be7b92dd7d29d5fe98b7b5e42e27e57a6224bce4
[mesa.git] / src / compiler / nir / nir.h
1 /*
2 * Copyright © 2014 Connor Abbott
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Connor Abbott (cwabbott0@gmail.com)
25 *
26 */
27
28 #ifndef NIR_H
29 #define NIR_H
30
31 #include "util/hash_table.h"
32 #include "compiler/glsl/list.h"
33 #include "GL/gl.h" /* GLenum */
34 #include "util/list.h"
35 #include "util/ralloc.h"
36 #include "util/set.h"
37 #include "util/bitset.h"
38 #include "util/macros.h"
39 #include "compiler/nir_types.h"
40 #include "compiler/shader_enums.h"
41 #include "compiler/shader_info.h"
42 #include <stdio.h>
43
44 #ifndef NDEBUG
45 #include "util/debug.h"
46 #endif /* NDEBUG */
47
48 #include "nir_opcodes.h"
49
50 #if defined(_WIN32) && !defined(snprintf)
51 #define snprintf _snprintf
52 #endif
53
54 #ifdef __cplusplus
55 extern "C" {
56 #endif
57
58 #define NIR_FALSE 0u
59 #define NIR_TRUE (~0u)
60
61 /** Defines a cast function
62 *
63 * This macro defines a cast function from in_type to out_type where
64 * out_type is some structure type that contains a field of type out_type.
65 *
66 * Note that you have to be a bit careful as the generated cast function
67 * destroys constness.
68 */
69 #define NIR_DEFINE_CAST(name, in_type, out_type, field, \
70 type_field, type_value) \
71 static inline out_type * \
72 name(const in_type *parent) \
73 { \
74 assert(parent && parent->type_field == type_value); \
75 return exec_node_data(out_type, parent, field); \
76 }
77
78 struct nir_function;
79 struct nir_shader;
80 struct nir_instr;
81 struct nir_builder;
82
83
84 /**
85 * Description of built-in state associated with a uniform
86 *
87 * \sa nir_variable::state_slots
88 */
89 typedef struct {
90 gl_state_index16 tokens[STATE_LENGTH];
91 int swizzle;
92 } nir_state_slot;
93
94 typedef enum {
95 nir_var_shader_in = (1 << 0),
96 nir_var_shader_out = (1 << 1),
97 nir_var_global = (1 << 2),
98 nir_var_local = (1 << 3),
99 nir_var_uniform = (1 << 4),
100 nir_var_shader_storage = (1 << 5),
101 nir_var_system_value = (1 << 6),
102 nir_var_shared = (1 << 8),
103 nir_var_all = ~0,
104 } nir_variable_mode;
105
106 /**
107 * Rounding modes.
108 */
109 typedef enum {
110 nir_rounding_mode_undef = 0,
111 nir_rounding_mode_rtne = 1, /* round to nearest even */
112 nir_rounding_mode_ru = 2, /* round up */
113 nir_rounding_mode_rd = 3, /* round down */
114 nir_rounding_mode_rtz = 4, /* round towards zero */
115 } nir_rounding_mode;
116
117 typedef union {
118 float f32[4];
119 double f64[4];
120 int8_t i8[4];
121 uint8_t u8[4];
122 int16_t i16[4];
123 uint16_t u16[4];
124 int32_t i32[4];
125 uint32_t u32[4];
126 int64_t i64[4];
127 uint64_t u64[4];
128 } nir_const_value;
129
130 typedef struct nir_constant {
131 /**
132 * Value of the constant.
133 *
134 * The field used to back the values supplied by the constant is determined
135 * by the type associated with the \c nir_variable. Constants may be
136 * scalars, vectors, or matrices.
137 */
138 nir_const_value values[4];
139
140 /* we could get this from the var->type but makes clone *much* easier to
141 * not have to care about the type.
142 */
143 unsigned num_elements;
144
145 /* Array elements / Structure Fields */
146 struct nir_constant **elements;
147 } nir_constant;
148
149 /**
150 * \brief Layout qualifiers for gl_FragDepth.
151 *
152 * The AMD/ARB_conservative_depth extensions allow gl_FragDepth to be redeclared
153 * with a layout qualifier.
154 */
155 typedef enum {
156 nir_depth_layout_none, /**< No depth layout is specified. */
157 nir_depth_layout_any,
158 nir_depth_layout_greater,
159 nir_depth_layout_less,
160 nir_depth_layout_unchanged
161 } nir_depth_layout;
162
163 /**
164 * Either a uniform, global variable, shader input, or shader output. Based on
165 * ir_variable - it should be easy to translate between the two.
166 */
167
168 typedef struct nir_variable {
169 struct exec_node node;
170
171 /**
172 * Declared type of the variable
173 */
174 const struct glsl_type *type;
175
176 /**
177 * Declared name of the variable
178 */
179 char *name;
180
181 struct nir_variable_data {
182 /**
183 * Storage class of the variable.
184 *
185 * \sa nir_variable_mode
186 */
187 nir_variable_mode mode;
188
189 /**
190 * Is the variable read-only?
191 *
192 * This is set for variables declared as \c const, shader inputs,
193 * and uniforms.
194 */
195 unsigned read_only:1;
196 unsigned centroid:1;
197 unsigned sample:1;
198 unsigned patch:1;
199 unsigned invariant:1;
200
201 /**
202 * When separate shader programs are enabled, only input/outputs between
203 * the stages of a multi-stage separate program can be safely removed
204 * from the shader interface. Other input/outputs must remains active.
205 *
206 * This is also used to make sure xfb varyings that are unused by the
207 * fragment shader are not removed.
208 */
209 unsigned always_active_io:1;
210
211 /**
212 * Interpolation mode for shader inputs / outputs
213 *
214 * \sa glsl_interp_mode
215 */
216 unsigned interpolation:2;
217
218 /**
219 * \name ARB_fragment_coord_conventions
220 * @{
221 */
222 unsigned origin_upper_left:1;
223 unsigned pixel_center_integer:1;
224 /*@}*/
225
226 /**
227 * If non-zero, then this variable may be packed along with other variables
228 * into a single varying slot, so this offset should be applied when
229 * accessing components. For example, an offset of 1 means that the x
230 * component of this variable is actually stored in component y of the
231 * location specified by \c location.
232 */
233 unsigned location_frac:2;
234
235 /**
236 * If true, this variable represents an array of scalars that should
237 * be tightly packed. In other words, consecutive array elements
238 * should be stored one component apart, rather than one slot apart.
239 */
240 unsigned compact:1;
241
242 /**
243 * Whether this is a fragment shader output implicitly initialized with
244 * the previous contents of the specified render target at the
245 * framebuffer location corresponding to this shader invocation.
246 */
247 unsigned fb_fetch_output:1;
248
249 /**
250 * Non-zero if this variable is considered bindless as defined by
251 * ARB_bindless_texture.
252 */
253 unsigned bindless:1;
254
255 /**
256 * Was an explicit binding set in the shader?
257 */
258 unsigned explicit_binding:1;
259
260 /**
261 * \brief Layout qualifier for gl_FragDepth.
262 *
263 * This is not equal to \c ir_depth_layout_none if and only if this
264 * variable is \c gl_FragDepth and a layout qualifier is specified.
265 */
266 nir_depth_layout depth_layout;
267
268 /**
269 * Storage location of the base of this variable
270 *
271 * The precise meaning of this field depends on the nature of the variable.
272 *
273 * - Vertex shader input: one of the values from \c gl_vert_attrib.
274 * - Vertex shader output: one of the values from \c gl_varying_slot.
275 * - Geometry shader input: one of the values from \c gl_varying_slot.
276 * - Geometry shader output: one of the values from \c gl_varying_slot.
277 * - Fragment shader input: one of the values from \c gl_varying_slot.
278 * - Fragment shader output: one of the values from \c gl_frag_result.
279 * - Uniforms: Per-stage uniform slot number for default uniform block.
280 * - Uniforms: Index within the uniform block definition for UBO members.
281 * - Non-UBO Uniforms: uniform slot number.
282 * - Other: This field is not currently used.
283 *
284 * If the variable is a uniform, shader input, or shader output, and the
285 * slot has not been assigned, the value will be -1.
286 */
287 int location;
288
289 /**
290 * The actual location of the variable in the IR. Only valid for inputs
291 * and outputs.
292 */
293 unsigned int driver_location;
294
295 /**
296 * Vertex stream output identifier.
297 *
298 * For packed outputs, bit 31 is set and bits [2*i+1,2*i] indicate the
299 * stream of the i-th component.
300 */
301 unsigned stream;
302
303 /**
304 * output index for dual source blending.
305 */
306 int index;
307
308 /**
309 * Descriptor set binding for sampler or UBO.
310 */
311 int descriptor_set;
312
313 /**
314 * Initial binding point for a sampler or UBO.
315 *
316 * For array types, this represents the binding point for the first element.
317 */
318 int binding;
319
320 /**
321 * Location an atomic counter is stored at.
322 */
323 unsigned offset;
324
325 /**
326 * ARB_shader_image_load_store qualifiers.
327 */
328 struct {
329 bool read_only; /**< "readonly" qualifier. */
330 bool write_only; /**< "writeonly" qualifier. */
331 bool coherent;
332 bool _volatile;
333 bool restrict_flag;
334
335 /** Image internal format if specified explicitly, otherwise GL_NONE. */
336 GLenum format;
337 } image;
338 } data;
339
340 /**
341 * Built-in state that backs this uniform
342 *
343 * Once set at variable creation, \c state_slots must remain invariant.
344 * This is because, ideally, this array would be shared by all clones of
345 * this variable in the IR tree. In other words, we'd really like for it
346 * to be a fly-weight.
347 *
348 * If the variable is not a uniform, \c num_state_slots will be zero and
349 * \c state_slots will be \c NULL.
350 */
351 /*@{*/
352 unsigned num_state_slots; /**< Number of state slots used */
353 nir_state_slot *state_slots; /**< State descriptors. */
354 /*@}*/
355
356 /**
357 * Constant expression assigned in the initializer of the variable
358 *
359 * This field should only be used temporarily by creators of NIR shaders
360 * and then lower_constant_initializers can be used to get rid of them.
361 * Most of the rest of NIR ignores this field or asserts that it's NULL.
362 */
363 nir_constant *constant_initializer;
364
365 /**
366 * For variables that are in an interface block or are an instance of an
367 * interface block, this is the \c GLSL_TYPE_INTERFACE type for that block.
368 *
369 * \sa ir_variable::location
370 */
371 const struct glsl_type *interface_type;
372
373 /**
374 * Description of per-member data for per-member struct variables
375 *
376 * This is used for variables which are actually an amalgamation of
377 * multiple entities such as a struct of built-in values or a struct of
378 * inputs each with their own layout specifier. This is only allowed on
379 * variables with a struct or array of array of struct type.
380 */
381 unsigned num_members;
382 struct nir_variable_data *members;
383 } nir_variable;
384
385 #define nir_foreach_variable(var, var_list) \
386 foreach_list_typed(nir_variable, var, node, var_list)
387
388 #define nir_foreach_variable_safe(var, var_list) \
389 foreach_list_typed_safe(nir_variable, var, node, var_list)
390
391 static inline bool
392 nir_variable_is_global(const nir_variable *var)
393 {
394 return var->data.mode != nir_var_local;
395 }
396
397 typedef struct nir_register {
398 struct exec_node node;
399
400 unsigned num_components; /** < number of vector components */
401 unsigned num_array_elems; /** < size of array (0 for no array) */
402
403 /* The bit-size of each channel; must be one of 8, 16, 32, or 64 */
404 uint8_t bit_size;
405
406 /** generic register index. */
407 unsigned index;
408
409 /** only for debug purposes, can be NULL */
410 const char *name;
411
412 /** whether this register is local (per-function) or global (per-shader) */
413 bool is_global;
414
415 /**
416 * If this flag is set to true, then accessing channels >= num_components
417 * is well-defined, and simply spills over to the next array element. This
418 * is useful for backends that can do per-component accessing, in
419 * particular scalar backends. By setting this flag and making
420 * num_components equal to 1, structures can be packed tightly into
421 * registers and then registers can be accessed per-component to get to
422 * each structure member, even if it crosses vec4 boundaries.
423 */
424 bool is_packed;
425
426 /** set of nir_srcs where this register is used (read from) */
427 struct list_head uses;
428
429 /** set of nir_dests where this register is defined (written to) */
430 struct list_head defs;
431
432 /** set of nir_ifs where this register is used as a condition */
433 struct list_head if_uses;
434 } nir_register;
435
436 #define nir_foreach_register(reg, reg_list) \
437 foreach_list_typed(nir_register, reg, node, reg_list)
438 #define nir_foreach_register_safe(reg, reg_list) \
439 foreach_list_typed_safe(nir_register, reg, node, reg_list)
440
441 typedef enum {
442 nir_instr_type_alu,
443 nir_instr_type_deref,
444 nir_instr_type_call,
445 nir_instr_type_tex,
446 nir_instr_type_intrinsic,
447 nir_instr_type_load_const,
448 nir_instr_type_jump,
449 nir_instr_type_ssa_undef,
450 nir_instr_type_phi,
451 nir_instr_type_parallel_copy,
452 } nir_instr_type;
453
454 typedef struct nir_instr {
455 struct exec_node node;
456 nir_instr_type type;
457 struct nir_block *block;
458
459 /** generic instruction index. */
460 unsigned index;
461
462 /* A temporary for optimization and analysis passes to use for storing
463 * flags. For instance, DCE uses this to store the "dead/live" info.
464 */
465 uint8_t pass_flags;
466 } nir_instr;
467
468 static inline nir_instr *
469 nir_instr_next(nir_instr *instr)
470 {
471 struct exec_node *next = exec_node_get_next(&instr->node);
472 if (exec_node_is_tail_sentinel(next))
473 return NULL;
474 else
475 return exec_node_data(nir_instr, next, node);
476 }
477
478 static inline nir_instr *
479 nir_instr_prev(nir_instr *instr)
480 {
481 struct exec_node *prev = exec_node_get_prev(&instr->node);
482 if (exec_node_is_head_sentinel(prev))
483 return NULL;
484 else
485 return exec_node_data(nir_instr, prev, node);
486 }
487
488 static inline bool
489 nir_instr_is_first(const nir_instr *instr)
490 {
491 return exec_node_is_head_sentinel(exec_node_get_prev_const(&instr->node));
492 }
493
494 static inline bool
495 nir_instr_is_last(const nir_instr *instr)
496 {
497 return exec_node_is_tail_sentinel(exec_node_get_next_const(&instr->node));
498 }
499
500 typedef struct nir_ssa_def {
501 /** for debugging only, can be NULL */
502 const char* name;
503
504 /** generic SSA definition index. */
505 unsigned index;
506
507 /** Index into the live_in and live_out bitfields */
508 unsigned live_index;
509
510 /** Instruction which produces this SSA value. */
511 nir_instr *parent_instr;
512
513 /** set of nir_instrs where this register is used (read from) */
514 struct list_head uses;
515
516 /** set of nir_ifs where this register is used as a condition */
517 struct list_head if_uses;
518
519 uint8_t num_components;
520
521 /* The bit-size of each channel; must be one of 8, 16, 32, or 64 */
522 uint8_t bit_size;
523 } nir_ssa_def;
524
525 struct nir_src;
526
527 typedef struct {
528 nir_register *reg;
529 struct nir_src *indirect; /** < NULL for no indirect offset */
530 unsigned base_offset;
531
532 /* TODO use-def chain goes here */
533 } nir_reg_src;
534
535 typedef struct {
536 nir_instr *parent_instr;
537 struct list_head def_link;
538
539 nir_register *reg;
540 struct nir_src *indirect; /** < NULL for no indirect offset */
541 unsigned base_offset;
542
543 /* TODO def-use chain goes here */
544 } nir_reg_dest;
545
546 struct nir_if;
547
548 typedef struct nir_src {
549 union {
550 /** Instruction that consumes this value as a source. */
551 nir_instr *parent_instr;
552 struct nir_if *parent_if;
553 };
554
555 struct list_head use_link;
556
557 union {
558 nir_reg_src reg;
559 nir_ssa_def *ssa;
560 };
561
562 bool is_ssa;
563 } nir_src;
564
565 static inline nir_src
566 nir_src_init(void)
567 {
568 nir_src src = { { NULL } };
569 return src;
570 }
571
572 #define NIR_SRC_INIT nir_src_init()
573
574 #define nir_foreach_use(src, reg_or_ssa_def) \
575 list_for_each_entry(nir_src, src, &(reg_or_ssa_def)->uses, use_link)
576
577 #define nir_foreach_use_safe(src, reg_or_ssa_def) \
578 list_for_each_entry_safe(nir_src, src, &(reg_or_ssa_def)->uses, use_link)
579
580 #define nir_foreach_if_use(src, reg_or_ssa_def) \
581 list_for_each_entry(nir_src, src, &(reg_or_ssa_def)->if_uses, use_link)
582
583 #define nir_foreach_if_use_safe(src, reg_or_ssa_def) \
584 list_for_each_entry_safe(nir_src, src, &(reg_or_ssa_def)->if_uses, use_link)
585
586 typedef struct {
587 union {
588 nir_reg_dest reg;
589 nir_ssa_def ssa;
590 };
591
592 bool is_ssa;
593 } nir_dest;
594
595 static inline nir_dest
596 nir_dest_init(void)
597 {
598 nir_dest dest = { { { NULL } } };
599 return dest;
600 }
601
602 #define NIR_DEST_INIT nir_dest_init()
603
604 #define nir_foreach_def(dest, reg) \
605 list_for_each_entry(nir_dest, dest, &(reg)->defs, reg.def_link)
606
607 #define nir_foreach_def_safe(dest, reg) \
608 list_for_each_entry_safe(nir_dest, dest, &(reg)->defs, reg.def_link)
609
610 static inline nir_src
611 nir_src_for_ssa(nir_ssa_def *def)
612 {
613 nir_src src = NIR_SRC_INIT;
614
615 src.is_ssa = true;
616 src.ssa = def;
617
618 return src;
619 }
620
621 static inline nir_src
622 nir_src_for_reg(nir_register *reg)
623 {
624 nir_src src = NIR_SRC_INIT;
625
626 src.is_ssa = false;
627 src.reg.reg = reg;
628 src.reg.indirect = NULL;
629 src.reg.base_offset = 0;
630
631 return src;
632 }
633
634 static inline nir_dest
635 nir_dest_for_reg(nir_register *reg)
636 {
637 nir_dest dest = NIR_DEST_INIT;
638
639 dest.reg.reg = reg;
640
641 return dest;
642 }
643
644 static inline unsigned
645 nir_src_bit_size(nir_src src)
646 {
647 return src.is_ssa ? src.ssa->bit_size : src.reg.reg->bit_size;
648 }
649
650 static inline unsigned
651 nir_src_num_components(nir_src src)
652 {
653 return src.is_ssa ? src.ssa->num_components : src.reg.reg->num_components;
654 }
655
656 static inline unsigned
657 nir_dest_bit_size(nir_dest dest)
658 {
659 return dest.is_ssa ? dest.ssa.bit_size : dest.reg.reg->bit_size;
660 }
661
662 static inline unsigned
663 nir_dest_num_components(nir_dest dest)
664 {
665 return dest.is_ssa ? dest.ssa.num_components : dest.reg.reg->num_components;
666 }
667
668 void nir_src_copy(nir_src *dest, const nir_src *src, void *instr_or_if);
669 void nir_dest_copy(nir_dest *dest, const nir_dest *src, nir_instr *instr);
670
671 typedef struct {
672 nir_src src;
673
674 /**
675 * \name input modifiers
676 */
677 /*@{*/
678 /**
679 * For inputs interpreted as floating point, flips the sign bit. For
680 * inputs interpreted as integers, performs the two's complement negation.
681 */
682 bool negate;
683
684 /**
685 * Clears the sign bit for floating point values, and computes the integer
686 * absolute value for integers. Note that the negate modifier acts after
687 * the absolute value modifier, therefore if both are set then all inputs
688 * will become negative.
689 */
690 bool abs;
691 /*@}*/
692
693 /**
694 * For each input component, says which component of the register it is
695 * chosen from. Note that which elements of the swizzle are used and which
696 * are ignored are based on the write mask for most opcodes - for example,
697 * a statement like "foo.xzw = bar.zyx" would have a writemask of 1101b and
698 * a swizzle of {2, x, 1, 0} where x means "don't care."
699 */
700 uint8_t swizzle[4];
701 } nir_alu_src;
702
703 typedef struct {
704 nir_dest dest;
705
706 /**
707 * \name saturate output modifier
708 *
709 * Only valid for opcodes that output floating-point numbers. Clamps the
710 * output to between 0.0 and 1.0 inclusive.
711 */
712
713 bool saturate;
714
715 unsigned write_mask : 4; /* ignored if dest.is_ssa is true */
716 } nir_alu_dest;
717
718 typedef enum {
719 nir_type_invalid = 0, /* Not a valid type */
720 nir_type_float,
721 nir_type_int,
722 nir_type_uint,
723 nir_type_bool,
724 nir_type_bool32 = 32 | nir_type_bool,
725 nir_type_int8 = 8 | nir_type_int,
726 nir_type_int16 = 16 | nir_type_int,
727 nir_type_int32 = 32 | nir_type_int,
728 nir_type_int64 = 64 | nir_type_int,
729 nir_type_uint8 = 8 | nir_type_uint,
730 nir_type_uint16 = 16 | nir_type_uint,
731 nir_type_uint32 = 32 | nir_type_uint,
732 nir_type_uint64 = 64 | nir_type_uint,
733 nir_type_float16 = 16 | nir_type_float,
734 nir_type_float32 = 32 | nir_type_float,
735 nir_type_float64 = 64 | nir_type_float,
736 } nir_alu_type;
737
738 #define NIR_ALU_TYPE_SIZE_MASK 0xfffffff8
739 #define NIR_ALU_TYPE_BASE_TYPE_MASK 0x00000007
740
741 static inline unsigned
742 nir_alu_type_get_type_size(nir_alu_type type)
743 {
744 return type & NIR_ALU_TYPE_SIZE_MASK;
745 }
746
747 static inline unsigned
748 nir_alu_type_get_base_type(nir_alu_type type)
749 {
750 return type & NIR_ALU_TYPE_BASE_TYPE_MASK;
751 }
752
753 static inline nir_alu_type
754 nir_get_nir_type_for_glsl_base_type(enum glsl_base_type base_type)
755 {
756 switch (base_type) {
757 case GLSL_TYPE_BOOL:
758 return nir_type_bool32;
759 break;
760 case GLSL_TYPE_UINT:
761 return nir_type_uint32;
762 break;
763 case GLSL_TYPE_INT:
764 return nir_type_int32;
765 break;
766 case GLSL_TYPE_UINT16:
767 return nir_type_uint16;
768 break;
769 case GLSL_TYPE_INT16:
770 return nir_type_int16;
771 break;
772 case GLSL_TYPE_UINT8:
773 return nir_type_uint8;
774 case GLSL_TYPE_INT8:
775 return nir_type_int8;
776 case GLSL_TYPE_UINT64:
777 return nir_type_uint64;
778 break;
779 case GLSL_TYPE_INT64:
780 return nir_type_int64;
781 break;
782 case GLSL_TYPE_FLOAT:
783 return nir_type_float32;
784 break;
785 case GLSL_TYPE_FLOAT16:
786 return nir_type_float16;
787 break;
788 case GLSL_TYPE_DOUBLE:
789 return nir_type_float64;
790 break;
791 default:
792 unreachable("unknown type");
793 }
794 }
795
796 static inline nir_alu_type
797 nir_get_nir_type_for_glsl_type(const struct glsl_type *type)
798 {
799 return nir_get_nir_type_for_glsl_base_type(glsl_get_base_type(type));
800 }
801
802 nir_op nir_type_conversion_op(nir_alu_type src, nir_alu_type dst,
803 nir_rounding_mode rnd);
804
805 typedef enum {
806 NIR_OP_IS_COMMUTATIVE = (1 << 0),
807 NIR_OP_IS_ASSOCIATIVE = (1 << 1),
808 } nir_op_algebraic_property;
809
810 typedef struct {
811 const char *name;
812
813 unsigned num_inputs;
814
815 /**
816 * The number of components in the output
817 *
818 * If non-zero, this is the size of the output and input sizes are
819 * explicitly given; swizzle and writemask are still in effect, but if
820 * the output component is masked out, then the input component may
821 * still be in use.
822 *
823 * If zero, the opcode acts in the standard, per-component manner; the
824 * operation is performed on each component (except the ones that are
825 * masked out) with the input being taken from the input swizzle for
826 * that component.
827 *
828 * The size of some of the inputs may be given (i.e. non-zero) even
829 * though output_size is zero; in that case, the inputs with a zero
830 * size act per-component, while the inputs with non-zero size don't.
831 */
832 unsigned output_size;
833
834 /**
835 * The type of vector that the instruction outputs. Note that the
836 * staurate modifier is only allowed on outputs with the float type.
837 */
838
839 nir_alu_type output_type;
840
841 /**
842 * The number of components in each input
843 */
844 unsigned input_sizes[4];
845
846 /**
847 * The type of vector that each input takes. Note that negate and
848 * absolute value are only allowed on inputs with int or float type and
849 * behave differently on the two.
850 */
851 nir_alu_type input_types[4];
852
853 nir_op_algebraic_property algebraic_properties;
854 } nir_op_info;
855
856 extern const nir_op_info nir_op_infos[nir_num_opcodes];
857
858 typedef struct nir_alu_instr {
859 nir_instr instr;
860 nir_op op;
861
862 /** Indicates that this ALU instruction generates an exact value
863 *
864 * This is kind of a mixture of GLSL "precise" and "invariant" and not
865 * really equivalent to either. This indicates that the value generated by
866 * this operation is high-precision and any code transformations that touch
867 * it must ensure that the resulting value is bit-for-bit identical to the
868 * original.
869 */
870 bool exact;
871
872 nir_alu_dest dest;
873 nir_alu_src src[];
874 } nir_alu_instr;
875
876 void nir_alu_src_copy(nir_alu_src *dest, const nir_alu_src *src,
877 nir_alu_instr *instr);
878 void nir_alu_dest_copy(nir_alu_dest *dest, const nir_alu_dest *src,
879 nir_alu_instr *instr);
880
881 /* is this source channel used? */
882 static inline bool
883 nir_alu_instr_channel_used(const nir_alu_instr *instr, unsigned src,
884 unsigned channel)
885 {
886 if (nir_op_infos[instr->op].input_sizes[src] > 0)
887 return channel < nir_op_infos[instr->op].input_sizes[src];
888
889 return (instr->dest.write_mask >> channel) & 1;
890 }
891
892 /*
893 * For instructions whose destinations are SSA, get the number of channels
894 * used for a source
895 */
896 static inline unsigned
897 nir_ssa_alu_instr_src_components(const nir_alu_instr *instr, unsigned src)
898 {
899 assert(instr->dest.dest.is_ssa);
900
901 if (nir_op_infos[instr->op].input_sizes[src] > 0)
902 return nir_op_infos[instr->op].input_sizes[src];
903
904 return instr->dest.dest.ssa.num_components;
905 }
906
907 bool nir_alu_srcs_equal(const nir_alu_instr *alu1, const nir_alu_instr *alu2,
908 unsigned src1, unsigned src2);
909
910 typedef enum {
911 nir_deref_type_var,
912 nir_deref_type_array,
913 nir_deref_type_array_wildcard,
914 nir_deref_type_struct,
915 nir_deref_type_cast,
916 } nir_deref_type;
917
918 typedef struct {
919 nir_instr instr;
920
921 /** The type of this deref instruction */
922 nir_deref_type deref_type;
923
924 /** The mode of the underlying variable */
925 nir_variable_mode mode;
926
927 /** The dereferenced type of the resulting pointer value */
928 const struct glsl_type *type;
929
930 union {
931 /** Variable being dereferenced if deref_type is a deref_var */
932 nir_variable *var;
933
934 /** Parent deref if deref_type is not deref_var */
935 nir_src parent;
936 };
937
938 /** Additional deref parameters */
939 union {
940 struct {
941 nir_src index;
942 } arr;
943
944 struct {
945 unsigned index;
946 } strct;
947 };
948
949 /** Destination to store the resulting "pointer" */
950 nir_dest dest;
951 } nir_deref_instr;
952
953 NIR_DEFINE_CAST(nir_instr_as_deref, nir_instr, nir_deref_instr, instr,
954 type, nir_instr_type_deref)
955
956 static inline nir_deref_instr *
957 nir_src_as_deref(nir_src src)
958 {
959 if (!src.is_ssa)
960 return NULL;
961
962 if (src.ssa->parent_instr->type != nir_instr_type_deref)
963 return NULL;
964
965 return nir_instr_as_deref(src.ssa->parent_instr);
966 }
967
968 static inline nir_deref_instr *
969 nir_deref_instr_parent(const nir_deref_instr *instr)
970 {
971 if (instr->deref_type == nir_deref_type_var)
972 return NULL;
973 else
974 return nir_src_as_deref(instr->parent);
975 }
976
977 static inline nir_variable *
978 nir_deref_instr_get_variable(const nir_deref_instr *instr)
979 {
980 while (instr->deref_type != nir_deref_type_var) {
981 if (instr->deref_type == nir_deref_type_cast)
982 return NULL;
983
984 instr = nir_deref_instr_parent(instr);
985 }
986
987 return instr->var;
988 }
989
990 bool nir_deref_instr_remove_if_unused(nir_deref_instr *instr);
991
992 typedef struct {
993 nir_instr instr;
994
995 struct nir_function *callee;
996
997 unsigned num_params;
998 nir_src params[];
999 } nir_call_instr;
1000
1001 #include "nir_intrinsics.h"
1002
1003 #define NIR_INTRINSIC_MAX_CONST_INDEX 3
1004
1005 /** Represents an intrinsic
1006 *
1007 * An intrinsic is an instruction type for handling things that are
1008 * more-or-less regular operations but don't just consume and produce SSA
1009 * values like ALU operations do. Intrinsics are not for things that have
1010 * special semantic meaning such as phi nodes and parallel copies.
1011 * Examples of intrinsics include variable load/store operations, system
1012 * value loads, and the like. Even though texturing more-or-less falls
1013 * under this category, texturing is its own instruction type because
1014 * trying to represent texturing with intrinsics would lead to a
1015 * combinatorial explosion of intrinsic opcodes.
1016 *
1017 * By having a single instruction type for handling a lot of different
1018 * cases, optimization passes can look for intrinsics and, for the most
1019 * part, completely ignore them. Each intrinsic type also has a few
1020 * possible flags that govern whether or not they can be reordered or
1021 * eliminated. That way passes like dead code elimination can still work
1022 * on intrisics without understanding the meaning of each.
1023 *
1024 * Each intrinsic has some number of constant indices, some number of
1025 * variables, and some number of sources. What these sources, variables,
1026 * and indices mean depends on the intrinsic and is documented with the
1027 * intrinsic declaration in nir_intrinsics.h. Intrinsics and texture
1028 * instructions are the only types of instruction that can operate on
1029 * variables.
1030 */
1031 typedef struct {
1032 nir_instr instr;
1033
1034 nir_intrinsic_op intrinsic;
1035
1036 nir_dest dest;
1037
1038 /** number of components if this is a vectorized intrinsic
1039 *
1040 * Similarly to ALU operations, some intrinsics are vectorized.
1041 * An intrinsic is vectorized if nir_intrinsic_infos.dest_components == 0.
1042 * For vectorized intrinsics, the num_components field specifies the
1043 * number of destination components and the number of source components
1044 * for all sources with nir_intrinsic_infos.src_components[i] == 0.
1045 */
1046 uint8_t num_components;
1047
1048 int const_index[NIR_INTRINSIC_MAX_CONST_INDEX];
1049
1050 nir_src src[];
1051 } nir_intrinsic_instr;
1052
1053 static inline nir_variable *
1054 nir_intrinsic_get_var(nir_intrinsic_instr *intrin, unsigned i)
1055 {
1056 return nir_deref_instr_get_variable(nir_src_as_deref(intrin->src[i]));
1057 }
1058
1059 /**
1060 * \name NIR intrinsics semantic flags
1061 *
1062 * information about what the compiler can do with the intrinsics.
1063 *
1064 * \sa nir_intrinsic_info::flags
1065 */
1066 typedef enum {
1067 /**
1068 * whether the intrinsic can be safely eliminated if none of its output
1069 * value is not being used.
1070 */
1071 NIR_INTRINSIC_CAN_ELIMINATE = (1 << 0),
1072
1073 /**
1074 * Whether the intrinsic can be reordered with respect to any other
1075 * intrinsic, i.e. whether the only reordering dependencies of the
1076 * intrinsic are due to the register reads/writes.
1077 */
1078 NIR_INTRINSIC_CAN_REORDER = (1 << 1),
1079 } nir_intrinsic_semantic_flag;
1080
1081 /**
1082 * \name NIR intrinsics const-index flag
1083 *
1084 * Indicates the usage of a const_index slot.
1085 *
1086 * \sa nir_intrinsic_info::index_map
1087 */
1088 typedef enum {
1089 /**
1090 * Generally instructions that take a offset src argument, can encode
1091 * a constant 'base' value which is added to the offset.
1092 */
1093 NIR_INTRINSIC_BASE = 1,
1094
1095 /**
1096 * For store instructions, a writemask for the store.
1097 */
1098 NIR_INTRINSIC_WRMASK = 2,
1099
1100 /**
1101 * The stream-id for GS emit_vertex/end_primitive intrinsics.
1102 */
1103 NIR_INTRINSIC_STREAM_ID = 3,
1104
1105 /**
1106 * The clip-plane id for load_user_clip_plane intrinsic.
1107 */
1108 NIR_INTRINSIC_UCP_ID = 4,
1109
1110 /**
1111 * The amount of data, starting from BASE, that this instruction may
1112 * access. This is used to provide bounds if the offset is not constant.
1113 */
1114 NIR_INTRINSIC_RANGE = 5,
1115
1116 /**
1117 * The Vulkan descriptor set for vulkan_resource_index intrinsic.
1118 */
1119 NIR_INTRINSIC_DESC_SET = 6,
1120
1121 /**
1122 * The Vulkan descriptor set binding for vulkan_resource_index intrinsic.
1123 */
1124 NIR_INTRINSIC_BINDING = 7,
1125
1126 /**
1127 * Component offset.
1128 */
1129 NIR_INTRINSIC_COMPONENT = 8,
1130
1131 /**
1132 * Interpolation mode (only meaningful for FS inputs).
1133 */
1134 NIR_INTRINSIC_INTERP_MODE = 9,
1135
1136 /**
1137 * A binary nir_op to use when performing a reduction or scan operation
1138 */
1139 NIR_INTRINSIC_REDUCTION_OP = 10,
1140
1141 /**
1142 * Cluster size for reduction operations
1143 */
1144 NIR_INTRINSIC_CLUSTER_SIZE = 11,
1145
1146 /**
1147 * Parameter index for a load_param intrinsic
1148 */
1149 NIR_INTRINSIC_PARAM_IDX = 12,
1150
1151 NIR_INTRINSIC_NUM_INDEX_FLAGS,
1152
1153 } nir_intrinsic_index_flag;
1154
1155 #define NIR_INTRINSIC_MAX_INPUTS 5
1156
1157 typedef struct {
1158 const char *name;
1159
1160 unsigned num_srcs; /** < number of register/SSA inputs */
1161
1162 /** number of components of each input register
1163 *
1164 * If this value is 0, the number of components is given by the
1165 * num_components field of nir_intrinsic_instr.
1166 */
1167 unsigned src_components[NIR_INTRINSIC_MAX_INPUTS];
1168
1169 bool has_dest;
1170
1171 /** number of components of the output register
1172 *
1173 * If this value is 0, the number of components is given by the
1174 * num_components field of nir_intrinsic_instr.
1175 */
1176 unsigned dest_components;
1177
1178 /** the number of constant indices used by the intrinsic */
1179 unsigned num_indices;
1180
1181 /** indicates the usage of intr->const_index[n] */
1182 unsigned index_map[NIR_INTRINSIC_NUM_INDEX_FLAGS];
1183
1184 /** semantic flags for calls to this intrinsic */
1185 nir_intrinsic_semantic_flag flags;
1186 } nir_intrinsic_info;
1187
1188 extern const nir_intrinsic_info nir_intrinsic_infos[nir_num_intrinsics];
1189
1190 static inline unsigned
1191 nir_intrinsic_src_components(nir_intrinsic_instr *intr, unsigned srcn)
1192 {
1193 const nir_intrinsic_info *info = &nir_intrinsic_infos[intr->intrinsic];
1194 assert(srcn < info->num_srcs);
1195 if (info->src_components[srcn])
1196 return info->src_components[srcn];
1197 else
1198 return intr->num_components;
1199 }
1200
1201 static inline unsigned
1202 nir_intrinsic_dest_components(nir_intrinsic_instr *intr)
1203 {
1204 const nir_intrinsic_info *info = &nir_intrinsic_infos[intr->intrinsic];
1205 if (!info->has_dest)
1206 return 0;
1207 else if (info->dest_components)
1208 return info->dest_components;
1209 else
1210 return intr->num_components;
1211 }
1212
1213 #define INTRINSIC_IDX_ACCESSORS(name, flag, type) \
1214 static inline type \
1215 nir_intrinsic_##name(const nir_intrinsic_instr *instr) \
1216 { \
1217 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic]; \
1218 assert(info->index_map[NIR_INTRINSIC_##flag] > 0); \
1219 return instr->const_index[info->index_map[NIR_INTRINSIC_##flag] - 1]; \
1220 } \
1221 static inline void \
1222 nir_intrinsic_set_##name(nir_intrinsic_instr *instr, type val) \
1223 { \
1224 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic]; \
1225 assert(info->index_map[NIR_INTRINSIC_##flag] > 0); \
1226 instr->const_index[info->index_map[NIR_INTRINSIC_##flag] - 1] = val; \
1227 }
1228
1229 INTRINSIC_IDX_ACCESSORS(write_mask, WRMASK, unsigned)
1230 INTRINSIC_IDX_ACCESSORS(base, BASE, int)
1231 INTRINSIC_IDX_ACCESSORS(stream_id, STREAM_ID, unsigned)
1232 INTRINSIC_IDX_ACCESSORS(ucp_id, UCP_ID, unsigned)
1233 INTRINSIC_IDX_ACCESSORS(range, RANGE, unsigned)
1234 INTRINSIC_IDX_ACCESSORS(desc_set, DESC_SET, unsigned)
1235 INTRINSIC_IDX_ACCESSORS(binding, BINDING, unsigned)
1236 INTRINSIC_IDX_ACCESSORS(component, COMPONENT, unsigned)
1237 INTRINSIC_IDX_ACCESSORS(interp_mode, INTERP_MODE, unsigned)
1238 INTRINSIC_IDX_ACCESSORS(reduction_op, REDUCTION_OP, unsigned)
1239 INTRINSIC_IDX_ACCESSORS(cluster_size, CLUSTER_SIZE, unsigned)
1240 INTRINSIC_IDX_ACCESSORS(param_idx, PARAM_IDX, unsigned)
1241
1242 /**
1243 * \group texture information
1244 *
1245 * This gives semantic information about textures which is useful to the
1246 * frontend, the backend, and lowering passes, but not the optimizer.
1247 */
1248
1249 typedef enum {
1250 nir_tex_src_coord,
1251 nir_tex_src_projector,
1252 nir_tex_src_comparator, /* shadow comparator */
1253 nir_tex_src_offset,
1254 nir_tex_src_bias,
1255 nir_tex_src_lod,
1256 nir_tex_src_ms_index, /* MSAA sample index */
1257 nir_tex_src_ms_mcs, /* MSAA compression value */
1258 nir_tex_src_ddx,
1259 nir_tex_src_ddy,
1260 nir_tex_src_texture_deref, /* < deref pointing to the texture */
1261 nir_tex_src_sampler_deref, /* < deref pointing to the sampler */
1262 nir_tex_src_texture_offset, /* < dynamically uniform indirect offset */
1263 nir_tex_src_sampler_offset, /* < dynamically uniform indirect offset */
1264 nir_tex_src_plane, /* < selects plane for planar textures */
1265 nir_num_tex_src_types
1266 } nir_tex_src_type;
1267
1268 typedef struct {
1269 nir_src src;
1270 nir_tex_src_type src_type;
1271 } nir_tex_src;
1272
1273 typedef enum {
1274 nir_texop_tex, /**< Regular texture look-up */
1275 nir_texop_txb, /**< Texture look-up with LOD bias */
1276 nir_texop_txl, /**< Texture look-up with explicit LOD */
1277 nir_texop_txd, /**< Texture look-up with partial derivatives */
1278 nir_texop_txf, /**< Texel fetch with explicit LOD */
1279 nir_texop_txf_ms, /**< Multisample texture fetch */
1280 nir_texop_txf_ms_mcs, /**< Multisample compression value fetch */
1281 nir_texop_txs, /**< Texture size */
1282 nir_texop_lod, /**< Texture lod query */
1283 nir_texop_tg4, /**< Texture gather */
1284 nir_texop_query_levels, /**< Texture levels query */
1285 nir_texop_texture_samples, /**< Texture samples query */
1286 nir_texop_samples_identical, /**< Query whether all samples are definitely
1287 * identical.
1288 */
1289 } nir_texop;
1290
1291 typedef struct {
1292 nir_instr instr;
1293
1294 enum glsl_sampler_dim sampler_dim;
1295 nir_alu_type dest_type;
1296
1297 nir_texop op;
1298 nir_dest dest;
1299 nir_tex_src *src;
1300 unsigned num_srcs, coord_components;
1301 bool is_array, is_shadow;
1302
1303 /**
1304 * If is_shadow is true, whether this is the old-style shadow that outputs 4
1305 * components or the new-style shadow that outputs 1 component.
1306 */
1307 bool is_new_style_shadow;
1308
1309 /* gather component selector */
1310 unsigned component : 2;
1311
1312 /** The texture index
1313 *
1314 * If this texture instruction has a nir_tex_src_texture_offset source,
1315 * then the texture index is given by texture_index + texture_offset.
1316 */
1317 unsigned texture_index;
1318
1319 /** The size of the texture array or 0 if it's not an array */
1320 unsigned texture_array_size;
1321
1322 /** The sampler index
1323 *
1324 * The following operations do not require a sampler and, as such, this
1325 * field should be ignored:
1326 * - nir_texop_txf
1327 * - nir_texop_txf_ms
1328 * - nir_texop_txs
1329 * - nir_texop_lod
1330 * - nir_texop_query_levels
1331 * - nir_texop_texture_samples
1332 * - nir_texop_samples_identical
1333 *
1334 * If this texture instruction has a nir_tex_src_sampler_offset source,
1335 * then the sampler index is given by sampler_index + sampler_offset.
1336 */
1337 unsigned sampler_index;
1338 } nir_tex_instr;
1339
1340 static inline unsigned
1341 nir_tex_instr_dest_size(const nir_tex_instr *instr)
1342 {
1343 switch (instr->op) {
1344 case nir_texop_txs: {
1345 unsigned ret;
1346 switch (instr->sampler_dim) {
1347 case GLSL_SAMPLER_DIM_1D:
1348 case GLSL_SAMPLER_DIM_BUF:
1349 ret = 1;
1350 break;
1351 case GLSL_SAMPLER_DIM_2D:
1352 case GLSL_SAMPLER_DIM_CUBE:
1353 case GLSL_SAMPLER_DIM_MS:
1354 case GLSL_SAMPLER_DIM_RECT:
1355 case GLSL_SAMPLER_DIM_EXTERNAL:
1356 case GLSL_SAMPLER_DIM_SUBPASS:
1357 ret = 2;
1358 break;
1359 case GLSL_SAMPLER_DIM_3D:
1360 ret = 3;
1361 break;
1362 default:
1363 unreachable("not reached");
1364 }
1365 if (instr->is_array)
1366 ret++;
1367 return ret;
1368 }
1369
1370 case nir_texop_lod:
1371 return 2;
1372
1373 case nir_texop_texture_samples:
1374 case nir_texop_query_levels:
1375 case nir_texop_samples_identical:
1376 return 1;
1377
1378 default:
1379 if (instr->is_shadow && instr->is_new_style_shadow)
1380 return 1;
1381
1382 return 4;
1383 }
1384 }
1385
1386 /* Returns true if this texture operation queries something about the texture
1387 * rather than actually sampling it.
1388 */
1389 static inline bool
1390 nir_tex_instr_is_query(const nir_tex_instr *instr)
1391 {
1392 switch (instr->op) {
1393 case nir_texop_txs:
1394 case nir_texop_lod:
1395 case nir_texop_texture_samples:
1396 case nir_texop_query_levels:
1397 case nir_texop_txf_ms_mcs:
1398 return true;
1399 case nir_texop_tex:
1400 case nir_texop_txb:
1401 case nir_texop_txl:
1402 case nir_texop_txd:
1403 case nir_texop_txf:
1404 case nir_texop_txf_ms:
1405 case nir_texop_tg4:
1406 return false;
1407 default:
1408 unreachable("Invalid texture opcode");
1409 }
1410 }
1411
1412 static inline bool
1413 nir_alu_instr_is_comparison(const nir_alu_instr *instr)
1414 {
1415 switch (instr->op) {
1416 case nir_op_flt:
1417 case nir_op_fge:
1418 case nir_op_feq:
1419 case nir_op_fne:
1420 case nir_op_ilt:
1421 case nir_op_ult:
1422 case nir_op_ige:
1423 case nir_op_uge:
1424 case nir_op_ieq:
1425 case nir_op_ine:
1426 case nir_op_i2b:
1427 case nir_op_f2b:
1428 case nir_op_inot:
1429 case nir_op_fnot:
1430 return true;
1431 default:
1432 return false;
1433 }
1434 }
1435
1436 static inline nir_alu_type
1437 nir_tex_instr_src_type(const nir_tex_instr *instr, unsigned src)
1438 {
1439 switch (instr->src[src].src_type) {
1440 case nir_tex_src_coord:
1441 switch (instr->op) {
1442 case nir_texop_txf:
1443 case nir_texop_txf_ms:
1444 case nir_texop_txf_ms_mcs:
1445 case nir_texop_samples_identical:
1446 return nir_type_int;
1447
1448 default:
1449 return nir_type_float;
1450 }
1451
1452 case nir_tex_src_lod:
1453 switch (instr->op) {
1454 case nir_texop_txs:
1455 case nir_texop_txf:
1456 return nir_type_int;
1457
1458 default:
1459 return nir_type_float;
1460 }
1461
1462 case nir_tex_src_projector:
1463 case nir_tex_src_comparator:
1464 case nir_tex_src_bias:
1465 case nir_tex_src_ddx:
1466 case nir_tex_src_ddy:
1467 return nir_type_float;
1468
1469 case nir_tex_src_offset:
1470 case nir_tex_src_ms_index:
1471 case nir_tex_src_texture_offset:
1472 case nir_tex_src_sampler_offset:
1473 return nir_type_int;
1474
1475 default:
1476 unreachable("Invalid texture source type");
1477 }
1478 }
1479
1480 static inline unsigned
1481 nir_tex_instr_src_size(const nir_tex_instr *instr, unsigned src)
1482 {
1483 if (instr->src[src].src_type == nir_tex_src_coord)
1484 return instr->coord_components;
1485
1486 /* The MCS value is expected to be a vec4 returned by a txf_ms_mcs */
1487 if (instr->src[src].src_type == nir_tex_src_ms_mcs)
1488 return 4;
1489
1490 if (instr->src[src].src_type == nir_tex_src_ddx ||
1491 instr->src[src].src_type == nir_tex_src_ddy) {
1492 if (instr->is_array)
1493 return instr->coord_components - 1;
1494 else
1495 return instr->coord_components;
1496 }
1497
1498 /* Usual APIs don't allow cube + offset, but we allow it, with 2 coords for
1499 * the offset, since a cube maps to a single face.
1500 */
1501 if (instr->src[src].src_type == nir_tex_src_offset) {
1502 if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE)
1503 return 2;
1504 else if (instr->is_array)
1505 return instr->coord_components - 1;
1506 else
1507 return instr->coord_components;
1508 }
1509
1510 return 1;
1511 }
1512
1513 static inline int
1514 nir_tex_instr_src_index(const nir_tex_instr *instr, nir_tex_src_type type)
1515 {
1516 for (unsigned i = 0; i < instr->num_srcs; i++)
1517 if (instr->src[i].src_type == type)
1518 return (int) i;
1519
1520 return -1;
1521 }
1522
1523 void nir_tex_instr_add_src(nir_tex_instr *tex,
1524 nir_tex_src_type src_type,
1525 nir_src src);
1526
1527 void nir_tex_instr_remove_src(nir_tex_instr *tex, unsigned src_idx);
1528
1529 typedef struct {
1530 nir_instr instr;
1531
1532 nir_const_value value;
1533
1534 nir_ssa_def def;
1535 } nir_load_const_instr;
1536
1537 typedef enum {
1538 nir_jump_return,
1539 nir_jump_break,
1540 nir_jump_continue,
1541 } nir_jump_type;
1542
1543 typedef struct {
1544 nir_instr instr;
1545 nir_jump_type type;
1546 } nir_jump_instr;
1547
1548 /* creates a new SSA variable in an undefined state */
1549
1550 typedef struct {
1551 nir_instr instr;
1552 nir_ssa_def def;
1553 } nir_ssa_undef_instr;
1554
1555 typedef struct {
1556 struct exec_node node;
1557
1558 /* The predecessor block corresponding to this source */
1559 struct nir_block *pred;
1560
1561 nir_src src;
1562 } nir_phi_src;
1563
1564 #define nir_foreach_phi_src(phi_src, phi) \
1565 foreach_list_typed(nir_phi_src, phi_src, node, &(phi)->srcs)
1566 #define nir_foreach_phi_src_safe(phi_src, phi) \
1567 foreach_list_typed_safe(nir_phi_src, phi_src, node, &(phi)->srcs)
1568
1569 typedef struct {
1570 nir_instr instr;
1571
1572 struct exec_list srcs; /** < list of nir_phi_src */
1573
1574 nir_dest dest;
1575 } nir_phi_instr;
1576
1577 typedef struct {
1578 struct exec_node node;
1579 nir_src src;
1580 nir_dest dest;
1581 } nir_parallel_copy_entry;
1582
1583 #define nir_foreach_parallel_copy_entry(entry, pcopy) \
1584 foreach_list_typed(nir_parallel_copy_entry, entry, node, &(pcopy)->entries)
1585
1586 typedef struct {
1587 nir_instr instr;
1588
1589 /* A list of nir_parallel_copy_entrys. The sources of all of the
1590 * entries are copied to the corresponding destinations "in parallel".
1591 * In other words, if we have two entries: a -> b and b -> a, the values
1592 * get swapped.
1593 */
1594 struct exec_list entries;
1595 } nir_parallel_copy_instr;
1596
1597 NIR_DEFINE_CAST(nir_instr_as_alu, nir_instr, nir_alu_instr, instr,
1598 type, nir_instr_type_alu)
1599 NIR_DEFINE_CAST(nir_instr_as_call, nir_instr, nir_call_instr, instr,
1600 type, nir_instr_type_call)
1601 NIR_DEFINE_CAST(nir_instr_as_jump, nir_instr, nir_jump_instr, instr,
1602 type, nir_instr_type_jump)
1603 NIR_DEFINE_CAST(nir_instr_as_tex, nir_instr, nir_tex_instr, instr,
1604 type, nir_instr_type_tex)
1605 NIR_DEFINE_CAST(nir_instr_as_intrinsic, nir_instr, nir_intrinsic_instr, instr,
1606 type, nir_instr_type_intrinsic)
1607 NIR_DEFINE_CAST(nir_instr_as_load_const, nir_instr, nir_load_const_instr, instr,
1608 type, nir_instr_type_load_const)
1609 NIR_DEFINE_CAST(nir_instr_as_ssa_undef, nir_instr, nir_ssa_undef_instr, instr,
1610 type, nir_instr_type_ssa_undef)
1611 NIR_DEFINE_CAST(nir_instr_as_phi, nir_instr, nir_phi_instr, instr,
1612 type, nir_instr_type_phi)
1613 NIR_DEFINE_CAST(nir_instr_as_parallel_copy, nir_instr,
1614 nir_parallel_copy_instr, instr,
1615 type, nir_instr_type_parallel_copy)
1616
1617 /*
1618 * Control flow
1619 *
1620 * Control flow consists of a tree of control flow nodes, which include
1621 * if-statements and loops. The leaves of the tree are basic blocks, lists of
1622 * instructions that always run start-to-finish. Each basic block also keeps
1623 * track of its successors (blocks which may run immediately after the current
1624 * block) and predecessors (blocks which could have run immediately before the
1625 * current block). Each function also has a start block and an end block which
1626 * all return statements point to (which is always empty). Together, all the
1627 * blocks with their predecessors and successors make up the control flow
1628 * graph (CFG) of the function. There are helpers that modify the tree of
1629 * control flow nodes while modifying the CFG appropriately; these should be
1630 * used instead of modifying the tree directly.
1631 */
1632
1633 typedef enum {
1634 nir_cf_node_block,
1635 nir_cf_node_if,
1636 nir_cf_node_loop,
1637 nir_cf_node_function
1638 } nir_cf_node_type;
1639
1640 typedef struct nir_cf_node {
1641 struct exec_node node;
1642 nir_cf_node_type type;
1643 struct nir_cf_node *parent;
1644 } nir_cf_node;
1645
1646 typedef struct nir_block {
1647 nir_cf_node cf_node;
1648
1649 struct exec_list instr_list; /** < list of nir_instr */
1650
1651 /** generic block index; generated by nir_index_blocks */
1652 unsigned index;
1653
1654 /*
1655 * Each block can only have up to 2 successors, so we put them in a simple
1656 * array - no need for anything more complicated.
1657 */
1658 struct nir_block *successors[2];
1659
1660 /* Set of nir_block predecessors in the CFG */
1661 struct set *predecessors;
1662
1663 /*
1664 * this node's immediate dominator in the dominance tree - set to NULL for
1665 * the start block.
1666 */
1667 struct nir_block *imm_dom;
1668
1669 /* This node's children in the dominance tree */
1670 unsigned num_dom_children;
1671 struct nir_block **dom_children;
1672
1673 /* Set of nir_blocks on the dominance frontier of this block */
1674 struct set *dom_frontier;
1675
1676 /*
1677 * These two indices have the property that dom_{pre,post}_index for each
1678 * child of this block in the dominance tree will always be between
1679 * dom_pre_index and dom_post_index for this block, which makes testing if
1680 * a given block is dominated by another block an O(1) operation.
1681 */
1682 unsigned dom_pre_index, dom_post_index;
1683
1684 /* live in and out for this block; used for liveness analysis */
1685 BITSET_WORD *live_in;
1686 BITSET_WORD *live_out;
1687 } nir_block;
1688
1689 static inline nir_instr *
1690 nir_block_first_instr(nir_block *block)
1691 {
1692 struct exec_node *head = exec_list_get_head(&block->instr_list);
1693 return exec_node_data(nir_instr, head, node);
1694 }
1695
1696 static inline nir_instr *
1697 nir_block_last_instr(nir_block *block)
1698 {
1699 struct exec_node *tail = exec_list_get_tail(&block->instr_list);
1700 return exec_node_data(nir_instr, tail, node);
1701 }
1702
1703 #define nir_foreach_instr(instr, block) \
1704 foreach_list_typed(nir_instr, instr, node, &(block)->instr_list)
1705 #define nir_foreach_instr_reverse(instr, block) \
1706 foreach_list_typed_reverse(nir_instr, instr, node, &(block)->instr_list)
1707 #define nir_foreach_instr_safe(instr, block) \
1708 foreach_list_typed_safe(nir_instr, instr, node, &(block)->instr_list)
1709 #define nir_foreach_instr_reverse_safe(instr, block) \
1710 foreach_list_typed_reverse_safe(nir_instr, instr, node, &(block)->instr_list)
1711
1712 typedef struct nir_if {
1713 nir_cf_node cf_node;
1714 nir_src condition;
1715
1716 struct exec_list then_list; /** < list of nir_cf_node */
1717 struct exec_list else_list; /** < list of nir_cf_node */
1718 } nir_if;
1719
1720 typedef struct {
1721 nir_if *nif;
1722
1723 nir_instr *conditional_instr;
1724
1725 nir_block *break_block;
1726 nir_block *continue_from_block;
1727
1728 bool continue_from_then;
1729
1730 struct list_head loop_terminator_link;
1731 } nir_loop_terminator;
1732
1733 typedef struct {
1734 /* Number of instructions in the loop */
1735 unsigned num_instructions;
1736
1737 /* How many times the loop is run (if known) */
1738 unsigned trip_count;
1739 bool is_trip_count_known;
1740
1741 /* Unroll the loop regardless of its size */
1742 bool force_unroll;
1743
1744 nir_loop_terminator *limiting_terminator;
1745
1746 /* A list of loop_terminators terminating this loop. */
1747 struct list_head loop_terminator_list;
1748 } nir_loop_info;
1749
1750 typedef struct {
1751 nir_cf_node cf_node;
1752
1753 struct exec_list body; /** < list of nir_cf_node */
1754
1755 nir_loop_info *info;
1756 } nir_loop;
1757
1758 /**
1759 * Various bits of metadata that can may be created or required by
1760 * optimization and analysis passes
1761 */
1762 typedef enum {
1763 nir_metadata_none = 0x0,
1764 nir_metadata_block_index = 0x1,
1765 nir_metadata_dominance = 0x2,
1766 nir_metadata_live_ssa_defs = 0x4,
1767 nir_metadata_not_properly_reset = 0x8,
1768 nir_metadata_loop_analysis = 0x10,
1769 } nir_metadata;
1770
1771 typedef struct {
1772 nir_cf_node cf_node;
1773
1774 /** pointer to the function of which this is an implementation */
1775 struct nir_function *function;
1776
1777 struct exec_list body; /** < list of nir_cf_node */
1778
1779 nir_block *end_block;
1780
1781 /** list for all local variables in the function */
1782 struct exec_list locals;
1783
1784 /** list of local registers in the function */
1785 struct exec_list registers;
1786
1787 /** next available local register index */
1788 unsigned reg_alloc;
1789
1790 /** next available SSA value index */
1791 unsigned ssa_alloc;
1792
1793 /* total number of basic blocks, only valid when block_index_dirty = false */
1794 unsigned num_blocks;
1795
1796 nir_metadata valid_metadata;
1797 } nir_function_impl;
1798
1799 ATTRIBUTE_RETURNS_NONNULL static inline nir_block *
1800 nir_start_block(nir_function_impl *impl)
1801 {
1802 return (nir_block *) impl->body.head_sentinel.next;
1803 }
1804
1805 ATTRIBUTE_RETURNS_NONNULL static inline nir_block *
1806 nir_impl_last_block(nir_function_impl *impl)
1807 {
1808 return (nir_block *) impl->body.tail_sentinel.prev;
1809 }
1810
1811 static inline nir_cf_node *
1812 nir_cf_node_next(nir_cf_node *node)
1813 {
1814 struct exec_node *next = exec_node_get_next(&node->node);
1815 if (exec_node_is_tail_sentinel(next))
1816 return NULL;
1817 else
1818 return exec_node_data(nir_cf_node, next, node);
1819 }
1820
1821 static inline nir_cf_node *
1822 nir_cf_node_prev(nir_cf_node *node)
1823 {
1824 struct exec_node *prev = exec_node_get_prev(&node->node);
1825 if (exec_node_is_head_sentinel(prev))
1826 return NULL;
1827 else
1828 return exec_node_data(nir_cf_node, prev, node);
1829 }
1830
1831 static inline bool
1832 nir_cf_node_is_first(const nir_cf_node *node)
1833 {
1834 return exec_node_is_head_sentinel(node->node.prev);
1835 }
1836
1837 static inline bool
1838 nir_cf_node_is_last(const nir_cf_node *node)
1839 {
1840 return exec_node_is_tail_sentinel(node->node.next);
1841 }
1842
1843 NIR_DEFINE_CAST(nir_cf_node_as_block, nir_cf_node, nir_block, cf_node,
1844 type, nir_cf_node_block)
1845 NIR_DEFINE_CAST(nir_cf_node_as_if, nir_cf_node, nir_if, cf_node,
1846 type, nir_cf_node_if)
1847 NIR_DEFINE_CAST(nir_cf_node_as_loop, nir_cf_node, nir_loop, cf_node,
1848 type, nir_cf_node_loop)
1849 NIR_DEFINE_CAST(nir_cf_node_as_function, nir_cf_node,
1850 nir_function_impl, cf_node, type, nir_cf_node_function)
1851
1852 static inline nir_block *
1853 nir_if_first_then_block(nir_if *if_stmt)
1854 {
1855 struct exec_node *head = exec_list_get_head(&if_stmt->then_list);
1856 return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
1857 }
1858
1859 static inline nir_block *
1860 nir_if_last_then_block(nir_if *if_stmt)
1861 {
1862 struct exec_node *tail = exec_list_get_tail(&if_stmt->then_list);
1863 return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
1864 }
1865
1866 static inline nir_block *
1867 nir_if_first_else_block(nir_if *if_stmt)
1868 {
1869 struct exec_node *head = exec_list_get_head(&if_stmt->else_list);
1870 return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
1871 }
1872
1873 static inline nir_block *
1874 nir_if_last_else_block(nir_if *if_stmt)
1875 {
1876 struct exec_node *tail = exec_list_get_tail(&if_stmt->else_list);
1877 return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
1878 }
1879
1880 static inline nir_block *
1881 nir_loop_first_block(nir_loop *loop)
1882 {
1883 struct exec_node *head = exec_list_get_head(&loop->body);
1884 return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
1885 }
1886
1887 static inline nir_block *
1888 nir_loop_last_block(nir_loop *loop)
1889 {
1890 struct exec_node *tail = exec_list_get_tail(&loop->body);
1891 return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
1892 }
1893
1894 typedef struct {
1895 uint8_t num_components;
1896 uint8_t bit_size;
1897 } nir_parameter;
1898
1899 typedef struct nir_function {
1900 struct exec_node node;
1901
1902 const char *name;
1903 struct nir_shader *shader;
1904
1905 unsigned num_params;
1906 nir_parameter *params;
1907
1908 /** The implementation of this function.
1909 *
1910 * If the function is only declared and not implemented, this is NULL.
1911 */
1912 nir_function_impl *impl;
1913 } nir_function;
1914
1915 typedef struct nir_shader_compiler_options {
1916 bool lower_fdiv;
1917 bool lower_ffma;
1918 bool fuse_ffma;
1919 bool lower_flrp32;
1920 /** Lowers flrp when it does not support doubles */
1921 bool lower_flrp64;
1922 bool lower_fpow;
1923 bool lower_fsat;
1924 bool lower_fsqrt;
1925 bool lower_fmod32;
1926 bool lower_fmod64;
1927 /** Lowers ibitfield_extract/ubitfield_extract to ibfe/ubfe. */
1928 bool lower_bitfield_extract;
1929 /** Lowers ibitfield_extract/ubitfield_extract to bfm, compares, shifts. */
1930 bool lower_bitfield_extract_to_shifts;
1931 /** Lowers bitfield_insert to bfi/bfm */
1932 bool lower_bitfield_insert;
1933 /** Lowers bitfield_insert to bfm, compares, and shifts. */
1934 bool lower_bitfield_insert_to_shifts;
1935 /** Lowers bitfield_reverse to shifts. */
1936 bool lower_bitfield_reverse;
1937 /** Lowers bit_count to shifts. */
1938 bool lower_bit_count;
1939 /** Lowers bfm to shifts and subtracts. */
1940 bool lower_bfm;
1941 /** Lowers ifind_msb to compare and ufind_msb */
1942 bool lower_ifind_msb;
1943 /** Lowers find_lsb to ufind_msb and logic ops */
1944 bool lower_find_lsb;
1945 bool lower_uadd_carry;
1946 bool lower_usub_borrow;
1947 /** Lowers imul_high/umul_high to 16-bit multiplies and carry operations. */
1948 bool lower_mul_high;
1949 /** lowers fneg and ineg to fsub and isub. */
1950 bool lower_negate;
1951 /** lowers fsub and isub to fadd+fneg and iadd+ineg. */
1952 bool lower_sub;
1953
1954 /* lower {slt,sge,seq,sne} to {flt,fge,feq,fne} + b2f: */
1955 bool lower_scmp;
1956
1957 /** enables rules to lower idiv by power-of-two: */
1958 bool lower_idiv;
1959
1960 /* lower b2f to iand */
1961 bool lower_b2f;
1962
1963 /* Does the native fdot instruction replicate its result for four
1964 * components? If so, then opt_algebraic_late will turn all fdotN
1965 * instructions into fdot_replicatedN instructions.
1966 */
1967 bool fdot_replicates;
1968
1969 /** lowers ffract to fsub+ffloor: */
1970 bool lower_ffract;
1971
1972 bool lower_ldexp;
1973
1974 bool lower_pack_half_2x16;
1975 bool lower_pack_unorm_2x16;
1976 bool lower_pack_snorm_2x16;
1977 bool lower_pack_unorm_4x8;
1978 bool lower_pack_snorm_4x8;
1979 bool lower_unpack_half_2x16;
1980 bool lower_unpack_unorm_2x16;
1981 bool lower_unpack_snorm_2x16;
1982 bool lower_unpack_unorm_4x8;
1983 bool lower_unpack_snorm_4x8;
1984
1985 bool lower_extract_byte;
1986 bool lower_extract_word;
1987
1988 bool lower_all_io_to_temps;
1989
1990 /**
1991 * Does the driver support real 32-bit integers? (Otherwise, integers
1992 * are simulated by floats.)
1993 */
1994 bool native_integers;
1995
1996 /* Indicates that the driver only has zero-based vertex id */
1997 bool vertex_id_zero_based;
1998
1999 /**
2000 * If enabled, gl_BaseVertex will be lowered as:
2001 * is_indexed_draw (~0/0) & firstvertex
2002 */
2003 bool lower_base_vertex;
2004
2005 bool lower_cs_local_index_from_id;
2006
2007 bool lower_device_index_to_zero;
2008
2009 /**
2010 * Should nir_lower_io() create load_interpolated_input intrinsics?
2011 *
2012 * If not, it generates regular load_input intrinsics and interpolation
2013 * information must be inferred from the list of input nir_variables.
2014 */
2015 bool use_interpolated_input_intrinsics;
2016
2017 /**
2018 * Do vertex shader double inputs use two locations? The Vulkan spec
2019 * requires two locations to be used, OpenGL allows a single location.
2020 */
2021 bool vs_inputs_dual_locations;
2022
2023 unsigned max_unroll_iterations;
2024 } nir_shader_compiler_options;
2025
2026 typedef struct nir_shader {
2027 /** list of uniforms (nir_variable) */
2028 struct exec_list uniforms;
2029
2030 /** list of inputs (nir_variable) */
2031 struct exec_list inputs;
2032
2033 /** list of outputs (nir_variable) */
2034 struct exec_list outputs;
2035
2036 /** list of shared compute variables (nir_variable) */
2037 struct exec_list shared;
2038
2039 /** Set of driver-specific options for the shader.
2040 *
2041 * The memory for the options is expected to be kept in a single static
2042 * copy by the driver.
2043 */
2044 const struct nir_shader_compiler_options *options;
2045
2046 /** Various bits of compile-time information about a given shader */
2047 struct shader_info info;
2048
2049 /** list of global variables in the shader (nir_variable) */
2050 struct exec_list globals;
2051
2052 /** list of system value variables in the shader (nir_variable) */
2053 struct exec_list system_values;
2054
2055 struct exec_list functions; /** < list of nir_function */
2056
2057 /** list of global register in the shader */
2058 struct exec_list registers;
2059
2060 /** next available global register index */
2061 unsigned reg_alloc;
2062
2063 /**
2064 * the highest index a load_input_*, load_uniform_*, etc. intrinsic can
2065 * access plus one
2066 */
2067 unsigned num_inputs, num_uniforms, num_outputs, num_shared;
2068 } nir_shader;
2069
2070 static inline nir_function_impl *
2071 nir_shader_get_entrypoint(nir_shader *shader)
2072 {
2073 assert(exec_list_length(&shader->functions) == 1);
2074 struct exec_node *func_node = exec_list_get_head(&shader->functions);
2075 nir_function *func = exec_node_data(nir_function, func_node, node);
2076 assert(func->num_params == 0);
2077 assert(func->impl);
2078 return func->impl;
2079 }
2080
2081 #define nir_foreach_function(func, shader) \
2082 foreach_list_typed(nir_function, func, node, &(shader)->functions)
2083
2084 nir_shader *nir_shader_create(void *mem_ctx,
2085 gl_shader_stage stage,
2086 const nir_shader_compiler_options *options,
2087 shader_info *si);
2088
2089 /** creates a register, including assigning it an index and adding it to the list */
2090 nir_register *nir_global_reg_create(nir_shader *shader);
2091
2092 nir_register *nir_local_reg_create(nir_function_impl *impl);
2093
2094 void nir_reg_remove(nir_register *reg);
2095
2096 /** Adds a variable to the appropriate list in nir_shader */
2097 void nir_shader_add_variable(nir_shader *shader, nir_variable *var);
2098
2099 static inline void
2100 nir_function_impl_add_variable(nir_function_impl *impl, nir_variable *var)
2101 {
2102 assert(var->data.mode == nir_var_local);
2103 exec_list_push_tail(&impl->locals, &var->node);
2104 }
2105
2106 /** creates a variable, sets a few defaults, and adds it to the list */
2107 nir_variable *nir_variable_create(nir_shader *shader,
2108 nir_variable_mode mode,
2109 const struct glsl_type *type,
2110 const char *name);
2111 /** creates a local variable and adds it to the list */
2112 nir_variable *nir_local_variable_create(nir_function_impl *impl,
2113 const struct glsl_type *type,
2114 const char *name);
2115
2116 /** creates a function and adds it to the shader's list of functions */
2117 nir_function *nir_function_create(nir_shader *shader, const char *name);
2118
2119 nir_function_impl *nir_function_impl_create(nir_function *func);
2120 /** creates a function_impl that isn't tied to any particular function */
2121 nir_function_impl *nir_function_impl_create_bare(nir_shader *shader);
2122
2123 nir_block *nir_block_create(nir_shader *shader);
2124 nir_if *nir_if_create(nir_shader *shader);
2125 nir_loop *nir_loop_create(nir_shader *shader);
2126
2127 nir_function_impl *nir_cf_node_get_function(nir_cf_node *node);
2128
2129 /** requests that the given pieces of metadata be generated */
2130 void nir_metadata_require(nir_function_impl *impl, nir_metadata required, ...);
2131 /** dirties all but the preserved metadata */
2132 void nir_metadata_preserve(nir_function_impl *impl, nir_metadata preserved);
2133
2134 /** creates an instruction with default swizzle/writemask/etc. with NULL registers */
2135 nir_alu_instr *nir_alu_instr_create(nir_shader *shader, nir_op op);
2136
2137 nir_deref_instr *nir_deref_instr_create(nir_shader *shader,
2138 nir_deref_type deref_type);
2139
2140 nir_jump_instr *nir_jump_instr_create(nir_shader *shader, nir_jump_type type);
2141
2142 nir_load_const_instr *nir_load_const_instr_create(nir_shader *shader,
2143 unsigned num_components,
2144 unsigned bit_size);
2145
2146 nir_intrinsic_instr *nir_intrinsic_instr_create(nir_shader *shader,
2147 nir_intrinsic_op op);
2148
2149 nir_call_instr *nir_call_instr_create(nir_shader *shader,
2150 nir_function *callee);
2151
2152 nir_tex_instr *nir_tex_instr_create(nir_shader *shader, unsigned num_srcs);
2153
2154 nir_phi_instr *nir_phi_instr_create(nir_shader *shader);
2155
2156 nir_parallel_copy_instr *nir_parallel_copy_instr_create(nir_shader *shader);
2157
2158 nir_ssa_undef_instr *nir_ssa_undef_instr_create(nir_shader *shader,
2159 unsigned num_components,
2160 unsigned bit_size);
2161
2162 nir_const_value nir_alu_binop_identity(nir_op binop, unsigned bit_size);
2163
2164 /**
2165 * NIR Cursors and Instruction Insertion API
2166 * @{
2167 *
2168 * A tiny struct representing a point to insert/extract instructions or
2169 * control flow nodes. Helps reduce the combinatorial explosion of possible
2170 * points to insert/extract.
2171 *
2172 * \sa nir_control_flow.h
2173 */
2174 typedef enum {
2175 nir_cursor_before_block,
2176 nir_cursor_after_block,
2177 nir_cursor_before_instr,
2178 nir_cursor_after_instr,
2179 } nir_cursor_option;
2180
2181 typedef struct {
2182 nir_cursor_option option;
2183 union {
2184 nir_block *block;
2185 nir_instr *instr;
2186 };
2187 } nir_cursor;
2188
2189 static inline nir_block *
2190 nir_cursor_current_block(nir_cursor cursor)
2191 {
2192 if (cursor.option == nir_cursor_before_instr ||
2193 cursor.option == nir_cursor_after_instr) {
2194 return cursor.instr->block;
2195 } else {
2196 return cursor.block;
2197 }
2198 }
2199
2200 bool nir_cursors_equal(nir_cursor a, nir_cursor b);
2201
2202 static inline nir_cursor
2203 nir_before_block(nir_block *block)
2204 {
2205 nir_cursor cursor;
2206 cursor.option = nir_cursor_before_block;
2207 cursor.block = block;
2208 return cursor;
2209 }
2210
2211 static inline nir_cursor
2212 nir_after_block(nir_block *block)
2213 {
2214 nir_cursor cursor;
2215 cursor.option = nir_cursor_after_block;
2216 cursor.block = block;
2217 return cursor;
2218 }
2219
2220 static inline nir_cursor
2221 nir_before_instr(nir_instr *instr)
2222 {
2223 nir_cursor cursor;
2224 cursor.option = nir_cursor_before_instr;
2225 cursor.instr = instr;
2226 return cursor;
2227 }
2228
2229 static inline nir_cursor
2230 nir_after_instr(nir_instr *instr)
2231 {
2232 nir_cursor cursor;
2233 cursor.option = nir_cursor_after_instr;
2234 cursor.instr = instr;
2235 return cursor;
2236 }
2237
2238 static inline nir_cursor
2239 nir_after_block_before_jump(nir_block *block)
2240 {
2241 nir_instr *last_instr = nir_block_last_instr(block);
2242 if (last_instr && last_instr->type == nir_instr_type_jump) {
2243 return nir_before_instr(last_instr);
2244 } else {
2245 return nir_after_block(block);
2246 }
2247 }
2248
2249 static inline nir_cursor
2250 nir_before_cf_node(nir_cf_node *node)
2251 {
2252 if (node->type == nir_cf_node_block)
2253 return nir_before_block(nir_cf_node_as_block(node));
2254
2255 return nir_after_block(nir_cf_node_as_block(nir_cf_node_prev(node)));
2256 }
2257
2258 static inline nir_cursor
2259 nir_after_cf_node(nir_cf_node *node)
2260 {
2261 if (node->type == nir_cf_node_block)
2262 return nir_after_block(nir_cf_node_as_block(node));
2263
2264 return nir_before_block(nir_cf_node_as_block(nir_cf_node_next(node)));
2265 }
2266
2267 static inline nir_cursor
2268 nir_after_phis(nir_block *block)
2269 {
2270 nir_foreach_instr(instr, block) {
2271 if (instr->type != nir_instr_type_phi)
2272 return nir_before_instr(instr);
2273 }
2274 return nir_after_block(block);
2275 }
2276
2277 static inline nir_cursor
2278 nir_after_cf_node_and_phis(nir_cf_node *node)
2279 {
2280 if (node->type == nir_cf_node_block)
2281 return nir_after_block(nir_cf_node_as_block(node));
2282
2283 nir_block *block = nir_cf_node_as_block(nir_cf_node_next(node));
2284
2285 return nir_after_phis(block);
2286 }
2287
2288 static inline nir_cursor
2289 nir_before_cf_list(struct exec_list *cf_list)
2290 {
2291 nir_cf_node *first_node = exec_node_data(nir_cf_node,
2292 exec_list_get_head(cf_list), node);
2293 return nir_before_cf_node(first_node);
2294 }
2295
2296 static inline nir_cursor
2297 nir_after_cf_list(struct exec_list *cf_list)
2298 {
2299 nir_cf_node *last_node = exec_node_data(nir_cf_node,
2300 exec_list_get_tail(cf_list), node);
2301 return nir_after_cf_node(last_node);
2302 }
2303
2304 /**
2305 * Insert a NIR instruction at the given cursor.
2306 *
2307 * Note: This does not update the cursor.
2308 */
2309 void nir_instr_insert(nir_cursor cursor, nir_instr *instr);
2310
2311 static inline void
2312 nir_instr_insert_before(nir_instr *instr, nir_instr *before)
2313 {
2314 nir_instr_insert(nir_before_instr(instr), before);
2315 }
2316
2317 static inline void
2318 nir_instr_insert_after(nir_instr *instr, nir_instr *after)
2319 {
2320 nir_instr_insert(nir_after_instr(instr), after);
2321 }
2322
2323 static inline void
2324 nir_instr_insert_before_block(nir_block *block, nir_instr *before)
2325 {
2326 nir_instr_insert(nir_before_block(block), before);
2327 }
2328
2329 static inline void
2330 nir_instr_insert_after_block(nir_block *block, nir_instr *after)
2331 {
2332 nir_instr_insert(nir_after_block(block), after);
2333 }
2334
2335 static inline void
2336 nir_instr_insert_before_cf(nir_cf_node *node, nir_instr *before)
2337 {
2338 nir_instr_insert(nir_before_cf_node(node), before);
2339 }
2340
2341 static inline void
2342 nir_instr_insert_after_cf(nir_cf_node *node, nir_instr *after)
2343 {
2344 nir_instr_insert(nir_after_cf_node(node), after);
2345 }
2346
2347 static inline void
2348 nir_instr_insert_before_cf_list(struct exec_list *list, nir_instr *before)
2349 {
2350 nir_instr_insert(nir_before_cf_list(list), before);
2351 }
2352
2353 static inline void
2354 nir_instr_insert_after_cf_list(struct exec_list *list, nir_instr *after)
2355 {
2356 nir_instr_insert(nir_after_cf_list(list), after);
2357 }
2358
2359 void nir_instr_remove_v(nir_instr *instr);
2360
2361 static inline nir_cursor
2362 nir_instr_remove(nir_instr *instr)
2363 {
2364 nir_cursor cursor;
2365 nir_instr *prev = nir_instr_prev(instr);
2366 if (prev) {
2367 cursor = nir_after_instr(prev);
2368 } else {
2369 cursor = nir_before_block(instr->block);
2370 }
2371 nir_instr_remove_v(instr);
2372 return cursor;
2373 }
2374
2375 /** @} */
2376
2377 typedef bool (*nir_foreach_ssa_def_cb)(nir_ssa_def *def, void *state);
2378 typedef bool (*nir_foreach_dest_cb)(nir_dest *dest, void *state);
2379 typedef bool (*nir_foreach_src_cb)(nir_src *src, void *state);
2380 bool nir_foreach_ssa_def(nir_instr *instr, nir_foreach_ssa_def_cb cb,
2381 void *state);
2382 bool nir_foreach_dest(nir_instr *instr, nir_foreach_dest_cb cb, void *state);
2383 bool nir_foreach_src(nir_instr *instr, nir_foreach_src_cb cb, void *state);
2384
2385 nir_const_value *nir_src_as_const_value(nir_src src);
2386 bool nir_src_is_dynamically_uniform(nir_src src);
2387 bool nir_srcs_equal(nir_src src1, nir_src src2);
2388 void nir_instr_rewrite_src(nir_instr *instr, nir_src *src, nir_src new_src);
2389 void nir_instr_move_src(nir_instr *dest_instr, nir_src *dest, nir_src *src);
2390 void nir_if_rewrite_condition(nir_if *if_stmt, nir_src new_src);
2391 void nir_instr_rewrite_dest(nir_instr *instr, nir_dest *dest,
2392 nir_dest new_dest);
2393
2394 void nir_ssa_dest_init(nir_instr *instr, nir_dest *dest,
2395 unsigned num_components, unsigned bit_size,
2396 const char *name);
2397 void nir_ssa_def_init(nir_instr *instr, nir_ssa_def *def,
2398 unsigned num_components, unsigned bit_size,
2399 const char *name);
2400 static inline void
2401 nir_ssa_dest_init_for_type(nir_instr *instr, nir_dest *dest,
2402 const struct glsl_type *type,
2403 const char *name)
2404 {
2405 assert(glsl_type_is_vector_or_scalar(type));
2406 nir_ssa_dest_init(instr, dest, glsl_get_components(type),
2407 glsl_get_bit_size(type), name);
2408 }
2409 void nir_ssa_def_rewrite_uses(nir_ssa_def *def, nir_src new_src);
2410 void nir_ssa_def_rewrite_uses_after(nir_ssa_def *def, nir_src new_src,
2411 nir_instr *after_me);
2412
2413 uint8_t nir_ssa_def_components_read(const nir_ssa_def *def);
2414
2415 /*
2416 * finds the next basic block in source-code order, returns NULL if there is
2417 * none
2418 */
2419
2420 nir_block *nir_block_cf_tree_next(nir_block *block);
2421
2422 /* Performs the opposite of nir_block_cf_tree_next() */
2423
2424 nir_block *nir_block_cf_tree_prev(nir_block *block);
2425
2426 /* Gets the first block in a CF node in source-code order */
2427
2428 nir_block *nir_cf_node_cf_tree_first(nir_cf_node *node);
2429
2430 /* Gets the last block in a CF node in source-code order */
2431
2432 nir_block *nir_cf_node_cf_tree_last(nir_cf_node *node);
2433
2434 /* Gets the next block after a CF node in source-code order */
2435
2436 nir_block *nir_cf_node_cf_tree_next(nir_cf_node *node);
2437
2438 /* Macros for loops that visit blocks in source-code order */
2439
2440 #define nir_foreach_block(block, impl) \
2441 for (nir_block *block = nir_start_block(impl); block != NULL; \
2442 block = nir_block_cf_tree_next(block))
2443
2444 #define nir_foreach_block_safe(block, impl) \
2445 for (nir_block *block = nir_start_block(impl), \
2446 *next = nir_block_cf_tree_next(block); \
2447 block != NULL; \
2448 block = next, next = nir_block_cf_tree_next(block))
2449
2450 #define nir_foreach_block_reverse(block, impl) \
2451 for (nir_block *block = nir_impl_last_block(impl); block != NULL; \
2452 block = nir_block_cf_tree_prev(block))
2453
2454 #define nir_foreach_block_reverse_safe(block, impl) \
2455 for (nir_block *block = nir_impl_last_block(impl), \
2456 *prev = nir_block_cf_tree_prev(block); \
2457 block != NULL; \
2458 block = prev, prev = nir_block_cf_tree_prev(block))
2459
2460 #define nir_foreach_block_in_cf_node(block, node) \
2461 for (nir_block *block = nir_cf_node_cf_tree_first(node); \
2462 block != nir_cf_node_cf_tree_next(node); \
2463 block = nir_block_cf_tree_next(block))
2464
2465 /* If the following CF node is an if, this function returns that if.
2466 * Otherwise, it returns NULL.
2467 */
2468 nir_if *nir_block_get_following_if(nir_block *block);
2469
2470 nir_loop *nir_block_get_following_loop(nir_block *block);
2471
2472 void nir_index_local_regs(nir_function_impl *impl);
2473 void nir_index_global_regs(nir_shader *shader);
2474 void nir_index_ssa_defs(nir_function_impl *impl);
2475 unsigned nir_index_instrs(nir_function_impl *impl);
2476
2477 void nir_index_blocks(nir_function_impl *impl);
2478
2479 void nir_print_shader(nir_shader *shader, FILE *fp);
2480 void nir_print_shader_annotated(nir_shader *shader, FILE *fp, struct hash_table *errors);
2481 void nir_print_instr(const nir_instr *instr, FILE *fp);
2482
2483 nir_shader *nir_shader_clone(void *mem_ctx, const nir_shader *s);
2484 nir_function_impl *nir_function_impl_clone(const nir_function_impl *fi);
2485 nir_constant *nir_constant_clone(const nir_constant *c, nir_variable *var);
2486 nir_variable *nir_variable_clone(const nir_variable *c, nir_shader *shader);
2487
2488 nir_shader *nir_shader_serialize_deserialize(void *mem_ctx, nir_shader *s);
2489
2490 #ifndef NDEBUG
2491 void nir_validate_shader(nir_shader *shader);
2492 void nir_metadata_set_validation_flag(nir_shader *shader);
2493 void nir_metadata_check_validation_flag(nir_shader *shader);
2494
2495 static inline bool
2496 should_clone_nir(void)
2497 {
2498 static int should_clone = -1;
2499 if (should_clone < 0)
2500 should_clone = env_var_as_boolean("NIR_TEST_CLONE", false);
2501
2502 return should_clone;
2503 }
2504
2505 static inline bool
2506 should_serialize_deserialize_nir(void)
2507 {
2508 static int test_serialize = -1;
2509 if (test_serialize < 0)
2510 test_serialize = env_var_as_boolean("NIR_TEST_SERIALIZE", false);
2511
2512 return test_serialize;
2513 }
2514
2515 static inline bool
2516 should_print_nir(void)
2517 {
2518 static int should_print = -1;
2519 if (should_print < 0)
2520 should_print = env_var_as_boolean("NIR_PRINT", false);
2521
2522 return should_print;
2523 }
2524 #else
2525 static inline void nir_validate_shader(nir_shader *shader) { (void) shader; }
2526 static inline void nir_metadata_set_validation_flag(nir_shader *shader) { (void) shader; }
2527 static inline void nir_metadata_check_validation_flag(nir_shader *shader) { (void) shader; }
2528 static inline bool should_clone_nir(void) { return false; }
2529 static inline bool should_serialize_deserialize_nir(void) { return false; }
2530 static inline bool should_print_nir(void) { return false; }
2531 #endif /* NDEBUG */
2532
2533 #define _PASS(nir, do_pass) do { \
2534 do_pass \
2535 nir_validate_shader(nir); \
2536 if (should_clone_nir()) { \
2537 nir_shader *clone = nir_shader_clone(ralloc_parent(nir), nir); \
2538 ralloc_free(nir); \
2539 nir = clone; \
2540 } \
2541 if (should_serialize_deserialize_nir()) { \
2542 void *mem_ctx = ralloc_parent(nir); \
2543 nir = nir_shader_serialize_deserialize(mem_ctx, nir); \
2544 } \
2545 } while (0)
2546
2547 #define NIR_PASS(progress, nir, pass, ...) _PASS(nir, \
2548 nir_metadata_set_validation_flag(nir); \
2549 if (should_print_nir()) \
2550 printf("%s\n", #pass); \
2551 if (pass(nir, ##__VA_ARGS__)) { \
2552 progress = true; \
2553 if (should_print_nir()) \
2554 nir_print_shader(nir, stdout); \
2555 nir_metadata_check_validation_flag(nir); \
2556 } \
2557 )
2558
2559 #define NIR_PASS_V(nir, pass, ...) _PASS(nir, \
2560 if (should_print_nir()) \
2561 printf("%s\n", #pass); \
2562 pass(nir, ##__VA_ARGS__); \
2563 if (should_print_nir()) \
2564 nir_print_shader(nir, stdout); \
2565 )
2566
2567 void nir_calc_dominance_impl(nir_function_impl *impl);
2568 void nir_calc_dominance(nir_shader *shader);
2569
2570 nir_block *nir_dominance_lca(nir_block *b1, nir_block *b2);
2571 bool nir_block_dominates(nir_block *parent, nir_block *child);
2572
2573 void nir_dump_dom_tree_impl(nir_function_impl *impl, FILE *fp);
2574 void nir_dump_dom_tree(nir_shader *shader, FILE *fp);
2575
2576 void nir_dump_dom_frontier_impl(nir_function_impl *impl, FILE *fp);
2577 void nir_dump_dom_frontier(nir_shader *shader, FILE *fp);
2578
2579 void nir_dump_cfg_impl(nir_function_impl *impl, FILE *fp);
2580 void nir_dump_cfg(nir_shader *shader, FILE *fp);
2581
2582 int nir_gs_count_vertices(const nir_shader *shader);
2583
2584 bool nir_split_var_copies(nir_shader *shader);
2585 bool nir_split_per_member_structs(nir_shader *shader);
2586
2587 bool nir_lower_returns_impl(nir_function_impl *impl);
2588 bool nir_lower_returns(nir_shader *shader);
2589
2590 bool nir_inline_functions(nir_shader *shader);
2591
2592 bool nir_propagate_invariant(nir_shader *shader);
2593
2594 void nir_lower_var_copy_instr(nir_intrinsic_instr *copy, nir_shader *shader);
2595 void nir_lower_deref_copy_instr(struct nir_builder *b,
2596 nir_intrinsic_instr *copy);
2597 bool nir_lower_var_copies(nir_shader *shader);
2598
2599 void nir_fixup_deref_modes(nir_shader *shader);
2600
2601 bool nir_lower_global_vars_to_local(nir_shader *shader);
2602
2603 bool nir_lower_indirect_derefs(nir_shader *shader, nir_variable_mode modes);
2604
2605 bool nir_lower_locals_to_regs(nir_shader *shader);
2606
2607 void nir_lower_io_to_temporaries(nir_shader *shader,
2608 nir_function_impl *entrypoint,
2609 bool outputs, bool inputs);
2610
2611 void nir_shader_gather_info(nir_shader *shader, nir_function_impl *entrypoint);
2612
2613 void nir_assign_var_locations(struct exec_list *var_list, unsigned *size,
2614 int (*type_size)(const struct glsl_type *));
2615
2616 /* Some helpers to do very simple linking */
2617 bool nir_remove_unused_varyings(nir_shader *producer, nir_shader *consumer);
2618 void nir_compact_varyings(nir_shader *producer, nir_shader *consumer,
2619 bool default_to_smooth_interp);
2620
2621 typedef enum {
2622 /* If set, this forces all non-flat fragment shader inputs to be
2623 * interpolated as if with the "sample" qualifier. This requires
2624 * nir_shader_compiler_options::use_interpolated_input_intrinsics.
2625 */
2626 nir_lower_io_force_sample_interpolation = (1 << 1),
2627 } nir_lower_io_options;
2628 bool nir_lower_io(nir_shader *shader,
2629 nir_variable_mode modes,
2630 int (*type_size)(const struct glsl_type *),
2631 nir_lower_io_options);
2632 nir_src *nir_get_io_offset_src(nir_intrinsic_instr *instr);
2633 nir_src *nir_get_io_vertex_index_src(nir_intrinsic_instr *instr);
2634
2635 bool nir_is_per_vertex_io(const nir_variable *var, gl_shader_stage stage);
2636
2637 bool nir_lower_regs_to_ssa_impl(nir_function_impl *impl);
2638 bool nir_lower_regs_to_ssa(nir_shader *shader);
2639 bool nir_lower_vars_to_ssa(nir_shader *shader);
2640
2641 bool nir_remove_dead_derefs(nir_shader *shader);
2642 bool nir_remove_dead_derefs_impl(nir_function_impl *impl);
2643 bool nir_remove_dead_variables(nir_shader *shader, nir_variable_mode modes);
2644 bool nir_lower_constant_initializers(nir_shader *shader,
2645 nir_variable_mode modes);
2646
2647 bool nir_move_load_const(nir_shader *shader);
2648 bool nir_move_vec_src_uses_to_dest(nir_shader *shader);
2649 bool nir_lower_vec_to_movs(nir_shader *shader);
2650 void nir_lower_alpha_test(nir_shader *shader, enum compare_func func,
2651 bool alpha_to_one);
2652 bool nir_lower_alu(nir_shader *shader);
2653 bool nir_lower_alu_to_scalar(nir_shader *shader);
2654 bool nir_lower_load_const_to_scalar(nir_shader *shader);
2655 bool nir_lower_read_invocation_to_scalar(nir_shader *shader);
2656 bool nir_lower_phis_to_scalar(nir_shader *shader);
2657 void nir_lower_io_arrays_to_elements(nir_shader *producer, nir_shader *consumer);
2658 void nir_lower_io_arrays_to_elements_no_indirects(nir_shader *shader,
2659 bool outputs_only);
2660 void nir_lower_io_to_scalar(nir_shader *shader, nir_variable_mode mask);
2661 void nir_lower_io_to_scalar_early(nir_shader *shader, nir_variable_mode mask);
2662
2663 typedef struct nir_lower_subgroups_options {
2664 uint8_t subgroup_size;
2665 uint8_t ballot_bit_size;
2666 bool lower_to_scalar:1;
2667 bool lower_vote_trivial:1;
2668 bool lower_vote_eq_to_ballot:1;
2669 bool lower_subgroup_masks:1;
2670 bool lower_shuffle:1;
2671 bool lower_shuffle_to_32bit:1;
2672 bool lower_quad:1;
2673 } nir_lower_subgroups_options;
2674
2675 bool nir_lower_subgroups(nir_shader *shader,
2676 const nir_lower_subgroups_options *options);
2677
2678 bool nir_lower_system_values(nir_shader *shader);
2679
2680 typedef struct nir_lower_tex_options {
2681 /**
2682 * bitmask of (1 << GLSL_SAMPLER_DIM_x) to control for which
2683 * sampler types a texture projector is lowered.
2684 */
2685 unsigned lower_txp;
2686
2687 /**
2688 * If true, lower away nir_tex_src_offset for all texelfetch instructions.
2689 */
2690 bool lower_txf_offset;
2691
2692 /**
2693 * If true, lower away nir_tex_src_offset for all rect textures.
2694 */
2695 bool lower_rect_offset;
2696
2697 /**
2698 * If true, lower rect textures to 2D, using txs to fetch the
2699 * texture dimensions and dividing the texture coords by the
2700 * texture dims to normalize.
2701 */
2702 bool lower_rect;
2703
2704 /**
2705 * If true, convert yuv to rgb.
2706 */
2707 unsigned lower_y_uv_external;
2708 unsigned lower_y_u_v_external;
2709 unsigned lower_yx_xuxv_external;
2710 unsigned lower_xy_uxvx_external;
2711
2712 /**
2713 * To emulate certain texture wrap modes, this can be used
2714 * to saturate the specified tex coord to [0.0, 1.0]. The
2715 * bits are according to sampler #, ie. if, for example:
2716 *
2717 * (conf->saturate_s & (1 << n))
2718 *
2719 * is true, then the s coord for sampler n is saturated.
2720 *
2721 * Note that clamping must happen *after* projector lowering
2722 * so any projected texture sample instruction with a clamped
2723 * coordinate gets automatically lowered, regardless of the
2724 * 'lower_txp' setting.
2725 */
2726 unsigned saturate_s;
2727 unsigned saturate_t;
2728 unsigned saturate_r;
2729
2730 /* Bitmask of textures that need swizzling.
2731 *
2732 * If (swizzle_result & (1 << texture_index)), then the swizzle in
2733 * swizzles[texture_index] is applied to the result of the texturing
2734 * operation.
2735 */
2736 unsigned swizzle_result;
2737
2738 /* A swizzle for each texture. Values 0-3 represent x, y, z, or w swizzles
2739 * while 4 and 5 represent 0 and 1 respectively.
2740 */
2741 uint8_t swizzles[32][4];
2742
2743 /**
2744 * Bitmap of textures that need srgb to linear conversion. If
2745 * (lower_srgb & (1 << texture_index)) then the rgb (xyz) components
2746 * of the texture are lowered to linear.
2747 */
2748 unsigned lower_srgb;
2749
2750 /**
2751 * If true, lower nir_texop_txd on cube maps with nir_texop_txl.
2752 */
2753 bool lower_txd_cube_map;
2754
2755 /**
2756 * If true, lower nir_texop_txd on shadow samplers (except cube maps)
2757 * with nir_texop_txl. Notice that cube map shadow samplers are lowered
2758 * with lower_txd_cube_map.
2759 */
2760 bool lower_txd_shadow;
2761
2762 /**
2763 * If true, lower nir_texop_txd on all samplers to a nir_texop_txl.
2764 * Implies lower_txd_cube_map and lower_txd_shadow.
2765 */
2766 bool lower_txd;
2767 } nir_lower_tex_options;
2768
2769 bool nir_lower_tex(nir_shader *shader,
2770 const nir_lower_tex_options *options);
2771
2772 bool nir_lower_idiv(nir_shader *shader);
2773
2774 bool nir_lower_clip_vs(nir_shader *shader, unsigned ucp_enables);
2775 bool nir_lower_clip_fs(nir_shader *shader, unsigned ucp_enables);
2776 bool nir_lower_clip_cull_distance_arrays(nir_shader *nir);
2777
2778 void nir_lower_two_sided_color(nir_shader *shader);
2779
2780 bool nir_lower_clamp_color_outputs(nir_shader *shader);
2781
2782 void nir_lower_passthrough_edgeflags(nir_shader *shader);
2783 void nir_lower_tes_patch_vertices(nir_shader *tes, unsigned patch_vertices);
2784
2785 typedef struct nir_lower_wpos_ytransform_options {
2786 gl_state_index16 state_tokens[STATE_LENGTH];
2787 bool fs_coord_origin_upper_left :1;
2788 bool fs_coord_origin_lower_left :1;
2789 bool fs_coord_pixel_center_integer :1;
2790 bool fs_coord_pixel_center_half_integer :1;
2791 } nir_lower_wpos_ytransform_options;
2792
2793 bool nir_lower_wpos_ytransform(nir_shader *shader,
2794 const nir_lower_wpos_ytransform_options *options);
2795 bool nir_lower_wpos_center(nir_shader *shader, const bool for_sample_shading);
2796
2797 typedef struct nir_lower_drawpixels_options {
2798 gl_state_index16 texcoord_state_tokens[STATE_LENGTH];
2799 gl_state_index16 scale_state_tokens[STATE_LENGTH];
2800 gl_state_index16 bias_state_tokens[STATE_LENGTH];
2801 unsigned drawpix_sampler;
2802 unsigned pixelmap_sampler;
2803 bool pixel_maps :1;
2804 bool scale_and_bias :1;
2805 } nir_lower_drawpixels_options;
2806
2807 void nir_lower_drawpixels(nir_shader *shader,
2808 const nir_lower_drawpixels_options *options);
2809
2810 typedef struct nir_lower_bitmap_options {
2811 unsigned sampler;
2812 bool swizzle_xxxx;
2813 } nir_lower_bitmap_options;
2814
2815 void nir_lower_bitmap(nir_shader *shader, const nir_lower_bitmap_options *options);
2816
2817 bool nir_lower_atomics_to_ssbo(nir_shader *shader, unsigned ssbo_offset);
2818 bool nir_lower_to_source_mods(nir_shader *shader);
2819
2820 bool nir_lower_gs_intrinsics(nir_shader *shader);
2821
2822 typedef unsigned (*nir_lower_bit_size_callback)(const nir_alu_instr *, void *);
2823
2824 bool nir_lower_bit_size(nir_shader *shader,
2825 nir_lower_bit_size_callback callback,
2826 void *callback_data);
2827
2828 typedef enum {
2829 nir_lower_imul64 = (1 << 0),
2830 nir_lower_isign64 = (1 << 1),
2831 /** Lower all int64 modulus and division opcodes */
2832 nir_lower_divmod64 = (1 << 2),
2833 } nir_lower_int64_options;
2834
2835 bool nir_lower_int64(nir_shader *shader, nir_lower_int64_options options);
2836
2837 typedef enum {
2838 nir_lower_drcp = (1 << 0),
2839 nir_lower_dsqrt = (1 << 1),
2840 nir_lower_drsq = (1 << 2),
2841 nir_lower_dtrunc = (1 << 3),
2842 nir_lower_dfloor = (1 << 4),
2843 nir_lower_dceil = (1 << 5),
2844 nir_lower_dfract = (1 << 6),
2845 nir_lower_dround_even = (1 << 7),
2846 nir_lower_dmod = (1 << 8)
2847 } nir_lower_doubles_options;
2848
2849 bool nir_lower_doubles(nir_shader *shader, nir_lower_doubles_options options);
2850 bool nir_lower_pack(nir_shader *shader);
2851
2852 bool nir_normalize_cubemap_coords(nir_shader *shader);
2853
2854 void nir_live_ssa_defs_impl(nir_function_impl *impl);
2855
2856 void nir_loop_analyze_impl(nir_function_impl *impl,
2857 nir_variable_mode indirect_mask);
2858
2859 bool nir_ssa_defs_interfere(nir_ssa_def *a, nir_ssa_def *b);
2860
2861 bool nir_repair_ssa_impl(nir_function_impl *impl);
2862 bool nir_repair_ssa(nir_shader *shader);
2863
2864 void nir_convert_loop_to_lcssa(nir_loop *loop);
2865
2866 /* If phi_webs_only is true, only convert SSA values involved in phi nodes to
2867 * registers. If false, convert all values (even those not involved in a phi
2868 * node) to registers.
2869 */
2870 bool nir_convert_from_ssa(nir_shader *shader, bool phi_webs_only);
2871
2872 bool nir_lower_phis_to_regs_block(nir_block *block);
2873 bool nir_lower_ssa_defs_to_regs_block(nir_block *block);
2874
2875 bool nir_opt_algebraic(nir_shader *shader);
2876 bool nir_opt_algebraic_before_ffma(nir_shader *shader);
2877 bool nir_opt_algebraic_late(nir_shader *shader);
2878 bool nir_opt_constant_folding(nir_shader *shader);
2879
2880 bool nir_opt_global_to_local(nir_shader *shader);
2881
2882 bool nir_copy_prop(nir_shader *shader);
2883
2884 bool nir_opt_copy_prop_vars(nir_shader *shader);
2885
2886 bool nir_opt_cse(nir_shader *shader);
2887
2888 bool nir_opt_dce(nir_shader *shader);
2889
2890 bool nir_opt_dead_cf(nir_shader *shader);
2891
2892 bool nir_opt_gcm(nir_shader *shader, bool value_number);
2893
2894 bool nir_opt_if(nir_shader *shader);
2895
2896 bool nir_opt_intrinsics(nir_shader *shader);
2897
2898 bool nir_opt_loop_unroll(nir_shader *shader, nir_variable_mode indirect_mask);
2899
2900 bool nir_opt_move_comparisons(nir_shader *shader);
2901
2902 bool nir_opt_move_load_ubo(nir_shader *shader);
2903
2904 bool nir_opt_peephole_select(nir_shader *shader, unsigned limit);
2905
2906 bool nir_opt_remove_phis(nir_shader *shader);
2907
2908 bool nir_opt_shrink_load(nir_shader *shader);
2909
2910 bool nir_opt_trivial_continues(nir_shader *shader);
2911
2912 bool nir_opt_undef(nir_shader *shader);
2913
2914 bool nir_opt_conditional_discard(nir_shader *shader);
2915
2916 void nir_sweep(nir_shader *shader);
2917
2918 nir_intrinsic_op nir_intrinsic_from_system_value(gl_system_value val);
2919 gl_system_value nir_system_value_from_intrinsic(nir_intrinsic_op intrin);
2920
2921 #ifdef __cplusplus
2922 } /* extern "C" */
2923 #endif
2924
2925 #endif /* NIR_H */