_block(block, impl) \
2329 for (nir_block *block = nir_start_block(impl); block != NULL; \
2330 block = nir_block_cf_tree_next(block))
2331
2332 #define nir_foreach_block_safe(block, impl) \
2333 for (nir_block *block = nir_start_block(impl), \
2334 *next = nir_block_cf_tree_next(block); \
2335 block != NULL; \
2336 block = next, next = nir_block_cf_tree_next(block))
2337
2338 #define nir_foreach_block_reverse(block, impl) \
2339 for (nir_block *block = nir_impl_last_block(impl); block != NULL; \
2340 block = nir_block_cf_tree_prev(block))
2341
2342 #define nir_foreach_block_reverse_safe(block, impl) \
2343 for (nir_block *block = nir_impl_last_block(impl), \
2344 *prev = nir_block_cf_tree_prev(block); \
2345 block != NULL; \
2346 block = prev, prev = nir_block_cf_tree_prev(block))
2347
2348 #define nir_foreach_block_in_cf_node(block, node) \
2349 for (nir_block *block = nir_cf_node_cf_tree_first(node); \
2350 block != nir_cf_node_cf_tree_next(node); \
2351 block = nir_block_cf_tree_next(block))
2352
2353 /* If the following CF node is an if, this function returns that if.
2354 * Otherwise, it returns NULL.
2355 */
2356 nir_if *nir_block_get_following_if(nir_block *block);
2357
2358 nir_loop *nir_block_get_following_loop(nir_block *block);
2359
2360 void nir_index_local_regs(nir_function_impl *impl);
2361 void nir_index_global_regs(nir_shader *shader);
2362 void nir_index_ssa_defs(nir_function_impl *impl);
2363 unsigned nir_index_instrs(nir_function_impl *impl);
2364
2365 void nir_index_blocks(nir_function_impl *impl);
2366
2367 void nir_print_shader(nir_shader *shader, FILE *fp);
2368 void nir_print_shader_annotated(nir_shader *shader, FILE *fp, struct hash_table *errors);
2369 void nir_print_instr(const nir_instr *instr, FILE *fp);
2370
2371 nir_shader *nir_shader_clone(void *mem_ctx, const nir_shader *s);
2372 nir_function_impl *nir_function_impl_clone(const nir_function_impl *fi);
2373 nir_constant *nir_constant_clone(const nir_constant *c, nir_variable *var);
2374 nir_variable *nir_variable_clone(const nir_variable *c, nir_shader *shader);
2375 nir_deref *nir_deref_clone(const nir_deref *deref, void *mem_ctx);
2376 nir_deref_var *nir_deref_var_clone(const nir_deref_var *deref, void *mem_ctx);
2377
2378 nir_shader *nir_shader_serialize_deserialize(void *mem_ctx, nir_shader *s);
2379
2380 #ifndef NDEBUG
2381 void nir_validate_shader(nir_shader *shader);
2382 void nir_metadata_set_validation_flag(nir_shader *shader);
2383 void nir_metadata_check_validation_flag(nir_shader *shader);
2384
2385 static inline bool
2386 should_clone_nir(void)
2387 {
2388 static int should_clone = -1;
2389 if (should_clone < 0)
2390 should_clone = env_var_as_boolean("NIR_TEST_CLONE", false);
2391
2392 return should_clone;
2393 }
2394
2395 static inline bool
2396 should_serialize_deserialize_nir(void)
2397 {
2398 static int test_serialize = -1;
2399 if (test_serialize < 0)
2400 test_serialize = env_var_as_boolean("NIR_TEST_SERIALIZE", false);
2401
2402 return test_serialize;
2403 }
2404
2405 static inline bool
2406 should_print_nir(void)
2407 {
2408 static int should_print = -1;
2409 if (should_print < 0)
2410 should_print = env_var_as_boolean("NIR_PRINT", false);
2411
2412 return should_print;
2413 }
2414 #else
2415 static inline void nir_validate_shader(nir_shader *shader) { (void) shader; }
2416 static inline void nir_metadata_set_validation_flag(nir_shader *shader) { (void) shader; }
2417 static inline void nir_metadata_check_validation_flag(nir_shader *shader) { (void) shader; }
2418 static inline bool should_clone_nir(void) { return false; }
2419 static inline bool should_serialize_deserialize_nir(void) { return false; }
2420 static inline bool should_print_nir(void) { return false; }
2421 #endif /* NDEBUG */
2422
2423 #define _PASS(nir, do_pass) do { \
2424 do_pass \
2425 nir_validate_shader(nir); \
2426 if (should_clone_nir()) { \
2427 nir_shader *clone = nir_shader_clone(ralloc_parent(nir), nir); \
2428 ralloc_free(nir); \
2429 nir = clone; \
2430 } \
2431 if (should_serialize_deserialize_nir()) { \
2432 void *mem_ctx = ralloc_parent(nir); \
2433 nir = nir_shader_serialize_deserialize(mem_ctx, nir); \
2434 } \
2435 } while (0)
2436
2437 #define NIR_PASS(progress, nir, pass, ...) _PASS(nir, \
2438 nir_metadata_set_validation_flag(nir); \
2439 if (should_print_nir()) \
2440 printf("%s\n", #pass); \
2441 if (pass(nir, ##__VA_ARGS__)) { \
2442 progress = true; \
2443 if (should_print_nir()) \
2444 nir_print_shader(nir, stdout); \
2445 nir_metadata_check_validation_flag(nir); \
2446 } \
2447 )
2448
2449 #define NIR_PASS_V(nir, pass, ...) _PASS(nir, \
2450 if (should_print_nir()) \
2451 printf("%s\n", #pass); \
2452 pass(nir, ##__VA_ARGS__); \
2453 if (should_print_nir()) \
2454 nir_print_shader(nir, stdout); \
2455 )
2456
2457 void nir_calc_dominance_impl(nir_function_impl *impl);
2458 void nir_calc_dominance(nir_shader *shader);
2459
2460 nir_block *nir_dominance_lca(nir_block *b1, nir_block *b2);
2461 bool nir_block_dominates(nir_block *parent, nir_block *child);
2462
2463 void nir_dump_dom_tree_impl(nir_function_impl *impl, FILE *fp);
2464 void nir_dump_dom_tree(nir_shader *shader, FILE *fp);
2465
2466 void nir_dump_dom_frontier_impl(nir_function_impl *impl, FILE *fp);
2467 void nir_dump_dom_frontier(nir_shader *shader, FILE *fp);
2468
2469 void nir_dump_cfg_impl(nir_function_impl *impl, FILE *fp);
2470 void nir_dump_cfg(nir_shader *shader, FILE *fp);
2471
2472 int nir_gs_count_vertices(const nir_shader *shader);
2473
2474 bool nir_split_var_copies(nir_shader *shader);
2475
2476 bool nir_lower_returns_impl(nir_function_impl *impl);
2477 bool nir_lower_returns(nir_shader *shader);
2478
2479 bool nir_inline_functions(nir_shader *shader);
2480
2481 bool nir_propagate_invariant(nir_shader *shader);
2482
2483 void nir_lower_var_copy_instr(nir_intrinsic_instr *copy, nir_shader *shader);
2484 bool nir_lower_var_copies(nir_shader *shader);
2485
2486 bool nir_lower_global_vars_to_local(nir_shader *shader);
2487
2488 bool nir_lower_indirect_derefs(nir_shader *shader, nir_variable_mode modes);
2489
2490 bool nir_lower_locals_to_regs(nir_shader *shader);
2491
2492 void nir_lower_io_to_temporaries(nir_shader *shader,
2493 nir_function_impl *entrypoint,
2494 bool outputs, bool inputs);
2495
2496 void nir_shader_gather_info(nir_shader *shader, nir_function_impl *entrypoint);
2497
2498 void nir_assign_var_locations(struct exec_list *var_list, unsigned *size,
2499 int (*type_size)(const struct glsl_type *));
2500
2501 /* Some helpers to do very simple linking */
2502 bool nir_remove_unused_varyings(nir_shader *producer, nir_shader *consumer);
2503 void nir_compact_varyings(nir_shader *producer, nir_shader *consumer,
2504 bool default_to_smooth_interp);
2505
2506 typedef enum {
2507 /* If set, this forces all non-flat fragment shader inputs to be
2508 * interpolated as if with the "sample" qualifier. This requires
2509 * nir_shader_compiler_options::use_interpolated_input_intrinsics.
2510 */
2511 nir_lower_io_force_sample_interpolation = (1 << 1),
2512 } nir_lower_io_options;
2513 bool nir_lower_io(nir_shader *shader,
2514 nir_variable_mode modes,
2515 int (*type_size)(const struct glsl_type *),
2516 nir_lower_io_options);
2517 nir_src *nir_get_io_offset_src(nir_intrinsic_instr *instr);
2518 nir_src *nir_get_io_vertex_index_src(nir_intrinsic_instr *instr);
2519
2520 bool nir_is_per_vertex_io(const nir_variable *var, gl_shader_stage stage);
2521
2522 void nir_lower_io_types(nir_shader *shader);
2523 bool nir_lower_regs_to_ssa_impl(nir_function_impl *impl);
2524 bool nir_lower_regs_to_ssa(nir_shader *shader);
2525 bool nir_lower_vars_to_ssa(nir_shader *shader);
2526
2527 bool nir_remove_dead_variables(nir_shader *shader, nir_variable_mode modes);
2528 bool nir_lower_constant_initializers(nir_shader *shader,
2529 nir_variable_mode modes);
2530
2531 bool nir_move_vec_src_uses_to_dest(nir_shader *shader);
2532 bool nir_lower_vec_to_movs(nir_shader *shader);
2533 void nir_lower_alpha_test(nir_shader *shader, enum compare_func func,
2534 bool alpha_to_one);
2535 bool nir_lower_alu_to_scalar(nir_shader *shader);
2536 bool nir_lower_load_const_to_scalar(nir_shader *shader);
2537 bool nir_lower_read_invocation_to_scalar(nir_shader *shader);
2538 bool nir_lower_phis_to_scalar(nir_shader *shader);
2539 void nir_lower_io_arrays_to_elements(nir_shader *producer, nir_shader *consumer);
2540 void nir_lower_io_arrays_to_elements_no_indirects(nir_shader *shader,
2541 bool outputs_only);
2542 void nir_lower_io_to_scalar(nir_shader *shader, nir_variable_mode mask);
2543 void nir_lower_io_to_scalar_early(nir_shader *shader, nir_variable_mode mask);
2544
2545 bool nir_lower_samplers(nir_shader *shader,
2546 const struct gl_shader_program *shader_program);
2547 bool nir_lower_samplers_as_deref(nir_shader *shader,
2548 const struct gl_shader_program *shader_program);
2549
2550 typedef struct nir_lower_subgroups_options {
2551 uint8_t subgroup_size;
2552 uint8_t ballot_bit_size;
2553 bool lower_to_scalar:1;
2554 bool lower_vote_trivial:1;
2555 bool lower_vote_eq_to_ballot:1;
2556 bool lower_subgroup_masks:1;
2557 bool lower_shuffle:1;
2558 bool lower_quad:1;
2559 } nir_lower_subgroups_options;
2560
2561 bool nir_lower_subgroups(nir_shader *shader,
2562 const nir_lower_subgroups_options *options);
2563
2564 bool nir_lower_system_values(nir_shader *shader);
2565
2566 typedef struct nir_lower_tex_options {
2567 /**
2568 * bitmask of (1 << GLSL_SAMPLER_DIM_x) to control for which
2569 * sampler types a texture projector is lowered.
2570 */
2571 unsigned lower_txp;
2572
2573 /**
2574 * If true, lower away nir_tex_src_offset for all texelfetch instructions.
2575 */
2576 bool lower_txf_offset;
2577
2578 /**
2579 * If true, lower away nir_tex_src_offset for all rect textures.
2580 */
2581 bool lower_rect_offset;
2582
2583 /**
2584 * If true, lower rect textures to 2D, using txs to fetch the
2585 * texture dimensions and dividing the texture coords by the
2586 * texture dims to normalize.
2587 */
2588 bool lower_rect;
2589
2590 /**
2591 * If true, convert yuv to rgb.
2592 */
2593 unsigned lower_y_uv_external;
2594 unsigned lower_y_u_v_external;
2595 unsigned lower_yx_xuxv_external;
2596 unsigned lower_xy_uxvx_external;
2597
2598 /**
2599 * To emulate certain texture wrap modes, this can be used
2600 * to saturate the specified tex coord to [0.0, 1.0]. The
2601 * bits are according to sampler #, ie. if, for example:
2602 *
2603 * (conf->saturate_s & (1 << n))
2604 *
2605 * is true, then the s coord for sampler n is saturated.
2606 *
2607 * Note that clamping must happen *after* projector lowering
2608 * so any projected texture sample instruction with a clamped
2609 * coordinate gets automatically lowered, regardless of the
2610 * 'lower_txp' setting.
2611 */
2612 unsigned saturate_s;
2613 unsigned saturate_t;
2614 unsigned saturate_r;
2615
2616 /* Bitmask of textures that need swizzling.
2617 *
2618 * If (swizzle_result & (1 << texture_index)), then the swizzle in
2619 * swizzles[texture_index] is applied to the result of the texturing
2620 * operation.
2621 */
2622 unsigned swizzle_result;
2623
2624 /* A swizzle for each texture. Values 0-3 represent x, y, z, or w swizzles
2625 * while 4 and 5 represent 0 and 1 respectively.
2626 */
2627 uint8_t swizzles[32][4];
2628
2629 /**
2630 * Bitmap of textures that need srgb to linear conversion. If
2631 * (lower_srgb & (1 << texture_index)) then the rgb (xyz) components
2632 * of the texture are lowered to linear.
2633 */
2634 unsigned lower_srgb;
2635
2636 /**
2637 * If true, lower nir_texop_txd on cube maps with nir_texop_txl.
2638 */
2639 bool lower_txd_cube_map;
2640
2641 /**
2642 * If true, lower nir_texop_txd on shadow samplers (except cube maps)
2643 * with nir_texop_txl. Notice that cube map shadow samplers are lowered
2644 * with lower_txd_cube_map.
2645 */
2646 bool lower_txd_shadow;
2647
2648 /**
2649 * If true, lower nir_texop_txd on all samplers to a nir_texop_txl.
2650 * Implies lower_txd_cube_map and lower_txd_shadow.
2651 */
2652 bool lower_txd;
2653 } nir_lower_tex_options;
2654
2655 bool nir_lower_tex(nir_shader *shader,
2656 const nir_lower_tex_options *options);
2657
2658 bool nir_lower_idiv(nir_shader *shader);
2659
2660 bool nir_lower_clip_vs(nir_shader *shader, unsigned ucp_enables);
2661 bool nir_lower_clip_fs(nir_shader *shader, unsigned ucp_enables);
2662 bool nir_lower_clip_cull_distance_arrays(nir_shader *nir);
2663
2664 void nir_lower_two_sided_color(nir_shader *shader);
2665
2666 bool nir_lower_clamp_color_outputs(nir_shader *shader);
2667
2668 void nir_lower_passthrough_edgeflags(nir_shader *shader);
2669 void nir_lower_tes_patch_vertices(nir_shader *tes, unsigned patch_vertices);
2670
2671 typedef struct nir_lower_wpos_ytransform_options {
2672 gl_state_index16 state_tokens[STATE_LENGTH];
2673 bool fs_coord_origin_upper_left :1;
2674 bool fs_coord_origin_lower_left :1;
2675 bool fs_coord_pixel_center_integer :1;
2676 bool fs_coord_pixel_center_half_integer :1;
2677 } nir_lower_wpos_ytransform_options;
2678
2679 bool nir_lower_wpos_ytransform(nir_shader *shader,
2680 const nir_lower_wpos_ytransform_options *options);
2681 bool nir_lower_wpos_center(nir_shader *shader, const bool for_sample_shading);
2682
2683 typedef struct nir_lower_drawpixels_options {
2684 gl_state_index16 texcoord_state_tokens[STATE_LENGTH];
2685 gl_state_index16 scale_state_tokens[STATE_LENGTH];
2686 gl_state_index16 bias_state_tokens[STATE_LENGTH];
2687 unsigned drawpix_sampler;
2688 unsigned pixelmap_sampler;
2689 bool pixel_maps :1;
2690 bool scale_and_bias :1;
2691 } nir_lower_drawpixels_options;
2692
2693 void nir_lower_drawpixels(nir_shader *shader,
2694 const nir_lower_drawpixels_options *options);
2695
2696 typedef struct nir_lower_bitmap_options {
2697 unsigned sampler;
2698 bool swizzle_xxxx;
2699 } nir_lower_bitmap_options;
2700
2701 void nir_lower_bitmap(nir_shader *shader, const nir_lower_bitmap_options *options);
2702
2703 bool nir_lower_atomics(nir_shader *shader,
2704 const struct gl_shader_program *shader_program,
2705 bool use_binding_as_idx);
2706 bool nir_lower_atomics_to_ssbo(nir_shader *shader, unsigned ssbo_offset);
2707 bool nir_lower_to_source_mods(nir_shader *shader);
2708
2709 bool nir_lower_gs_intrinsics(nir_shader *shader);
2710
2711 typedef enum {
2712 nir_lower_imul64 = (1 << 0),
2713 nir_lower_isign64 = (1 << 1),
2714 /** Lower all int64 modulus and division opcodes */
2715 nir_lower_divmod64 = (1 << 2),
2716 } nir_lower_int64_options;
2717
2718 bool nir_lower_int64(nir_shader *shader, nir_lower_int64_options options);
2719
2720 typedef enum {
2721 nir_lower_drcp = (1 << 0),
2722 nir_lower_dsqrt = (1 << 1),
2723 nir_lower_drsq = (1 << 2),
2724 nir_lower_dtrunc = (1 << 3),
2725 nir_lower_dfloor = (1 << 4),
2726 nir_lower_dceil = (1 << 5),
2727 nir_lower_dfract = (1 << 6),
2728 nir_lower_dround_even = (1 << 7),
2729 nir_lower_dmod = (1 << 8)
2730 } nir_lower_doubles_options;
2731
2732 bool nir_lower_doubles(nir_shader *shader, nir_lower_doubles_options options);
2733 bool nir_lower_64bit_pack(nir_shader *shader);
2734
2735 bool nir_normalize_cubemap_coords(nir_shader *shader);
2736
2737 void nir_live_ssa_defs_impl(nir_function_impl *impl);
2738
2739 void nir_loop_analyze_impl(nir_function_impl *impl,
2740 nir_variable_mode indirect_mask);
2741
2742 bool nir_ssa_defs_interfere(nir_ssa_def *a, nir_ssa_def *b);
2743
2744 bool nir_repair_ssa_impl(nir_function_impl *impl);
2745 bool nir_repair_ssa(nir_shader *shader);
2746
2747 void nir_convert_loop_to_lcssa(nir_loop *loop);
2748
2749 /* If phi_webs_only is true, only convert SSA values involved in phi nodes to
2750 * registers. If false, convert all values (even those not involved in a phi
2751 * node) to registers.
2752 */
2753 bool nir_convert_from_ssa(nir_shader *shader, bool phi_webs_only);
2754
2755 bool nir_lower_phis_to_regs_block(nir_block *block);
2756 bool nir_lower_ssa_defs_to_regs_block(nir_block *block);
2757
2758 bool nir_opt_algebraic(nir_shader *shader);
2759 bool nir_opt_algebraic_before_ffma(nir_shader *shader);
2760 bool nir_opt_algebraic_late(nir_shader *shader);
2761 bool nir_opt_constant_folding(nir_shader *shader);
2762
2763 bool nir_opt_global_to_local(nir_shader *shader);
2764
2765 bool nir_copy_prop(nir_shader *shader);
2766
2767 bool nir_opt_copy_prop_vars(nir_shader *shader);
2768
2769 bool nir_opt_cse(nir_shader *shader);
2770
2771 bool nir_opt_dce(nir_shader *shader);
2772
2773 bool nir_opt_dead_cf(nir_shader *shader);
2774
2775 bool nir_opt_gcm(nir_shader *shader, bool value_number);
2776
2777 bool nir_opt_if(nir_shader *shader);
2778
2779 bool nir_opt_intrinsics(nir_shader *shader);
2780
2781 bool nir_opt_loop_unroll(nir_shader *shader, nir_variable_mode indirect_mask);
2782
2783 bool nir_opt_move_comparisons(nir_shader *shader);
2784
2785 bool nir_opt_move_load_ubo(nir_shader *shader);
2786
2787 bool nir_opt_peephole_select(nir_shader *shader, unsigned limit);
2788
2789 bool nir_opt_remove_phis(nir_shader *shader);
2790
2791 bool nir_opt_shrink_load(nir_shader *shader);
2792
2793 bool nir_opt_trivial_continues(nir_shader *shader);
2794
2795 bool nir_opt_undef(nir_shader *shader);
2796
2797 bool nir_opt_conditional_discard(nir_shader *shader);
2798
2799 void nir_sweep(nir_shader *shader);
2800
2801 nir_intrinsic_op nir_intrinsic_from_system_value(gl_system_value val);
2802 gl_system_value nir_system_value_from_intrinsic(nir_intrinsic_op intrin);
2803
2804 #ifdef __cplusplus
2805 } /* extern "C" */
2806 #endif
2807
2808 #endif /* NIR_H */