nir/algebraic: Make algebraic_parser_test.sh executable.
[mesa.git] / src / compiler / nir / nir.h
1 /*
2 * Copyright © 2014 Connor Abbott
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Connor Abbott (cwabbott0@gmail.com)
25 *
26 */
27
28 #ifndef NIR_H
29 #define NIR_H
30
31 #include "util/hash_table.h"
32 #include "compiler/glsl/list.h"
33 #include "GL/gl.h" /* GLenum */
34 #include "util/list.h"
35 #include "util/ralloc.h"
36 #include "util/set.h"
37 #include "util/bitscan.h"
38 #include "util/bitset.h"
39 #include "util/macros.h"
40 #include "compiler/nir_types.h"
41 #include "compiler/shader_enums.h"
42 #include "compiler/shader_info.h"
43 #include <stdio.h>
44
45 #ifndef NDEBUG
46 #include "util/debug.h"
47 #endif /* NDEBUG */
48
49 #include "nir_opcodes.h"
50
51 #if defined(_WIN32) && !defined(snprintf)
52 #define snprintf _snprintf
53 #endif
54
55 #ifdef __cplusplus
56 extern "C" {
57 #endif
58
59 #define NIR_FALSE 0u
60 #define NIR_TRUE (~0u)
61 #define NIR_MAX_VEC_COMPONENTS 4
62 typedef uint8_t nir_component_mask_t;
63
64 /** Defines a cast function
65 *
66 * This macro defines a cast function from in_type to out_type where
67 * out_type is some structure type that contains a field of type out_type.
68 *
69 * Note that you have to be a bit careful as the generated cast function
70 * destroys constness.
71 */
72 #define NIR_DEFINE_CAST(name, in_type, out_type, field, \
73 type_field, type_value) \
74 static inline out_type * \
75 name(const in_type *parent) \
76 { \
77 assert(parent && parent->type_field == type_value); \
78 return exec_node_data(out_type, parent, field); \
79 }
80
81 struct nir_function;
82 struct nir_shader;
83 struct nir_instr;
84 struct nir_builder;
85
86
87 /**
88 * Description of built-in state associated with a uniform
89 *
90 * \sa nir_variable::state_slots
91 */
92 typedef struct {
93 gl_state_index16 tokens[STATE_LENGTH];
94 int swizzle;
95 } nir_state_slot;
96
97 typedef enum {
98 nir_var_shader_in = (1 << 0),
99 nir_var_shader_out = (1 << 1),
100 nir_var_global = (1 << 2),
101 nir_var_local = (1 << 3),
102 nir_var_uniform = (1 << 4),
103 nir_var_shader_storage = (1 << 5),
104 nir_var_system_value = (1 << 6),
105 nir_var_shared = (1 << 8),
106 nir_var_all = ~0,
107 } nir_variable_mode;
108
109 /**
110 * Rounding modes.
111 */
112 typedef enum {
113 nir_rounding_mode_undef = 0,
114 nir_rounding_mode_rtne = 1, /* round to nearest even */
115 nir_rounding_mode_ru = 2, /* round up */
116 nir_rounding_mode_rd = 3, /* round down */
117 nir_rounding_mode_rtz = 4, /* round towards zero */
118 } nir_rounding_mode;
119
120 typedef union {
121 float f32[NIR_MAX_VEC_COMPONENTS];
122 double f64[NIR_MAX_VEC_COMPONENTS];
123 int8_t i8[NIR_MAX_VEC_COMPONENTS];
124 uint8_t u8[NIR_MAX_VEC_COMPONENTS];
125 int16_t i16[NIR_MAX_VEC_COMPONENTS];
126 uint16_t u16[NIR_MAX_VEC_COMPONENTS];
127 int32_t i32[NIR_MAX_VEC_COMPONENTS];
128 uint32_t u32[NIR_MAX_VEC_COMPONENTS];
129 int64_t i64[NIR_MAX_VEC_COMPONENTS];
130 uint64_t u64[NIR_MAX_VEC_COMPONENTS];
131 } nir_const_value;
132
133 typedef struct nir_constant {
134 /**
135 * Value of the constant.
136 *
137 * The field used to back the values supplied by the constant is determined
138 * by the type associated with the \c nir_variable. Constants may be
139 * scalars, vectors, or matrices.
140 */
141 nir_const_value values[NIR_MAX_VEC_COMPONENTS];
142
143 /* we could get this from the var->type but makes clone *much* easier to
144 * not have to care about the type.
145 */
146 unsigned num_elements;
147
148 /* Array elements / Structure Fields */
149 struct nir_constant **elements;
150 } nir_constant;
151
152 /**
153 * \brief Layout qualifiers for gl_FragDepth.
154 *
155 * The AMD/ARB_conservative_depth extensions allow gl_FragDepth to be redeclared
156 * with a layout qualifier.
157 */
158 typedef enum {
159 nir_depth_layout_none, /**< No depth layout is specified. */
160 nir_depth_layout_any,
161 nir_depth_layout_greater,
162 nir_depth_layout_less,
163 nir_depth_layout_unchanged
164 } nir_depth_layout;
165
166 /**
167 * Enum keeping track of how a variable was declared.
168 */
169 typedef enum {
170 /**
171 * Normal declaration.
172 */
173 nir_var_declared_normally = 0,
174
175 /**
176 * Variable is implicitly generated by the compiler and should not be
177 * visible via the API.
178 */
179 nir_var_hidden,
180 } nir_var_declaration_type;
181
182 /**
183 * Either a uniform, global variable, shader input, or shader output. Based on
184 * ir_variable - it should be easy to translate between the two.
185 */
186
187 typedef struct nir_variable {
188 struct exec_node node;
189
190 /**
191 * Declared type of the variable
192 */
193 const struct glsl_type *type;
194
195 /**
196 * Declared name of the variable
197 */
198 char *name;
199
200 struct nir_variable_data {
201 /**
202 * Storage class of the variable.
203 *
204 * \sa nir_variable_mode
205 */
206 nir_variable_mode mode;
207
208 /**
209 * Is the variable read-only?
210 *
211 * This is set for variables declared as \c const, shader inputs,
212 * and uniforms.
213 */
214 unsigned read_only:1;
215 unsigned centroid:1;
216 unsigned sample:1;
217 unsigned patch:1;
218 unsigned invariant:1;
219
220 /**
221 * When separate shader programs are enabled, only input/outputs between
222 * the stages of a multi-stage separate program can be safely removed
223 * from the shader interface. Other input/outputs must remains active.
224 *
225 * This is also used to make sure xfb varyings that are unused by the
226 * fragment shader are not removed.
227 */
228 unsigned always_active_io:1;
229
230 /**
231 * Interpolation mode for shader inputs / outputs
232 *
233 * \sa glsl_interp_mode
234 */
235 unsigned interpolation:2;
236
237 /**
238 * \name ARB_fragment_coord_conventions
239 * @{
240 */
241 unsigned origin_upper_left:1;
242 unsigned pixel_center_integer:1;
243 /*@}*/
244
245 /**
246 * If non-zero, then this variable may be packed along with other variables
247 * into a single varying slot, so this offset should be applied when
248 * accessing components. For example, an offset of 1 means that the x
249 * component of this variable is actually stored in component y of the
250 * location specified by \c location.
251 */
252 unsigned location_frac:2;
253
254 /**
255 * If true, this variable represents an array of scalars that should
256 * be tightly packed. In other words, consecutive array elements
257 * should be stored one component apart, rather than one slot apart.
258 */
259 unsigned compact:1;
260
261 /**
262 * Whether this is a fragment shader output implicitly initialized with
263 * the previous contents of the specified render target at the
264 * framebuffer location corresponding to this shader invocation.
265 */
266 unsigned fb_fetch_output:1;
267
268 /**
269 * Non-zero if this variable is considered bindless as defined by
270 * ARB_bindless_texture.
271 */
272 unsigned bindless:1;
273
274 /**
275 * Was an explicit binding set in the shader?
276 */
277 unsigned explicit_binding:1;
278
279 /**
280 * Was a transfer feedback buffer set in the shader?
281 */
282 unsigned explicit_xfb_buffer:1;
283
284 /**
285 * Was a transfer feedback stride set in the shader?
286 */
287 unsigned explicit_xfb_stride:1;
288
289 /**
290 * Was an explicit offset set in the shader?
291 */
292 unsigned explicit_offset:1;
293
294 /**
295 * \brief Layout qualifier for gl_FragDepth.
296 *
297 * This is not equal to \c ir_depth_layout_none if and only if this
298 * variable is \c gl_FragDepth and a layout qualifier is specified.
299 */
300 nir_depth_layout depth_layout;
301
302 /**
303 * Storage location of the base of this variable
304 *
305 * The precise meaning of this field depends on the nature of the variable.
306 *
307 * - Vertex shader input: one of the values from \c gl_vert_attrib.
308 * - Vertex shader output: one of the values from \c gl_varying_slot.
309 * - Geometry shader input: one of the values from \c gl_varying_slot.
310 * - Geometry shader output: one of the values from \c gl_varying_slot.
311 * - Fragment shader input: one of the values from \c gl_varying_slot.
312 * - Fragment shader output: one of the values from \c gl_frag_result.
313 * - Uniforms: Per-stage uniform slot number for default uniform block.
314 * - Uniforms: Index within the uniform block definition for UBO members.
315 * - Non-UBO Uniforms: uniform slot number.
316 * - Other: This field is not currently used.
317 *
318 * If the variable is a uniform, shader input, or shader output, and the
319 * slot has not been assigned, the value will be -1.
320 */
321 int location;
322
323 /**
324 * The actual location of the variable in the IR. Only valid for inputs
325 * and outputs.
326 */
327 unsigned int driver_location;
328
329 /**
330 * Vertex stream output identifier.
331 *
332 * For packed outputs, bit 31 is set and bits [2*i+1,2*i] indicate the
333 * stream of the i-th component.
334 */
335 unsigned stream;
336
337 /**
338 * output index for dual source blending.
339 */
340 int index;
341
342 /**
343 * Descriptor set binding for sampler or UBO.
344 */
345 int descriptor_set;
346
347 /**
348 * Initial binding point for a sampler or UBO.
349 *
350 * For array types, this represents the binding point for the first element.
351 */
352 int binding;
353
354 /**
355 * Location an atomic counter or transform feedback is stored at.
356 */
357 unsigned offset;
358
359 /**
360 * Transform feedback buffer.
361 */
362 unsigned xfb_buffer;
363
364 /**
365 * Transform feedback stride.
366 */
367 unsigned xfb_stride;
368
369 /**
370 * How the variable was declared. See nir_var_declaration_type.
371 *
372 * This is used to detect variables generated by the compiler, so should
373 * not be visible via the API.
374 */
375 unsigned how_declared:2;
376
377 /**
378 * ARB_shader_image_load_store qualifiers.
379 */
380 struct {
381 enum gl_access_qualifier access;
382
383 /** Image internal format if specified explicitly, otherwise GL_NONE. */
384 GLenum format;
385 } image;
386 } data;
387
388 /**
389 * Built-in state that backs this uniform
390 *
391 * Once set at variable creation, \c state_slots must remain invariant.
392 * This is because, ideally, this array would be shared by all clones of
393 * this variable in the IR tree. In other words, we'd really like for it
394 * to be a fly-weight.
395 *
396 * If the variable is not a uniform, \c num_state_slots will be zero and
397 * \c state_slots will be \c NULL.
398 */
399 /*@{*/
400 unsigned num_state_slots; /**< Number of state slots used */
401 nir_state_slot *state_slots; /**< State descriptors. */
402 /*@}*/
403
404 /**
405 * Constant expression assigned in the initializer of the variable
406 *
407 * This field should only be used temporarily by creators of NIR shaders
408 * and then lower_constant_initializers can be used to get rid of them.
409 * Most of the rest of NIR ignores this field or asserts that it's NULL.
410 */
411 nir_constant *constant_initializer;
412
413 /**
414 * For variables that are in an interface block or are an instance of an
415 * interface block, this is the \c GLSL_TYPE_INTERFACE type for that block.
416 *
417 * \sa ir_variable::location
418 */
419 const struct glsl_type *interface_type;
420
421 /**
422 * Description of per-member data for per-member struct variables
423 *
424 * This is used for variables which are actually an amalgamation of
425 * multiple entities such as a struct of built-in values or a struct of
426 * inputs each with their own layout specifier. This is only allowed on
427 * variables with a struct or array of array of struct type.
428 */
429 unsigned num_members;
430 struct nir_variable_data *members;
431 } nir_variable;
432
433 #define nir_foreach_variable(var, var_list) \
434 foreach_list_typed(nir_variable, var, node, var_list)
435
436 #define nir_foreach_variable_safe(var, var_list) \
437 foreach_list_typed_safe(nir_variable, var, node, var_list)
438
439 static inline bool
440 nir_variable_is_global(const nir_variable *var)
441 {
442 return var->data.mode != nir_var_local;
443 }
444
445 typedef struct nir_register {
446 struct exec_node node;
447
448 unsigned num_components; /** < number of vector components */
449 unsigned num_array_elems; /** < size of array (0 for no array) */
450
451 /* The bit-size of each channel; must be one of 8, 16, 32, or 64 */
452 uint8_t bit_size;
453
454 /** generic register index. */
455 unsigned index;
456
457 /** only for debug purposes, can be NULL */
458 const char *name;
459
460 /** whether this register is local (per-function) or global (per-shader) */
461 bool is_global;
462
463 /**
464 * If this flag is set to true, then accessing channels >= num_components
465 * is well-defined, and simply spills over to the next array element. This
466 * is useful for backends that can do per-component accessing, in
467 * particular scalar backends. By setting this flag and making
468 * num_components equal to 1, structures can be packed tightly into
469 * registers and then registers can be accessed per-component to get to
470 * each structure member, even if it crosses vec4 boundaries.
471 */
472 bool is_packed;
473
474 /** set of nir_srcs where this register is used (read from) */
475 struct list_head uses;
476
477 /** set of nir_dests where this register is defined (written to) */
478 struct list_head defs;
479
480 /** set of nir_ifs where this register is used as a condition */
481 struct list_head if_uses;
482 } nir_register;
483
484 #define nir_foreach_register(reg, reg_list) \
485 foreach_list_typed(nir_register, reg, node, reg_list)
486 #define nir_foreach_register_safe(reg, reg_list) \
487 foreach_list_typed_safe(nir_register, reg, node, reg_list)
488
489 typedef enum {
490 nir_instr_type_alu,
491 nir_instr_type_deref,
492 nir_instr_type_call,
493 nir_instr_type_tex,
494 nir_instr_type_intrinsic,
495 nir_instr_type_load_const,
496 nir_instr_type_jump,
497 nir_instr_type_ssa_undef,
498 nir_instr_type_phi,
499 nir_instr_type_parallel_copy,
500 } nir_instr_type;
501
502 typedef struct nir_instr {
503 struct exec_node node;
504 nir_instr_type type;
505 struct nir_block *block;
506
507 /** generic instruction index. */
508 unsigned index;
509
510 /* A temporary for optimization and analysis passes to use for storing
511 * flags. For instance, DCE uses this to store the "dead/live" info.
512 */
513 uint8_t pass_flags;
514 } nir_instr;
515
516 static inline nir_instr *
517 nir_instr_next(nir_instr *instr)
518 {
519 struct exec_node *next = exec_node_get_next(&instr->node);
520 if (exec_node_is_tail_sentinel(next))
521 return NULL;
522 else
523 return exec_node_data(nir_instr, next, node);
524 }
525
526 static inline nir_instr *
527 nir_instr_prev(nir_instr *instr)
528 {
529 struct exec_node *prev = exec_node_get_prev(&instr->node);
530 if (exec_node_is_head_sentinel(prev))
531 return NULL;
532 else
533 return exec_node_data(nir_instr, prev, node);
534 }
535
536 static inline bool
537 nir_instr_is_first(const nir_instr *instr)
538 {
539 return exec_node_is_head_sentinel(exec_node_get_prev_const(&instr->node));
540 }
541
542 static inline bool
543 nir_instr_is_last(const nir_instr *instr)
544 {
545 return exec_node_is_tail_sentinel(exec_node_get_next_const(&instr->node));
546 }
547
548 typedef struct nir_ssa_def {
549 /** for debugging only, can be NULL */
550 const char* name;
551
552 /** generic SSA definition index. */
553 unsigned index;
554
555 /** Index into the live_in and live_out bitfields */
556 unsigned live_index;
557
558 /** Instruction which produces this SSA value. */
559 nir_instr *parent_instr;
560
561 /** set of nir_instrs where this register is used (read from) */
562 struct list_head uses;
563
564 /** set of nir_ifs where this register is used as a condition */
565 struct list_head if_uses;
566
567 uint8_t num_components;
568
569 /* The bit-size of each channel; must be one of 8, 16, 32, or 64 */
570 uint8_t bit_size;
571 } nir_ssa_def;
572
573 struct nir_src;
574
575 typedef struct {
576 nir_register *reg;
577 struct nir_src *indirect; /** < NULL for no indirect offset */
578 unsigned base_offset;
579
580 /* TODO use-def chain goes here */
581 } nir_reg_src;
582
583 typedef struct {
584 nir_instr *parent_instr;
585 struct list_head def_link;
586
587 nir_register *reg;
588 struct nir_src *indirect; /** < NULL for no indirect offset */
589 unsigned base_offset;
590
591 /* TODO def-use chain goes here */
592 } nir_reg_dest;
593
594 struct nir_if;
595
596 typedef struct nir_src {
597 union {
598 /** Instruction that consumes this value as a source. */
599 nir_instr *parent_instr;
600 struct nir_if *parent_if;
601 };
602
603 struct list_head use_link;
604
605 union {
606 nir_reg_src reg;
607 nir_ssa_def *ssa;
608 };
609
610 bool is_ssa;
611 } nir_src;
612
613 static inline nir_src
614 nir_src_init(void)
615 {
616 nir_src src = { { NULL } };
617 return src;
618 }
619
620 #define NIR_SRC_INIT nir_src_init()
621
622 #define nir_foreach_use(src, reg_or_ssa_def) \
623 list_for_each_entry(nir_src, src, &(reg_or_ssa_def)->uses, use_link)
624
625 #define nir_foreach_use_safe(src, reg_or_ssa_def) \
626 list_for_each_entry_safe(nir_src, src, &(reg_or_ssa_def)->uses, use_link)
627
628 #define nir_foreach_if_use(src, reg_or_ssa_def) \
629 list_for_each_entry(nir_src, src, &(reg_or_ssa_def)->if_uses, use_link)
630
631 #define nir_foreach_if_use_safe(src, reg_or_ssa_def) \
632 list_for_each_entry_safe(nir_src, src, &(reg_or_ssa_def)->if_uses, use_link)
633
634 typedef struct {
635 union {
636 nir_reg_dest reg;
637 nir_ssa_def ssa;
638 };
639
640 bool is_ssa;
641 } nir_dest;
642
643 static inline nir_dest
644 nir_dest_init(void)
645 {
646 nir_dest dest = { { { NULL } } };
647 return dest;
648 }
649
650 #define NIR_DEST_INIT nir_dest_init()
651
652 #define nir_foreach_def(dest, reg) \
653 list_for_each_entry(nir_dest, dest, &(reg)->defs, reg.def_link)
654
655 #define nir_foreach_def_safe(dest, reg) \
656 list_for_each_entry_safe(nir_dest, dest, &(reg)->defs, reg.def_link)
657
658 static inline nir_src
659 nir_src_for_ssa(nir_ssa_def *def)
660 {
661 nir_src src = NIR_SRC_INIT;
662
663 src.is_ssa = true;
664 src.ssa = def;
665
666 return src;
667 }
668
669 static inline nir_src
670 nir_src_for_reg(nir_register *reg)
671 {
672 nir_src src = NIR_SRC_INIT;
673
674 src.is_ssa = false;
675 src.reg.reg = reg;
676 src.reg.indirect = NULL;
677 src.reg.base_offset = 0;
678
679 return src;
680 }
681
682 static inline nir_dest
683 nir_dest_for_reg(nir_register *reg)
684 {
685 nir_dest dest = NIR_DEST_INIT;
686
687 dest.reg.reg = reg;
688
689 return dest;
690 }
691
692 static inline unsigned
693 nir_src_bit_size(nir_src src)
694 {
695 return src.is_ssa ? src.ssa->bit_size : src.reg.reg->bit_size;
696 }
697
698 static inline unsigned
699 nir_src_num_components(nir_src src)
700 {
701 return src.is_ssa ? src.ssa->num_components : src.reg.reg->num_components;
702 }
703
704 static inline bool
705 nir_src_is_const(nir_src src)
706 {
707 return src.is_ssa &&
708 src.ssa->parent_instr->type == nir_instr_type_load_const;
709 }
710
711 int64_t nir_src_as_int(nir_src src);
712 uint64_t nir_src_as_uint(nir_src src);
713 bool nir_src_as_bool(nir_src src);
714 double nir_src_as_float(nir_src src);
715 int64_t nir_src_comp_as_int(nir_src src, unsigned component);
716 uint64_t nir_src_comp_as_uint(nir_src src, unsigned component);
717 bool nir_src_comp_as_bool(nir_src src, unsigned component);
718 double nir_src_comp_as_float(nir_src src, unsigned component);
719
720 static inline unsigned
721 nir_dest_bit_size(nir_dest dest)
722 {
723 return dest.is_ssa ? dest.ssa.bit_size : dest.reg.reg->bit_size;
724 }
725
726 static inline unsigned
727 nir_dest_num_components(nir_dest dest)
728 {
729 return dest.is_ssa ? dest.ssa.num_components : dest.reg.reg->num_components;
730 }
731
732 void nir_src_copy(nir_src *dest, const nir_src *src, void *instr_or_if);
733 void nir_dest_copy(nir_dest *dest, const nir_dest *src, nir_instr *instr);
734
735 typedef struct {
736 nir_src src;
737
738 /**
739 * \name input modifiers
740 */
741 /*@{*/
742 /**
743 * For inputs interpreted as floating point, flips the sign bit. For
744 * inputs interpreted as integers, performs the two's complement negation.
745 */
746 bool negate;
747
748 /**
749 * Clears the sign bit for floating point values, and computes the integer
750 * absolute value for integers. Note that the negate modifier acts after
751 * the absolute value modifier, therefore if both are set then all inputs
752 * will become negative.
753 */
754 bool abs;
755 /*@}*/
756
757 /**
758 * For each input component, says which component of the register it is
759 * chosen from. Note that which elements of the swizzle are used and which
760 * are ignored are based on the write mask for most opcodes - for example,
761 * a statement like "foo.xzw = bar.zyx" would have a writemask of 1101b and
762 * a swizzle of {2, x, 1, 0} where x means "don't care."
763 */
764 uint8_t swizzle[NIR_MAX_VEC_COMPONENTS];
765 } nir_alu_src;
766
767 typedef struct {
768 nir_dest dest;
769
770 /**
771 * \name saturate output modifier
772 *
773 * Only valid for opcodes that output floating-point numbers. Clamps the
774 * output to between 0.0 and 1.0 inclusive.
775 */
776
777 bool saturate;
778
779 unsigned write_mask : NIR_MAX_VEC_COMPONENTS; /* ignored if dest.is_ssa is true */
780 } nir_alu_dest;
781
782 typedef enum {
783 nir_type_invalid = 0, /* Not a valid type */
784 nir_type_float,
785 nir_type_int,
786 nir_type_uint,
787 nir_type_bool,
788 nir_type_bool32 = 32 | nir_type_bool,
789 nir_type_int8 = 8 | nir_type_int,
790 nir_type_int16 = 16 | nir_type_int,
791 nir_type_int32 = 32 | nir_type_int,
792 nir_type_int64 = 64 | nir_type_int,
793 nir_type_uint8 = 8 | nir_type_uint,
794 nir_type_uint16 = 16 | nir_type_uint,
795 nir_type_uint32 = 32 | nir_type_uint,
796 nir_type_uint64 = 64 | nir_type_uint,
797 nir_type_float16 = 16 | nir_type_float,
798 nir_type_float32 = 32 | nir_type_float,
799 nir_type_float64 = 64 | nir_type_float,
800 } nir_alu_type;
801
802 #define NIR_ALU_TYPE_SIZE_MASK 0xfffffff8
803 #define NIR_ALU_TYPE_BASE_TYPE_MASK 0x00000007
804
805 static inline unsigned
806 nir_alu_type_get_type_size(nir_alu_type type)
807 {
808 return type & NIR_ALU_TYPE_SIZE_MASK;
809 }
810
811 static inline unsigned
812 nir_alu_type_get_base_type(nir_alu_type type)
813 {
814 return type & NIR_ALU_TYPE_BASE_TYPE_MASK;
815 }
816
817 static inline nir_alu_type
818 nir_get_nir_type_for_glsl_base_type(enum glsl_base_type base_type)
819 {
820 switch (base_type) {
821 case GLSL_TYPE_BOOL:
822 return nir_type_bool32;
823 break;
824 case GLSL_TYPE_UINT:
825 return nir_type_uint32;
826 break;
827 case GLSL_TYPE_INT:
828 return nir_type_int32;
829 break;
830 case GLSL_TYPE_UINT16:
831 return nir_type_uint16;
832 break;
833 case GLSL_TYPE_INT16:
834 return nir_type_int16;
835 break;
836 case GLSL_TYPE_UINT8:
837 return nir_type_uint8;
838 case GLSL_TYPE_INT8:
839 return nir_type_int8;
840 case GLSL_TYPE_UINT64:
841 return nir_type_uint64;
842 break;
843 case GLSL_TYPE_INT64:
844 return nir_type_int64;
845 break;
846 case GLSL_TYPE_FLOAT:
847 return nir_type_float32;
848 break;
849 case GLSL_TYPE_FLOAT16:
850 return nir_type_float16;
851 break;
852 case GLSL_TYPE_DOUBLE:
853 return nir_type_float64;
854 break;
855 default:
856 unreachable("unknown type");
857 }
858 }
859
860 static inline nir_alu_type
861 nir_get_nir_type_for_glsl_type(const struct glsl_type *type)
862 {
863 return nir_get_nir_type_for_glsl_base_type(glsl_get_base_type(type));
864 }
865
866 nir_op nir_type_conversion_op(nir_alu_type src, nir_alu_type dst,
867 nir_rounding_mode rnd);
868
869 typedef enum {
870 NIR_OP_IS_COMMUTATIVE = (1 << 0),
871 NIR_OP_IS_ASSOCIATIVE = (1 << 1),
872 } nir_op_algebraic_property;
873
874 typedef struct {
875 const char *name;
876
877 unsigned num_inputs;
878
879 /**
880 * The number of components in the output
881 *
882 * If non-zero, this is the size of the output and input sizes are
883 * explicitly given; swizzle and writemask are still in effect, but if
884 * the output component is masked out, then the input component may
885 * still be in use.
886 *
887 * If zero, the opcode acts in the standard, per-component manner; the
888 * operation is performed on each component (except the ones that are
889 * masked out) with the input being taken from the input swizzle for
890 * that component.
891 *
892 * The size of some of the inputs may be given (i.e. non-zero) even
893 * though output_size is zero; in that case, the inputs with a zero
894 * size act per-component, while the inputs with non-zero size don't.
895 */
896 unsigned output_size;
897
898 /**
899 * The type of vector that the instruction outputs. Note that the
900 * staurate modifier is only allowed on outputs with the float type.
901 */
902
903 nir_alu_type output_type;
904
905 /**
906 * The number of components in each input
907 */
908 unsigned input_sizes[NIR_MAX_VEC_COMPONENTS];
909
910 /**
911 * The type of vector that each input takes. Note that negate and
912 * absolute value are only allowed on inputs with int or float type and
913 * behave differently on the two.
914 */
915 nir_alu_type input_types[NIR_MAX_VEC_COMPONENTS];
916
917 nir_op_algebraic_property algebraic_properties;
918 } nir_op_info;
919
920 extern const nir_op_info nir_op_infos[nir_num_opcodes];
921
922 typedef struct nir_alu_instr {
923 nir_instr instr;
924 nir_op op;
925
926 /** Indicates that this ALU instruction generates an exact value
927 *
928 * This is kind of a mixture of GLSL "precise" and "invariant" and not
929 * really equivalent to either. This indicates that the value generated by
930 * this operation is high-precision and any code transformations that touch
931 * it must ensure that the resulting value is bit-for-bit identical to the
932 * original.
933 */
934 bool exact;
935
936 nir_alu_dest dest;
937 nir_alu_src src[];
938 } nir_alu_instr;
939
940 void nir_alu_src_copy(nir_alu_src *dest, const nir_alu_src *src,
941 nir_alu_instr *instr);
942 void nir_alu_dest_copy(nir_alu_dest *dest, const nir_alu_dest *src,
943 nir_alu_instr *instr);
944
945 /* is this source channel used? */
946 static inline bool
947 nir_alu_instr_channel_used(const nir_alu_instr *instr, unsigned src,
948 unsigned channel)
949 {
950 if (nir_op_infos[instr->op].input_sizes[src] > 0)
951 return channel < nir_op_infos[instr->op].input_sizes[src];
952
953 return (instr->dest.write_mask >> channel) & 1;
954 }
955
956 static inline nir_component_mask_t
957 nir_alu_instr_src_read_mask(const nir_alu_instr *instr, unsigned src)
958 {
959 nir_component_mask_t read_mask = 0;
960 for (unsigned c = 0; c < NIR_MAX_VEC_COMPONENTS; c++) {
961 if (!nir_alu_instr_channel_used(instr, src, c))
962 continue;
963
964 read_mask |= (1 << instr->src[src].swizzle[c]);
965 }
966 return read_mask;
967 }
968
969 /*
970 * For instructions whose destinations are SSA, get the number of channels
971 * used for a source
972 */
973 static inline unsigned
974 nir_ssa_alu_instr_src_components(const nir_alu_instr *instr, unsigned src)
975 {
976 assert(instr->dest.dest.is_ssa);
977
978 if (nir_op_infos[instr->op].input_sizes[src] > 0)
979 return nir_op_infos[instr->op].input_sizes[src];
980
981 return instr->dest.dest.ssa.num_components;
982 }
983
984 bool nir_alu_srcs_equal(const nir_alu_instr *alu1, const nir_alu_instr *alu2,
985 unsigned src1, unsigned src2);
986
987 typedef enum {
988 nir_deref_type_var,
989 nir_deref_type_array,
990 nir_deref_type_array_wildcard,
991 nir_deref_type_struct,
992 nir_deref_type_cast,
993 } nir_deref_type;
994
995 typedef struct {
996 nir_instr instr;
997
998 /** The type of this deref instruction */
999 nir_deref_type deref_type;
1000
1001 /** The mode of the underlying variable */
1002 nir_variable_mode mode;
1003
1004 /** The dereferenced type of the resulting pointer value */
1005 const struct glsl_type *type;
1006
1007 union {
1008 /** Variable being dereferenced if deref_type is a deref_var */
1009 nir_variable *var;
1010
1011 /** Parent deref if deref_type is not deref_var */
1012 nir_src parent;
1013 };
1014
1015 /** Additional deref parameters */
1016 union {
1017 struct {
1018 nir_src index;
1019 } arr;
1020
1021 struct {
1022 unsigned index;
1023 } strct;
1024 };
1025
1026 /** Destination to store the resulting "pointer" */
1027 nir_dest dest;
1028 } nir_deref_instr;
1029
1030 NIR_DEFINE_CAST(nir_instr_as_deref, nir_instr, nir_deref_instr, instr,
1031 type, nir_instr_type_deref)
1032
1033 static inline nir_deref_instr *
1034 nir_src_as_deref(nir_src src)
1035 {
1036 if (!src.is_ssa)
1037 return NULL;
1038
1039 if (src.ssa->parent_instr->type != nir_instr_type_deref)
1040 return NULL;
1041
1042 return nir_instr_as_deref(src.ssa->parent_instr);
1043 }
1044
1045 static inline nir_deref_instr *
1046 nir_deref_instr_parent(const nir_deref_instr *instr)
1047 {
1048 if (instr->deref_type == nir_deref_type_var)
1049 return NULL;
1050 else
1051 return nir_src_as_deref(instr->parent);
1052 }
1053
1054 static inline nir_variable *
1055 nir_deref_instr_get_variable(const nir_deref_instr *instr)
1056 {
1057 while (instr->deref_type != nir_deref_type_var) {
1058 if (instr->deref_type == nir_deref_type_cast)
1059 return NULL;
1060
1061 instr = nir_deref_instr_parent(instr);
1062 }
1063
1064 return instr->var;
1065 }
1066
1067 bool nir_deref_instr_has_indirect(nir_deref_instr *instr);
1068
1069 bool nir_deref_instr_remove_if_unused(nir_deref_instr *instr);
1070
1071 typedef struct {
1072 nir_instr instr;
1073
1074 struct nir_function *callee;
1075
1076 unsigned num_params;
1077 nir_src params[];
1078 } nir_call_instr;
1079
1080 #include "nir_intrinsics.h"
1081
1082 #define NIR_INTRINSIC_MAX_CONST_INDEX 4
1083
1084 /** Represents an intrinsic
1085 *
1086 * An intrinsic is an instruction type for handling things that are
1087 * more-or-less regular operations but don't just consume and produce SSA
1088 * values like ALU operations do. Intrinsics are not for things that have
1089 * special semantic meaning such as phi nodes and parallel copies.
1090 * Examples of intrinsics include variable load/store operations, system
1091 * value loads, and the like. Even though texturing more-or-less falls
1092 * under this category, texturing is its own instruction type because
1093 * trying to represent texturing with intrinsics would lead to a
1094 * combinatorial explosion of intrinsic opcodes.
1095 *
1096 * By having a single instruction type for handling a lot of different
1097 * cases, optimization passes can look for intrinsics and, for the most
1098 * part, completely ignore them. Each intrinsic type also has a few
1099 * possible flags that govern whether or not they can be reordered or
1100 * eliminated. That way passes like dead code elimination can still work
1101 * on intrisics without understanding the meaning of each.
1102 *
1103 * Each intrinsic has some number of constant indices, some number of
1104 * variables, and some number of sources. What these sources, variables,
1105 * and indices mean depends on the intrinsic and is documented with the
1106 * intrinsic declaration in nir_intrinsics.h. Intrinsics and texture
1107 * instructions are the only types of instruction that can operate on
1108 * variables.
1109 */
1110 typedef struct {
1111 nir_instr instr;
1112
1113 nir_intrinsic_op intrinsic;
1114
1115 nir_dest dest;
1116
1117 /** number of components if this is a vectorized intrinsic
1118 *
1119 * Similarly to ALU operations, some intrinsics are vectorized.
1120 * An intrinsic is vectorized if nir_intrinsic_infos.dest_components == 0.
1121 * For vectorized intrinsics, the num_components field specifies the
1122 * number of destination components and the number of source components
1123 * for all sources with nir_intrinsic_infos.src_components[i] == 0.
1124 */
1125 uint8_t num_components;
1126
1127 int const_index[NIR_INTRINSIC_MAX_CONST_INDEX];
1128
1129 nir_src src[];
1130 } nir_intrinsic_instr;
1131
1132 static inline nir_variable *
1133 nir_intrinsic_get_var(nir_intrinsic_instr *intrin, unsigned i)
1134 {
1135 return nir_deref_instr_get_variable(nir_src_as_deref(intrin->src[i]));
1136 }
1137
1138 /**
1139 * \name NIR intrinsics semantic flags
1140 *
1141 * information about what the compiler can do with the intrinsics.
1142 *
1143 * \sa nir_intrinsic_info::flags
1144 */
1145 typedef enum {
1146 /**
1147 * whether the intrinsic can be safely eliminated if none of its output
1148 * value is not being used.
1149 */
1150 NIR_INTRINSIC_CAN_ELIMINATE = (1 << 0),
1151
1152 /**
1153 * Whether the intrinsic can be reordered with respect to any other
1154 * intrinsic, i.e. whether the only reordering dependencies of the
1155 * intrinsic are due to the register reads/writes.
1156 */
1157 NIR_INTRINSIC_CAN_REORDER = (1 << 1),
1158 } nir_intrinsic_semantic_flag;
1159
1160 /**
1161 * \name NIR intrinsics const-index flag
1162 *
1163 * Indicates the usage of a const_index slot.
1164 *
1165 * \sa nir_intrinsic_info::index_map
1166 */
1167 typedef enum {
1168 /**
1169 * Generally instructions that take a offset src argument, can encode
1170 * a constant 'base' value which is added to the offset.
1171 */
1172 NIR_INTRINSIC_BASE = 1,
1173
1174 /**
1175 * For store instructions, a writemask for the store.
1176 */
1177 NIR_INTRINSIC_WRMASK = 2,
1178
1179 /**
1180 * The stream-id for GS emit_vertex/end_primitive intrinsics.
1181 */
1182 NIR_INTRINSIC_STREAM_ID = 3,
1183
1184 /**
1185 * The clip-plane id for load_user_clip_plane intrinsic.
1186 */
1187 NIR_INTRINSIC_UCP_ID = 4,
1188
1189 /**
1190 * The amount of data, starting from BASE, that this instruction may
1191 * access. This is used to provide bounds if the offset is not constant.
1192 */
1193 NIR_INTRINSIC_RANGE = 5,
1194
1195 /**
1196 * The Vulkan descriptor set for vulkan_resource_index intrinsic.
1197 */
1198 NIR_INTRINSIC_DESC_SET = 6,
1199
1200 /**
1201 * The Vulkan descriptor set binding for vulkan_resource_index intrinsic.
1202 */
1203 NIR_INTRINSIC_BINDING = 7,
1204
1205 /**
1206 * Component offset.
1207 */
1208 NIR_INTRINSIC_COMPONENT = 8,
1209
1210 /**
1211 * Interpolation mode (only meaningful for FS inputs).
1212 */
1213 NIR_INTRINSIC_INTERP_MODE = 9,
1214
1215 /**
1216 * A binary nir_op to use when performing a reduction or scan operation
1217 */
1218 NIR_INTRINSIC_REDUCTION_OP = 10,
1219
1220 /**
1221 * Cluster size for reduction operations
1222 */
1223 NIR_INTRINSIC_CLUSTER_SIZE = 11,
1224
1225 /**
1226 * Parameter index for a load_param intrinsic
1227 */
1228 NIR_INTRINSIC_PARAM_IDX = 12,
1229
1230 /**
1231 * Image dimensionality for image intrinsics
1232 *
1233 * One of GLSL_SAMPLER_DIM_*
1234 */
1235 NIR_INTRINSIC_IMAGE_DIM = 13,
1236
1237 /**
1238 * Non-zero if we are accessing an array image
1239 */
1240 NIR_INTRINSIC_IMAGE_ARRAY = 14,
1241
1242 /**
1243 * Image format for image intrinsics
1244 */
1245 NIR_INTRINSIC_FORMAT = 15,
1246
1247 /**
1248 * Access qualifiers for image intrinsics
1249 */
1250 NIR_INTRINSIC_ACCESS = 16,
1251
1252 /**
1253 * Alignment for offsets and addresses
1254 *
1255 * These two parameters, specify an alignment in terms of a multiplier and
1256 * an offset. The offset or address parameter X of the intrinsic is
1257 * guaranteed to satisfy the following:
1258 *
1259 * (X - align_offset) % align_mul == 0
1260 */
1261 NIR_INTRINSIC_ALIGN_MUL = 17,
1262 NIR_INTRINSIC_ALIGN_OFFSET = 18,
1263
1264 NIR_INTRINSIC_NUM_INDEX_FLAGS,
1265
1266 } nir_intrinsic_index_flag;
1267
1268 #define NIR_INTRINSIC_MAX_INPUTS 5
1269
1270 typedef struct {
1271 const char *name;
1272
1273 unsigned num_srcs; /** < number of register/SSA inputs */
1274
1275 /** number of components of each input register
1276 *
1277 * If this value is 0, the number of components is given by the
1278 * num_components field of nir_intrinsic_instr.
1279 */
1280 unsigned src_components[NIR_INTRINSIC_MAX_INPUTS];
1281
1282 bool has_dest;
1283
1284 /** number of components of the output register
1285 *
1286 * If this value is 0, the number of components is given by the
1287 * num_components field of nir_intrinsic_instr.
1288 */
1289 unsigned dest_components;
1290
1291 /** the number of constant indices used by the intrinsic */
1292 unsigned num_indices;
1293
1294 /** indicates the usage of intr->const_index[n] */
1295 unsigned index_map[NIR_INTRINSIC_NUM_INDEX_FLAGS];
1296
1297 /** semantic flags for calls to this intrinsic */
1298 nir_intrinsic_semantic_flag flags;
1299 } nir_intrinsic_info;
1300
1301 extern const nir_intrinsic_info nir_intrinsic_infos[nir_num_intrinsics];
1302
1303 static inline unsigned
1304 nir_intrinsic_src_components(nir_intrinsic_instr *intr, unsigned srcn)
1305 {
1306 const nir_intrinsic_info *info = &nir_intrinsic_infos[intr->intrinsic];
1307 assert(srcn < info->num_srcs);
1308 if (info->src_components[srcn])
1309 return info->src_components[srcn];
1310 else
1311 return intr->num_components;
1312 }
1313
1314 static inline unsigned
1315 nir_intrinsic_dest_components(nir_intrinsic_instr *intr)
1316 {
1317 const nir_intrinsic_info *info = &nir_intrinsic_infos[intr->intrinsic];
1318 if (!info->has_dest)
1319 return 0;
1320 else if (info->dest_components)
1321 return info->dest_components;
1322 else
1323 return intr->num_components;
1324 }
1325
1326 #define INTRINSIC_IDX_ACCESSORS(name, flag, type) \
1327 static inline type \
1328 nir_intrinsic_##name(const nir_intrinsic_instr *instr) \
1329 { \
1330 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic]; \
1331 assert(info->index_map[NIR_INTRINSIC_##flag] > 0); \
1332 return (type)instr->const_index[info->index_map[NIR_INTRINSIC_##flag] - 1]; \
1333 } \
1334 static inline void \
1335 nir_intrinsic_set_##name(nir_intrinsic_instr *instr, type val) \
1336 { \
1337 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic]; \
1338 assert(info->index_map[NIR_INTRINSIC_##flag] > 0); \
1339 instr->const_index[info->index_map[NIR_INTRINSIC_##flag] - 1] = val; \
1340 }
1341
1342 INTRINSIC_IDX_ACCESSORS(write_mask, WRMASK, unsigned)
1343 INTRINSIC_IDX_ACCESSORS(base, BASE, int)
1344 INTRINSIC_IDX_ACCESSORS(stream_id, STREAM_ID, unsigned)
1345 INTRINSIC_IDX_ACCESSORS(ucp_id, UCP_ID, unsigned)
1346 INTRINSIC_IDX_ACCESSORS(range, RANGE, unsigned)
1347 INTRINSIC_IDX_ACCESSORS(desc_set, DESC_SET, unsigned)
1348 INTRINSIC_IDX_ACCESSORS(binding, BINDING, unsigned)
1349 INTRINSIC_IDX_ACCESSORS(component, COMPONENT, unsigned)
1350 INTRINSIC_IDX_ACCESSORS(interp_mode, INTERP_MODE, unsigned)
1351 INTRINSIC_IDX_ACCESSORS(reduction_op, REDUCTION_OP, unsigned)
1352 INTRINSIC_IDX_ACCESSORS(cluster_size, CLUSTER_SIZE, unsigned)
1353 INTRINSIC_IDX_ACCESSORS(param_idx, PARAM_IDX, unsigned)
1354 INTRINSIC_IDX_ACCESSORS(image_dim, IMAGE_DIM, enum glsl_sampler_dim)
1355 INTRINSIC_IDX_ACCESSORS(image_array, IMAGE_ARRAY, bool)
1356 INTRINSIC_IDX_ACCESSORS(access, ACCESS, enum gl_access_qualifier)
1357 INTRINSIC_IDX_ACCESSORS(format, FORMAT, unsigned)
1358 INTRINSIC_IDX_ACCESSORS(align_mul, ALIGN_MUL, unsigned)
1359 INTRINSIC_IDX_ACCESSORS(align_offset, ALIGN_OFFSET, unsigned)
1360
1361 static inline void
1362 nir_intrinsic_set_align(nir_intrinsic_instr *intrin,
1363 unsigned align_mul, unsigned align_offset)
1364 {
1365 assert(util_is_power_of_two_nonzero(align_mul));
1366 assert(align_offset < align_mul);
1367 nir_intrinsic_set_align_mul(intrin, align_mul);
1368 nir_intrinsic_set_align_offset(intrin, align_offset);
1369 }
1370
1371 /** Returns a simple alignment for a load/store intrinsic offset
1372 *
1373 * Instead of the full mul+offset alignment scheme provided by the ALIGN_MUL
1374 * and ALIGN_OFFSET parameters, this helper takes both into account and
1375 * provides a single simple alignment parameter. The offset X is guaranteed
1376 * to satisfy X % align == 0.
1377 */
1378 static inline unsigned
1379 nir_intrinsic_align(nir_intrinsic_instr *intrin)
1380 {
1381 const unsigned align_mul = nir_intrinsic_align_mul(intrin);
1382 const unsigned align_offset = nir_intrinsic_align_offset(intrin);
1383 assert(align_offset < align_mul);
1384 return align_offset ? 1 << (ffs(align_offset) - 1) : align_mul;
1385 }
1386
1387 /**
1388 * \group texture information
1389 *
1390 * This gives semantic information about textures which is useful to the
1391 * frontend, the backend, and lowering passes, but not the optimizer.
1392 */
1393
1394 typedef enum {
1395 nir_tex_src_coord,
1396 nir_tex_src_projector,
1397 nir_tex_src_comparator, /* shadow comparator */
1398 nir_tex_src_offset,
1399 nir_tex_src_bias,
1400 nir_tex_src_lod,
1401 nir_tex_src_ms_index, /* MSAA sample index */
1402 nir_tex_src_ms_mcs, /* MSAA compression value */
1403 nir_tex_src_ddx,
1404 nir_tex_src_ddy,
1405 nir_tex_src_texture_deref, /* < deref pointing to the texture */
1406 nir_tex_src_sampler_deref, /* < deref pointing to the sampler */
1407 nir_tex_src_texture_offset, /* < dynamically uniform indirect offset */
1408 nir_tex_src_sampler_offset, /* < dynamically uniform indirect offset */
1409 nir_tex_src_plane, /* < selects plane for planar textures */
1410 nir_num_tex_src_types
1411 } nir_tex_src_type;
1412
1413 typedef struct {
1414 nir_src src;
1415 nir_tex_src_type src_type;
1416 } nir_tex_src;
1417
1418 typedef enum {
1419 nir_texop_tex, /**< Regular texture look-up */
1420 nir_texop_txb, /**< Texture look-up with LOD bias */
1421 nir_texop_txl, /**< Texture look-up with explicit LOD */
1422 nir_texop_txd, /**< Texture look-up with partial derivatives */
1423 nir_texop_txf, /**< Texel fetch with explicit LOD */
1424 nir_texop_txf_ms, /**< Multisample texture fetch */
1425 nir_texop_txf_ms_mcs, /**< Multisample compression value fetch */
1426 nir_texop_txs, /**< Texture size */
1427 nir_texop_lod, /**< Texture lod query */
1428 nir_texop_tg4, /**< Texture gather */
1429 nir_texop_query_levels, /**< Texture levels query */
1430 nir_texop_texture_samples, /**< Texture samples query */
1431 nir_texop_samples_identical, /**< Query whether all samples are definitely
1432 * identical.
1433 */
1434 } nir_texop;
1435
1436 typedef struct {
1437 nir_instr instr;
1438
1439 enum glsl_sampler_dim sampler_dim;
1440 nir_alu_type dest_type;
1441
1442 nir_texop op;
1443 nir_dest dest;
1444 nir_tex_src *src;
1445 unsigned num_srcs, coord_components;
1446 bool is_array, is_shadow;
1447
1448 /**
1449 * If is_shadow is true, whether this is the old-style shadow that outputs 4
1450 * components or the new-style shadow that outputs 1 component.
1451 */
1452 bool is_new_style_shadow;
1453
1454 /* gather component selector */
1455 unsigned component : 2;
1456
1457 /** The texture index
1458 *
1459 * If this texture instruction has a nir_tex_src_texture_offset source,
1460 * then the texture index is given by texture_index + texture_offset.
1461 */
1462 unsigned texture_index;
1463
1464 /** The size of the texture array or 0 if it's not an array */
1465 unsigned texture_array_size;
1466
1467 /** The sampler index
1468 *
1469 * The following operations do not require a sampler and, as such, this
1470 * field should be ignored:
1471 * - nir_texop_txf
1472 * - nir_texop_txf_ms
1473 * - nir_texop_txs
1474 * - nir_texop_lod
1475 * - nir_texop_query_levels
1476 * - nir_texop_texture_samples
1477 * - nir_texop_samples_identical
1478 *
1479 * If this texture instruction has a nir_tex_src_sampler_offset source,
1480 * then the sampler index is given by sampler_index + sampler_offset.
1481 */
1482 unsigned sampler_index;
1483 } nir_tex_instr;
1484
1485 static inline unsigned
1486 nir_tex_instr_dest_size(const nir_tex_instr *instr)
1487 {
1488 switch (instr->op) {
1489 case nir_texop_txs: {
1490 unsigned ret;
1491 switch (instr->sampler_dim) {
1492 case GLSL_SAMPLER_DIM_1D:
1493 case GLSL_SAMPLER_DIM_BUF:
1494 ret = 1;
1495 break;
1496 case GLSL_SAMPLER_DIM_2D:
1497 case GLSL_SAMPLER_DIM_CUBE:
1498 case GLSL_SAMPLER_DIM_MS:
1499 case GLSL_SAMPLER_DIM_RECT:
1500 case GLSL_SAMPLER_DIM_EXTERNAL:
1501 case GLSL_SAMPLER_DIM_SUBPASS:
1502 ret = 2;
1503 break;
1504 case GLSL_SAMPLER_DIM_3D:
1505 ret = 3;
1506 break;
1507 default:
1508 unreachable("not reached");
1509 }
1510 if (instr->is_array)
1511 ret++;
1512 return ret;
1513 }
1514
1515 case nir_texop_lod:
1516 return 2;
1517
1518 case nir_texop_texture_samples:
1519 case nir_texop_query_levels:
1520 case nir_texop_samples_identical:
1521 return 1;
1522
1523 default:
1524 if (instr->is_shadow && instr->is_new_style_shadow)
1525 return 1;
1526
1527 return 4;
1528 }
1529 }
1530
1531 /* Returns true if this texture operation queries something about the texture
1532 * rather than actually sampling it.
1533 */
1534 static inline bool
1535 nir_tex_instr_is_query(const nir_tex_instr *instr)
1536 {
1537 switch (instr->op) {
1538 case nir_texop_txs:
1539 case nir_texop_lod:
1540 case nir_texop_texture_samples:
1541 case nir_texop_query_levels:
1542 case nir_texop_txf_ms_mcs:
1543 return true;
1544 case nir_texop_tex:
1545 case nir_texop_txb:
1546 case nir_texop_txl:
1547 case nir_texop_txd:
1548 case nir_texop_txf:
1549 case nir_texop_txf_ms:
1550 case nir_texop_tg4:
1551 return false;
1552 default:
1553 unreachable("Invalid texture opcode");
1554 }
1555 }
1556
1557 static inline bool
1558 nir_alu_instr_is_comparison(const nir_alu_instr *instr)
1559 {
1560 switch (instr->op) {
1561 case nir_op_flt:
1562 case nir_op_fge:
1563 case nir_op_feq:
1564 case nir_op_fne:
1565 case nir_op_ilt:
1566 case nir_op_ult:
1567 case nir_op_ige:
1568 case nir_op_uge:
1569 case nir_op_ieq:
1570 case nir_op_ine:
1571 case nir_op_i2b32:
1572 case nir_op_f2b32:
1573 case nir_op_inot:
1574 case nir_op_fnot:
1575 return true;
1576 default:
1577 return false;
1578 }
1579 }
1580
1581 static inline nir_alu_type
1582 nir_tex_instr_src_type(const nir_tex_instr *instr, unsigned src)
1583 {
1584 switch (instr->src[src].src_type) {
1585 case nir_tex_src_coord:
1586 switch (instr->op) {
1587 case nir_texop_txf:
1588 case nir_texop_txf_ms:
1589 case nir_texop_txf_ms_mcs:
1590 case nir_texop_samples_identical:
1591 return nir_type_int;
1592
1593 default:
1594 return nir_type_float;
1595 }
1596
1597 case nir_tex_src_lod:
1598 switch (instr->op) {
1599 case nir_texop_txs:
1600 case nir_texop_txf:
1601 return nir_type_int;
1602
1603 default:
1604 return nir_type_float;
1605 }
1606
1607 case nir_tex_src_projector:
1608 case nir_tex_src_comparator:
1609 case nir_tex_src_bias:
1610 case nir_tex_src_ddx:
1611 case nir_tex_src_ddy:
1612 return nir_type_float;
1613
1614 case nir_tex_src_offset:
1615 case nir_tex_src_ms_index:
1616 case nir_tex_src_texture_offset:
1617 case nir_tex_src_sampler_offset:
1618 return nir_type_int;
1619
1620 default:
1621 unreachable("Invalid texture source type");
1622 }
1623 }
1624
1625 static inline unsigned
1626 nir_tex_instr_src_size(const nir_tex_instr *instr, unsigned src)
1627 {
1628 if (instr->src[src].src_type == nir_tex_src_coord)
1629 return instr->coord_components;
1630
1631 /* The MCS value is expected to be a vec4 returned by a txf_ms_mcs */
1632 if (instr->src[src].src_type == nir_tex_src_ms_mcs)
1633 return 4;
1634
1635 if (instr->src[src].src_type == nir_tex_src_ddx ||
1636 instr->src[src].src_type == nir_tex_src_ddy) {
1637 if (instr->is_array)
1638 return instr->coord_components - 1;
1639 else
1640 return instr->coord_components;
1641 }
1642
1643 /* Usual APIs don't allow cube + offset, but we allow it, with 2 coords for
1644 * the offset, since a cube maps to a single face.
1645 */
1646 if (instr->src[src].src_type == nir_tex_src_offset) {
1647 if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE)
1648 return 2;
1649 else if (instr->is_array)
1650 return instr->coord_components - 1;
1651 else
1652 return instr->coord_components;
1653 }
1654
1655 return 1;
1656 }
1657
1658 static inline int
1659 nir_tex_instr_src_index(const nir_tex_instr *instr, nir_tex_src_type type)
1660 {
1661 for (unsigned i = 0; i < instr->num_srcs; i++)
1662 if (instr->src[i].src_type == type)
1663 return (int) i;
1664
1665 return -1;
1666 }
1667
1668 void nir_tex_instr_add_src(nir_tex_instr *tex,
1669 nir_tex_src_type src_type,
1670 nir_src src);
1671
1672 void nir_tex_instr_remove_src(nir_tex_instr *tex, unsigned src_idx);
1673
1674 typedef struct {
1675 nir_instr instr;
1676
1677 nir_const_value value;
1678
1679 nir_ssa_def def;
1680 } nir_load_const_instr;
1681
1682 typedef enum {
1683 nir_jump_return,
1684 nir_jump_break,
1685 nir_jump_continue,
1686 } nir_jump_type;
1687
1688 typedef struct {
1689 nir_instr instr;
1690 nir_jump_type type;
1691 } nir_jump_instr;
1692
1693 /* creates a new SSA variable in an undefined state */
1694
1695 typedef struct {
1696 nir_instr instr;
1697 nir_ssa_def def;
1698 } nir_ssa_undef_instr;
1699
1700 typedef struct {
1701 struct exec_node node;
1702
1703 /* The predecessor block corresponding to this source */
1704 struct nir_block *pred;
1705
1706 nir_src src;
1707 } nir_phi_src;
1708
1709 #define nir_foreach_phi_src(phi_src, phi) \
1710 foreach_list_typed(nir_phi_src, phi_src, node, &(phi)->srcs)
1711 #define nir_foreach_phi_src_safe(phi_src, phi) \
1712 foreach_list_typed_safe(nir_phi_src, phi_src, node, &(phi)->srcs)
1713
1714 typedef struct {
1715 nir_instr instr;
1716
1717 struct exec_list srcs; /** < list of nir_phi_src */
1718
1719 nir_dest dest;
1720 } nir_phi_instr;
1721
1722 typedef struct {
1723 struct exec_node node;
1724 nir_src src;
1725 nir_dest dest;
1726 } nir_parallel_copy_entry;
1727
1728 #define nir_foreach_parallel_copy_entry(entry, pcopy) \
1729 foreach_list_typed(nir_parallel_copy_entry, entry, node, &(pcopy)->entries)
1730
1731 typedef struct {
1732 nir_instr instr;
1733
1734 /* A list of nir_parallel_copy_entrys. The sources of all of the
1735 * entries are copied to the corresponding destinations "in parallel".
1736 * In other words, if we have two entries: a -> b and b -> a, the values
1737 * get swapped.
1738 */
1739 struct exec_list entries;
1740 } nir_parallel_copy_instr;
1741
1742 NIR_DEFINE_CAST(nir_instr_as_alu, nir_instr, nir_alu_instr, instr,
1743 type, nir_instr_type_alu)
1744 NIR_DEFINE_CAST(nir_instr_as_call, nir_instr, nir_call_instr, instr,
1745 type, nir_instr_type_call)
1746 NIR_DEFINE_CAST(nir_instr_as_jump, nir_instr, nir_jump_instr, instr,
1747 type, nir_instr_type_jump)
1748 NIR_DEFINE_CAST(nir_instr_as_tex, nir_instr, nir_tex_instr, instr,
1749 type, nir_instr_type_tex)
1750 NIR_DEFINE_CAST(nir_instr_as_intrinsic, nir_instr, nir_intrinsic_instr, instr,
1751 type, nir_instr_type_intrinsic)
1752 NIR_DEFINE_CAST(nir_instr_as_load_const, nir_instr, nir_load_const_instr, instr,
1753 type, nir_instr_type_load_const)
1754 NIR_DEFINE_CAST(nir_instr_as_ssa_undef, nir_instr, nir_ssa_undef_instr, instr,
1755 type, nir_instr_type_ssa_undef)
1756 NIR_DEFINE_CAST(nir_instr_as_phi, nir_instr, nir_phi_instr, instr,
1757 type, nir_instr_type_phi)
1758 NIR_DEFINE_CAST(nir_instr_as_parallel_copy, nir_instr,
1759 nir_parallel_copy_instr, instr,
1760 type, nir_instr_type_parallel_copy)
1761
1762 /*
1763 * Control flow
1764 *
1765 * Control flow consists of a tree of control flow nodes, which include
1766 * if-statements and loops. The leaves of the tree are basic blocks, lists of
1767 * instructions that always run start-to-finish. Each basic block also keeps
1768 * track of its successors (blocks which may run immediately after the current
1769 * block) and predecessors (blocks which could have run immediately before the
1770 * current block). Each function also has a start block and an end block which
1771 * all return statements point to (which is always empty). Together, all the
1772 * blocks with their predecessors and successors make up the control flow
1773 * graph (CFG) of the function. There are helpers that modify the tree of
1774 * control flow nodes while modifying the CFG appropriately; these should be
1775 * used instead of modifying the tree directly.
1776 */
1777
1778 typedef enum {
1779 nir_cf_node_block,
1780 nir_cf_node_if,
1781 nir_cf_node_loop,
1782 nir_cf_node_function
1783 } nir_cf_node_type;
1784
1785 typedef struct nir_cf_node {
1786 struct exec_node node;
1787 nir_cf_node_type type;
1788 struct nir_cf_node *parent;
1789 } nir_cf_node;
1790
1791 typedef struct nir_block {
1792 nir_cf_node cf_node;
1793
1794 struct exec_list instr_list; /** < list of nir_instr */
1795
1796 /** generic block index; generated by nir_index_blocks */
1797 unsigned index;
1798
1799 /*
1800 * Each block can only have up to 2 successors, so we put them in a simple
1801 * array - no need for anything more complicated.
1802 */
1803 struct nir_block *successors[2];
1804
1805 /* Set of nir_block predecessors in the CFG */
1806 struct set *predecessors;
1807
1808 /*
1809 * this node's immediate dominator in the dominance tree - set to NULL for
1810 * the start block.
1811 */
1812 struct nir_block *imm_dom;
1813
1814 /* This node's children in the dominance tree */
1815 unsigned num_dom_children;
1816 struct nir_block **dom_children;
1817
1818 /* Set of nir_blocks on the dominance frontier of this block */
1819 struct set *dom_frontier;
1820
1821 /*
1822 * These two indices have the property that dom_{pre,post}_index for each
1823 * child of this block in the dominance tree will always be between
1824 * dom_pre_index and dom_post_index for this block, which makes testing if
1825 * a given block is dominated by another block an O(1) operation.
1826 */
1827 unsigned dom_pre_index, dom_post_index;
1828
1829 /* live in and out for this block; used for liveness analysis */
1830 BITSET_WORD *live_in;
1831 BITSET_WORD *live_out;
1832 } nir_block;
1833
1834 static inline nir_instr *
1835 nir_block_first_instr(nir_block *block)
1836 {
1837 struct exec_node *head = exec_list_get_head(&block->instr_list);
1838 return exec_node_data(nir_instr, head, node);
1839 }
1840
1841 static inline nir_instr *
1842 nir_block_last_instr(nir_block *block)
1843 {
1844 struct exec_node *tail = exec_list_get_tail(&block->instr_list);
1845 return exec_node_data(nir_instr, tail, node);
1846 }
1847
1848 static inline bool
1849 nir_block_ends_in_jump(nir_block *block)
1850 {
1851 return !exec_list_is_empty(&block->instr_list) &&
1852 nir_block_last_instr(block)->type == nir_instr_type_jump;
1853 }
1854
1855 #define nir_foreach_instr(instr, block) \
1856 foreach_list_typed(nir_instr, instr, node, &(block)->instr_list)
1857 #define nir_foreach_instr_reverse(instr, block) \
1858 foreach_list_typed_reverse(nir_instr, instr, node, &(block)->instr_list)
1859 #define nir_foreach_instr_safe(instr, block) \
1860 foreach_list_typed_safe(nir_instr, instr, node, &(block)->instr_list)
1861 #define nir_foreach_instr_reverse_safe(instr, block) \
1862 foreach_list_typed_reverse_safe(nir_instr, instr, node, &(block)->instr_list)
1863
1864 typedef struct nir_if {
1865 nir_cf_node cf_node;
1866 nir_src condition;
1867
1868 struct exec_list then_list; /** < list of nir_cf_node */
1869 struct exec_list else_list; /** < list of nir_cf_node */
1870 } nir_if;
1871
1872 typedef struct {
1873 nir_if *nif;
1874
1875 nir_instr *conditional_instr;
1876
1877 nir_block *break_block;
1878 nir_block *continue_from_block;
1879
1880 bool continue_from_then;
1881
1882 struct list_head loop_terminator_link;
1883 } nir_loop_terminator;
1884
1885 typedef struct {
1886 /* Number of instructions in the loop */
1887 unsigned num_instructions;
1888
1889 /* How many times the loop is run (if known) */
1890 unsigned trip_count;
1891 bool is_trip_count_known;
1892
1893 /* Unroll the loop regardless of its size */
1894 bool force_unroll;
1895
1896 /* Does the loop contain complex loop terminators, continues or other
1897 * complex behaviours? If this is true we can't rely on
1898 * loop_terminator_list to be complete or accurate.
1899 */
1900 bool complex_loop;
1901
1902 nir_loop_terminator *limiting_terminator;
1903
1904 /* A list of loop_terminators terminating this loop. */
1905 struct list_head loop_terminator_list;
1906 } nir_loop_info;
1907
1908 typedef struct {
1909 nir_cf_node cf_node;
1910
1911 struct exec_list body; /** < list of nir_cf_node */
1912
1913 nir_loop_info *info;
1914 } nir_loop;
1915
1916 /**
1917 * Various bits of metadata that can may be created or required by
1918 * optimization and analysis passes
1919 */
1920 typedef enum {
1921 nir_metadata_none = 0x0,
1922 nir_metadata_block_index = 0x1,
1923 nir_metadata_dominance = 0x2,
1924 nir_metadata_live_ssa_defs = 0x4,
1925 nir_metadata_not_properly_reset = 0x8,
1926 nir_metadata_loop_analysis = 0x10,
1927 } nir_metadata;
1928
1929 typedef struct {
1930 nir_cf_node cf_node;
1931
1932 /** pointer to the function of which this is an implementation */
1933 struct nir_function *function;
1934
1935 struct exec_list body; /** < list of nir_cf_node */
1936
1937 nir_block *end_block;
1938
1939 /** list for all local variables in the function */
1940 struct exec_list locals;
1941
1942 /** list of local registers in the function */
1943 struct exec_list registers;
1944
1945 /** next available local register index */
1946 unsigned reg_alloc;
1947
1948 /** next available SSA value index */
1949 unsigned ssa_alloc;
1950
1951 /* total number of basic blocks, only valid when block_index_dirty = false */
1952 unsigned num_blocks;
1953
1954 nir_metadata valid_metadata;
1955 } nir_function_impl;
1956
1957 ATTRIBUTE_RETURNS_NONNULL static inline nir_block *
1958 nir_start_block(nir_function_impl *impl)
1959 {
1960 return (nir_block *) impl->body.head_sentinel.next;
1961 }
1962
1963 ATTRIBUTE_RETURNS_NONNULL static inline nir_block *
1964 nir_impl_last_block(nir_function_impl *impl)
1965 {
1966 return (nir_block *) impl->body.tail_sentinel.prev;
1967 }
1968
1969 static inline nir_cf_node *
1970 nir_cf_node_next(nir_cf_node *node)
1971 {
1972 struct exec_node *next = exec_node_get_next(&node->node);
1973 if (exec_node_is_tail_sentinel(next))
1974 return NULL;
1975 else
1976 return exec_node_data(nir_cf_node, next, node);
1977 }
1978
1979 static inline nir_cf_node *
1980 nir_cf_node_prev(nir_cf_node *node)
1981 {
1982 struct exec_node *prev = exec_node_get_prev(&node->node);
1983 if (exec_node_is_head_sentinel(prev))
1984 return NULL;
1985 else
1986 return exec_node_data(nir_cf_node, prev, node);
1987 }
1988
1989 static inline bool
1990 nir_cf_node_is_first(const nir_cf_node *node)
1991 {
1992 return exec_node_is_head_sentinel(node->node.prev);
1993 }
1994
1995 static inline bool
1996 nir_cf_node_is_last(const nir_cf_node *node)
1997 {
1998 return exec_node_is_tail_sentinel(node->node.next);
1999 }
2000
2001 NIR_DEFINE_CAST(nir_cf_node_as_block, nir_cf_node, nir_block, cf_node,
2002 type, nir_cf_node_block)
2003 NIR_DEFINE_CAST(nir_cf_node_as_if, nir_cf_node, nir_if, cf_node,
2004 type, nir_cf_node_if)
2005 NIR_DEFINE_CAST(nir_cf_node_as_loop, nir_cf_node, nir_loop, cf_node,
2006 type, nir_cf_node_loop)
2007 NIR_DEFINE_CAST(nir_cf_node_as_function, nir_cf_node,
2008 nir_function_impl, cf_node, type, nir_cf_node_function)
2009
2010 static inline nir_block *
2011 nir_if_first_then_block(nir_if *if_stmt)
2012 {
2013 struct exec_node *head = exec_list_get_head(&if_stmt->then_list);
2014 return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
2015 }
2016
2017 static inline nir_block *
2018 nir_if_last_then_block(nir_if *if_stmt)
2019 {
2020 struct exec_node *tail = exec_list_get_tail(&if_stmt->then_list);
2021 return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
2022 }
2023
2024 static inline nir_block *
2025 nir_if_first_else_block(nir_if *if_stmt)
2026 {
2027 struct exec_node *head = exec_list_get_head(&if_stmt->else_list);
2028 return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
2029 }
2030
2031 static inline nir_block *
2032 nir_if_last_else_block(nir_if *if_stmt)
2033 {
2034 struct exec_node *tail = exec_list_get_tail(&if_stmt->else_list);
2035 return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
2036 }
2037
2038 static inline nir_block *
2039 nir_loop_first_block(nir_loop *loop)
2040 {
2041 struct exec_node *head = exec_list_get_head(&loop->body);
2042 return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
2043 }
2044
2045 static inline nir_block *
2046 nir_loop_last_block(nir_loop *loop)
2047 {
2048 struct exec_node *tail = exec_list_get_tail(&loop->body);
2049 return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
2050 }
2051
2052 typedef struct {
2053 uint8_t num_components;
2054 uint8_t bit_size;
2055 } nir_parameter;
2056
2057 typedef struct nir_function {
2058 struct exec_node node;
2059
2060 const char *name;
2061 struct nir_shader *shader;
2062
2063 unsigned num_params;
2064 nir_parameter *params;
2065
2066 /** The implementation of this function.
2067 *
2068 * If the function is only declared and not implemented, this is NULL.
2069 */
2070 nir_function_impl *impl;
2071 } nir_function;
2072
2073 typedef struct nir_shader_compiler_options {
2074 bool lower_fdiv;
2075 bool lower_ffma;
2076 bool fuse_ffma;
2077 bool lower_flrp32;
2078 /** Lowers flrp when it does not support doubles */
2079 bool lower_flrp64;
2080 bool lower_fpow;
2081 bool lower_fsat;
2082 bool lower_fsqrt;
2083 bool lower_fmod32;
2084 bool lower_fmod64;
2085 /** Lowers ibitfield_extract/ubitfield_extract to ibfe/ubfe. */
2086 bool lower_bitfield_extract;
2087 /** Lowers ibitfield_extract/ubitfield_extract to bfm, compares, shifts. */
2088 bool lower_bitfield_extract_to_shifts;
2089 /** Lowers bitfield_insert to bfi/bfm */
2090 bool lower_bitfield_insert;
2091 /** Lowers bitfield_insert to bfm, compares, and shifts. */
2092 bool lower_bitfield_insert_to_shifts;
2093 /** Lowers bitfield_reverse to shifts. */
2094 bool lower_bitfield_reverse;
2095 /** Lowers bit_count to shifts. */
2096 bool lower_bit_count;
2097 /** Lowers bfm to shifts and subtracts. */
2098 bool lower_bfm;
2099 /** Lowers ifind_msb to compare and ufind_msb */
2100 bool lower_ifind_msb;
2101 /** Lowers find_lsb to ufind_msb and logic ops */
2102 bool lower_find_lsb;
2103 bool lower_uadd_carry;
2104 bool lower_usub_borrow;
2105 /** Lowers imul_high/umul_high to 16-bit multiplies and carry operations. */
2106 bool lower_mul_high;
2107 /** lowers fneg and ineg to fsub and isub. */
2108 bool lower_negate;
2109 /** lowers fsub and isub to fadd+fneg and iadd+ineg. */
2110 bool lower_sub;
2111
2112 /* lower {slt,sge,seq,sne} to {flt,fge,feq,fne} + b2f: */
2113 bool lower_scmp;
2114
2115 /** enables rules to lower idiv by power-of-two: */
2116 bool lower_idiv;
2117
2118 /* lower b2f to iand */
2119 bool lower_b2f;
2120
2121 /* Does the native fdot instruction replicate its result for four
2122 * components? If so, then opt_algebraic_late will turn all fdotN
2123 * instructions into fdot_replicatedN instructions.
2124 */
2125 bool fdot_replicates;
2126
2127 /** lowers ffloor to fsub+ffract: */
2128 bool lower_ffloor;
2129
2130 /** lowers ffract to fsub+ffloor: */
2131 bool lower_ffract;
2132
2133 /** lowers fceil to fneg+ffloor+fneg: */
2134 bool lower_fceil;
2135
2136 bool lower_ldexp;
2137
2138 bool lower_pack_half_2x16;
2139 bool lower_pack_unorm_2x16;
2140 bool lower_pack_snorm_2x16;
2141 bool lower_pack_unorm_4x8;
2142 bool lower_pack_snorm_4x8;
2143 bool lower_unpack_half_2x16;
2144 bool lower_unpack_unorm_2x16;
2145 bool lower_unpack_snorm_2x16;
2146 bool lower_unpack_unorm_4x8;
2147 bool lower_unpack_snorm_4x8;
2148
2149 bool lower_extract_byte;
2150 bool lower_extract_word;
2151
2152 bool lower_all_io_to_temps;
2153
2154 /**
2155 * Does the driver support real 32-bit integers? (Otherwise, integers
2156 * are simulated by floats.)
2157 */
2158 bool native_integers;
2159
2160 /* Indicates that the driver only has zero-based vertex id */
2161 bool vertex_id_zero_based;
2162
2163 /**
2164 * If enabled, gl_BaseVertex will be lowered as:
2165 * is_indexed_draw (~0/0) & firstvertex
2166 */
2167 bool lower_base_vertex;
2168
2169 /**
2170 * If enabled, gl_HelperInvocation will be lowered as:
2171 *
2172 * !((1 << sample_id) & sample_mask_in))
2173 *
2174 * This depends on some possibly hw implementation details, which may
2175 * not be true for all hw. In particular that the FS is only executed
2176 * for covered samples or for helper invocations. So, do not blindly
2177 * enable this option.
2178 *
2179 * Note: See also issue #22 in ARB_shader_image_load_store
2180 */
2181 bool lower_helper_invocation;
2182
2183 bool lower_cs_local_index_from_id;
2184 bool lower_cs_local_id_from_index;
2185
2186 bool lower_device_index_to_zero;
2187
2188 /* Set if nir_lower_wpos_ytransform() should also invert gl_PointCoord. */
2189 bool lower_wpos_pntc;
2190
2191 /**
2192 * Should nir_lower_io() create load_interpolated_input intrinsics?
2193 *
2194 * If not, it generates regular load_input intrinsics and interpolation
2195 * information must be inferred from the list of input nir_variables.
2196 */
2197 bool use_interpolated_input_intrinsics;
2198
2199 unsigned max_unroll_iterations;
2200 } nir_shader_compiler_options;
2201
2202 typedef struct nir_shader {
2203 /** list of uniforms (nir_variable) */
2204 struct exec_list uniforms;
2205
2206 /** list of inputs (nir_variable) */
2207 struct exec_list inputs;
2208
2209 /** list of outputs (nir_variable) */
2210 struct exec_list outputs;
2211
2212 /** list of shared compute variables (nir_variable) */
2213 struct exec_list shared;
2214
2215 /** Set of driver-specific options for the shader.
2216 *
2217 * The memory for the options is expected to be kept in a single static
2218 * copy by the driver.
2219 */
2220 const struct nir_shader_compiler_options *options;
2221
2222 /** Various bits of compile-time information about a given shader */
2223 struct shader_info info;
2224
2225 /** list of global variables in the shader (nir_variable) */
2226 struct exec_list globals;
2227
2228 /** list of system value variables in the shader (nir_variable) */
2229 struct exec_list system_values;
2230
2231 struct exec_list functions; /** < list of nir_function */
2232
2233 /** list of global register in the shader */
2234 struct exec_list registers;
2235
2236 /** next available global register index */
2237 unsigned reg_alloc;
2238
2239 /**
2240 * the highest index a load_input_*, load_uniform_*, etc. intrinsic can
2241 * access plus one
2242 */
2243 unsigned num_inputs, num_uniforms, num_outputs, num_shared;
2244
2245 /** Constant data associated with this shader.
2246 *
2247 * Constant data is loaded through load_constant intrinsics. See also
2248 * nir_opt_large_constants.
2249 */
2250 void *constant_data;
2251 unsigned constant_data_size;
2252 } nir_shader;
2253
2254 static inline nir_function_impl *
2255 nir_shader_get_entrypoint(nir_shader *shader)
2256 {
2257 assert(exec_list_length(&shader->functions) == 1);
2258 struct exec_node *func_node = exec_list_get_head(&shader->functions);
2259 nir_function *func = exec_node_data(nir_function, func_node, node);
2260 assert(func->num_params == 0);
2261 assert(func->impl);
2262 return func->impl;
2263 }
2264
2265 #define nir_foreach_function(func, shader) \
2266 foreach_list_typed(nir_function, func, node, &(shader)->functions)
2267
2268 nir_shader *nir_shader_create(void *mem_ctx,
2269 gl_shader_stage stage,
2270 const nir_shader_compiler_options *options,
2271 shader_info *si);
2272
2273 /** creates a register, including assigning it an index and adding it to the list */
2274 nir_register *nir_global_reg_create(nir_shader *shader);
2275
2276 nir_register *nir_local_reg_create(nir_function_impl *impl);
2277
2278 void nir_reg_remove(nir_register *reg);
2279
2280 /** Adds a variable to the appropriate list in nir_shader */
2281 void nir_shader_add_variable(nir_shader *shader, nir_variable *var);
2282
2283 static inline void
2284 nir_function_impl_add_variable(nir_function_impl *impl, nir_variable *var)
2285 {
2286 assert(var->data.mode == nir_var_local);
2287 exec_list_push_tail(&impl->locals, &var->node);
2288 }
2289
2290 /** creates a variable, sets a few defaults, and adds it to the list */
2291 nir_variable *nir_variable_create(nir_shader *shader,
2292 nir_variable_mode mode,
2293 const struct glsl_type *type,
2294 const char *name);
2295 /** creates a local variable and adds it to the list */
2296 nir_variable *nir_local_variable_create(nir_function_impl *impl,
2297 const struct glsl_type *type,
2298 const char *name);
2299
2300 /** creates a function and adds it to the shader's list of functions */
2301 nir_function *nir_function_create(nir_shader *shader, const char *name);
2302
2303 nir_function_impl *nir_function_impl_create(nir_function *func);
2304 /** creates a function_impl that isn't tied to any particular function */
2305 nir_function_impl *nir_function_impl_create_bare(nir_shader *shader);
2306
2307 nir_block *nir_block_create(nir_shader *shader);
2308 nir_if *nir_if_create(nir_shader *shader);
2309 nir_loop *nir_loop_create(nir_shader *shader);
2310
2311 nir_function_impl *nir_cf_node_get_function(nir_cf_node *node);
2312
2313 /** requests that the given pieces of metadata be generated */
2314 void nir_metadata_require(nir_function_impl *impl, nir_metadata required, ...);
2315 /** dirties all but the preserved metadata */
2316 void nir_metadata_preserve(nir_function_impl *impl, nir_metadata preserved);
2317
2318 /** creates an instruction with default swizzle/writemask/etc. with NULL registers */
2319 nir_alu_instr *nir_alu_instr_create(nir_shader *shader, nir_op op);
2320
2321 nir_deref_instr *nir_deref_instr_create(nir_shader *shader,
2322 nir_deref_type deref_type);
2323
2324 nir_jump_instr *nir_jump_instr_create(nir_shader *shader, nir_jump_type type);
2325
2326 nir_load_const_instr *nir_load_const_instr_create(nir_shader *shader,
2327 unsigned num_components,
2328 unsigned bit_size);
2329
2330 nir_intrinsic_instr *nir_intrinsic_instr_create(nir_shader *shader,
2331 nir_intrinsic_op op);
2332
2333 nir_call_instr *nir_call_instr_create(nir_shader *shader,
2334 nir_function *callee);
2335
2336 nir_tex_instr *nir_tex_instr_create(nir_shader *shader, unsigned num_srcs);
2337
2338 nir_phi_instr *nir_phi_instr_create(nir_shader *shader);
2339
2340 nir_parallel_copy_instr *nir_parallel_copy_instr_create(nir_shader *shader);
2341
2342 nir_ssa_undef_instr *nir_ssa_undef_instr_create(nir_shader *shader,
2343 unsigned num_components,
2344 unsigned bit_size);
2345
2346 nir_const_value nir_alu_binop_identity(nir_op binop, unsigned bit_size);
2347
2348 /**
2349 * NIR Cursors and Instruction Insertion API
2350 * @{
2351 *
2352 * A tiny struct representing a point to insert/extract instructions or
2353 * control flow nodes. Helps reduce the combinatorial explosion of possible
2354 * points to insert/extract.
2355 *
2356 * \sa nir_control_flow.h
2357 */
2358 typedef enum {
2359 nir_cursor_before_block,
2360 nir_cursor_after_block,
2361 nir_cursor_before_instr,
2362 nir_cursor_after_instr,
2363 } nir_cursor_option;
2364
2365 typedef struct {
2366 nir_cursor_option option;
2367 union {
2368 nir_block *block;
2369 nir_instr *instr;
2370 };
2371 } nir_cursor;
2372
2373 static inline nir_block *
2374 nir_cursor_current_block(nir_cursor cursor)
2375 {
2376 if (cursor.option == nir_cursor_before_instr ||
2377 cursor.option == nir_cursor_after_instr) {
2378 return cursor.instr->block;
2379 } else {
2380 return cursor.block;
2381 }
2382 }
2383
2384 bool nir_cursors_equal(nir_cursor a, nir_cursor b);
2385
2386 static inline nir_cursor
2387 nir_before_block(nir_block *block)
2388 {
2389 nir_cursor cursor;
2390 cursor.option = nir_cursor_before_block;
2391 cursor.block = block;
2392 return cursor;
2393 }
2394
2395 static inline nir_cursor
2396 nir_after_block(nir_block *block)
2397 {
2398 nir_cursor cursor;
2399 cursor.option = nir_cursor_after_block;
2400 cursor.block = block;
2401 return cursor;
2402 }
2403
2404 static inline nir_cursor
2405 nir_before_instr(nir_instr *instr)
2406 {
2407 nir_cursor cursor;
2408 cursor.option = nir_cursor_before_instr;
2409 cursor.instr = instr;
2410 return cursor;
2411 }
2412
2413 static inline nir_cursor
2414 nir_after_instr(nir_instr *instr)
2415 {
2416 nir_cursor cursor;
2417 cursor.option = nir_cursor_after_instr;
2418 cursor.instr = instr;
2419 return cursor;
2420 }
2421
2422 static inline nir_cursor
2423 nir_after_block_before_jump(nir_block *block)
2424 {
2425 nir_instr *last_instr = nir_block_last_instr(block);
2426 if (last_instr && last_instr->type == nir_instr_type_jump) {
2427 return nir_before_instr(last_instr);
2428 } else {
2429 return nir_after_block(block);
2430 }
2431 }
2432
2433 static inline nir_cursor
2434 nir_before_src(nir_src *src, bool is_if_condition)
2435 {
2436 if (is_if_condition) {
2437 nir_block *prev_block =
2438 nir_cf_node_as_block(nir_cf_node_prev(&src->parent_if->cf_node));
2439 assert(!nir_block_ends_in_jump(prev_block));
2440 return nir_after_block(prev_block);
2441 } else if (src->parent_instr->type == nir_instr_type_phi) {
2442 #ifndef NDEBUG
2443 nir_phi_instr *cond_phi = nir_instr_as_phi(src->parent_instr);
2444 bool found = false;
2445 nir_foreach_phi_src(phi_src, cond_phi) {
2446 if (phi_src->src.ssa == src->ssa) {
2447 found = true;
2448 break;
2449 }
2450 }
2451 assert(found);
2452 #endif
2453 /* The LIST_ENTRY macro is a generic container-of macro, it just happens
2454 * to have a more specific name.
2455 */
2456 nir_phi_src *phi_src = LIST_ENTRY(nir_phi_src, src, src);
2457 return nir_after_block_before_jump(phi_src->pred);
2458 } else {
2459 return nir_before_instr(src->parent_instr);
2460 }
2461 }
2462
2463 static inline nir_cursor
2464 nir_before_cf_node(nir_cf_node *node)
2465 {
2466 if (node->type == nir_cf_node_block)
2467 return nir_before_block(nir_cf_node_as_block(node));
2468
2469 return nir_after_block(nir_cf_node_as_block(nir_cf_node_prev(node)));
2470 }
2471
2472 static inline nir_cursor
2473 nir_after_cf_node(nir_cf_node *node)
2474 {
2475 if (node->type == nir_cf_node_block)
2476 return nir_after_block(nir_cf_node_as_block(node));
2477
2478 return nir_before_block(nir_cf_node_as_block(nir_cf_node_next(node)));
2479 }
2480
2481 static inline nir_cursor
2482 nir_after_phis(nir_block *block)
2483 {
2484 nir_foreach_instr(instr, block) {
2485 if (instr->type != nir_instr_type_phi)
2486 return nir_before_instr(instr);
2487 }
2488 return nir_after_block(block);
2489 }
2490
2491 static inline nir_cursor
2492 nir_after_cf_node_and_phis(nir_cf_node *node)
2493 {
2494 if (node->type == nir_cf_node_block)
2495 return nir_after_block(nir_cf_node_as_block(node));
2496
2497 nir_block *block = nir_cf_node_as_block(nir_cf_node_next(node));
2498
2499 return nir_after_phis(block);
2500 }
2501
2502 static inline nir_cursor
2503 nir_before_cf_list(struct exec_list *cf_list)
2504 {
2505 nir_cf_node *first_node = exec_node_data(nir_cf_node,
2506 exec_list_get_head(cf_list), node);
2507 return nir_before_cf_node(first_node);
2508 }
2509
2510 static inline nir_cursor
2511 nir_after_cf_list(struct exec_list *cf_list)
2512 {
2513 nir_cf_node *last_node = exec_node_data(nir_cf_node,
2514 exec_list_get_tail(cf_list), node);
2515 return nir_after_cf_node(last_node);
2516 }
2517
2518 /**
2519 * Insert a NIR instruction at the given cursor.
2520 *
2521 * Note: This does not update the cursor.
2522 */
2523 void nir_instr_insert(nir_cursor cursor, nir_instr *instr);
2524
2525 static inline void
2526 nir_instr_insert_before(nir_instr *instr, nir_instr *before)
2527 {
2528 nir_instr_insert(nir_before_instr(instr), before);
2529 }
2530
2531 static inline void
2532 nir_instr_insert_after(nir_instr *instr, nir_instr *after)
2533 {
2534 nir_instr_insert(nir_after_instr(instr), after);
2535 }
2536
2537 static inline void
2538 nir_instr_insert_before_block(nir_block *block, nir_instr *before)
2539 {
2540 nir_instr_insert(nir_before_block(block), before);
2541 }
2542
2543 static inline void
2544 nir_instr_insert_after_block(nir_block *block, nir_instr *after)
2545 {
2546 nir_instr_insert(nir_after_block(block), after);
2547 }
2548
2549 static inline void
2550 nir_instr_insert_before_cf(nir_cf_node *node, nir_instr *before)
2551 {
2552 nir_instr_insert(nir_before_cf_node(node), before);
2553 }
2554
2555 static inline void
2556 nir_instr_insert_after_cf(nir_cf_node *node, nir_instr *after)
2557 {
2558 nir_instr_insert(nir_after_cf_node(node), after);
2559 }
2560
2561 static inline void
2562 nir_instr_insert_before_cf_list(struct exec_list *list, nir_instr *before)
2563 {
2564 nir_instr_insert(nir_before_cf_list(list), before);
2565 }
2566
2567 static inline void
2568 nir_instr_insert_after_cf_list(struct exec_list *list, nir_instr *after)
2569 {
2570 nir_instr_insert(nir_after_cf_list(list), after);
2571 }
2572
2573 void nir_instr_remove_v(nir_instr *instr);
2574
2575 static inline nir_cursor
2576 nir_instr_remove(nir_instr *instr)
2577 {
2578 nir_cursor cursor;
2579 nir_instr *prev = nir_instr_prev(instr);
2580 if (prev) {
2581 cursor = nir_after_instr(prev);
2582 } else {
2583 cursor = nir_before_block(instr->block);
2584 }
2585 nir_instr_remove_v(instr);
2586 return cursor;
2587 }
2588
2589 /** @} */
2590
2591 typedef bool (*nir_foreach_ssa_def_cb)(nir_ssa_def *def, void *state);
2592 typedef bool (*nir_foreach_dest_cb)(nir_dest *dest, void *state);
2593 typedef bool (*nir_foreach_src_cb)(nir_src *src, void *state);
2594 bool nir_foreach_ssa_def(nir_instr *instr, nir_foreach_ssa_def_cb cb,
2595 void *state);
2596 bool nir_foreach_dest(nir_instr *instr, nir_foreach_dest_cb cb, void *state);
2597 bool nir_foreach_src(nir_instr *instr, nir_foreach_src_cb cb, void *state);
2598
2599 nir_const_value *nir_src_as_const_value(nir_src src);
2600
2601 static inline struct nir_instr *
2602 nir_src_instr(const struct nir_src *src)
2603 {
2604 return src->is_ssa ? src->ssa->parent_instr : NULL;
2605 }
2606
2607 #define NIR_SRC_AS_(name, c_type, type_enum, cast_macro) \
2608 static inline c_type * \
2609 nir_src_as_ ## name (struct nir_src *src) \
2610 { \
2611 return src->is_ssa && src->ssa->parent_instr->type == type_enum \
2612 ? cast_macro(src->ssa->parent_instr) : NULL; \
2613 } \
2614 static inline const c_type * \
2615 nir_src_as_ ## name ## _const(const struct nir_src *src) \
2616 { \
2617 return src->is_ssa && src->ssa->parent_instr->type == type_enum \
2618 ? cast_macro(src->ssa->parent_instr) : NULL; \
2619 }
2620
2621 NIR_SRC_AS_(alu_instr, nir_alu_instr, nir_instr_type_alu, nir_instr_as_alu)
2622
2623 bool nir_src_is_dynamically_uniform(nir_src src);
2624 bool nir_srcs_equal(nir_src src1, nir_src src2);
2625 void nir_instr_rewrite_src(nir_instr *instr, nir_src *src, nir_src new_src);
2626 void nir_instr_move_src(nir_instr *dest_instr, nir_src *dest, nir_src *src);
2627 void nir_if_rewrite_condition(nir_if *if_stmt, nir_src new_src);
2628 void nir_instr_rewrite_dest(nir_instr *instr, nir_dest *dest,
2629 nir_dest new_dest);
2630
2631 void nir_ssa_dest_init(nir_instr *instr, nir_dest *dest,
2632 unsigned num_components, unsigned bit_size,
2633 const char *name);
2634 void nir_ssa_def_init(nir_instr *instr, nir_ssa_def *def,
2635 unsigned num_components, unsigned bit_size,
2636 const char *name);
2637 static inline void
2638 nir_ssa_dest_init_for_type(nir_instr *instr, nir_dest *dest,
2639 const struct glsl_type *type,
2640 const char *name)
2641 {
2642 assert(glsl_type_is_vector_or_scalar(type));
2643 nir_ssa_dest_init(instr, dest, glsl_get_components(type),
2644 glsl_get_bit_size(type), name);
2645 }
2646 void nir_ssa_def_rewrite_uses(nir_ssa_def *def, nir_src new_src);
2647 void nir_ssa_def_rewrite_uses_after(nir_ssa_def *def, nir_src new_src,
2648 nir_instr *after_me);
2649
2650 nir_component_mask_t nir_ssa_def_components_read(const nir_ssa_def *def);
2651
2652 /*
2653 * finds the next basic block in source-code order, returns NULL if there is
2654 * none
2655 */
2656
2657 nir_block *nir_block_cf_tree_next(nir_block *block);
2658
2659 /* Performs the opposite of nir_block_cf_tree_next() */
2660
2661 nir_block *nir_block_cf_tree_prev(nir_block *block);
2662
2663 /* Gets the first block in a CF node in source-code order */
2664
2665 nir_block *nir_cf_node_cf_tree_first(nir_cf_node *node);
2666
2667 /* Gets the last block in a CF node in source-code order */
2668
2669 nir_block *nir_cf_node_cf_tree_last(nir_cf_node *node);
2670
2671 /* Gets the next block after a CF node in source-code order */
2672
2673 nir_block *nir_cf_node_cf_tree_next(nir_cf_node *node);
2674
2675 /* Macros for loops that visit blocks in source-code order */
2676
2677 #define nir_foreach_block(block, impl) \
2678 for (nir_block *block = nir_start_block(impl); block != NULL; \
2679 block = nir_block_cf_tree_next(block))
2680
2681 #define nir_foreach_block_safe(block, impl) \
2682 for (nir_block *block = nir_start_block(impl), \
2683 *next = nir_block_cf_tree_next(block); \
2684 block != NULL; \
2685 block = next, next = nir_block_cf_tree_next(block))
2686
2687 #define nir_foreach_block_reverse(block, impl) \
2688 for (nir_block *block = nir_impl_last_block(impl); block != NULL; \
2689 block = nir_block_cf_tree_prev(block))
2690
2691 #define nir_foreach_block_reverse_safe(block, impl) \
2692 for (nir_block *block = nir_impl_last_block(impl), \
2693 *prev = nir_block_cf_tree_prev(block); \
2694 block != NULL; \
2695 block = prev, prev = nir_block_cf_tree_prev(block))
2696
2697 #define nir_foreach_block_in_cf_node(block, node) \
2698 for (nir_block *block = nir_cf_node_cf_tree_first(node); \
2699 block != nir_cf_node_cf_tree_next(node); \
2700 block = nir_block_cf_tree_next(block))
2701
2702 /* If the following CF node is an if, this function returns that if.
2703 * Otherwise, it returns NULL.
2704 */
2705 nir_if *nir_block_get_following_if(nir_block *block);
2706
2707 nir_loop *nir_block_get_following_loop(nir_block *block);
2708
2709 void nir_index_local_regs(nir_function_impl *impl);
2710 void nir_index_global_regs(nir_shader *shader);
2711 void nir_index_ssa_defs(nir_function_impl *impl);
2712 unsigned nir_index_instrs(nir_function_impl *impl);
2713
2714 void nir_index_blocks(nir_function_impl *impl);
2715
2716 void nir_print_shader(nir_shader *shader, FILE *fp);
2717 void nir_print_shader_annotated(nir_shader *shader, FILE *fp, struct hash_table *errors);
2718 void nir_print_instr(const nir_instr *instr, FILE *fp);
2719
2720 nir_shader *nir_shader_clone(void *mem_ctx, const nir_shader *s);
2721 nir_function_impl *nir_function_impl_clone(const nir_function_impl *fi);
2722 nir_constant *nir_constant_clone(const nir_constant *c, nir_variable *var);
2723 nir_variable *nir_variable_clone(const nir_variable *c, nir_shader *shader);
2724
2725 nir_shader *nir_shader_serialize_deserialize(void *mem_ctx, nir_shader *s);
2726
2727 #ifndef NDEBUG
2728 void nir_validate_shader(nir_shader *shader, const char *when);
2729 void nir_metadata_set_validation_flag(nir_shader *shader);
2730 void nir_metadata_check_validation_flag(nir_shader *shader);
2731
2732 static inline bool
2733 should_clone_nir(void)
2734 {
2735 static int should_clone = -1;
2736 if (should_clone < 0)
2737 should_clone = env_var_as_boolean("NIR_TEST_CLONE", false);
2738
2739 return should_clone;
2740 }
2741
2742 static inline bool
2743 should_serialize_deserialize_nir(void)
2744 {
2745 static int test_serialize = -1;
2746 if (test_serialize < 0)
2747 test_serialize = env_var_as_boolean("NIR_TEST_SERIALIZE", false);
2748
2749 return test_serialize;
2750 }
2751
2752 static inline bool
2753 should_print_nir(void)
2754 {
2755 static int should_print = -1;
2756 if (should_print < 0)
2757 should_print = env_var_as_boolean("NIR_PRINT", false);
2758
2759 return should_print;
2760 }
2761 #else
2762 static inline void nir_validate_shader(nir_shader *shader, const char *when) { (void) shader; (void)when; }
2763 static inline void nir_metadata_set_validation_flag(nir_shader *shader) { (void) shader; }
2764 static inline void nir_metadata_check_validation_flag(nir_shader *shader) { (void) shader; }
2765 static inline bool should_clone_nir(void) { return false; }
2766 static inline bool should_serialize_deserialize_nir(void) { return false; }
2767 static inline bool should_print_nir(void) { return false; }
2768 #endif /* NDEBUG */
2769
2770 #define _PASS(pass, nir, do_pass) do { \
2771 do_pass \
2772 nir_validate_shader(nir, "after " #pass); \
2773 if (should_clone_nir()) { \
2774 nir_shader *clone = nir_shader_clone(ralloc_parent(nir), nir); \
2775 ralloc_free(nir); \
2776 nir = clone; \
2777 } \
2778 if (should_serialize_deserialize_nir()) { \
2779 void *mem_ctx = ralloc_parent(nir); \
2780 nir = nir_shader_serialize_deserialize(mem_ctx, nir); \
2781 } \
2782 } while (0)
2783
2784 #define NIR_PASS(progress, nir, pass, ...) _PASS(pass, nir, \
2785 nir_metadata_set_validation_flag(nir); \
2786 if (should_print_nir()) \
2787 printf("%s\n", #pass); \
2788 if (pass(nir, ##__VA_ARGS__)) { \
2789 progress = true; \
2790 if (should_print_nir()) \
2791 nir_print_shader(nir, stdout); \
2792 nir_metadata_check_validation_flag(nir); \
2793 } \
2794 )
2795
2796 #define NIR_PASS_V(nir, pass, ...) _PASS(pass, nir, \
2797 if (should_print_nir()) \
2798 printf("%s\n", #pass); \
2799 pass(nir, ##__VA_ARGS__); \
2800 if (should_print_nir()) \
2801 nir_print_shader(nir, stdout); \
2802 )
2803
2804 void nir_calc_dominance_impl(nir_function_impl *impl);
2805 void nir_calc_dominance(nir_shader *shader);
2806
2807 nir_block *nir_dominance_lca(nir_block *b1, nir_block *b2);
2808 bool nir_block_dominates(nir_block *parent, nir_block *child);
2809
2810 void nir_dump_dom_tree_impl(nir_function_impl *impl, FILE *fp);
2811 void nir_dump_dom_tree(nir_shader *shader, FILE *fp);
2812
2813 void nir_dump_dom_frontier_impl(nir_function_impl *impl, FILE *fp);
2814 void nir_dump_dom_frontier(nir_shader *shader, FILE *fp);
2815
2816 void nir_dump_cfg_impl(nir_function_impl *impl, FILE *fp);
2817 void nir_dump_cfg(nir_shader *shader, FILE *fp);
2818
2819 int nir_gs_count_vertices(const nir_shader *shader);
2820
2821 bool nir_shrink_vec_array_vars(nir_shader *shader, nir_variable_mode modes);
2822 bool nir_split_array_vars(nir_shader *shader, nir_variable_mode modes);
2823 bool nir_split_var_copies(nir_shader *shader);
2824 bool nir_split_per_member_structs(nir_shader *shader);
2825 bool nir_split_struct_vars(nir_shader *shader, nir_variable_mode modes);
2826
2827 bool nir_lower_returns_impl(nir_function_impl *impl);
2828 bool nir_lower_returns(nir_shader *shader);
2829
2830 bool nir_inline_functions(nir_shader *shader);
2831
2832 bool nir_propagate_invariant(nir_shader *shader);
2833
2834 void nir_lower_var_copy_instr(nir_intrinsic_instr *copy, nir_shader *shader);
2835 void nir_lower_deref_copy_instr(struct nir_builder *b,
2836 nir_intrinsic_instr *copy);
2837 bool nir_lower_var_copies(nir_shader *shader);
2838
2839 void nir_fixup_deref_modes(nir_shader *shader);
2840
2841 bool nir_lower_global_vars_to_local(nir_shader *shader);
2842
2843 bool nir_lower_indirect_derefs(nir_shader *shader, nir_variable_mode modes);
2844
2845 bool nir_lower_locals_to_regs(nir_shader *shader);
2846
2847 void nir_lower_io_to_temporaries(nir_shader *shader,
2848 nir_function_impl *entrypoint,
2849 bool outputs, bool inputs);
2850
2851 void nir_shader_gather_info(nir_shader *shader, nir_function_impl *entrypoint);
2852
2853 void nir_assign_var_locations(struct exec_list *var_list, unsigned *size,
2854 int (*type_size)(const struct glsl_type *));
2855
2856 /* Some helpers to do very simple linking */
2857 bool nir_remove_unused_varyings(nir_shader *producer, nir_shader *consumer);
2858 bool nir_remove_unused_io_vars(nir_shader *shader, struct exec_list *var_list,
2859 uint64_t *used_by_other_stage,
2860 uint64_t *used_by_other_stage_patches);
2861 void nir_compact_varyings(nir_shader *producer, nir_shader *consumer,
2862 bool default_to_smooth_interp);
2863 void nir_link_xfb_varyings(nir_shader *producer, nir_shader *consumer);
2864 bool nir_link_constant_varyings(nir_shader *producer, nir_shader *consumer);
2865
2866 typedef enum {
2867 /* If set, this forces all non-flat fragment shader inputs to be
2868 * interpolated as if with the "sample" qualifier. This requires
2869 * nir_shader_compiler_options::use_interpolated_input_intrinsics.
2870 */
2871 nir_lower_io_force_sample_interpolation = (1 << 1),
2872 } nir_lower_io_options;
2873 bool nir_lower_io(nir_shader *shader,
2874 nir_variable_mode modes,
2875 int (*type_size)(const struct glsl_type *),
2876 nir_lower_io_options);
2877 nir_src *nir_get_io_offset_src(nir_intrinsic_instr *instr);
2878 nir_src *nir_get_io_vertex_index_src(nir_intrinsic_instr *instr);
2879
2880 bool nir_is_per_vertex_io(const nir_variable *var, gl_shader_stage stage);
2881
2882 bool nir_lower_regs_to_ssa_impl(nir_function_impl *impl);
2883 bool nir_lower_regs_to_ssa(nir_shader *shader);
2884 bool nir_lower_vars_to_ssa(nir_shader *shader);
2885
2886 bool nir_remove_dead_derefs(nir_shader *shader);
2887 bool nir_remove_dead_derefs_impl(nir_function_impl *impl);
2888 bool nir_remove_dead_variables(nir_shader *shader, nir_variable_mode modes);
2889 bool nir_lower_constant_initializers(nir_shader *shader,
2890 nir_variable_mode modes);
2891
2892 bool nir_move_load_const(nir_shader *shader);
2893 bool nir_move_vec_src_uses_to_dest(nir_shader *shader);
2894 bool nir_lower_vec_to_movs(nir_shader *shader);
2895 void nir_lower_alpha_test(nir_shader *shader, enum compare_func func,
2896 bool alpha_to_one);
2897 bool nir_lower_alu(nir_shader *shader);
2898 bool nir_lower_alu_to_scalar(nir_shader *shader);
2899 bool nir_lower_load_const_to_scalar(nir_shader *shader);
2900 bool nir_lower_read_invocation_to_scalar(nir_shader *shader);
2901 bool nir_lower_phis_to_scalar(nir_shader *shader);
2902 void nir_lower_io_arrays_to_elements(nir_shader *producer, nir_shader *consumer);
2903 void nir_lower_io_arrays_to_elements_no_indirects(nir_shader *shader,
2904 bool outputs_only);
2905 void nir_lower_io_to_scalar(nir_shader *shader, nir_variable_mode mask);
2906 void nir_lower_io_to_scalar_early(nir_shader *shader, nir_variable_mode mask);
2907
2908 typedef struct nir_lower_subgroups_options {
2909 uint8_t subgroup_size;
2910 uint8_t ballot_bit_size;
2911 bool lower_to_scalar:1;
2912 bool lower_vote_trivial:1;
2913 bool lower_vote_eq_to_ballot:1;
2914 bool lower_subgroup_masks:1;
2915 bool lower_shuffle:1;
2916 bool lower_shuffle_to_32bit:1;
2917 bool lower_quad:1;
2918 } nir_lower_subgroups_options;
2919
2920 bool nir_lower_subgroups(nir_shader *shader,
2921 const nir_lower_subgroups_options *options);
2922
2923 bool nir_lower_system_values(nir_shader *shader);
2924
2925 typedef struct nir_lower_tex_options {
2926 /**
2927 * bitmask of (1 << GLSL_SAMPLER_DIM_x) to control for which
2928 * sampler types a texture projector is lowered.
2929 */
2930 unsigned lower_txp;
2931
2932 /**
2933 * If true, lower away nir_tex_src_offset for all texelfetch instructions.
2934 */
2935 bool lower_txf_offset;
2936
2937 /**
2938 * If true, lower away nir_tex_src_offset for all rect textures.
2939 */
2940 bool lower_rect_offset;
2941
2942 /**
2943 * If true, lower rect textures to 2D, using txs to fetch the
2944 * texture dimensions and dividing the texture coords by the
2945 * texture dims to normalize.
2946 */
2947 bool lower_rect;
2948
2949 /**
2950 * If true, convert yuv to rgb.
2951 */
2952 unsigned lower_y_uv_external;
2953 unsigned lower_y_u_v_external;
2954 unsigned lower_yx_xuxv_external;
2955 unsigned lower_xy_uxvx_external;
2956 unsigned lower_ayuv_external;
2957
2958 /**
2959 * To emulate certain texture wrap modes, this can be used
2960 * to saturate the specified tex coord to [0.0, 1.0]. The
2961 * bits are according to sampler #, ie. if, for example:
2962 *
2963 * (conf->saturate_s & (1 << n))
2964 *
2965 * is true, then the s coord for sampler n is saturated.
2966 *
2967 * Note that clamping must happen *after* projector lowering
2968 * so any projected texture sample instruction with a clamped
2969 * coordinate gets automatically lowered, regardless of the
2970 * 'lower_txp' setting.
2971 */
2972 unsigned saturate_s;
2973 unsigned saturate_t;
2974 unsigned saturate_r;
2975
2976 /* Bitmask of textures that need swizzling.
2977 *
2978 * If (swizzle_result & (1 << texture_index)), then the swizzle in
2979 * swizzles[texture_index] is applied to the result of the texturing
2980 * operation.
2981 */
2982 unsigned swizzle_result;
2983
2984 /* A swizzle for each texture. Values 0-3 represent x, y, z, or w swizzles
2985 * while 4 and 5 represent 0 and 1 respectively.
2986 */
2987 uint8_t swizzles[32][4];
2988
2989 /**
2990 * Bitmap of textures that need srgb to linear conversion. If
2991 * (lower_srgb & (1 << texture_index)) then the rgb (xyz) components
2992 * of the texture are lowered to linear.
2993 */
2994 unsigned lower_srgb;
2995
2996 /**
2997 * If true, lower nir_texop_txd on cube maps with nir_texop_txl.
2998 */
2999 bool lower_txd_cube_map;
3000
3001 /**
3002 * If true, lower nir_texop_txd on shadow samplers (except cube maps)
3003 * with nir_texop_txl. Notice that cube map shadow samplers are lowered
3004 * with lower_txd_cube_map.
3005 */
3006 bool lower_txd_shadow;
3007
3008 /**
3009 * If true, lower nir_texop_txd on all samplers to a nir_texop_txl.
3010 * Implies lower_txd_cube_map and lower_txd_shadow.
3011 */
3012 bool lower_txd;
3013 } nir_lower_tex_options;
3014
3015 bool nir_lower_tex(nir_shader *shader,
3016 const nir_lower_tex_options *options);
3017
3018 bool nir_lower_idiv(nir_shader *shader);
3019
3020 bool nir_lower_clip_vs(nir_shader *shader, unsigned ucp_enables, bool use_vars);
3021 bool nir_lower_clip_fs(nir_shader *shader, unsigned ucp_enables);
3022 bool nir_lower_clip_cull_distance_arrays(nir_shader *nir);
3023
3024 void nir_lower_two_sided_color(nir_shader *shader);
3025
3026 bool nir_lower_clamp_color_outputs(nir_shader *shader);
3027
3028 void nir_lower_passthrough_edgeflags(nir_shader *shader);
3029 bool nir_lower_patch_vertices(nir_shader *nir, unsigned static_count,
3030 const gl_state_index16 *uniform_state_tokens);
3031
3032 typedef struct nir_lower_wpos_ytransform_options {
3033 gl_state_index16 state_tokens[STATE_LENGTH];
3034 bool fs_coord_origin_upper_left :1;
3035 bool fs_coord_origin_lower_left :1;
3036 bool fs_coord_pixel_center_integer :1;
3037 bool fs_coord_pixel_center_half_integer :1;
3038 } nir_lower_wpos_ytransform_options;
3039
3040 bool nir_lower_wpos_ytransform(nir_shader *shader,
3041 const nir_lower_wpos_ytransform_options *options);
3042 bool nir_lower_wpos_center(nir_shader *shader, const bool for_sample_shading);
3043
3044 typedef struct nir_lower_drawpixels_options {
3045 gl_state_index16 texcoord_state_tokens[STATE_LENGTH];
3046 gl_state_index16 scale_state_tokens[STATE_LENGTH];
3047 gl_state_index16 bias_state_tokens[STATE_LENGTH];
3048 unsigned drawpix_sampler;
3049 unsigned pixelmap_sampler;
3050 bool pixel_maps :1;
3051 bool scale_and_bias :1;
3052 } nir_lower_drawpixels_options;
3053
3054 void nir_lower_drawpixels(nir_shader *shader,
3055 const nir_lower_drawpixels_options *options);
3056
3057 typedef struct nir_lower_bitmap_options {
3058 unsigned sampler;
3059 bool swizzle_xxxx;
3060 } nir_lower_bitmap_options;
3061
3062 void nir_lower_bitmap(nir_shader *shader, const nir_lower_bitmap_options *options);
3063
3064 bool nir_lower_atomics_to_ssbo(nir_shader *shader, unsigned ssbo_offset);
3065
3066 typedef enum {
3067 nir_lower_int_source_mods = 1 << 0,
3068 nir_lower_float_source_mods = 1 << 1,
3069 nir_lower_all_source_mods = (1 << 2) - 1
3070 } nir_lower_to_source_mods_flags;
3071
3072
3073 bool nir_lower_to_source_mods(nir_shader *shader, nir_lower_to_source_mods_flags options);
3074
3075 bool nir_lower_gs_intrinsics(nir_shader *shader);
3076
3077 typedef unsigned (*nir_lower_bit_size_callback)(const nir_alu_instr *, void *);
3078
3079 bool nir_lower_bit_size(nir_shader *shader,
3080 nir_lower_bit_size_callback callback,
3081 void *callback_data);
3082
3083 typedef enum {
3084 nir_lower_imul64 = (1 << 0),
3085 nir_lower_isign64 = (1 << 1),
3086 /** Lower all int64 modulus and division opcodes */
3087 nir_lower_divmod64 = (1 << 2),
3088 } nir_lower_int64_options;
3089
3090 bool nir_lower_int64(nir_shader *shader, nir_lower_int64_options options);
3091
3092 typedef enum {
3093 nir_lower_drcp = (1 << 0),
3094 nir_lower_dsqrt = (1 << 1),
3095 nir_lower_drsq = (1 << 2),
3096 nir_lower_dtrunc = (1 << 3),
3097 nir_lower_dfloor = (1 << 4),
3098 nir_lower_dceil = (1 << 5),
3099 nir_lower_dfract = (1 << 6),
3100 nir_lower_dround_even = (1 << 7),
3101 nir_lower_dmod = (1 << 8)
3102 } nir_lower_doubles_options;
3103
3104 bool nir_lower_doubles(nir_shader *shader, nir_lower_doubles_options options);
3105 bool nir_lower_pack(nir_shader *shader);
3106
3107 bool nir_normalize_cubemap_coords(nir_shader *shader);
3108
3109 void nir_live_ssa_defs_impl(nir_function_impl *impl);
3110
3111 void nir_loop_analyze_impl(nir_function_impl *impl,
3112 nir_variable_mode indirect_mask);
3113
3114 bool nir_ssa_defs_interfere(nir_ssa_def *a, nir_ssa_def *b);
3115
3116 bool nir_repair_ssa_impl(nir_function_impl *impl);
3117 bool nir_repair_ssa(nir_shader *shader);
3118
3119 void nir_convert_loop_to_lcssa(nir_loop *loop);
3120
3121 /* If phi_webs_only is true, only convert SSA values involved in phi nodes to
3122 * registers. If false, convert all values (even those not involved in a phi
3123 * node) to registers.
3124 */
3125 bool nir_convert_from_ssa(nir_shader *shader, bool phi_webs_only);
3126
3127 bool nir_lower_phis_to_regs_block(nir_block *block);
3128 bool nir_lower_ssa_defs_to_regs_block(nir_block *block);
3129 bool nir_rematerialize_derefs_in_use_blocks_impl(nir_function_impl *impl);
3130
3131 bool nir_opt_algebraic(nir_shader *shader);
3132 bool nir_opt_algebraic_before_ffma(nir_shader *shader);
3133 bool nir_opt_algebraic_late(nir_shader *shader);
3134 bool nir_opt_constant_folding(nir_shader *shader);
3135
3136 bool nir_opt_global_to_local(nir_shader *shader);
3137
3138 bool nir_copy_prop(nir_shader *shader);
3139
3140 bool nir_opt_copy_prop_vars(nir_shader *shader);
3141
3142 bool nir_opt_cse(nir_shader *shader);
3143
3144 bool nir_opt_dce(nir_shader *shader);
3145
3146 bool nir_opt_dead_cf(nir_shader *shader);
3147
3148 bool nir_opt_dead_write_vars(nir_shader *shader);
3149
3150 bool nir_opt_find_array_copies(nir_shader *shader);
3151
3152 bool nir_opt_gcm(nir_shader *shader, bool value_number);
3153
3154 bool nir_opt_if(nir_shader *shader);
3155
3156 bool nir_opt_intrinsics(nir_shader *shader);
3157
3158 bool nir_opt_large_constants(nir_shader *shader,
3159 glsl_type_size_align_func size_align,
3160 unsigned threshold);
3161
3162 bool nir_opt_loop_unroll(nir_shader *shader, nir_variable_mode indirect_mask);
3163
3164 bool nir_opt_move_comparisons(nir_shader *shader);
3165
3166 bool nir_opt_move_load_ubo(nir_shader *shader);
3167
3168 bool nir_opt_peephole_select(nir_shader *shader, unsigned limit);
3169
3170 bool nir_opt_remove_phis_impl(nir_function_impl *impl);
3171 bool nir_opt_remove_phis(nir_shader *shader);
3172
3173 bool nir_opt_shrink_load(nir_shader *shader);
3174
3175 bool nir_opt_trivial_continues(nir_shader *shader);
3176
3177 bool nir_opt_undef(nir_shader *shader);
3178
3179 bool nir_opt_conditional_discard(nir_shader *shader);
3180
3181 void nir_sweep(nir_shader *shader);
3182
3183 void nir_remap_dual_slot_attributes(nir_shader *shader,
3184 uint64_t *dual_slot_inputs);
3185 uint64_t nir_get_single_slot_attribs_mask(uint64_t attribs, uint64_t dual_slot);
3186
3187 nir_intrinsic_op nir_intrinsic_from_system_value(gl_system_value val);
3188 gl_system_value nir_system_value_from_intrinsic(nir_intrinsic_op intrin);
3189
3190 #ifdef __cplusplus
3191 } /* extern "C" */
3192 #endif
3193
3194 #endif /* NIR_H */