Merge commit '8b0fb1c152fe191768953aa8c77b89034a377f83' into vulkan
[mesa.git] / src / compiler / nir / nir.h
1 /*
2 * Copyright © 2014 Connor Abbott
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Connor Abbott (cwabbott0@gmail.com)
25 *
26 */
27
28 #pragma once
29
30 #include "util/hash_table.h"
31 #include "compiler/glsl/list.h"
32 #include "GL/gl.h" /* GLenum */
33 #include "util/list.h"
34 #include "util/ralloc.h"
35 #include "util/set.h"
36 #include "util/bitset.h"
37 #include "compiler/nir_types.h"
38 #include "compiler/shader_enums.h"
39 #include <stdio.h>
40
41 #include "nir_opcodes.h"
42
43 #ifdef __cplusplus
44 extern "C" {
45 #endif
46
47 struct gl_program;
48 struct gl_shader_program;
49
50 #define NIR_FALSE 0u
51 #define NIR_TRUE (~0u)
52
53 /** Defines a cast function
54 *
55 * This macro defines a cast function from in_type to out_type where
56 * out_type is some structure type that contains a field of type out_type.
57 *
58 * Note that you have to be a bit careful as the generated cast function
59 * destroys constness.
60 */
61 #define NIR_DEFINE_CAST(name, in_type, out_type, field) \
62 static inline out_type * \
63 name(const in_type *parent) \
64 { \
65 return exec_node_data(out_type, parent, field); \
66 }
67
68 struct nir_function;
69 struct nir_shader;
70 struct nir_instr;
71
72
73 /**
74 * Description of built-in state associated with a uniform
75 *
76 * \sa nir_variable::state_slots
77 */
78 typedef struct {
79 int tokens[5];
80 int swizzle;
81 } nir_state_slot;
82
83 typedef enum {
84 nir_var_all = -1,
85 nir_var_shader_in,
86 nir_var_shader_out,
87 nir_var_global,
88 nir_var_local,
89 nir_var_uniform,
90 nir_var_shader_storage,
91 nir_var_shared,
92 nir_var_system_value,
93 nir_var_param,
94 } nir_variable_mode;
95
96 /**
97 * Data stored in an nir_constant
98 */
99 union nir_constant_data {
100 unsigned u[16];
101 int i[16];
102 float f[16];
103 bool b[16];
104 };
105
106 typedef struct nir_constant {
107 /**
108 * Value of the constant.
109 *
110 * The field used to back the values supplied by the constant is determined
111 * by the type associated with the \c nir_variable. Constants may be
112 * scalars, vectors, or matrices.
113 */
114 union nir_constant_data value;
115
116 /* we could get this from the var->type but makes clone *much* easier to
117 * not have to care about the type.
118 */
119 unsigned num_elements;
120
121 /* Array elements / Structure Fields */
122 struct nir_constant **elements;
123 } nir_constant;
124
125 /**
126 * \brief Layout qualifiers for gl_FragDepth.
127 *
128 * The AMD/ARB_conservative_depth extensions allow gl_FragDepth to be redeclared
129 * with a layout qualifier.
130 */
131 typedef enum {
132 nir_depth_layout_none, /**< No depth layout is specified. */
133 nir_depth_layout_any,
134 nir_depth_layout_greater,
135 nir_depth_layout_less,
136 nir_depth_layout_unchanged
137 } nir_depth_layout;
138
139 /**
140 * Either a uniform, global variable, shader input, or shader output. Based on
141 * ir_variable - it should be easy to translate between the two.
142 */
143
144 typedef struct nir_variable {
145 struct exec_node node;
146
147 /**
148 * Declared type of the variable
149 */
150 const struct glsl_type *type;
151
152 /**
153 * Declared name of the variable
154 */
155 char *name;
156
157 struct nir_variable_data {
158
159 /**
160 * Is the variable read-only?
161 *
162 * This is set for variables declared as \c const, shader inputs,
163 * and uniforms.
164 */
165 unsigned read_only:1;
166 unsigned centroid:1;
167 unsigned sample:1;
168 unsigned patch:1;
169 unsigned invariant:1;
170
171 /**
172 * Storage class of the variable.
173 *
174 * \sa nir_variable_mode
175 */
176 nir_variable_mode mode:5;
177
178 /**
179 * Interpolation mode for shader inputs / outputs
180 *
181 * \sa glsl_interp_qualifier
182 */
183 unsigned interpolation:2;
184
185 /**
186 * \name ARB_fragment_coord_conventions
187 * @{
188 */
189 unsigned origin_upper_left:1;
190 unsigned pixel_center_integer:1;
191 /*@}*/
192
193 /**
194 * Was the location explicitly set in the shader?
195 *
196 * If the location is explicitly set in the shader, it \b cannot be changed
197 * by the linker or by the API (e.g., calls to \c glBindAttribLocation have
198 * no effect).
199 */
200 unsigned explicit_location:1;
201 unsigned explicit_index:1;
202
203 /**
204 * Was an initial binding explicitly set in the shader?
205 *
206 * If so, constant_initializer contains an integer nir_constant
207 * representing the initial binding point.
208 */
209 unsigned explicit_binding:1;
210
211 /**
212 * Does this variable have an initializer?
213 *
214 * This is used by the linker to cross-validiate initializers of global
215 * variables.
216 */
217 unsigned has_initializer:1;
218
219 /**
220 * If non-zero, then this variable may be packed along with other variables
221 * into a single varying slot, so this offset should be applied when
222 * accessing components. For example, an offset of 1 means that the x
223 * component of this variable is actually stored in component y of the
224 * location specified by \c location.
225 */
226 unsigned location_frac:2;
227
228 /**
229 * \brief Layout qualifier for gl_FragDepth.
230 *
231 * This is not equal to \c ir_depth_layout_none if and only if this
232 * variable is \c gl_FragDepth and a layout qualifier is specified.
233 */
234 nir_depth_layout depth_layout;
235
236 /**
237 * Storage location of the base of this variable
238 *
239 * The precise meaning of this field depends on the nature of the variable.
240 *
241 * - Vertex shader input: one of the values from \c gl_vert_attrib.
242 * - Vertex shader output: one of the values from \c gl_varying_slot.
243 * - Geometry shader input: one of the values from \c gl_varying_slot.
244 * - Geometry shader output: one of the values from \c gl_varying_slot.
245 * - Fragment shader input: one of the values from \c gl_varying_slot.
246 * - Fragment shader output: one of the values from \c gl_frag_result.
247 * - Uniforms: Per-stage uniform slot number for default uniform block.
248 * - Uniforms: Index within the uniform block definition for UBO members.
249 * - Non-UBO Uniforms: uniform slot number.
250 * - Other: This field is not currently used.
251 *
252 * If the variable is a uniform, shader input, or shader output, and the
253 * slot has not been assigned, the value will be -1.
254 */
255 int location;
256
257 /**
258 * The actual location of the variable in the IR. Only valid for inputs
259 * and outputs.
260 */
261 unsigned int driver_location;
262
263 /**
264 * output index for dual source blending.
265 */
266 int index;
267
268 /**
269 * Descriptor set binding for sampler or UBO.
270 */
271 int descriptor_set;
272
273 /**
274 * Initial binding point for a sampler or UBO.
275 *
276 * For array types, this represents the binding point for the first element.
277 */
278 int binding;
279
280 /**
281 * Location an atomic counter is stored at.
282 */
283 unsigned offset;
284
285 /**
286 * ARB_shader_image_load_store qualifiers.
287 */
288 struct {
289 bool read_only; /**< "readonly" qualifier. */
290 bool write_only; /**< "writeonly" qualifier. */
291 bool coherent;
292 bool _volatile;
293 bool restrict_flag;
294
295 /** Image internal format if specified explicitly, otherwise GL_NONE. */
296 GLenum format;
297 } image;
298
299 /**
300 * Highest element accessed with a constant expression array index
301 *
302 * Not used for non-array variables.
303 */
304 unsigned max_array_access;
305
306 } data;
307
308 /**
309 * Built-in state that backs this uniform
310 *
311 * Once set at variable creation, \c state_slots must remain invariant.
312 * This is because, ideally, this array would be shared by all clones of
313 * this variable in the IR tree. In other words, we'd really like for it
314 * to be a fly-weight.
315 *
316 * If the variable is not a uniform, \c num_state_slots will be zero and
317 * \c state_slots will be \c NULL.
318 */
319 /*@{*/
320 unsigned num_state_slots; /**< Number of state slots used */
321 nir_state_slot *state_slots; /**< State descriptors. */
322 /*@}*/
323
324 /**
325 * Constant expression assigned in the initializer of the variable
326 */
327 nir_constant *constant_initializer;
328
329 /**
330 * For variables that are in an interface block or are an instance of an
331 * interface block, this is the \c GLSL_TYPE_INTERFACE type for that block.
332 *
333 * \sa ir_variable::location
334 */
335 const struct glsl_type *interface_type;
336 } nir_variable;
337
338 #define nir_foreach_variable(var, var_list) \
339 foreach_list_typed(nir_variable, var, node, var_list)
340
341 static inline bool
342 nir_variable_is_global(const nir_variable *var)
343 {
344 return var->data.mode != nir_var_local && var->data.mode != nir_var_param;
345 }
346
347 /**
348 * Returns the bits in the inputs_read, outputs_written, or
349 * system_values_read bitfield corresponding to this variable.
350 */
351 static inline uint64_t
352 nir_variable_get_io_mask(nir_variable *var, gl_shader_stage stage)
353 {
354 assert(var->data.mode == nir_var_shader_in ||
355 var->data.mode == nir_var_shader_out ||
356 var->data.mode == nir_var_system_value);
357 assert(var->data.location >= 0);
358
359 const struct glsl_type *var_type = var->type;
360 if (stage == MESA_SHADER_GEOMETRY && var->data.mode == nir_var_shader_in) {
361 /* Most geometry shader inputs are per-vertex arrays */
362 if (var->data.location >= VARYING_SLOT_VAR0)
363 assert(glsl_type_is_array(var_type));
364
365 if (glsl_type_is_array(var_type))
366 var_type = glsl_get_array_element(var_type);
367 }
368
369 bool is_vertex_input = (var->data.mode == nir_var_shader_in &&
370 stage == MESA_SHADER_VERTEX);
371 unsigned slots = glsl_count_attribute_slots(var_type, is_vertex_input);
372 return ((1ull << slots) - 1) << var->data.location;
373 }
374
375 typedef struct nir_register {
376 struct exec_node node;
377
378 unsigned num_components; /** < number of vector components */
379 unsigned num_array_elems; /** < size of array (0 for no array) */
380
381 /** generic register index. */
382 unsigned index;
383
384 /** only for debug purposes, can be NULL */
385 const char *name;
386
387 /** whether this register is local (per-function) or global (per-shader) */
388 bool is_global;
389
390 /**
391 * If this flag is set to true, then accessing channels >= num_components
392 * is well-defined, and simply spills over to the next array element. This
393 * is useful for backends that can do per-component accessing, in
394 * particular scalar backends. By setting this flag and making
395 * num_components equal to 1, structures can be packed tightly into
396 * registers and then registers can be accessed per-component to get to
397 * each structure member, even if it crosses vec4 boundaries.
398 */
399 bool is_packed;
400
401 /** set of nir_src's where this register is used (read from) */
402 struct list_head uses;
403
404 /** set of nir_dest's where this register is defined (written to) */
405 struct list_head defs;
406
407 /** set of nir_if's where this register is used as a condition */
408 struct list_head if_uses;
409 } nir_register;
410
411 typedef enum {
412 nir_instr_type_alu,
413 nir_instr_type_call,
414 nir_instr_type_tex,
415 nir_instr_type_intrinsic,
416 nir_instr_type_load_const,
417 nir_instr_type_jump,
418 nir_instr_type_ssa_undef,
419 nir_instr_type_phi,
420 nir_instr_type_parallel_copy,
421 } nir_instr_type;
422
423 typedef struct nir_instr {
424 struct exec_node node;
425 nir_instr_type type;
426 struct nir_block *block;
427
428 /** generic instruction index. */
429 unsigned index;
430
431 /* A temporary for optimization and analysis passes to use for storing
432 * flags. For instance, DCE uses this to store the "dead/live" info.
433 */
434 uint8_t pass_flags;
435 } nir_instr;
436
437 static inline nir_instr *
438 nir_instr_next(nir_instr *instr)
439 {
440 struct exec_node *next = exec_node_get_next(&instr->node);
441 if (exec_node_is_tail_sentinel(next))
442 return NULL;
443 else
444 return exec_node_data(nir_instr, next, node);
445 }
446
447 static inline nir_instr *
448 nir_instr_prev(nir_instr *instr)
449 {
450 struct exec_node *prev = exec_node_get_prev(&instr->node);
451 if (exec_node_is_head_sentinel(prev))
452 return NULL;
453 else
454 return exec_node_data(nir_instr, prev, node);
455 }
456
457 static inline bool
458 nir_instr_is_first(nir_instr *instr)
459 {
460 return exec_node_is_head_sentinel(exec_node_get_prev(&instr->node));
461 }
462
463 static inline bool
464 nir_instr_is_last(nir_instr *instr)
465 {
466 return exec_node_is_tail_sentinel(exec_node_get_next(&instr->node));
467 }
468
469 typedef struct nir_ssa_def {
470 /** for debugging only, can be NULL */
471 const char* name;
472
473 /** generic SSA definition index. */
474 unsigned index;
475
476 /** Index into the live_in and live_out bitfields */
477 unsigned live_index;
478
479 nir_instr *parent_instr;
480
481 /** set of nir_instr's where this register is used (read from) */
482 struct list_head uses;
483
484 /** set of nir_if's where this register is used as a condition */
485 struct list_head if_uses;
486
487 uint8_t num_components;
488 } nir_ssa_def;
489
490 struct nir_src;
491
492 typedef struct {
493 nir_register *reg;
494 struct nir_src *indirect; /** < NULL for no indirect offset */
495 unsigned base_offset;
496
497 /* TODO use-def chain goes here */
498 } nir_reg_src;
499
500 typedef struct {
501 nir_instr *parent_instr;
502 struct list_head def_link;
503
504 nir_register *reg;
505 struct nir_src *indirect; /** < NULL for no indirect offset */
506 unsigned base_offset;
507
508 /* TODO def-use chain goes here */
509 } nir_reg_dest;
510
511 struct nir_if;
512
513 typedef struct nir_src {
514 union {
515 nir_instr *parent_instr;
516 struct nir_if *parent_if;
517 };
518
519 struct list_head use_link;
520
521 union {
522 nir_reg_src reg;
523 nir_ssa_def *ssa;
524 };
525
526 bool is_ssa;
527 } nir_src;
528
529 #ifdef __cplusplus
530 # define NIR_SRC_INIT nir_src()
531 #else
532 # define NIR_SRC_INIT (nir_src) { { NULL } }
533 #endif
534
535 #define nir_foreach_use(reg_or_ssa_def, src) \
536 list_for_each_entry(nir_src, src, &(reg_or_ssa_def)->uses, use_link)
537
538 #define nir_foreach_use_safe(reg_or_ssa_def, src) \
539 list_for_each_entry_safe(nir_src, src, &(reg_or_ssa_def)->uses, use_link)
540
541 #define nir_foreach_if_use(reg_or_ssa_def, src) \
542 list_for_each_entry(nir_src, src, &(reg_or_ssa_def)->if_uses, use_link)
543
544 #define nir_foreach_if_use_safe(reg_or_ssa_def, src) \
545 list_for_each_entry_safe(nir_src, src, &(reg_or_ssa_def)->if_uses, use_link)
546
547 typedef struct {
548 union {
549 nir_reg_dest reg;
550 nir_ssa_def ssa;
551 };
552
553 bool is_ssa;
554 } nir_dest;
555
556 #ifdef __cplusplus
557 # define NIR_DEST_INIT nir_dest()
558 #else
559 # define NIR_DEST_INIT (nir_dest) { { { NULL } } }
560 #endif
561
562 #define nir_foreach_def(reg, dest) \
563 list_for_each_entry(nir_dest, dest, &(reg)->defs, reg.def_link)
564
565 #define nir_foreach_def_safe(reg, dest) \
566 list_for_each_entry_safe(nir_dest, dest, &(reg)->defs, reg.def_link)
567
568 static inline nir_src
569 nir_src_for_ssa(nir_ssa_def *def)
570 {
571 nir_src src = NIR_SRC_INIT;
572
573 src.is_ssa = true;
574 src.ssa = def;
575
576 return src;
577 }
578
579 static inline nir_src
580 nir_src_for_reg(nir_register *reg)
581 {
582 nir_src src = NIR_SRC_INIT;
583
584 src.is_ssa = false;
585 src.reg.reg = reg;
586 src.reg.indirect = NULL;
587 src.reg.base_offset = 0;
588
589 return src;
590 }
591
592 static inline nir_dest
593 nir_dest_for_reg(nir_register *reg)
594 {
595 nir_dest dest = NIR_DEST_INIT;
596
597 dest.reg.reg = reg;
598
599 return dest;
600 }
601
602 void nir_src_copy(nir_src *dest, const nir_src *src, void *instr_or_if);
603 void nir_dest_copy(nir_dest *dest, const nir_dest *src, nir_instr *instr);
604
605 typedef struct {
606 nir_src src;
607
608 /**
609 * \name input modifiers
610 */
611 /*@{*/
612 /**
613 * For inputs interpreted as floating point, flips the sign bit. For
614 * inputs interpreted as integers, performs the two's complement negation.
615 */
616 bool negate;
617
618 /**
619 * Clears the sign bit for floating point values, and computes the integer
620 * absolute value for integers. Note that the negate modifier acts after
621 * the absolute value modifier, therefore if both are set then all inputs
622 * will become negative.
623 */
624 bool abs;
625 /*@}*/
626
627 /**
628 * For each input component, says which component of the register it is
629 * chosen from. Note that which elements of the swizzle are used and which
630 * are ignored are based on the write mask for most opcodes - for example,
631 * a statement like "foo.xzw = bar.zyx" would have a writemask of 1101b and
632 * a swizzle of {2, x, 1, 0} where x means "don't care."
633 */
634 uint8_t swizzle[4];
635 } nir_alu_src;
636
637 typedef struct {
638 nir_dest dest;
639
640 /**
641 * \name saturate output modifier
642 *
643 * Only valid for opcodes that output floating-point numbers. Clamps the
644 * output to between 0.0 and 1.0 inclusive.
645 */
646
647 bool saturate;
648
649 unsigned write_mask : 4; /* ignored if dest.is_ssa is true */
650 } nir_alu_dest;
651
652 typedef enum {
653 nir_type_invalid = 0, /* Not a valid type */
654 nir_type_float,
655 nir_type_int,
656 nir_type_uint,
657 nir_type_bool
658 } nir_alu_type;
659
660 typedef enum {
661 NIR_OP_IS_COMMUTATIVE = (1 << 0),
662 NIR_OP_IS_ASSOCIATIVE = (1 << 1),
663 } nir_op_algebraic_property;
664
665 typedef struct {
666 const char *name;
667
668 unsigned num_inputs;
669
670 /**
671 * The number of components in the output
672 *
673 * If non-zero, this is the size of the output and input sizes are
674 * explicitly given; swizzle and writemask are still in effect, but if
675 * the output component is masked out, then the input component may
676 * still be in use.
677 *
678 * If zero, the opcode acts in the standard, per-component manner; the
679 * operation is performed on each component (except the ones that are
680 * masked out) with the input being taken from the input swizzle for
681 * that component.
682 *
683 * The size of some of the inputs may be given (i.e. non-zero) even
684 * though output_size is zero; in that case, the inputs with a zero
685 * size act per-component, while the inputs with non-zero size don't.
686 */
687 unsigned output_size;
688
689 /**
690 * The type of vector that the instruction outputs. Note that the
691 * staurate modifier is only allowed on outputs with the float type.
692 */
693
694 nir_alu_type output_type;
695
696 /**
697 * The number of components in each input
698 */
699 unsigned input_sizes[4];
700
701 /**
702 * The type of vector that each input takes. Note that negate and
703 * absolute value are only allowed on inputs with int or float type and
704 * behave differently on the two.
705 */
706 nir_alu_type input_types[4];
707
708 nir_op_algebraic_property algebraic_properties;
709 } nir_op_info;
710
711 extern const nir_op_info nir_op_infos[nir_num_opcodes];
712
713 typedef struct nir_alu_instr {
714 nir_instr instr;
715 nir_op op;
716 nir_alu_dest dest;
717 nir_alu_src src[];
718 } nir_alu_instr;
719
720 void nir_alu_src_copy(nir_alu_src *dest, const nir_alu_src *src,
721 nir_alu_instr *instr);
722 void nir_alu_dest_copy(nir_alu_dest *dest, const nir_alu_dest *src,
723 nir_alu_instr *instr);
724
725 /* is this source channel used? */
726 static inline bool
727 nir_alu_instr_channel_used(nir_alu_instr *instr, unsigned src, unsigned channel)
728 {
729 if (nir_op_infos[instr->op].input_sizes[src] > 0)
730 return channel < nir_op_infos[instr->op].input_sizes[src];
731
732 return (instr->dest.write_mask >> channel) & 1;
733 }
734
735 /*
736 * For instructions whose destinations are SSA, get the number of channels
737 * used for a source
738 */
739 static inline unsigned
740 nir_ssa_alu_instr_src_components(const nir_alu_instr *instr, unsigned src)
741 {
742 assert(instr->dest.dest.is_ssa);
743
744 if (nir_op_infos[instr->op].input_sizes[src] > 0)
745 return nir_op_infos[instr->op].input_sizes[src];
746
747 return instr->dest.dest.ssa.num_components;
748 }
749
750 typedef enum {
751 nir_deref_type_var,
752 nir_deref_type_array,
753 nir_deref_type_struct
754 } nir_deref_type;
755
756 typedef struct nir_deref {
757 nir_deref_type deref_type;
758 struct nir_deref *child;
759 const struct glsl_type *type;
760 } nir_deref;
761
762 typedef struct {
763 nir_deref deref;
764
765 nir_variable *var;
766 } nir_deref_var;
767
768 /* This enum describes how the array is referenced. If the deref is
769 * direct then the base_offset is used. If the deref is indirect then then
770 * offset is given by base_offset + indirect. If the deref is a wildcard
771 * then the deref refers to all of the elements of the array at the same
772 * time. Wildcard dereferences are only ever allowed in copy_var
773 * intrinsics and the source and destination derefs must have matching
774 * wildcards.
775 */
776 typedef enum {
777 nir_deref_array_type_direct,
778 nir_deref_array_type_indirect,
779 nir_deref_array_type_wildcard,
780 } nir_deref_array_type;
781
782 typedef struct {
783 nir_deref deref;
784
785 nir_deref_array_type deref_array_type;
786 unsigned base_offset;
787 nir_src indirect;
788 } nir_deref_array;
789
790 typedef struct {
791 nir_deref deref;
792
793 unsigned index;
794 } nir_deref_struct;
795
796 NIR_DEFINE_CAST(nir_deref_as_var, nir_deref, nir_deref_var, deref)
797 NIR_DEFINE_CAST(nir_deref_as_array, nir_deref, nir_deref_array, deref)
798 NIR_DEFINE_CAST(nir_deref_as_struct, nir_deref, nir_deref_struct, deref)
799
800 /* Returns the last deref in the chain. */
801 static inline nir_deref *
802 nir_deref_tail(nir_deref *deref)
803 {
804 while (deref->child)
805 deref = deref->child;
806 return deref;
807 }
808
809 typedef struct {
810 nir_instr instr;
811
812 unsigned num_params;
813 nir_deref_var **params;
814 nir_deref_var *return_deref;
815
816 struct nir_function *callee;
817 } nir_call_instr;
818
819 #define INTRINSIC(name, num_srcs, src_components, has_dest, dest_components, \
820 num_variables, num_indices, idx0, idx1, idx2, flags) \
821 nir_intrinsic_##name,
822
823 #define LAST_INTRINSIC(name) nir_last_intrinsic = nir_intrinsic_##name,
824
825 typedef enum {
826 #include "nir_intrinsics.h"
827 nir_num_intrinsics = nir_last_intrinsic + 1
828 } nir_intrinsic_op;
829
830 #undef INTRINSIC
831 #undef LAST_INTRINSIC
832
833 #define NIR_INTRINSIC_MAX_CONST_INDEX 3
834
835 /** Represents an intrinsic
836 *
837 * An intrinsic is an instruction type for handling things that are
838 * more-or-less regular operations but don't just consume and produce SSA
839 * values like ALU operations do. Intrinsics are not for things that have
840 * special semantic meaning such as phi nodes and parallel copies.
841 * Examples of intrinsics include variable load/store operations, system
842 * value loads, and the like. Even though texturing more-or-less falls
843 * under this category, texturing is its own instruction type because
844 * trying to represent texturing with intrinsics would lead to a
845 * combinatorial explosion of intrinsic opcodes.
846 *
847 * By having a single instruction type for handling a lot of different
848 * cases, optimization passes can look for intrinsics and, for the most
849 * part, completely ignore them. Each intrinsic type also has a few
850 * possible flags that govern whether or not they can be reordered or
851 * eliminated. That way passes like dead code elimination can still work
852 * on intrisics without understanding the meaning of each.
853 *
854 * Each intrinsic has some number of constant indices, some number of
855 * variables, and some number of sources. What these sources, variables,
856 * and indices mean depends on the intrinsic and is documented with the
857 * intrinsic declaration in nir_intrinsics.h. Intrinsics and texture
858 * instructions are the only types of instruction that can operate on
859 * variables.
860 */
861 typedef struct {
862 nir_instr instr;
863
864 nir_intrinsic_op intrinsic;
865
866 nir_dest dest;
867
868 /** number of components if this is a vectorized intrinsic
869 *
870 * Similarly to ALU operations, some intrinsics are vectorized.
871 * An intrinsic is vectorized if nir_intrinsic_infos.dest_components == 0.
872 * For vectorized intrinsics, the num_components field specifies the
873 * number of destination components and the number of source components
874 * for all sources with nir_intrinsic_infos.src_components[i] == 0.
875 */
876 uint8_t num_components;
877
878 int const_index[NIR_INTRINSIC_MAX_CONST_INDEX];
879
880 nir_deref_var *variables[2];
881
882 nir_src src[];
883 } nir_intrinsic_instr;
884
885 /**
886 * \name NIR intrinsics semantic flags
887 *
888 * information about what the compiler can do with the intrinsics.
889 *
890 * \sa nir_intrinsic_info::flags
891 */
892 typedef enum {
893 /**
894 * whether the intrinsic can be safely eliminated if none of its output
895 * value is not being used.
896 */
897 NIR_INTRINSIC_CAN_ELIMINATE = (1 << 0),
898
899 /**
900 * Whether the intrinsic can be reordered with respect to any other
901 * intrinsic, i.e. whether the only reordering dependencies of the
902 * intrinsic are due to the register reads/writes.
903 */
904 NIR_INTRINSIC_CAN_REORDER = (1 << 1),
905 } nir_intrinsic_semantic_flag;
906
907 /**
908 * \name NIR intrinsics const-index flag
909 *
910 * Indicates the usage of a const_index slot.
911 *
912 * \sa nir_intrinsic_info::index_map
913 */
914 typedef enum {
915 /**
916 * Generally instructions that take a offset src argument, can encode
917 * a constant 'base' value which is added to the offset.
918 */
919 NIR_INTRINSIC_BASE = 1,
920
921 /**
922 * For store instructions, a writemask for the store.
923 */
924 NIR_INTRINSIC_WRMASK = 2,
925
926 /**
927 * The stream-id for GS emit_vertex/end_primitive intrinsics.
928 */
929 NIR_INTRINSIC_STREAM_ID = 3,
930
931 /**
932 * The clip-plane id for load_user_clip_plane intrinsic.
933 */
934 NIR_INTRINSIC_UCP_ID = 4,
935
936 /**
937 * The range of a load operation. This specifies the maximum amount of
938 * data starting at the base offset (if any) that can be accessed.
939 */
940 NIR_INTRINSIC_RANGE = 5,
941
942 /**
943 * The Vulkan descriptor set for vulkan_resource_index intrinsic.
944 */
945 NIR_INTRINSIC_DESC_SET = 6,
946
947 /**
948 * The Vulkan descriptor set binding for vulkan_resource_index intrinsic.
949 */
950 NIR_INTRINSIC_BINDING = 7,
951
952 NIR_INTRINSIC_NUM_INDEX_FLAGS,
953
954 } nir_intrinsic_index_flag;
955
956 #define NIR_INTRINSIC_MAX_INPUTS 4
957
958 typedef struct {
959 const char *name;
960
961 unsigned num_srcs; /** < number of register/SSA inputs */
962
963 /** number of components of each input register
964 *
965 * If this value is 0, the number of components is given by the
966 * num_components field of nir_intrinsic_instr.
967 */
968 unsigned src_components[NIR_INTRINSIC_MAX_INPUTS];
969
970 bool has_dest;
971
972 /** number of components of the output register
973 *
974 * If this value is 0, the number of components is given by the
975 * num_components field of nir_intrinsic_instr.
976 */
977 unsigned dest_components;
978
979 /** the number of inputs/outputs that are variables */
980 unsigned num_variables;
981
982 /** the number of constant indices used by the intrinsic */
983 unsigned num_indices;
984
985 /** indicates the usage of intr->const_index[n] */
986 unsigned index_map[NIR_INTRINSIC_NUM_INDEX_FLAGS];
987
988 /** semantic flags for calls to this intrinsic */
989 nir_intrinsic_semantic_flag flags;
990 } nir_intrinsic_info;
991
992 extern const nir_intrinsic_info nir_intrinsic_infos[nir_num_intrinsics];
993
994
995 #define INTRINSIC_IDX_ACCESSORS(name, flag, type) \
996 static inline type \
997 nir_intrinsic_##name(nir_intrinsic_instr *instr) \
998 { \
999 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic]; \
1000 assert(info->index_map[NIR_INTRINSIC_##flag] > 0); \
1001 return instr->const_index[info->index_map[NIR_INTRINSIC_##flag] - 1]; \
1002 } \
1003 static inline void \
1004 nir_intrinsic_set_##name(nir_intrinsic_instr *instr, type val) \
1005 { \
1006 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic]; \
1007 assert(info->index_map[NIR_INTRINSIC_##flag] > 0); \
1008 instr->const_index[info->index_map[NIR_INTRINSIC_##flag] - 1] = val; \
1009 }
1010
1011 INTRINSIC_IDX_ACCESSORS(write_mask, WRMASK, unsigned)
1012 INTRINSIC_IDX_ACCESSORS(base, BASE, int)
1013 INTRINSIC_IDX_ACCESSORS(stream_id, STREAM_ID, unsigned)
1014 INTRINSIC_IDX_ACCESSORS(ucp_id, UCP_ID, unsigned)
1015 INTRINSIC_IDX_ACCESSORS(range, RANGE, unsigned)
1016 INTRINSIC_IDX_ACCESSORS(desc_set, DESC_SET, unsigned)
1017 INTRINSIC_IDX_ACCESSORS(binding, BINDING, unsigned)
1018
1019 /**
1020 * \group texture information
1021 *
1022 * This gives semantic information about textures which is useful to the
1023 * frontend, the backend, and lowering passes, but not the optimizer.
1024 */
1025
1026 typedef enum {
1027 nir_tex_src_coord,
1028 nir_tex_src_projector,
1029 nir_tex_src_comparitor, /* shadow comparitor */
1030 nir_tex_src_offset,
1031 nir_tex_src_bias,
1032 nir_tex_src_lod,
1033 nir_tex_src_ms_index, /* MSAA sample index */
1034 nir_tex_src_ddx,
1035 nir_tex_src_ddy,
1036 nir_tex_src_texture_offset, /* < dynamically uniform indirect offset */
1037 nir_tex_src_sampler_offset, /* < dynamically uniform indirect offset */
1038 nir_num_tex_src_types
1039 } nir_tex_src_type;
1040
1041 typedef struct {
1042 nir_src src;
1043 nir_tex_src_type src_type;
1044 } nir_tex_src;
1045
1046 typedef enum {
1047 nir_texop_tex, /**< Regular texture look-up */
1048 nir_texop_txb, /**< Texture look-up with LOD bias */
1049 nir_texop_txl, /**< Texture look-up with explicit LOD */
1050 nir_texop_txd, /**< Texture look-up with partial derivatvies */
1051 nir_texop_txf, /**< Texel fetch with explicit LOD */
1052 nir_texop_txf_ms, /**< Multisample texture fetch */
1053 nir_texop_txs, /**< Texture size */
1054 nir_texop_lod, /**< Texture lod query */
1055 nir_texop_tg4, /**< Texture gather */
1056 nir_texop_query_levels, /**< Texture levels query */
1057 nir_texop_texture_samples, /**< Texture samples query */
1058 nir_texop_samples_identical, /**< Query whether all samples are definitely
1059 * identical.
1060 */
1061 } nir_texop;
1062
1063 typedef struct {
1064 nir_instr instr;
1065
1066 enum glsl_sampler_dim sampler_dim;
1067 nir_alu_type dest_type;
1068
1069 nir_texop op;
1070 nir_dest dest;
1071 nir_tex_src *src;
1072 unsigned num_srcs, coord_components;
1073 bool is_array, is_shadow;
1074
1075 /**
1076 * If is_shadow is true, whether this is the old-style shadow that outputs 4
1077 * components or the new-style shadow that outputs 1 component.
1078 */
1079 bool is_new_style_shadow;
1080
1081 /* constant offset - must be 0 if the offset source is used */
1082 int const_offset[4];
1083
1084 /* gather component selector */
1085 unsigned component : 2;
1086
1087 /** The texture index
1088 *
1089 * If this texture instruction has a nir_tex_src_texture_offset source,
1090 * then the texture index is given by texture_index + texture_offset.
1091 */
1092 unsigned texture_index;
1093
1094 /** The size of the texture array or 0 if it's not an array */
1095 unsigned texture_array_size;
1096
1097 /** The texture deref
1098 *
1099 * If both this and `sampler` are both NULL, use texture_index instead.
1100 * If `texture` is NULL, but `sampler` is non-NULL, then the texture is
1101 * implied from the sampler.
1102 */
1103 nir_deref_var *texture;
1104
1105 /** The sampler index
1106 *
1107 * If this texture instruction has a nir_tex_src_sampler_offset source,
1108 * then the sampler index is given by sampler_index + sampler_offset.
1109 */
1110 unsigned sampler_index;
1111
1112 /** The sampler deref
1113 *
1114 * If this is null, use sampler_index instead.
1115 */
1116 nir_deref_var *sampler;
1117 } nir_tex_instr;
1118
1119 static inline unsigned
1120 nir_tex_instr_dest_size(nir_tex_instr *instr)
1121 {
1122 switch (instr->op) {
1123 case nir_texop_txs: {
1124 unsigned ret;
1125 switch (instr->sampler_dim) {
1126 case GLSL_SAMPLER_DIM_1D:
1127 case GLSL_SAMPLER_DIM_BUF:
1128 ret = 1;
1129 break;
1130 case GLSL_SAMPLER_DIM_2D:
1131 case GLSL_SAMPLER_DIM_CUBE:
1132 case GLSL_SAMPLER_DIM_MS:
1133 case GLSL_SAMPLER_DIM_RECT:
1134 case GLSL_SAMPLER_DIM_EXTERNAL:
1135 ret = 2;
1136 break;
1137 case GLSL_SAMPLER_DIM_3D:
1138 ret = 3;
1139 break;
1140 default:
1141 unreachable("not reached");
1142 }
1143 if (instr->is_array)
1144 ret++;
1145 return ret;
1146 }
1147
1148 case nir_texop_lod:
1149 return 2;
1150
1151 case nir_texop_texture_samples:
1152 case nir_texop_query_levels:
1153 case nir_texop_samples_identical:
1154 return 1;
1155
1156 default:
1157 if (instr->is_shadow && instr->is_new_style_shadow)
1158 return 1;
1159
1160 return 4;
1161 }
1162 }
1163
1164 /* Returns true if this texture operation queries something about the texture
1165 * rather than actually sampling it.
1166 */
1167 static inline bool
1168 nir_tex_instr_is_query(nir_tex_instr *instr)
1169 {
1170 switch (instr->op) {
1171 case nir_texop_txs:
1172 case nir_texop_lod:
1173 case nir_texop_texture_samples:
1174 case nir_texop_query_levels:
1175 return true;
1176 case nir_texop_tex:
1177 case nir_texop_txb:
1178 case nir_texop_txl:
1179 case nir_texop_txd:
1180 case nir_texop_txf:
1181 case nir_texop_txf_ms:
1182 case nir_texop_tg4:
1183 return false;
1184 default:
1185 unreachable("Invalid texture opcode");
1186 }
1187 }
1188
1189 static inline unsigned
1190 nir_tex_instr_src_size(nir_tex_instr *instr, unsigned src)
1191 {
1192 if (instr->src[src].src_type == nir_tex_src_coord)
1193 return instr->coord_components;
1194
1195
1196 if (instr->src[src].src_type == nir_tex_src_offset ||
1197 instr->src[src].src_type == nir_tex_src_ddx ||
1198 instr->src[src].src_type == nir_tex_src_ddy) {
1199 if (instr->is_array)
1200 return instr->coord_components - 1;
1201 else
1202 return instr->coord_components;
1203 }
1204
1205 return 1;
1206 }
1207
1208 static inline int
1209 nir_tex_instr_src_index(nir_tex_instr *instr, nir_tex_src_type type)
1210 {
1211 for (unsigned i = 0; i < instr->num_srcs; i++)
1212 if (instr->src[i].src_type == type)
1213 return (int) i;
1214
1215 return -1;
1216 }
1217
1218 typedef struct {
1219 union {
1220 float f[4];
1221 int32_t i[4];
1222 uint32_t u[4];
1223 };
1224 } nir_const_value;
1225
1226 typedef struct {
1227 nir_instr instr;
1228
1229 nir_const_value value;
1230
1231 nir_ssa_def def;
1232 } nir_load_const_instr;
1233
1234 typedef enum {
1235 nir_jump_return,
1236 nir_jump_break,
1237 nir_jump_continue,
1238 } nir_jump_type;
1239
1240 typedef struct {
1241 nir_instr instr;
1242 nir_jump_type type;
1243 } nir_jump_instr;
1244
1245 /* creates a new SSA variable in an undefined state */
1246
1247 typedef struct {
1248 nir_instr instr;
1249 nir_ssa_def def;
1250 } nir_ssa_undef_instr;
1251
1252 typedef struct {
1253 struct exec_node node;
1254
1255 /* The predecessor block corresponding to this source */
1256 struct nir_block *pred;
1257
1258 nir_src src;
1259 } nir_phi_src;
1260
1261 #define nir_foreach_phi_src(phi, entry) \
1262 foreach_list_typed(nir_phi_src, entry, node, &(phi)->srcs)
1263 #define nir_foreach_phi_src_safe(phi, entry) \
1264 foreach_list_typed_safe(nir_phi_src, entry, node, &(phi)->srcs)
1265
1266 typedef struct {
1267 nir_instr instr;
1268
1269 struct exec_list srcs; /** < list of nir_phi_src */
1270
1271 nir_dest dest;
1272 } nir_phi_instr;
1273
1274 typedef struct {
1275 struct exec_node node;
1276 nir_src src;
1277 nir_dest dest;
1278 } nir_parallel_copy_entry;
1279
1280 #define nir_foreach_parallel_copy_entry(pcopy, entry) \
1281 foreach_list_typed(nir_parallel_copy_entry, entry, node, &(pcopy)->entries)
1282
1283 typedef struct {
1284 nir_instr instr;
1285
1286 /* A list of nir_parallel_copy_entry's. The sources of all of the
1287 * entries are copied to the corresponding destinations "in parallel".
1288 * In other words, if we have two entries: a -> b and b -> a, the values
1289 * get swapped.
1290 */
1291 struct exec_list entries;
1292 } nir_parallel_copy_instr;
1293
1294 NIR_DEFINE_CAST(nir_instr_as_alu, nir_instr, nir_alu_instr, instr)
1295 NIR_DEFINE_CAST(nir_instr_as_call, nir_instr, nir_call_instr, instr)
1296 NIR_DEFINE_CAST(nir_instr_as_jump, nir_instr, nir_jump_instr, instr)
1297 NIR_DEFINE_CAST(nir_instr_as_tex, nir_instr, nir_tex_instr, instr)
1298 NIR_DEFINE_CAST(nir_instr_as_intrinsic, nir_instr, nir_intrinsic_instr, instr)
1299 NIR_DEFINE_CAST(nir_instr_as_load_const, nir_instr, nir_load_const_instr, instr)
1300 NIR_DEFINE_CAST(nir_instr_as_ssa_undef, nir_instr, nir_ssa_undef_instr, instr)
1301 NIR_DEFINE_CAST(nir_instr_as_phi, nir_instr, nir_phi_instr, instr)
1302 NIR_DEFINE_CAST(nir_instr_as_parallel_copy, nir_instr,
1303 nir_parallel_copy_instr, instr)
1304
1305 /*
1306 * Control flow
1307 *
1308 * Control flow consists of a tree of control flow nodes, which include
1309 * if-statements and loops. The leaves of the tree are basic blocks, lists of
1310 * instructions that always run start-to-finish. Each basic block also keeps
1311 * track of its successors (blocks which may run immediately after the current
1312 * block) and predecessors (blocks which could have run immediately before the
1313 * current block). Each function also has a start block and an end block which
1314 * all return statements point to (which is always empty). Together, all the
1315 * blocks with their predecessors and successors make up the control flow
1316 * graph (CFG) of the function. There are helpers that modify the tree of
1317 * control flow nodes while modifying the CFG appropriately; these should be
1318 * used instead of modifying the tree directly.
1319 */
1320
1321 typedef enum {
1322 nir_cf_node_block,
1323 nir_cf_node_if,
1324 nir_cf_node_loop,
1325 nir_cf_node_function
1326 } nir_cf_node_type;
1327
1328 typedef struct nir_cf_node {
1329 struct exec_node node;
1330 nir_cf_node_type type;
1331 struct nir_cf_node *parent;
1332 } nir_cf_node;
1333
1334 typedef struct nir_block {
1335 nir_cf_node cf_node;
1336
1337 struct exec_list instr_list; /** < list of nir_instr */
1338
1339 /** generic block index; generated by nir_index_blocks */
1340 unsigned index;
1341
1342 /*
1343 * Each block can only have up to 2 successors, so we put them in a simple
1344 * array - no need for anything more complicated.
1345 */
1346 struct nir_block *successors[2];
1347
1348 /* Set of nir_block predecessors in the CFG */
1349 struct set *predecessors;
1350
1351 /*
1352 * this node's immediate dominator in the dominance tree - set to NULL for
1353 * the start block.
1354 */
1355 struct nir_block *imm_dom;
1356
1357 /* This node's children in the dominance tree */
1358 unsigned num_dom_children;
1359 struct nir_block **dom_children;
1360
1361 /* Set of nir_block's on the dominance frontier of this block */
1362 struct set *dom_frontier;
1363
1364 /*
1365 * These two indices have the property that dom_{pre,post}_index for each
1366 * child of this block in the dominance tree will always be between
1367 * dom_pre_index and dom_post_index for this block, which makes testing if
1368 * a given block is dominated by another block an O(1) operation.
1369 */
1370 unsigned dom_pre_index, dom_post_index;
1371
1372 /* live in and out for this block; used for liveness analysis */
1373 BITSET_WORD *live_in;
1374 BITSET_WORD *live_out;
1375 } nir_block;
1376
1377 static inline nir_instr *
1378 nir_block_first_instr(nir_block *block)
1379 {
1380 struct exec_node *head = exec_list_get_head(&block->instr_list);
1381 return exec_node_data(nir_instr, head, node);
1382 }
1383
1384 static inline nir_instr *
1385 nir_block_last_instr(nir_block *block)
1386 {
1387 struct exec_node *tail = exec_list_get_tail(&block->instr_list);
1388 return exec_node_data(nir_instr, tail, node);
1389 }
1390
1391 #define nir_foreach_instr(block, instr) \
1392 foreach_list_typed(nir_instr, instr, node, &(block)->instr_list)
1393 #define nir_foreach_instr_reverse(block, instr) \
1394 foreach_list_typed_reverse(nir_instr, instr, node, &(block)->instr_list)
1395 #define nir_foreach_instr_safe(block, instr) \
1396 foreach_list_typed_safe(nir_instr, instr, node, &(block)->instr_list)
1397 #define nir_foreach_instr_reverse_safe(block, instr) \
1398 foreach_list_typed_reverse_safe(nir_instr, instr, node, &(block)->instr_list)
1399
1400 typedef struct nir_if {
1401 nir_cf_node cf_node;
1402 nir_src condition;
1403
1404 struct exec_list then_list; /** < list of nir_cf_node */
1405 struct exec_list else_list; /** < list of nir_cf_node */
1406 } nir_if;
1407
1408 static inline nir_cf_node *
1409 nir_if_first_then_node(nir_if *if_stmt)
1410 {
1411 struct exec_node *head = exec_list_get_head(&if_stmt->then_list);
1412 return exec_node_data(nir_cf_node, head, node);
1413 }
1414
1415 static inline nir_cf_node *
1416 nir_if_last_then_node(nir_if *if_stmt)
1417 {
1418 struct exec_node *tail = exec_list_get_tail(&if_stmt->then_list);
1419 return exec_node_data(nir_cf_node, tail, node);
1420 }
1421
1422 static inline nir_cf_node *
1423 nir_if_first_else_node(nir_if *if_stmt)
1424 {
1425 struct exec_node *head = exec_list_get_head(&if_stmt->else_list);
1426 return exec_node_data(nir_cf_node, head, node);
1427 }
1428
1429 static inline nir_cf_node *
1430 nir_if_last_else_node(nir_if *if_stmt)
1431 {
1432 struct exec_node *tail = exec_list_get_tail(&if_stmt->else_list);
1433 return exec_node_data(nir_cf_node, tail, node);
1434 }
1435
1436 typedef struct {
1437 nir_cf_node cf_node;
1438
1439 struct exec_list body; /** < list of nir_cf_node */
1440 } nir_loop;
1441
1442 static inline nir_cf_node *
1443 nir_loop_first_cf_node(nir_loop *loop)
1444 {
1445 return exec_node_data(nir_cf_node, exec_list_get_head(&loop->body), node);
1446 }
1447
1448 static inline nir_cf_node *
1449 nir_loop_last_cf_node(nir_loop *loop)
1450 {
1451 return exec_node_data(nir_cf_node, exec_list_get_tail(&loop->body), node);
1452 }
1453
1454 /**
1455 * Various bits of metadata that can may be created or required by
1456 * optimization and analysis passes
1457 */
1458 typedef enum {
1459 nir_metadata_none = 0x0,
1460 nir_metadata_block_index = 0x1,
1461 nir_metadata_dominance = 0x2,
1462 nir_metadata_live_ssa_defs = 0x4,
1463 nir_metadata_not_properly_reset = 0x8,
1464 } nir_metadata;
1465
1466 typedef struct {
1467 nir_cf_node cf_node;
1468
1469 /** pointer to the function of which this is an implementation */
1470 struct nir_function *function;
1471
1472 struct exec_list body; /** < list of nir_cf_node */
1473
1474 nir_block *end_block;
1475
1476 /** list for all local variables in the function */
1477 struct exec_list locals;
1478
1479 /** array of variables used as parameters */
1480 unsigned num_params;
1481 nir_variable **params;
1482
1483 /** variable used to hold the result of the function */
1484 nir_variable *return_var;
1485
1486 /** list of local registers in the function */
1487 struct exec_list registers;
1488
1489 /** next available local register index */
1490 unsigned reg_alloc;
1491
1492 /** next available SSA value index */
1493 unsigned ssa_alloc;
1494
1495 /* total number of basic blocks, only valid when block_index_dirty = false */
1496 unsigned num_blocks;
1497
1498 nir_metadata valid_metadata;
1499 } nir_function_impl;
1500
1501 static inline nir_block *
1502 nir_start_block(nir_function_impl *impl)
1503 {
1504 return (nir_block *) exec_list_get_head(&impl->body);
1505 }
1506
1507 static inline nir_cf_node *
1508 nir_cf_node_next(nir_cf_node *node)
1509 {
1510 struct exec_node *next = exec_node_get_next(&node->node);
1511 if (exec_node_is_tail_sentinel(next))
1512 return NULL;
1513 else
1514 return exec_node_data(nir_cf_node, next, node);
1515 }
1516
1517 static inline nir_cf_node *
1518 nir_cf_node_prev(nir_cf_node *node)
1519 {
1520 struct exec_node *prev = exec_node_get_prev(&node->node);
1521 if (exec_node_is_head_sentinel(prev))
1522 return NULL;
1523 else
1524 return exec_node_data(nir_cf_node, prev, node);
1525 }
1526
1527 static inline bool
1528 nir_cf_node_is_first(const nir_cf_node *node)
1529 {
1530 return exec_node_is_head_sentinel(node->node.prev);
1531 }
1532
1533 static inline bool
1534 nir_cf_node_is_last(const nir_cf_node *node)
1535 {
1536 return exec_node_is_tail_sentinel(node->node.next);
1537 }
1538
1539 NIR_DEFINE_CAST(nir_cf_node_as_block, nir_cf_node, nir_block, cf_node)
1540 NIR_DEFINE_CAST(nir_cf_node_as_if, nir_cf_node, nir_if, cf_node)
1541 NIR_DEFINE_CAST(nir_cf_node_as_loop, nir_cf_node, nir_loop, cf_node)
1542 NIR_DEFINE_CAST(nir_cf_node_as_function, nir_cf_node, nir_function_impl, cf_node)
1543
1544 typedef enum {
1545 nir_parameter_in,
1546 nir_parameter_out,
1547 nir_parameter_inout,
1548 } nir_parameter_type;
1549
1550 typedef struct {
1551 nir_parameter_type param_type;
1552 const struct glsl_type *type;
1553 } nir_parameter;
1554
1555 typedef struct nir_function {
1556 struct exec_node node;
1557
1558 const char *name;
1559 struct nir_shader *shader;
1560
1561 unsigned num_params;
1562 nir_parameter *params;
1563 const struct glsl_type *return_type;
1564
1565 /** The implementation of this function.
1566 *
1567 * If the function is only declared and not implemented, this is NULL.
1568 */
1569 nir_function_impl *impl;
1570 } nir_function;
1571
1572 typedef struct nir_shader_compiler_options {
1573 bool lower_fdiv;
1574 bool lower_ffma;
1575 bool lower_flrp;
1576 bool lower_fpow;
1577 bool lower_fsat;
1578 bool lower_fsqrt;
1579 bool lower_fmod;
1580 bool lower_bitfield_extract;
1581 bool lower_bitfield_insert;
1582 bool lower_uadd_carry;
1583 bool lower_usub_borrow;
1584 /** lowers fneg and ineg to fsub and isub. */
1585 bool lower_negate;
1586 /** lowers fsub and isub to fadd+fneg and iadd+ineg. */
1587 bool lower_sub;
1588
1589 /* lower {slt,sge,seq,sne} to {flt,fge,feq,fne} + b2f: */
1590 bool lower_scmp;
1591
1592 /* Does the native fdot instruction replicate its result for four
1593 * components? If so, then opt_algebraic_late will turn all fdotN
1594 * instructions into fdot_replicatedN instructions.
1595 */
1596 bool fdot_replicates;
1597
1598 /** lowers ffract to fsub+ffloor: */
1599 bool lower_ffract;
1600
1601 bool lower_pack_half_2x16;
1602 bool lower_pack_unorm_2x16;
1603 bool lower_pack_snorm_2x16;
1604 bool lower_pack_unorm_4x8;
1605 bool lower_pack_snorm_4x8;
1606 bool lower_unpack_half_2x16;
1607 bool lower_unpack_unorm_2x16;
1608 bool lower_unpack_snorm_2x16;
1609 bool lower_unpack_unorm_4x8;
1610 bool lower_unpack_snorm_4x8;
1611
1612 bool lower_extract_byte;
1613 bool lower_extract_word;
1614
1615 /**
1616 * Does the driver support real 32-bit integers? (Otherwise, integers
1617 * are simulated by floats.)
1618 */
1619 bool native_integers;
1620
1621 /* Indicates that the driver only has zero-based vertex id */
1622 bool vertex_id_zero_based;
1623 } nir_shader_compiler_options;
1624
1625 typedef struct nir_shader_info {
1626 const char *name;
1627
1628 /* Descriptive name provided by the client; may be NULL */
1629 const char *label;
1630
1631 /* Number of textures used by this shader */
1632 unsigned num_textures;
1633 /* Number of uniform buffers used by this shader */
1634 unsigned num_ubos;
1635 /* Number of atomic buffers used by this shader */
1636 unsigned num_abos;
1637 /* Number of shader storage buffers used by this shader */
1638 unsigned num_ssbos;
1639 /* Number of images used by this shader */
1640 unsigned num_images;
1641
1642 /* Which inputs are actually read */
1643 uint64_t inputs_read;
1644 /* Which outputs are actually written */
1645 uint64_t outputs_written;
1646 /* Which system values are actually read */
1647 uint64_t system_values_read;
1648
1649 /* Which patch inputs are actually read */
1650 uint32_t patch_inputs_read;
1651 /* Which patch outputs are actually written */
1652 uint32_t patch_outputs_written;
1653
1654 /* Whether or not this shader ever uses textureGather() */
1655 bool uses_texture_gather;
1656
1657 /* Whether or not this shader uses the gl_ClipDistance output */
1658 bool uses_clip_distance_out;
1659
1660 /* Whether or not separate shader objects were used */
1661 bool separate_shader;
1662
1663 /** Was this shader linked with any transform feedback varyings? */
1664 bool has_transform_feedback_varyings;
1665
1666 union {
1667 struct {
1668 /** The number of vertices recieves per input primitive */
1669 unsigned vertices_in;
1670
1671 /** The output primitive type (GL enum value) */
1672 unsigned output_primitive;
1673
1674 /** The maximum number of vertices the geometry shader might write. */
1675 unsigned vertices_out;
1676
1677 /** 1 .. MAX_GEOMETRY_SHADER_INVOCATIONS */
1678 unsigned invocations;
1679
1680 /** Whether or not this shader uses EndPrimitive */
1681 bool uses_end_primitive;
1682
1683 /** Whether or not this shader uses non-zero streams */
1684 bool uses_streams;
1685 } gs;
1686
1687 struct {
1688 bool uses_discard;
1689
1690 /**
1691 * Whether early fragment tests are enabled as defined by
1692 * ARB_shader_image_load_store.
1693 */
1694 bool early_fragment_tests;
1695
1696 /** gl_FragDepth layout for ARB_conservative_depth. */
1697 enum gl_frag_depth_layout depth_layout;
1698 } fs;
1699
1700 struct {
1701 unsigned local_size[3];
1702 } cs;
1703
1704 struct {
1705 /** The number of vertices in the TCS output patch. */
1706 unsigned vertices_out;
1707 } tcs;
1708 };
1709 } nir_shader_info;
1710
1711 typedef struct nir_shader {
1712 /** list of uniforms (nir_variable) */
1713 struct exec_list uniforms;
1714
1715 /** list of inputs (nir_variable) */
1716 struct exec_list inputs;
1717
1718 /** list of outputs (nir_variable) */
1719 struct exec_list outputs;
1720
1721 /** list of shared compute variables (nir_variable) */
1722 struct exec_list shared;
1723
1724 /** Set of driver-specific options for the shader.
1725 *
1726 * The memory for the options is expected to be kept in a single static
1727 * copy by the driver.
1728 */
1729 const struct nir_shader_compiler_options *options;
1730
1731 /** Various bits of compile-time information about a given shader */
1732 struct nir_shader_info info;
1733
1734 /** list of global variables in the shader (nir_variable) */
1735 struct exec_list globals;
1736
1737 /** list of system value variables in the shader (nir_variable) */
1738 struct exec_list system_values;
1739
1740 struct exec_list functions; /** < list of nir_function */
1741
1742 /** list of global register in the shader */
1743 struct exec_list registers;
1744
1745 /** next available global register index */
1746 unsigned reg_alloc;
1747
1748 /**
1749 * the highest index a load_input_*, load_uniform_*, etc. intrinsic can
1750 * access plus one
1751 */
1752 unsigned num_inputs, num_uniforms, num_outputs, num_shared;
1753
1754 /** The shader stage, such as MESA_SHADER_VERTEX. */
1755 gl_shader_stage stage;
1756 } nir_shader;
1757
1758 #define nir_foreach_function(shader, func) \
1759 foreach_list_typed(nir_function, func, node, &(shader)->functions)
1760
1761 nir_shader *nir_shader_create(void *mem_ctx,
1762 gl_shader_stage stage,
1763 const nir_shader_compiler_options *options);
1764
1765 /** creates a register, including assigning it an index and adding it to the list */
1766 nir_register *nir_global_reg_create(nir_shader *shader);
1767
1768 nir_register *nir_local_reg_create(nir_function_impl *impl);
1769
1770 void nir_reg_remove(nir_register *reg);
1771
1772 /** Adds a variable to the appropreate list in nir_shader */
1773 void nir_shader_add_variable(nir_shader *shader, nir_variable *var);
1774
1775 static inline void
1776 nir_function_impl_add_variable(nir_function_impl *impl, nir_variable *var)
1777 {
1778 assert(var->data.mode == nir_var_local);
1779 exec_list_push_tail(&impl->locals, &var->node);
1780 }
1781
1782 /** creates a variable, sets a few defaults, and adds it to the list */
1783 nir_variable *nir_variable_create(nir_shader *shader,
1784 nir_variable_mode mode,
1785 const struct glsl_type *type,
1786 const char *name);
1787 /** creates a local variable and adds it to the list */
1788 nir_variable *nir_local_variable_create(nir_function_impl *impl,
1789 const struct glsl_type *type,
1790 const char *name);
1791
1792 /** creates a function and adds it to the shader's list of functions */
1793 nir_function *nir_function_create(nir_shader *shader, const char *name);
1794
1795 nir_function_impl *nir_function_impl_create(nir_function *func);
1796 /** creates a function_impl that isn't tied to any particular function */
1797 nir_function_impl *nir_function_impl_create_bare(nir_shader *shader);
1798
1799 nir_block *nir_block_create(nir_shader *shader);
1800 nir_if *nir_if_create(nir_shader *shader);
1801 nir_loop *nir_loop_create(nir_shader *shader);
1802
1803 nir_function_impl *nir_cf_node_get_function(nir_cf_node *node);
1804
1805 /** requests that the given pieces of metadata be generated */
1806 void nir_metadata_require(nir_function_impl *impl, nir_metadata required);
1807 /** dirties all but the preserved metadata */
1808 void nir_metadata_preserve(nir_function_impl *impl, nir_metadata preserved);
1809
1810 /** creates an instruction with default swizzle/writemask/etc. with NULL registers */
1811 nir_alu_instr *nir_alu_instr_create(nir_shader *shader, nir_op op);
1812
1813 nir_jump_instr *nir_jump_instr_create(nir_shader *shader, nir_jump_type type);
1814
1815 nir_load_const_instr *nir_load_const_instr_create(nir_shader *shader,
1816 unsigned num_components);
1817
1818 nir_intrinsic_instr *nir_intrinsic_instr_create(nir_shader *shader,
1819 nir_intrinsic_op op);
1820
1821 nir_call_instr *nir_call_instr_create(nir_shader *shader,
1822 nir_function *callee);
1823
1824 nir_tex_instr *nir_tex_instr_create(nir_shader *shader, unsigned num_srcs);
1825
1826 nir_phi_instr *nir_phi_instr_create(nir_shader *shader);
1827
1828 nir_parallel_copy_instr *nir_parallel_copy_instr_create(nir_shader *shader);
1829
1830 nir_ssa_undef_instr *nir_ssa_undef_instr_create(nir_shader *shader,
1831 unsigned num_components);
1832
1833 nir_deref_var *nir_deref_var_create(void *mem_ctx, nir_variable *var);
1834 nir_deref_array *nir_deref_array_create(void *mem_ctx);
1835 nir_deref_struct *nir_deref_struct_create(void *mem_ctx, unsigned field_index);
1836
1837 nir_deref *nir_copy_deref(void *mem_ctx, nir_deref *deref);
1838
1839 nir_load_const_instr *
1840 nir_deref_get_const_initializer_load(nir_shader *shader, nir_deref_var *deref);
1841
1842 /**
1843 * NIR Cursors and Instruction Insertion API
1844 * @{
1845 *
1846 * A tiny struct representing a point to insert/extract instructions or
1847 * control flow nodes. Helps reduce the combinatorial explosion of possible
1848 * points to insert/extract.
1849 *
1850 * \sa nir_control_flow.h
1851 */
1852 typedef enum {
1853 nir_cursor_before_block,
1854 nir_cursor_after_block,
1855 nir_cursor_before_instr,
1856 nir_cursor_after_instr,
1857 } nir_cursor_option;
1858
1859 typedef struct {
1860 nir_cursor_option option;
1861 union {
1862 nir_block *block;
1863 nir_instr *instr;
1864 };
1865 } nir_cursor;
1866
1867 static inline nir_block *
1868 nir_cursor_current_block(nir_cursor cursor)
1869 {
1870 if (cursor.option == nir_cursor_before_instr ||
1871 cursor.option == nir_cursor_after_instr) {
1872 return cursor.instr->block;
1873 } else {
1874 return cursor.block;
1875 }
1876 }
1877
1878 bool nir_cursors_equal(nir_cursor a, nir_cursor b);
1879
1880 static inline nir_cursor
1881 nir_before_block(nir_block *block)
1882 {
1883 nir_cursor cursor;
1884 cursor.option = nir_cursor_before_block;
1885 cursor.block = block;
1886 return cursor;
1887 }
1888
1889 static inline nir_cursor
1890 nir_after_block(nir_block *block)
1891 {
1892 nir_cursor cursor;
1893 cursor.option = nir_cursor_after_block;
1894 cursor.block = block;
1895 return cursor;
1896 }
1897
1898 static inline nir_cursor
1899 nir_before_instr(nir_instr *instr)
1900 {
1901 nir_cursor cursor;
1902 cursor.option = nir_cursor_before_instr;
1903 cursor.instr = instr;
1904 return cursor;
1905 }
1906
1907 static inline nir_cursor
1908 nir_after_instr(nir_instr *instr)
1909 {
1910 nir_cursor cursor;
1911 cursor.option = nir_cursor_after_instr;
1912 cursor.instr = instr;
1913 return cursor;
1914 }
1915
1916 static inline nir_cursor
1917 nir_after_block_before_jump(nir_block *block)
1918 {
1919 nir_instr *last_instr = nir_block_last_instr(block);
1920 if (last_instr && last_instr->type == nir_instr_type_jump) {
1921 return nir_before_instr(last_instr);
1922 } else {
1923 return nir_after_block(block);
1924 }
1925 }
1926
1927 static inline nir_cursor
1928 nir_before_cf_node(nir_cf_node *node)
1929 {
1930 if (node->type == nir_cf_node_block)
1931 return nir_before_block(nir_cf_node_as_block(node));
1932
1933 return nir_after_block(nir_cf_node_as_block(nir_cf_node_prev(node)));
1934 }
1935
1936 static inline nir_cursor
1937 nir_after_cf_node(nir_cf_node *node)
1938 {
1939 if (node->type == nir_cf_node_block)
1940 return nir_after_block(nir_cf_node_as_block(node));
1941
1942 return nir_before_block(nir_cf_node_as_block(nir_cf_node_next(node)));
1943 }
1944
1945 static inline nir_cursor
1946 nir_after_cf_node_and_phis(nir_cf_node *node)
1947 {
1948 if (node->type == nir_cf_node_block)
1949 return nir_after_block(nir_cf_node_as_block(node));
1950
1951 nir_block *block = nir_cf_node_as_block(nir_cf_node_next(node));
1952 assert(block->cf_node.type == nir_cf_node_block);
1953
1954 nir_foreach_instr(block, instr) {
1955 if (instr->type != nir_instr_type_phi)
1956 return nir_before_instr(instr);
1957 }
1958 return nir_after_block(block);
1959 }
1960
1961 static inline nir_cursor
1962 nir_before_cf_list(struct exec_list *cf_list)
1963 {
1964 nir_cf_node *first_node = exec_node_data(nir_cf_node,
1965 exec_list_get_head(cf_list), node);
1966 return nir_before_cf_node(first_node);
1967 }
1968
1969 static inline nir_cursor
1970 nir_after_cf_list(struct exec_list *cf_list)
1971 {
1972 nir_cf_node *last_node = exec_node_data(nir_cf_node,
1973 exec_list_get_tail(cf_list), node);
1974 return nir_after_cf_node(last_node);
1975 }
1976
1977 /**
1978 * Insert a NIR instruction at the given cursor.
1979 *
1980 * Note: This does not update the cursor.
1981 */
1982 void nir_instr_insert(nir_cursor cursor, nir_instr *instr);
1983
1984 static inline void
1985 nir_instr_insert_before(nir_instr *instr, nir_instr *before)
1986 {
1987 nir_instr_insert(nir_before_instr(instr), before);
1988 }
1989
1990 static inline void
1991 nir_instr_insert_after(nir_instr *instr, nir_instr *after)
1992 {
1993 nir_instr_insert(nir_after_instr(instr), after);
1994 }
1995
1996 static inline void
1997 nir_instr_insert_before_block(nir_block *block, nir_instr *before)
1998 {
1999 nir_instr_insert(nir_before_block(block), before);
2000 }
2001
2002 static inline void
2003 nir_instr_insert_after_block(nir_block *block, nir_instr *after)
2004 {
2005 nir_instr_insert(nir_after_block(block), after);
2006 }
2007
2008 static inline void
2009 nir_instr_insert_before_cf(nir_cf_node *node, nir_instr *before)
2010 {
2011 nir_instr_insert(nir_before_cf_node(node), before);
2012 }
2013
2014 static inline void
2015 nir_instr_insert_after_cf(nir_cf_node *node, nir_instr *after)
2016 {
2017 nir_instr_insert(nir_after_cf_node(node), after);
2018 }
2019
2020 static inline void
2021 nir_instr_insert_before_cf_list(struct exec_list *list, nir_instr *before)
2022 {
2023 nir_instr_insert(nir_before_cf_list(list), before);
2024 }
2025
2026 static inline void
2027 nir_instr_insert_after_cf_list(struct exec_list *list, nir_instr *after)
2028 {
2029 nir_instr_insert(nir_after_cf_list(list), after);
2030 }
2031
2032 void nir_instr_remove(nir_instr *instr);
2033
2034 /** @} */
2035
2036 typedef bool (*nir_foreach_ssa_def_cb)(nir_ssa_def *def, void *state);
2037 typedef bool (*nir_foreach_dest_cb)(nir_dest *dest, void *state);
2038 typedef bool (*nir_foreach_src_cb)(nir_src *src, void *state);
2039 bool nir_foreach_ssa_def(nir_instr *instr, nir_foreach_ssa_def_cb cb,
2040 void *state);
2041 bool nir_foreach_dest(nir_instr *instr, nir_foreach_dest_cb cb, void *state);
2042 bool nir_foreach_src(nir_instr *instr, nir_foreach_src_cb cb, void *state);
2043
2044 nir_const_value *nir_src_as_const_value(nir_src src);
2045 bool nir_src_is_dynamically_uniform(nir_src src);
2046 bool nir_srcs_equal(nir_src src1, nir_src src2);
2047 void nir_instr_rewrite_src(nir_instr *instr, nir_src *src, nir_src new_src);
2048 void nir_instr_move_src(nir_instr *dest_instr, nir_src *dest, nir_src *src);
2049 void nir_if_rewrite_condition(nir_if *if_stmt, nir_src new_src);
2050 void nir_instr_rewrite_dest(nir_instr *instr, nir_dest *dest,
2051 nir_dest new_dest);
2052
2053 void nir_ssa_dest_init(nir_instr *instr, nir_dest *dest,
2054 unsigned num_components, const char *name);
2055 void nir_ssa_def_init(nir_instr *instr, nir_ssa_def *def,
2056 unsigned num_components, const char *name);
2057 void nir_ssa_def_rewrite_uses(nir_ssa_def *def, nir_src new_src);
2058 void nir_ssa_def_rewrite_uses_after(nir_ssa_def *def, nir_src new_src,
2059 nir_instr *after_me);
2060
2061 /* visits basic blocks in source-code order */
2062 typedef bool (*nir_foreach_block_cb)(nir_block *block, void *state);
2063 bool nir_foreach_block(nir_function_impl *impl, nir_foreach_block_cb cb,
2064 void *state);
2065 bool nir_foreach_block_reverse(nir_function_impl *impl, nir_foreach_block_cb cb,
2066 void *state);
2067 bool nir_foreach_block_in_cf_node(nir_cf_node *node, nir_foreach_block_cb cb,
2068 void *state);
2069
2070 /* If the following CF node is an if, this function returns that if.
2071 * Otherwise, it returns NULL.
2072 */
2073 nir_if *nir_block_get_following_if(nir_block *block);
2074
2075 nir_loop *nir_block_get_following_loop(nir_block *block);
2076
2077 void nir_index_local_regs(nir_function_impl *impl);
2078 void nir_index_global_regs(nir_shader *shader);
2079 void nir_index_ssa_defs(nir_function_impl *impl);
2080 unsigned nir_index_instrs(nir_function_impl *impl);
2081
2082 void nir_index_blocks(nir_function_impl *impl);
2083
2084 void nir_print_shader(nir_shader *shader, FILE *fp);
2085 void nir_print_instr(const nir_instr *instr, FILE *fp);
2086
2087 nir_shader *nir_shader_clone(void *mem_ctx, const nir_shader *s);
2088 nir_function_impl *nir_function_impl_clone(const nir_function_impl *impl);
2089 nir_constant *nir_constant_clone(const nir_constant *c, nir_variable *var);
2090
2091 #ifdef DEBUG
2092 void nir_validate_shader(nir_shader *shader);
2093 void nir_metadata_set_validation_flag(nir_shader *shader);
2094 void nir_metadata_check_validation_flag(nir_shader *shader);
2095
2096 #include "util/debug.h"
2097 static inline bool
2098 should_clone_nir(void)
2099 {
2100 static int should_clone = -1;
2101 if (should_clone < 0)
2102 should_clone = env_var_as_boolean("NIR_TEST_CLONE", false);
2103
2104 return should_clone;
2105 }
2106 #else
2107 static inline void nir_validate_shader(nir_shader *shader) { (void) shader; }
2108 static inline void nir_metadata_set_validation_flag(nir_shader *shader) { (void) shader; }
2109 static inline void nir_metadata_check_validation_flag(nir_shader *shader) { (void) shader; }
2110 static inline bool should_clone_nir(void) { return false; }
2111 #endif /* DEBUG */
2112
2113 #define _PASS(nir, do_pass) do { \
2114 do_pass \
2115 nir_validate_shader(nir); \
2116 if (should_clone_nir()) { \
2117 nir_shader *clone = nir_shader_clone(ralloc_parent(nir), nir); \
2118 ralloc_free(nir); \
2119 nir = clone; \
2120 } \
2121 } while (0)
2122
2123 #define NIR_PASS(progress, nir, pass, ...) _PASS(nir, \
2124 nir_metadata_set_validation_flag(nir); \
2125 if (pass(nir, ##__VA_ARGS__)) { \
2126 progress = true; \
2127 nir_metadata_check_validation_flag(nir); \
2128 } \
2129 )
2130
2131 #define NIR_PASS_V(nir, pass, ...) _PASS(nir, \
2132 pass(nir, ##__VA_ARGS__); \
2133 )
2134
2135 void nir_calc_dominance_impl(nir_function_impl *impl);
2136 void nir_calc_dominance(nir_shader *shader);
2137
2138 nir_block *nir_dominance_lca(nir_block *b1, nir_block *b2);
2139 bool nir_block_dominates(nir_block *parent, nir_block *child);
2140
2141 void nir_dump_dom_tree_impl(nir_function_impl *impl, FILE *fp);
2142 void nir_dump_dom_tree(nir_shader *shader, FILE *fp);
2143
2144 void nir_dump_dom_frontier_impl(nir_function_impl *impl, FILE *fp);
2145 void nir_dump_dom_frontier(nir_shader *shader, FILE *fp);
2146
2147 void nir_dump_cfg_impl(nir_function_impl *impl, FILE *fp);
2148 void nir_dump_cfg(nir_shader *shader, FILE *fp);
2149
2150 int nir_gs_count_vertices(const nir_shader *shader);
2151
2152 bool nir_split_var_copies(nir_shader *shader);
2153
2154 bool nir_lower_returns_impl(nir_function_impl *impl);
2155 bool nir_lower_returns(nir_shader *shader);
2156
2157 bool nir_inline_functions(nir_shader *shader);
2158
2159 void nir_lower_var_copy_instr(nir_intrinsic_instr *copy, void *mem_ctx);
2160 void nir_lower_var_copies(nir_shader *shader);
2161
2162 bool nir_lower_global_vars_to_local(nir_shader *shader);
2163
2164 bool nir_lower_indirect_derefs(nir_shader *shader, uint32_t mode_mask);
2165
2166 bool nir_lower_locals_to_regs(nir_shader *shader);
2167
2168 void nir_lower_outputs_to_temporaries(nir_shader *shader,
2169 nir_function *entrypoint);
2170
2171 void nir_shader_gather_info(nir_shader *shader, nir_function_impl *entrypoint);
2172
2173 void nir_assign_var_locations(struct exec_list *var_list,
2174 unsigned *size,
2175 int (*type_size)(const struct glsl_type *));
2176
2177 void nir_lower_io(nir_shader *shader,
2178 nir_variable_mode mode,
2179 int (*type_size)(const struct glsl_type *));
2180 nir_src *nir_get_io_offset_src(nir_intrinsic_instr *instr);
2181 nir_src *nir_get_io_vertex_index_src(nir_intrinsic_instr *instr);
2182
2183 void nir_lower_vars_to_ssa(nir_shader *shader);
2184
2185 bool nir_remove_dead_variables(nir_shader *shader, nir_variable_mode mode);
2186
2187 void nir_move_vec_src_uses_to_dest(nir_shader *shader);
2188 bool nir_lower_vec_to_movs(nir_shader *shader);
2189 void nir_lower_alu_to_scalar(nir_shader *shader);
2190 void nir_lower_load_const_to_scalar(nir_shader *shader);
2191
2192 void nir_lower_phis_to_scalar(nir_shader *shader);
2193
2194 void nir_lower_samplers(nir_shader *shader,
2195 const struct gl_shader_program *shader_program);
2196
2197 bool nir_lower_system_values(nir_shader *shader);
2198
2199 typedef struct nir_lower_tex_options {
2200 /**
2201 * bitmask of (1 << GLSL_SAMPLER_DIM_x) to control for which
2202 * sampler types a texture projector is lowered.
2203 */
2204 unsigned lower_txp;
2205
2206 /**
2207 * If true, lower rect textures to 2D, using txs to fetch the
2208 * texture dimensions and dividing the texture coords by the
2209 * texture dims to normalize.
2210 */
2211 bool lower_rect;
2212
2213 /**
2214 * To emulate certain texture wrap modes, this can be used
2215 * to saturate the specified tex coord to [0.0, 1.0]. The
2216 * bits are according to sampler #, ie. if, for example:
2217 *
2218 * (conf->saturate_s & (1 << n))
2219 *
2220 * is true, then the s coord for sampler n is saturated.
2221 *
2222 * Note that clamping must happen *after* projector lowering
2223 * so any projected texture sample instruction with a clamped
2224 * coordinate gets automatically lowered, regardless of the
2225 * 'lower_txp' setting.
2226 */
2227 unsigned saturate_s;
2228 unsigned saturate_t;
2229 unsigned saturate_r;
2230
2231 /* Bitmask of samplers that need swizzling.
2232 *
2233 * If (swizzle_result & (1 << sampler_index)), then the swizzle in
2234 * swizzles[sampler_index] is applied to the result of the texturing
2235 * operation.
2236 */
2237 unsigned swizzle_result;
2238
2239 /* A swizzle for each sampler. Values 0-3 represent x, y, z, or w swizzles
2240 * while 4 and 5 represent 0 and 1 respectively.
2241 */
2242 uint8_t swizzles[32][4];
2243 } nir_lower_tex_options;
2244
2245 bool nir_lower_tex(nir_shader *shader,
2246 const nir_lower_tex_options *options);
2247
2248 void nir_lower_idiv(nir_shader *shader);
2249
2250 void nir_lower_clip_vs(nir_shader *shader, unsigned ucp_enables);
2251 void nir_lower_clip_fs(nir_shader *shader, unsigned ucp_enables);
2252
2253 void nir_lower_two_sided_color(nir_shader *shader);
2254
2255 void nir_lower_atomics(nir_shader *shader,
2256 const struct gl_shader_program *shader_program);
2257 void nir_lower_to_source_mods(nir_shader *shader);
2258
2259 bool nir_lower_gs_intrinsics(nir_shader *shader);
2260
2261 bool nir_normalize_cubemap_coords(nir_shader *shader);
2262
2263 void nir_live_ssa_defs_impl(nir_function_impl *impl);
2264 bool nir_ssa_defs_interfere(nir_ssa_def *a, nir_ssa_def *b);
2265
2266 void nir_convert_to_ssa_impl(nir_function_impl *impl);
2267 void nir_convert_to_ssa(nir_shader *shader);
2268
2269 bool nir_repair_ssa_impl(nir_function_impl *impl);
2270 bool nir_repair_ssa(nir_shader *shader);
2271
2272 /* If phi_webs_only is true, only convert SSA values involved in phi nodes to
2273 * registers. If false, convert all values (even those not involved in a phi
2274 * node) to registers.
2275 */
2276 void nir_convert_from_ssa(nir_shader *shader, bool phi_webs_only);
2277
2278 bool nir_opt_algebraic(nir_shader *shader);
2279 bool nir_opt_algebraic_late(nir_shader *shader);
2280 bool nir_opt_constant_folding(nir_shader *shader);
2281
2282 bool nir_opt_global_to_local(nir_shader *shader);
2283
2284 bool nir_copy_prop(nir_shader *shader);
2285
2286 bool nir_opt_cse(nir_shader *shader);
2287
2288 bool nir_opt_dce(nir_shader *shader);
2289
2290 bool nir_opt_dead_cf(nir_shader *shader);
2291
2292 void nir_opt_gcm(nir_shader *shader);
2293
2294 bool nir_opt_peephole_select(nir_shader *shader);
2295
2296 bool nir_opt_remove_phis(nir_shader *shader);
2297
2298 bool nir_opt_undef(nir_shader *shader);
2299
2300 void nir_sweep(nir_shader *shader);
2301
2302 nir_intrinsic_op nir_intrinsic_from_system_value(gl_system_value val);
2303 gl_system_value nir_system_value_from_intrinsic(nir_intrinsic_op intrin);
2304
2305 #ifdef __cplusplus
2306 } /* extern "C" */
2307 #endif