nir: Transform expressions of b2f(a) and b2f(b) to !(a || b)
[mesa.git] / src / compiler / nir / nir.h
1 /*
2 * Copyright © 2014 Connor Abbott
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Connor Abbott (cwabbott0@gmail.com)
25 *
26 */
27
28 #ifndef NIR_H
29 #define NIR_H
30
31 #include "util/hash_table.h"
32 #include "compiler/glsl/list.h"
33 #include "GL/gl.h" /* GLenum */
34 #include "util/list.h"
35 #include "util/ralloc.h"
36 #include "util/set.h"
37 #include "util/bitset.h"
38 #include "util/macros.h"
39 #include "compiler/nir_types.h"
40 #include "compiler/shader_enums.h"
41 #include "compiler/shader_info.h"
42 #include <stdio.h>
43
44 #ifndef NDEBUG
45 #include "util/debug.h"
46 #endif /* NDEBUG */
47
48 #include "nir_opcodes.h"
49
50 #if defined(_WIN32) && !defined(snprintf)
51 #define snprintf _snprintf
52 #endif
53
54 #ifdef __cplusplus
55 extern "C" {
56 #endif
57
58 #define NIR_FALSE 0u
59 #define NIR_TRUE (~0u)
60 #define NIR_MAX_VEC_COMPONENTS 4
61 typedef uint8_t nir_component_mask_t;
62
63 /** Defines a cast function
64 *
65 * This macro defines a cast function from in_type to out_type where
66 * out_type is some structure type that contains a field of type out_type.
67 *
68 * Note that you have to be a bit careful as the generated cast function
69 * destroys constness.
70 */
71 #define NIR_DEFINE_CAST(name, in_type, out_type, field, \
72 type_field, type_value) \
73 static inline out_type * \
74 name(const in_type *parent) \
75 { \
76 assert(parent && parent->type_field == type_value); \
77 return exec_node_data(out_type, parent, field); \
78 }
79
80 struct nir_function;
81 struct nir_shader;
82 struct nir_instr;
83 struct nir_builder;
84
85
86 /**
87 * Description of built-in state associated with a uniform
88 *
89 * \sa nir_variable::state_slots
90 */
91 typedef struct {
92 gl_state_index16 tokens[STATE_LENGTH];
93 int swizzle;
94 } nir_state_slot;
95
96 typedef enum {
97 nir_var_shader_in = (1 << 0),
98 nir_var_shader_out = (1 << 1),
99 nir_var_global = (1 << 2),
100 nir_var_local = (1 << 3),
101 nir_var_uniform = (1 << 4),
102 nir_var_shader_storage = (1 << 5),
103 nir_var_system_value = (1 << 6),
104 nir_var_shared = (1 << 8),
105 nir_var_all = ~0,
106 } nir_variable_mode;
107
108 /**
109 * Rounding modes.
110 */
111 typedef enum {
112 nir_rounding_mode_undef = 0,
113 nir_rounding_mode_rtne = 1, /* round to nearest even */
114 nir_rounding_mode_ru = 2, /* round up */
115 nir_rounding_mode_rd = 3, /* round down */
116 nir_rounding_mode_rtz = 4, /* round towards zero */
117 } nir_rounding_mode;
118
119 typedef union {
120 float f32[NIR_MAX_VEC_COMPONENTS];
121 double f64[NIR_MAX_VEC_COMPONENTS];
122 int8_t i8[NIR_MAX_VEC_COMPONENTS];
123 uint8_t u8[NIR_MAX_VEC_COMPONENTS];
124 int16_t i16[NIR_MAX_VEC_COMPONENTS];
125 uint16_t u16[NIR_MAX_VEC_COMPONENTS];
126 int32_t i32[NIR_MAX_VEC_COMPONENTS];
127 uint32_t u32[NIR_MAX_VEC_COMPONENTS];
128 int64_t i64[NIR_MAX_VEC_COMPONENTS];
129 uint64_t u64[NIR_MAX_VEC_COMPONENTS];
130 } nir_const_value;
131
132 typedef struct nir_constant {
133 /**
134 * Value of the constant.
135 *
136 * The field used to back the values supplied by the constant is determined
137 * by the type associated with the \c nir_variable. Constants may be
138 * scalars, vectors, or matrices.
139 */
140 nir_const_value values[NIR_MAX_VEC_COMPONENTS];
141
142 /* we could get this from the var->type but makes clone *much* easier to
143 * not have to care about the type.
144 */
145 unsigned num_elements;
146
147 /* Array elements / Structure Fields */
148 struct nir_constant **elements;
149 } nir_constant;
150
151 /**
152 * \brief Layout qualifiers for gl_FragDepth.
153 *
154 * The AMD/ARB_conservative_depth extensions allow gl_FragDepth to be redeclared
155 * with a layout qualifier.
156 */
157 typedef enum {
158 nir_depth_layout_none, /**< No depth layout is specified. */
159 nir_depth_layout_any,
160 nir_depth_layout_greater,
161 nir_depth_layout_less,
162 nir_depth_layout_unchanged
163 } nir_depth_layout;
164
165 /**
166 * Either a uniform, global variable, shader input, or shader output. Based on
167 * ir_variable - it should be easy to translate between the two.
168 */
169
170 typedef struct nir_variable {
171 struct exec_node node;
172
173 /**
174 * Declared type of the variable
175 */
176 const struct glsl_type *type;
177
178 /**
179 * Declared name of the variable
180 */
181 char *name;
182
183 struct nir_variable_data {
184 /**
185 * Storage class of the variable.
186 *
187 * \sa nir_variable_mode
188 */
189 nir_variable_mode mode;
190
191 /**
192 * Is the variable read-only?
193 *
194 * This is set for variables declared as \c const, shader inputs,
195 * and uniforms.
196 */
197 unsigned read_only:1;
198 unsigned centroid:1;
199 unsigned sample:1;
200 unsigned patch:1;
201 unsigned invariant:1;
202
203 /**
204 * When separate shader programs are enabled, only input/outputs between
205 * the stages of a multi-stage separate program can be safely removed
206 * from the shader interface. Other input/outputs must remains active.
207 *
208 * This is also used to make sure xfb varyings that are unused by the
209 * fragment shader are not removed.
210 */
211 unsigned always_active_io:1;
212
213 /**
214 * Interpolation mode for shader inputs / outputs
215 *
216 * \sa glsl_interp_mode
217 */
218 unsigned interpolation:2;
219
220 /**
221 * \name ARB_fragment_coord_conventions
222 * @{
223 */
224 unsigned origin_upper_left:1;
225 unsigned pixel_center_integer:1;
226 /*@}*/
227
228 /**
229 * If non-zero, then this variable may be packed along with other variables
230 * into a single varying slot, so this offset should be applied when
231 * accessing components. For example, an offset of 1 means that the x
232 * component of this variable is actually stored in component y of the
233 * location specified by \c location.
234 */
235 unsigned location_frac:2;
236
237 /**
238 * If true, this variable represents an array of scalars that should
239 * be tightly packed. In other words, consecutive array elements
240 * should be stored one component apart, rather than one slot apart.
241 */
242 unsigned compact:1;
243
244 /**
245 * Whether this is a fragment shader output implicitly initialized with
246 * the previous contents of the specified render target at the
247 * framebuffer location corresponding to this shader invocation.
248 */
249 unsigned fb_fetch_output:1;
250
251 /**
252 * Non-zero if this variable is considered bindless as defined by
253 * ARB_bindless_texture.
254 */
255 unsigned bindless:1;
256
257 /**
258 * Was an explicit binding set in the shader?
259 */
260 unsigned explicit_binding:1;
261
262 /**
263 * Was a transfer feedback buffer set in the shader?
264 */
265 unsigned explicit_xfb_buffer:1;
266
267 /**
268 * Was a transfer feedback stride set in the shader?
269 */
270 unsigned explicit_xfb_stride:1;
271
272 /**
273 * Was an explicit offset set in the shader?
274 */
275 unsigned explicit_offset:1;
276
277 /**
278 * \brief Layout qualifier for gl_FragDepth.
279 *
280 * This is not equal to \c ir_depth_layout_none if and only if this
281 * variable is \c gl_FragDepth and a layout qualifier is specified.
282 */
283 nir_depth_layout depth_layout;
284
285 /**
286 * Storage location of the base of this variable
287 *
288 * The precise meaning of this field depends on the nature of the variable.
289 *
290 * - Vertex shader input: one of the values from \c gl_vert_attrib.
291 * - Vertex shader output: one of the values from \c gl_varying_slot.
292 * - Geometry shader input: one of the values from \c gl_varying_slot.
293 * - Geometry shader output: one of the values from \c gl_varying_slot.
294 * - Fragment shader input: one of the values from \c gl_varying_slot.
295 * - Fragment shader output: one of the values from \c gl_frag_result.
296 * - Uniforms: Per-stage uniform slot number for default uniform block.
297 * - Uniforms: Index within the uniform block definition for UBO members.
298 * - Non-UBO Uniforms: uniform slot number.
299 * - Other: This field is not currently used.
300 *
301 * If the variable is a uniform, shader input, or shader output, and the
302 * slot has not been assigned, the value will be -1.
303 */
304 int location;
305
306 /**
307 * The actual location of the variable in the IR. Only valid for inputs
308 * and outputs.
309 */
310 unsigned int driver_location;
311
312 /**
313 * Vertex stream output identifier.
314 *
315 * For packed outputs, bit 31 is set and bits [2*i+1,2*i] indicate the
316 * stream of the i-th component.
317 */
318 unsigned stream;
319
320 /**
321 * output index for dual source blending.
322 */
323 int index;
324
325 /**
326 * Descriptor set binding for sampler or UBO.
327 */
328 int descriptor_set;
329
330 /**
331 * Initial binding point for a sampler or UBO.
332 *
333 * For array types, this represents the binding point for the first element.
334 */
335 int binding;
336
337 /**
338 * Location an atomic counter or transform feedback is stored at.
339 */
340 unsigned offset;
341
342 /**
343 * Transform feedback buffer.
344 */
345 unsigned xfb_buffer;
346
347 /**
348 * Transform feedback stride.
349 */
350 unsigned xfb_stride;
351
352 /**
353 * ARB_shader_image_load_store qualifiers.
354 */
355 struct {
356 bool read_only; /**< "readonly" qualifier. */
357 bool write_only; /**< "writeonly" qualifier. */
358 bool coherent;
359 bool _volatile;
360 bool restrict_flag;
361
362 /** Image internal format if specified explicitly, otherwise GL_NONE. */
363 GLenum format;
364 } image;
365 } data;
366
367 /**
368 * Built-in state that backs this uniform
369 *
370 * Once set at variable creation, \c state_slots must remain invariant.
371 * This is because, ideally, this array would be shared by all clones of
372 * this variable in the IR tree. In other words, we'd really like for it
373 * to be a fly-weight.
374 *
375 * If the variable is not a uniform, \c num_state_slots will be zero and
376 * \c state_slots will be \c NULL.
377 */
378 /*@{*/
379 unsigned num_state_slots; /**< Number of state slots used */
380 nir_state_slot *state_slots; /**< State descriptors. */
381 /*@}*/
382
383 /**
384 * Constant expression assigned in the initializer of the variable
385 *
386 * This field should only be used temporarily by creators of NIR shaders
387 * and then lower_constant_initializers can be used to get rid of them.
388 * Most of the rest of NIR ignores this field or asserts that it's NULL.
389 */
390 nir_constant *constant_initializer;
391
392 /**
393 * For variables that are in an interface block or are an instance of an
394 * interface block, this is the \c GLSL_TYPE_INTERFACE type for that block.
395 *
396 * \sa ir_variable::location
397 */
398 const struct glsl_type *interface_type;
399
400 /**
401 * Description of per-member data for per-member struct variables
402 *
403 * This is used for variables which are actually an amalgamation of
404 * multiple entities such as a struct of built-in values or a struct of
405 * inputs each with their own layout specifier. This is only allowed on
406 * variables with a struct or array of array of struct type.
407 */
408 unsigned num_members;
409 struct nir_variable_data *members;
410 } nir_variable;
411
412 #define nir_foreach_variable(var, var_list) \
413 foreach_list_typed(nir_variable, var, node, var_list)
414
415 #define nir_foreach_variable_safe(var, var_list) \
416 foreach_list_typed_safe(nir_variable, var, node, var_list)
417
418 static inline bool
419 nir_variable_is_global(const nir_variable *var)
420 {
421 return var->data.mode != nir_var_local;
422 }
423
424 typedef struct nir_register {
425 struct exec_node node;
426
427 unsigned num_components; /** < number of vector components */
428 unsigned num_array_elems; /** < size of array (0 for no array) */
429
430 /* The bit-size of each channel; must be one of 8, 16, 32, or 64 */
431 uint8_t bit_size;
432
433 /** generic register index. */
434 unsigned index;
435
436 /** only for debug purposes, can be NULL */
437 const char *name;
438
439 /** whether this register is local (per-function) or global (per-shader) */
440 bool is_global;
441
442 /**
443 * If this flag is set to true, then accessing channels >= num_components
444 * is well-defined, and simply spills over to the next array element. This
445 * is useful for backends that can do per-component accessing, in
446 * particular scalar backends. By setting this flag and making
447 * num_components equal to 1, structures can be packed tightly into
448 * registers and then registers can be accessed per-component to get to
449 * each structure member, even if it crosses vec4 boundaries.
450 */
451 bool is_packed;
452
453 /** set of nir_srcs where this register is used (read from) */
454 struct list_head uses;
455
456 /** set of nir_dests where this register is defined (written to) */
457 struct list_head defs;
458
459 /** set of nir_ifs where this register is used as a condition */
460 struct list_head if_uses;
461 } nir_register;
462
463 #define nir_foreach_register(reg, reg_list) \
464 foreach_list_typed(nir_register, reg, node, reg_list)
465 #define nir_foreach_register_safe(reg, reg_list) \
466 foreach_list_typed_safe(nir_register, reg, node, reg_list)
467
468 typedef enum {
469 nir_instr_type_alu,
470 nir_instr_type_deref,
471 nir_instr_type_call,
472 nir_instr_type_tex,
473 nir_instr_type_intrinsic,
474 nir_instr_type_load_const,
475 nir_instr_type_jump,
476 nir_instr_type_ssa_undef,
477 nir_instr_type_phi,
478 nir_instr_type_parallel_copy,
479 } nir_instr_type;
480
481 typedef struct nir_instr {
482 struct exec_node node;
483 nir_instr_type type;
484 struct nir_block *block;
485
486 /** generic instruction index. */
487 unsigned index;
488
489 /* A temporary for optimization and analysis passes to use for storing
490 * flags. For instance, DCE uses this to store the "dead/live" info.
491 */
492 uint8_t pass_flags;
493 } nir_instr;
494
495 static inline nir_instr *
496 nir_instr_next(nir_instr *instr)
497 {
498 struct exec_node *next = exec_node_get_next(&instr->node);
499 if (exec_node_is_tail_sentinel(next))
500 return NULL;
501 else
502 return exec_node_data(nir_instr, next, node);
503 }
504
505 static inline nir_instr *
506 nir_instr_prev(nir_instr *instr)
507 {
508 struct exec_node *prev = exec_node_get_prev(&instr->node);
509 if (exec_node_is_head_sentinel(prev))
510 return NULL;
511 else
512 return exec_node_data(nir_instr, prev, node);
513 }
514
515 static inline bool
516 nir_instr_is_first(const nir_instr *instr)
517 {
518 return exec_node_is_head_sentinel(exec_node_get_prev_const(&instr->node));
519 }
520
521 static inline bool
522 nir_instr_is_last(const nir_instr *instr)
523 {
524 return exec_node_is_tail_sentinel(exec_node_get_next_const(&instr->node));
525 }
526
527 typedef struct nir_ssa_def {
528 /** for debugging only, can be NULL */
529 const char* name;
530
531 /** generic SSA definition index. */
532 unsigned index;
533
534 /** Index into the live_in and live_out bitfields */
535 unsigned live_index;
536
537 /** Instruction which produces this SSA value. */
538 nir_instr *parent_instr;
539
540 /** set of nir_instrs where this register is used (read from) */
541 struct list_head uses;
542
543 /** set of nir_ifs where this register is used as a condition */
544 struct list_head if_uses;
545
546 uint8_t num_components;
547
548 /* The bit-size of each channel; must be one of 8, 16, 32, or 64 */
549 uint8_t bit_size;
550 } nir_ssa_def;
551
552 struct nir_src;
553
554 typedef struct {
555 nir_register *reg;
556 struct nir_src *indirect; /** < NULL for no indirect offset */
557 unsigned base_offset;
558
559 /* TODO use-def chain goes here */
560 } nir_reg_src;
561
562 typedef struct {
563 nir_instr *parent_instr;
564 struct list_head def_link;
565
566 nir_register *reg;
567 struct nir_src *indirect; /** < NULL for no indirect offset */
568 unsigned base_offset;
569
570 /* TODO def-use chain goes here */
571 } nir_reg_dest;
572
573 struct nir_if;
574
575 typedef struct nir_src {
576 union {
577 /** Instruction that consumes this value as a source. */
578 nir_instr *parent_instr;
579 struct nir_if *parent_if;
580 };
581
582 struct list_head use_link;
583
584 union {
585 nir_reg_src reg;
586 nir_ssa_def *ssa;
587 };
588
589 bool is_ssa;
590 } nir_src;
591
592 static inline nir_src
593 nir_src_init(void)
594 {
595 nir_src src = { { NULL } };
596 return src;
597 }
598
599 #define NIR_SRC_INIT nir_src_init()
600
601 #define nir_foreach_use(src, reg_or_ssa_def) \
602 list_for_each_entry(nir_src, src, &(reg_or_ssa_def)->uses, use_link)
603
604 #define nir_foreach_use_safe(src, reg_or_ssa_def) \
605 list_for_each_entry_safe(nir_src, src, &(reg_or_ssa_def)->uses, use_link)
606
607 #define nir_foreach_if_use(src, reg_or_ssa_def) \
608 list_for_each_entry(nir_src, src, &(reg_or_ssa_def)->if_uses, use_link)
609
610 #define nir_foreach_if_use_safe(src, reg_or_ssa_def) \
611 list_for_each_entry_safe(nir_src, src, &(reg_or_ssa_def)->if_uses, use_link)
612
613 typedef struct {
614 union {
615 nir_reg_dest reg;
616 nir_ssa_def ssa;
617 };
618
619 bool is_ssa;
620 } nir_dest;
621
622 static inline nir_dest
623 nir_dest_init(void)
624 {
625 nir_dest dest = { { { NULL } } };
626 return dest;
627 }
628
629 #define NIR_DEST_INIT nir_dest_init()
630
631 #define nir_foreach_def(dest, reg) \
632 list_for_each_entry(nir_dest, dest, &(reg)->defs, reg.def_link)
633
634 #define nir_foreach_def_safe(dest, reg) \
635 list_for_each_entry_safe(nir_dest, dest, &(reg)->defs, reg.def_link)
636
637 static inline nir_src
638 nir_src_for_ssa(nir_ssa_def *def)
639 {
640 nir_src src = NIR_SRC_INIT;
641
642 src.is_ssa = true;
643 src.ssa = def;
644
645 return src;
646 }
647
648 static inline nir_src
649 nir_src_for_reg(nir_register *reg)
650 {
651 nir_src src = NIR_SRC_INIT;
652
653 src.is_ssa = false;
654 src.reg.reg = reg;
655 src.reg.indirect = NULL;
656 src.reg.base_offset = 0;
657
658 return src;
659 }
660
661 static inline nir_dest
662 nir_dest_for_reg(nir_register *reg)
663 {
664 nir_dest dest = NIR_DEST_INIT;
665
666 dest.reg.reg = reg;
667
668 return dest;
669 }
670
671 static inline unsigned
672 nir_src_bit_size(nir_src src)
673 {
674 return src.is_ssa ? src.ssa->bit_size : src.reg.reg->bit_size;
675 }
676
677 static inline unsigned
678 nir_src_num_components(nir_src src)
679 {
680 return src.is_ssa ? src.ssa->num_components : src.reg.reg->num_components;
681 }
682
683 static inline unsigned
684 nir_dest_bit_size(nir_dest dest)
685 {
686 return dest.is_ssa ? dest.ssa.bit_size : dest.reg.reg->bit_size;
687 }
688
689 static inline unsigned
690 nir_dest_num_components(nir_dest dest)
691 {
692 return dest.is_ssa ? dest.ssa.num_components : dest.reg.reg->num_components;
693 }
694
695 void nir_src_copy(nir_src *dest, const nir_src *src, void *instr_or_if);
696 void nir_dest_copy(nir_dest *dest, const nir_dest *src, nir_instr *instr);
697
698 typedef struct {
699 nir_src src;
700
701 /**
702 * \name input modifiers
703 */
704 /*@{*/
705 /**
706 * For inputs interpreted as floating point, flips the sign bit. For
707 * inputs interpreted as integers, performs the two's complement negation.
708 */
709 bool negate;
710
711 /**
712 * Clears the sign bit for floating point values, and computes the integer
713 * absolute value for integers. Note that the negate modifier acts after
714 * the absolute value modifier, therefore if both are set then all inputs
715 * will become negative.
716 */
717 bool abs;
718 /*@}*/
719
720 /**
721 * For each input component, says which component of the register it is
722 * chosen from. Note that which elements of the swizzle are used and which
723 * are ignored are based on the write mask for most opcodes - for example,
724 * a statement like "foo.xzw = bar.zyx" would have a writemask of 1101b and
725 * a swizzle of {2, x, 1, 0} where x means "don't care."
726 */
727 uint8_t swizzle[NIR_MAX_VEC_COMPONENTS];
728 } nir_alu_src;
729
730 typedef struct {
731 nir_dest dest;
732
733 /**
734 * \name saturate output modifier
735 *
736 * Only valid for opcodes that output floating-point numbers. Clamps the
737 * output to between 0.0 and 1.0 inclusive.
738 */
739
740 bool saturate;
741
742 unsigned write_mask : NIR_MAX_VEC_COMPONENTS; /* ignored if dest.is_ssa is true */
743 } nir_alu_dest;
744
745 typedef enum {
746 nir_type_invalid = 0, /* Not a valid type */
747 nir_type_float,
748 nir_type_int,
749 nir_type_uint,
750 nir_type_bool,
751 nir_type_bool32 = 32 | nir_type_bool,
752 nir_type_int8 = 8 | nir_type_int,
753 nir_type_int16 = 16 | nir_type_int,
754 nir_type_int32 = 32 | nir_type_int,
755 nir_type_int64 = 64 | nir_type_int,
756 nir_type_uint8 = 8 | nir_type_uint,
757 nir_type_uint16 = 16 | nir_type_uint,
758 nir_type_uint32 = 32 | nir_type_uint,
759 nir_type_uint64 = 64 | nir_type_uint,
760 nir_type_float16 = 16 | nir_type_float,
761 nir_type_float32 = 32 | nir_type_float,
762 nir_type_float64 = 64 | nir_type_float,
763 } nir_alu_type;
764
765 #define NIR_ALU_TYPE_SIZE_MASK 0xfffffff8
766 #define NIR_ALU_TYPE_BASE_TYPE_MASK 0x00000007
767
768 static inline unsigned
769 nir_alu_type_get_type_size(nir_alu_type type)
770 {
771 return type & NIR_ALU_TYPE_SIZE_MASK;
772 }
773
774 static inline unsigned
775 nir_alu_type_get_base_type(nir_alu_type type)
776 {
777 return type & NIR_ALU_TYPE_BASE_TYPE_MASK;
778 }
779
780 static inline nir_alu_type
781 nir_get_nir_type_for_glsl_base_type(enum glsl_base_type base_type)
782 {
783 switch (base_type) {
784 case GLSL_TYPE_BOOL:
785 return nir_type_bool32;
786 break;
787 case GLSL_TYPE_UINT:
788 return nir_type_uint32;
789 break;
790 case GLSL_TYPE_INT:
791 return nir_type_int32;
792 break;
793 case GLSL_TYPE_UINT16:
794 return nir_type_uint16;
795 break;
796 case GLSL_TYPE_INT16:
797 return nir_type_int16;
798 break;
799 case GLSL_TYPE_UINT8:
800 return nir_type_uint8;
801 case GLSL_TYPE_INT8:
802 return nir_type_int8;
803 case GLSL_TYPE_UINT64:
804 return nir_type_uint64;
805 break;
806 case GLSL_TYPE_INT64:
807 return nir_type_int64;
808 break;
809 case GLSL_TYPE_FLOAT:
810 return nir_type_float32;
811 break;
812 case GLSL_TYPE_FLOAT16:
813 return nir_type_float16;
814 break;
815 case GLSL_TYPE_DOUBLE:
816 return nir_type_float64;
817 break;
818 default:
819 unreachable("unknown type");
820 }
821 }
822
823 static inline nir_alu_type
824 nir_get_nir_type_for_glsl_type(const struct glsl_type *type)
825 {
826 return nir_get_nir_type_for_glsl_base_type(glsl_get_base_type(type));
827 }
828
829 nir_op nir_type_conversion_op(nir_alu_type src, nir_alu_type dst,
830 nir_rounding_mode rnd);
831
832 typedef enum {
833 NIR_OP_IS_COMMUTATIVE = (1 << 0),
834 NIR_OP_IS_ASSOCIATIVE = (1 << 1),
835 } nir_op_algebraic_property;
836
837 typedef struct {
838 const char *name;
839
840 unsigned num_inputs;
841
842 /**
843 * The number of components in the output
844 *
845 * If non-zero, this is the size of the output and input sizes are
846 * explicitly given; swizzle and writemask are still in effect, but if
847 * the output component is masked out, then the input component may
848 * still be in use.
849 *
850 * If zero, the opcode acts in the standard, per-component manner; the
851 * operation is performed on each component (except the ones that are
852 * masked out) with the input being taken from the input swizzle for
853 * that component.
854 *
855 * The size of some of the inputs may be given (i.e. non-zero) even
856 * though output_size is zero; in that case, the inputs with a zero
857 * size act per-component, while the inputs with non-zero size don't.
858 */
859 unsigned output_size;
860
861 /**
862 * The type of vector that the instruction outputs. Note that the
863 * staurate modifier is only allowed on outputs with the float type.
864 */
865
866 nir_alu_type output_type;
867
868 /**
869 * The number of components in each input
870 */
871 unsigned input_sizes[NIR_MAX_VEC_COMPONENTS];
872
873 /**
874 * The type of vector that each input takes. Note that negate and
875 * absolute value are only allowed on inputs with int or float type and
876 * behave differently on the two.
877 */
878 nir_alu_type input_types[NIR_MAX_VEC_COMPONENTS];
879
880 nir_op_algebraic_property algebraic_properties;
881 } nir_op_info;
882
883 extern const nir_op_info nir_op_infos[nir_num_opcodes];
884
885 typedef struct nir_alu_instr {
886 nir_instr instr;
887 nir_op op;
888
889 /** Indicates that this ALU instruction generates an exact value
890 *
891 * This is kind of a mixture of GLSL "precise" and "invariant" and not
892 * really equivalent to either. This indicates that the value generated by
893 * this operation is high-precision and any code transformations that touch
894 * it must ensure that the resulting value is bit-for-bit identical to the
895 * original.
896 */
897 bool exact;
898
899 nir_alu_dest dest;
900 nir_alu_src src[];
901 } nir_alu_instr;
902
903 void nir_alu_src_copy(nir_alu_src *dest, const nir_alu_src *src,
904 nir_alu_instr *instr);
905 void nir_alu_dest_copy(nir_alu_dest *dest, const nir_alu_dest *src,
906 nir_alu_instr *instr);
907
908 /* is this source channel used? */
909 static inline bool
910 nir_alu_instr_channel_used(const nir_alu_instr *instr, unsigned src,
911 unsigned channel)
912 {
913 if (nir_op_infos[instr->op].input_sizes[src] > 0)
914 return channel < nir_op_infos[instr->op].input_sizes[src];
915
916 return (instr->dest.write_mask >> channel) & 1;
917 }
918
919 /*
920 * For instructions whose destinations are SSA, get the number of channels
921 * used for a source
922 */
923 static inline unsigned
924 nir_ssa_alu_instr_src_components(const nir_alu_instr *instr, unsigned src)
925 {
926 assert(instr->dest.dest.is_ssa);
927
928 if (nir_op_infos[instr->op].input_sizes[src] > 0)
929 return nir_op_infos[instr->op].input_sizes[src];
930
931 return instr->dest.dest.ssa.num_components;
932 }
933
934 bool nir_alu_srcs_equal(const nir_alu_instr *alu1, const nir_alu_instr *alu2,
935 unsigned src1, unsigned src2);
936
937 typedef enum {
938 nir_deref_type_var,
939 nir_deref_type_array,
940 nir_deref_type_array_wildcard,
941 nir_deref_type_struct,
942 nir_deref_type_cast,
943 } nir_deref_type;
944
945 typedef struct {
946 nir_instr instr;
947
948 /** The type of this deref instruction */
949 nir_deref_type deref_type;
950
951 /** The mode of the underlying variable */
952 nir_variable_mode mode;
953
954 /** The dereferenced type of the resulting pointer value */
955 const struct glsl_type *type;
956
957 union {
958 /** Variable being dereferenced if deref_type is a deref_var */
959 nir_variable *var;
960
961 /** Parent deref if deref_type is not deref_var */
962 nir_src parent;
963 };
964
965 /** Additional deref parameters */
966 union {
967 struct {
968 nir_src index;
969 } arr;
970
971 struct {
972 unsigned index;
973 } strct;
974 };
975
976 /** Destination to store the resulting "pointer" */
977 nir_dest dest;
978 } nir_deref_instr;
979
980 NIR_DEFINE_CAST(nir_instr_as_deref, nir_instr, nir_deref_instr, instr,
981 type, nir_instr_type_deref)
982
983 static inline nir_deref_instr *
984 nir_src_as_deref(nir_src src)
985 {
986 if (!src.is_ssa)
987 return NULL;
988
989 if (src.ssa->parent_instr->type != nir_instr_type_deref)
990 return NULL;
991
992 return nir_instr_as_deref(src.ssa->parent_instr);
993 }
994
995 static inline nir_deref_instr *
996 nir_deref_instr_parent(const nir_deref_instr *instr)
997 {
998 if (instr->deref_type == nir_deref_type_var)
999 return NULL;
1000 else
1001 return nir_src_as_deref(instr->parent);
1002 }
1003
1004 static inline nir_variable *
1005 nir_deref_instr_get_variable(const nir_deref_instr *instr)
1006 {
1007 while (instr->deref_type != nir_deref_type_var) {
1008 if (instr->deref_type == nir_deref_type_cast)
1009 return NULL;
1010
1011 instr = nir_deref_instr_parent(instr);
1012 }
1013
1014 return instr->var;
1015 }
1016
1017 bool nir_deref_instr_has_indirect(nir_deref_instr *instr);
1018
1019 bool nir_deref_instr_remove_if_unused(nir_deref_instr *instr);
1020
1021 typedef struct {
1022 nir_instr instr;
1023
1024 struct nir_function *callee;
1025
1026 unsigned num_params;
1027 nir_src params[];
1028 } nir_call_instr;
1029
1030 #include "nir_intrinsics.h"
1031
1032 #define NIR_INTRINSIC_MAX_CONST_INDEX 3
1033
1034 /** Represents an intrinsic
1035 *
1036 * An intrinsic is an instruction type for handling things that are
1037 * more-or-less regular operations but don't just consume and produce SSA
1038 * values like ALU operations do. Intrinsics are not for things that have
1039 * special semantic meaning such as phi nodes and parallel copies.
1040 * Examples of intrinsics include variable load/store operations, system
1041 * value loads, and the like. Even though texturing more-or-less falls
1042 * under this category, texturing is its own instruction type because
1043 * trying to represent texturing with intrinsics would lead to a
1044 * combinatorial explosion of intrinsic opcodes.
1045 *
1046 * By having a single instruction type for handling a lot of different
1047 * cases, optimization passes can look for intrinsics and, for the most
1048 * part, completely ignore them. Each intrinsic type also has a few
1049 * possible flags that govern whether or not they can be reordered or
1050 * eliminated. That way passes like dead code elimination can still work
1051 * on intrisics without understanding the meaning of each.
1052 *
1053 * Each intrinsic has some number of constant indices, some number of
1054 * variables, and some number of sources. What these sources, variables,
1055 * and indices mean depends on the intrinsic and is documented with the
1056 * intrinsic declaration in nir_intrinsics.h. Intrinsics and texture
1057 * instructions are the only types of instruction that can operate on
1058 * variables.
1059 */
1060 typedef struct {
1061 nir_instr instr;
1062
1063 nir_intrinsic_op intrinsic;
1064
1065 nir_dest dest;
1066
1067 /** number of components if this is a vectorized intrinsic
1068 *
1069 * Similarly to ALU operations, some intrinsics are vectorized.
1070 * An intrinsic is vectorized if nir_intrinsic_infos.dest_components == 0.
1071 * For vectorized intrinsics, the num_components field specifies the
1072 * number of destination components and the number of source components
1073 * for all sources with nir_intrinsic_infos.src_components[i] == 0.
1074 */
1075 uint8_t num_components;
1076
1077 int const_index[NIR_INTRINSIC_MAX_CONST_INDEX];
1078
1079 nir_src src[];
1080 } nir_intrinsic_instr;
1081
1082 static inline nir_variable *
1083 nir_intrinsic_get_var(nir_intrinsic_instr *intrin, unsigned i)
1084 {
1085 return nir_deref_instr_get_variable(nir_src_as_deref(intrin->src[i]));
1086 }
1087
1088 /**
1089 * \name NIR intrinsics semantic flags
1090 *
1091 * information about what the compiler can do with the intrinsics.
1092 *
1093 * \sa nir_intrinsic_info::flags
1094 */
1095 typedef enum {
1096 /**
1097 * whether the intrinsic can be safely eliminated if none of its output
1098 * value is not being used.
1099 */
1100 NIR_INTRINSIC_CAN_ELIMINATE = (1 << 0),
1101
1102 /**
1103 * Whether the intrinsic can be reordered with respect to any other
1104 * intrinsic, i.e. whether the only reordering dependencies of the
1105 * intrinsic are due to the register reads/writes.
1106 */
1107 NIR_INTRINSIC_CAN_REORDER = (1 << 1),
1108 } nir_intrinsic_semantic_flag;
1109
1110 /**
1111 * \name NIR intrinsics const-index flag
1112 *
1113 * Indicates the usage of a const_index slot.
1114 *
1115 * \sa nir_intrinsic_info::index_map
1116 */
1117 typedef enum {
1118 /**
1119 * Generally instructions that take a offset src argument, can encode
1120 * a constant 'base' value which is added to the offset.
1121 */
1122 NIR_INTRINSIC_BASE = 1,
1123
1124 /**
1125 * For store instructions, a writemask for the store.
1126 */
1127 NIR_INTRINSIC_WRMASK = 2,
1128
1129 /**
1130 * The stream-id for GS emit_vertex/end_primitive intrinsics.
1131 */
1132 NIR_INTRINSIC_STREAM_ID = 3,
1133
1134 /**
1135 * The clip-plane id for load_user_clip_plane intrinsic.
1136 */
1137 NIR_INTRINSIC_UCP_ID = 4,
1138
1139 /**
1140 * The amount of data, starting from BASE, that this instruction may
1141 * access. This is used to provide bounds if the offset is not constant.
1142 */
1143 NIR_INTRINSIC_RANGE = 5,
1144
1145 /**
1146 * The Vulkan descriptor set for vulkan_resource_index intrinsic.
1147 */
1148 NIR_INTRINSIC_DESC_SET = 6,
1149
1150 /**
1151 * The Vulkan descriptor set binding for vulkan_resource_index intrinsic.
1152 */
1153 NIR_INTRINSIC_BINDING = 7,
1154
1155 /**
1156 * Component offset.
1157 */
1158 NIR_INTRINSIC_COMPONENT = 8,
1159
1160 /**
1161 * Interpolation mode (only meaningful for FS inputs).
1162 */
1163 NIR_INTRINSIC_INTERP_MODE = 9,
1164
1165 /**
1166 * A binary nir_op to use when performing a reduction or scan operation
1167 */
1168 NIR_INTRINSIC_REDUCTION_OP = 10,
1169
1170 /**
1171 * Cluster size for reduction operations
1172 */
1173 NIR_INTRINSIC_CLUSTER_SIZE = 11,
1174
1175 /**
1176 * Parameter index for a load_param intrinsic
1177 */
1178 NIR_INTRINSIC_PARAM_IDX = 12,
1179
1180 NIR_INTRINSIC_NUM_INDEX_FLAGS,
1181
1182 } nir_intrinsic_index_flag;
1183
1184 #define NIR_INTRINSIC_MAX_INPUTS 5
1185
1186 typedef struct {
1187 const char *name;
1188
1189 unsigned num_srcs; /** < number of register/SSA inputs */
1190
1191 /** number of components of each input register
1192 *
1193 * If this value is 0, the number of components is given by the
1194 * num_components field of nir_intrinsic_instr.
1195 */
1196 unsigned src_components[NIR_INTRINSIC_MAX_INPUTS];
1197
1198 bool has_dest;
1199
1200 /** number of components of the output register
1201 *
1202 * If this value is 0, the number of components is given by the
1203 * num_components field of nir_intrinsic_instr.
1204 */
1205 unsigned dest_components;
1206
1207 /** the number of constant indices used by the intrinsic */
1208 unsigned num_indices;
1209
1210 /** indicates the usage of intr->const_index[n] */
1211 unsigned index_map[NIR_INTRINSIC_NUM_INDEX_FLAGS];
1212
1213 /** semantic flags for calls to this intrinsic */
1214 nir_intrinsic_semantic_flag flags;
1215 } nir_intrinsic_info;
1216
1217 extern const nir_intrinsic_info nir_intrinsic_infos[nir_num_intrinsics];
1218
1219 static inline unsigned
1220 nir_intrinsic_src_components(nir_intrinsic_instr *intr, unsigned srcn)
1221 {
1222 const nir_intrinsic_info *info = &nir_intrinsic_infos[intr->intrinsic];
1223 assert(srcn < info->num_srcs);
1224 if (info->src_components[srcn])
1225 return info->src_components[srcn];
1226 else
1227 return intr->num_components;
1228 }
1229
1230 static inline unsigned
1231 nir_intrinsic_dest_components(nir_intrinsic_instr *intr)
1232 {
1233 const nir_intrinsic_info *info = &nir_intrinsic_infos[intr->intrinsic];
1234 if (!info->has_dest)
1235 return 0;
1236 else if (info->dest_components)
1237 return info->dest_components;
1238 else
1239 return intr->num_components;
1240 }
1241
1242 #define INTRINSIC_IDX_ACCESSORS(name, flag, type) \
1243 static inline type \
1244 nir_intrinsic_##name(const nir_intrinsic_instr *instr) \
1245 { \
1246 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic]; \
1247 assert(info->index_map[NIR_INTRINSIC_##flag] > 0); \
1248 return instr->const_index[info->index_map[NIR_INTRINSIC_##flag] - 1]; \
1249 } \
1250 static inline void \
1251 nir_intrinsic_set_##name(nir_intrinsic_instr *instr, type val) \
1252 { \
1253 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic]; \
1254 assert(info->index_map[NIR_INTRINSIC_##flag] > 0); \
1255 instr->const_index[info->index_map[NIR_INTRINSIC_##flag] - 1] = val; \
1256 }
1257
1258 INTRINSIC_IDX_ACCESSORS(write_mask, WRMASK, unsigned)
1259 INTRINSIC_IDX_ACCESSORS(base, BASE, int)
1260 INTRINSIC_IDX_ACCESSORS(stream_id, STREAM_ID, unsigned)
1261 INTRINSIC_IDX_ACCESSORS(ucp_id, UCP_ID, unsigned)
1262 INTRINSIC_IDX_ACCESSORS(range, RANGE, unsigned)
1263 INTRINSIC_IDX_ACCESSORS(desc_set, DESC_SET, unsigned)
1264 INTRINSIC_IDX_ACCESSORS(binding, BINDING, unsigned)
1265 INTRINSIC_IDX_ACCESSORS(component, COMPONENT, unsigned)
1266 INTRINSIC_IDX_ACCESSORS(interp_mode, INTERP_MODE, unsigned)
1267 INTRINSIC_IDX_ACCESSORS(reduction_op, REDUCTION_OP, unsigned)
1268 INTRINSIC_IDX_ACCESSORS(cluster_size, CLUSTER_SIZE, unsigned)
1269 INTRINSIC_IDX_ACCESSORS(param_idx, PARAM_IDX, unsigned)
1270
1271 /**
1272 * \group texture information
1273 *
1274 * This gives semantic information about textures which is useful to the
1275 * frontend, the backend, and lowering passes, but not the optimizer.
1276 */
1277
1278 typedef enum {
1279 nir_tex_src_coord,
1280 nir_tex_src_projector,
1281 nir_tex_src_comparator, /* shadow comparator */
1282 nir_tex_src_offset,
1283 nir_tex_src_bias,
1284 nir_tex_src_lod,
1285 nir_tex_src_ms_index, /* MSAA sample index */
1286 nir_tex_src_ms_mcs, /* MSAA compression value */
1287 nir_tex_src_ddx,
1288 nir_tex_src_ddy,
1289 nir_tex_src_texture_deref, /* < deref pointing to the texture */
1290 nir_tex_src_sampler_deref, /* < deref pointing to the sampler */
1291 nir_tex_src_texture_offset, /* < dynamically uniform indirect offset */
1292 nir_tex_src_sampler_offset, /* < dynamically uniform indirect offset */
1293 nir_tex_src_plane, /* < selects plane for planar textures */
1294 nir_num_tex_src_types
1295 } nir_tex_src_type;
1296
1297 typedef struct {
1298 nir_src src;
1299 nir_tex_src_type src_type;
1300 } nir_tex_src;
1301
1302 typedef enum {
1303 nir_texop_tex, /**< Regular texture look-up */
1304 nir_texop_txb, /**< Texture look-up with LOD bias */
1305 nir_texop_txl, /**< Texture look-up with explicit LOD */
1306 nir_texop_txd, /**< Texture look-up with partial derivatives */
1307 nir_texop_txf, /**< Texel fetch with explicit LOD */
1308 nir_texop_txf_ms, /**< Multisample texture fetch */
1309 nir_texop_txf_ms_mcs, /**< Multisample compression value fetch */
1310 nir_texop_txs, /**< Texture size */
1311 nir_texop_lod, /**< Texture lod query */
1312 nir_texop_tg4, /**< Texture gather */
1313 nir_texop_query_levels, /**< Texture levels query */
1314 nir_texop_texture_samples, /**< Texture samples query */
1315 nir_texop_samples_identical, /**< Query whether all samples are definitely
1316 * identical.
1317 */
1318 } nir_texop;
1319
1320 typedef struct {
1321 nir_instr instr;
1322
1323 enum glsl_sampler_dim sampler_dim;
1324 nir_alu_type dest_type;
1325
1326 nir_texop op;
1327 nir_dest dest;
1328 nir_tex_src *src;
1329 unsigned num_srcs, coord_components;
1330 bool is_array, is_shadow;
1331
1332 /**
1333 * If is_shadow is true, whether this is the old-style shadow that outputs 4
1334 * components or the new-style shadow that outputs 1 component.
1335 */
1336 bool is_new_style_shadow;
1337
1338 /* gather component selector */
1339 unsigned component : 2;
1340
1341 /** The texture index
1342 *
1343 * If this texture instruction has a nir_tex_src_texture_offset source,
1344 * then the texture index is given by texture_index + texture_offset.
1345 */
1346 unsigned texture_index;
1347
1348 /** The size of the texture array or 0 if it's not an array */
1349 unsigned texture_array_size;
1350
1351 /** The sampler index
1352 *
1353 * The following operations do not require a sampler and, as such, this
1354 * field should be ignored:
1355 * - nir_texop_txf
1356 * - nir_texop_txf_ms
1357 * - nir_texop_txs
1358 * - nir_texop_lod
1359 * - nir_texop_query_levels
1360 * - nir_texop_texture_samples
1361 * - nir_texop_samples_identical
1362 *
1363 * If this texture instruction has a nir_tex_src_sampler_offset source,
1364 * then the sampler index is given by sampler_index + sampler_offset.
1365 */
1366 unsigned sampler_index;
1367 } nir_tex_instr;
1368
1369 static inline unsigned
1370 nir_tex_instr_dest_size(const nir_tex_instr *instr)
1371 {
1372 switch (instr->op) {
1373 case nir_texop_txs: {
1374 unsigned ret;
1375 switch (instr->sampler_dim) {
1376 case GLSL_SAMPLER_DIM_1D:
1377 case GLSL_SAMPLER_DIM_BUF:
1378 ret = 1;
1379 break;
1380 case GLSL_SAMPLER_DIM_2D:
1381 case GLSL_SAMPLER_DIM_CUBE:
1382 case GLSL_SAMPLER_DIM_MS:
1383 case GLSL_SAMPLER_DIM_RECT:
1384 case GLSL_SAMPLER_DIM_EXTERNAL:
1385 case GLSL_SAMPLER_DIM_SUBPASS:
1386 ret = 2;
1387 break;
1388 case GLSL_SAMPLER_DIM_3D:
1389 ret = 3;
1390 break;
1391 default:
1392 unreachable("not reached");
1393 }
1394 if (instr->is_array)
1395 ret++;
1396 return ret;
1397 }
1398
1399 case nir_texop_lod:
1400 return 2;
1401
1402 case nir_texop_texture_samples:
1403 case nir_texop_query_levels:
1404 case nir_texop_samples_identical:
1405 return 1;
1406
1407 default:
1408 if (instr->is_shadow && instr->is_new_style_shadow)
1409 return 1;
1410
1411 return 4;
1412 }
1413 }
1414
1415 /* Returns true if this texture operation queries something about the texture
1416 * rather than actually sampling it.
1417 */
1418 static inline bool
1419 nir_tex_instr_is_query(const nir_tex_instr *instr)
1420 {
1421 switch (instr->op) {
1422 case nir_texop_txs:
1423 case nir_texop_lod:
1424 case nir_texop_texture_samples:
1425 case nir_texop_query_levels:
1426 case nir_texop_txf_ms_mcs:
1427 return true;
1428 case nir_texop_tex:
1429 case nir_texop_txb:
1430 case nir_texop_txl:
1431 case nir_texop_txd:
1432 case nir_texop_txf:
1433 case nir_texop_txf_ms:
1434 case nir_texop_tg4:
1435 return false;
1436 default:
1437 unreachable("Invalid texture opcode");
1438 }
1439 }
1440
1441 static inline bool
1442 nir_alu_instr_is_comparison(const nir_alu_instr *instr)
1443 {
1444 switch (instr->op) {
1445 case nir_op_flt:
1446 case nir_op_fge:
1447 case nir_op_feq:
1448 case nir_op_fne:
1449 case nir_op_ilt:
1450 case nir_op_ult:
1451 case nir_op_ige:
1452 case nir_op_uge:
1453 case nir_op_ieq:
1454 case nir_op_ine:
1455 case nir_op_i2b:
1456 case nir_op_f2b:
1457 case nir_op_inot:
1458 case nir_op_fnot:
1459 return true;
1460 default:
1461 return false;
1462 }
1463 }
1464
1465 static inline nir_alu_type
1466 nir_tex_instr_src_type(const nir_tex_instr *instr, unsigned src)
1467 {
1468 switch (instr->src[src].src_type) {
1469 case nir_tex_src_coord:
1470 switch (instr->op) {
1471 case nir_texop_txf:
1472 case nir_texop_txf_ms:
1473 case nir_texop_txf_ms_mcs:
1474 case nir_texop_samples_identical:
1475 return nir_type_int;
1476
1477 default:
1478 return nir_type_float;
1479 }
1480
1481 case nir_tex_src_lod:
1482 switch (instr->op) {
1483 case nir_texop_txs:
1484 case nir_texop_txf:
1485 return nir_type_int;
1486
1487 default:
1488 return nir_type_float;
1489 }
1490
1491 case nir_tex_src_projector:
1492 case nir_tex_src_comparator:
1493 case nir_tex_src_bias:
1494 case nir_tex_src_ddx:
1495 case nir_tex_src_ddy:
1496 return nir_type_float;
1497
1498 case nir_tex_src_offset:
1499 case nir_tex_src_ms_index:
1500 case nir_tex_src_texture_offset:
1501 case nir_tex_src_sampler_offset:
1502 return nir_type_int;
1503
1504 default:
1505 unreachable("Invalid texture source type");
1506 }
1507 }
1508
1509 static inline unsigned
1510 nir_tex_instr_src_size(const nir_tex_instr *instr, unsigned src)
1511 {
1512 if (instr->src[src].src_type == nir_tex_src_coord)
1513 return instr->coord_components;
1514
1515 /* The MCS value is expected to be a vec4 returned by a txf_ms_mcs */
1516 if (instr->src[src].src_type == nir_tex_src_ms_mcs)
1517 return 4;
1518
1519 if (instr->src[src].src_type == nir_tex_src_ddx ||
1520 instr->src[src].src_type == nir_tex_src_ddy) {
1521 if (instr->is_array)
1522 return instr->coord_components - 1;
1523 else
1524 return instr->coord_components;
1525 }
1526
1527 /* Usual APIs don't allow cube + offset, but we allow it, with 2 coords for
1528 * the offset, since a cube maps to a single face.
1529 */
1530 if (instr->src[src].src_type == nir_tex_src_offset) {
1531 if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE)
1532 return 2;
1533 else if (instr->is_array)
1534 return instr->coord_components - 1;
1535 else
1536 return instr->coord_components;
1537 }
1538
1539 return 1;
1540 }
1541
1542 static inline int
1543 nir_tex_instr_src_index(const nir_tex_instr *instr, nir_tex_src_type type)
1544 {
1545 for (unsigned i = 0; i < instr->num_srcs; i++)
1546 if (instr->src[i].src_type == type)
1547 return (int) i;
1548
1549 return -1;
1550 }
1551
1552 void nir_tex_instr_add_src(nir_tex_instr *tex,
1553 nir_tex_src_type src_type,
1554 nir_src src);
1555
1556 void nir_tex_instr_remove_src(nir_tex_instr *tex, unsigned src_idx);
1557
1558 typedef struct {
1559 nir_instr instr;
1560
1561 nir_const_value value;
1562
1563 nir_ssa_def def;
1564 } nir_load_const_instr;
1565
1566 typedef enum {
1567 nir_jump_return,
1568 nir_jump_break,
1569 nir_jump_continue,
1570 } nir_jump_type;
1571
1572 typedef struct {
1573 nir_instr instr;
1574 nir_jump_type type;
1575 } nir_jump_instr;
1576
1577 /* creates a new SSA variable in an undefined state */
1578
1579 typedef struct {
1580 nir_instr instr;
1581 nir_ssa_def def;
1582 } nir_ssa_undef_instr;
1583
1584 typedef struct {
1585 struct exec_node node;
1586
1587 /* The predecessor block corresponding to this source */
1588 struct nir_block *pred;
1589
1590 nir_src src;
1591 } nir_phi_src;
1592
1593 #define nir_foreach_phi_src(phi_src, phi) \
1594 foreach_list_typed(nir_phi_src, phi_src, node, &(phi)->srcs)
1595 #define nir_foreach_phi_src_safe(phi_src, phi) \
1596 foreach_list_typed_safe(nir_phi_src, phi_src, node, &(phi)->srcs)
1597
1598 typedef struct {
1599 nir_instr instr;
1600
1601 struct exec_list srcs; /** < list of nir_phi_src */
1602
1603 nir_dest dest;
1604 } nir_phi_instr;
1605
1606 typedef struct {
1607 struct exec_node node;
1608 nir_src src;
1609 nir_dest dest;
1610 } nir_parallel_copy_entry;
1611
1612 #define nir_foreach_parallel_copy_entry(entry, pcopy) \
1613 foreach_list_typed(nir_parallel_copy_entry, entry, node, &(pcopy)->entries)
1614
1615 typedef struct {
1616 nir_instr instr;
1617
1618 /* A list of nir_parallel_copy_entrys. The sources of all of the
1619 * entries are copied to the corresponding destinations "in parallel".
1620 * In other words, if we have two entries: a -> b and b -> a, the values
1621 * get swapped.
1622 */
1623 struct exec_list entries;
1624 } nir_parallel_copy_instr;
1625
1626 NIR_DEFINE_CAST(nir_instr_as_alu, nir_instr, nir_alu_instr, instr,
1627 type, nir_instr_type_alu)
1628 NIR_DEFINE_CAST(nir_instr_as_call, nir_instr, nir_call_instr, instr,
1629 type, nir_instr_type_call)
1630 NIR_DEFINE_CAST(nir_instr_as_jump, nir_instr, nir_jump_instr, instr,
1631 type, nir_instr_type_jump)
1632 NIR_DEFINE_CAST(nir_instr_as_tex, nir_instr, nir_tex_instr, instr,
1633 type, nir_instr_type_tex)
1634 NIR_DEFINE_CAST(nir_instr_as_intrinsic, nir_instr, nir_intrinsic_instr, instr,
1635 type, nir_instr_type_intrinsic)
1636 NIR_DEFINE_CAST(nir_instr_as_load_const, nir_instr, nir_load_const_instr, instr,
1637 type, nir_instr_type_load_const)
1638 NIR_DEFINE_CAST(nir_instr_as_ssa_undef, nir_instr, nir_ssa_undef_instr, instr,
1639 type, nir_instr_type_ssa_undef)
1640 NIR_DEFINE_CAST(nir_instr_as_phi, nir_instr, nir_phi_instr, instr,
1641 type, nir_instr_type_phi)
1642 NIR_DEFINE_CAST(nir_instr_as_parallel_copy, nir_instr,
1643 nir_parallel_copy_instr, instr,
1644 type, nir_instr_type_parallel_copy)
1645
1646 /*
1647 * Control flow
1648 *
1649 * Control flow consists of a tree of control flow nodes, which include
1650 * if-statements and loops. The leaves of the tree are basic blocks, lists of
1651 * instructions that always run start-to-finish. Each basic block also keeps
1652 * track of its successors (blocks which may run immediately after the current
1653 * block) and predecessors (blocks which could have run immediately before the
1654 * current block). Each function also has a start block and an end block which
1655 * all return statements point to (which is always empty). Together, all the
1656 * blocks with their predecessors and successors make up the control flow
1657 * graph (CFG) of the function. There are helpers that modify the tree of
1658 * control flow nodes while modifying the CFG appropriately; these should be
1659 * used instead of modifying the tree directly.
1660 */
1661
1662 typedef enum {
1663 nir_cf_node_block,
1664 nir_cf_node_if,
1665 nir_cf_node_loop,
1666 nir_cf_node_function
1667 } nir_cf_node_type;
1668
1669 typedef struct nir_cf_node {
1670 struct exec_node node;
1671 nir_cf_node_type type;
1672 struct nir_cf_node *parent;
1673 } nir_cf_node;
1674
1675 typedef struct nir_block {
1676 nir_cf_node cf_node;
1677
1678 struct exec_list instr_list; /** < list of nir_instr */
1679
1680 /** generic block index; generated by nir_index_blocks */
1681 unsigned index;
1682
1683 /*
1684 * Each block can only have up to 2 successors, so we put them in a simple
1685 * array - no need for anything more complicated.
1686 */
1687 struct nir_block *successors[2];
1688
1689 /* Set of nir_block predecessors in the CFG */
1690 struct set *predecessors;
1691
1692 /*
1693 * this node's immediate dominator in the dominance tree - set to NULL for
1694 * the start block.
1695 */
1696 struct nir_block *imm_dom;
1697
1698 /* This node's children in the dominance tree */
1699 unsigned num_dom_children;
1700 struct nir_block **dom_children;
1701
1702 /* Set of nir_blocks on the dominance frontier of this block */
1703 struct set *dom_frontier;
1704
1705 /*
1706 * These two indices have the property that dom_{pre,post}_index for each
1707 * child of this block in the dominance tree will always be between
1708 * dom_pre_index and dom_post_index for this block, which makes testing if
1709 * a given block is dominated by another block an O(1) operation.
1710 */
1711 unsigned dom_pre_index, dom_post_index;
1712
1713 /* live in and out for this block; used for liveness analysis */
1714 BITSET_WORD *live_in;
1715 BITSET_WORD *live_out;
1716 } nir_block;
1717
1718 static inline nir_instr *
1719 nir_block_first_instr(nir_block *block)
1720 {
1721 struct exec_node *head = exec_list_get_head(&block->instr_list);
1722 return exec_node_data(nir_instr, head, node);
1723 }
1724
1725 static inline nir_instr *
1726 nir_block_last_instr(nir_block *block)
1727 {
1728 struct exec_node *tail = exec_list_get_tail(&block->instr_list);
1729 return exec_node_data(nir_instr, tail, node);
1730 }
1731
1732 #define nir_foreach_instr(instr, block) \
1733 foreach_list_typed(nir_instr, instr, node, &(block)->instr_list)
1734 #define nir_foreach_instr_reverse(instr, block) \
1735 foreach_list_typed_reverse(nir_instr, instr, node, &(block)->instr_list)
1736 #define nir_foreach_instr_safe(instr, block) \
1737 foreach_list_typed_safe(nir_instr, instr, node, &(block)->instr_list)
1738 #define nir_foreach_instr_reverse_safe(instr, block) \
1739 foreach_list_typed_reverse_safe(nir_instr, instr, node, &(block)->instr_list)
1740
1741 typedef struct nir_if {
1742 nir_cf_node cf_node;
1743 nir_src condition;
1744
1745 struct exec_list then_list; /** < list of nir_cf_node */
1746 struct exec_list else_list; /** < list of nir_cf_node */
1747 } nir_if;
1748
1749 typedef struct {
1750 nir_if *nif;
1751
1752 nir_instr *conditional_instr;
1753
1754 nir_block *break_block;
1755 nir_block *continue_from_block;
1756
1757 bool continue_from_then;
1758
1759 struct list_head loop_terminator_link;
1760 } nir_loop_terminator;
1761
1762 typedef struct {
1763 /* Number of instructions in the loop */
1764 unsigned num_instructions;
1765
1766 /* How many times the loop is run (if known) */
1767 unsigned trip_count;
1768 bool is_trip_count_known;
1769
1770 /* Unroll the loop regardless of its size */
1771 bool force_unroll;
1772
1773 nir_loop_terminator *limiting_terminator;
1774
1775 /* A list of loop_terminators terminating this loop. */
1776 struct list_head loop_terminator_list;
1777 } nir_loop_info;
1778
1779 typedef struct {
1780 nir_cf_node cf_node;
1781
1782 struct exec_list body; /** < list of nir_cf_node */
1783
1784 nir_loop_info *info;
1785 } nir_loop;
1786
1787 /**
1788 * Various bits of metadata that can may be created or required by
1789 * optimization and analysis passes
1790 */
1791 typedef enum {
1792 nir_metadata_none = 0x0,
1793 nir_metadata_block_index = 0x1,
1794 nir_metadata_dominance = 0x2,
1795 nir_metadata_live_ssa_defs = 0x4,
1796 nir_metadata_not_properly_reset = 0x8,
1797 nir_metadata_loop_analysis = 0x10,
1798 } nir_metadata;
1799
1800 typedef struct {
1801 nir_cf_node cf_node;
1802
1803 /** pointer to the function of which this is an implementation */
1804 struct nir_function *function;
1805
1806 struct exec_list body; /** < list of nir_cf_node */
1807
1808 nir_block *end_block;
1809
1810 /** list for all local variables in the function */
1811 struct exec_list locals;
1812
1813 /** list of local registers in the function */
1814 struct exec_list registers;
1815
1816 /** next available local register index */
1817 unsigned reg_alloc;
1818
1819 /** next available SSA value index */
1820 unsigned ssa_alloc;
1821
1822 /* total number of basic blocks, only valid when block_index_dirty = false */
1823 unsigned num_blocks;
1824
1825 nir_metadata valid_metadata;
1826 } nir_function_impl;
1827
1828 ATTRIBUTE_RETURNS_NONNULL static inline nir_block *
1829 nir_start_block(nir_function_impl *impl)
1830 {
1831 return (nir_block *) impl->body.head_sentinel.next;
1832 }
1833
1834 ATTRIBUTE_RETURNS_NONNULL static inline nir_block *
1835 nir_impl_last_block(nir_function_impl *impl)
1836 {
1837 return (nir_block *) impl->body.tail_sentinel.prev;
1838 }
1839
1840 static inline nir_cf_node *
1841 nir_cf_node_next(nir_cf_node *node)
1842 {
1843 struct exec_node *next = exec_node_get_next(&node->node);
1844 if (exec_node_is_tail_sentinel(next))
1845 return NULL;
1846 else
1847 return exec_node_data(nir_cf_node, next, node);
1848 }
1849
1850 static inline nir_cf_node *
1851 nir_cf_node_prev(nir_cf_node *node)
1852 {
1853 struct exec_node *prev = exec_node_get_prev(&node->node);
1854 if (exec_node_is_head_sentinel(prev))
1855 return NULL;
1856 else
1857 return exec_node_data(nir_cf_node, prev, node);
1858 }
1859
1860 static inline bool
1861 nir_cf_node_is_first(const nir_cf_node *node)
1862 {
1863 return exec_node_is_head_sentinel(node->node.prev);
1864 }
1865
1866 static inline bool
1867 nir_cf_node_is_last(const nir_cf_node *node)
1868 {
1869 return exec_node_is_tail_sentinel(node->node.next);
1870 }
1871
1872 NIR_DEFINE_CAST(nir_cf_node_as_block, nir_cf_node, nir_block, cf_node,
1873 type, nir_cf_node_block)
1874 NIR_DEFINE_CAST(nir_cf_node_as_if, nir_cf_node, nir_if, cf_node,
1875 type, nir_cf_node_if)
1876 NIR_DEFINE_CAST(nir_cf_node_as_loop, nir_cf_node, nir_loop, cf_node,
1877 type, nir_cf_node_loop)
1878 NIR_DEFINE_CAST(nir_cf_node_as_function, nir_cf_node,
1879 nir_function_impl, cf_node, type, nir_cf_node_function)
1880
1881 static inline nir_block *
1882 nir_if_first_then_block(nir_if *if_stmt)
1883 {
1884 struct exec_node *head = exec_list_get_head(&if_stmt->then_list);
1885 return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
1886 }
1887
1888 static inline nir_block *
1889 nir_if_last_then_block(nir_if *if_stmt)
1890 {
1891 struct exec_node *tail = exec_list_get_tail(&if_stmt->then_list);
1892 return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
1893 }
1894
1895 static inline nir_block *
1896 nir_if_first_else_block(nir_if *if_stmt)
1897 {
1898 struct exec_node *head = exec_list_get_head(&if_stmt->else_list);
1899 return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
1900 }
1901
1902 static inline nir_block *
1903 nir_if_last_else_block(nir_if *if_stmt)
1904 {
1905 struct exec_node *tail = exec_list_get_tail(&if_stmt->else_list);
1906 return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
1907 }
1908
1909 static inline nir_block *
1910 nir_loop_first_block(nir_loop *loop)
1911 {
1912 struct exec_node *head = exec_list_get_head(&loop->body);
1913 return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
1914 }
1915
1916 static inline nir_block *
1917 nir_loop_last_block(nir_loop *loop)
1918 {
1919 struct exec_node *tail = exec_list_get_tail(&loop->body);
1920 return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
1921 }
1922
1923 typedef struct {
1924 uint8_t num_components;
1925 uint8_t bit_size;
1926 } nir_parameter;
1927
1928 typedef struct nir_function {
1929 struct exec_node node;
1930
1931 const char *name;
1932 struct nir_shader *shader;
1933
1934 unsigned num_params;
1935 nir_parameter *params;
1936
1937 /** The implementation of this function.
1938 *
1939 * If the function is only declared and not implemented, this is NULL.
1940 */
1941 nir_function_impl *impl;
1942 } nir_function;
1943
1944 typedef struct nir_shader_compiler_options {
1945 bool lower_fdiv;
1946 bool lower_ffma;
1947 bool fuse_ffma;
1948 bool lower_flrp32;
1949 /** Lowers flrp when it does not support doubles */
1950 bool lower_flrp64;
1951 bool lower_fpow;
1952 bool lower_fsat;
1953 bool lower_fsqrt;
1954 bool lower_fmod32;
1955 bool lower_fmod64;
1956 /** Lowers ibitfield_extract/ubitfield_extract to ibfe/ubfe. */
1957 bool lower_bitfield_extract;
1958 /** Lowers ibitfield_extract/ubitfield_extract to bfm, compares, shifts. */
1959 bool lower_bitfield_extract_to_shifts;
1960 /** Lowers bitfield_insert to bfi/bfm */
1961 bool lower_bitfield_insert;
1962 /** Lowers bitfield_insert to bfm, compares, and shifts. */
1963 bool lower_bitfield_insert_to_shifts;
1964 /** Lowers bitfield_reverse to shifts. */
1965 bool lower_bitfield_reverse;
1966 /** Lowers bit_count to shifts. */
1967 bool lower_bit_count;
1968 /** Lowers bfm to shifts and subtracts. */
1969 bool lower_bfm;
1970 /** Lowers ifind_msb to compare and ufind_msb */
1971 bool lower_ifind_msb;
1972 /** Lowers find_lsb to ufind_msb and logic ops */
1973 bool lower_find_lsb;
1974 bool lower_uadd_carry;
1975 bool lower_usub_borrow;
1976 /** Lowers imul_high/umul_high to 16-bit multiplies and carry operations. */
1977 bool lower_mul_high;
1978 /** lowers fneg and ineg to fsub and isub. */
1979 bool lower_negate;
1980 /** lowers fsub and isub to fadd+fneg and iadd+ineg. */
1981 bool lower_sub;
1982
1983 /* lower {slt,sge,seq,sne} to {flt,fge,feq,fne} + b2f: */
1984 bool lower_scmp;
1985
1986 /** enables rules to lower idiv by power-of-two: */
1987 bool lower_idiv;
1988
1989 /* lower b2f to iand */
1990 bool lower_b2f;
1991
1992 /* Does the native fdot instruction replicate its result for four
1993 * components? If so, then opt_algebraic_late will turn all fdotN
1994 * instructions into fdot_replicatedN instructions.
1995 */
1996 bool fdot_replicates;
1997
1998 /** lowers ffract to fsub+ffloor: */
1999 bool lower_ffract;
2000
2001 bool lower_ldexp;
2002
2003 bool lower_pack_half_2x16;
2004 bool lower_pack_unorm_2x16;
2005 bool lower_pack_snorm_2x16;
2006 bool lower_pack_unorm_4x8;
2007 bool lower_pack_snorm_4x8;
2008 bool lower_unpack_half_2x16;
2009 bool lower_unpack_unorm_2x16;
2010 bool lower_unpack_snorm_2x16;
2011 bool lower_unpack_unorm_4x8;
2012 bool lower_unpack_snorm_4x8;
2013
2014 bool lower_extract_byte;
2015 bool lower_extract_word;
2016
2017 bool lower_all_io_to_temps;
2018
2019 /**
2020 * Does the driver support real 32-bit integers? (Otherwise, integers
2021 * are simulated by floats.)
2022 */
2023 bool native_integers;
2024
2025 /* Indicates that the driver only has zero-based vertex id */
2026 bool vertex_id_zero_based;
2027
2028 /**
2029 * If enabled, gl_BaseVertex will be lowered as:
2030 * is_indexed_draw (~0/0) & firstvertex
2031 */
2032 bool lower_base_vertex;
2033
2034 /**
2035 * If enabled, gl_HelperInvocation will be lowered as:
2036 *
2037 * !((1 << sample_id) & sample_mask_in))
2038 *
2039 * This depends on some possibly hw implementation details, which may
2040 * not be true for all hw. In particular that the FS is only executed
2041 * for covered samples or for helper invocations. So, do not blindly
2042 * enable this option.
2043 *
2044 * Note: See also issue #22 in ARB_shader_image_load_store
2045 */
2046 bool lower_helper_invocation;
2047
2048 bool lower_cs_local_index_from_id;
2049
2050 bool lower_device_index_to_zero;
2051
2052 /* Set if nir_lower_wpos_ytransform() should also invert gl_PointCoord. */
2053 bool lower_wpos_pntc;
2054
2055 /**
2056 * Should nir_lower_io() create load_interpolated_input intrinsics?
2057 *
2058 * If not, it generates regular load_input intrinsics and interpolation
2059 * information must be inferred from the list of input nir_variables.
2060 */
2061 bool use_interpolated_input_intrinsics;
2062
2063 /**
2064 * Do vertex shader double inputs use two locations? The Vulkan spec
2065 * requires two locations to be used, OpenGL allows a single location.
2066 */
2067 bool vs_inputs_dual_locations;
2068
2069 unsigned max_unroll_iterations;
2070 } nir_shader_compiler_options;
2071
2072 typedef struct nir_shader {
2073 /** list of uniforms (nir_variable) */
2074 struct exec_list uniforms;
2075
2076 /** list of inputs (nir_variable) */
2077 struct exec_list inputs;
2078
2079 /** list of outputs (nir_variable) */
2080 struct exec_list outputs;
2081
2082 /** list of shared compute variables (nir_variable) */
2083 struct exec_list shared;
2084
2085 /** Set of driver-specific options for the shader.
2086 *
2087 * The memory for the options is expected to be kept in a single static
2088 * copy by the driver.
2089 */
2090 const struct nir_shader_compiler_options *options;
2091
2092 /** Various bits of compile-time information about a given shader */
2093 struct shader_info info;
2094
2095 /** list of global variables in the shader (nir_variable) */
2096 struct exec_list globals;
2097
2098 /** list of system value variables in the shader (nir_variable) */
2099 struct exec_list system_values;
2100
2101 struct exec_list functions; /** < list of nir_function */
2102
2103 /** list of global register in the shader */
2104 struct exec_list registers;
2105
2106 /** next available global register index */
2107 unsigned reg_alloc;
2108
2109 /**
2110 * the highest index a load_input_*, load_uniform_*, etc. intrinsic can
2111 * access plus one
2112 */
2113 unsigned num_inputs, num_uniforms, num_outputs, num_shared;
2114
2115 /** Constant data associated with this shader.
2116 *
2117 * Constant data is loaded through load_constant intrinsics. See also
2118 * nir_opt_large_constants.
2119 */
2120 void *constant_data;
2121 unsigned constant_data_size;
2122 } nir_shader;
2123
2124 static inline nir_function_impl *
2125 nir_shader_get_entrypoint(nir_shader *shader)
2126 {
2127 assert(exec_list_length(&shader->functions) == 1);
2128 struct exec_node *func_node = exec_list_get_head(&shader->functions);
2129 nir_function *func = exec_node_data(nir_function, func_node, node);
2130 assert(func->num_params == 0);
2131 assert(func->impl);
2132 return func->impl;
2133 }
2134
2135 #define nir_foreach_function(func, shader) \
2136 foreach_list_typed(nir_function, func, node, &(shader)->functions)
2137
2138 nir_shader *nir_shader_create(void *mem_ctx,
2139 gl_shader_stage stage,
2140 const nir_shader_compiler_options *options,
2141 shader_info *si);
2142
2143 /** creates a register, including assigning it an index and adding it to the list */
2144 nir_register *nir_global_reg_create(nir_shader *shader);
2145
2146 nir_register *nir_local_reg_create(nir_function_impl *impl);
2147
2148 void nir_reg_remove(nir_register *reg);
2149
2150 /** Adds a variable to the appropriate list in nir_shader */
2151 void nir_shader_add_variable(nir_shader *shader, nir_variable *var);
2152
2153 static inline void
2154 nir_function_impl_add_variable(nir_function_impl *impl, nir_variable *var)
2155 {
2156 assert(var->data.mode == nir_var_local);
2157 exec_list_push_tail(&impl->locals, &var->node);
2158 }
2159
2160 /** creates a variable, sets a few defaults, and adds it to the list */
2161 nir_variable *nir_variable_create(nir_shader *shader,
2162 nir_variable_mode mode,
2163 const struct glsl_type *type,
2164 const char *name);
2165 /** creates a local variable and adds it to the list */
2166 nir_variable *nir_local_variable_create(nir_function_impl *impl,
2167 const struct glsl_type *type,
2168 const char *name);
2169
2170 /** creates a function and adds it to the shader's list of functions */
2171 nir_function *nir_function_create(nir_shader *shader, const char *name);
2172
2173 nir_function_impl *nir_function_impl_create(nir_function *func);
2174 /** creates a function_impl that isn't tied to any particular function */
2175 nir_function_impl *nir_function_impl_create_bare(nir_shader *shader);
2176
2177 nir_block *nir_block_create(nir_shader *shader);
2178 nir_if *nir_if_create(nir_shader *shader);
2179 nir_loop *nir_loop_create(nir_shader *shader);
2180
2181 nir_function_impl *nir_cf_node_get_function(nir_cf_node *node);
2182
2183 /** requests that the given pieces of metadata be generated */
2184 void nir_metadata_require(nir_function_impl *impl, nir_metadata required, ...);
2185 /** dirties all but the preserved metadata */
2186 void nir_metadata_preserve(nir_function_impl *impl, nir_metadata preserved);
2187
2188 /** creates an instruction with default swizzle/writemask/etc. with NULL registers */
2189 nir_alu_instr *nir_alu_instr_create(nir_shader *shader, nir_op op);
2190
2191 nir_deref_instr *nir_deref_instr_create(nir_shader *shader,
2192 nir_deref_type deref_type);
2193
2194 nir_jump_instr *nir_jump_instr_create(nir_shader *shader, nir_jump_type type);
2195
2196 nir_load_const_instr *nir_load_const_instr_create(nir_shader *shader,
2197 unsigned num_components,
2198 unsigned bit_size);
2199
2200 nir_intrinsic_instr *nir_intrinsic_instr_create(nir_shader *shader,
2201 nir_intrinsic_op op);
2202
2203 nir_call_instr *nir_call_instr_create(nir_shader *shader,
2204 nir_function *callee);
2205
2206 nir_tex_instr *nir_tex_instr_create(nir_shader *shader, unsigned num_srcs);
2207
2208 nir_phi_instr *nir_phi_instr_create(nir_shader *shader);
2209
2210 nir_parallel_copy_instr *nir_parallel_copy_instr_create(nir_shader *shader);
2211
2212 nir_ssa_undef_instr *nir_ssa_undef_instr_create(nir_shader *shader,
2213 unsigned num_components,
2214 unsigned bit_size);
2215
2216 nir_const_value nir_alu_binop_identity(nir_op binop, unsigned bit_size);
2217
2218 /**
2219 * NIR Cursors and Instruction Insertion API
2220 * @{
2221 *
2222 * A tiny struct representing a point to insert/extract instructions or
2223 * control flow nodes. Helps reduce the combinatorial explosion of possible
2224 * points to insert/extract.
2225 *
2226 * \sa nir_control_flow.h
2227 */
2228 typedef enum {
2229 nir_cursor_before_block,
2230 nir_cursor_after_block,
2231 nir_cursor_before_instr,
2232 nir_cursor_after_instr,
2233 } nir_cursor_option;
2234
2235 typedef struct {
2236 nir_cursor_option option;
2237 union {
2238 nir_block *block;
2239 nir_instr *instr;
2240 };
2241 } nir_cursor;
2242
2243 static inline nir_block *
2244 nir_cursor_current_block(nir_cursor cursor)
2245 {
2246 if (cursor.option == nir_cursor_before_instr ||
2247 cursor.option == nir_cursor_after_instr) {
2248 return cursor.instr->block;
2249 } else {
2250 return cursor.block;
2251 }
2252 }
2253
2254 bool nir_cursors_equal(nir_cursor a, nir_cursor b);
2255
2256 static inline nir_cursor
2257 nir_before_block(nir_block *block)
2258 {
2259 nir_cursor cursor;
2260 cursor.option = nir_cursor_before_block;
2261 cursor.block = block;
2262 return cursor;
2263 }
2264
2265 static inline nir_cursor
2266 nir_after_block(nir_block *block)
2267 {
2268 nir_cursor cursor;
2269 cursor.option = nir_cursor_after_block;
2270 cursor.block = block;
2271 return cursor;
2272 }
2273
2274 static inline nir_cursor
2275 nir_before_instr(nir_instr *instr)
2276 {
2277 nir_cursor cursor;
2278 cursor.option = nir_cursor_before_instr;
2279 cursor.instr = instr;
2280 return cursor;
2281 }
2282
2283 static inline nir_cursor
2284 nir_after_instr(nir_instr *instr)
2285 {
2286 nir_cursor cursor;
2287 cursor.option = nir_cursor_after_instr;
2288 cursor.instr = instr;
2289 return cursor;
2290 }
2291
2292 static inline nir_cursor
2293 nir_after_block_before_jump(nir_block *block)
2294 {
2295 nir_instr *last_instr = nir_block_last_instr(block);
2296 if (last_instr && last_instr->type == nir_instr_type_jump) {
2297 return nir_before_instr(last_instr);
2298 } else {
2299 return nir_after_block(block);
2300 }
2301 }
2302
2303 static inline nir_cursor
2304 nir_before_cf_node(nir_cf_node *node)
2305 {
2306 if (node->type == nir_cf_node_block)
2307 return nir_before_block(nir_cf_node_as_block(node));
2308
2309 return nir_after_block(nir_cf_node_as_block(nir_cf_node_prev(node)));
2310 }
2311
2312 static inline nir_cursor
2313 nir_after_cf_node(nir_cf_node *node)
2314 {
2315 if (node->type == nir_cf_node_block)
2316 return nir_after_block(nir_cf_node_as_block(node));
2317
2318 return nir_before_block(nir_cf_node_as_block(nir_cf_node_next(node)));
2319 }
2320
2321 static inline nir_cursor
2322 nir_after_phis(nir_block *block)
2323 {
2324 nir_foreach_instr(instr, block) {
2325 if (instr->type != nir_instr_type_phi)
2326 return nir_before_instr(instr);
2327 }
2328 return nir_after_block(block);
2329 }
2330
2331 static inline nir_cursor
2332 nir_after_cf_node_and_phis(nir_cf_node *node)
2333 {
2334 if (node->type == nir_cf_node_block)
2335 return nir_after_block(nir_cf_node_as_block(node));
2336
2337 nir_block *block = nir_cf_node_as_block(nir_cf_node_next(node));
2338
2339 return nir_after_phis(block);
2340 }
2341
2342 static inline nir_cursor
2343 nir_before_cf_list(struct exec_list *cf_list)
2344 {
2345 nir_cf_node *first_node = exec_node_data(nir_cf_node,
2346 exec_list_get_head(cf_list), node);
2347 return nir_before_cf_node(first_node);
2348 }
2349
2350 static inline nir_cursor
2351 nir_after_cf_list(struct exec_list *cf_list)
2352 {
2353 nir_cf_node *last_node = exec_node_data(nir_cf_node,
2354 exec_list_get_tail(cf_list), node);
2355 return nir_after_cf_node(last_node);
2356 }
2357
2358 /**
2359 * Insert a NIR instruction at the given cursor.
2360 *
2361 * Note: This does not update the cursor.
2362 */
2363 void nir_instr_insert(nir_cursor cursor, nir_instr *instr);
2364
2365 static inline void
2366 nir_instr_insert_before(nir_instr *instr, nir_instr *before)
2367 {
2368 nir_instr_insert(nir_before_instr(instr), before);
2369 }
2370
2371 static inline void
2372 nir_instr_insert_after(nir_instr *instr, nir_instr *after)
2373 {
2374 nir_instr_insert(nir_after_instr(instr), after);
2375 }
2376
2377 static inline void
2378 nir_instr_insert_before_block(nir_block *block, nir_instr *before)
2379 {
2380 nir_instr_insert(nir_before_block(block), before);
2381 }
2382
2383 static inline void
2384 nir_instr_insert_after_block(nir_block *block, nir_instr *after)
2385 {
2386 nir_instr_insert(nir_after_block(block), after);
2387 }
2388
2389 static inline void
2390 nir_instr_insert_before_cf(nir_cf_node *node, nir_instr *before)
2391 {
2392 nir_instr_insert(nir_before_cf_node(node), before);
2393 }
2394
2395 static inline void
2396 nir_instr_insert_after_cf(nir_cf_node *node, nir_instr *after)
2397 {
2398 nir_instr_insert(nir_after_cf_node(node), after);
2399 }
2400
2401 static inline void
2402 nir_instr_insert_before_cf_list(struct exec_list *list, nir_instr *before)
2403 {
2404 nir_instr_insert(nir_before_cf_list(list), before);
2405 }
2406
2407 static inline void
2408 nir_instr_insert_after_cf_list(struct exec_list *list, nir_instr *after)
2409 {
2410 nir_instr_insert(nir_after_cf_list(list), after);
2411 }
2412
2413 void nir_instr_remove_v(nir_instr *instr);
2414
2415 static inline nir_cursor
2416 nir_instr_remove(nir_instr *instr)
2417 {
2418 nir_cursor cursor;
2419 nir_instr *prev = nir_instr_prev(instr);
2420 if (prev) {
2421 cursor = nir_after_instr(prev);
2422 } else {
2423 cursor = nir_before_block(instr->block);
2424 }
2425 nir_instr_remove_v(instr);
2426 return cursor;
2427 }
2428
2429 /** @} */
2430
2431 typedef bool (*nir_foreach_ssa_def_cb)(nir_ssa_def *def, void *state);
2432 typedef bool (*nir_foreach_dest_cb)(nir_dest *dest, void *state);
2433 typedef bool (*nir_foreach_src_cb)(nir_src *src, void *state);
2434 bool nir_foreach_ssa_def(nir_instr *instr, nir_foreach_ssa_def_cb cb,
2435 void *state);
2436 bool nir_foreach_dest(nir_instr *instr, nir_foreach_dest_cb cb, void *state);
2437 bool nir_foreach_src(nir_instr *instr, nir_foreach_src_cb cb, void *state);
2438
2439 nir_const_value *nir_src_as_const_value(nir_src src);
2440 bool nir_src_is_dynamically_uniform(nir_src src);
2441 bool nir_srcs_equal(nir_src src1, nir_src src2);
2442 void nir_instr_rewrite_src(nir_instr *instr, nir_src *src, nir_src new_src);
2443 void nir_instr_move_src(nir_instr *dest_instr, nir_src *dest, nir_src *src);
2444 void nir_if_rewrite_condition(nir_if *if_stmt, nir_src new_src);
2445 void nir_instr_rewrite_dest(nir_instr *instr, nir_dest *dest,
2446 nir_dest new_dest);
2447
2448 void nir_ssa_dest_init(nir_instr *instr, nir_dest *dest,
2449 unsigned num_components, unsigned bit_size,
2450 const char *name);
2451 void nir_ssa_def_init(nir_instr *instr, nir_ssa_def *def,
2452 unsigned num_components, unsigned bit_size,
2453 const char *name);
2454 static inline void
2455 nir_ssa_dest_init_for_type(nir_instr *instr, nir_dest *dest,
2456 const struct glsl_type *type,
2457 const char *name)
2458 {
2459 assert(glsl_type_is_vector_or_scalar(type));
2460 nir_ssa_dest_init(instr, dest, glsl_get_components(type),
2461 glsl_get_bit_size(type), name);
2462 }
2463 void nir_ssa_def_rewrite_uses(nir_ssa_def *def, nir_src new_src);
2464 void nir_ssa_def_rewrite_uses_after(nir_ssa_def *def, nir_src new_src,
2465 nir_instr *after_me);
2466
2467 nir_component_mask_t nir_ssa_def_components_read(const nir_ssa_def *def);
2468
2469 /*
2470 * finds the next basic block in source-code order, returns NULL if there is
2471 * none
2472 */
2473
2474 nir_block *nir_block_cf_tree_next(nir_block *block);
2475
2476 /* Performs the opposite of nir_block_cf_tree_next() */
2477
2478 nir_block *nir_block_cf_tree_prev(nir_block *block);
2479
2480 /* Gets the first block in a CF node in source-code order */
2481
2482 nir_block *nir_cf_node_cf_tree_first(nir_cf_node *node);
2483
2484 /* Gets the last block in a CF node in source-code order */
2485
2486 nir_block *nir_cf_node_cf_tree_last(nir_cf_node *node);
2487
2488 /* Gets the next block after a CF node in source-code order */
2489
2490 nir_block *nir_cf_node_cf_tree_next(nir_cf_node *node);
2491
2492 /* Macros for loops that visit blocks in source-code order */
2493
2494 #define nir_foreach_block(block, impl) \
2495 for (nir_block *block = nir_start_block(impl); block != NULL; \
2496 block = nir_block_cf_tree_next(block))
2497
2498 #define nir_foreach_block_safe(block, impl) \
2499 for (nir_block *block = nir_start_block(impl), \
2500 *next = nir_block_cf_tree_next(block); \
2501 block != NULL; \
2502 block = next, next = nir_block_cf_tree_next(block))
2503
2504 #define nir_foreach_block_reverse(block, impl) \
2505 for (nir_block *block = nir_impl_last_block(impl); block != NULL; \
2506 block = nir_block_cf_tree_prev(block))
2507
2508 #define nir_foreach_block_reverse_safe(block, impl) \
2509 for (nir_block *block = nir_impl_last_block(impl), \
2510 *prev = nir_block_cf_tree_prev(block); \
2511 block != NULL; \
2512 block = prev, prev = nir_block_cf_tree_prev(block))
2513
2514 #define nir_foreach_block_in_cf_node(block, node) \
2515 for (nir_block *block = nir_cf_node_cf_tree_first(node); \
2516 block != nir_cf_node_cf_tree_next(node); \
2517 block = nir_block_cf_tree_next(block))
2518
2519 /* If the following CF node is an if, this function returns that if.
2520 * Otherwise, it returns NULL.
2521 */
2522 nir_if *nir_block_get_following_if(nir_block *block);
2523
2524 nir_loop *nir_block_get_following_loop(nir_block *block);
2525
2526 void nir_index_local_regs(nir_function_impl *impl);
2527 void nir_index_global_regs(nir_shader *shader);
2528 void nir_index_ssa_defs(nir_function_impl *impl);
2529 unsigned nir_index_instrs(nir_function_impl *impl);
2530
2531 void nir_index_blocks(nir_function_impl *impl);
2532
2533 void nir_print_shader(nir_shader *shader, FILE *fp);
2534 void nir_print_shader_annotated(nir_shader *shader, FILE *fp, struct hash_table *errors);
2535 void nir_print_instr(const nir_instr *instr, FILE *fp);
2536
2537 nir_shader *nir_shader_clone(void *mem_ctx, const nir_shader *s);
2538 nir_function_impl *nir_function_impl_clone(const nir_function_impl *fi);
2539 nir_constant *nir_constant_clone(const nir_constant *c, nir_variable *var);
2540 nir_variable *nir_variable_clone(const nir_variable *c, nir_shader *shader);
2541
2542 nir_shader *nir_shader_serialize_deserialize(void *mem_ctx, nir_shader *s);
2543
2544 #ifndef NDEBUG
2545 void nir_validate_shader(nir_shader *shader);
2546 void nir_metadata_set_validation_flag(nir_shader *shader);
2547 void nir_metadata_check_validation_flag(nir_shader *shader);
2548
2549 static inline bool
2550 should_clone_nir(void)
2551 {
2552 static int should_clone = -1;
2553 if (should_clone < 0)
2554 should_clone = env_var_as_boolean("NIR_TEST_CLONE", false);
2555
2556 return should_clone;
2557 }
2558
2559 static inline bool
2560 should_serialize_deserialize_nir(void)
2561 {
2562 static int test_serialize = -1;
2563 if (test_serialize < 0)
2564 test_serialize = env_var_as_boolean("NIR_TEST_SERIALIZE", false);
2565
2566 return test_serialize;
2567 }
2568
2569 static inline bool
2570 should_print_nir(void)
2571 {
2572 static int should_print = -1;
2573 if (should_print < 0)
2574 should_print = env_var_as_boolean("NIR_PRINT", false);
2575
2576 return should_print;
2577 }
2578 #else
2579 static inline void nir_validate_shader(nir_shader *shader) { (void) shader; }
2580 static inline void nir_metadata_set_validation_flag(nir_shader *shader) { (void) shader; }
2581 static inline void nir_metadata_check_validation_flag(nir_shader *shader) { (void) shader; }
2582 static inline bool should_clone_nir(void) { return false; }
2583 static inline bool should_serialize_deserialize_nir(void) { return false; }
2584 static inline bool should_print_nir(void) { return false; }
2585 #endif /* NDEBUG */
2586
2587 #define _PASS(nir, do_pass) do { \
2588 do_pass \
2589 nir_validate_shader(nir); \
2590 if (should_clone_nir()) { \
2591 nir_shader *clone = nir_shader_clone(ralloc_parent(nir), nir); \
2592 ralloc_free(nir); \
2593 nir = clone; \
2594 } \
2595 if (should_serialize_deserialize_nir()) { \
2596 void *mem_ctx = ralloc_parent(nir); \
2597 nir = nir_shader_serialize_deserialize(mem_ctx, nir); \
2598 } \
2599 } while (0)
2600
2601 #define NIR_PASS(progress, nir, pass, ...) _PASS(nir, \
2602 nir_metadata_set_validation_flag(nir); \
2603 if (should_print_nir()) \
2604 printf("%s\n", #pass); \
2605 if (pass(nir, ##__VA_ARGS__)) { \
2606 progress = true; \
2607 if (should_print_nir()) \
2608 nir_print_shader(nir, stdout); \
2609 nir_metadata_check_validation_flag(nir); \
2610 } \
2611 )
2612
2613 #define NIR_PASS_V(nir, pass, ...) _PASS(nir, \
2614 if (should_print_nir()) \
2615 printf("%s\n", #pass); \
2616 pass(nir, ##__VA_ARGS__); \
2617 if (should_print_nir()) \
2618 nir_print_shader(nir, stdout); \
2619 )
2620
2621 void nir_calc_dominance_impl(nir_function_impl *impl);
2622 void nir_calc_dominance(nir_shader *shader);
2623
2624 nir_block *nir_dominance_lca(nir_block *b1, nir_block *b2);
2625 bool nir_block_dominates(nir_block *parent, nir_block *child);
2626
2627 void nir_dump_dom_tree_impl(nir_function_impl *impl, FILE *fp);
2628 void nir_dump_dom_tree(nir_shader *shader, FILE *fp);
2629
2630 void nir_dump_dom_frontier_impl(nir_function_impl *impl, FILE *fp);
2631 void nir_dump_dom_frontier(nir_shader *shader, FILE *fp);
2632
2633 void nir_dump_cfg_impl(nir_function_impl *impl, FILE *fp);
2634 void nir_dump_cfg(nir_shader *shader, FILE *fp);
2635
2636 int nir_gs_count_vertices(const nir_shader *shader);
2637
2638 bool nir_split_var_copies(nir_shader *shader);
2639 bool nir_split_per_member_structs(nir_shader *shader);
2640
2641 bool nir_lower_returns_impl(nir_function_impl *impl);
2642 bool nir_lower_returns(nir_shader *shader);
2643
2644 bool nir_inline_functions(nir_shader *shader);
2645
2646 bool nir_propagate_invariant(nir_shader *shader);
2647
2648 void nir_lower_var_copy_instr(nir_intrinsic_instr *copy, nir_shader *shader);
2649 void nir_lower_deref_copy_instr(struct nir_builder *b,
2650 nir_intrinsic_instr *copy);
2651 bool nir_lower_var_copies(nir_shader *shader);
2652
2653 void nir_fixup_deref_modes(nir_shader *shader);
2654
2655 bool nir_lower_global_vars_to_local(nir_shader *shader);
2656
2657 bool nir_lower_indirect_derefs(nir_shader *shader, nir_variable_mode modes);
2658
2659 bool nir_lower_locals_to_regs(nir_shader *shader);
2660
2661 void nir_lower_io_to_temporaries(nir_shader *shader,
2662 nir_function_impl *entrypoint,
2663 bool outputs, bool inputs);
2664
2665 void nir_shader_gather_info(nir_shader *shader, nir_function_impl *entrypoint);
2666
2667 void nir_assign_var_locations(struct exec_list *var_list, unsigned *size,
2668 int (*type_size)(const struct glsl_type *));
2669
2670 /* Some helpers to do very simple linking */
2671 bool nir_remove_unused_varyings(nir_shader *producer, nir_shader *consumer);
2672 void nir_compact_varyings(nir_shader *producer, nir_shader *consumer,
2673 bool default_to_smooth_interp);
2674
2675 typedef enum {
2676 /* If set, this forces all non-flat fragment shader inputs to be
2677 * interpolated as if with the "sample" qualifier. This requires
2678 * nir_shader_compiler_options::use_interpolated_input_intrinsics.
2679 */
2680 nir_lower_io_force_sample_interpolation = (1 << 1),
2681 } nir_lower_io_options;
2682 bool nir_lower_io(nir_shader *shader,
2683 nir_variable_mode modes,
2684 int (*type_size)(const struct glsl_type *),
2685 nir_lower_io_options);
2686 nir_src *nir_get_io_offset_src(nir_intrinsic_instr *instr);
2687 nir_src *nir_get_io_vertex_index_src(nir_intrinsic_instr *instr);
2688
2689 bool nir_is_per_vertex_io(const nir_variable *var, gl_shader_stage stage);
2690
2691 bool nir_lower_regs_to_ssa_impl(nir_function_impl *impl);
2692 bool nir_lower_regs_to_ssa(nir_shader *shader);
2693 bool nir_lower_vars_to_ssa(nir_shader *shader);
2694
2695 bool nir_remove_dead_derefs(nir_shader *shader);
2696 bool nir_remove_dead_derefs_impl(nir_function_impl *impl);
2697 bool nir_remove_dead_variables(nir_shader *shader, nir_variable_mode modes);
2698 bool nir_lower_constant_initializers(nir_shader *shader,
2699 nir_variable_mode modes);
2700
2701 bool nir_move_load_const(nir_shader *shader);
2702 bool nir_move_vec_src_uses_to_dest(nir_shader *shader);
2703 bool nir_lower_vec_to_movs(nir_shader *shader);
2704 void nir_lower_alpha_test(nir_shader *shader, enum compare_func func,
2705 bool alpha_to_one);
2706 bool nir_lower_alu(nir_shader *shader);
2707 bool nir_lower_alu_to_scalar(nir_shader *shader);
2708 bool nir_lower_load_const_to_scalar(nir_shader *shader);
2709 bool nir_lower_read_invocation_to_scalar(nir_shader *shader);
2710 bool nir_lower_phis_to_scalar(nir_shader *shader);
2711 void nir_lower_io_arrays_to_elements(nir_shader *producer, nir_shader *consumer);
2712 void nir_lower_io_arrays_to_elements_no_indirects(nir_shader *shader,
2713 bool outputs_only);
2714 void nir_lower_io_to_scalar(nir_shader *shader, nir_variable_mode mask);
2715 void nir_lower_io_to_scalar_early(nir_shader *shader, nir_variable_mode mask);
2716
2717 typedef struct nir_lower_subgroups_options {
2718 uint8_t subgroup_size;
2719 uint8_t ballot_bit_size;
2720 bool lower_to_scalar:1;
2721 bool lower_vote_trivial:1;
2722 bool lower_vote_eq_to_ballot:1;
2723 bool lower_subgroup_masks:1;
2724 bool lower_shuffle:1;
2725 bool lower_shuffle_to_32bit:1;
2726 bool lower_quad:1;
2727 } nir_lower_subgroups_options;
2728
2729 bool nir_lower_subgroups(nir_shader *shader,
2730 const nir_lower_subgroups_options *options);
2731
2732 bool nir_lower_system_values(nir_shader *shader);
2733
2734 typedef struct nir_lower_tex_options {
2735 /**
2736 * bitmask of (1 << GLSL_SAMPLER_DIM_x) to control for which
2737 * sampler types a texture projector is lowered.
2738 */
2739 unsigned lower_txp;
2740
2741 /**
2742 * If true, lower away nir_tex_src_offset for all texelfetch instructions.
2743 */
2744 bool lower_txf_offset;
2745
2746 /**
2747 * If true, lower away nir_tex_src_offset for all rect textures.
2748 */
2749 bool lower_rect_offset;
2750
2751 /**
2752 * If true, lower rect textures to 2D, using txs to fetch the
2753 * texture dimensions and dividing the texture coords by the
2754 * texture dims to normalize.
2755 */
2756 bool lower_rect;
2757
2758 /**
2759 * If true, convert yuv to rgb.
2760 */
2761 unsigned lower_y_uv_external;
2762 unsigned lower_y_u_v_external;
2763 unsigned lower_yx_xuxv_external;
2764 unsigned lower_xy_uxvx_external;
2765
2766 /**
2767 * To emulate certain texture wrap modes, this can be used
2768 * to saturate the specified tex coord to [0.0, 1.0]. The
2769 * bits are according to sampler #, ie. if, for example:
2770 *
2771 * (conf->saturate_s & (1 << n))
2772 *
2773 * is true, then the s coord for sampler n is saturated.
2774 *
2775 * Note that clamping must happen *after* projector lowering
2776 * so any projected texture sample instruction with a clamped
2777 * coordinate gets automatically lowered, regardless of the
2778 * 'lower_txp' setting.
2779 */
2780 unsigned saturate_s;
2781 unsigned saturate_t;
2782 unsigned saturate_r;
2783
2784 /* Bitmask of textures that need swizzling.
2785 *
2786 * If (swizzle_result & (1 << texture_index)), then the swizzle in
2787 * swizzles[texture_index] is applied to the result of the texturing
2788 * operation.
2789 */
2790 unsigned swizzle_result;
2791
2792 /* A swizzle for each texture. Values 0-3 represent x, y, z, or w swizzles
2793 * while 4 and 5 represent 0 and 1 respectively.
2794 */
2795 uint8_t swizzles[32][4];
2796
2797 /**
2798 * Bitmap of textures that need srgb to linear conversion. If
2799 * (lower_srgb & (1 << texture_index)) then the rgb (xyz) components
2800 * of the texture are lowered to linear.
2801 */
2802 unsigned lower_srgb;
2803
2804 /**
2805 * If true, lower nir_texop_txd on cube maps with nir_texop_txl.
2806 */
2807 bool lower_txd_cube_map;
2808
2809 /**
2810 * If true, lower nir_texop_txd on shadow samplers (except cube maps)
2811 * with nir_texop_txl. Notice that cube map shadow samplers are lowered
2812 * with lower_txd_cube_map.
2813 */
2814 bool lower_txd_shadow;
2815
2816 /**
2817 * If true, lower nir_texop_txd on all samplers to a nir_texop_txl.
2818 * Implies lower_txd_cube_map and lower_txd_shadow.
2819 */
2820 bool lower_txd;
2821 } nir_lower_tex_options;
2822
2823 bool nir_lower_tex(nir_shader *shader,
2824 const nir_lower_tex_options *options);
2825
2826 bool nir_lower_idiv(nir_shader *shader);
2827
2828 bool nir_lower_clip_vs(nir_shader *shader, unsigned ucp_enables);
2829 bool nir_lower_clip_fs(nir_shader *shader, unsigned ucp_enables);
2830 bool nir_lower_clip_cull_distance_arrays(nir_shader *nir);
2831
2832 void nir_lower_two_sided_color(nir_shader *shader);
2833
2834 bool nir_lower_clamp_color_outputs(nir_shader *shader);
2835
2836 void nir_lower_passthrough_edgeflags(nir_shader *shader);
2837 bool nir_lower_patch_vertices(nir_shader *nir, unsigned static_count,
2838 const gl_state_index16 *uniform_state_tokens);
2839
2840 typedef struct nir_lower_wpos_ytransform_options {
2841 gl_state_index16 state_tokens[STATE_LENGTH];
2842 bool fs_coord_origin_upper_left :1;
2843 bool fs_coord_origin_lower_left :1;
2844 bool fs_coord_pixel_center_integer :1;
2845 bool fs_coord_pixel_center_half_integer :1;
2846 } nir_lower_wpos_ytransform_options;
2847
2848 bool nir_lower_wpos_ytransform(nir_shader *shader,
2849 const nir_lower_wpos_ytransform_options *options);
2850 bool nir_lower_wpos_center(nir_shader *shader, const bool for_sample_shading);
2851
2852 typedef struct nir_lower_drawpixels_options {
2853 gl_state_index16 texcoord_state_tokens[STATE_LENGTH];
2854 gl_state_index16 scale_state_tokens[STATE_LENGTH];
2855 gl_state_index16 bias_state_tokens[STATE_LENGTH];
2856 unsigned drawpix_sampler;
2857 unsigned pixelmap_sampler;
2858 bool pixel_maps :1;
2859 bool scale_and_bias :1;
2860 } nir_lower_drawpixels_options;
2861
2862 void nir_lower_drawpixels(nir_shader *shader,
2863 const nir_lower_drawpixels_options *options);
2864
2865 typedef struct nir_lower_bitmap_options {
2866 unsigned sampler;
2867 bool swizzle_xxxx;
2868 } nir_lower_bitmap_options;
2869
2870 void nir_lower_bitmap(nir_shader *shader, const nir_lower_bitmap_options *options);
2871
2872 bool nir_lower_atomics_to_ssbo(nir_shader *shader, unsigned ssbo_offset);
2873 bool nir_lower_to_source_mods(nir_shader *shader);
2874
2875 bool nir_lower_gs_intrinsics(nir_shader *shader);
2876
2877 typedef unsigned (*nir_lower_bit_size_callback)(const nir_alu_instr *, void *);
2878
2879 bool nir_lower_bit_size(nir_shader *shader,
2880 nir_lower_bit_size_callback callback,
2881 void *callback_data);
2882
2883 typedef enum {
2884 nir_lower_imul64 = (1 << 0),
2885 nir_lower_isign64 = (1 << 1),
2886 /** Lower all int64 modulus and division opcodes */
2887 nir_lower_divmod64 = (1 << 2),
2888 } nir_lower_int64_options;
2889
2890 bool nir_lower_int64(nir_shader *shader, nir_lower_int64_options options);
2891
2892 typedef enum {
2893 nir_lower_drcp = (1 << 0),
2894 nir_lower_dsqrt = (1 << 1),
2895 nir_lower_drsq = (1 << 2),
2896 nir_lower_dtrunc = (1 << 3),
2897 nir_lower_dfloor = (1 << 4),
2898 nir_lower_dceil = (1 << 5),
2899 nir_lower_dfract = (1 << 6),
2900 nir_lower_dround_even = (1 << 7),
2901 nir_lower_dmod = (1 << 8)
2902 } nir_lower_doubles_options;
2903
2904 bool nir_lower_doubles(nir_shader *shader, nir_lower_doubles_options options);
2905 bool nir_lower_pack(nir_shader *shader);
2906
2907 bool nir_normalize_cubemap_coords(nir_shader *shader);
2908
2909 void nir_live_ssa_defs_impl(nir_function_impl *impl);
2910
2911 void nir_loop_analyze_impl(nir_function_impl *impl,
2912 nir_variable_mode indirect_mask);
2913
2914 bool nir_ssa_defs_interfere(nir_ssa_def *a, nir_ssa_def *b);
2915
2916 bool nir_repair_ssa_impl(nir_function_impl *impl);
2917 bool nir_repair_ssa(nir_shader *shader);
2918
2919 void nir_convert_loop_to_lcssa(nir_loop *loop);
2920
2921 /* If phi_webs_only is true, only convert SSA values involved in phi nodes to
2922 * registers. If false, convert all values (even those not involved in a phi
2923 * node) to registers.
2924 */
2925 bool nir_convert_from_ssa(nir_shader *shader, bool phi_webs_only);
2926
2927 bool nir_lower_phis_to_regs_block(nir_block *block);
2928 bool nir_lower_ssa_defs_to_regs_block(nir_block *block);
2929
2930 bool nir_opt_algebraic(nir_shader *shader);
2931 bool nir_opt_algebraic_before_ffma(nir_shader *shader);
2932 bool nir_opt_algebraic_late(nir_shader *shader);
2933 bool nir_opt_constant_folding(nir_shader *shader);
2934
2935 bool nir_opt_global_to_local(nir_shader *shader);
2936
2937 bool nir_copy_prop(nir_shader *shader);
2938
2939 bool nir_opt_copy_prop_vars(nir_shader *shader);
2940
2941 bool nir_opt_cse(nir_shader *shader);
2942
2943 bool nir_opt_dce(nir_shader *shader);
2944
2945 bool nir_opt_dead_cf(nir_shader *shader);
2946
2947 bool nir_opt_gcm(nir_shader *shader, bool value_number);
2948
2949 bool nir_opt_if(nir_shader *shader);
2950
2951 bool nir_opt_intrinsics(nir_shader *shader);
2952
2953 bool nir_opt_large_constants(nir_shader *shader,
2954 glsl_type_size_align_func size_align,
2955 unsigned threshold);
2956
2957 bool nir_opt_loop_unroll(nir_shader *shader, nir_variable_mode indirect_mask);
2958
2959 bool nir_opt_move_comparisons(nir_shader *shader);
2960
2961 bool nir_opt_move_load_ubo(nir_shader *shader);
2962
2963 bool nir_opt_peephole_select(nir_shader *shader, unsigned limit);
2964
2965 bool nir_opt_remove_phis_impl(nir_function_impl *impl);
2966 bool nir_opt_remove_phis(nir_shader *shader);
2967
2968 bool nir_opt_shrink_load(nir_shader *shader);
2969
2970 bool nir_opt_trivial_continues(nir_shader *shader);
2971
2972 bool nir_opt_undef(nir_shader *shader);
2973
2974 bool nir_opt_conditional_discard(nir_shader *shader);
2975
2976 void nir_sweep(nir_shader *shader);
2977
2978 nir_intrinsic_op nir_intrinsic_from_system_value(gl_system_value val);
2979 gl_system_value nir_system_value_from_intrinsic(nir_intrinsic_op intrin);
2980
2981 #ifdef __cplusplus
2982 } /* extern "C" */
2983 #endif
2984
2985 #endif /* NIR_H */