e1f0fdd707ce952ba3b27404d346d0a9188db844
[mesa.git] / src / compiler / nir / nir.h
1 /*
2 * Copyright © 2014 Connor Abbott
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Connor Abbott (cwabbott0@gmail.com)
25 *
26 */
27
28 #ifndef NIR_H
29 #define NIR_H
30
31 #include "util/hash_table.h"
32 #include "compiler/glsl/list.h"
33 #include "GL/gl.h" /* GLenum */
34 #include "util/list.h"
35 #include "util/ralloc.h"
36 #include "util/set.h"
37 #include "util/bitscan.h"
38 #include "util/bitset.h"
39 #include "util/macros.h"
40 #include "compiler/nir_types.h"
41 #include "compiler/shader_enums.h"
42 #include "compiler/shader_info.h"
43 #include <stdio.h>
44
45 #ifndef NDEBUG
46 #include "util/debug.h"
47 #endif /* NDEBUG */
48
49 #include "nir_opcodes.h"
50
51 #if defined(_WIN32) && !defined(snprintf)
52 #define snprintf _snprintf
53 #endif
54
55 #ifdef __cplusplus
56 extern "C" {
57 #endif
58
59 #define NIR_FALSE 0u
60 #define NIR_TRUE (~0u)
61 #define NIR_MAX_VEC_COMPONENTS 4
62 #define NIR_MAX_MATRIX_COLUMNS 4
63 #define NIR_STREAM_PACKED (1 << 8)
64 typedef uint8_t nir_component_mask_t;
65
66 /** Defines a cast function
67 *
68 * This macro defines a cast function from in_type to out_type where
69 * out_type is some structure type that contains a field of type out_type.
70 *
71 * Note that you have to be a bit careful as the generated cast function
72 * destroys constness.
73 */
74 #define NIR_DEFINE_CAST(name, in_type, out_type, field, \
75 type_field, type_value) \
76 static inline out_type * \
77 name(const in_type *parent) \
78 { \
79 assert(parent && parent->type_field == type_value); \
80 return exec_node_data(out_type, parent, field); \
81 }
82
83 struct nir_function;
84 struct nir_shader;
85 struct nir_instr;
86 struct nir_builder;
87
88
89 /**
90 * Description of built-in state associated with a uniform
91 *
92 * \sa nir_variable::state_slots
93 */
94 typedef struct {
95 gl_state_index16 tokens[STATE_LENGTH];
96 int swizzle;
97 } nir_state_slot;
98
99 typedef enum {
100 nir_var_shader_in = (1 << 0),
101 nir_var_shader_out = (1 << 1),
102 nir_var_shader_temp = (1 << 2),
103 nir_var_function_temp = (1 << 3),
104 nir_var_uniform = (1 << 4),
105 nir_var_mem_ubo = (1 << 5),
106 nir_var_system_value = (1 << 6),
107 nir_var_mem_ssbo = (1 << 7),
108 nir_var_mem_shared = (1 << 8),
109 nir_var_mem_global = (1 << 9),
110 nir_var_all = ~0,
111 } nir_variable_mode;
112
113 /**
114 * Rounding modes.
115 */
116 typedef enum {
117 nir_rounding_mode_undef = 0,
118 nir_rounding_mode_rtne = 1, /* round to nearest even */
119 nir_rounding_mode_ru = 2, /* round up */
120 nir_rounding_mode_rd = 3, /* round down */
121 nir_rounding_mode_rtz = 4, /* round towards zero */
122 } nir_rounding_mode;
123
124 typedef union {
125 bool b;
126 float f32;
127 double f64;
128 int8_t i8;
129 uint8_t u8;
130 int16_t i16;
131 uint16_t u16;
132 int32_t i32;
133 uint32_t u32;
134 int64_t i64;
135 uint64_t u64;
136 } nir_const_value;
137
138 #define nir_const_value_to_array(arr, c, components, m) \
139 { \
140 for (unsigned i = 0; i < components; ++i) \
141 arr[i] = c[i].m; \
142 } while (false)
143
144 static inline nir_const_value
145 nir_const_value_for_raw_uint(uint64_t x, unsigned bit_size)
146 {
147 nir_const_value v;
148 memset(&v, 0, sizeof(v));
149
150 switch (bit_size) {
151 case 1: v.b = x; break;
152 case 8: v.u8 = x; break;
153 case 16: v.u16 = x; break;
154 case 32: v.u32 = x; break;
155 case 64: v.u64 = x; break;
156 default:
157 unreachable("Invalid bit size");
158 }
159
160 return v;
161 }
162
163 static inline nir_const_value
164 nir_const_value_for_int(int64_t i, unsigned bit_size)
165 {
166 nir_const_value v;
167 memset(&v, 0, sizeof(v));
168
169 assert(bit_size <= 64);
170 if (bit_size < 64) {
171 assert(i >= (-(1ll << (bit_size - 1))));
172 assert(i < (1ll << (bit_size - 1)));
173 }
174
175 return nir_const_value_for_raw_uint(i, bit_size);
176 }
177
178 static inline nir_const_value
179 nir_const_value_for_uint(uint64_t u, unsigned bit_size)
180 {
181 nir_const_value v;
182 memset(&v, 0, sizeof(v));
183
184 assert(bit_size <= 64);
185 if (bit_size < 64)
186 assert(u < (1ull << bit_size));
187
188 return nir_const_value_for_raw_uint(u, bit_size);
189 }
190
191 static inline nir_const_value
192 nir_const_value_for_bool(bool b, unsigned bit_size)
193 {
194 /* Booleans use a 0/-1 convention */
195 return nir_const_value_for_int(-(int)b, bit_size);
196 }
197
198 /* This one isn't inline because it requires half-float conversion */
199 nir_const_value nir_const_value_for_float(double b, unsigned bit_size);
200
201 static inline int64_t
202 nir_const_value_as_int(nir_const_value value, unsigned bit_size)
203 {
204 switch (bit_size) {
205 /* int1_t uses 0/-1 convention */
206 case 1: return -(int)value.b;
207 case 8: return value.i8;
208 case 16: return value.i16;
209 case 32: return value.i32;
210 case 64: return value.i64;
211 default:
212 unreachable("Invalid bit size");
213 }
214 }
215
216 static inline uint64_t
217 nir_const_value_as_uint(nir_const_value value, unsigned bit_size)
218 {
219 switch (bit_size) {
220 case 1: return value.b;
221 case 8: return value.u8;
222 case 16: return value.u16;
223 case 32: return value.u32;
224 case 64: return value.u64;
225 default:
226 unreachable("Invalid bit size");
227 }
228 }
229
230 static inline bool
231 nir_const_value_as_bool(nir_const_value value, unsigned bit_size)
232 {
233 int64_t i = nir_const_value_as_int(value, bit_size);
234
235 /* Booleans of any size use 0/-1 convention */
236 assert(i == 0 || i == -1);
237
238 return i;
239 }
240
241 /* This one isn't inline because it requires half-float conversion */
242 double nir_const_value_as_float(nir_const_value value, unsigned bit_size);
243
244 typedef struct nir_constant {
245 /**
246 * Value of the constant.
247 *
248 * The field used to back the values supplied by the constant is determined
249 * by the type associated with the \c nir_variable. Constants may be
250 * scalars, vectors, or matrices.
251 */
252 nir_const_value values[NIR_MAX_VEC_COMPONENTS];
253
254 /* we could get this from the var->type but makes clone *much* easier to
255 * not have to care about the type.
256 */
257 unsigned num_elements;
258
259 /* Array elements / Structure Fields */
260 struct nir_constant **elements;
261 } nir_constant;
262
263 /**
264 * \brief Layout qualifiers for gl_FragDepth.
265 *
266 * The AMD/ARB_conservative_depth extensions allow gl_FragDepth to be redeclared
267 * with a layout qualifier.
268 */
269 typedef enum {
270 nir_depth_layout_none, /**< No depth layout is specified. */
271 nir_depth_layout_any,
272 nir_depth_layout_greater,
273 nir_depth_layout_less,
274 nir_depth_layout_unchanged
275 } nir_depth_layout;
276
277 /**
278 * Enum keeping track of how a variable was declared.
279 */
280 typedef enum {
281 /**
282 * Normal declaration.
283 */
284 nir_var_declared_normally = 0,
285
286 /**
287 * Variable is implicitly generated by the compiler and should not be
288 * visible via the API.
289 */
290 nir_var_hidden,
291 } nir_var_declaration_type;
292
293 /**
294 * Either a uniform, global variable, shader input, or shader output. Based on
295 * ir_variable - it should be easy to translate between the two.
296 */
297
298 typedef struct nir_variable {
299 struct exec_node node;
300
301 /**
302 * Declared type of the variable
303 */
304 const struct glsl_type *type;
305
306 /**
307 * Declared name of the variable
308 */
309 char *name;
310
311 struct nir_variable_data {
312 /**
313 * Storage class of the variable.
314 *
315 * \sa nir_variable_mode
316 */
317 nir_variable_mode mode;
318
319 /**
320 * Is the variable read-only?
321 *
322 * This is set for variables declared as \c const, shader inputs,
323 * and uniforms.
324 */
325 unsigned read_only:1;
326 unsigned centroid:1;
327 unsigned sample:1;
328 unsigned patch:1;
329 unsigned invariant:1;
330
331 /**
332 * Can this variable be coalesced with another?
333 *
334 * This is set by nir_lower_io_to_temporaries to say that any
335 * copies involving this variable should stay put. Propagating it can
336 * duplicate the resulting load/store, which is not wanted, and may
337 * result in a load/store of the variable with an indirect offset which
338 * the backend may not be able to handle.
339 */
340 unsigned cannot_coalesce:1;
341
342 /**
343 * When separate shader programs are enabled, only input/outputs between
344 * the stages of a multi-stage separate program can be safely removed
345 * from the shader interface. Other input/outputs must remains active.
346 *
347 * This is also used to make sure xfb varyings that are unused by the
348 * fragment shader are not removed.
349 */
350 unsigned always_active_io:1;
351
352 /**
353 * Interpolation mode for shader inputs / outputs
354 *
355 * \sa glsl_interp_mode
356 */
357 unsigned interpolation:2;
358
359 /**
360 * If non-zero, then this variable may be packed along with other variables
361 * into a single varying slot, so this offset should be applied when
362 * accessing components. For example, an offset of 1 means that the x
363 * component of this variable is actually stored in component y of the
364 * location specified by \c location.
365 */
366 unsigned location_frac:2;
367
368 /**
369 * If true, this variable represents an array of scalars that should
370 * be tightly packed. In other words, consecutive array elements
371 * should be stored one component apart, rather than one slot apart.
372 */
373 unsigned compact:1;
374
375 /**
376 * Whether this is a fragment shader output implicitly initialized with
377 * the previous contents of the specified render target at the
378 * framebuffer location corresponding to this shader invocation.
379 */
380 unsigned fb_fetch_output:1;
381
382 /**
383 * Non-zero if this variable is considered bindless as defined by
384 * ARB_bindless_texture.
385 */
386 unsigned bindless:1;
387
388 /**
389 * Was an explicit binding set in the shader?
390 */
391 unsigned explicit_binding:1;
392
393 /**
394 * Was a transfer feedback buffer set in the shader?
395 */
396 unsigned explicit_xfb_buffer:1;
397
398 /**
399 * Was a transfer feedback stride set in the shader?
400 */
401 unsigned explicit_xfb_stride:1;
402
403 /**
404 * Was an explicit offset set in the shader?
405 */
406 unsigned explicit_offset:1;
407
408 /**
409 * How the variable was declared. See nir_var_declaration_type.
410 *
411 * This is used to detect variables generated by the compiler, so should
412 * not be visible via the API.
413 */
414 unsigned how_declared:2;
415
416 /**
417 * \brief Layout qualifier for gl_FragDepth.
418 *
419 * This is not equal to \c ir_depth_layout_none if and only if this
420 * variable is \c gl_FragDepth and a layout qualifier is specified.
421 */
422 nir_depth_layout depth_layout;
423
424 /**
425 * Storage location of the base of this variable
426 *
427 * The precise meaning of this field depends on the nature of the variable.
428 *
429 * - Vertex shader input: one of the values from \c gl_vert_attrib.
430 * - Vertex shader output: one of the values from \c gl_varying_slot.
431 * - Geometry shader input: one of the values from \c gl_varying_slot.
432 * - Geometry shader output: one of the values from \c gl_varying_slot.
433 * - Fragment shader input: one of the values from \c gl_varying_slot.
434 * - Fragment shader output: one of the values from \c gl_frag_result.
435 * - Uniforms: Per-stage uniform slot number for default uniform block.
436 * - Uniforms: Index within the uniform block definition for UBO members.
437 * - Non-UBO Uniforms: uniform slot number.
438 * - Other: This field is not currently used.
439 *
440 * If the variable is a uniform, shader input, or shader output, and the
441 * slot has not been assigned, the value will be -1.
442 */
443 int location;
444
445 /**
446 * The actual location of the variable in the IR. Only valid for inputs
447 * and outputs.
448 */
449 unsigned int driver_location;
450
451 /**
452 * Vertex stream output identifier.
453 *
454 * For packed outputs, NIR_STREAM_PACKED is set and bits [2*i+1,2*i]
455 * indicate the stream of the i-th component.
456 */
457 unsigned stream:9;
458
459 /**
460 * output index for dual source blending.
461 */
462 int index;
463
464 /**
465 * Descriptor set binding for sampler or UBO.
466 */
467 int descriptor_set;
468
469 /**
470 * Initial binding point for a sampler or UBO.
471 *
472 * For array types, this represents the binding point for the first element.
473 */
474 unsigned binding;
475
476 /**
477 * Location an atomic counter or transform feedback is stored at.
478 */
479 unsigned offset;
480
481 /**
482 * Transform feedback buffer.
483 */
484 unsigned xfb_buffer;
485
486 /**
487 * Transform feedback stride.
488 */
489 unsigned xfb_stride;
490
491 /**
492 * ARB_shader_image_load_store qualifiers.
493 */
494 struct {
495 enum gl_access_qualifier access;
496
497 /** Image internal format if specified explicitly, otherwise GL_NONE. */
498 GLenum format;
499 } image;
500 } data;
501
502 /* Number of nir_variable_data members */
503 unsigned num_members;
504
505 /**
506 * Built-in state that backs this uniform
507 *
508 * Once set at variable creation, \c state_slots must remain invariant.
509 * This is because, ideally, this array would be shared by all clones of
510 * this variable in the IR tree. In other words, we'd really like for it
511 * to be a fly-weight.
512 *
513 * If the variable is not a uniform, \c num_state_slots will be zero and
514 * \c state_slots will be \c NULL.
515 */
516 /*@{*/
517 unsigned num_state_slots; /**< Number of state slots used */
518 nir_state_slot *state_slots; /**< State descriptors. */
519 /*@}*/
520
521 /**
522 * Constant expression assigned in the initializer of the variable
523 *
524 * This field should only be used temporarily by creators of NIR shaders
525 * and then lower_constant_initializers can be used to get rid of them.
526 * Most of the rest of NIR ignores this field or asserts that it's NULL.
527 */
528 nir_constant *constant_initializer;
529
530 /**
531 * For variables that are in an interface block or are an instance of an
532 * interface block, this is the \c GLSL_TYPE_INTERFACE type for that block.
533 *
534 * \sa ir_variable::location
535 */
536 const struct glsl_type *interface_type;
537
538 /**
539 * Description of per-member data for per-member struct variables
540 *
541 * This is used for variables which are actually an amalgamation of
542 * multiple entities such as a struct of built-in values or a struct of
543 * inputs each with their own layout specifier. This is only allowed on
544 * variables with a struct or array of array of struct type.
545 */
546 struct nir_variable_data *members;
547 } nir_variable;
548
549 #define nir_foreach_variable(var, var_list) \
550 foreach_list_typed(nir_variable, var, node, var_list)
551
552 #define nir_foreach_variable_safe(var, var_list) \
553 foreach_list_typed_safe(nir_variable, var, node, var_list)
554
555 static inline bool
556 nir_variable_is_global(const nir_variable *var)
557 {
558 return var->data.mode != nir_var_function_temp;
559 }
560
561 typedef struct nir_register {
562 struct exec_node node;
563
564 unsigned num_components; /** < number of vector components */
565 unsigned num_array_elems; /** < size of array (0 for no array) */
566
567 /* The bit-size of each channel; must be one of 8, 16, 32, or 64 */
568 uint8_t bit_size;
569
570 /** generic register index. */
571 unsigned index;
572
573 /** only for debug purposes, can be NULL */
574 const char *name;
575
576 /** set of nir_srcs where this register is used (read from) */
577 struct list_head uses;
578
579 /** set of nir_dests where this register is defined (written to) */
580 struct list_head defs;
581
582 /** set of nir_ifs where this register is used as a condition */
583 struct list_head if_uses;
584 } nir_register;
585
586 #define nir_foreach_register(reg, reg_list) \
587 foreach_list_typed(nir_register, reg, node, reg_list)
588 #define nir_foreach_register_safe(reg, reg_list) \
589 foreach_list_typed_safe(nir_register, reg, node, reg_list)
590
591 typedef enum PACKED {
592 nir_instr_type_alu,
593 nir_instr_type_deref,
594 nir_instr_type_call,
595 nir_instr_type_tex,
596 nir_instr_type_intrinsic,
597 nir_instr_type_load_const,
598 nir_instr_type_jump,
599 nir_instr_type_ssa_undef,
600 nir_instr_type_phi,
601 nir_instr_type_parallel_copy,
602 } nir_instr_type;
603
604 typedef struct nir_instr {
605 struct exec_node node;
606 struct nir_block *block;
607 nir_instr_type type;
608
609 /* A temporary for optimization and analysis passes to use for storing
610 * flags. For instance, DCE uses this to store the "dead/live" info.
611 */
612 uint8_t pass_flags;
613
614 /** generic instruction index. */
615 unsigned index;
616 } nir_instr;
617
618 static inline nir_instr *
619 nir_instr_next(nir_instr *instr)
620 {
621 struct exec_node *next = exec_node_get_next(&instr->node);
622 if (exec_node_is_tail_sentinel(next))
623 return NULL;
624 else
625 return exec_node_data(nir_instr, next, node);
626 }
627
628 static inline nir_instr *
629 nir_instr_prev(nir_instr *instr)
630 {
631 struct exec_node *prev = exec_node_get_prev(&instr->node);
632 if (exec_node_is_head_sentinel(prev))
633 return NULL;
634 else
635 return exec_node_data(nir_instr, prev, node);
636 }
637
638 static inline bool
639 nir_instr_is_first(const nir_instr *instr)
640 {
641 return exec_node_is_head_sentinel(exec_node_get_prev_const(&instr->node));
642 }
643
644 static inline bool
645 nir_instr_is_last(const nir_instr *instr)
646 {
647 return exec_node_is_tail_sentinel(exec_node_get_next_const(&instr->node));
648 }
649
650 typedef struct nir_ssa_def {
651 /** for debugging only, can be NULL */
652 const char* name;
653
654 /** generic SSA definition index. */
655 unsigned index;
656
657 /** Index into the live_in and live_out bitfields */
658 unsigned live_index;
659
660 /** Instruction which produces this SSA value. */
661 nir_instr *parent_instr;
662
663 /** set of nir_instrs where this register is used (read from) */
664 struct list_head uses;
665
666 /** set of nir_ifs where this register is used as a condition */
667 struct list_head if_uses;
668
669 uint8_t num_components;
670
671 /* The bit-size of each channel; must be one of 8, 16, 32, or 64 */
672 uint8_t bit_size;
673 } nir_ssa_def;
674
675 struct nir_src;
676
677 typedef struct {
678 nir_register *reg;
679 struct nir_src *indirect; /** < NULL for no indirect offset */
680 unsigned base_offset;
681
682 /* TODO use-def chain goes here */
683 } nir_reg_src;
684
685 typedef struct {
686 nir_instr *parent_instr;
687 struct list_head def_link;
688
689 nir_register *reg;
690 struct nir_src *indirect; /** < NULL for no indirect offset */
691 unsigned base_offset;
692
693 /* TODO def-use chain goes here */
694 } nir_reg_dest;
695
696 struct nir_if;
697
698 typedef struct nir_src {
699 union {
700 /** Instruction that consumes this value as a source. */
701 nir_instr *parent_instr;
702 struct nir_if *parent_if;
703 };
704
705 struct list_head use_link;
706
707 union {
708 nir_reg_src reg;
709 nir_ssa_def *ssa;
710 };
711
712 bool is_ssa;
713 } nir_src;
714
715 static inline nir_src
716 nir_src_init(void)
717 {
718 nir_src src = { { NULL } };
719 return src;
720 }
721
722 #define NIR_SRC_INIT nir_src_init()
723
724 #define nir_foreach_use(src, reg_or_ssa_def) \
725 list_for_each_entry(nir_src, src, &(reg_or_ssa_def)->uses, use_link)
726
727 #define nir_foreach_use_safe(src, reg_or_ssa_def) \
728 list_for_each_entry_safe(nir_src, src, &(reg_or_ssa_def)->uses, use_link)
729
730 #define nir_foreach_if_use(src, reg_or_ssa_def) \
731 list_for_each_entry(nir_src, src, &(reg_or_ssa_def)->if_uses, use_link)
732
733 #define nir_foreach_if_use_safe(src, reg_or_ssa_def) \
734 list_for_each_entry_safe(nir_src, src, &(reg_or_ssa_def)->if_uses, use_link)
735
736 typedef struct {
737 union {
738 nir_reg_dest reg;
739 nir_ssa_def ssa;
740 };
741
742 bool is_ssa;
743 } nir_dest;
744
745 static inline nir_dest
746 nir_dest_init(void)
747 {
748 nir_dest dest = { { { NULL } } };
749 return dest;
750 }
751
752 #define NIR_DEST_INIT nir_dest_init()
753
754 #define nir_foreach_def(dest, reg) \
755 list_for_each_entry(nir_dest, dest, &(reg)->defs, reg.def_link)
756
757 #define nir_foreach_def_safe(dest, reg) \
758 list_for_each_entry_safe(nir_dest, dest, &(reg)->defs, reg.def_link)
759
760 static inline nir_src
761 nir_src_for_ssa(nir_ssa_def *def)
762 {
763 nir_src src = NIR_SRC_INIT;
764
765 src.is_ssa = true;
766 src.ssa = def;
767
768 return src;
769 }
770
771 static inline nir_src
772 nir_src_for_reg(nir_register *reg)
773 {
774 nir_src src = NIR_SRC_INIT;
775
776 src.is_ssa = false;
777 src.reg.reg = reg;
778 src.reg.indirect = NULL;
779 src.reg.base_offset = 0;
780
781 return src;
782 }
783
784 static inline nir_dest
785 nir_dest_for_reg(nir_register *reg)
786 {
787 nir_dest dest = NIR_DEST_INIT;
788
789 dest.reg.reg = reg;
790
791 return dest;
792 }
793
794 static inline unsigned
795 nir_src_bit_size(nir_src src)
796 {
797 return src.is_ssa ? src.ssa->bit_size : src.reg.reg->bit_size;
798 }
799
800 static inline unsigned
801 nir_src_num_components(nir_src src)
802 {
803 return src.is_ssa ? src.ssa->num_components : src.reg.reg->num_components;
804 }
805
806 static inline bool
807 nir_src_is_const(nir_src src)
808 {
809 return src.is_ssa &&
810 src.ssa->parent_instr->type == nir_instr_type_load_const;
811 }
812
813 static inline unsigned
814 nir_dest_bit_size(nir_dest dest)
815 {
816 return dest.is_ssa ? dest.ssa.bit_size : dest.reg.reg->bit_size;
817 }
818
819 static inline unsigned
820 nir_dest_num_components(nir_dest dest)
821 {
822 return dest.is_ssa ? dest.ssa.num_components : dest.reg.reg->num_components;
823 }
824
825 void nir_src_copy(nir_src *dest, const nir_src *src, void *instr_or_if);
826 void nir_dest_copy(nir_dest *dest, const nir_dest *src, nir_instr *instr);
827
828 typedef struct {
829 nir_src src;
830
831 /**
832 * \name input modifiers
833 */
834 /*@{*/
835 /**
836 * For inputs interpreted as floating point, flips the sign bit. For
837 * inputs interpreted as integers, performs the two's complement negation.
838 */
839 bool negate;
840
841 /**
842 * Clears the sign bit for floating point values, and computes the integer
843 * absolute value for integers. Note that the negate modifier acts after
844 * the absolute value modifier, therefore if both are set then all inputs
845 * will become negative.
846 */
847 bool abs;
848 /*@}*/
849
850 /**
851 * For each input component, says which component of the register it is
852 * chosen from. Note that which elements of the swizzle are used and which
853 * are ignored are based on the write mask for most opcodes - for example,
854 * a statement like "foo.xzw = bar.zyx" would have a writemask of 1101b and
855 * a swizzle of {2, x, 1, 0} where x means "don't care."
856 */
857 uint8_t swizzle[NIR_MAX_VEC_COMPONENTS];
858 } nir_alu_src;
859
860 typedef struct {
861 nir_dest dest;
862
863 /**
864 * \name saturate output modifier
865 *
866 * Only valid for opcodes that output floating-point numbers. Clamps the
867 * output to between 0.0 and 1.0 inclusive.
868 */
869
870 bool saturate;
871
872 unsigned write_mask : NIR_MAX_VEC_COMPONENTS; /* ignored if dest.is_ssa is true */
873 } nir_alu_dest;
874
875 /** NIR sized and unsized types
876 *
877 * The values in this enum are carefully chosen so that the sized type is
878 * just the unsized type OR the number of bits.
879 */
880 typedef enum {
881 nir_type_invalid = 0, /* Not a valid type */
882 nir_type_int = 2,
883 nir_type_uint = 4,
884 nir_type_bool = 6,
885 nir_type_float = 128,
886 nir_type_bool1 = 1 | nir_type_bool,
887 nir_type_bool32 = 32 | nir_type_bool,
888 nir_type_int1 = 1 | nir_type_int,
889 nir_type_int8 = 8 | nir_type_int,
890 nir_type_int16 = 16 | nir_type_int,
891 nir_type_int32 = 32 | nir_type_int,
892 nir_type_int64 = 64 | nir_type_int,
893 nir_type_uint1 = 1 | nir_type_uint,
894 nir_type_uint8 = 8 | nir_type_uint,
895 nir_type_uint16 = 16 | nir_type_uint,
896 nir_type_uint32 = 32 | nir_type_uint,
897 nir_type_uint64 = 64 | nir_type_uint,
898 nir_type_float16 = 16 | nir_type_float,
899 nir_type_float32 = 32 | nir_type_float,
900 nir_type_float64 = 64 | nir_type_float,
901 } nir_alu_type;
902
903 #define NIR_ALU_TYPE_SIZE_MASK 0x79
904 #define NIR_ALU_TYPE_BASE_TYPE_MASK 0x86
905
906 static inline unsigned
907 nir_alu_type_get_type_size(nir_alu_type type)
908 {
909 return type & NIR_ALU_TYPE_SIZE_MASK;
910 }
911
912 static inline unsigned
913 nir_alu_type_get_base_type(nir_alu_type type)
914 {
915 return type & NIR_ALU_TYPE_BASE_TYPE_MASK;
916 }
917
918 static inline nir_alu_type
919 nir_get_nir_type_for_glsl_base_type(enum glsl_base_type base_type)
920 {
921 switch (base_type) {
922 case GLSL_TYPE_BOOL:
923 return nir_type_bool1;
924 break;
925 case GLSL_TYPE_UINT:
926 return nir_type_uint32;
927 break;
928 case GLSL_TYPE_INT:
929 return nir_type_int32;
930 break;
931 case GLSL_TYPE_UINT16:
932 return nir_type_uint16;
933 break;
934 case GLSL_TYPE_INT16:
935 return nir_type_int16;
936 break;
937 case GLSL_TYPE_UINT8:
938 return nir_type_uint8;
939 case GLSL_TYPE_INT8:
940 return nir_type_int8;
941 case GLSL_TYPE_UINT64:
942 return nir_type_uint64;
943 break;
944 case GLSL_TYPE_INT64:
945 return nir_type_int64;
946 break;
947 case GLSL_TYPE_FLOAT:
948 return nir_type_float32;
949 break;
950 case GLSL_TYPE_FLOAT16:
951 return nir_type_float16;
952 break;
953 case GLSL_TYPE_DOUBLE:
954 return nir_type_float64;
955 break;
956
957 case GLSL_TYPE_SAMPLER:
958 case GLSL_TYPE_IMAGE:
959 case GLSL_TYPE_ATOMIC_UINT:
960 case GLSL_TYPE_STRUCT:
961 case GLSL_TYPE_INTERFACE:
962 case GLSL_TYPE_ARRAY:
963 case GLSL_TYPE_VOID:
964 case GLSL_TYPE_SUBROUTINE:
965 case GLSL_TYPE_FUNCTION:
966 case GLSL_TYPE_ERROR:
967 return nir_type_invalid;
968 }
969
970 unreachable("unknown type");
971 }
972
973 static inline nir_alu_type
974 nir_get_nir_type_for_glsl_type(const struct glsl_type *type)
975 {
976 return nir_get_nir_type_for_glsl_base_type(glsl_get_base_type(type));
977 }
978
979 nir_op nir_type_conversion_op(nir_alu_type src, nir_alu_type dst,
980 nir_rounding_mode rnd);
981
982 static inline nir_op
983 nir_op_vec(unsigned components)
984 {
985 switch (components) {
986 case 1: return nir_op_mov;
987 case 2: return nir_op_vec2;
988 case 3: return nir_op_vec3;
989 case 4: return nir_op_vec4;
990 default: unreachable("bad component count");
991 }
992 }
993
994 static inline bool
995 nir_is_float_control_signed_zero_inf_nan_preserve(unsigned execution_mode, unsigned bit_size)
996 {
997 return (16 == bit_size && execution_mode & FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP16) ||
998 (32 == bit_size && execution_mode & FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP32) ||
999 (64 == bit_size && execution_mode & FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP64);
1000 }
1001
1002 static inline bool
1003 nir_is_denorm_flush_to_zero(unsigned execution_mode, unsigned bit_size)
1004 {
1005 return (16 == bit_size && execution_mode & FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP16) ||
1006 (32 == bit_size && execution_mode & FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP32) ||
1007 (64 == bit_size && execution_mode & FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP64);
1008 }
1009
1010 static inline bool
1011 nir_is_denorm_preserve(unsigned execution_mode, unsigned bit_size)
1012 {
1013 return (16 == bit_size && execution_mode & FLOAT_CONTROLS_DENORM_PRESERVE_FP16) ||
1014 (32 == bit_size && execution_mode & FLOAT_CONTROLS_DENORM_PRESERVE_FP32) ||
1015 (64 == bit_size && execution_mode & FLOAT_CONTROLS_DENORM_PRESERVE_FP64);
1016 }
1017
1018 static inline bool
1019 nir_is_rounding_mode_rtne(unsigned execution_mode, unsigned bit_size)
1020 {
1021 return (16 == bit_size && execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP16) ||
1022 (32 == bit_size && execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP32) ||
1023 (64 == bit_size && execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP64);
1024 }
1025
1026 static inline bool
1027 nir_is_rounding_mode_rtz(unsigned execution_mode, unsigned bit_size)
1028 {
1029 return (16 == bit_size && execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP16) ||
1030 (32 == bit_size && execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP32) ||
1031 (64 == bit_size && execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP64);
1032 }
1033
1034 static inline bool
1035 nir_has_any_rounding_mode_rtz(unsigned execution_mode)
1036 {
1037 return (execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP16) ||
1038 (execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP32) ||
1039 (execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP64);
1040 }
1041
1042 static inline bool
1043 nir_has_any_rounding_mode_rtne(unsigned execution_mode)
1044 {
1045 return (execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP16) ||
1046 (execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP32) ||
1047 (execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP64);
1048 }
1049
1050 static inline nir_rounding_mode
1051 nir_get_rounding_mode_from_float_controls(unsigned execution_mode,
1052 nir_alu_type type)
1053 {
1054 if (nir_alu_type_get_base_type(type) != nir_type_float)
1055 return nir_rounding_mode_undef;
1056
1057 unsigned bit_size = nir_alu_type_get_type_size(type);
1058
1059 if (nir_is_rounding_mode_rtz(execution_mode, bit_size))
1060 return nir_rounding_mode_rtz;
1061 if (nir_is_rounding_mode_rtne(execution_mode, bit_size))
1062 return nir_rounding_mode_rtne;
1063 return nir_rounding_mode_undef;
1064 }
1065
1066 static inline bool
1067 nir_has_any_rounding_mode_enabled(unsigned execution_mode)
1068 {
1069 bool result =
1070 nir_has_any_rounding_mode_rtne(execution_mode) ||
1071 nir_has_any_rounding_mode_rtz(execution_mode);
1072 return result;
1073 }
1074
1075 typedef enum {
1076 /**
1077 * Operation where the first two sources are commutative.
1078 *
1079 * For 2-source operations, this just mathematical commutativity. Some
1080 * 3-source operations, like ffma, are only commutative in the first two
1081 * sources.
1082 */
1083 NIR_OP_IS_2SRC_COMMUTATIVE = (1 << 0),
1084 NIR_OP_IS_ASSOCIATIVE = (1 << 1),
1085 } nir_op_algebraic_property;
1086
1087 typedef struct {
1088 const char *name;
1089
1090 unsigned num_inputs;
1091
1092 /**
1093 * The number of components in the output
1094 *
1095 * If non-zero, this is the size of the output and input sizes are
1096 * explicitly given; swizzle and writemask are still in effect, but if
1097 * the output component is masked out, then the input component may
1098 * still be in use.
1099 *
1100 * If zero, the opcode acts in the standard, per-component manner; the
1101 * operation is performed on each component (except the ones that are
1102 * masked out) with the input being taken from the input swizzle for
1103 * that component.
1104 *
1105 * The size of some of the inputs may be given (i.e. non-zero) even
1106 * though output_size is zero; in that case, the inputs with a zero
1107 * size act per-component, while the inputs with non-zero size don't.
1108 */
1109 unsigned output_size;
1110
1111 /**
1112 * The type of vector that the instruction outputs. Note that the
1113 * staurate modifier is only allowed on outputs with the float type.
1114 */
1115
1116 nir_alu_type output_type;
1117
1118 /**
1119 * The number of components in each input
1120 */
1121 unsigned input_sizes[NIR_MAX_VEC_COMPONENTS];
1122
1123 /**
1124 * The type of vector that each input takes. Note that negate and
1125 * absolute value are only allowed on inputs with int or float type and
1126 * behave differently on the two.
1127 */
1128 nir_alu_type input_types[NIR_MAX_VEC_COMPONENTS];
1129
1130 nir_op_algebraic_property algebraic_properties;
1131
1132 /* Whether this represents a numeric conversion opcode */
1133 bool is_conversion;
1134 } nir_op_info;
1135
1136 extern const nir_op_info nir_op_infos[nir_num_opcodes];
1137
1138 typedef struct nir_alu_instr {
1139 nir_instr instr;
1140 nir_op op;
1141
1142 /** Indicates that this ALU instruction generates an exact value
1143 *
1144 * This is kind of a mixture of GLSL "precise" and "invariant" and not
1145 * really equivalent to either. This indicates that the value generated by
1146 * this operation is high-precision and any code transformations that touch
1147 * it must ensure that the resulting value is bit-for-bit identical to the
1148 * original.
1149 */
1150 bool exact:1;
1151
1152 /**
1153 * Indicates that this instruction do not cause wrapping to occur, in the
1154 * form of overflow or underflow.
1155 */
1156 bool no_signed_wrap:1;
1157 bool no_unsigned_wrap:1;
1158
1159 nir_alu_dest dest;
1160 nir_alu_src src[];
1161 } nir_alu_instr;
1162
1163 void nir_alu_src_copy(nir_alu_src *dest, const nir_alu_src *src,
1164 nir_alu_instr *instr);
1165 void nir_alu_dest_copy(nir_alu_dest *dest, const nir_alu_dest *src,
1166 nir_alu_instr *instr);
1167
1168 /* is this source channel used? */
1169 static inline bool
1170 nir_alu_instr_channel_used(const nir_alu_instr *instr, unsigned src,
1171 unsigned channel)
1172 {
1173 if (nir_op_infos[instr->op].input_sizes[src] > 0)
1174 return channel < nir_op_infos[instr->op].input_sizes[src];
1175
1176 return (instr->dest.write_mask >> channel) & 1;
1177 }
1178
1179 static inline nir_component_mask_t
1180 nir_alu_instr_src_read_mask(const nir_alu_instr *instr, unsigned src)
1181 {
1182 nir_component_mask_t read_mask = 0;
1183 for (unsigned c = 0; c < NIR_MAX_VEC_COMPONENTS; c++) {
1184 if (!nir_alu_instr_channel_used(instr, src, c))
1185 continue;
1186
1187 read_mask |= (1 << instr->src[src].swizzle[c]);
1188 }
1189 return read_mask;
1190 }
1191
1192 /**
1193 * Get the number of channels used for a source
1194 */
1195 static inline unsigned
1196 nir_ssa_alu_instr_src_components(const nir_alu_instr *instr, unsigned src)
1197 {
1198 if (nir_op_infos[instr->op].input_sizes[src] > 0)
1199 return nir_op_infos[instr->op].input_sizes[src];
1200
1201 return nir_dest_num_components(instr->dest.dest);
1202 }
1203
1204 static inline bool
1205 nir_alu_instr_is_comparison(const nir_alu_instr *instr)
1206 {
1207 switch (instr->op) {
1208 case nir_op_flt:
1209 case nir_op_fge:
1210 case nir_op_feq:
1211 case nir_op_fne:
1212 case nir_op_ilt:
1213 case nir_op_ult:
1214 case nir_op_ige:
1215 case nir_op_uge:
1216 case nir_op_ieq:
1217 case nir_op_ine:
1218 case nir_op_i2b1:
1219 case nir_op_f2b1:
1220 case nir_op_inot:
1221 return true;
1222 default:
1223 return false;
1224 }
1225 }
1226
1227 bool nir_const_value_negative_equal(nir_const_value c1, nir_const_value c2,
1228 nir_alu_type full_type);
1229
1230 bool nir_alu_srcs_equal(const nir_alu_instr *alu1, const nir_alu_instr *alu2,
1231 unsigned src1, unsigned src2);
1232
1233 bool nir_alu_srcs_negative_equal(const nir_alu_instr *alu1,
1234 const nir_alu_instr *alu2,
1235 unsigned src1, unsigned src2);
1236
1237 typedef enum {
1238 nir_deref_type_var,
1239 nir_deref_type_array,
1240 nir_deref_type_array_wildcard,
1241 nir_deref_type_ptr_as_array,
1242 nir_deref_type_struct,
1243 nir_deref_type_cast,
1244 } nir_deref_type;
1245
1246 typedef struct {
1247 nir_instr instr;
1248
1249 /** The type of this deref instruction */
1250 nir_deref_type deref_type;
1251
1252 /** The mode of the underlying variable */
1253 nir_variable_mode mode;
1254
1255 /** The dereferenced type of the resulting pointer value */
1256 const struct glsl_type *type;
1257
1258 union {
1259 /** Variable being dereferenced if deref_type is a deref_var */
1260 nir_variable *var;
1261
1262 /** Parent deref if deref_type is not deref_var */
1263 nir_src parent;
1264 };
1265
1266 /** Additional deref parameters */
1267 union {
1268 struct {
1269 nir_src index;
1270 } arr;
1271
1272 struct {
1273 unsigned index;
1274 } strct;
1275
1276 struct {
1277 unsigned ptr_stride;
1278 } cast;
1279 };
1280
1281 /** Destination to store the resulting "pointer" */
1282 nir_dest dest;
1283 } nir_deref_instr;
1284
1285 static inline nir_deref_instr *nir_src_as_deref(nir_src src);
1286
1287 static inline nir_deref_instr *
1288 nir_deref_instr_parent(const nir_deref_instr *instr)
1289 {
1290 if (instr->deref_type == nir_deref_type_var)
1291 return NULL;
1292 else
1293 return nir_src_as_deref(instr->parent);
1294 }
1295
1296 static inline nir_variable *
1297 nir_deref_instr_get_variable(const nir_deref_instr *instr)
1298 {
1299 while (instr->deref_type != nir_deref_type_var) {
1300 if (instr->deref_type == nir_deref_type_cast)
1301 return NULL;
1302
1303 instr = nir_deref_instr_parent(instr);
1304 }
1305
1306 return instr->var;
1307 }
1308
1309 bool nir_deref_instr_has_indirect(nir_deref_instr *instr);
1310 bool nir_deref_instr_is_known_out_of_bounds(nir_deref_instr *instr);
1311 bool nir_deref_instr_has_complex_use(nir_deref_instr *instr);
1312
1313 bool nir_deref_instr_remove_if_unused(nir_deref_instr *instr);
1314
1315 unsigned nir_deref_instr_ptr_as_array_stride(nir_deref_instr *instr);
1316
1317 typedef struct {
1318 nir_instr instr;
1319
1320 struct nir_function *callee;
1321
1322 unsigned num_params;
1323 nir_src params[];
1324 } nir_call_instr;
1325
1326 #include "nir_intrinsics.h"
1327
1328 #define NIR_INTRINSIC_MAX_CONST_INDEX 4
1329
1330 /** Represents an intrinsic
1331 *
1332 * An intrinsic is an instruction type for handling things that are
1333 * more-or-less regular operations but don't just consume and produce SSA
1334 * values like ALU operations do. Intrinsics are not for things that have
1335 * special semantic meaning such as phi nodes and parallel copies.
1336 * Examples of intrinsics include variable load/store operations, system
1337 * value loads, and the like. Even though texturing more-or-less falls
1338 * under this category, texturing is its own instruction type because
1339 * trying to represent texturing with intrinsics would lead to a
1340 * combinatorial explosion of intrinsic opcodes.
1341 *
1342 * By having a single instruction type for handling a lot of different
1343 * cases, optimization passes can look for intrinsics and, for the most
1344 * part, completely ignore them. Each intrinsic type also has a few
1345 * possible flags that govern whether or not they can be reordered or
1346 * eliminated. That way passes like dead code elimination can still work
1347 * on intrisics without understanding the meaning of each.
1348 *
1349 * Each intrinsic has some number of constant indices, some number of
1350 * variables, and some number of sources. What these sources, variables,
1351 * and indices mean depends on the intrinsic and is documented with the
1352 * intrinsic declaration in nir_intrinsics.h. Intrinsics and texture
1353 * instructions are the only types of instruction that can operate on
1354 * variables.
1355 */
1356 typedef struct {
1357 nir_instr instr;
1358
1359 nir_intrinsic_op intrinsic;
1360
1361 nir_dest dest;
1362
1363 /** number of components if this is a vectorized intrinsic
1364 *
1365 * Similarly to ALU operations, some intrinsics are vectorized.
1366 * An intrinsic is vectorized if nir_intrinsic_infos.dest_components == 0.
1367 * For vectorized intrinsics, the num_components field specifies the
1368 * number of destination components and the number of source components
1369 * for all sources with nir_intrinsic_infos.src_components[i] == 0.
1370 */
1371 uint8_t num_components;
1372
1373 int const_index[NIR_INTRINSIC_MAX_CONST_INDEX];
1374
1375 nir_src src[];
1376 } nir_intrinsic_instr;
1377
1378 static inline nir_variable *
1379 nir_intrinsic_get_var(nir_intrinsic_instr *intrin, unsigned i)
1380 {
1381 return nir_deref_instr_get_variable(nir_src_as_deref(intrin->src[i]));
1382 }
1383
1384 typedef enum {
1385 /* Memory ordering. */
1386 NIR_MEMORY_ACQUIRE = 1 << 0,
1387 NIR_MEMORY_RELEASE = 1 << 1,
1388
1389 /* Memory visibility operations. */
1390 NIR_MEMORY_MAKE_AVAILABLE = 1 << 3,
1391 NIR_MEMORY_MAKE_VISIBLE = 1 << 4,
1392 } nir_memory_semantics;
1393
1394 typedef enum {
1395 NIR_SCOPE_DEVICE,
1396 NIR_SCOPE_QUEUE_FAMILY,
1397 NIR_SCOPE_WORKGROUP,
1398 NIR_SCOPE_SUBGROUP,
1399 NIR_SCOPE_INVOCATION,
1400 } nir_scope;
1401
1402 /**
1403 * \name NIR intrinsics semantic flags
1404 *
1405 * information about what the compiler can do with the intrinsics.
1406 *
1407 * \sa nir_intrinsic_info::flags
1408 */
1409 typedef enum {
1410 /**
1411 * whether the intrinsic can be safely eliminated if none of its output
1412 * value is not being used.
1413 */
1414 NIR_INTRINSIC_CAN_ELIMINATE = (1 << 0),
1415
1416 /**
1417 * Whether the intrinsic can be reordered with respect to any other
1418 * intrinsic, i.e. whether the only reordering dependencies of the
1419 * intrinsic are due to the register reads/writes.
1420 */
1421 NIR_INTRINSIC_CAN_REORDER = (1 << 1),
1422 } nir_intrinsic_semantic_flag;
1423
1424 /**
1425 * \name NIR intrinsics const-index flag
1426 *
1427 * Indicates the usage of a const_index slot.
1428 *
1429 * \sa nir_intrinsic_info::index_map
1430 */
1431 typedef enum {
1432 /**
1433 * Generally instructions that take a offset src argument, can encode
1434 * a constant 'base' value which is added to the offset.
1435 */
1436 NIR_INTRINSIC_BASE = 1,
1437
1438 /**
1439 * For store instructions, a writemask for the store.
1440 */
1441 NIR_INTRINSIC_WRMASK,
1442
1443 /**
1444 * The stream-id for GS emit_vertex/end_primitive intrinsics.
1445 */
1446 NIR_INTRINSIC_STREAM_ID,
1447
1448 /**
1449 * The clip-plane id for load_user_clip_plane intrinsic.
1450 */
1451 NIR_INTRINSIC_UCP_ID,
1452
1453 /**
1454 * The amount of data, starting from BASE, that this instruction may
1455 * access. This is used to provide bounds if the offset is not constant.
1456 */
1457 NIR_INTRINSIC_RANGE,
1458
1459 /**
1460 * The Vulkan descriptor set for vulkan_resource_index intrinsic.
1461 */
1462 NIR_INTRINSIC_DESC_SET,
1463
1464 /**
1465 * The Vulkan descriptor set binding for vulkan_resource_index intrinsic.
1466 */
1467 NIR_INTRINSIC_BINDING,
1468
1469 /**
1470 * Component offset.
1471 */
1472 NIR_INTRINSIC_COMPONENT,
1473
1474 /**
1475 * Interpolation mode (only meaningful for FS inputs).
1476 */
1477 NIR_INTRINSIC_INTERP_MODE,
1478
1479 /**
1480 * A binary nir_op to use when performing a reduction or scan operation
1481 */
1482 NIR_INTRINSIC_REDUCTION_OP,
1483
1484 /**
1485 * Cluster size for reduction operations
1486 */
1487 NIR_INTRINSIC_CLUSTER_SIZE,
1488
1489 /**
1490 * Parameter index for a load_param intrinsic
1491 */
1492 NIR_INTRINSIC_PARAM_IDX,
1493
1494 /**
1495 * Image dimensionality for image intrinsics
1496 *
1497 * One of GLSL_SAMPLER_DIM_*
1498 */
1499 NIR_INTRINSIC_IMAGE_DIM,
1500
1501 /**
1502 * Non-zero if we are accessing an array image
1503 */
1504 NIR_INTRINSIC_IMAGE_ARRAY,
1505
1506 /**
1507 * Image format for image intrinsics
1508 */
1509 NIR_INTRINSIC_FORMAT,
1510
1511 /**
1512 * Access qualifiers for image and memory access intrinsics
1513 */
1514 NIR_INTRINSIC_ACCESS,
1515
1516 /**
1517 * Alignment for offsets and addresses
1518 *
1519 * These two parameters, specify an alignment in terms of a multiplier and
1520 * an offset. The offset or address parameter X of the intrinsic is
1521 * guaranteed to satisfy the following:
1522 *
1523 * (X - align_offset) % align_mul == 0
1524 */
1525 NIR_INTRINSIC_ALIGN_MUL,
1526 NIR_INTRINSIC_ALIGN_OFFSET,
1527
1528 /**
1529 * The Vulkan descriptor type for a vulkan_resource_[re]index intrinsic.
1530 */
1531 NIR_INTRINSIC_DESC_TYPE,
1532
1533 /**
1534 * The nir_alu_type of a uniform/input/output
1535 */
1536 NIR_INTRINSIC_TYPE,
1537
1538 /**
1539 * The swizzle mask for the instructions
1540 * SwizzleInvocationsAMD and SwizzleInvocationsMaskedAMD
1541 */
1542 NIR_INTRINSIC_SWIZZLE_MASK,
1543
1544 /* Separate source/dest access flags for copies */
1545 NIR_INTRINSIC_SRC_ACCESS,
1546 NIR_INTRINSIC_DST_ACCESS,
1547
1548 /* Driver location for nir_load_patch_location_ir3 */
1549 NIR_INTRINSIC_DRIVER_LOCATION,
1550
1551 /**
1552 * Mask of nir_memory_semantics, includes ordering and visibility.
1553 */
1554 NIR_INTRINSIC_MEMORY_SEMANTICS,
1555
1556 /**
1557 * Mask of nir_variable_modes affected by the memory operation.
1558 */
1559 NIR_INTRINSIC_MEMORY_MODES,
1560
1561 /**
1562 * Value of nir_scope.
1563 */
1564 NIR_INTRINSIC_MEMORY_SCOPE,
1565
1566 NIR_INTRINSIC_NUM_INDEX_FLAGS,
1567
1568 } nir_intrinsic_index_flag;
1569
1570 #define NIR_INTRINSIC_MAX_INPUTS 5
1571
1572 typedef struct {
1573 const char *name;
1574
1575 unsigned num_srcs; /** < number of register/SSA inputs */
1576
1577 /** number of components of each input register
1578 *
1579 * If this value is 0, the number of components is given by the
1580 * num_components field of nir_intrinsic_instr. If this value is -1, the
1581 * intrinsic consumes however many components are provided and it is not
1582 * validated at all.
1583 */
1584 int src_components[NIR_INTRINSIC_MAX_INPUTS];
1585
1586 bool has_dest;
1587
1588 /** number of components of the output register
1589 *
1590 * If this value is 0, the number of components is given by the
1591 * num_components field of nir_intrinsic_instr.
1592 */
1593 unsigned dest_components;
1594
1595 /** bitfield of legal bit sizes */
1596 unsigned dest_bit_sizes;
1597
1598 /** the number of constant indices used by the intrinsic */
1599 unsigned num_indices;
1600
1601 /** indicates the usage of intr->const_index[n] */
1602 unsigned index_map[NIR_INTRINSIC_NUM_INDEX_FLAGS];
1603
1604 /** semantic flags for calls to this intrinsic */
1605 nir_intrinsic_semantic_flag flags;
1606 } nir_intrinsic_info;
1607
1608 extern const nir_intrinsic_info nir_intrinsic_infos[nir_num_intrinsics];
1609
1610 static inline unsigned
1611 nir_intrinsic_src_components(nir_intrinsic_instr *intr, unsigned srcn)
1612 {
1613 const nir_intrinsic_info *info = &nir_intrinsic_infos[intr->intrinsic];
1614 assert(srcn < info->num_srcs);
1615 if (info->src_components[srcn] > 0)
1616 return info->src_components[srcn];
1617 else if (info->src_components[srcn] == 0)
1618 return intr->num_components;
1619 else
1620 return nir_src_num_components(intr->src[srcn]);
1621 }
1622
1623 static inline unsigned
1624 nir_intrinsic_dest_components(nir_intrinsic_instr *intr)
1625 {
1626 const nir_intrinsic_info *info = &nir_intrinsic_infos[intr->intrinsic];
1627 if (!info->has_dest)
1628 return 0;
1629 else if (info->dest_components)
1630 return info->dest_components;
1631 else
1632 return intr->num_components;
1633 }
1634
1635 #define INTRINSIC_IDX_ACCESSORS(name, flag, type) \
1636 static inline type \
1637 nir_intrinsic_##name(const nir_intrinsic_instr *instr) \
1638 { \
1639 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic]; \
1640 assert(info->index_map[NIR_INTRINSIC_##flag] > 0); \
1641 return (type)instr->const_index[info->index_map[NIR_INTRINSIC_##flag] - 1]; \
1642 } \
1643 static inline void \
1644 nir_intrinsic_set_##name(nir_intrinsic_instr *instr, type val) \
1645 { \
1646 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic]; \
1647 assert(info->index_map[NIR_INTRINSIC_##flag] > 0); \
1648 instr->const_index[info->index_map[NIR_INTRINSIC_##flag] - 1] = val; \
1649 }
1650
1651 INTRINSIC_IDX_ACCESSORS(write_mask, WRMASK, unsigned)
1652 INTRINSIC_IDX_ACCESSORS(base, BASE, int)
1653 INTRINSIC_IDX_ACCESSORS(stream_id, STREAM_ID, unsigned)
1654 INTRINSIC_IDX_ACCESSORS(ucp_id, UCP_ID, unsigned)
1655 INTRINSIC_IDX_ACCESSORS(range, RANGE, unsigned)
1656 INTRINSIC_IDX_ACCESSORS(desc_set, DESC_SET, unsigned)
1657 INTRINSIC_IDX_ACCESSORS(binding, BINDING, unsigned)
1658 INTRINSIC_IDX_ACCESSORS(component, COMPONENT, unsigned)
1659 INTRINSIC_IDX_ACCESSORS(interp_mode, INTERP_MODE, unsigned)
1660 INTRINSIC_IDX_ACCESSORS(reduction_op, REDUCTION_OP, unsigned)
1661 INTRINSIC_IDX_ACCESSORS(cluster_size, CLUSTER_SIZE, unsigned)
1662 INTRINSIC_IDX_ACCESSORS(param_idx, PARAM_IDX, unsigned)
1663 INTRINSIC_IDX_ACCESSORS(image_dim, IMAGE_DIM, enum glsl_sampler_dim)
1664 INTRINSIC_IDX_ACCESSORS(image_array, IMAGE_ARRAY, bool)
1665 INTRINSIC_IDX_ACCESSORS(access, ACCESS, enum gl_access_qualifier)
1666 INTRINSIC_IDX_ACCESSORS(src_access, SRC_ACCESS, enum gl_access_qualifier)
1667 INTRINSIC_IDX_ACCESSORS(dst_access, DST_ACCESS, enum gl_access_qualifier)
1668 INTRINSIC_IDX_ACCESSORS(format, FORMAT, unsigned)
1669 INTRINSIC_IDX_ACCESSORS(align_mul, ALIGN_MUL, unsigned)
1670 INTRINSIC_IDX_ACCESSORS(align_offset, ALIGN_OFFSET, unsigned)
1671 INTRINSIC_IDX_ACCESSORS(desc_type, DESC_TYPE, unsigned)
1672 INTRINSIC_IDX_ACCESSORS(type, TYPE, nir_alu_type)
1673 INTRINSIC_IDX_ACCESSORS(swizzle_mask, SWIZZLE_MASK, unsigned)
1674 INTRINSIC_IDX_ACCESSORS(driver_location, DRIVER_LOCATION, unsigned)
1675 INTRINSIC_IDX_ACCESSORS(memory_semantics, MEMORY_SEMANTICS, nir_memory_semantics)
1676 INTRINSIC_IDX_ACCESSORS(memory_modes, MEMORY_MODES, nir_variable_mode)
1677 INTRINSIC_IDX_ACCESSORS(memory_scope, MEMORY_SCOPE, nir_scope)
1678
1679 static inline void
1680 nir_intrinsic_set_align(nir_intrinsic_instr *intrin,
1681 unsigned align_mul, unsigned align_offset)
1682 {
1683 assert(util_is_power_of_two_nonzero(align_mul));
1684 assert(align_offset < align_mul);
1685 nir_intrinsic_set_align_mul(intrin, align_mul);
1686 nir_intrinsic_set_align_offset(intrin, align_offset);
1687 }
1688
1689 /** Returns a simple alignment for a load/store intrinsic offset
1690 *
1691 * Instead of the full mul+offset alignment scheme provided by the ALIGN_MUL
1692 * and ALIGN_OFFSET parameters, this helper takes both into account and
1693 * provides a single simple alignment parameter. The offset X is guaranteed
1694 * to satisfy X % align == 0.
1695 */
1696 static inline unsigned
1697 nir_intrinsic_align(const nir_intrinsic_instr *intrin)
1698 {
1699 const unsigned align_mul = nir_intrinsic_align_mul(intrin);
1700 const unsigned align_offset = nir_intrinsic_align_offset(intrin);
1701 assert(align_offset < align_mul);
1702 return align_offset ? 1 << (ffs(align_offset) - 1) : align_mul;
1703 }
1704
1705 /* Converts a image_deref_* intrinsic into a image_* one */
1706 void nir_rewrite_image_intrinsic(nir_intrinsic_instr *instr,
1707 nir_ssa_def *handle, bool bindless);
1708
1709 /* Determine if an intrinsic can be arbitrarily reordered and eliminated. */
1710 static inline bool
1711 nir_intrinsic_can_reorder(nir_intrinsic_instr *instr)
1712 {
1713 if (instr->intrinsic == nir_intrinsic_load_deref ||
1714 instr->intrinsic == nir_intrinsic_load_ssbo ||
1715 instr->intrinsic == nir_intrinsic_bindless_image_load ||
1716 instr->intrinsic == nir_intrinsic_image_deref_load ||
1717 instr->intrinsic == nir_intrinsic_image_load) {
1718 return nir_intrinsic_access(instr) & ACCESS_CAN_REORDER;
1719 } else {
1720 const nir_intrinsic_info *info =
1721 &nir_intrinsic_infos[instr->intrinsic];
1722 return (info->flags & NIR_INTRINSIC_CAN_ELIMINATE) &&
1723 (info->flags & NIR_INTRINSIC_CAN_REORDER);
1724 }
1725 }
1726
1727 /**
1728 * \group texture information
1729 *
1730 * This gives semantic information about textures which is useful to the
1731 * frontend, the backend, and lowering passes, but not the optimizer.
1732 */
1733
1734 typedef enum {
1735 nir_tex_src_coord,
1736 nir_tex_src_projector,
1737 nir_tex_src_comparator, /* shadow comparator */
1738 nir_tex_src_offset,
1739 nir_tex_src_bias,
1740 nir_tex_src_lod,
1741 nir_tex_src_min_lod,
1742 nir_tex_src_ms_index, /* MSAA sample index */
1743 nir_tex_src_ms_mcs, /* MSAA compression value */
1744 nir_tex_src_ddx,
1745 nir_tex_src_ddy,
1746 nir_tex_src_texture_deref, /* < deref pointing to the texture */
1747 nir_tex_src_sampler_deref, /* < deref pointing to the sampler */
1748 nir_tex_src_texture_offset, /* < dynamically uniform indirect offset */
1749 nir_tex_src_sampler_offset, /* < dynamically uniform indirect offset */
1750 nir_tex_src_texture_handle, /* < bindless texture handle */
1751 nir_tex_src_sampler_handle, /* < bindless sampler handle */
1752 nir_tex_src_plane, /* < selects plane for planar textures */
1753 nir_num_tex_src_types
1754 } nir_tex_src_type;
1755
1756 typedef struct {
1757 nir_src src;
1758 nir_tex_src_type src_type;
1759 } nir_tex_src;
1760
1761 typedef enum {
1762 nir_texop_tex, /**< Regular texture look-up */
1763 nir_texop_txb, /**< Texture look-up with LOD bias */
1764 nir_texop_txl, /**< Texture look-up with explicit LOD */
1765 nir_texop_txd, /**< Texture look-up with partial derivatives */
1766 nir_texop_txf, /**< Texel fetch with explicit LOD */
1767 nir_texop_txf_ms, /**< Multisample texture fetch */
1768 nir_texop_txf_ms_fb, /**< Multisample texture fetch from framebuffer */
1769 nir_texop_txf_ms_mcs, /**< Multisample compression value fetch */
1770 nir_texop_txs, /**< Texture size */
1771 nir_texop_lod, /**< Texture lod query */
1772 nir_texop_tg4, /**< Texture gather */
1773 nir_texop_query_levels, /**< Texture levels query */
1774 nir_texop_texture_samples, /**< Texture samples query */
1775 nir_texop_samples_identical, /**< Query whether all samples are definitely
1776 * identical.
1777 */
1778 nir_texop_tex_prefetch, /**< Regular texture look-up, eligible for pre-dispatch */
1779 } nir_texop;
1780
1781 typedef struct {
1782 nir_instr instr;
1783
1784 enum glsl_sampler_dim sampler_dim;
1785 nir_alu_type dest_type;
1786
1787 nir_texop op;
1788 nir_dest dest;
1789 nir_tex_src *src;
1790 unsigned num_srcs, coord_components;
1791 bool is_array, is_shadow;
1792
1793 /**
1794 * If is_shadow is true, whether this is the old-style shadow that outputs 4
1795 * components or the new-style shadow that outputs 1 component.
1796 */
1797 bool is_new_style_shadow;
1798
1799 /* gather component selector */
1800 unsigned component : 2;
1801
1802 /* gather offsets */
1803 int8_t tg4_offsets[4][2];
1804
1805 /* True if the texture index or handle is not dynamically uniform */
1806 bool texture_non_uniform;
1807
1808 /* True if the sampler index or handle is not dynamically uniform */
1809 bool sampler_non_uniform;
1810
1811 /** The texture index
1812 *
1813 * If this texture instruction has a nir_tex_src_texture_offset source,
1814 * then the texture index is given by texture_index + texture_offset.
1815 */
1816 unsigned texture_index;
1817
1818 /** The size of the texture array or 0 if it's not an array */
1819 unsigned texture_array_size;
1820
1821 /** The sampler index
1822 *
1823 * The following operations do not require a sampler and, as such, this
1824 * field should be ignored:
1825 * - nir_texop_txf
1826 * - nir_texop_txf_ms
1827 * - nir_texop_txs
1828 * - nir_texop_lod
1829 * - nir_texop_query_levels
1830 * - nir_texop_texture_samples
1831 * - nir_texop_samples_identical
1832 *
1833 * If this texture instruction has a nir_tex_src_sampler_offset source,
1834 * then the sampler index is given by sampler_index + sampler_offset.
1835 */
1836 unsigned sampler_index;
1837 } nir_tex_instr;
1838
1839 static inline unsigned
1840 nir_tex_instr_dest_size(const nir_tex_instr *instr)
1841 {
1842 switch (instr->op) {
1843 case nir_texop_txs: {
1844 unsigned ret;
1845 switch (instr->sampler_dim) {
1846 case GLSL_SAMPLER_DIM_1D:
1847 case GLSL_SAMPLER_DIM_BUF:
1848 ret = 1;
1849 break;
1850 case GLSL_SAMPLER_DIM_2D:
1851 case GLSL_SAMPLER_DIM_CUBE:
1852 case GLSL_SAMPLER_DIM_MS:
1853 case GLSL_SAMPLER_DIM_RECT:
1854 case GLSL_SAMPLER_DIM_EXTERNAL:
1855 case GLSL_SAMPLER_DIM_SUBPASS:
1856 ret = 2;
1857 break;
1858 case GLSL_SAMPLER_DIM_3D:
1859 ret = 3;
1860 break;
1861 default:
1862 unreachable("not reached");
1863 }
1864 if (instr->is_array)
1865 ret++;
1866 return ret;
1867 }
1868
1869 case nir_texop_lod:
1870 return 2;
1871
1872 case nir_texop_texture_samples:
1873 case nir_texop_query_levels:
1874 case nir_texop_samples_identical:
1875 return 1;
1876
1877 default:
1878 if (instr->is_shadow && instr->is_new_style_shadow)
1879 return 1;
1880
1881 return 4;
1882 }
1883 }
1884
1885 /* Returns true if this texture operation queries something about the texture
1886 * rather than actually sampling it.
1887 */
1888 static inline bool
1889 nir_tex_instr_is_query(const nir_tex_instr *instr)
1890 {
1891 switch (instr->op) {
1892 case nir_texop_txs:
1893 case nir_texop_lod:
1894 case nir_texop_texture_samples:
1895 case nir_texop_query_levels:
1896 case nir_texop_txf_ms_mcs:
1897 return true;
1898 case nir_texop_tex:
1899 case nir_texop_txb:
1900 case nir_texop_txl:
1901 case nir_texop_txd:
1902 case nir_texop_txf:
1903 case nir_texop_txf_ms:
1904 case nir_texop_txf_ms_fb:
1905 case nir_texop_tg4:
1906 return false;
1907 default:
1908 unreachable("Invalid texture opcode");
1909 }
1910 }
1911
1912 static inline bool
1913 nir_tex_instr_has_implicit_derivative(const nir_tex_instr *instr)
1914 {
1915 switch (instr->op) {
1916 case nir_texop_tex:
1917 case nir_texop_txb:
1918 case nir_texop_lod:
1919 return true;
1920 default:
1921 return false;
1922 }
1923 }
1924
1925 static inline nir_alu_type
1926 nir_tex_instr_src_type(const nir_tex_instr *instr, unsigned src)
1927 {
1928 switch (instr->src[src].src_type) {
1929 case nir_tex_src_coord:
1930 switch (instr->op) {
1931 case nir_texop_txf:
1932 case nir_texop_txf_ms:
1933 case nir_texop_txf_ms_fb:
1934 case nir_texop_txf_ms_mcs:
1935 case nir_texop_samples_identical:
1936 return nir_type_int;
1937
1938 default:
1939 return nir_type_float;
1940 }
1941
1942 case nir_tex_src_lod:
1943 switch (instr->op) {
1944 case nir_texop_txs:
1945 case nir_texop_txf:
1946 return nir_type_int;
1947
1948 default:
1949 return nir_type_float;
1950 }
1951
1952 case nir_tex_src_projector:
1953 case nir_tex_src_comparator:
1954 case nir_tex_src_bias:
1955 case nir_tex_src_min_lod:
1956 case nir_tex_src_ddx:
1957 case nir_tex_src_ddy:
1958 return nir_type_float;
1959
1960 case nir_tex_src_offset:
1961 case nir_tex_src_ms_index:
1962 case nir_tex_src_plane:
1963 return nir_type_int;
1964
1965 case nir_tex_src_ms_mcs:
1966 case nir_tex_src_texture_deref:
1967 case nir_tex_src_sampler_deref:
1968 case nir_tex_src_texture_offset:
1969 case nir_tex_src_sampler_offset:
1970 case nir_tex_src_texture_handle:
1971 case nir_tex_src_sampler_handle:
1972 return nir_type_uint;
1973
1974 case nir_num_tex_src_types:
1975 unreachable("nir_num_tex_src_types is not a valid source type");
1976 }
1977
1978 unreachable("Invalid texture source type");
1979 }
1980
1981 static inline unsigned
1982 nir_tex_instr_src_size(const nir_tex_instr *instr, unsigned src)
1983 {
1984 if (instr->src[src].src_type == nir_tex_src_coord)
1985 return instr->coord_components;
1986
1987 /* The MCS value is expected to be a vec4 returned by a txf_ms_mcs */
1988 if (instr->src[src].src_type == nir_tex_src_ms_mcs)
1989 return 4;
1990
1991 if (instr->src[src].src_type == nir_tex_src_ddx ||
1992 instr->src[src].src_type == nir_tex_src_ddy) {
1993 if (instr->is_array)
1994 return instr->coord_components - 1;
1995 else
1996 return instr->coord_components;
1997 }
1998
1999 /* Usual APIs don't allow cube + offset, but we allow it, with 2 coords for
2000 * the offset, since a cube maps to a single face.
2001 */
2002 if (instr->src[src].src_type == nir_tex_src_offset) {
2003 if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE)
2004 return 2;
2005 else if (instr->is_array)
2006 return instr->coord_components - 1;
2007 else
2008 return instr->coord_components;
2009 }
2010
2011 return 1;
2012 }
2013
2014 static inline int
2015 nir_tex_instr_src_index(const nir_tex_instr *instr, nir_tex_src_type type)
2016 {
2017 for (unsigned i = 0; i < instr->num_srcs; i++)
2018 if (instr->src[i].src_type == type)
2019 return (int) i;
2020
2021 return -1;
2022 }
2023
2024 void nir_tex_instr_add_src(nir_tex_instr *tex,
2025 nir_tex_src_type src_type,
2026 nir_src src);
2027
2028 void nir_tex_instr_remove_src(nir_tex_instr *tex, unsigned src_idx);
2029
2030 bool nir_tex_instr_has_explicit_tg4_offsets(nir_tex_instr *tex);
2031
2032 typedef struct {
2033 nir_instr instr;
2034
2035 nir_ssa_def def;
2036
2037 nir_const_value value[];
2038 } nir_load_const_instr;
2039
2040 typedef enum {
2041 nir_jump_return,
2042 nir_jump_break,
2043 nir_jump_continue,
2044 } nir_jump_type;
2045
2046 typedef struct {
2047 nir_instr instr;
2048 nir_jump_type type;
2049 } nir_jump_instr;
2050
2051 /* creates a new SSA variable in an undefined state */
2052
2053 typedef struct {
2054 nir_instr instr;
2055 nir_ssa_def def;
2056 } nir_ssa_undef_instr;
2057
2058 typedef struct {
2059 struct exec_node node;
2060
2061 /* The predecessor block corresponding to this source */
2062 struct nir_block *pred;
2063
2064 nir_src src;
2065 } nir_phi_src;
2066
2067 #define nir_foreach_phi_src(phi_src, phi) \
2068 foreach_list_typed(nir_phi_src, phi_src, node, &(phi)->srcs)
2069 #define nir_foreach_phi_src_safe(phi_src, phi) \
2070 foreach_list_typed_safe(nir_phi_src, phi_src, node, &(phi)->srcs)
2071
2072 typedef struct {
2073 nir_instr instr;
2074
2075 struct exec_list srcs; /** < list of nir_phi_src */
2076
2077 nir_dest dest;
2078 } nir_phi_instr;
2079
2080 typedef struct {
2081 struct exec_node node;
2082 nir_src src;
2083 nir_dest dest;
2084 } nir_parallel_copy_entry;
2085
2086 #define nir_foreach_parallel_copy_entry(entry, pcopy) \
2087 foreach_list_typed(nir_parallel_copy_entry, entry, node, &(pcopy)->entries)
2088
2089 typedef struct {
2090 nir_instr instr;
2091
2092 /* A list of nir_parallel_copy_entrys. The sources of all of the
2093 * entries are copied to the corresponding destinations "in parallel".
2094 * In other words, if we have two entries: a -> b and b -> a, the values
2095 * get swapped.
2096 */
2097 struct exec_list entries;
2098 } nir_parallel_copy_instr;
2099
2100 NIR_DEFINE_CAST(nir_instr_as_alu, nir_instr, nir_alu_instr, instr,
2101 type, nir_instr_type_alu)
2102 NIR_DEFINE_CAST(nir_instr_as_deref, nir_instr, nir_deref_instr, instr,
2103 type, nir_instr_type_deref)
2104 NIR_DEFINE_CAST(nir_instr_as_call, nir_instr, nir_call_instr, instr,
2105 type, nir_instr_type_call)
2106 NIR_DEFINE_CAST(nir_instr_as_jump, nir_instr, nir_jump_instr, instr,
2107 type, nir_instr_type_jump)
2108 NIR_DEFINE_CAST(nir_instr_as_tex, nir_instr, nir_tex_instr, instr,
2109 type, nir_instr_type_tex)
2110 NIR_DEFINE_CAST(nir_instr_as_intrinsic, nir_instr, nir_intrinsic_instr, instr,
2111 type, nir_instr_type_intrinsic)
2112 NIR_DEFINE_CAST(nir_instr_as_load_const, nir_instr, nir_load_const_instr, instr,
2113 type, nir_instr_type_load_const)
2114 NIR_DEFINE_CAST(nir_instr_as_ssa_undef, nir_instr, nir_ssa_undef_instr, instr,
2115 type, nir_instr_type_ssa_undef)
2116 NIR_DEFINE_CAST(nir_instr_as_phi, nir_instr, nir_phi_instr, instr,
2117 type, nir_instr_type_phi)
2118 NIR_DEFINE_CAST(nir_instr_as_parallel_copy, nir_instr,
2119 nir_parallel_copy_instr, instr,
2120 type, nir_instr_type_parallel_copy)
2121
2122
2123 #define NIR_DEFINE_SRC_AS_CONST(type, suffix) \
2124 static inline type \
2125 nir_src_comp_as_##suffix(nir_src src, unsigned comp) \
2126 { \
2127 assert(nir_src_is_const(src)); \
2128 nir_load_const_instr *load = \
2129 nir_instr_as_load_const(src.ssa->parent_instr); \
2130 assert(comp < load->def.num_components); \
2131 return nir_const_value_as_##suffix(load->value[comp], \
2132 load->def.bit_size); \
2133 } \
2134 \
2135 static inline type \
2136 nir_src_as_##suffix(nir_src src) \
2137 { \
2138 assert(nir_src_num_components(src) == 1); \
2139 return nir_src_comp_as_##suffix(src, 0); \
2140 }
2141
2142 NIR_DEFINE_SRC_AS_CONST(int64_t, int)
2143 NIR_DEFINE_SRC_AS_CONST(uint64_t, uint)
2144 NIR_DEFINE_SRC_AS_CONST(bool, bool)
2145 NIR_DEFINE_SRC_AS_CONST(double, float)
2146
2147 #undef NIR_DEFINE_SRC_AS_CONST
2148
2149
2150 typedef struct {
2151 nir_ssa_def *def;
2152 unsigned comp;
2153 } nir_ssa_scalar;
2154
2155 static inline bool
2156 nir_ssa_scalar_is_const(nir_ssa_scalar s)
2157 {
2158 return s.def->parent_instr->type == nir_instr_type_load_const;
2159 }
2160
2161 static inline nir_const_value
2162 nir_ssa_scalar_as_const_value(nir_ssa_scalar s)
2163 {
2164 assert(s.comp < s.def->num_components);
2165 nir_load_const_instr *load = nir_instr_as_load_const(s.def->parent_instr);
2166 return load->value[s.comp];
2167 }
2168
2169 #define NIR_DEFINE_SCALAR_AS_CONST(type, suffix) \
2170 static inline type \
2171 nir_ssa_scalar_as_##suffix(nir_ssa_scalar s) \
2172 { \
2173 return nir_const_value_as_##suffix( \
2174 nir_ssa_scalar_as_const_value(s), s.def->bit_size); \
2175 }
2176
2177 NIR_DEFINE_SCALAR_AS_CONST(int64_t, int)
2178 NIR_DEFINE_SCALAR_AS_CONST(uint64_t, uint)
2179 NIR_DEFINE_SCALAR_AS_CONST(bool, bool)
2180 NIR_DEFINE_SCALAR_AS_CONST(double, float)
2181
2182 #undef NIR_DEFINE_SCALAR_AS_CONST
2183
2184 static inline bool
2185 nir_ssa_scalar_is_alu(nir_ssa_scalar s)
2186 {
2187 return s.def->parent_instr->type == nir_instr_type_alu;
2188 }
2189
2190 static inline nir_op
2191 nir_ssa_scalar_alu_op(nir_ssa_scalar s)
2192 {
2193 return nir_instr_as_alu(s.def->parent_instr)->op;
2194 }
2195
2196 static inline nir_ssa_scalar
2197 nir_ssa_scalar_chase_alu_src(nir_ssa_scalar s, unsigned alu_src_idx)
2198 {
2199 nir_ssa_scalar out = { NULL, 0 };
2200
2201 nir_alu_instr *alu = nir_instr_as_alu(s.def->parent_instr);
2202 assert(alu_src_idx < nir_op_infos[alu->op].num_inputs);
2203
2204 /* Our component must be written */
2205 assert(s.comp < s.def->num_components);
2206 assert(alu->dest.write_mask & (1u << s.comp));
2207
2208 assert(alu->src[alu_src_idx].src.is_ssa);
2209 out.def = alu->src[alu_src_idx].src.ssa;
2210
2211 if (nir_op_infos[alu->op].input_sizes[alu_src_idx] == 0) {
2212 /* The ALU src is unsized so the source component follows the
2213 * destination component.
2214 */
2215 out.comp = alu->src[alu_src_idx].swizzle[s.comp];
2216 } else {
2217 /* This is a sized source so all source components work together to
2218 * produce all the destination components. Since we need to return a
2219 * scalar, this only works if the source is a scalar.
2220 */
2221 assert(nir_op_infos[alu->op].input_sizes[alu_src_idx] == 1);
2222 out.comp = alu->src[alu_src_idx].swizzle[0];
2223 }
2224 assert(out.comp < out.def->num_components);
2225
2226 return out;
2227 }
2228
2229
2230 /*
2231 * Control flow
2232 *
2233 * Control flow consists of a tree of control flow nodes, which include
2234 * if-statements and loops. The leaves of the tree are basic blocks, lists of
2235 * instructions that always run start-to-finish. Each basic block also keeps
2236 * track of its successors (blocks which may run immediately after the current
2237 * block) and predecessors (blocks which could have run immediately before the
2238 * current block). Each function also has a start block and an end block which
2239 * all return statements point to (which is always empty). Together, all the
2240 * blocks with their predecessors and successors make up the control flow
2241 * graph (CFG) of the function. There are helpers that modify the tree of
2242 * control flow nodes while modifying the CFG appropriately; these should be
2243 * used instead of modifying the tree directly.
2244 */
2245
2246 typedef enum {
2247 nir_cf_node_block,
2248 nir_cf_node_if,
2249 nir_cf_node_loop,
2250 nir_cf_node_function
2251 } nir_cf_node_type;
2252
2253 typedef struct nir_cf_node {
2254 struct exec_node node;
2255 nir_cf_node_type type;
2256 struct nir_cf_node *parent;
2257 } nir_cf_node;
2258
2259 typedef struct nir_block {
2260 nir_cf_node cf_node;
2261
2262 struct exec_list instr_list; /** < list of nir_instr */
2263
2264 /** generic block index; generated by nir_index_blocks */
2265 unsigned index;
2266
2267 /*
2268 * Each block can only have up to 2 successors, so we put them in a simple
2269 * array - no need for anything more complicated.
2270 */
2271 struct nir_block *successors[2];
2272
2273 /* Set of nir_block predecessors in the CFG */
2274 struct set *predecessors;
2275
2276 /*
2277 * this node's immediate dominator in the dominance tree - set to NULL for
2278 * the start block.
2279 */
2280 struct nir_block *imm_dom;
2281
2282 /* This node's children in the dominance tree */
2283 unsigned num_dom_children;
2284 struct nir_block **dom_children;
2285
2286 /* Set of nir_blocks on the dominance frontier of this block */
2287 struct set *dom_frontier;
2288
2289 /*
2290 * These two indices have the property that dom_{pre,post}_index for each
2291 * child of this block in the dominance tree will always be between
2292 * dom_pre_index and dom_post_index for this block, which makes testing if
2293 * a given block is dominated by another block an O(1) operation.
2294 */
2295 unsigned dom_pre_index, dom_post_index;
2296
2297 /* live in and out for this block; used for liveness analysis */
2298 BITSET_WORD *live_in;
2299 BITSET_WORD *live_out;
2300 } nir_block;
2301
2302 static inline nir_instr *
2303 nir_block_first_instr(nir_block *block)
2304 {
2305 struct exec_node *head = exec_list_get_head(&block->instr_list);
2306 return exec_node_data(nir_instr, head, node);
2307 }
2308
2309 static inline nir_instr *
2310 nir_block_last_instr(nir_block *block)
2311 {
2312 struct exec_node *tail = exec_list_get_tail(&block->instr_list);
2313 return exec_node_data(nir_instr, tail, node);
2314 }
2315
2316 static inline bool
2317 nir_block_ends_in_jump(nir_block *block)
2318 {
2319 return !exec_list_is_empty(&block->instr_list) &&
2320 nir_block_last_instr(block)->type == nir_instr_type_jump;
2321 }
2322
2323 #define nir_foreach_instr(instr, block) \
2324 foreach_list_typed(nir_instr, instr, node, &(block)->instr_list)
2325 #define nir_foreach_instr_reverse(instr, block) \
2326 foreach_list_typed_reverse(nir_instr, instr, node, &(block)->instr_list)
2327 #define nir_foreach_instr_safe(instr, block) \
2328 foreach_list_typed_safe(nir_instr, instr, node, &(block)->instr_list)
2329 #define nir_foreach_instr_reverse_safe(instr, block) \
2330 foreach_list_typed_reverse_safe(nir_instr, instr, node, &(block)->instr_list)
2331
2332 typedef enum {
2333 nir_selection_control_none = 0x0,
2334 nir_selection_control_flatten = 0x1,
2335 nir_selection_control_dont_flatten = 0x2,
2336 } nir_selection_control;
2337
2338 typedef struct nir_if {
2339 nir_cf_node cf_node;
2340 nir_src condition;
2341 nir_selection_control control;
2342
2343 struct exec_list then_list; /** < list of nir_cf_node */
2344 struct exec_list else_list; /** < list of nir_cf_node */
2345 } nir_if;
2346
2347 typedef struct {
2348 nir_if *nif;
2349
2350 /** Instruction that generates nif::condition. */
2351 nir_instr *conditional_instr;
2352
2353 /** Block within ::nif that has the break instruction. */
2354 nir_block *break_block;
2355
2356 /** Last block for the then- or else-path that does not contain the break. */
2357 nir_block *continue_from_block;
2358
2359 /** True when ::break_block is in the else-path of ::nif. */
2360 bool continue_from_then;
2361 bool induction_rhs;
2362
2363 /* This is true if the terminators exact trip count is unknown. For
2364 * example:
2365 *
2366 * for (int i = 0; i < imin(x, 4); i++)
2367 * ...
2368 *
2369 * Here loop analysis would have set a max_trip_count of 4 however we dont
2370 * know for sure that this is the exact trip count.
2371 */
2372 bool exact_trip_count_unknown;
2373
2374 struct list_head loop_terminator_link;
2375 } nir_loop_terminator;
2376
2377 typedef struct {
2378 /* Estimated cost (in number of instructions) of the loop */
2379 unsigned instr_cost;
2380
2381 /* Guessed trip count based on array indexing */
2382 unsigned guessed_trip_count;
2383
2384 /* Maximum number of times the loop is run (if known) */
2385 unsigned max_trip_count;
2386
2387 /* Do we know the exact number of times the loop will be run */
2388 bool exact_trip_count_known;
2389
2390 /* Unroll the loop regardless of its size */
2391 bool force_unroll;
2392
2393 /* Does the loop contain complex loop terminators, continues or other
2394 * complex behaviours? If this is true we can't rely on
2395 * loop_terminator_list to be complete or accurate.
2396 */
2397 bool complex_loop;
2398
2399 nir_loop_terminator *limiting_terminator;
2400
2401 /* A list of loop_terminators terminating this loop. */
2402 struct list_head loop_terminator_list;
2403 } nir_loop_info;
2404
2405 typedef enum {
2406 nir_loop_control_none = 0x0,
2407 nir_loop_control_unroll = 0x1,
2408 nir_loop_control_dont_unroll = 0x2,
2409 } nir_loop_control;
2410
2411 typedef struct {
2412 nir_cf_node cf_node;
2413
2414 struct exec_list body; /** < list of nir_cf_node */
2415
2416 nir_loop_info *info;
2417 nir_loop_control control;
2418 bool partially_unrolled;
2419 } nir_loop;
2420
2421 /**
2422 * Various bits of metadata that can may be created or required by
2423 * optimization and analysis passes
2424 */
2425 typedef enum {
2426 nir_metadata_none = 0x0,
2427 nir_metadata_block_index = 0x1,
2428 nir_metadata_dominance = 0x2,
2429 nir_metadata_live_ssa_defs = 0x4,
2430 nir_metadata_not_properly_reset = 0x8,
2431 nir_metadata_loop_analysis = 0x10,
2432 } nir_metadata;
2433
2434 typedef struct {
2435 nir_cf_node cf_node;
2436
2437 /** pointer to the function of which this is an implementation */
2438 struct nir_function *function;
2439
2440 struct exec_list body; /** < list of nir_cf_node */
2441
2442 nir_block *end_block;
2443
2444 /** list for all local variables in the function */
2445 struct exec_list locals;
2446
2447 /** list of local registers in the function */
2448 struct exec_list registers;
2449
2450 /** next available local register index */
2451 unsigned reg_alloc;
2452
2453 /** next available SSA value index */
2454 unsigned ssa_alloc;
2455
2456 /* total number of basic blocks, only valid when block_index_dirty = false */
2457 unsigned num_blocks;
2458
2459 nir_metadata valid_metadata;
2460 } nir_function_impl;
2461
2462 ATTRIBUTE_RETURNS_NONNULL static inline nir_block *
2463 nir_start_block(nir_function_impl *impl)
2464 {
2465 return (nir_block *) impl->body.head_sentinel.next;
2466 }
2467
2468 ATTRIBUTE_RETURNS_NONNULL static inline nir_block *
2469 nir_impl_last_block(nir_function_impl *impl)
2470 {
2471 return (nir_block *) impl->body.tail_sentinel.prev;
2472 }
2473
2474 static inline nir_cf_node *
2475 nir_cf_node_next(nir_cf_node *node)
2476 {
2477 struct exec_node *next = exec_node_get_next(&node->node);
2478 if (exec_node_is_tail_sentinel(next))
2479 return NULL;
2480 else
2481 return exec_node_data(nir_cf_node, next, node);
2482 }
2483
2484 static inline nir_cf_node *
2485 nir_cf_node_prev(nir_cf_node *node)
2486 {
2487 struct exec_node *prev = exec_node_get_prev(&node->node);
2488 if (exec_node_is_head_sentinel(prev))
2489 return NULL;
2490 else
2491 return exec_node_data(nir_cf_node, prev, node);
2492 }
2493
2494 static inline bool
2495 nir_cf_node_is_first(const nir_cf_node *node)
2496 {
2497 return exec_node_is_head_sentinel(node->node.prev);
2498 }
2499
2500 static inline bool
2501 nir_cf_node_is_last(const nir_cf_node *node)
2502 {
2503 return exec_node_is_tail_sentinel(node->node.next);
2504 }
2505
2506 NIR_DEFINE_CAST(nir_cf_node_as_block, nir_cf_node, nir_block, cf_node,
2507 type, nir_cf_node_block)
2508 NIR_DEFINE_CAST(nir_cf_node_as_if, nir_cf_node, nir_if, cf_node,
2509 type, nir_cf_node_if)
2510 NIR_DEFINE_CAST(nir_cf_node_as_loop, nir_cf_node, nir_loop, cf_node,
2511 type, nir_cf_node_loop)
2512 NIR_DEFINE_CAST(nir_cf_node_as_function, nir_cf_node,
2513 nir_function_impl, cf_node, type, nir_cf_node_function)
2514
2515 static inline nir_block *
2516 nir_if_first_then_block(nir_if *if_stmt)
2517 {
2518 struct exec_node *head = exec_list_get_head(&if_stmt->then_list);
2519 return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
2520 }
2521
2522 static inline nir_block *
2523 nir_if_last_then_block(nir_if *if_stmt)
2524 {
2525 struct exec_node *tail = exec_list_get_tail(&if_stmt->then_list);
2526 return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
2527 }
2528
2529 static inline nir_block *
2530 nir_if_first_else_block(nir_if *if_stmt)
2531 {
2532 struct exec_node *head = exec_list_get_head(&if_stmt->else_list);
2533 return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
2534 }
2535
2536 static inline nir_block *
2537 nir_if_last_else_block(nir_if *if_stmt)
2538 {
2539 struct exec_node *tail = exec_list_get_tail(&if_stmt->else_list);
2540 return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
2541 }
2542
2543 static inline nir_block *
2544 nir_loop_first_block(nir_loop *loop)
2545 {
2546 struct exec_node *head = exec_list_get_head(&loop->body);
2547 return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
2548 }
2549
2550 static inline nir_block *
2551 nir_loop_last_block(nir_loop *loop)
2552 {
2553 struct exec_node *tail = exec_list_get_tail(&loop->body);
2554 return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
2555 }
2556
2557 /**
2558 * Return true if this list of cf_nodes contains a single empty block.
2559 */
2560 static inline bool
2561 nir_cf_list_is_empty_block(struct exec_list *cf_list)
2562 {
2563 if (exec_list_is_singular(cf_list)) {
2564 struct exec_node *head = exec_list_get_head(cf_list);
2565 nir_block *block =
2566 nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
2567 return exec_list_is_empty(&block->instr_list);
2568 }
2569 return false;
2570 }
2571
2572 typedef struct {
2573 uint8_t num_components;
2574 uint8_t bit_size;
2575 } nir_parameter;
2576
2577 typedef struct nir_function {
2578 struct exec_node node;
2579
2580 const char *name;
2581 struct nir_shader *shader;
2582
2583 unsigned num_params;
2584 nir_parameter *params;
2585
2586 /** The implementation of this function.
2587 *
2588 * If the function is only declared and not implemented, this is NULL.
2589 */
2590 nir_function_impl *impl;
2591
2592 bool is_entrypoint;
2593 } nir_function;
2594
2595 typedef enum {
2596 nir_lower_imul64 = (1 << 0),
2597 nir_lower_isign64 = (1 << 1),
2598 /** Lower all int64 modulus and division opcodes */
2599 nir_lower_divmod64 = (1 << 2),
2600 /** Lower all 64-bit umul_high and imul_high opcodes */
2601 nir_lower_imul_high64 = (1 << 3),
2602 nir_lower_mov64 = (1 << 4),
2603 nir_lower_icmp64 = (1 << 5),
2604 nir_lower_iadd64 = (1 << 6),
2605 nir_lower_iabs64 = (1 << 7),
2606 nir_lower_ineg64 = (1 << 8),
2607 nir_lower_logic64 = (1 << 9),
2608 nir_lower_minmax64 = (1 << 10),
2609 nir_lower_shift64 = (1 << 11),
2610 nir_lower_imul_2x32_64 = (1 << 12),
2611 nir_lower_extract64 = (1 << 13),
2612 } nir_lower_int64_options;
2613
2614 typedef enum {
2615 nir_lower_drcp = (1 << 0),
2616 nir_lower_dsqrt = (1 << 1),
2617 nir_lower_drsq = (1 << 2),
2618 nir_lower_dtrunc = (1 << 3),
2619 nir_lower_dfloor = (1 << 4),
2620 nir_lower_dceil = (1 << 5),
2621 nir_lower_dfract = (1 << 6),
2622 nir_lower_dround_even = (1 << 7),
2623 nir_lower_dmod = (1 << 8),
2624 nir_lower_dsub = (1 << 9),
2625 nir_lower_ddiv = (1 << 10),
2626 nir_lower_fp64_full_software = (1 << 11),
2627 } nir_lower_doubles_options;
2628
2629 typedef enum {
2630 nir_divergence_single_prim_per_subgroup = (1 << 0),
2631 nir_divergence_single_patch_per_tcs_subgroup = (1 << 1),
2632 nir_divergence_single_patch_per_tes_subgroup = (1 << 2),
2633 nir_divergence_view_index_uniform = (1 << 3),
2634 } nir_divergence_options;
2635
2636 typedef struct nir_shader_compiler_options {
2637 bool lower_fdiv;
2638 bool lower_ffma;
2639 bool fuse_ffma;
2640 bool lower_flrp16;
2641 bool lower_flrp32;
2642 /** Lowers flrp when it does not support doubles */
2643 bool lower_flrp64;
2644 bool lower_fpow;
2645 bool lower_fsat;
2646 bool lower_fsqrt;
2647 bool lower_sincos;
2648 bool lower_fmod;
2649 /** Lowers ibitfield_extract/ubitfield_extract to ibfe/ubfe. */
2650 bool lower_bitfield_extract;
2651 /** Lowers ibitfield_extract/ubitfield_extract to compares, shifts. */
2652 bool lower_bitfield_extract_to_shifts;
2653 /** Lowers bitfield_insert to bfi/bfm */
2654 bool lower_bitfield_insert;
2655 /** Lowers bitfield_insert to compares, and shifts. */
2656 bool lower_bitfield_insert_to_shifts;
2657 /** Lowers bitfield_insert to bfm/bitfield_select. */
2658 bool lower_bitfield_insert_to_bitfield_select;
2659 /** Lowers bitfield_reverse to shifts. */
2660 bool lower_bitfield_reverse;
2661 /** Lowers bit_count to shifts. */
2662 bool lower_bit_count;
2663 /** Lowers ifind_msb to compare and ufind_msb */
2664 bool lower_ifind_msb;
2665 /** Lowers find_lsb to ufind_msb and logic ops */
2666 bool lower_find_lsb;
2667 bool lower_uadd_carry;
2668 bool lower_usub_borrow;
2669 /** Lowers imul_high/umul_high to 16-bit multiplies and carry operations. */
2670 bool lower_mul_high;
2671 /** lowers fneg and ineg to fsub and isub. */
2672 bool lower_negate;
2673 /** lowers fsub and isub to fadd+fneg and iadd+ineg. */
2674 bool lower_sub;
2675
2676 /* lower {slt,sge,seq,sne} to {flt,fge,feq,fne} + b2f: */
2677 bool lower_scmp;
2678
2679 /* lower fall_equalN/fany_nequalN (ex:fany_nequal4 to sne+fdot4+fsat) */
2680 bool lower_vector_cmp;
2681
2682 /** enables rules to lower idiv by power-of-two: */
2683 bool lower_idiv;
2684
2685 /** enable rules to avoid bit ops */
2686 bool lower_bitops;
2687
2688 /** enables rules to lower isign to imin+imax */
2689 bool lower_isign;
2690
2691 /** enables rules to lower fsign to fsub and flt */
2692 bool lower_fsign;
2693
2694 /* lower fdph to fdot4 */
2695 bool lower_fdph;
2696
2697 /** lower fdot to fmul and fsum/fadd. */
2698 bool lower_fdot;
2699
2700 /* Does the native fdot instruction replicate its result for four
2701 * components? If so, then opt_algebraic_late will turn all fdotN
2702 * instructions into fdot_replicatedN instructions.
2703 */
2704 bool fdot_replicates;
2705
2706 /** lowers ffloor to fsub+ffract: */
2707 bool lower_ffloor;
2708
2709 /** lowers ffract to fsub+ffloor: */
2710 bool lower_ffract;
2711
2712 /** lowers fceil to fneg+ffloor+fneg: */
2713 bool lower_fceil;
2714
2715 bool lower_ftrunc;
2716
2717 bool lower_ldexp;
2718
2719 bool lower_pack_half_2x16;
2720 bool lower_pack_unorm_2x16;
2721 bool lower_pack_snorm_2x16;
2722 bool lower_pack_unorm_4x8;
2723 bool lower_pack_snorm_4x8;
2724 bool lower_unpack_half_2x16;
2725 bool lower_unpack_unorm_2x16;
2726 bool lower_unpack_snorm_2x16;
2727 bool lower_unpack_unorm_4x8;
2728 bool lower_unpack_snorm_4x8;
2729
2730 bool lower_extract_byte;
2731 bool lower_extract_word;
2732
2733 bool lower_all_io_to_temps;
2734 bool lower_all_io_to_elements;
2735
2736 /* Indicates that the driver only has zero-based vertex id */
2737 bool vertex_id_zero_based;
2738
2739 /**
2740 * If enabled, gl_BaseVertex will be lowered as:
2741 * is_indexed_draw (~0/0) & firstvertex
2742 */
2743 bool lower_base_vertex;
2744
2745 /**
2746 * If enabled, gl_HelperInvocation will be lowered as:
2747 *
2748 * !((1 << sample_id) & sample_mask_in))
2749 *
2750 * This depends on some possibly hw implementation details, which may
2751 * not be true for all hw. In particular that the FS is only executed
2752 * for covered samples or for helper invocations. So, do not blindly
2753 * enable this option.
2754 *
2755 * Note: See also issue #22 in ARB_shader_image_load_store
2756 */
2757 bool lower_helper_invocation;
2758
2759 /**
2760 * Convert gl_SampleMaskIn to gl_HelperInvocation as follows:
2761 *
2762 * gl_SampleMaskIn == 0 ---> gl_HelperInvocation
2763 * gl_SampleMaskIn != 0 ---> !gl_HelperInvocation
2764 */
2765 bool optimize_sample_mask_in;
2766
2767 bool lower_cs_local_index_from_id;
2768 bool lower_cs_local_id_from_index;
2769
2770 bool lower_device_index_to_zero;
2771
2772 /* Set if nir_lower_wpos_ytransform() should also invert gl_PointCoord. */
2773 bool lower_wpos_pntc;
2774
2775 bool lower_hadd;
2776 bool lower_add_sat;
2777
2778 /**
2779 * Should IO be re-vectorized? Some scalar ISAs still operate on vec4's
2780 * for IO purposes and would prefer loads/stores be vectorized.
2781 */
2782 bool vectorize_io;
2783 bool lower_to_scalar;
2784
2785 /**
2786 * Should nir_lower_io() create load_interpolated_input intrinsics?
2787 *
2788 * If not, it generates regular load_input intrinsics and interpolation
2789 * information must be inferred from the list of input nir_variables.
2790 */
2791 bool use_interpolated_input_intrinsics;
2792
2793 /* Lowers when 32x32->64 bit multiplication is not supported */
2794 bool lower_mul_2x32_64;
2795
2796 /* Lowers when rotate instruction is not supported */
2797 bool lower_rotate;
2798
2799 /**
2800 * Backend supports imul24, and would like to use it (when possible)
2801 * for address/offset calculation. If true, driver should call
2802 * nir_lower_amul(). (If not set, amul will automatically be lowered
2803 * to imul.)
2804 */
2805 bool has_imul24;
2806
2807 /**
2808 * Is this the Intel vec4 backend?
2809 *
2810 * Used to inhibit algebraic optimizations that are known to be harmful on
2811 * the Intel vec4 backend. This is generally applicable to any
2812 * optimization that might cause more immediate values to be used in
2813 * 3-source (e.g., ffma and flrp) instructions.
2814 */
2815 bool intel_vec4;
2816
2817 unsigned max_unroll_iterations;
2818
2819 nir_lower_int64_options lower_int64_options;
2820 nir_lower_doubles_options lower_doubles_options;
2821 } nir_shader_compiler_options;
2822
2823 typedef struct nir_shader {
2824 /** list of uniforms (nir_variable) */
2825 struct exec_list uniforms;
2826
2827 /** list of inputs (nir_variable) */
2828 struct exec_list inputs;
2829
2830 /** list of outputs (nir_variable) */
2831 struct exec_list outputs;
2832
2833 /** list of shared compute variables (nir_variable) */
2834 struct exec_list shared;
2835
2836 /** Set of driver-specific options for the shader.
2837 *
2838 * The memory for the options is expected to be kept in a single static
2839 * copy by the driver.
2840 */
2841 const struct nir_shader_compiler_options *options;
2842
2843 /** Various bits of compile-time information about a given shader */
2844 struct shader_info info;
2845
2846 /** list of global variables in the shader (nir_variable) */
2847 struct exec_list globals;
2848
2849 /** list of system value variables in the shader (nir_variable) */
2850 struct exec_list system_values;
2851
2852 struct exec_list functions; /** < list of nir_function */
2853
2854 /**
2855 * the highest index a load_input_*, load_uniform_*, etc. intrinsic can
2856 * access plus one
2857 */
2858 unsigned num_inputs, num_uniforms, num_outputs, num_shared;
2859
2860 /** Size in bytes of required scratch space */
2861 unsigned scratch_size;
2862
2863 /** Constant data associated with this shader.
2864 *
2865 * Constant data is loaded through load_constant intrinsics. See also
2866 * nir_opt_large_constants.
2867 */
2868 void *constant_data;
2869 unsigned constant_data_size;
2870 } nir_shader;
2871
2872 #define nir_foreach_function(func, shader) \
2873 foreach_list_typed(nir_function, func, node, &(shader)->functions)
2874
2875 static inline nir_function_impl *
2876 nir_shader_get_entrypoint(nir_shader *shader)
2877 {
2878 nir_function *func = NULL;
2879
2880 nir_foreach_function(function, shader) {
2881 assert(func == NULL);
2882 if (function->is_entrypoint) {
2883 func = function;
2884 #ifndef NDEBUG
2885 break;
2886 #endif
2887 }
2888 }
2889
2890 if (!func)
2891 return NULL;
2892
2893 assert(func->num_params == 0);
2894 assert(func->impl);
2895 return func->impl;
2896 }
2897
2898 nir_shader *nir_shader_create(void *mem_ctx,
2899 gl_shader_stage stage,
2900 const nir_shader_compiler_options *options,
2901 shader_info *si);
2902
2903 nir_register *nir_local_reg_create(nir_function_impl *impl);
2904
2905 void nir_reg_remove(nir_register *reg);
2906
2907 /** Adds a variable to the appropriate list in nir_shader */
2908 void nir_shader_add_variable(nir_shader *shader, nir_variable *var);
2909
2910 static inline void
2911 nir_function_impl_add_variable(nir_function_impl *impl, nir_variable *var)
2912 {
2913 assert(var->data.mode == nir_var_function_temp);
2914 exec_list_push_tail(&impl->locals, &var->node);
2915 }
2916
2917 /** creates a variable, sets a few defaults, and adds it to the list */
2918 nir_variable *nir_variable_create(nir_shader *shader,
2919 nir_variable_mode mode,
2920 const struct glsl_type *type,
2921 const char *name);
2922 /** creates a local variable and adds it to the list */
2923 nir_variable *nir_local_variable_create(nir_function_impl *impl,
2924 const struct glsl_type *type,
2925 const char *name);
2926
2927 /** creates a function and adds it to the shader's list of functions */
2928 nir_function *nir_function_create(nir_shader *shader, const char *name);
2929
2930 nir_function_impl *nir_function_impl_create(nir_function *func);
2931 /** creates a function_impl that isn't tied to any particular function */
2932 nir_function_impl *nir_function_impl_create_bare(nir_shader *shader);
2933
2934 nir_block *nir_block_create(nir_shader *shader);
2935 nir_if *nir_if_create(nir_shader *shader);
2936 nir_loop *nir_loop_create(nir_shader *shader);
2937
2938 nir_function_impl *nir_cf_node_get_function(nir_cf_node *node);
2939
2940 /** requests that the given pieces of metadata be generated */
2941 void nir_metadata_require(nir_function_impl *impl, nir_metadata required, ...);
2942 /** dirties all but the preserved metadata */
2943 void nir_metadata_preserve(nir_function_impl *impl, nir_metadata preserved);
2944
2945 /** creates an instruction with default swizzle/writemask/etc. with NULL registers */
2946 nir_alu_instr *nir_alu_instr_create(nir_shader *shader, nir_op op);
2947
2948 nir_deref_instr *nir_deref_instr_create(nir_shader *shader,
2949 nir_deref_type deref_type);
2950
2951 nir_jump_instr *nir_jump_instr_create(nir_shader *shader, nir_jump_type type);
2952
2953 nir_load_const_instr *nir_load_const_instr_create(nir_shader *shader,
2954 unsigned num_components,
2955 unsigned bit_size);
2956
2957 nir_intrinsic_instr *nir_intrinsic_instr_create(nir_shader *shader,
2958 nir_intrinsic_op op);
2959
2960 nir_call_instr *nir_call_instr_create(nir_shader *shader,
2961 nir_function *callee);
2962
2963 nir_tex_instr *nir_tex_instr_create(nir_shader *shader, unsigned num_srcs);
2964
2965 nir_phi_instr *nir_phi_instr_create(nir_shader *shader);
2966
2967 nir_parallel_copy_instr *nir_parallel_copy_instr_create(nir_shader *shader);
2968
2969 nir_ssa_undef_instr *nir_ssa_undef_instr_create(nir_shader *shader,
2970 unsigned num_components,
2971 unsigned bit_size);
2972
2973 nir_const_value nir_alu_binop_identity(nir_op binop, unsigned bit_size);
2974
2975 /**
2976 * NIR Cursors and Instruction Insertion API
2977 * @{
2978 *
2979 * A tiny struct representing a point to insert/extract instructions or
2980 * control flow nodes. Helps reduce the combinatorial explosion of possible
2981 * points to insert/extract.
2982 *
2983 * \sa nir_control_flow.h
2984 */
2985 typedef enum {
2986 nir_cursor_before_block,
2987 nir_cursor_after_block,
2988 nir_cursor_before_instr,
2989 nir_cursor_after_instr,
2990 } nir_cursor_option;
2991
2992 typedef struct {
2993 nir_cursor_option option;
2994 union {
2995 nir_block *block;
2996 nir_instr *instr;
2997 };
2998 } nir_cursor;
2999
3000 static inline nir_block *
3001 nir_cursor_current_block(nir_cursor cursor)
3002 {
3003 if (cursor.option == nir_cursor_before_instr ||
3004 cursor.option == nir_cursor_after_instr) {
3005 return cursor.instr->block;
3006 } else {
3007 return cursor.block;
3008 }
3009 }
3010
3011 bool nir_cursors_equal(nir_cursor a, nir_cursor b);
3012
3013 static inline nir_cursor
3014 nir_before_block(nir_block *block)
3015 {
3016 nir_cursor cursor;
3017 cursor.option = nir_cursor_before_block;
3018 cursor.block = block;
3019 return cursor;
3020 }
3021
3022 static inline nir_cursor
3023 nir_after_block(nir_block *block)
3024 {
3025 nir_cursor cursor;
3026 cursor.option = nir_cursor_after_block;
3027 cursor.block = block;
3028 return cursor;
3029 }
3030
3031 static inline nir_cursor
3032 nir_before_instr(nir_instr *instr)
3033 {
3034 nir_cursor cursor;
3035 cursor.option = nir_cursor_before_instr;
3036 cursor.instr = instr;
3037 return cursor;
3038 }
3039
3040 static inline nir_cursor
3041 nir_after_instr(nir_instr *instr)
3042 {
3043 nir_cursor cursor;
3044 cursor.option = nir_cursor_after_instr;
3045 cursor.instr = instr;
3046 return cursor;
3047 }
3048
3049 static inline nir_cursor
3050 nir_after_block_before_jump(nir_block *block)
3051 {
3052 nir_instr *last_instr = nir_block_last_instr(block);
3053 if (last_instr && last_instr->type == nir_instr_type_jump) {
3054 return nir_before_instr(last_instr);
3055 } else {
3056 return nir_after_block(block);
3057 }
3058 }
3059
3060 static inline nir_cursor
3061 nir_before_src(nir_src *src, bool is_if_condition)
3062 {
3063 if (is_if_condition) {
3064 nir_block *prev_block =
3065 nir_cf_node_as_block(nir_cf_node_prev(&src->parent_if->cf_node));
3066 assert(!nir_block_ends_in_jump(prev_block));
3067 return nir_after_block(prev_block);
3068 } else if (src->parent_instr->type == nir_instr_type_phi) {
3069 #ifndef NDEBUG
3070 nir_phi_instr *cond_phi = nir_instr_as_phi(src->parent_instr);
3071 bool found = false;
3072 nir_foreach_phi_src(phi_src, cond_phi) {
3073 if (phi_src->src.ssa == src->ssa) {
3074 found = true;
3075 break;
3076 }
3077 }
3078 assert(found);
3079 #endif
3080 /* The LIST_ENTRY macro is a generic container-of macro, it just happens
3081 * to have a more specific name.
3082 */
3083 nir_phi_src *phi_src = LIST_ENTRY(nir_phi_src, src, src);
3084 return nir_after_block_before_jump(phi_src->pred);
3085 } else {
3086 return nir_before_instr(src->parent_instr);
3087 }
3088 }
3089
3090 static inline nir_cursor
3091 nir_before_cf_node(nir_cf_node *node)
3092 {
3093 if (node->type == nir_cf_node_block)
3094 return nir_before_block(nir_cf_node_as_block(node));
3095
3096 return nir_after_block(nir_cf_node_as_block(nir_cf_node_prev(node)));
3097 }
3098
3099 static inline nir_cursor
3100 nir_after_cf_node(nir_cf_node *node)
3101 {
3102 if (node->type == nir_cf_node_block)
3103 return nir_after_block(nir_cf_node_as_block(node));
3104
3105 return nir_before_block(nir_cf_node_as_block(nir_cf_node_next(node)));
3106 }
3107
3108 static inline nir_cursor
3109 nir_after_phis(nir_block *block)
3110 {
3111 nir_foreach_instr(instr, block) {
3112 if (instr->type != nir_instr_type_phi)
3113 return nir_before_instr(instr);
3114 }
3115 return nir_after_block(block);
3116 }
3117
3118 static inline nir_cursor
3119 nir_after_cf_node_and_phis(nir_cf_node *node)
3120 {
3121 if (node->type == nir_cf_node_block)
3122 return nir_after_block(nir_cf_node_as_block(node));
3123
3124 nir_block *block = nir_cf_node_as_block(nir_cf_node_next(node));
3125
3126 return nir_after_phis(block);
3127 }
3128
3129 static inline nir_cursor
3130 nir_before_cf_list(struct exec_list *cf_list)
3131 {
3132 nir_cf_node *first_node = exec_node_data(nir_cf_node,
3133 exec_list_get_head(cf_list), node);
3134 return nir_before_cf_node(first_node);
3135 }
3136
3137 static inline nir_cursor
3138 nir_after_cf_list(struct exec_list *cf_list)
3139 {
3140 nir_cf_node *last_node = exec_node_data(nir_cf_node,
3141 exec_list_get_tail(cf_list), node);
3142 return nir_after_cf_node(last_node);
3143 }
3144
3145 /**
3146 * Insert a NIR instruction at the given cursor.
3147 *
3148 * Note: This does not update the cursor.
3149 */
3150 void nir_instr_insert(nir_cursor cursor, nir_instr *instr);
3151
3152 static inline void
3153 nir_instr_insert_before(nir_instr *instr, nir_instr *before)
3154 {
3155 nir_instr_insert(nir_before_instr(instr), before);
3156 }
3157
3158 static inline void
3159 nir_instr_insert_after(nir_instr *instr, nir_instr *after)
3160 {
3161 nir_instr_insert(nir_after_instr(instr), after);
3162 }
3163
3164 static inline void
3165 nir_instr_insert_before_block(nir_block *block, nir_instr *before)
3166 {
3167 nir_instr_insert(nir_before_block(block), before);
3168 }
3169
3170 static inline void
3171 nir_instr_insert_after_block(nir_block *block, nir_instr *after)
3172 {
3173 nir_instr_insert(nir_after_block(block), after);
3174 }
3175
3176 static inline void
3177 nir_instr_insert_before_cf(nir_cf_node *node, nir_instr *before)
3178 {
3179 nir_instr_insert(nir_before_cf_node(node), before);
3180 }
3181
3182 static inline void
3183 nir_instr_insert_after_cf(nir_cf_node *node, nir_instr *after)
3184 {
3185 nir_instr_insert(nir_after_cf_node(node), after);
3186 }
3187
3188 static inline void
3189 nir_instr_insert_before_cf_list(struct exec_list *list, nir_instr *before)
3190 {
3191 nir_instr_insert(nir_before_cf_list(list), before);
3192 }
3193
3194 static inline void
3195 nir_instr_insert_after_cf_list(struct exec_list *list, nir_instr *after)
3196 {
3197 nir_instr_insert(nir_after_cf_list(list), after);
3198 }
3199
3200 void nir_instr_remove_v(nir_instr *instr);
3201
3202 static inline nir_cursor
3203 nir_instr_remove(nir_instr *instr)
3204 {
3205 nir_cursor cursor;
3206 nir_instr *prev = nir_instr_prev(instr);
3207 if (prev) {
3208 cursor = nir_after_instr(prev);
3209 } else {
3210 cursor = nir_before_block(instr->block);
3211 }
3212 nir_instr_remove_v(instr);
3213 return cursor;
3214 }
3215
3216 /** @} */
3217
3218 nir_ssa_def *nir_instr_ssa_def(nir_instr *instr);
3219
3220 typedef bool (*nir_foreach_ssa_def_cb)(nir_ssa_def *def, void *state);
3221 typedef bool (*nir_foreach_dest_cb)(nir_dest *dest, void *state);
3222 typedef bool (*nir_foreach_src_cb)(nir_src *src, void *state);
3223 bool nir_foreach_ssa_def(nir_instr *instr, nir_foreach_ssa_def_cb cb,
3224 void *state);
3225 bool nir_foreach_dest(nir_instr *instr, nir_foreach_dest_cb cb, void *state);
3226 bool nir_foreach_src(nir_instr *instr, nir_foreach_src_cb cb, void *state);
3227
3228 nir_const_value *nir_src_as_const_value(nir_src src);
3229
3230 #define NIR_SRC_AS_(name, c_type, type_enum, cast_macro) \
3231 static inline c_type * \
3232 nir_src_as_ ## name (nir_src src) \
3233 { \
3234 return src.is_ssa && src.ssa->parent_instr->type == type_enum \
3235 ? cast_macro(src.ssa->parent_instr) : NULL; \
3236 }
3237
3238 NIR_SRC_AS_(alu_instr, nir_alu_instr, nir_instr_type_alu, nir_instr_as_alu)
3239 NIR_SRC_AS_(intrinsic, nir_intrinsic_instr,
3240 nir_instr_type_intrinsic, nir_instr_as_intrinsic)
3241 NIR_SRC_AS_(deref, nir_deref_instr, nir_instr_type_deref, nir_instr_as_deref)
3242
3243 bool nir_src_is_dynamically_uniform(nir_src src);
3244 bool nir_srcs_equal(nir_src src1, nir_src src2);
3245 bool nir_instrs_equal(const nir_instr *instr1, const nir_instr *instr2);
3246 void nir_instr_rewrite_src(nir_instr *instr, nir_src *src, nir_src new_src);
3247 void nir_instr_move_src(nir_instr *dest_instr, nir_src *dest, nir_src *src);
3248 void nir_if_rewrite_condition(nir_if *if_stmt, nir_src new_src);
3249 void nir_instr_rewrite_dest(nir_instr *instr, nir_dest *dest,
3250 nir_dest new_dest);
3251
3252 void nir_ssa_dest_init(nir_instr *instr, nir_dest *dest,
3253 unsigned num_components, unsigned bit_size,
3254 const char *name);
3255 void nir_ssa_def_init(nir_instr *instr, nir_ssa_def *def,
3256 unsigned num_components, unsigned bit_size,
3257 const char *name);
3258 static inline void
3259 nir_ssa_dest_init_for_type(nir_instr *instr, nir_dest *dest,
3260 const struct glsl_type *type,
3261 const char *name)
3262 {
3263 assert(glsl_type_is_vector_or_scalar(type));
3264 nir_ssa_dest_init(instr, dest, glsl_get_components(type),
3265 glsl_get_bit_size(type), name);
3266 }
3267 void nir_ssa_def_rewrite_uses(nir_ssa_def *def, nir_src new_src);
3268 void nir_ssa_def_rewrite_uses_after(nir_ssa_def *def, nir_src new_src,
3269 nir_instr *after_me);
3270
3271 nir_component_mask_t nir_ssa_def_components_read(const nir_ssa_def *def);
3272
3273 /*
3274 * finds the next basic block in source-code order, returns NULL if there is
3275 * none
3276 */
3277
3278 nir_block *nir_block_cf_tree_next(nir_block *block);
3279
3280 /* Performs the opposite of nir_block_cf_tree_next() */
3281
3282 nir_block *nir_block_cf_tree_prev(nir_block *block);
3283
3284 /* Gets the first block in a CF node in source-code order */
3285
3286 nir_block *nir_cf_node_cf_tree_first(nir_cf_node *node);
3287
3288 /* Gets the last block in a CF node in source-code order */
3289
3290 nir_block *nir_cf_node_cf_tree_last(nir_cf_node *node);
3291
3292 /* Gets the next block after a CF node in source-code order */
3293
3294 nir_block *nir_cf_node_cf_tree_next(nir_cf_node *node);
3295
3296 /* Macros for loops that visit blocks in source-code order */
3297
3298 #define nir_foreach_block(block, impl) \
3299 for (nir_block *block = nir_start_block(impl); block != NULL; \
3300 block = nir_block_cf_tree_next(block))
3301
3302 #define nir_foreach_block_safe(block, impl) \
3303 for (nir_block *block = nir_start_block(impl), \
3304 *next = nir_block_cf_tree_next(block); \
3305 block != NULL; \
3306 block = next, next = nir_block_cf_tree_next(block))
3307
3308 #define nir_foreach_block_reverse(block, impl) \
3309 for (nir_block *block = nir_impl_last_block(impl); block != NULL; \
3310 block = nir_block_cf_tree_prev(block))
3311
3312 #define nir_foreach_block_reverse_safe(block, impl) \
3313 for (nir_block *block = nir_impl_last_block(impl), \
3314 *prev = nir_block_cf_tree_prev(block); \
3315 block != NULL; \
3316 block = prev, prev = nir_block_cf_tree_prev(block))
3317
3318 #define nir_foreach_block_in_cf_node(block, node) \
3319 for (nir_block *block = nir_cf_node_cf_tree_first(node); \
3320 block != nir_cf_node_cf_tree_next(node); \
3321 block = nir_block_cf_tree_next(block))
3322
3323 /* If the following CF node is an if, this function returns that if.
3324 * Otherwise, it returns NULL.
3325 */
3326 nir_if *nir_block_get_following_if(nir_block *block);
3327
3328 nir_loop *nir_block_get_following_loop(nir_block *block);
3329
3330 void nir_index_local_regs(nir_function_impl *impl);
3331 void nir_index_ssa_defs(nir_function_impl *impl);
3332 unsigned nir_index_instrs(nir_function_impl *impl);
3333
3334 void nir_index_blocks(nir_function_impl *impl);
3335
3336 void nir_print_shader(nir_shader *shader, FILE *fp);
3337 void nir_print_shader_annotated(nir_shader *shader, FILE *fp, struct hash_table *errors);
3338 void nir_print_instr(const nir_instr *instr, FILE *fp);
3339 void nir_print_deref(const nir_deref_instr *deref, FILE *fp);
3340
3341 /** Shallow clone of a single ALU instruction. */
3342 nir_alu_instr *nir_alu_instr_clone(nir_shader *s, const nir_alu_instr *orig);
3343
3344 nir_shader *nir_shader_clone(void *mem_ctx, const nir_shader *s);
3345 nir_function_impl *nir_function_impl_clone(nir_shader *shader,
3346 const nir_function_impl *fi);
3347 nir_constant *nir_constant_clone(const nir_constant *c, nir_variable *var);
3348 nir_variable *nir_variable_clone(const nir_variable *c, nir_shader *shader);
3349
3350 void nir_shader_replace(nir_shader *dest, nir_shader *src);
3351
3352 void nir_shader_serialize_deserialize(nir_shader *s);
3353
3354 #ifndef NDEBUG
3355 void nir_validate_shader(nir_shader *shader, const char *when);
3356 void nir_metadata_set_validation_flag(nir_shader *shader);
3357 void nir_metadata_check_validation_flag(nir_shader *shader);
3358
3359 static inline bool
3360 should_skip_nir(const char *name)
3361 {
3362 static const char *list = NULL;
3363 if (!list) {
3364 /* Comma separated list of names to skip. */
3365 list = getenv("NIR_SKIP");
3366 if (!list)
3367 list = "";
3368 }
3369
3370 if (!list[0])
3371 return false;
3372
3373 return comma_separated_list_contains(list, name);
3374 }
3375
3376 static inline bool
3377 should_clone_nir(void)
3378 {
3379 static int should_clone = -1;
3380 if (should_clone < 0)
3381 should_clone = env_var_as_boolean("NIR_TEST_CLONE", false);
3382
3383 return should_clone;
3384 }
3385
3386 static inline bool
3387 should_serialize_deserialize_nir(void)
3388 {
3389 static int test_serialize = -1;
3390 if (test_serialize < 0)
3391 test_serialize = env_var_as_boolean("NIR_TEST_SERIALIZE", false);
3392
3393 return test_serialize;
3394 }
3395
3396 static inline bool
3397 should_print_nir(void)
3398 {
3399 static int should_print = -1;
3400 if (should_print < 0)
3401 should_print = env_var_as_boolean("NIR_PRINT", false);
3402
3403 return should_print;
3404 }
3405 #else
3406 static inline void nir_validate_shader(nir_shader *shader, const char *when) { (void) shader; (void)when; }
3407 static inline void nir_metadata_set_validation_flag(nir_shader *shader) { (void) shader; }
3408 static inline void nir_metadata_check_validation_flag(nir_shader *shader) { (void) shader; }
3409 static inline bool should_skip_nir(UNUSED const char *pass_name) { return false; }
3410 static inline bool should_clone_nir(void) { return false; }
3411 static inline bool should_serialize_deserialize_nir(void) { return false; }
3412 static inline bool should_print_nir(void) { return false; }
3413 #endif /* NDEBUG */
3414
3415 #define _PASS(pass, nir, do_pass) do { \
3416 if (should_skip_nir(#pass)) { \
3417 printf("skipping %s\n", #pass); \
3418 break; \
3419 } \
3420 do_pass \
3421 nir_validate_shader(nir, "after " #pass); \
3422 if (should_clone_nir()) { \
3423 nir_shader *clone = nir_shader_clone(ralloc_parent(nir), nir); \
3424 nir_shader_replace(nir, clone); \
3425 } \
3426 if (should_serialize_deserialize_nir()) { \
3427 nir_shader_serialize_deserialize(nir); \
3428 } \
3429 } while (0)
3430
3431 #define NIR_PASS(progress, nir, pass, ...) _PASS(pass, nir, \
3432 nir_metadata_set_validation_flag(nir); \
3433 if (should_print_nir()) \
3434 printf("%s\n", #pass); \
3435 if (pass(nir, ##__VA_ARGS__)) { \
3436 progress = true; \
3437 if (should_print_nir()) \
3438 nir_print_shader(nir, stdout); \
3439 nir_metadata_check_validation_flag(nir); \
3440 } \
3441 )
3442
3443 #define NIR_PASS_V(nir, pass, ...) _PASS(pass, nir, \
3444 if (should_print_nir()) \
3445 printf("%s\n", #pass); \
3446 pass(nir, ##__VA_ARGS__); \
3447 if (should_print_nir()) \
3448 nir_print_shader(nir, stdout); \
3449 )
3450
3451 #define NIR_SKIP(name) should_skip_nir(#name)
3452
3453 /** An instruction filtering callback
3454 *
3455 * Returns true if the instruction should be processed and false otherwise.
3456 */
3457 typedef bool (*nir_instr_filter_cb)(const nir_instr *, const void *);
3458
3459 /** A simple instruction lowering callback
3460 *
3461 * Many instruction lowering passes can be written as a simple function which
3462 * takes an instruction as its input and returns a sequence of instructions
3463 * that implement the consumed instruction. This function type represents
3464 * such a lowering function. When called, a function with this prototype
3465 * should either return NULL indicating that no lowering needs to be done or
3466 * emit a sequence of instructions using the provided builder (whose cursor
3467 * will already be placed after the instruction to be lowered) and return the
3468 * resulting nir_ssa_def.
3469 */
3470 typedef nir_ssa_def *(*nir_lower_instr_cb)(struct nir_builder *,
3471 nir_instr *, void *);
3472
3473 /**
3474 * Special return value for nir_lower_instr_cb when some progress occurred
3475 * (like changing an input to the instr) that didn't result in a replacement
3476 * SSA def being generated.
3477 */
3478 #define NIR_LOWER_INSTR_PROGRESS ((nir_ssa_def *)(uintptr_t)1)
3479
3480 /** Iterate over all the instructions in a nir_function_impl and lower them
3481 * using the provided callbacks
3482 *
3483 * This function implements the guts of a standard lowering pass for you. It
3484 * iterates over all of the instructions in a nir_function_impl and calls the
3485 * filter callback on each one. If the filter callback returns true, it then
3486 * calls the lowering call back on the instruction. (Splitting it this way
3487 * allows us to avoid some save/restore work for instructions we know won't be
3488 * lowered.) If the instruction is dead after the lowering is complete, it
3489 * will be removed. If new instructions are added, the lowering callback will
3490 * also be called on them in case multiple lowerings are required.
3491 *
3492 * The metadata for the nir_function_impl will also be updated. If any blocks
3493 * are added (they cannot be removed), dominance and block indices will be
3494 * invalidated.
3495 */
3496 bool nir_function_impl_lower_instructions(nir_function_impl *impl,
3497 nir_instr_filter_cb filter,
3498 nir_lower_instr_cb lower,
3499 void *cb_data);
3500 bool nir_shader_lower_instructions(nir_shader *shader,
3501 nir_instr_filter_cb filter,
3502 nir_lower_instr_cb lower,
3503 void *cb_data);
3504
3505 void nir_calc_dominance_impl(nir_function_impl *impl);
3506 void nir_calc_dominance(nir_shader *shader);
3507
3508 nir_block *nir_dominance_lca(nir_block *b1, nir_block *b2);
3509 bool nir_block_dominates(nir_block *parent, nir_block *child);
3510 bool nir_block_is_unreachable(nir_block *block);
3511
3512 void nir_dump_dom_tree_impl(nir_function_impl *impl, FILE *fp);
3513 void nir_dump_dom_tree(nir_shader *shader, FILE *fp);
3514
3515 void nir_dump_dom_frontier_impl(nir_function_impl *impl, FILE *fp);
3516 void nir_dump_dom_frontier(nir_shader *shader, FILE *fp);
3517
3518 void nir_dump_cfg_impl(nir_function_impl *impl, FILE *fp);
3519 void nir_dump_cfg(nir_shader *shader, FILE *fp);
3520
3521 int nir_gs_count_vertices(const nir_shader *shader);
3522
3523 bool nir_shrink_vec_array_vars(nir_shader *shader, nir_variable_mode modes);
3524 bool nir_split_array_vars(nir_shader *shader, nir_variable_mode modes);
3525 bool nir_split_var_copies(nir_shader *shader);
3526 bool nir_split_per_member_structs(nir_shader *shader);
3527 bool nir_split_struct_vars(nir_shader *shader, nir_variable_mode modes);
3528
3529 bool nir_lower_returns_impl(nir_function_impl *impl);
3530 bool nir_lower_returns(nir_shader *shader);
3531
3532 void nir_inline_function_impl(struct nir_builder *b,
3533 const nir_function_impl *impl,
3534 nir_ssa_def **params);
3535 bool nir_inline_functions(nir_shader *shader);
3536
3537 bool nir_propagate_invariant(nir_shader *shader);
3538
3539 void nir_lower_var_copy_instr(nir_intrinsic_instr *copy, nir_shader *shader);
3540 void nir_lower_deref_copy_instr(struct nir_builder *b,
3541 nir_intrinsic_instr *copy);
3542 bool nir_lower_var_copies(nir_shader *shader);
3543
3544 void nir_fixup_deref_modes(nir_shader *shader);
3545
3546 bool nir_lower_global_vars_to_local(nir_shader *shader);
3547
3548 typedef enum {
3549 nir_lower_direct_array_deref_of_vec_load = (1 << 0),
3550 nir_lower_indirect_array_deref_of_vec_load = (1 << 1),
3551 nir_lower_direct_array_deref_of_vec_store = (1 << 2),
3552 nir_lower_indirect_array_deref_of_vec_store = (1 << 3),
3553 } nir_lower_array_deref_of_vec_options;
3554
3555 bool nir_lower_array_deref_of_vec(nir_shader *shader, nir_variable_mode modes,
3556 nir_lower_array_deref_of_vec_options options);
3557
3558 bool nir_lower_indirect_derefs(nir_shader *shader, nir_variable_mode modes);
3559
3560 bool nir_lower_locals_to_regs(nir_shader *shader);
3561
3562 void nir_lower_io_to_temporaries(nir_shader *shader,
3563 nir_function_impl *entrypoint,
3564 bool outputs, bool inputs);
3565
3566 bool nir_lower_vars_to_scratch(nir_shader *shader,
3567 nir_variable_mode modes,
3568 int size_threshold,
3569 glsl_type_size_align_func size_align);
3570
3571 void nir_shader_gather_info(nir_shader *shader, nir_function_impl *entrypoint);
3572
3573 void nir_gather_ssa_types(nir_function_impl *impl,
3574 BITSET_WORD *float_types,
3575 BITSET_WORD *int_types);
3576
3577 void nir_assign_var_locations(struct exec_list *var_list, unsigned *size,
3578 int (*type_size)(const struct glsl_type *, bool));
3579
3580 /* Some helpers to do very simple linking */
3581 bool nir_remove_unused_varyings(nir_shader *producer, nir_shader *consumer);
3582 bool nir_remove_unused_io_vars(nir_shader *shader, struct exec_list *var_list,
3583 uint64_t *used_by_other_stage,
3584 uint64_t *used_by_other_stage_patches);
3585 void nir_compact_varyings(nir_shader *producer, nir_shader *consumer,
3586 bool default_to_smooth_interp);
3587 void nir_link_xfb_varyings(nir_shader *producer, nir_shader *consumer);
3588 bool nir_link_opt_varyings(nir_shader *producer, nir_shader *consumer);
3589
3590 bool nir_lower_amul(nir_shader *shader,
3591 int (*type_size)(const struct glsl_type *, bool));
3592
3593 void nir_assign_io_var_locations(struct exec_list *var_list,
3594 unsigned *size,
3595 gl_shader_stage stage);
3596
3597 typedef enum {
3598 /* If set, this causes all 64-bit IO operations to be lowered on-the-fly
3599 * to 32-bit operations. This is only valid for nir_var_shader_in/out
3600 * modes.
3601 */
3602 nir_lower_io_lower_64bit_to_32 = (1 << 0),
3603
3604 /* If set, this forces all non-flat fragment shader inputs to be
3605 * interpolated as if with the "sample" qualifier. This requires
3606 * nir_shader_compiler_options::use_interpolated_input_intrinsics.
3607 */
3608 nir_lower_io_force_sample_interpolation = (1 << 1),
3609 } nir_lower_io_options;
3610 bool nir_lower_io(nir_shader *shader,
3611 nir_variable_mode modes,
3612 int (*type_size)(const struct glsl_type *, bool),
3613 nir_lower_io_options);
3614
3615 bool nir_io_add_const_offset_to_base(nir_shader *nir, nir_variable_mode mode);
3616
3617 bool
3618 nir_lower_vars_to_explicit_types(nir_shader *shader,
3619 nir_variable_mode modes,
3620 glsl_type_size_align_func type_info);
3621
3622 typedef enum {
3623 /**
3624 * An address format which is a simple 32-bit global GPU address.
3625 */
3626 nir_address_format_32bit_global,
3627
3628 /**
3629 * An address format which is a simple 64-bit global GPU address.
3630 */
3631 nir_address_format_64bit_global,
3632
3633 /**
3634 * An address format which is a bounds-checked 64-bit global GPU address.
3635 *
3636 * The address is comprised as a 32-bit vec4 where .xy are a uint64_t base
3637 * address stored with the low bits in .x and high bits in .y, .z is a
3638 * size, and .w is an offset. When the final I/O operation is lowered, .w
3639 * is checked against .z and the operation is predicated on the result.
3640 */
3641 nir_address_format_64bit_bounded_global,
3642
3643 /**
3644 * An address format which is comprised of a vec2 where the first
3645 * component is a buffer index and the second is an offset.
3646 */
3647 nir_address_format_32bit_index_offset,
3648
3649 /**
3650 * An address format which is a simple 32-bit offset.
3651 */
3652 nir_address_format_32bit_offset,
3653
3654 /**
3655 * An address format representing a purely logical addressing model. In
3656 * this model, all deref chains must be complete from the dereference
3657 * operation to the variable. Cast derefs are not allowed. These
3658 * addresses will be 32-bit scalars but the format is immaterial because
3659 * you can always chase the chain.
3660 */
3661 nir_address_format_logical,
3662 } nir_address_format;
3663
3664 static inline unsigned
3665 nir_address_format_bit_size(nir_address_format addr_format)
3666 {
3667 switch (addr_format) {
3668 case nir_address_format_32bit_global: return 32;
3669 case nir_address_format_64bit_global: return 64;
3670 case nir_address_format_64bit_bounded_global: return 32;
3671 case nir_address_format_32bit_index_offset: return 32;
3672 case nir_address_format_32bit_offset: return 32;
3673 case nir_address_format_logical: return 32;
3674 }
3675 unreachable("Invalid address format");
3676 }
3677
3678 static inline unsigned
3679 nir_address_format_num_components(nir_address_format addr_format)
3680 {
3681 switch (addr_format) {
3682 case nir_address_format_32bit_global: return 1;
3683 case nir_address_format_64bit_global: return 1;
3684 case nir_address_format_64bit_bounded_global: return 4;
3685 case nir_address_format_32bit_index_offset: return 2;
3686 case nir_address_format_32bit_offset: return 1;
3687 case nir_address_format_logical: return 1;
3688 }
3689 unreachable("Invalid address format");
3690 }
3691
3692 static inline const struct glsl_type *
3693 nir_address_format_to_glsl_type(nir_address_format addr_format)
3694 {
3695 unsigned bit_size = nir_address_format_bit_size(addr_format);
3696 assert(bit_size == 32 || bit_size == 64);
3697 return glsl_vector_type(bit_size == 32 ? GLSL_TYPE_UINT : GLSL_TYPE_UINT64,
3698 nir_address_format_num_components(addr_format));
3699 }
3700
3701 const nir_const_value *nir_address_format_null_value(nir_address_format addr_format);
3702
3703 nir_ssa_def *nir_build_addr_ieq(struct nir_builder *b, nir_ssa_def *addr0, nir_ssa_def *addr1,
3704 nir_address_format addr_format);
3705
3706 nir_ssa_def *nir_build_addr_isub(struct nir_builder *b, nir_ssa_def *addr0, nir_ssa_def *addr1,
3707 nir_address_format addr_format);
3708
3709 nir_ssa_def * nir_explicit_io_address_from_deref(struct nir_builder *b,
3710 nir_deref_instr *deref,
3711 nir_ssa_def *base_addr,
3712 nir_address_format addr_format);
3713 void nir_lower_explicit_io_instr(struct nir_builder *b,
3714 nir_intrinsic_instr *io_instr,
3715 nir_ssa_def *addr,
3716 nir_address_format addr_format);
3717
3718 bool nir_lower_explicit_io(nir_shader *shader,
3719 nir_variable_mode modes,
3720 nir_address_format);
3721
3722 nir_src *nir_get_io_offset_src(nir_intrinsic_instr *instr);
3723 nir_src *nir_get_io_vertex_index_src(nir_intrinsic_instr *instr);
3724
3725 bool nir_is_per_vertex_io(const nir_variable *var, gl_shader_stage stage);
3726
3727 bool nir_lower_regs_to_ssa_impl(nir_function_impl *impl);
3728 bool nir_lower_regs_to_ssa(nir_shader *shader);
3729 bool nir_lower_vars_to_ssa(nir_shader *shader);
3730
3731 bool nir_remove_dead_derefs(nir_shader *shader);
3732 bool nir_remove_dead_derefs_impl(nir_function_impl *impl);
3733 bool nir_remove_dead_variables(nir_shader *shader, nir_variable_mode modes);
3734 bool nir_lower_constant_initializers(nir_shader *shader,
3735 nir_variable_mode modes);
3736
3737 bool nir_move_vec_src_uses_to_dest(nir_shader *shader);
3738 bool nir_lower_vec_to_movs(nir_shader *shader);
3739 void nir_lower_alpha_test(nir_shader *shader, enum compare_func func,
3740 bool alpha_to_one,
3741 const gl_state_index16 *alpha_ref_state_tokens);
3742 bool nir_lower_alu(nir_shader *shader);
3743
3744 bool nir_lower_flrp(nir_shader *shader, unsigned lowering_mask,
3745 bool always_precise, bool have_ffma);
3746
3747 bool nir_lower_alu_to_scalar(nir_shader *shader, nir_instr_filter_cb cb, const void *data);
3748 bool nir_lower_bool_to_float(nir_shader *shader);
3749 bool nir_lower_bool_to_int32(nir_shader *shader);
3750 bool nir_lower_int_to_float(nir_shader *shader);
3751 bool nir_lower_load_const_to_scalar(nir_shader *shader);
3752 bool nir_lower_read_invocation_to_scalar(nir_shader *shader);
3753 bool nir_lower_phis_to_scalar(nir_shader *shader);
3754 void nir_lower_io_arrays_to_elements(nir_shader *producer, nir_shader *consumer);
3755 void nir_lower_io_arrays_to_elements_no_indirects(nir_shader *shader,
3756 bool outputs_only);
3757 void nir_lower_io_to_scalar(nir_shader *shader, nir_variable_mode mask);
3758 void nir_lower_io_to_scalar_early(nir_shader *shader, nir_variable_mode mask);
3759 bool nir_lower_io_to_vector(nir_shader *shader, nir_variable_mode mask);
3760
3761 void nir_lower_fragcoord_wtrans(nir_shader *shader);
3762 void nir_lower_viewport_transform(nir_shader *shader);
3763 bool nir_lower_uniforms_to_ubo(nir_shader *shader, int multiplier);
3764
3765 typedef struct nir_lower_subgroups_options {
3766 uint8_t subgroup_size;
3767 uint8_t ballot_bit_size;
3768 bool lower_to_scalar:1;
3769 bool lower_vote_trivial:1;
3770 bool lower_vote_eq_to_ballot:1;
3771 bool lower_subgroup_masks:1;
3772 bool lower_shuffle:1;
3773 bool lower_shuffle_to_32bit:1;
3774 bool lower_quad:1;
3775 } nir_lower_subgroups_options;
3776
3777 bool nir_lower_subgroups(nir_shader *shader,
3778 const nir_lower_subgroups_options *options);
3779
3780 bool nir_lower_system_values(nir_shader *shader);
3781
3782 enum PACKED nir_lower_tex_packing {
3783 nir_lower_tex_packing_none = 0,
3784 /* The sampler returns up to 2 32-bit words of half floats or 16-bit signed
3785 * or unsigned ints based on the sampler type
3786 */
3787 nir_lower_tex_packing_16,
3788 /* The sampler returns 1 32-bit word of 4x8 unorm */
3789 nir_lower_tex_packing_8,
3790 };
3791
3792 typedef struct nir_lower_tex_options {
3793 /**
3794 * bitmask of (1 << GLSL_SAMPLER_DIM_x) to control for which
3795 * sampler types a texture projector is lowered.
3796 */
3797 unsigned lower_txp;
3798
3799 /**
3800 * If true, lower away nir_tex_src_offset for all texelfetch instructions.
3801 */
3802 bool lower_txf_offset;
3803
3804 /**
3805 * If true, lower away nir_tex_src_offset for all rect textures.
3806 */
3807 bool lower_rect_offset;
3808
3809 /**
3810 * If true, lower rect textures to 2D, using txs to fetch the
3811 * texture dimensions and dividing the texture coords by the
3812 * texture dims to normalize.
3813 */
3814 bool lower_rect;
3815
3816 /**
3817 * If true, convert yuv to rgb.
3818 */
3819 unsigned lower_y_uv_external;
3820 unsigned lower_y_u_v_external;
3821 unsigned lower_yx_xuxv_external;
3822 unsigned lower_xy_uxvx_external;
3823 unsigned lower_ayuv_external;
3824 unsigned lower_xyuv_external;
3825
3826 /**
3827 * To emulate certain texture wrap modes, this can be used
3828 * to saturate the specified tex coord to [0.0, 1.0]. The
3829 * bits are according to sampler #, ie. if, for example:
3830 *
3831 * (conf->saturate_s & (1 << n))
3832 *
3833 * is true, then the s coord for sampler n is saturated.
3834 *
3835 * Note that clamping must happen *after* projector lowering
3836 * so any projected texture sample instruction with a clamped
3837 * coordinate gets automatically lowered, regardless of the
3838 * 'lower_txp' setting.
3839 */
3840 unsigned saturate_s;
3841 unsigned saturate_t;
3842 unsigned saturate_r;
3843
3844 /* Bitmask of textures that need swizzling.
3845 *
3846 * If (swizzle_result & (1 << texture_index)), then the swizzle in
3847 * swizzles[texture_index] is applied to the result of the texturing
3848 * operation.
3849 */
3850 unsigned swizzle_result;
3851
3852 /* A swizzle for each texture. Values 0-3 represent x, y, z, or w swizzles
3853 * while 4 and 5 represent 0 and 1 respectively.
3854 */
3855 uint8_t swizzles[32][4];
3856
3857 /* Can be used to scale sampled values in range required by the format. */
3858 float scale_factors[32];
3859
3860 /**
3861 * Bitmap of textures that need srgb to linear conversion. If
3862 * (lower_srgb & (1 << texture_index)) then the rgb (xyz) components
3863 * of the texture are lowered to linear.
3864 */
3865 unsigned lower_srgb;
3866
3867 /**
3868 * If true, lower nir_texop_tex on shaders that doesn't support implicit
3869 * LODs to nir_texop_txl.
3870 */
3871 bool lower_tex_without_implicit_lod;
3872
3873 /**
3874 * If true, lower nir_texop_txd on cube maps with nir_texop_txl.
3875 */
3876 bool lower_txd_cube_map;
3877
3878 /**
3879 * If true, lower nir_texop_txd on 3D surfaces with nir_texop_txl.
3880 */
3881 bool lower_txd_3d;
3882
3883 /**
3884 * If true, lower nir_texop_txd on shadow samplers (except cube maps)
3885 * with nir_texop_txl. Notice that cube map shadow samplers are lowered
3886 * with lower_txd_cube_map.
3887 */
3888 bool lower_txd_shadow;
3889
3890 /**
3891 * If true, lower nir_texop_txd on all samplers to a nir_texop_txl.
3892 * Implies lower_txd_cube_map and lower_txd_shadow.
3893 */
3894 bool lower_txd;
3895
3896 /**
3897 * If true, lower nir_texop_txb that try to use shadow compare and min_lod
3898 * at the same time to a nir_texop_lod, some math, and nir_texop_tex.
3899 */
3900 bool lower_txb_shadow_clamp;
3901
3902 /**
3903 * If true, lower nir_texop_txd on shadow samplers when it uses min_lod
3904 * with nir_texop_txl. This includes cube maps.
3905 */
3906 bool lower_txd_shadow_clamp;
3907
3908 /**
3909 * If true, lower nir_texop_txd on when it uses both offset and min_lod
3910 * with nir_texop_txl. This includes cube maps.
3911 */
3912 bool lower_txd_offset_clamp;
3913
3914 /**
3915 * If true, lower nir_texop_txd with min_lod to a nir_texop_txl if the
3916 * sampler is bindless.
3917 */
3918 bool lower_txd_clamp_bindless_sampler;
3919
3920 /**
3921 * If true, lower nir_texop_txd with min_lod to a nir_texop_txl if the
3922 * sampler index is not statically determinable to be less than 16.
3923 */
3924 bool lower_txd_clamp_if_sampler_index_not_lt_16;
3925
3926 /**
3927 * If true, lower nir_texop_txs with a non-0-lod into nir_texop_txs with
3928 * 0-lod followed by a nir_ishr.
3929 */
3930 bool lower_txs_lod;
3931
3932 /**
3933 * If true, apply a .bagr swizzle on tg4 results to handle Broadcom's
3934 * mixed-up tg4 locations.
3935 */
3936 bool lower_tg4_broadcom_swizzle;
3937
3938 /**
3939 * If true, lowers tg4 with 4 constant offsets to 4 tg4 calls
3940 */
3941 bool lower_tg4_offsets;
3942
3943 enum nir_lower_tex_packing lower_tex_packing[32];
3944 } nir_lower_tex_options;
3945
3946 bool nir_lower_tex(nir_shader *shader,
3947 const nir_lower_tex_options *options);
3948
3949 enum nir_lower_non_uniform_access_type {
3950 nir_lower_non_uniform_ubo_access = (1 << 0),
3951 nir_lower_non_uniform_ssbo_access = (1 << 1),
3952 nir_lower_non_uniform_texture_access = (1 << 2),
3953 nir_lower_non_uniform_image_access = (1 << 3),
3954 };
3955
3956 bool nir_lower_non_uniform_access(nir_shader *shader,
3957 enum nir_lower_non_uniform_access_type);
3958
3959 enum nir_lower_idiv_path {
3960 /* This path is based on NV50LegalizeSSA::handleDIV(). It is the faster of
3961 * the two but it is not exact in some cases (for example, 1091317713u /
3962 * 1034u gives 5209173 instead of 1055432) */
3963 nir_lower_idiv_fast,
3964 /* This path is based on AMDGPUTargetLowering::LowerUDIVREM() and
3965 * AMDGPUTargetLowering::LowerSDIVREM(). It requires more instructions than
3966 * the nv50 path and many of them are integer multiplications, so it is
3967 * probably slower. It should always return the correct result, though. */
3968 nir_lower_idiv_precise,
3969 };
3970
3971 bool nir_lower_idiv(nir_shader *shader, enum nir_lower_idiv_path path);
3972
3973 bool nir_lower_input_attachments(nir_shader *shader, bool use_fragcoord_sysval);
3974
3975 bool nir_lower_clip_vs(nir_shader *shader, unsigned ucp_enables,
3976 bool use_vars,
3977 bool use_clipdist_array,
3978 const gl_state_index16 clipplane_state_tokens[][STATE_LENGTH]);
3979 bool nir_lower_clip_gs(nir_shader *shader, unsigned ucp_enables,
3980 bool use_clipdist_array,
3981 const gl_state_index16 clipplane_state_tokens[][STATE_LENGTH]);
3982 bool nir_lower_clip_fs(nir_shader *shader, unsigned ucp_enables,
3983 bool use_clipdist_array);
3984 bool nir_lower_clip_cull_distance_arrays(nir_shader *nir);
3985
3986 void nir_lower_point_size_mov(nir_shader *shader,
3987 const gl_state_index16 *pointsize_state_tokens);
3988
3989 bool nir_lower_frexp(nir_shader *nir);
3990
3991 void nir_lower_two_sided_color(nir_shader *shader);
3992
3993 bool nir_lower_clamp_color_outputs(nir_shader *shader);
3994
3995 bool nir_lower_flatshade(nir_shader *shader);
3996
3997 void nir_lower_passthrough_edgeflags(nir_shader *shader);
3998 bool nir_lower_patch_vertices(nir_shader *nir, unsigned static_count,
3999 const gl_state_index16 *uniform_state_tokens);
4000
4001 typedef struct nir_lower_wpos_ytransform_options {
4002 gl_state_index16 state_tokens[STATE_LENGTH];
4003 bool fs_coord_origin_upper_left :1;
4004 bool fs_coord_origin_lower_left :1;
4005 bool fs_coord_pixel_center_integer :1;
4006 bool fs_coord_pixel_center_half_integer :1;
4007 } nir_lower_wpos_ytransform_options;
4008
4009 bool nir_lower_wpos_ytransform(nir_shader *shader,
4010 const nir_lower_wpos_ytransform_options *options);
4011 bool nir_lower_wpos_center(nir_shader *shader, const bool for_sample_shading);
4012
4013 bool nir_lower_fb_read(nir_shader *shader);
4014
4015 typedef struct nir_lower_drawpixels_options {
4016 gl_state_index16 texcoord_state_tokens[STATE_LENGTH];
4017 gl_state_index16 scale_state_tokens[STATE_LENGTH];
4018 gl_state_index16 bias_state_tokens[STATE_LENGTH];
4019 unsigned drawpix_sampler;
4020 unsigned pixelmap_sampler;
4021 bool pixel_maps :1;
4022 bool scale_and_bias :1;
4023 } nir_lower_drawpixels_options;
4024
4025 void nir_lower_drawpixels(nir_shader *shader,
4026 const nir_lower_drawpixels_options *options);
4027
4028 typedef struct nir_lower_bitmap_options {
4029 unsigned sampler;
4030 bool swizzle_xxxx;
4031 } nir_lower_bitmap_options;
4032
4033 void nir_lower_bitmap(nir_shader *shader, const nir_lower_bitmap_options *options);
4034
4035 bool nir_lower_atomics_to_ssbo(nir_shader *shader, unsigned ssbo_offset);
4036
4037 typedef enum {
4038 nir_lower_int_source_mods = 1 << 0,
4039 nir_lower_float_source_mods = 1 << 1,
4040 nir_lower_triop_abs = 1 << 2,
4041 nir_lower_all_source_mods = (1 << 3) - 1
4042 } nir_lower_to_source_mods_flags;
4043
4044
4045 bool nir_lower_to_source_mods(nir_shader *shader, nir_lower_to_source_mods_flags options);
4046
4047 bool nir_lower_gs_intrinsics(nir_shader *shader);
4048
4049 typedef unsigned (*nir_lower_bit_size_callback)(const nir_alu_instr *, void *);
4050
4051 bool nir_lower_bit_size(nir_shader *shader,
4052 nir_lower_bit_size_callback callback,
4053 void *callback_data);
4054
4055 nir_lower_int64_options nir_lower_int64_op_to_options_mask(nir_op opcode);
4056 bool nir_lower_int64(nir_shader *shader, nir_lower_int64_options options);
4057
4058 nir_lower_doubles_options nir_lower_doubles_op_to_options_mask(nir_op opcode);
4059 bool nir_lower_doubles(nir_shader *shader, const nir_shader *softfp64,
4060 nir_lower_doubles_options options);
4061 bool nir_lower_pack(nir_shader *shader);
4062
4063 bool nir_lower_point_size(nir_shader *shader, float min, float max);
4064
4065 typedef enum {
4066 nir_lower_interpolation_at_sample = (1 << 1),
4067 nir_lower_interpolation_at_offset = (1 << 2),
4068 nir_lower_interpolation_centroid = (1 << 3),
4069 nir_lower_interpolation_pixel = (1 << 4),
4070 nir_lower_interpolation_sample = (1 << 5),
4071 } nir_lower_interpolation_options;
4072
4073 bool nir_lower_interpolation(nir_shader *shader,
4074 nir_lower_interpolation_options options);
4075
4076 bool nir_normalize_cubemap_coords(nir_shader *shader);
4077
4078 void nir_live_ssa_defs_impl(nir_function_impl *impl);
4079
4080 void nir_loop_analyze_impl(nir_function_impl *impl,
4081 nir_variable_mode indirect_mask);
4082
4083 bool nir_ssa_defs_interfere(nir_ssa_def *a, nir_ssa_def *b);
4084
4085 bool nir_repair_ssa_impl(nir_function_impl *impl);
4086 bool nir_repair_ssa(nir_shader *shader);
4087
4088 void nir_convert_loop_to_lcssa(nir_loop *loop);
4089 bool nir_convert_to_lcssa(nir_shader *shader, bool skip_invariants, bool skip_bool_invariants);
4090 bool* nir_divergence_analysis(nir_shader *shader, nir_divergence_options options);
4091
4092 /* If phi_webs_only is true, only convert SSA values involved in phi nodes to
4093 * registers. If false, convert all values (even those not involved in a phi
4094 * node) to registers.
4095 */
4096 bool nir_convert_from_ssa(nir_shader *shader, bool phi_webs_only);
4097
4098 bool nir_lower_phis_to_regs_block(nir_block *block);
4099 bool nir_lower_ssa_defs_to_regs_block(nir_block *block);
4100 bool nir_rematerialize_derefs_in_use_blocks_impl(nir_function_impl *impl);
4101
4102 bool nir_lower_samplers(nir_shader *shader);
4103
4104 /* This is here for unit tests. */
4105 bool nir_opt_comparison_pre_impl(nir_function_impl *impl);
4106
4107 bool nir_opt_comparison_pre(nir_shader *shader);
4108
4109 bool nir_opt_access(nir_shader *shader);
4110 bool nir_opt_algebraic(nir_shader *shader);
4111 bool nir_opt_algebraic_before_ffma(nir_shader *shader);
4112 bool nir_opt_algebraic_late(nir_shader *shader);
4113 bool nir_opt_constant_folding(nir_shader *shader);
4114
4115 bool nir_opt_combine_stores(nir_shader *shader, nir_variable_mode modes);
4116
4117 bool nir_copy_prop(nir_shader *shader);
4118
4119 bool nir_opt_copy_prop_vars(nir_shader *shader);
4120
4121 bool nir_opt_cse(nir_shader *shader);
4122
4123 bool nir_opt_dce(nir_shader *shader);
4124
4125 bool nir_opt_dead_cf(nir_shader *shader);
4126
4127 bool nir_opt_dead_write_vars(nir_shader *shader);
4128
4129 bool nir_opt_deref_impl(nir_function_impl *impl);
4130 bool nir_opt_deref(nir_shader *shader);
4131
4132 bool nir_opt_find_array_copies(nir_shader *shader);
4133
4134 bool nir_opt_gcm(nir_shader *shader, bool value_number);
4135
4136 bool nir_opt_idiv_const(nir_shader *shader, unsigned min_bit_size);
4137
4138 bool nir_opt_if(nir_shader *shader, bool aggressive_last_continue);
4139
4140 bool nir_opt_intrinsics(nir_shader *shader);
4141
4142 bool nir_opt_large_constants(nir_shader *shader,
4143 glsl_type_size_align_func size_align,
4144 unsigned threshold);
4145
4146 bool nir_opt_loop_unroll(nir_shader *shader, nir_variable_mode indirect_mask);
4147
4148 typedef enum {
4149 nir_move_const_undef = (1 << 0),
4150 nir_move_load_ubo = (1 << 1),
4151 nir_move_load_input = (1 << 2),
4152 nir_move_comparisons = (1 << 3),
4153 } nir_move_options;
4154
4155 bool nir_can_move_instr(nir_instr *instr, nir_move_options options);
4156
4157 bool nir_opt_sink(nir_shader *shader, nir_move_options options);
4158
4159 bool nir_opt_move(nir_shader *shader, nir_move_options options);
4160
4161 bool nir_opt_peephole_select(nir_shader *shader, unsigned limit,
4162 bool indirect_load_ok, bool expensive_alu_ok);
4163
4164 bool nir_opt_rematerialize_compares(nir_shader *shader);
4165
4166 bool nir_opt_remove_phis(nir_shader *shader);
4167 bool nir_opt_remove_phis_block(nir_block *block);
4168
4169 bool nir_opt_shrink_load(nir_shader *shader);
4170
4171 bool nir_opt_trivial_continues(nir_shader *shader);
4172
4173 bool nir_opt_undef(nir_shader *shader);
4174
4175 bool nir_opt_vectorize(nir_shader *shader);
4176
4177 bool nir_opt_conditional_discard(nir_shader *shader);
4178
4179 void nir_strip(nir_shader *shader);
4180
4181 void nir_sweep(nir_shader *shader);
4182
4183 void nir_remap_dual_slot_attributes(nir_shader *shader,
4184 uint64_t *dual_slot_inputs);
4185 uint64_t nir_get_single_slot_attribs_mask(uint64_t attribs, uint64_t dual_slot);
4186
4187 nir_intrinsic_op nir_intrinsic_from_system_value(gl_system_value val);
4188 gl_system_value nir_system_value_from_intrinsic(nir_intrinsic_op intrin);
4189
4190 static inline bool
4191 nir_variable_is_in_ubo(const nir_variable *var)
4192 {
4193 return (var->data.mode == nir_var_mem_ubo &&
4194 var->interface_type != NULL);
4195 }
4196
4197 static inline bool
4198 nir_variable_is_in_ssbo(const nir_variable *var)
4199 {
4200 return (var->data.mode == nir_var_mem_ssbo &&
4201 var->interface_type != NULL);
4202 }
4203
4204 static inline bool
4205 nir_variable_is_in_block(const nir_variable *var)
4206 {
4207 return nir_variable_is_in_ubo(var) || nir_variable_is_in_ssbo(var);
4208 }
4209
4210 #ifdef __cplusplus
4211 } /* extern "C" */
4212 #endif
4213
4214 #endif /* NIR_H */