e72585000d40b09f2c9f44842899529741f2807d
[mesa.git] / src / compiler / nir / nir.h
1 /*
2 * Copyright © 2014 Connor Abbott
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Connor Abbott (cwabbott0@gmail.com)
25 *
26 */
27
28 #ifndef NIR_H
29 #define NIR_H
30
31 #include "util/hash_table.h"
32 #include "compiler/glsl/list.h"
33 #include "GL/gl.h" /* GLenum */
34 #include "util/list.h"
35 #include "util/ralloc.h"
36 #include "util/set.h"
37 #include "util/bitscan.h"
38 #include "util/bitset.h"
39 #include "util/macros.h"
40 #include "compiler/nir_types.h"
41 #include "compiler/shader_enums.h"
42 #include "compiler/shader_info.h"
43 #include <stdio.h>
44
45 #ifndef NDEBUG
46 #include "util/debug.h"
47 #endif /* NDEBUG */
48
49 #include "nir_opcodes.h"
50
51 #if defined(_WIN32) && !defined(snprintf)
52 #define snprintf _snprintf
53 #endif
54
55 #ifdef __cplusplus
56 extern "C" {
57 #endif
58
59 #define NIR_FALSE 0u
60 #define NIR_TRUE (~0u)
61 #define NIR_MAX_VEC_COMPONENTS 4
62 typedef uint8_t nir_component_mask_t;
63
64 /** Defines a cast function
65 *
66 * This macro defines a cast function from in_type to out_type where
67 * out_type is some structure type that contains a field of type out_type.
68 *
69 * Note that you have to be a bit careful as the generated cast function
70 * destroys constness.
71 */
72 #define NIR_DEFINE_CAST(name, in_type, out_type, field, \
73 type_field, type_value) \
74 static inline out_type * \
75 name(const in_type *parent) \
76 { \
77 assert(parent && parent->type_field == type_value); \
78 return exec_node_data(out_type, parent, field); \
79 }
80
81 struct nir_function;
82 struct nir_shader;
83 struct nir_instr;
84 struct nir_builder;
85
86
87 /**
88 * Description of built-in state associated with a uniform
89 *
90 * \sa nir_variable::state_slots
91 */
92 typedef struct {
93 gl_state_index16 tokens[STATE_LENGTH];
94 int swizzle;
95 } nir_state_slot;
96
97 typedef enum {
98 nir_var_shader_in = (1 << 0),
99 nir_var_shader_out = (1 << 1),
100 nir_var_global = (1 << 2),
101 nir_var_local = (1 << 3),
102 nir_var_uniform = (1 << 4),
103 nir_var_ubo = (1 << 5),
104 nir_var_system_value = (1 << 6),
105 nir_var_ssbo = (1 << 7),
106 nir_var_shared = (1 << 8),
107 nir_var_all = ~0,
108 } nir_variable_mode;
109
110 /**
111 * Rounding modes.
112 */
113 typedef enum {
114 nir_rounding_mode_undef = 0,
115 nir_rounding_mode_rtne = 1, /* round to nearest even */
116 nir_rounding_mode_ru = 2, /* round up */
117 nir_rounding_mode_rd = 3, /* round down */
118 nir_rounding_mode_rtz = 4, /* round towards zero */
119 } nir_rounding_mode;
120
121 typedef union {
122 bool b[NIR_MAX_VEC_COMPONENTS];
123 float f32[NIR_MAX_VEC_COMPONENTS];
124 double f64[NIR_MAX_VEC_COMPONENTS];
125 int8_t i8[NIR_MAX_VEC_COMPONENTS];
126 uint8_t u8[NIR_MAX_VEC_COMPONENTS];
127 int16_t i16[NIR_MAX_VEC_COMPONENTS];
128 uint16_t u16[NIR_MAX_VEC_COMPONENTS];
129 int32_t i32[NIR_MAX_VEC_COMPONENTS];
130 uint32_t u32[NIR_MAX_VEC_COMPONENTS];
131 int64_t i64[NIR_MAX_VEC_COMPONENTS];
132 uint64_t u64[NIR_MAX_VEC_COMPONENTS];
133 } nir_const_value;
134
135 typedef struct nir_constant {
136 /**
137 * Value of the constant.
138 *
139 * The field used to back the values supplied by the constant is determined
140 * by the type associated with the \c nir_variable. Constants may be
141 * scalars, vectors, or matrices.
142 */
143 nir_const_value values[NIR_MAX_VEC_COMPONENTS];
144
145 /* we could get this from the var->type but makes clone *much* easier to
146 * not have to care about the type.
147 */
148 unsigned num_elements;
149
150 /* Array elements / Structure Fields */
151 struct nir_constant **elements;
152 } nir_constant;
153
154 /**
155 * \brief Layout qualifiers for gl_FragDepth.
156 *
157 * The AMD/ARB_conservative_depth extensions allow gl_FragDepth to be redeclared
158 * with a layout qualifier.
159 */
160 typedef enum {
161 nir_depth_layout_none, /**< No depth layout is specified. */
162 nir_depth_layout_any,
163 nir_depth_layout_greater,
164 nir_depth_layout_less,
165 nir_depth_layout_unchanged
166 } nir_depth_layout;
167
168 /**
169 * Enum keeping track of how a variable was declared.
170 */
171 typedef enum {
172 /**
173 * Normal declaration.
174 */
175 nir_var_declared_normally = 0,
176
177 /**
178 * Variable is implicitly generated by the compiler and should not be
179 * visible via the API.
180 */
181 nir_var_hidden,
182 } nir_var_declaration_type;
183
184 /**
185 * Either a uniform, global variable, shader input, or shader output. Based on
186 * ir_variable - it should be easy to translate between the two.
187 */
188
189 typedef struct nir_variable {
190 struct exec_node node;
191
192 /**
193 * Declared type of the variable
194 */
195 const struct glsl_type *type;
196
197 /**
198 * Declared name of the variable
199 */
200 char *name;
201
202 struct nir_variable_data {
203 /**
204 * Storage class of the variable.
205 *
206 * \sa nir_variable_mode
207 */
208 nir_variable_mode mode;
209
210 /**
211 * Is the variable read-only?
212 *
213 * This is set for variables declared as \c const, shader inputs,
214 * and uniforms.
215 */
216 unsigned read_only:1;
217 unsigned centroid:1;
218 unsigned sample:1;
219 unsigned patch:1;
220 unsigned invariant:1;
221
222 /**
223 * When separate shader programs are enabled, only input/outputs between
224 * the stages of a multi-stage separate program can be safely removed
225 * from the shader interface. Other input/outputs must remains active.
226 *
227 * This is also used to make sure xfb varyings that are unused by the
228 * fragment shader are not removed.
229 */
230 unsigned always_active_io:1;
231
232 /**
233 * Interpolation mode for shader inputs / outputs
234 *
235 * \sa glsl_interp_mode
236 */
237 unsigned interpolation:2;
238
239 /**
240 * \name ARB_fragment_coord_conventions
241 * @{
242 */
243 unsigned origin_upper_left:1;
244 unsigned pixel_center_integer:1;
245 /*@}*/
246
247 /**
248 * If non-zero, then this variable may be packed along with other variables
249 * into a single varying slot, so this offset should be applied when
250 * accessing components. For example, an offset of 1 means that the x
251 * component of this variable is actually stored in component y of the
252 * location specified by \c location.
253 */
254 unsigned location_frac:2;
255
256 /**
257 * If true, this variable represents an array of scalars that should
258 * be tightly packed. In other words, consecutive array elements
259 * should be stored one component apart, rather than one slot apart.
260 */
261 unsigned compact:1;
262
263 /**
264 * Whether this is a fragment shader output implicitly initialized with
265 * the previous contents of the specified render target at the
266 * framebuffer location corresponding to this shader invocation.
267 */
268 unsigned fb_fetch_output:1;
269
270 /**
271 * Non-zero if this variable is considered bindless as defined by
272 * ARB_bindless_texture.
273 */
274 unsigned bindless:1;
275
276 /**
277 * Was an explicit binding set in the shader?
278 */
279 unsigned explicit_binding:1;
280
281 /**
282 * Was a transfer feedback buffer set in the shader?
283 */
284 unsigned explicit_xfb_buffer:1;
285
286 /**
287 * Was a transfer feedback stride set in the shader?
288 */
289 unsigned explicit_xfb_stride:1;
290
291 /**
292 * Was an explicit offset set in the shader?
293 */
294 unsigned explicit_offset:1;
295
296 /**
297 * \brief Layout qualifier for gl_FragDepth.
298 *
299 * This is not equal to \c ir_depth_layout_none if and only if this
300 * variable is \c gl_FragDepth and a layout qualifier is specified.
301 */
302 nir_depth_layout depth_layout;
303
304 /**
305 * Storage location of the base of this variable
306 *
307 * The precise meaning of this field depends on the nature of the variable.
308 *
309 * - Vertex shader input: one of the values from \c gl_vert_attrib.
310 * - Vertex shader output: one of the values from \c gl_varying_slot.
311 * - Geometry shader input: one of the values from \c gl_varying_slot.
312 * - Geometry shader output: one of the values from \c gl_varying_slot.
313 * - Fragment shader input: one of the values from \c gl_varying_slot.
314 * - Fragment shader output: one of the values from \c gl_frag_result.
315 * - Uniforms: Per-stage uniform slot number for default uniform block.
316 * - Uniforms: Index within the uniform block definition for UBO members.
317 * - Non-UBO Uniforms: uniform slot number.
318 * - Other: This field is not currently used.
319 *
320 * If the variable is a uniform, shader input, or shader output, and the
321 * slot has not been assigned, the value will be -1.
322 */
323 int location;
324
325 /**
326 * The actual location of the variable in the IR. Only valid for inputs
327 * and outputs.
328 */
329 unsigned int driver_location;
330
331 /**
332 * Vertex stream output identifier.
333 *
334 * For packed outputs, bit 31 is set and bits [2*i+1,2*i] indicate the
335 * stream of the i-th component.
336 */
337 unsigned stream;
338
339 /**
340 * output index for dual source blending.
341 */
342 int index;
343
344 /**
345 * Descriptor set binding for sampler or UBO.
346 */
347 int descriptor_set;
348
349 /**
350 * Initial binding point for a sampler or UBO.
351 *
352 * For array types, this represents the binding point for the first element.
353 */
354 int binding;
355
356 /**
357 * Location an atomic counter or transform feedback is stored at.
358 */
359 unsigned offset;
360
361 /**
362 * Transform feedback buffer.
363 */
364 unsigned xfb_buffer;
365
366 /**
367 * Transform feedback stride.
368 */
369 unsigned xfb_stride;
370
371 /**
372 * How the variable was declared. See nir_var_declaration_type.
373 *
374 * This is used to detect variables generated by the compiler, so should
375 * not be visible via the API.
376 */
377 unsigned how_declared:2;
378
379 /**
380 * ARB_shader_image_load_store qualifiers.
381 */
382 struct {
383 enum gl_access_qualifier access;
384
385 /** Image internal format if specified explicitly, otherwise GL_NONE. */
386 GLenum format;
387 } image;
388 } data;
389
390 /**
391 * Built-in state that backs this uniform
392 *
393 * Once set at variable creation, \c state_slots must remain invariant.
394 * This is because, ideally, this array would be shared by all clones of
395 * this variable in the IR tree. In other words, we'd really like for it
396 * to be a fly-weight.
397 *
398 * If the variable is not a uniform, \c num_state_slots will be zero and
399 * \c state_slots will be \c NULL.
400 */
401 /*@{*/
402 unsigned num_state_slots; /**< Number of state slots used */
403 nir_state_slot *state_slots; /**< State descriptors. */
404 /*@}*/
405
406 /**
407 * Constant expression assigned in the initializer of the variable
408 *
409 * This field should only be used temporarily by creators of NIR shaders
410 * and then lower_constant_initializers can be used to get rid of them.
411 * Most of the rest of NIR ignores this field or asserts that it's NULL.
412 */
413 nir_constant *constant_initializer;
414
415 /**
416 * For variables that are in an interface block or are an instance of an
417 * interface block, this is the \c GLSL_TYPE_INTERFACE type for that block.
418 *
419 * \sa ir_variable::location
420 */
421 const struct glsl_type *interface_type;
422
423 /**
424 * Description of per-member data for per-member struct variables
425 *
426 * This is used for variables which are actually an amalgamation of
427 * multiple entities such as a struct of built-in values or a struct of
428 * inputs each with their own layout specifier. This is only allowed on
429 * variables with a struct or array of array of struct type.
430 */
431 unsigned num_members;
432 struct nir_variable_data *members;
433 } nir_variable;
434
435 #define nir_foreach_variable(var, var_list) \
436 foreach_list_typed(nir_variable, var, node, var_list)
437
438 #define nir_foreach_variable_safe(var, var_list) \
439 foreach_list_typed_safe(nir_variable, var, node, var_list)
440
441 static inline bool
442 nir_variable_is_global(const nir_variable *var)
443 {
444 return var->data.mode != nir_var_local;
445 }
446
447 typedef struct nir_register {
448 struct exec_node node;
449
450 unsigned num_components; /** < number of vector components */
451 unsigned num_array_elems; /** < size of array (0 for no array) */
452
453 /* The bit-size of each channel; must be one of 8, 16, 32, or 64 */
454 uint8_t bit_size;
455
456 /** generic register index. */
457 unsigned index;
458
459 /** only for debug purposes, can be NULL */
460 const char *name;
461
462 /** whether this register is local (per-function) or global (per-shader) */
463 bool is_global;
464
465 /**
466 * If this flag is set to true, then accessing channels >= num_components
467 * is well-defined, and simply spills over to the next array element. This
468 * is useful for backends that can do per-component accessing, in
469 * particular scalar backends. By setting this flag and making
470 * num_components equal to 1, structures can be packed tightly into
471 * registers and then registers can be accessed per-component to get to
472 * each structure member, even if it crosses vec4 boundaries.
473 */
474 bool is_packed;
475
476 /** set of nir_srcs where this register is used (read from) */
477 struct list_head uses;
478
479 /** set of nir_dests where this register is defined (written to) */
480 struct list_head defs;
481
482 /** set of nir_ifs where this register is used as a condition */
483 struct list_head if_uses;
484 } nir_register;
485
486 #define nir_foreach_register(reg, reg_list) \
487 foreach_list_typed(nir_register, reg, node, reg_list)
488 #define nir_foreach_register_safe(reg, reg_list) \
489 foreach_list_typed_safe(nir_register, reg, node, reg_list)
490
491 typedef enum PACKED {
492 nir_instr_type_alu,
493 nir_instr_type_deref,
494 nir_instr_type_call,
495 nir_instr_type_tex,
496 nir_instr_type_intrinsic,
497 nir_instr_type_load_const,
498 nir_instr_type_jump,
499 nir_instr_type_ssa_undef,
500 nir_instr_type_phi,
501 nir_instr_type_parallel_copy,
502 } nir_instr_type;
503
504 typedef struct nir_instr {
505 struct exec_node node;
506 struct nir_block *block;
507 nir_instr_type type;
508
509 /* A temporary for optimization and analysis passes to use for storing
510 * flags. For instance, DCE uses this to store the "dead/live" info.
511 */
512 uint8_t pass_flags;
513
514 /** generic instruction index. */
515 unsigned index;
516 } nir_instr;
517
518 static inline nir_instr *
519 nir_instr_next(nir_instr *instr)
520 {
521 struct exec_node *next = exec_node_get_next(&instr->node);
522 if (exec_node_is_tail_sentinel(next))
523 return NULL;
524 else
525 return exec_node_data(nir_instr, next, node);
526 }
527
528 static inline nir_instr *
529 nir_instr_prev(nir_instr *instr)
530 {
531 struct exec_node *prev = exec_node_get_prev(&instr->node);
532 if (exec_node_is_head_sentinel(prev))
533 return NULL;
534 else
535 return exec_node_data(nir_instr, prev, node);
536 }
537
538 static inline bool
539 nir_instr_is_first(const nir_instr *instr)
540 {
541 return exec_node_is_head_sentinel(exec_node_get_prev_const(&instr->node));
542 }
543
544 static inline bool
545 nir_instr_is_last(const nir_instr *instr)
546 {
547 return exec_node_is_tail_sentinel(exec_node_get_next_const(&instr->node));
548 }
549
550 typedef struct nir_ssa_def {
551 /** for debugging only, can be NULL */
552 const char* name;
553
554 /** generic SSA definition index. */
555 unsigned index;
556
557 /** Index into the live_in and live_out bitfields */
558 unsigned live_index;
559
560 /** Instruction which produces this SSA value. */
561 nir_instr *parent_instr;
562
563 /** set of nir_instrs where this register is used (read from) */
564 struct list_head uses;
565
566 /** set of nir_ifs where this register is used as a condition */
567 struct list_head if_uses;
568
569 uint8_t num_components;
570
571 /* The bit-size of each channel; must be one of 8, 16, 32, or 64 */
572 uint8_t bit_size;
573 } nir_ssa_def;
574
575 struct nir_src;
576
577 typedef struct {
578 nir_register *reg;
579 struct nir_src *indirect; /** < NULL for no indirect offset */
580 unsigned base_offset;
581
582 /* TODO use-def chain goes here */
583 } nir_reg_src;
584
585 typedef struct {
586 nir_instr *parent_instr;
587 struct list_head def_link;
588
589 nir_register *reg;
590 struct nir_src *indirect; /** < NULL for no indirect offset */
591 unsigned base_offset;
592
593 /* TODO def-use chain goes here */
594 } nir_reg_dest;
595
596 struct nir_if;
597
598 typedef struct nir_src {
599 union {
600 /** Instruction that consumes this value as a source. */
601 nir_instr *parent_instr;
602 struct nir_if *parent_if;
603 };
604
605 struct list_head use_link;
606
607 union {
608 nir_reg_src reg;
609 nir_ssa_def *ssa;
610 };
611
612 bool is_ssa;
613 } nir_src;
614
615 static inline nir_src
616 nir_src_init(void)
617 {
618 nir_src src = { { NULL } };
619 return src;
620 }
621
622 #define NIR_SRC_INIT nir_src_init()
623
624 #define nir_foreach_use(src, reg_or_ssa_def) \
625 list_for_each_entry(nir_src, src, &(reg_or_ssa_def)->uses, use_link)
626
627 #define nir_foreach_use_safe(src, reg_or_ssa_def) \
628 list_for_each_entry_safe(nir_src, src, &(reg_or_ssa_def)->uses, use_link)
629
630 #define nir_foreach_if_use(src, reg_or_ssa_def) \
631 list_for_each_entry(nir_src, src, &(reg_or_ssa_def)->if_uses, use_link)
632
633 #define nir_foreach_if_use_safe(src, reg_or_ssa_def) \
634 list_for_each_entry_safe(nir_src, src, &(reg_or_ssa_def)->if_uses, use_link)
635
636 typedef struct {
637 union {
638 nir_reg_dest reg;
639 nir_ssa_def ssa;
640 };
641
642 bool is_ssa;
643 } nir_dest;
644
645 static inline nir_dest
646 nir_dest_init(void)
647 {
648 nir_dest dest = { { { NULL } } };
649 return dest;
650 }
651
652 #define NIR_DEST_INIT nir_dest_init()
653
654 #define nir_foreach_def(dest, reg) \
655 list_for_each_entry(nir_dest, dest, &(reg)->defs, reg.def_link)
656
657 #define nir_foreach_def_safe(dest, reg) \
658 list_for_each_entry_safe(nir_dest, dest, &(reg)->defs, reg.def_link)
659
660 static inline nir_src
661 nir_src_for_ssa(nir_ssa_def *def)
662 {
663 nir_src src = NIR_SRC_INIT;
664
665 src.is_ssa = true;
666 src.ssa = def;
667
668 return src;
669 }
670
671 static inline nir_src
672 nir_src_for_reg(nir_register *reg)
673 {
674 nir_src src = NIR_SRC_INIT;
675
676 src.is_ssa = false;
677 src.reg.reg = reg;
678 src.reg.indirect = NULL;
679 src.reg.base_offset = 0;
680
681 return src;
682 }
683
684 static inline nir_dest
685 nir_dest_for_reg(nir_register *reg)
686 {
687 nir_dest dest = NIR_DEST_INIT;
688
689 dest.reg.reg = reg;
690
691 return dest;
692 }
693
694 static inline unsigned
695 nir_src_bit_size(nir_src src)
696 {
697 return src.is_ssa ? src.ssa->bit_size : src.reg.reg->bit_size;
698 }
699
700 static inline unsigned
701 nir_src_num_components(nir_src src)
702 {
703 return src.is_ssa ? src.ssa->num_components : src.reg.reg->num_components;
704 }
705
706 static inline bool
707 nir_src_is_const(nir_src src)
708 {
709 return src.is_ssa &&
710 src.ssa->parent_instr->type == nir_instr_type_load_const;
711 }
712
713 int64_t nir_src_as_int(nir_src src);
714 uint64_t nir_src_as_uint(nir_src src);
715 bool nir_src_as_bool(nir_src src);
716 double nir_src_as_float(nir_src src);
717 int64_t nir_src_comp_as_int(nir_src src, unsigned component);
718 uint64_t nir_src_comp_as_uint(nir_src src, unsigned component);
719 bool nir_src_comp_as_bool(nir_src src, unsigned component);
720 double nir_src_comp_as_float(nir_src src, unsigned component);
721
722 static inline unsigned
723 nir_dest_bit_size(nir_dest dest)
724 {
725 return dest.is_ssa ? dest.ssa.bit_size : dest.reg.reg->bit_size;
726 }
727
728 static inline unsigned
729 nir_dest_num_components(nir_dest dest)
730 {
731 return dest.is_ssa ? dest.ssa.num_components : dest.reg.reg->num_components;
732 }
733
734 void nir_src_copy(nir_src *dest, const nir_src *src, void *instr_or_if);
735 void nir_dest_copy(nir_dest *dest, const nir_dest *src, nir_instr *instr);
736
737 typedef struct {
738 nir_src src;
739
740 /**
741 * \name input modifiers
742 */
743 /*@{*/
744 /**
745 * For inputs interpreted as floating point, flips the sign bit. For
746 * inputs interpreted as integers, performs the two's complement negation.
747 */
748 bool negate;
749
750 /**
751 * Clears the sign bit for floating point values, and computes the integer
752 * absolute value for integers. Note that the negate modifier acts after
753 * the absolute value modifier, therefore if both are set then all inputs
754 * will become negative.
755 */
756 bool abs;
757 /*@}*/
758
759 /**
760 * For each input component, says which component of the register it is
761 * chosen from. Note that which elements of the swizzle are used and which
762 * are ignored are based on the write mask for most opcodes - for example,
763 * a statement like "foo.xzw = bar.zyx" would have a writemask of 1101b and
764 * a swizzle of {2, x, 1, 0} where x means "don't care."
765 */
766 uint8_t swizzle[NIR_MAX_VEC_COMPONENTS];
767 } nir_alu_src;
768
769 typedef struct {
770 nir_dest dest;
771
772 /**
773 * \name saturate output modifier
774 *
775 * Only valid for opcodes that output floating-point numbers. Clamps the
776 * output to between 0.0 and 1.0 inclusive.
777 */
778
779 bool saturate;
780
781 unsigned write_mask : NIR_MAX_VEC_COMPONENTS; /* ignored if dest.is_ssa is true */
782 } nir_alu_dest;
783
784 /** NIR sized and unsized types
785 *
786 * The values in this enum are carefully chosen so that the sized type is
787 * just the unsized type OR the number of bits.
788 */
789 typedef enum {
790 nir_type_invalid = 0, /* Not a valid type */
791 nir_type_int = 2,
792 nir_type_uint = 4,
793 nir_type_bool = 6,
794 nir_type_float = 128,
795 nir_type_bool1 = 1 | nir_type_bool,
796 nir_type_bool32 = 32 | nir_type_bool,
797 nir_type_int1 = 1 | nir_type_int,
798 nir_type_int8 = 8 | nir_type_int,
799 nir_type_int16 = 16 | nir_type_int,
800 nir_type_int32 = 32 | nir_type_int,
801 nir_type_int64 = 64 | nir_type_int,
802 nir_type_uint1 = 1 | nir_type_uint,
803 nir_type_uint8 = 8 | nir_type_uint,
804 nir_type_uint16 = 16 | nir_type_uint,
805 nir_type_uint32 = 32 | nir_type_uint,
806 nir_type_uint64 = 64 | nir_type_uint,
807 nir_type_float16 = 16 | nir_type_float,
808 nir_type_float32 = 32 | nir_type_float,
809 nir_type_float64 = 64 | nir_type_float,
810 } nir_alu_type;
811
812 #define NIR_ALU_TYPE_SIZE_MASK 0x79
813 #define NIR_ALU_TYPE_BASE_TYPE_MASK 0x86
814
815 static inline unsigned
816 nir_alu_type_get_type_size(nir_alu_type type)
817 {
818 return type & NIR_ALU_TYPE_SIZE_MASK;
819 }
820
821 static inline unsigned
822 nir_alu_type_get_base_type(nir_alu_type type)
823 {
824 return type & NIR_ALU_TYPE_BASE_TYPE_MASK;
825 }
826
827 static inline nir_alu_type
828 nir_get_nir_type_for_glsl_base_type(enum glsl_base_type base_type)
829 {
830 switch (base_type) {
831 case GLSL_TYPE_BOOL:
832 return nir_type_bool1;
833 break;
834 case GLSL_TYPE_UINT:
835 return nir_type_uint32;
836 break;
837 case GLSL_TYPE_INT:
838 return nir_type_int32;
839 break;
840 case GLSL_TYPE_UINT16:
841 return nir_type_uint16;
842 break;
843 case GLSL_TYPE_INT16:
844 return nir_type_int16;
845 break;
846 case GLSL_TYPE_UINT8:
847 return nir_type_uint8;
848 case GLSL_TYPE_INT8:
849 return nir_type_int8;
850 case GLSL_TYPE_UINT64:
851 return nir_type_uint64;
852 break;
853 case GLSL_TYPE_INT64:
854 return nir_type_int64;
855 break;
856 case GLSL_TYPE_FLOAT:
857 return nir_type_float32;
858 break;
859 case GLSL_TYPE_FLOAT16:
860 return nir_type_float16;
861 break;
862 case GLSL_TYPE_DOUBLE:
863 return nir_type_float64;
864 break;
865 default:
866 unreachable("unknown type");
867 }
868 }
869
870 static inline nir_alu_type
871 nir_get_nir_type_for_glsl_type(const struct glsl_type *type)
872 {
873 return nir_get_nir_type_for_glsl_base_type(glsl_get_base_type(type));
874 }
875
876 nir_op nir_type_conversion_op(nir_alu_type src, nir_alu_type dst,
877 nir_rounding_mode rnd);
878
879 typedef enum {
880 NIR_OP_IS_COMMUTATIVE = (1 << 0),
881 NIR_OP_IS_ASSOCIATIVE = (1 << 1),
882 } nir_op_algebraic_property;
883
884 typedef struct {
885 const char *name;
886
887 unsigned num_inputs;
888
889 /**
890 * The number of components in the output
891 *
892 * If non-zero, this is the size of the output and input sizes are
893 * explicitly given; swizzle and writemask are still in effect, but if
894 * the output component is masked out, then the input component may
895 * still be in use.
896 *
897 * If zero, the opcode acts in the standard, per-component manner; the
898 * operation is performed on each component (except the ones that are
899 * masked out) with the input being taken from the input swizzle for
900 * that component.
901 *
902 * The size of some of the inputs may be given (i.e. non-zero) even
903 * though output_size is zero; in that case, the inputs with a zero
904 * size act per-component, while the inputs with non-zero size don't.
905 */
906 unsigned output_size;
907
908 /**
909 * The type of vector that the instruction outputs. Note that the
910 * staurate modifier is only allowed on outputs with the float type.
911 */
912
913 nir_alu_type output_type;
914
915 /**
916 * The number of components in each input
917 */
918 unsigned input_sizes[NIR_MAX_VEC_COMPONENTS];
919
920 /**
921 * The type of vector that each input takes. Note that negate and
922 * absolute value are only allowed on inputs with int or float type and
923 * behave differently on the two.
924 */
925 nir_alu_type input_types[NIR_MAX_VEC_COMPONENTS];
926
927 nir_op_algebraic_property algebraic_properties;
928 } nir_op_info;
929
930 extern const nir_op_info nir_op_infos[nir_num_opcodes];
931
932 typedef struct nir_alu_instr {
933 nir_instr instr;
934 nir_op op;
935
936 /** Indicates that this ALU instruction generates an exact value
937 *
938 * This is kind of a mixture of GLSL "precise" and "invariant" and not
939 * really equivalent to either. This indicates that the value generated by
940 * this operation is high-precision and any code transformations that touch
941 * it must ensure that the resulting value is bit-for-bit identical to the
942 * original.
943 */
944 bool exact;
945
946 nir_alu_dest dest;
947 nir_alu_src src[];
948 } nir_alu_instr;
949
950 void nir_alu_src_copy(nir_alu_src *dest, const nir_alu_src *src,
951 nir_alu_instr *instr);
952 void nir_alu_dest_copy(nir_alu_dest *dest, const nir_alu_dest *src,
953 nir_alu_instr *instr);
954
955 /* is this source channel used? */
956 static inline bool
957 nir_alu_instr_channel_used(const nir_alu_instr *instr, unsigned src,
958 unsigned channel)
959 {
960 if (nir_op_infos[instr->op].input_sizes[src] > 0)
961 return channel < nir_op_infos[instr->op].input_sizes[src];
962
963 return (instr->dest.write_mask >> channel) & 1;
964 }
965
966 static inline nir_component_mask_t
967 nir_alu_instr_src_read_mask(const nir_alu_instr *instr, unsigned src)
968 {
969 nir_component_mask_t read_mask = 0;
970 for (unsigned c = 0; c < NIR_MAX_VEC_COMPONENTS; c++) {
971 if (!nir_alu_instr_channel_used(instr, src, c))
972 continue;
973
974 read_mask |= (1 << instr->src[src].swizzle[c]);
975 }
976 return read_mask;
977 }
978
979 /*
980 * For instructions whose destinations are SSA, get the number of channels
981 * used for a source
982 */
983 static inline unsigned
984 nir_ssa_alu_instr_src_components(const nir_alu_instr *instr, unsigned src)
985 {
986 assert(instr->dest.dest.is_ssa);
987
988 if (nir_op_infos[instr->op].input_sizes[src] > 0)
989 return nir_op_infos[instr->op].input_sizes[src];
990
991 return instr->dest.dest.ssa.num_components;
992 }
993
994 bool nir_alu_srcs_equal(const nir_alu_instr *alu1, const nir_alu_instr *alu2,
995 unsigned src1, unsigned src2);
996
997 typedef enum {
998 nir_deref_type_var,
999 nir_deref_type_array,
1000 nir_deref_type_array_wildcard,
1001 nir_deref_type_struct,
1002 nir_deref_type_cast,
1003 } nir_deref_type;
1004
1005 typedef struct {
1006 nir_instr instr;
1007
1008 /** The type of this deref instruction */
1009 nir_deref_type deref_type;
1010
1011 /** The mode of the underlying variable */
1012 nir_variable_mode mode;
1013
1014 /** The dereferenced type of the resulting pointer value */
1015 const struct glsl_type *type;
1016
1017 union {
1018 /** Variable being dereferenced if deref_type is a deref_var */
1019 nir_variable *var;
1020
1021 /** Parent deref if deref_type is not deref_var */
1022 nir_src parent;
1023 };
1024
1025 /** Additional deref parameters */
1026 union {
1027 struct {
1028 nir_src index;
1029 } arr;
1030
1031 struct {
1032 unsigned index;
1033 } strct;
1034 };
1035
1036 /** Destination to store the resulting "pointer" */
1037 nir_dest dest;
1038 } nir_deref_instr;
1039
1040 NIR_DEFINE_CAST(nir_instr_as_deref, nir_instr, nir_deref_instr, instr,
1041 type, nir_instr_type_deref)
1042
1043 static inline nir_deref_instr *
1044 nir_src_as_deref(nir_src src)
1045 {
1046 if (!src.is_ssa)
1047 return NULL;
1048
1049 if (src.ssa->parent_instr->type != nir_instr_type_deref)
1050 return NULL;
1051
1052 return nir_instr_as_deref(src.ssa->parent_instr);
1053 }
1054
1055 static inline nir_deref_instr *
1056 nir_deref_instr_parent(const nir_deref_instr *instr)
1057 {
1058 if (instr->deref_type == nir_deref_type_var)
1059 return NULL;
1060 else
1061 return nir_src_as_deref(instr->parent);
1062 }
1063
1064 static inline nir_variable *
1065 nir_deref_instr_get_variable(const nir_deref_instr *instr)
1066 {
1067 while (instr->deref_type != nir_deref_type_var) {
1068 if (instr->deref_type == nir_deref_type_cast)
1069 return NULL;
1070
1071 instr = nir_deref_instr_parent(instr);
1072 }
1073
1074 return instr->var;
1075 }
1076
1077 bool nir_deref_instr_has_indirect(nir_deref_instr *instr);
1078
1079 bool nir_deref_instr_remove_if_unused(nir_deref_instr *instr);
1080
1081 typedef struct {
1082 nir_instr instr;
1083
1084 struct nir_function *callee;
1085
1086 unsigned num_params;
1087 nir_src params[];
1088 } nir_call_instr;
1089
1090 #include "nir_intrinsics.h"
1091
1092 #define NIR_INTRINSIC_MAX_CONST_INDEX 4
1093
1094 /** Represents an intrinsic
1095 *
1096 * An intrinsic is an instruction type for handling things that are
1097 * more-or-less regular operations but don't just consume and produce SSA
1098 * values like ALU operations do. Intrinsics are not for things that have
1099 * special semantic meaning such as phi nodes and parallel copies.
1100 * Examples of intrinsics include variable load/store operations, system
1101 * value loads, and the like. Even though texturing more-or-less falls
1102 * under this category, texturing is its own instruction type because
1103 * trying to represent texturing with intrinsics would lead to a
1104 * combinatorial explosion of intrinsic opcodes.
1105 *
1106 * By having a single instruction type for handling a lot of different
1107 * cases, optimization passes can look for intrinsics and, for the most
1108 * part, completely ignore them. Each intrinsic type also has a few
1109 * possible flags that govern whether or not they can be reordered or
1110 * eliminated. That way passes like dead code elimination can still work
1111 * on intrisics without understanding the meaning of each.
1112 *
1113 * Each intrinsic has some number of constant indices, some number of
1114 * variables, and some number of sources. What these sources, variables,
1115 * and indices mean depends on the intrinsic and is documented with the
1116 * intrinsic declaration in nir_intrinsics.h. Intrinsics and texture
1117 * instructions are the only types of instruction that can operate on
1118 * variables.
1119 */
1120 typedef struct {
1121 nir_instr instr;
1122
1123 nir_intrinsic_op intrinsic;
1124
1125 nir_dest dest;
1126
1127 /** number of components if this is a vectorized intrinsic
1128 *
1129 * Similarly to ALU operations, some intrinsics are vectorized.
1130 * An intrinsic is vectorized if nir_intrinsic_infos.dest_components == 0.
1131 * For vectorized intrinsics, the num_components field specifies the
1132 * number of destination components and the number of source components
1133 * for all sources with nir_intrinsic_infos.src_components[i] == 0.
1134 */
1135 uint8_t num_components;
1136
1137 int const_index[NIR_INTRINSIC_MAX_CONST_INDEX];
1138
1139 nir_src src[];
1140 } nir_intrinsic_instr;
1141
1142 static inline nir_variable *
1143 nir_intrinsic_get_var(nir_intrinsic_instr *intrin, unsigned i)
1144 {
1145 return nir_deref_instr_get_variable(nir_src_as_deref(intrin->src[i]));
1146 }
1147
1148 /**
1149 * \name NIR intrinsics semantic flags
1150 *
1151 * information about what the compiler can do with the intrinsics.
1152 *
1153 * \sa nir_intrinsic_info::flags
1154 */
1155 typedef enum {
1156 /**
1157 * whether the intrinsic can be safely eliminated if none of its output
1158 * value is not being used.
1159 */
1160 NIR_INTRINSIC_CAN_ELIMINATE = (1 << 0),
1161
1162 /**
1163 * Whether the intrinsic can be reordered with respect to any other
1164 * intrinsic, i.e. whether the only reordering dependencies of the
1165 * intrinsic are due to the register reads/writes.
1166 */
1167 NIR_INTRINSIC_CAN_REORDER = (1 << 1),
1168 } nir_intrinsic_semantic_flag;
1169
1170 /**
1171 * \name NIR intrinsics const-index flag
1172 *
1173 * Indicates the usage of a const_index slot.
1174 *
1175 * \sa nir_intrinsic_info::index_map
1176 */
1177 typedef enum {
1178 /**
1179 * Generally instructions that take a offset src argument, can encode
1180 * a constant 'base' value which is added to the offset.
1181 */
1182 NIR_INTRINSIC_BASE = 1,
1183
1184 /**
1185 * For store instructions, a writemask for the store.
1186 */
1187 NIR_INTRINSIC_WRMASK = 2,
1188
1189 /**
1190 * The stream-id for GS emit_vertex/end_primitive intrinsics.
1191 */
1192 NIR_INTRINSIC_STREAM_ID = 3,
1193
1194 /**
1195 * The clip-plane id for load_user_clip_plane intrinsic.
1196 */
1197 NIR_INTRINSIC_UCP_ID = 4,
1198
1199 /**
1200 * The amount of data, starting from BASE, that this instruction may
1201 * access. This is used to provide bounds if the offset is not constant.
1202 */
1203 NIR_INTRINSIC_RANGE = 5,
1204
1205 /**
1206 * The Vulkan descriptor set for vulkan_resource_index intrinsic.
1207 */
1208 NIR_INTRINSIC_DESC_SET = 6,
1209
1210 /**
1211 * The Vulkan descriptor set binding for vulkan_resource_index intrinsic.
1212 */
1213 NIR_INTRINSIC_BINDING = 7,
1214
1215 /**
1216 * Component offset.
1217 */
1218 NIR_INTRINSIC_COMPONENT = 8,
1219
1220 /**
1221 * Interpolation mode (only meaningful for FS inputs).
1222 */
1223 NIR_INTRINSIC_INTERP_MODE = 9,
1224
1225 /**
1226 * A binary nir_op to use when performing a reduction or scan operation
1227 */
1228 NIR_INTRINSIC_REDUCTION_OP = 10,
1229
1230 /**
1231 * Cluster size for reduction operations
1232 */
1233 NIR_INTRINSIC_CLUSTER_SIZE = 11,
1234
1235 /**
1236 * Parameter index for a load_param intrinsic
1237 */
1238 NIR_INTRINSIC_PARAM_IDX = 12,
1239
1240 /**
1241 * Image dimensionality for image intrinsics
1242 *
1243 * One of GLSL_SAMPLER_DIM_*
1244 */
1245 NIR_INTRINSIC_IMAGE_DIM = 13,
1246
1247 /**
1248 * Non-zero if we are accessing an array image
1249 */
1250 NIR_INTRINSIC_IMAGE_ARRAY = 14,
1251
1252 /**
1253 * Image format for image intrinsics
1254 */
1255 NIR_INTRINSIC_FORMAT = 15,
1256
1257 /**
1258 * Access qualifiers for image intrinsics
1259 */
1260 NIR_INTRINSIC_ACCESS = 16,
1261
1262 /**
1263 * Alignment for offsets and addresses
1264 *
1265 * These two parameters, specify an alignment in terms of a multiplier and
1266 * an offset. The offset or address parameter X of the intrinsic is
1267 * guaranteed to satisfy the following:
1268 *
1269 * (X - align_offset) % align_mul == 0
1270 */
1271 NIR_INTRINSIC_ALIGN_MUL = 17,
1272 NIR_INTRINSIC_ALIGN_OFFSET = 18,
1273
1274 NIR_INTRINSIC_NUM_INDEX_FLAGS,
1275
1276 } nir_intrinsic_index_flag;
1277
1278 #define NIR_INTRINSIC_MAX_INPUTS 5
1279
1280 typedef struct {
1281 const char *name;
1282
1283 unsigned num_srcs; /** < number of register/SSA inputs */
1284
1285 /** number of components of each input register
1286 *
1287 * If this value is 0, the number of components is given by the
1288 * num_components field of nir_intrinsic_instr.
1289 */
1290 unsigned src_components[NIR_INTRINSIC_MAX_INPUTS];
1291
1292 bool has_dest;
1293
1294 /** number of components of the output register
1295 *
1296 * If this value is 0, the number of components is given by the
1297 * num_components field of nir_intrinsic_instr.
1298 */
1299 unsigned dest_components;
1300
1301 /** the number of constant indices used by the intrinsic */
1302 unsigned num_indices;
1303
1304 /** indicates the usage of intr->const_index[n] */
1305 unsigned index_map[NIR_INTRINSIC_NUM_INDEX_FLAGS];
1306
1307 /** semantic flags for calls to this intrinsic */
1308 nir_intrinsic_semantic_flag flags;
1309 } nir_intrinsic_info;
1310
1311 extern const nir_intrinsic_info nir_intrinsic_infos[nir_num_intrinsics];
1312
1313 static inline unsigned
1314 nir_intrinsic_src_components(nir_intrinsic_instr *intr, unsigned srcn)
1315 {
1316 const nir_intrinsic_info *info = &nir_intrinsic_infos[intr->intrinsic];
1317 assert(srcn < info->num_srcs);
1318 if (info->src_components[srcn])
1319 return info->src_components[srcn];
1320 else
1321 return intr->num_components;
1322 }
1323
1324 static inline unsigned
1325 nir_intrinsic_dest_components(nir_intrinsic_instr *intr)
1326 {
1327 const nir_intrinsic_info *info = &nir_intrinsic_infos[intr->intrinsic];
1328 if (!info->has_dest)
1329 return 0;
1330 else if (info->dest_components)
1331 return info->dest_components;
1332 else
1333 return intr->num_components;
1334 }
1335
1336 #define INTRINSIC_IDX_ACCESSORS(name, flag, type) \
1337 static inline type \
1338 nir_intrinsic_##name(const nir_intrinsic_instr *instr) \
1339 { \
1340 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic]; \
1341 assert(info->index_map[NIR_INTRINSIC_##flag] > 0); \
1342 return (type)instr->const_index[info->index_map[NIR_INTRINSIC_##flag] - 1]; \
1343 } \
1344 static inline void \
1345 nir_intrinsic_set_##name(nir_intrinsic_instr *instr, type val) \
1346 { \
1347 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic]; \
1348 assert(info->index_map[NIR_INTRINSIC_##flag] > 0); \
1349 instr->const_index[info->index_map[NIR_INTRINSIC_##flag] - 1] = val; \
1350 }
1351
1352 INTRINSIC_IDX_ACCESSORS(write_mask, WRMASK, unsigned)
1353 INTRINSIC_IDX_ACCESSORS(base, BASE, int)
1354 INTRINSIC_IDX_ACCESSORS(stream_id, STREAM_ID, unsigned)
1355 INTRINSIC_IDX_ACCESSORS(ucp_id, UCP_ID, unsigned)
1356 INTRINSIC_IDX_ACCESSORS(range, RANGE, unsigned)
1357 INTRINSIC_IDX_ACCESSORS(desc_set, DESC_SET, unsigned)
1358 INTRINSIC_IDX_ACCESSORS(binding, BINDING, unsigned)
1359 INTRINSIC_IDX_ACCESSORS(component, COMPONENT, unsigned)
1360 INTRINSIC_IDX_ACCESSORS(interp_mode, INTERP_MODE, unsigned)
1361 INTRINSIC_IDX_ACCESSORS(reduction_op, REDUCTION_OP, unsigned)
1362 INTRINSIC_IDX_ACCESSORS(cluster_size, CLUSTER_SIZE, unsigned)
1363 INTRINSIC_IDX_ACCESSORS(param_idx, PARAM_IDX, unsigned)
1364 INTRINSIC_IDX_ACCESSORS(image_dim, IMAGE_DIM, enum glsl_sampler_dim)
1365 INTRINSIC_IDX_ACCESSORS(image_array, IMAGE_ARRAY, bool)
1366 INTRINSIC_IDX_ACCESSORS(access, ACCESS, enum gl_access_qualifier)
1367 INTRINSIC_IDX_ACCESSORS(format, FORMAT, unsigned)
1368 INTRINSIC_IDX_ACCESSORS(align_mul, ALIGN_MUL, unsigned)
1369 INTRINSIC_IDX_ACCESSORS(align_offset, ALIGN_OFFSET, unsigned)
1370
1371 static inline void
1372 nir_intrinsic_set_align(nir_intrinsic_instr *intrin,
1373 unsigned align_mul, unsigned align_offset)
1374 {
1375 assert(util_is_power_of_two_nonzero(align_mul));
1376 assert(align_offset < align_mul);
1377 nir_intrinsic_set_align_mul(intrin, align_mul);
1378 nir_intrinsic_set_align_offset(intrin, align_offset);
1379 }
1380
1381 /** Returns a simple alignment for a load/store intrinsic offset
1382 *
1383 * Instead of the full mul+offset alignment scheme provided by the ALIGN_MUL
1384 * and ALIGN_OFFSET parameters, this helper takes both into account and
1385 * provides a single simple alignment parameter. The offset X is guaranteed
1386 * to satisfy X % align == 0.
1387 */
1388 static inline unsigned
1389 nir_intrinsic_align(const nir_intrinsic_instr *intrin)
1390 {
1391 const unsigned align_mul = nir_intrinsic_align_mul(intrin);
1392 const unsigned align_offset = nir_intrinsic_align_offset(intrin);
1393 assert(align_offset < align_mul);
1394 return align_offset ? 1 << (ffs(align_offset) - 1) : align_mul;
1395 }
1396
1397 /**
1398 * \group texture information
1399 *
1400 * This gives semantic information about textures which is useful to the
1401 * frontend, the backend, and lowering passes, but not the optimizer.
1402 */
1403
1404 typedef enum {
1405 nir_tex_src_coord,
1406 nir_tex_src_projector,
1407 nir_tex_src_comparator, /* shadow comparator */
1408 nir_tex_src_offset,
1409 nir_tex_src_bias,
1410 nir_tex_src_lod,
1411 nir_tex_src_min_lod,
1412 nir_tex_src_ms_index, /* MSAA sample index */
1413 nir_tex_src_ms_mcs, /* MSAA compression value */
1414 nir_tex_src_ddx,
1415 nir_tex_src_ddy,
1416 nir_tex_src_texture_deref, /* < deref pointing to the texture */
1417 nir_tex_src_sampler_deref, /* < deref pointing to the sampler */
1418 nir_tex_src_texture_offset, /* < dynamically uniform indirect offset */
1419 nir_tex_src_sampler_offset, /* < dynamically uniform indirect offset */
1420 nir_tex_src_plane, /* < selects plane for planar textures */
1421 nir_num_tex_src_types
1422 } nir_tex_src_type;
1423
1424 typedef struct {
1425 nir_src src;
1426 nir_tex_src_type src_type;
1427 } nir_tex_src;
1428
1429 typedef enum {
1430 nir_texop_tex, /**< Regular texture look-up */
1431 nir_texop_txb, /**< Texture look-up with LOD bias */
1432 nir_texop_txl, /**< Texture look-up with explicit LOD */
1433 nir_texop_txd, /**< Texture look-up with partial derivatives */
1434 nir_texop_txf, /**< Texel fetch with explicit LOD */
1435 nir_texop_txf_ms, /**< Multisample texture fetch */
1436 nir_texop_txf_ms_mcs, /**< Multisample compression value fetch */
1437 nir_texop_txs, /**< Texture size */
1438 nir_texop_lod, /**< Texture lod query */
1439 nir_texop_tg4, /**< Texture gather */
1440 nir_texop_query_levels, /**< Texture levels query */
1441 nir_texop_texture_samples, /**< Texture samples query */
1442 nir_texop_samples_identical, /**< Query whether all samples are definitely
1443 * identical.
1444 */
1445 } nir_texop;
1446
1447 typedef struct {
1448 nir_instr instr;
1449
1450 enum glsl_sampler_dim sampler_dim;
1451 nir_alu_type dest_type;
1452
1453 nir_texop op;
1454 nir_dest dest;
1455 nir_tex_src *src;
1456 unsigned num_srcs, coord_components;
1457 bool is_array, is_shadow;
1458
1459 /**
1460 * If is_shadow is true, whether this is the old-style shadow that outputs 4
1461 * components or the new-style shadow that outputs 1 component.
1462 */
1463 bool is_new_style_shadow;
1464
1465 /* gather component selector */
1466 unsigned component : 2;
1467
1468 /** The texture index
1469 *
1470 * If this texture instruction has a nir_tex_src_texture_offset source,
1471 * then the texture index is given by texture_index + texture_offset.
1472 */
1473 unsigned texture_index;
1474
1475 /** The size of the texture array or 0 if it's not an array */
1476 unsigned texture_array_size;
1477
1478 /** The sampler index
1479 *
1480 * The following operations do not require a sampler and, as such, this
1481 * field should be ignored:
1482 * - nir_texop_txf
1483 * - nir_texop_txf_ms
1484 * - nir_texop_txs
1485 * - nir_texop_lod
1486 * - nir_texop_query_levels
1487 * - nir_texop_texture_samples
1488 * - nir_texop_samples_identical
1489 *
1490 * If this texture instruction has a nir_tex_src_sampler_offset source,
1491 * then the sampler index is given by sampler_index + sampler_offset.
1492 */
1493 unsigned sampler_index;
1494 } nir_tex_instr;
1495
1496 static inline unsigned
1497 nir_tex_instr_dest_size(const nir_tex_instr *instr)
1498 {
1499 switch (instr->op) {
1500 case nir_texop_txs: {
1501 unsigned ret;
1502 switch (instr->sampler_dim) {
1503 case GLSL_SAMPLER_DIM_1D:
1504 case GLSL_SAMPLER_DIM_BUF:
1505 ret = 1;
1506 break;
1507 case GLSL_SAMPLER_DIM_2D:
1508 case GLSL_SAMPLER_DIM_CUBE:
1509 case GLSL_SAMPLER_DIM_MS:
1510 case GLSL_SAMPLER_DIM_RECT:
1511 case GLSL_SAMPLER_DIM_EXTERNAL:
1512 case GLSL_SAMPLER_DIM_SUBPASS:
1513 ret = 2;
1514 break;
1515 case GLSL_SAMPLER_DIM_3D:
1516 ret = 3;
1517 break;
1518 default:
1519 unreachable("not reached");
1520 }
1521 if (instr->is_array)
1522 ret++;
1523 return ret;
1524 }
1525
1526 case nir_texop_lod:
1527 return 2;
1528
1529 case nir_texop_texture_samples:
1530 case nir_texop_query_levels:
1531 case nir_texop_samples_identical:
1532 return 1;
1533
1534 default:
1535 if (instr->is_shadow && instr->is_new_style_shadow)
1536 return 1;
1537
1538 return 4;
1539 }
1540 }
1541
1542 /* Returns true if this texture operation queries something about the texture
1543 * rather than actually sampling it.
1544 */
1545 static inline bool
1546 nir_tex_instr_is_query(const nir_tex_instr *instr)
1547 {
1548 switch (instr->op) {
1549 case nir_texop_txs:
1550 case nir_texop_lod:
1551 case nir_texop_texture_samples:
1552 case nir_texop_query_levels:
1553 case nir_texop_txf_ms_mcs:
1554 return true;
1555 case nir_texop_tex:
1556 case nir_texop_txb:
1557 case nir_texop_txl:
1558 case nir_texop_txd:
1559 case nir_texop_txf:
1560 case nir_texop_txf_ms:
1561 case nir_texop_tg4:
1562 return false;
1563 default:
1564 unreachable("Invalid texture opcode");
1565 }
1566 }
1567
1568 static inline bool
1569 nir_alu_instr_is_comparison(const nir_alu_instr *instr)
1570 {
1571 switch (instr->op) {
1572 case nir_op_flt:
1573 case nir_op_fge:
1574 case nir_op_feq:
1575 case nir_op_fne:
1576 case nir_op_ilt:
1577 case nir_op_ult:
1578 case nir_op_ige:
1579 case nir_op_uge:
1580 case nir_op_ieq:
1581 case nir_op_ine:
1582 case nir_op_i2b1:
1583 case nir_op_f2b1:
1584 case nir_op_inot:
1585 case nir_op_fnot:
1586 return true;
1587 default:
1588 return false;
1589 }
1590 }
1591
1592 static inline nir_alu_type
1593 nir_tex_instr_src_type(const nir_tex_instr *instr, unsigned src)
1594 {
1595 switch (instr->src[src].src_type) {
1596 case nir_tex_src_coord:
1597 switch (instr->op) {
1598 case nir_texop_txf:
1599 case nir_texop_txf_ms:
1600 case nir_texop_txf_ms_mcs:
1601 case nir_texop_samples_identical:
1602 return nir_type_int;
1603
1604 default:
1605 return nir_type_float;
1606 }
1607
1608 case nir_tex_src_lod:
1609 switch (instr->op) {
1610 case nir_texop_txs:
1611 case nir_texop_txf:
1612 return nir_type_int;
1613
1614 default:
1615 return nir_type_float;
1616 }
1617
1618 case nir_tex_src_projector:
1619 case nir_tex_src_comparator:
1620 case nir_tex_src_bias:
1621 case nir_tex_src_ddx:
1622 case nir_tex_src_ddy:
1623 return nir_type_float;
1624
1625 case nir_tex_src_offset:
1626 case nir_tex_src_ms_index:
1627 case nir_tex_src_texture_offset:
1628 case nir_tex_src_sampler_offset:
1629 return nir_type_int;
1630
1631 default:
1632 unreachable("Invalid texture source type");
1633 }
1634 }
1635
1636 static inline unsigned
1637 nir_tex_instr_src_size(const nir_tex_instr *instr, unsigned src)
1638 {
1639 if (instr->src[src].src_type == nir_tex_src_coord)
1640 return instr->coord_components;
1641
1642 /* The MCS value is expected to be a vec4 returned by a txf_ms_mcs */
1643 if (instr->src[src].src_type == nir_tex_src_ms_mcs)
1644 return 4;
1645
1646 if (instr->src[src].src_type == nir_tex_src_ddx ||
1647 instr->src[src].src_type == nir_tex_src_ddy) {
1648 if (instr->is_array)
1649 return instr->coord_components - 1;
1650 else
1651 return instr->coord_components;
1652 }
1653
1654 /* Usual APIs don't allow cube + offset, but we allow it, with 2 coords for
1655 * the offset, since a cube maps to a single face.
1656 */
1657 if (instr->src[src].src_type == nir_tex_src_offset) {
1658 if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE)
1659 return 2;
1660 else if (instr->is_array)
1661 return instr->coord_components - 1;
1662 else
1663 return instr->coord_components;
1664 }
1665
1666 return 1;
1667 }
1668
1669 static inline int
1670 nir_tex_instr_src_index(const nir_tex_instr *instr, nir_tex_src_type type)
1671 {
1672 for (unsigned i = 0; i < instr->num_srcs; i++)
1673 if (instr->src[i].src_type == type)
1674 return (int) i;
1675
1676 return -1;
1677 }
1678
1679 void nir_tex_instr_add_src(nir_tex_instr *tex,
1680 nir_tex_src_type src_type,
1681 nir_src src);
1682
1683 void nir_tex_instr_remove_src(nir_tex_instr *tex, unsigned src_idx);
1684
1685 typedef struct {
1686 nir_instr instr;
1687
1688 nir_const_value value;
1689
1690 nir_ssa_def def;
1691 } nir_load_const_instr;
1692
1693 typedef enum {
1694 nir_jump_return,
1695 nir_jump_break,
1696 nir_jump_continue,
1697 } nir_jump_type;
1698
1699 typedef struct {
1700 nir_instr instr;
1701 nir_jump_type type;
1702 } nir_jump_instr;
1703
1704 /* creates a new SSA variable in an undefined state */
1705
1706 typedef struct {
1707 nir_instr instr;
1708 nir_ssa_def def;
1709 } nir_ssa_undef_instr;
1710
1711 typedef struct {
1712 struct exec_node node;
1713
1714 /* The predecessor block corresponding to this source */
1715 struct nir_block *pred;
1716
1717 nir_src src;
1718 } nir_phi_src;
1719
1720 #define nir_foreach_phi_src(phi_src, phi) \
1721 foreach_list_typed(nir_phi_src, phi_src, node, &(phi)->srcs)
1722 #define nir_foreach_phi_src_safe(phi_src, phi) \
1723 foreach_list_typed_safe(nir_phi_src, phi_src, node, &(phi)->srcs)
1724
1725 typedef struct {
1726 nir_instr instr;
1727
1728 struct exec_list srcs; /** < list of nir_phi_src */
1729
1730 nir_dest dest;
1731 } nir_phi_instr;
1732
1733 typedef struct {
1734 struct exec_node node;
1735 nir_src src;
1736 nir_dest dest;
1737 } nir_parallel_copy_entry;
1738
1739 #define nir_foreach_parallel_copy_entry(entry, pcopy) \
1740 foreach_list_typed(nir_parallel_copy_entry, entry, node, &(pcopy)->entries)
1741
1742 typedef struct {
1743 nir_instr instr;
1744
1745 /* A list of nir_parallel_copy_entrys. The sources of all of the
1746 * entries are copied to the corresponding destinations "in parallel".
1747 * In other words, if we have two entries: a -> b and b -> a, the values
1748 * get swapped.
1749 */
1750 struct exec_list entries;
1751 } nir_parallel_copy_instr;
1752
1753 NIR_DEFINE_CAST(nir_instr_as_alu, nir_instr, nir_alu_instr, instr,
1754 type, nir_instr_type_alu)
1755 NIR_DEFINE_CAST(nir_instr_as_call, nir_instr, nir_call_instr, instr,
1756 type, nir_instr_type_call)
1757 NIR_DEFINE_CAST(nir_instr_as_jump, nir_instr, nir_jump_instr, instr,
1758 type, nir_instr_type_jump)
1759 NIR_DEFINE_CAST(nir_instr_as_tex, nir_instr, nir_tex_instr, instr,
1760 type, nir_instr_type_tex)
1761 NIR_DEFINE_CAST(nir_instr_as_intrinsic, nir_instr, nir_intrinsic_instr, instr,
1762 type, nir_instr_type_intrinsic)
1763 NIR_DEFINE_CAST(nir_instr_as_load_const, nir_instr, nir_load_const_instr, instr,
1764 type, nir_instr_type_load_const)
1765 NIR_DEFINE_CAST(nir_instr_as_ssa_undef, nir_instr, nir_ssa_undef_instr, instr,
1766 type, nir_instr_type_ssa_undef)
1767 NIR_DEFINE_CAST(nir_instr_as_phi, nir_instr, nir_phi_instr, instr,
1768 type, nir_instr_type_phi)
1769 NIR_DEFINE_CAST(nir_instr_as_parallel_copy, nir_instr,
1770 nir_parallel_copy_instr, instr,
1771 type, nir_instr_type_parallel_copy)
1772
1773 /*
1774 * Control flow
1775 *
1776 * Control flow consists of a tree of control flow nodes, which include
1777 * if-statements and loops. The leaves of the tree are basic blocks, lists of
1778 * instructions that always run start-to-finish. Each basic block also keeps
1779 * track of its successors (blocks which may run immediately after the current
1780 * block) and predecessors (blocks which could have run immediately before the
1781 * current block). Each function also has a start block and an end block which
1782 * all return statements point to (which is always empty). Together, all the
1783 * blocks with their predecessors and successors make up the control flow
1784 * graph (CFG) of the function. There are helpers that modify the tree of
1785 * control flow nodes while modifying the CFG appropriately; these should be
1786 * used instead of modifying the tree directly.
1787 */
1788
1789 typedef enum {
1790 nir_cf_node_block,
1791 nir_cf_node_if,
1792 nir_cf_node_loop,
1793 nir_cf_node_function
1794 } nir_cf_node_type;
1795
1796 typedef struct nir_cf_node {
1797 struct exec_node node;
1798 nir_cf_node_type type;
1799 struct nir_cf_node *parent;
1800 } nir_cf_node;
1801
1802 typedef struct nir_block {
1803 nir_cf_node cf_node;
1804
1805 struct exec_list instr_list; /** < list of nir_instr */
1806
1807 /** generic block index; generated by nir_index_blocks */
1808 unsigned index;
1809
1810 /*
1811 * Each block can only have up to 2 successors, so we put them in a simple
1812 * array - no need for anything more complicated.
1813 */
1814 struct nir_block *successors[2];
1815
1816 /* Set of nir_block predecessors in the CFG */
1817 struct set *predecessors;
1818
1819 /*
1820 * this node's immediate dominator in the dominance tree - set to NULL for
1821 * the start block.
1822 */
1823 struct nir_block *imm_dom;
1824
1825 /* This node's children in the dominance tree */
1826 unsigned num_dom_children;
1827 struct nir_block **dom_children;
1828
1829 /* Set of nir_blocks on the dominance frontier of this block */
1830 struct set *dom_frontier;
1831
1832 /*
1833 * These two indices have the property that dom_{pre,post}_index for each
1834 * child of this block in the dominance tree will always be between
1835 * dom_pre_index and dom_post_index for this block, which makes testing if
1836 * a given block is dominated by another block an O(1) operation.
1837 */
1838 unsigned dom_pre_index, dom_post_index;
1839
1840 /* live in and out for this block; used for liveness analysis */
1841 BITSET_WORD *live_in;
1842 BITSET_WORD *live_out;
1843 } nir_block;
1844
1845 static inline nir_instr *
1846 nir_block_first_instr(nir_block *block)
1847 {
1848 struct exec_node *head = exec_list_get_head(&block->instr_list);
1849 return exec_node_data(nir_instr, head, node);
1850 }
1851
1852 static inline nir_instr *
1853 nir_block_last_instr(nir_block *block)
1854 {
1855 struct exec_node *tail = exec_list_get_tail(&block->instr_list);
1856 return exec_node_data(nir_instr, tail, node);
1857 }
1858
1859 static inline bool
1860 nir_block_ends_in_jump(nir_block *block)
1861 {
1862 return !exec_list_is_empty(&block->instr_list) &&
1863 nir_block_last_instr(block)->type == nir_instr_type_jump;
1864 }
1865
1866 #define nir_foreach_instr(instr, block) \
1867 foreach_list_typed(nir_instr, instr, node, &(block)->instr_list)
1868 #define nir_foreach_instr_reverse(instr, block) \
1869 foreach_list_typed_reverse(nir_instr, instr, node, &(block)->instr_list)
1870 #define nir_foreach_instr_safe(instr, block) \
1871 foreach_list_typed_safe(nir_instr, instr, node, &(block)->instr_list)
1872 #define nir_foreach_instr_reverse_safe(instr, block) \
1873 foreach_list_typed_reverse_safe(nir_instr, instr, node, &(block)->instr_list)
1874
1875 typedef struct nir_if {
1876 nir_cf_node cf_node;
1877 nir_src condition;
1878
1879 struct exec_list then_list; /** < list of nir_cf_node */
1880 struct exec_list else_list; /** < list of nir_cf_node */
1881 } nir_if;
1882
1883 typedef struct {
1884 nir_if *nif;
1885
1886 nir_instr *conditional_instr;
1887
1888 nir_block *break_block;
1889 nir_block *continue_from_block;
1890
1891 bool continue_from_then;
1892
1893 struct list_head loop_terminator_link;
1894 } nir_loop_terminator;
1895
1896 typedef struct {
1897 /* Number of instructions in the loop */
1898 unsigned num_instructions;
1899
1900 /* Maximum number of times the loop is run (if known) */
1901 unsigned max_trip_count;
1902
1903 /* Do we know the exact number of times the loop will be run */
1904 bool exact_trip_count_known;
1905
1906 /* Unroll the loop regardless of its size */
1907 bool force_unroll;
1908
1909 /* Does the loop contain complex loop terminators, continues or other
1910 * complex behaviours? If this is true we can't rely on
1911 * loop_terminator_list to be complete or accurate.
1912 */
1913 bool complex_loop;
1914
1915 nir_loop_terminator *limiting_terminator;
1916
1917 /* A list of loop_terminators terminating this loop. */
1918 struct list_head loop_terminator_list;
1919 } nir_loop_info;
1920
1921 typedef struct {
1922 nir_cf_node cf_node;
1923
1924 struct exec_list body; /** < list of nir_cf_node */
1925
1926 nir_loop_info *info;
1927 } nir_loop;
1928
1929 /**
1930 * Various bits of metadata that can may be created or required by
1931 * optimization and analysis passes
1932 */
1933 typedef enum {
1934 nir_metadata_none = 0x0,
1935 nir_metadata_block_index = 0x1,
1936 nir_metadata_dominance = 0x2,
1937 nir_metadata_live_ssa_defs = 0x4,
1938 nir_metadata_not_properly_reset = 0x8,
1939 nir_metadata_loop_analysis = 0x10,
1940 } nir_metadata;
1941
1942 typedef struct {
1943 nir_cf_node cf_node;
1944
1945 /** pointer to the function of which this is an implementation */
1946 struct nir_function *function;
1947
1948 struct exec_list body; /** < list of nir_cf_node */
1949
1950 nir_block *end_block;
1951
1952 /** list for all local variables in the function */
1953 struct exec_list locals;
1954
1955 /** list of local registers in the function */
1956 struct exec_list registers;
1957
1958 /** next available local register index */
1959 unsigned reg_alloc;
1960
1961 /** next available SSA value index */
1962 unsigned ssa_alloc;
1963
1964 /* total number of basic blocks, only valid when block_index_dirty = false */
1965 unsigned num_blocks;
1966
1967 nir_metadata valid_metadata;
1968 } nir_function_impl;
1969
1970 ATTRIBUTE_RETURNS_NONNULL static inline nir_block *
1971 nir_start_block(nir_function_impl *impl)
1972 {
1973 return (nir_block *) impl->body.head_sentinel.next;
1974 }
1975
1976 ATTRIBUTE_RETURNS_NONNULL static inline nir_block *
1977 nir_impl_last_block(nir_function_impl *impl)
1978 {
1979 return (nir_block *) impl->body.tail_sentinel.prev;
1980 }
1981
1982 static inline nir_cf_node *
1983 nir_cf_node_next(nir_cf_node *node)
1984 {
1985 struct exec_node *next = exec_node_get_next(&node->node);
1986 if (exec_node_is_tail_sentinel(next))
1987 return NULL;
1988 else
1989 return exec_node_data(nir_cf_node, next, node);
1990 }
1991
1992 static inline nir_cf_node *
1993 nir_cf_node_prev(nir_cf_node *node)
1994 {
1995 struct exec_node *prev = exec_node_get_prev(&node->node);
1996 if (exec_node_is_head_sentinel(prev))
1997 return NULL;
1998 else
1999 return exec_node_data(nir_cf_node, prev, node);
2000 }
2001
2002 static inline bool
2003 nir_cf_node_is_first(const nir_cf_node *node)
2004 {
2005 return exec_node_is_head_sentinel(node->node.prev);
2006 }
2007
2008 static inline bool
2009 nir_cf_node_is_last(const nir_cf_node *node)
2010 {
2011 return exec_node_is_tail_sentinel(node->node.next);
2012 }
2013
2014 NIR_DEFINE_CAST(nir_cf_node_as_block, nir_cf_node, nir_block, cf_node,
2015 type, nir_cf_node_block)
2016 NIR_DEFINE_CAST(nir_cf_node_as_if, nir_cf_node, nir_if, cf_node,
2017 type, nir_cf_node_if)
2018 NIR_DEFINE_CAST(nir_cf_node_as_loop, nir_cf_node, nir_loop, cf_node,
2019 type, nir_cf_node_loop)
2020 NIR_DEFINE_CAST(nir_cf_node_as_function, nir_cf_node,
2021 nir_function_impl, cf_node, type, nir_cf_node_function)
2022
2023 static inline nir_block *
2024 nir_if_first_then_block(nir_if *if_stmt)
2025 {
2026 struct exec_node *head = exec_list_get_head(&if_stmt->then_list);
2027 return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
2028 }
2029
2030 static inline nir_block *
2031 nir_if_last_then_block(nir_if *if_stmt)
2032 {
2033 struct exec_node *tail = exec_list_get_tail(&if_stmt->then_list);
2034 return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
2035 }
2036
2037 static inline nir_block *
2038 nir_if_first_else_block(nir_if *if_stmt)
2039 {
2040 struct exec_node *head = exec_list_get_head(&if_stmt->else_list);
2041 return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
2042 }
2043
2044 static inline nir_block *
2045 nir_if_last_else_block(nir_if *if_stmt)
2046 {
2047 struct exec_node *tail = exec_list_get_tail(&if_stmt->else_list);
2048 return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
2049 }
2050
2051 static inline nir_block *
2052 nir_loop_first_block(nir_loop *loop)
2053 {
2054 struct exec_node *head = exec_list_get_head(&loop->body);
2055 return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
2056 }
2057
2058 static inline nir_block *
2059 nir_loop_last_block(nir_loop *loop)
2060 {
2061 struct exec_node *tail = exec_list_get_tail(&loop->body);
2062 return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
2063 }
2064
2065 typedef struct {
2066 uint8_t num_components;
2067 uint8_t bit_size;
2068 } nir_parameter;
2069
2070 typedef struct nir_function {
2071 struct exec_node node;
2072
2073 const char *name;
2074 struct nir_shader *shader;
2075
2076 unsigned num_params;
2077 nir_parameter *params;
2078
2079 /** The implementation of this function.
2080 *
2081 * If the function is only declared and not implemented, this is NULL.
2082 */
2083 nir_function_impl *impl;
2084 } nir_function;
2085
2086 typedef struct nir_shader_compiler_options {
2087 bool lower_fdiv;
2088 bool lower_ffma;
2089 bool fuse_ffma;
2090 bool lower_flrp32;
2091 /** Lowers flrp when it does not support doubles */
2092 bool lower_flrp64;
2093 bool lower_fpow;
2094 bool lower_fsat;
2095 bool lower_fsqrt;
2096 bool lower_fmod32;
2097 bool lower_fmod64;
2098 /** Lowers ibitfield_extract/ubitfield_extract to ibfe/ubfe. */
2099 bool lower_bitfield_extract;
2100 /** Lowers ibitfield_extract/ubitfield_extract to bfm, compares, shifts. */
2101 bool lower_bitfield_extract_to_shifts;
2102 /** Lowers bitfield_insert to bfi/bfm */
2103 bool lower_bitfield_insert;
2104 /** Lowers bitfield_insert to bfm, compares, and shifts. */
2105 bool lower_bitfield_insert_to_shifts;
2106 /** Lowers bitfield_reverse to shifts. */
2107 bool lower_bitfield_reverse;
2108 /** Lowers bit_count to shifts. */
2109 bool lower_bit_count;
2110 /** Lowers bfm to shifts and subtracts. */
2111 bool lower_bfm;
2112 /** Lowers ifind_msb to compare and ufind_msb */
2113 bool lower_ifind_msb;
2114 /** Lowers find_lsb to ufind_msb and logic ops */
2115 bool lower_find_lsb;
2116 bool lower_uadd_carry;
2117 bool lower_usub_borrow;
2118 /** Lowers imul_high/umul_high to 16-bit multiplies and carry operations. */
2119 bool lower_mul_high;
2120 /** lowers fneg and ineg to fsub and isub. */
2121 bool lower_negate;
2122 /** lowers fsub and isub to fadd+fneg and iadd+ineg. */
2123 bool lower_sub;
2124
2125 /* lower {slt,sge,seq,sne} to {flt,fge,feq,fne} + b2f: */
2126 bool lower_scmp;
2127
2128 /** enables rules to lower idiv by power-of-two: */
2129 bool lower_idiv;
2130
2131 /* Does the native fdot instruction replicate its result for four
2132 * components? If so, then opt_algebraic_late will turn all fdotN
2133 * instructions into fdot_replicatedN instructions.
2134 */
2135 bool fdot_replicates;
2136
2137 /** lowers ffloor to fsub+ffract: */
2138 bool lower_ffloor;
2139
2140 /** lowers ffract to fsub+ffloor: */
2141 bool lower_ffract;
2142
2143 /** lowers fceil to fneg+ffloor+fneg: */
2144 bool lower_fceil;
2145
2146 bool lower_ldexp;
2147
2148 bool lower_pack_half_2x16;
2149 bool lower_pack_unorm_2x16;
2150 bool lower_pack_snorm_2x16;
2151 bool lower_pack_unorm_4x8;
2152 bool lower_pack_snorm_4x8;
2153 bool lower_unpack_half_2x16;
2154 bool lower_unpack_unorm_2x16;
2155 bool lower_unpack_snorm_2x16;
2156 bool lower_unpack_unorm_4x8;
2157 bool lower_unpack_snorm_4x8;
2158
2159 bool lower_extract_byte;
2160 bool lower_extract_word;
2161
2162 bool lower_all_io_to_temps;
2163
2164 /**
2165 * Does the driver support real 32-bit integers? (Otherwise, integers
2166 * are simulated by floats.)
2167 */
2168 bool native_integers;
2169
2170 /* Indicates that the driver only has zero-based vertex id */
2171 bool vertex_id_zero_based;
2172
2173 /**
2174 * If enabled, gl_BaseVertex will be lowered as:
2175 * is_indexed_draw (~0/0) & firstvertex
2176 */
2177 bool lower_base_vertex;
2178
2179 /**
2180 * If enabled, gl_HelperInvocation will be lowered as:
2181 *
2182 * !((1 << sample_id) & sample_mask_in))
2183 *
2184 * This depends on some possibly hw implementation details, which may
2185 * not be true for all hw. In particular that the FS is only executed
2186 * for covered samples or for helper invocations. So, do not blindly
2187 * enable this option.
2188 *
2189 * Note: See also issue #22 in ARB_shader_image_load_store
2190 */
2191 bool lower_helper_invocation;
2192
2193 bool lower_cs_local_index_from_id;
2194 bool lower_cs_local_id_from_index;
2195
2196 bool lower_device_index_to_zero;
2197
2198 /* Set if nir_lower_wpos_ytransform() should also invert gl_PointCoord. */
2199 bool lower_wpos_pntc;
2200
2201 /**
2202 * Should nir_lower_io() create load_interpolated_input intrinsics?
2203 *
2204 * If not, it generates regular load_input intrinsics and interpolation
2205 * information must be inferred from the list of input nir_variables.
2206 */
2207 bool use_interpolated_input_intrinsics;
2208
2209 unsigned max_unroll_iterations;
2210 } nir_shader_compiler_options;
2211
2212 typedef struct nir_shader {
2213 /** list of uniforms (nir_variable) */
2214 struct exec_list uniforms;
2215
2216 /** list of inputs (nir_variable) */
2217 struct exec_list inputs;
2218
2219 /** list of outputs (nir_variable) */
2220 struct exec_list outputs;
2221
2222 /** list of shared compute variables (nir_variable) */
2223 struct exec_list shared;
2224
2225 /** Set of driver-specific options for the shader.
2226 *
2227 * The memory for the options is expected to be kept in a single static
2228 * copy by the driver.
2229 */
2230 const struct nir_shader_compiler_options *options;
2231
2232 /** Various bits of compile-time information about a given shader */
2233 struct shader_info info;
2234
2235 /** list of global variables in the shader (nir_variable) */
2236 struct exec_list globals;
2237
2238 /** list of system value variables in the shader (nir_variable) */
2239 struct exec_list system_values;
2240
2241 struct exec_list functions; /** < list of nir_function */
2242
2243 /** list of global register in the shader */
2244 struct exec_list registers;
2245
2246 /** next available global register index */
2247 unsigned reg_alloc;
2248
2249 /**
2250 * the highest index a load_input_*, load_uniform_*, etc. intrinsic can
2251 * access plus one
2252 */
2253 unsigned num_inputs, num_uniforms, num_outputs, num_shared;
2254
2255 /** Constant data associated with this shader.
2256 *
2257 * Constant data is loaded through load_constant intrinsics. See also
2258 * nir_opt_large_constants.
2259 */
2260 void *constant_data;
2261 unsigned constant_data_size;
2262 } nir_shader;
2263
2264 static inline nir_function_impl *
2265 nir_shader_get_entrypoint(nir_shader *shader)
2266 {
2267 assert(exec_list_length(&shader->functions) == 1);
2268 struct exec_node *func_node = exec_list_get_head(&shader->functions);
2269 nir_function *func = exec_node_data(nir_function, func_node, node);
2270 assert(func->num_params == 0);
2271 assert(func->impl);
2272 return func->impl;
2273 }
2274
2275 #define nir_foreach_function(func, shader) \
2276 foreach_list_typed(nir_function, func, node, &(shader)->functions)
2277
2278 nir_shader *nir_shader_create(void *mem_ctx,
2279 gl_shader_stage stage,
2280 const nir_shader_compiler_options *options,
2281 shader_info *si);
2282
2283 /** creates a register, including assigning it an index and adding it to the list */
2284 nir_register *nir_global_reg_create(nir_shader *shader);
2285
2286 nir_register *nir_local_reg_create(nir_function_impl *impl);
2287
2288 void nir_reg_remove(nir_register *reg);
2289
2290 /** Adds a variable to the appropriate list in nir_shader */
2291 void nir_shader_add_variable(nir_shader *shader, nir_variable *var);
2292
2293 static inline void
2294 nir_function_impl_add_variable(nir_function_impl *impl, nir_variable *var)
2295 {
2296 assert(var->data.mode == nir_var_local);
2297 exec_list_push_tail(&impl->locals, &var->node);
2298 }
2299
2300 /** creates a variable, sets a few defaults, and adds it to the list */
2301 nir_variable *nir_variable_create(nir_shader *shader,
2302 nir_variable_mode mode,
2303 const struct glsl_type *type,
2304 const char *name);
2305 /** creates a local variable and adds it to the list */
2306 nir_variable *nir_local_variable_create(nir_function_impl *impl,
2307 const struct glsl_type *type,
2308 const char *name);
2309
2310 /** creates a function and adds it to the shader's list of functions */
2311 nir_function *nir_function_create(nir_shader *shader, const char *name);
2312
2313 nir_function_impl *nir_function_impl_create(nir_function *func);
2314 /** creates a function_impl that isn't tied to any particular function */
2315 nir_function_impl *nir_function_impl_create_bare(nir_shader *shader);
2316
2317 nir_block *nir_block_create(nir_shader *shader);
2318 nir_if *nir_if_create(nir_shader *shader);
2319 nir_loop *nir_loop_create(nir_shader *shader);
2320
2321 nir_function_impl *nir_cf_node_get_function(nir_cf_node *node);
2322
2323 /** requests that the given pieces of metadata be generated */
2324 void nir_metadata_require(nir_function_impl *impl, nir_metadata required, ...);
2325 /** dirties all but the preserved metadata */
2326 void nir_metadata_preserve(nir_function_impl *impl, nir_metadata preserved);
2327
2328 /** creates an instruction with default swizzle/writemask/etc. with NULL registers */
2329 nir_alu_instr *nir_alu_instr_create(nir_shader *shader, nir_op op);
2330
2331 nir_deref_instr *nir_deref_instr_create(nir_shader *shader,
2332 nir_deref_type deref_type);
2333
2334 nir_jump_instr *nir_jump_instr_create(nir_shader *shader, nir_jump_type type);
2335
2336 nir_load_const_instr *nir_load_const_instr_create(nir_shader *shader,
2337 unsigned num_components,
2338 unsigned bit_size);
2339
2340 nir_intrinsic_instr *nir_intrinsic_instr_create(nir_shader *shader,
2341 nir_intrinsic_op op);
2342
2343 nir_call_instr *nir_call_instr_create(nir_shader *shader,
2344 nir_function *callee);
2345
2346 nir_tex_instr *nir_tex_instr_create(nir_shader *shader, unsigned num_srcs);
2347
2348 nir_phi_instr *nir_phi_instr_create(nir_shader *shader);
2349
2350 nir_parallel_copy_instr *nir_parallel_copy_instr_create(nir_shader *shader);
2351
2352 nir_ssa_undef_instr *nir_ssa_undef_instr_create(nir_shader *shader,
2353 unsigned num_components,
2354 unsigned bit_size);
2355
2356 nir_const_value nir_alu_binop_identity(nir_op binop, unsigned bit_size);
2357
2358 /**
2359 * NIR Cursors and Instruction Insertion API
2360 * @{
2361 *
2362 * A tiny struct representing a point to insert/extract instructions or
2363 * control flow nodes. Helps reduce the combinatorial explosion of possible
2364 * points to insert/extract.
2365 *
2366 * \sa nir_control_flow.h
2367 */
2368 typedef enum {
2369 nir_cursor_before_block,
2370 nir_cursor_after_block,
2371 nir_cursor_before_instr,
2372 nir_cursor_after_instr,
2373 } nir_cursor_option;
2374
2375 typedef struct {
2376 nir_cursor_option option;
2377 union {
2378 nir_block *block;
2379 nir_instr *instr;
2380 };
2381 } nir_cursor;
2382
2383 static inline nir_block *
2384 nir_cursor_current_block(nir_cursor cursor)
2385 {
2386 if (cursor.option == nir_cursor_before_instr ||
2387 cursor.option == nir_cursor_after_instr) {
2388 return cursor.instr->block;
2389 } else {
2390 return cursor.block;
2391 }
2392 }
2393
2394 bool nir_cursors_equal(nir_cursor a, nir_cursor b);
2395
2396 static inline nir_cursor
2397 nir_before_block(nir_block *block)
2398 {
2399 nir_cursor cursor;
2400 cursor.option = nir_cursor_before_block;
2401 cursor.block = block;
2402 return cursor;
2403 }
2404
2405 static inline nir_cursor
2406 nir_after_block(nir_block *block)
2407 {
2408 nir_cursor cursor;
2409 cursor.option = nir_cursor_after_block;
2410 cursor.block = block;
2411 return cursor;
2412 }
2413
2414 static inline nir_cursor
2415 nir_before_instr(nir_instr *instr)
2416 {
2417 nir_cursor cursor;
2418 cursor.option = nir_cursor_before_instr;
2419 cursor.instr = instr;
2420 return cursor;
2421 }
2422
2423 static inline nir_cursor
2424 nir_after_instr(nir_instr *instr)
2425 {
2426 nir_cursor cursor;
2427 cursor.option = nir_cursor_after_instr;
2428 cursor.instr = instr;
2429 return cursor;
2430 }
2431
2432 static inline nir_cursor
2433 nir_after_block_before_jump(nir_block *block)
2434 {
2435 nir_instr *last_instr = nir_block_last_instr(block);
2436 if (last_instr && last_instr->type == nir_instr_type_jump) {
2437 return nir_before_instr(last_instr);
2438 } else {
2439 return nir_after_block(block);
2440 }
2441 }
2442
2443 static inline nir_cursor
2444 nir_before_src(nir_src *src, bool is_if_condition)
2445 {
2446 if (is_if_condition) {
2447 nir_block *prev_block =
2448 nir_cf_node_as_block(nir_cf_node_prev(&src->parent_if->cf_node));
2449 assert(!nir_block_ends_in_jump(prev_block));
2450 return nir_after_block(prev_block);
2451 } else if (src->parent_instr->type == nir_instr_type_phi) {
2452 #ifndef NDEBUG
2453 nir_phi_instr *cond_phi = nir_instr_as_phi(src->parent_instr);
2454 bool found = false;
2455 nir_foreach_phi_src(phi_src, cond_phi) {
2456 if (phi_src->src.ssa == src->ssa) {
2457 found = true;
2458 break;
2459 }
2460 }
2461 assert(found);
2462 #endif
2463 /* The LIST_ENTRY macro is a generic container-of macro, it just happens
2464 * to have a more specific name.
2465 */
2466 nir_phi_src *phi_src = LIST_ENTRY(nir_phi_src, src, src);
2467 return nir_after_block_before_jump(phi_src->pred);
2468 } else {
2469 return nir_before_instr(src->parent_instr);
2470 }
2471 }
2472
2473 static inline nir_cursor
2474 nir_before_cf_node(nir_cf_node *node)
2475 {
2476 if (node->type == nir_cf_node_block)
2477 return nir_before_block(nir_cf_node_as_block(node));
2478
2479 return nir_after_block(nir_cf_node_as_block(nir_cf_node_prev(node)));
2480 }
2481
2482 static inline nir_cursor
2483 nir_after_cf_node(nir_cf_node *node)
2484 {
2485 if (node->type == nir_cf_node_block)
2486 return nir_after_block(nir_cf_node_as_block(node));
2487
2488 return nir_before_block(nir_cf_node_as_block(nir_cf_node_next(node)));
2489 }
2490
2491 static inline nir_cursor
2492 nir_after_phis(nir_block *block)
2493 {
2494 nir_foreach_instr(instr, block) {
2495 if (instr->type != nir_instr_type_phi)
2496 return nir_before_instr(instr);
2497 }
2498 return nir_after_block(block);
2499 }
2500
2501 static inline nir_cursor
2502 nir_after_cf_node_and_phis(nir_cf_node *node)
2503 {
2504 if (node->type == nir_cf_node_block)
2505 return nir_after_block(nir_cf_node_as_block(node));
2506
2507 nir_block *block = nir_cf_node_as_block(nir_cf_node_next(node));
2508
2509 return nir_after_phis(block);
2510 }
2511
2512 static inline nir_cursor
2513 nir_before_cf_list(struct exec_list *cf_list)
2514 {
2515 nir_cf_node *first_node = exec_node_data(nir_cf_node,
2516 exec_list_get_head(cf_list), node);
2517 return nir_before_cf_node(first_node);
2518 }
2519
2520 static inline nir_cursor
2521 nir_after_cf_list(struct exec_list *cf_list)
2522 {
2523 nir_cf_node *last_node = exec_node_data(nir_cf_node,
2524 exec_list_get_tail(cf_list), node);
2525 return nir_after_cf_node(last_node);
2526 }
2527
2528 /**
2529 * Insert a NIR instruction at the given cursor.
2530 *
2531 * Note: This does not update the cursor.
2532 */
2533 void nir_instr_insert(nir_cursor cursor, nir_instr *instr);
2534
2535 static inline void
2536 nir_instr_insert_before(nir_instr *instr, nir_instr *before)
2537 {
2538 nir_instr_insert(nir_before_instr(instr), before);
2539 }
2540
2541 static inline void
2542 nir_instr_insert_after(nir_instr *instr, nir_instr *after)
2543 {
2544 nir_instr_insert(nir_after_instr(instr), after);
2545 }
2546
2547 static inline void
2548 nir_instr_insert_before_block(nir_block *block, nir_instr *before)
2549 {
2550 nir_instr_insert(nir_before_block(block), before);
2551 }
2552
2553 static inline void
2554 nir_instr_insert_after_block(nir_block *block, nir_instr *after)
2555 {
2556 nir_instr_insert(nir_after_block(block), after);
2557 }
2558
2559 static inline void
2560 nir_instr_insert_before_cf(nir_cf_node *node, nir_instr *before)
2561 {
2562 nir_instr_insert(nir_before_cf_node(node), before);
2563 }
2564
2565 static inline void
2566 nir_instr_insert_after_cf(nir_cf_node *node, nir_instr *after)
2567 {
2568 nir_instr_insert(nir_after_cf_node(node), after);
2569 }
2570
2571 static inline void
2572 nir_instr_insert_before_cf_list(struct exec_list *list, nir_instr *before)
2573 {
2574 nir_instr_insert(nir_before_cf_list(list), before);
2575 }
2576
2577 static inline void
2578 nir_instr_insert_after_cf_list(struct exec_list *list, nir_instr *after)
2579 {
2580 nir_instr_insert(nir_after_cf_list(list), after);
2581 }
2582
2583 void nir_instr_remove_v(nir_instr *instr);
2584
2585 static inline nir_cursor
2586 nir_instr_remove(nir_instr *instr)
2587 {
2588 nir_cursor cursor;
2589 nir_instr *prev = nir_instr_prev(instr);
2590 if (prev) {
2591 cursor = nir_after_instr(prev);
2592 } else {
2593 cursor = nir_before_block(instr->block);
2594 }
2595 nir_instr_remove_v(instr);
2596 return cursor;
2597 }
2598
2599 /** @} */
2600
2601 typedef bool (*nir_foreach_ssa_def_cb)(nir_ssa_def *def, void *state);
2602 typedef bool (*nir_foreach_dest_cb)(nir_dest *dest, void *state);
2603 typedef bool (*nir_foreach_src_cb)(nir_src *src, void *state);
2604 bool nir_foreach_ssa_def(nir_instr *instr, nir_foreach_ssa_def_cb cb,
2605 void *state);
2606 bool nir_foreach_dest(nir_instr *instr, nir_foreach_dest_cb cb, void *state);
2607 bool nir_foreach_src(nir_instr *instr, nir_foreach_src_cb cb, void *state);
2608
2609 nir_const_value *nir_src_as_const_value(nir_src src);
2610
2611 static inline struct nir_instr *
2612 nir_src_instr(const struct nir_src *src)
2613 {
2614 return src->is_ssa ? src->ssa->parent_instr : NULL;
2615 }
2616
2617 #define NIR_SRC_AS_(name, c_type, type_enum, cast_macro) \
2618 static inline c_type * \
2619 nir_src_as_ ## name (struct nir_src *src) \
2620 { \
2621 return src->is_ssa && src->ssa->parent_instr->type == type_enum \
2622 ? cast_macro(src->ssa->parent_instr) : NULL; \
2623 } \
2624 static inline const c_type * \
2625 nir_src_as_ ## name ## _const(const struct nir_src *src) \
2626 { \
2627 return src->is_ssa && src->ssa->parent_instr->type == type_enum \
2628 ? cast_macro(src->ssa->parent_instr) : NULL; \
2629 }
2630
2631 NIR_SRC_AS_(alu_instr, nir_alu_instr, nir_instr_type_alu, nir_instr_as_alu)
2632
2633 bool nir_src_is_dynamically_uniform(nir_src src);
2634 bool nir_srcs_equal(nir_src src1, nir_src src2);
2635 void nir_instr_rewrite_src(nir_instr *instr, nir_src *src, nir_src new_src);
2636 void nir_instr_move_src(nir_instr *dest_instr, nir_src *dest, nir_src *src);
2637 void nir_if_rewrite_condition(nir_if *if_stmt, nir_src new_src);
2638 void nir_instr_rewrite_dest(nir_instr *instr, nir_dest *dest,
2639 nir_dest new_dest);
2640
2641 void nir_ssa_dest_init(nir_instr *instr, nir_dest *dest,
2642 unsigned num_components, unsigned bit_size,
2643 const char *name);
2644 void nir_ssa_def_init(nir_instr *instr, nir_ssa_def *def,
2645 unsigned num_components, unsigned bit_size,
2646 const char *name);
2647 static inline void
2648 nir_ssa_dest_init_for_type(nir_instr *instr, nir_dest *dest,
2649 const struct glsl_type *type,
2650 const char *name)
2651 {
2652 assert(glsl_type_is_vector_or_scalar(type));
2653 nir_ssa_dest_init(instr, dest, glsl_get_components(type),
2654 glsl_get_bit_size(type), name);
2655 }
2656 void nir_ssa_def_rewrite_uses(nir_ssa_def *def, nir_src new_src);
2657 void nir_ssa_def_rewrite_uses_after(nir_ssa_def *def, nir_src new_src,
2658 nir_instr *after_me);
2659
2660 nir_component_mask_t nir_ssa_def_components_read(const nir_ssa_def *def);
2661
2662 /*
2663 * finds the next basic block in source-code order, returns NULL if there is
2664 * none
2665 */
2666
2667 nir_block *nir_block_cf_tree_next(nir_block *block);
2668
2669 /* Performs the opposite of nir_block_cf_tree_next() */
2670
2671 nir_block *nir_block_cf_tree_prev(nir_block *block);
2672
2673 /* Gets the first block in a CF node in source-code order */
2674
2675 nir_block *nir_cf_node_cf_tree_first(nir_cf_node *node);
2676
2677 /* Gets the last block in a CF node in source-code order */
2678
2679 nir_block *nir_cf_node_cf_tree_last(nir_cf_node *node);
2680
2681 /* Gets the next block after a CF node in source-code order */
2682
2683 nir_block *nir_cf_node_cf_tree_next(nir_cf_node *node);
2684
2685 /* Macros for loops that visit blocks in source-code order */
2686
2687 #define nir_foreach_block(block, impl) \
2688 for (nir_block *block = nir_start_block(impl); block != NULL; \
2689 block = nir_block_cf_tree_next(block))
2690
2691 #define nir_foreach_block_safe(block, impl) \
2692 for (nir_block *block = nir_start_block(impl), \
2693 *next = nir_block_cf_tree_next(block); \
2694 block != NULL; \
2695 block = next, next = nir_block_cf_tree_next(block))
2696
2697 #define nir_foreach_block_reverse(block, impl) \
2698 for (nir_block *block = nir_impl_last_block(impl); block != NULL; \
2699 block = nir_block_cf_tree_prev(block))
2700
2701 #define nir_foreach_block_reverse_safe(block, impl) \
2702 for (nir_block *block = nir_impl_last_block(impl), \
2703 *prev = nir_block_cf_tree_prev(block); \
2704 block != NULL; \
2705 block = prev, prev = nir_block_cf_tree_prev(block))
2706
2707 #define nir_foreach_block_in_cf_node(block, node) \
2708 for (nir_block *block = nir_cf_node_cf_tree_first(node); \
2709 block != nir_cf_node_cf_tree_next(node); \
2710 block = nir_block_cf_tree_next(block))
2711
2712 /* If the following CF node is an if, this function returns that if.
2713 * Otherwise, it returns NULL.
2714 */
2715 nir_if *nir_block_get_following_if(nir_block *block);
2716
2717 nir_loop *nir_block_get_following_loop(nir_block *block);
2718
2719 void nir_index_local_regs(nir_function_impl *impl);
2720 void nir_index_global_regs(nir_shader *shader);
2721 void nir_index_ssa_defs(nir_function_impl *impl);
2722 unsigned nir_index_instrs(nir_function_impl *impl);
2723
2724 void nir_index_blocks(nir_function_impl *impl);
2725
2726 void nir_print_shader(nir_shader *shader, FILE *fp);
2727 void nir_print_shader_annotated(nir_shader *shader, FILE *fp, struct hash_table *errors);
2728 void nir_print_instr(const nir_instr *instr, FILE *fp);
2729 void nir_print_deref(const nir_deref_instr *deref, FILE *fp);
2730
2731 nir_shader *nir_shader_clone(void *mem_ctx, const nir_shader *s);
2732 nir_function_impl *nir_function_impl_clone(const nir_function_impl *fi);
2733 nir_constant *nir_constant_clone(const nir_constant *c, nir_variable *var);
2734 nir_variable *nir_variable_clone(const nir_variable *c, nir_shader *shader);
2735
2736 nir_shader *nir_shader_serialize_deserialize(void *mem_ctx, nir_shader *s);
2737
2738 #ifndef NDEBUG
2739 void nir_validate_shader(nir_shader *shader, const char *when);
2740 void nir_metadata_set_validation_flag(nir_shader *shader);
2741 void nir_metadata_check_validation_flag(nir_shader *shader);
2742
2743 static inline bool
2744 should_clone_nir(void)
2745 {
2746 static int should_clone = -1;
2747 if (should_clone < 0)
2748 should_clone = env_var_as_boolean("NIR_TEST_CLONE", false);
2749
2750 return should_clone;
2751 }
2752
2753 static inline bool
2754 should_serialize_deserialize_nir(void)
2755 {
2756 static int test_serialize = -1;
2757 if (test_serialize < 0)
2758 test_serialize = env_var_as_boolean("NIR_TEST_SERIALIZE", false);
2759
2760 return test_serialize;
2761 }
2762
2763 static inline bool
2764 should_print_nir(void)
2765 {
2766 static int should_print = -1;
2767 if (should_print < 0)
2768 should_print = env_var_as_boolean("NIR_PRINT", false);
2769
2770 return should_print;
2771 }
2772 #else
2773 static inline void nir_validate_shader(nir_shader *shader, const char *when) { (void) shader; (void)when; }
2774 static inline void nir_metadata_set_validation_flag(nir_shader *shader) { (void) shader; }
2775 static inline void nir_metadata_check_validation_flag(nir_shader *shader) { (void) shader; }
2776 static inline bool should_clone_nir(void) { return false; }
2777 static inline bool should_serialize_deserialize_nir(void) { return false; }
2778 static inline bool should_print_nir(void) { return false; }
2779 #endif /* NDEBUG */
2780
2781 #define _PASS(pass, nir, do_pass) do { \
2782 do_pass \
2783 nir_validate_shader(nir, "after " #pass); \
2784 if (should_clone_nir()) { \
2785 nir_shader *clone = nir_shader_clone(ralloc_parent(nir), nir); \
2786 ralloc_free(nir); \
2787 nir = clone; \
2788 } \
2789 if (should_serialize_deserialize_nir()) { \
2790 void *mem_ctx = ralloc_parent(nir); \
2791 nir = nir_shader_serialize_deserialize(mem_ctx, nir); \
2792 } \
2793 } while (0)
2794
2795 #define NIR_PASS(progress, nir, pass, ...) _PASS(pass, nir, \
2796 nir_metadata_set_validation_flag(nir); \
2797 if (should_print_nir()) \
2798 printf("%s\n", #pass); \
2799 if (pass(nir, ##__VA_ARGS__)) { \
2800 progress = true; \
2801 if (should_print_nir()) \
2802 nir_print_shader(nir, stdout); \
2803 nir_metadata_check_validation_flag(nir); \
2804 } \
2805 )
2806
2807 #define NIR_PASS_V(nir, pass, ...) _PASS(pass, nir, \
2808 if (should_print_nir()) \
2809 printf("%s\n", #pass); \
2810 pass(nir, ##__VA_ARGS__); \
2811 if (should_print_nir()) \
2812 nir_print_shader(nir, stdout); \
2813 )
2814
2815 void nir_calc_dominance_impl(nir_function_impl *impl);
2816 void nir_calc_dominance(nir_shader *shader);
2817
2818 nir_block *nir_dominance_lca(nir_block *b1, nir_block *b2);
2819 bool nir_block_dominates(nir_block *parent, nir_block *child);
2820
2821 void nir_dump_dom_tree_impl(nir_function_impl *impl, FILE *fp);
2822 void nir_dump_dom_tree(nir_shader *shader, FILE *fp);
2823
2824 void nir_dump_dom_frontier_impl(nir_function_impl *impl, FILE *fp);
2825 void nir_dump_dom_frontier(nir_shader *shader, FILE *fp);
2826
2827 void nir_dump_cfg_impl(nir_function_impl *impl, FILE *fp);
2828 void nir_dump_cfg(nir_shader *shader, FILE *fp);
2829
2830 int nir_gs_count_vertices(const nir_shader *shader);
2831
2832 bool nir_shrink_vec_array_vars(nir_shader *shader, nir_variable_mode modes);
2833 bool nir_split_array_vars(nir_shader *shader, nir_variable_mode modes);
2834 bool nir_split_var_copies(nir_shader *shader);
2835 bool nir_split_per_member_structs(nir_shader *shader);
2836 bool nir_split_struct_vars(nir_shader *shader, nir_variable_mode modes);
2837
2838 bool nir_lower_returns_impl(nir_function_impl *impl);
2839 bool nir_lower_returns(nir_shader *shader);
2840
2841 bool nir_inline_functions(nir_shader *shader);
2842
2843 bool nir_propagate_invariant(nir_shader *shader);
2844
2845 void nir_lower_var_copy_instr(nir_intrinsic_instr *copy, nir_shader *shader);
2846 void nir_lower_deref_copy_instr(struct nir_builder *b,
2847 nir_intrinsic_instr *copy);
2848 bool nir_lower_var_copies(nir_shader *shader);
2849
2850 void nir_fixup_deref_modes(nir_shader *shader);
2851
2852 bool nir_lower_global_vars_to_local(nir_shader *shader);
2853
2854 bool nir_lower_indirect_derefs(nir_shader *shader, nir_variable_mode modes);
2855
2856 bool nir_lower_locals_to_regs(nir_shader *shader);
2857
2858 void nir_lower_io_to_temporaries(nir_shader *shader,
2859 nir_function_impl *entrypoint,
2860 bool outputs, bool inputs);
2861
2862 void nir_shader_gather_info(nir_shader *shader, nir_function_impl *entrypoint);
2863
2864 void nir_assign_var_locations(struct exec_list *var_list, unsigned *size,
2865 int (*type_size)(const struct glsl_type *));
2866
2867 /* Some helpers to do very simple linking */
2868 bool nir_remove_unused_varyings(nir_shader *producer, nir_shader *consumer);
2869 bool nir_remove_unused_io_vars(nir_shader *shader, struct exec_list *var_list,
2870 uint64_t *used_by_other_stage,
2871 uint64_t *used_by_other_stage_patches);
2872 void nir_compact_varyings(nir_shader *producer, nir_shader *consumer,
2873 bool default_to_smooth_interp);
2874 void nir_link_xfb_varyings(nir_shader *producer, nir_shader *consumer);
2875 bool nir_link_opt_varyings(nir_shader *producer, nir_shader *consumer);
2876
2877 typedef enum {
2878 /* If set, this forces all non-flat fragment shader inputs to be
2879 * interpolated as if with the "sample" qualifier. This requires
2880 * nir_shader_compiler_options::use_interpolated_input_intrinsics.
2881 */
2882 nir_lower_io_force_sample_interpolation = (1 << 1),
2883 } nir_lower_io_options;
2884 bool nir_lower_io(nir_shader *shader,
2885 nir_variable_mode modes,
2886 int (*type_size)(const struct glsl_type *),
2887 nir_lower_io_options);
2888 nir_src *nir_get_io_offset_src(nir_intrinsic_instr *instr);
2889 nir_src *nir_get_io_vertex_index_src(nir_intrinsic_instr *instr);
2890
2891 bool nir_is_per_vertex_io(const nir_variable *var, gl_shader_stage stage);
2892
2893 bool nir_lower_regs_to_ssa_impl(nir_function_impl *impl);
2894 bool nir_lower_regs_to_ssa(nir_shader *shader);
2895 bool nir_lower_vars_to_ssa(nir_shader *shader);
2896
2897 bool nir_remove_dead_derefs(nir_shader *shader);
2898 bool nir_remove_dead_derefs_impl(nir_function_impl *impl);
2899 bool nir_remove_dead_variables(nir_shader *shader, nir_variable_mode modes);
2900 bool nir_lower_constant_initializers(nir_shader *shader,
2901 nir_variable_mode modes);
2902
2903 bool nir_move_load_const(nir_shader *shader);
2904 bool nir_move_vec_src_uses_to_dest(nir_shader *shader);
2905 bool nir_lower_vec_to_movs(nir_shader *shader);
2906 void nir_lower_alpha_test(nir_shader *shader, enum compare_func func,
2907 bool alpha_to_one);
2908 bool nir_lower_alu(nir_shader *shader);
2909 bool nir_lower_alu_to_scalar(nir_shader *shader);
2910 bool nir_lower_bool_to_int32(nir_shader *shader);
2911 bool nir_lower_load_const_to_scalar(nir_shader *shader);
2912 bool nir_lower_read_invocation_to_scalar(nir_shader *shader);
2913 bool nir_lower_phis_to_scalar(nir_shader *shader);
2914 void nir_lower_io_arrays_to_elements(nir_shader *producer, nir_shader *consumer);
2915 void nir_lower_io_arrays_to_elements_no_indirects(nir_shader *shader,
2916 bool outputs_only);
2917 void nir_lower_io_to_scalar(nir_shader *shader, nir_variable_mode mask);
2918 void nir_lower_io_to_scalar_early(nir_shader *shader, nir_variable_mode mask);
2919
2920 typedef struct nir_lower_subgroups_options {
2921 uint8_t subgroup_size;
2922 uint8_t ballot_bit_size;
2923 bool lower_to_scalar:1;
2924 bool lower_vote_trivial:1;
2925 bool lower_vote_eq_to_ballot:1;
2926 bool lower_subgroup_masks:1;
2927 bool lower_shuffle:1;
2928 bool lower_shuffle_to_32bit:1;
2929 bool lower_quad:1;
2930 } nir_lower_subgroups_options;
2931
2932 bool nir_lower_subgroups(nir_shader *shader,
2933 const nir_lower_subgroups_options *options);
2934
2935 bool nir_lower_system_values(nir_shader *shader);
2936
2937 enum PACKED nir_lower_tex_packing {
2938 nir_lower_tex_packing_none = 0,
2939 /* The sampler returns up to 2 32-bit words of half floats or 16-bit signed
2940 * or unsigned ints based on the sampler type
2941 */
2942 nir_lower_tex_packing_16,
2943 /* The sampler returns 1 32-bit word of 4x8 unorm */
2944 nir_lower_tex_packing_8,
2945 };
2946
2947 typedef struct nir_lower_tex_options {
2948 /**
2949 * bitmask of (1 << GLSL_SAMPLER_DIM_x) to control for which
2950 * sampler types a texture projector is lowered.
2951 */
2952 unsigned lower_txp;
2953
2954 /**
2955 * If true, lower away nir_tex_src_offset for all texelfetch instructions.
2956 */
2957 bool lower_txf_offset;
2958
2959 /**
2960 * If true, lower away nir_tex_src_offset for all rect textures.
2961 */
2962 bool lower_rect_offset;
2963
2964 /**
2965 * If true, lower rect textures to 2D, using txs to fetch the
2966 * texture dimensions and dividing the texture coords by the
2967 * texture dims to normalize.
2968 */
2969 bool lower_rect;
2970
2971 /**
2972 * If true, convert yuv to rgb.
2973 */
2974 unsigned lower_y_uv_external;
2975 unsigned lower_y_u_v_external;
2976 unsigned lower_yx_xuxv_external;
2977 unsigned lower_xy_uxvx_external;
2978 unsigned lower_ayuv_external;
2979
2980 /**
2981 * To emulate certain texture wrap modes, this can be used
2982 * to saturate the specified tex coord to [0.0, 1.0]. The
2983 * bits are according to sampler #, ie. if, for example:
2984 *
2985 * (conf->saturate_s & (1 << n))
2986 *
2987 * is true, then the s coord for sampler n is saturated.
2988 *
2989 * Note that clamping must happen *after* projector lowering
2990 * so any projected texture sample instruction with a clamped
2991 * coordinate gets automatically lowered, regardless of the
2992 * 'lower_txp' setting.
2993 */
2994 unsigned saturate_s;
2995 unsigned saturate_t;
2996 unsigned saturate_r;
2997
2998 /* Bitmask of textures that need swizzling.
2999 *
3000 * If (swizzle_result & (1 << texture_index)), then the swizzle in
3001 * swizzles[texture_index] is applied to the result of the texturing
3002 * operation.
3003 */
3004 unsigned swizzle_result;
3005
3006 /* A swizzle for each texture. Values 0-3 represent x, y, z, or w swizzles
3007 * while 4 and 5 represent 0 and 1 respectively.
3008 */
3009 uint8_t swizzles[32][4];
3010
3011 /**
3012 * Bitmap of textures that need srgb to linear conversion. If
3013 * (lower_srgb & (1 << texture_index)) then the rgb (xyz) components
3014 * of the texture are lowered to linear.
3015 */
3016 unsigned lower_srgb;
3017
3018 /**
3019 * If true, lower nir_texop_txd on cube maps with nir_texop_txl.
3020 */
3021 bool lower_txd_cube_map;
3022
3023 /**
3024 * If true, lower nir_texop_txd on 3D surfaces with nir_texop_txl.
3025 */
3026 bool lower_txd_3d;
3027
3028 /**
3029 * If true, lower nir_texop_txd on shadow samplers (except cube maps)
3030 * with nir_texop_txl. Notice that cube map shadow samplers are lowered
3031 * with lower_txd_cube_map.
3032 */
3033 bool lower_txd_shadow;
3034
3035 /**
3036 * If true, lower nir_texop_txd on all samplers to a nir_texop_txl.
3037 * Implies lower_txd_cube_map and lower_txd_shadow.
3038 */
3039 bool lower_txd;
3040
3041 /**
3042 * If true, lower nir_texop_txb that try to use shadow compare and min_lod
3043 * at the same time to a nir_texop_lod, some math, and nir_texop_tex.
3044 */
3045 bool lower_txb_shadow_clamp;
3046
3047 /**
3048 * If true, lower nir_texop_txd on shadow samplers when it uses min_lod
3049 * with nir_texop_txl. This includes cube maps.
3050 */
3051 bool lower_txd_shadow_clamp;
3052
3053 /**
3054 * If true, lower nir_texop_txd on when it uses both offset and min_lod
3055 * with nir_texop_txl. This includes cube maps.
3056 */
3057 bool lower_txd_offset_clamp;
3058
3059 enum nir_lower_tex_packing lower_tex_packing[32];
3060 } nir_lower_tex_options;
3061
3062 bool nir_lower_tex(nir_shader *shader,
3063 const nir_lower_tex_options *options);
3064
3065 bool nir_lower_idiv(nir_shader *shader);
3066
3067 bool nir_lower_clip_vs(nir_shader *shader, unsigned ucp_enables, bool use_vars);
3068 bool nir_lower_clip_fs(nir_shader *shader, unsigned ucp_enables);
3069 bool nir_lower_clip_cull_distance_arrays(nir_shader *nir);
3070
3071 void nir_lower_two_sided_color(nir_shader *shader);
3072
3073 bool nir_lower_clamp_color_outputs(nir_shader *shader);
3074
3075 void nir_lower_passthrough_edgeflags(nir_shader *shader);
3076 bool nir_lower_patch_vertices(nir_shader *nir, unsigned static_count,
3077 const gl_state_index16 *uniform_state_tokens);
3078
3079 typedef struct nir_lower_wpos_ytransform_options {
3080 gl_state_index16 state_tokens[STATE_LENGTH];
3081 bool fs_coord_origin_upper_left :1;
3082 bool fs_coord_origin_lower_left :1;
3083 bool fs_coord_pixel_center_integer :1;
3084 bool fs_coord_pixel_center_half_integer :1;
3085 } nir_lower_wpos_ytransform_options;
3086
3087 bool nir_lower_wpos_ytransform(nir_shader *shader,
3088 const nir_lower_wpos_ytransform_options *options);
3089 bool nir_lower_wpos_center(nir_shader *shader, const bool for_sample_shading);
3090
3091 typedef struct nir_lower_drawpixels_options {
3092 gl_state_index16 texcoord_state_tokens[STATE_LENGTH];
3093 gl_state_index16 scale_state_tokens[STATE_LENGTH];
3094 gl_state_index16 bias_state_tokens[STATE_LENGTH];
3095 unsigned drawpix_sampler;
3096 unsigned pixelmap_sampler;
3097 bool pixel_maps :1;
3098 bool scale_and_bias :1;
3099 } nir_lower_drawpixels_options;
3100
3101 void nir_lower_drawpixels(nir_shader *shader,
3102 const nir_lower_drawpixels_options *options);
3103
3104 typedef struct nir_lower_bitmap_options {
3105 unsigned sampler;
3106 bool swizzle_xxxx;
3107 } nir_lower_bitmap_options;
3108
3109 void nir_lower_bitmap(nir_shader *shader, const nir_lower_bitmap_options *options);
3110
3111 bool nir_lower_atomics_to_ssbo(nir_shader *shader, unsigned ssbo_offset);
3112
3113 typedef enum {
3114 nir_lower_int_source_mods = 1 << 0,
3115 nir_lower_float_source_mods = 1 << 1,
3116 nir_lower_all_source_mods = (1 << 2) - 1
3117 } nir_lower_to_source_mods_flags;
3118
3119
3120 bool nir_lower_to_source_mods(nir_shader *shader, nir_lower_to_source_mods_flags options);
3121
3122 bool nir_lower_gs_intrinsics(nir_shader *shader);
3123
3124 typedef unsigned (*nir_lower_bit_size_callback)(const nir_alu_instr *, void *);
3125
3126 bool nir_lower_bit_size(nir_shader *shader,
3127 nir_lower_bit_size_callback callback,
3128 void *callback_data);
3129
3130 typedef enum {
3131 nir_lower_imul64 = (1 << 0),
3132 nir_lower_isign64 = (1 << 1),
3133 /** Lower all int64 modulus and division opcodes */
3134 nir_lower_divmod64 = (1 << 2),
3135 /** Lower all 64-bit umul_high and imul_high opcodes */
3136 nir_lower_imul_high64 = (1 << 3),
3137 } nir_lower_int64_options;
3138
3139 bool nir_lower_int64(nir_shader *shader, nir_lower_int64_options options);
3140
3141 typedef enum {
3142 nir_lower_drcp = (1 << 0),
3143 nir_lower_dsqrt = (1 << 1),
3144 nir_lower_drsq = (1 << 2),
3145 nir_lower_dtrunc = (1 << 3),
3146 nir_lower_dfloor = (1 << 4),
3147 nir_lower_dceil = (1 << 5),
3148 nir_lower_dfract = (1 << 6),
3149 nir_lower_dround_even = (1 << 7),
3150 nir_lower_dmod = (1 << 8)
3151 } nir_lower_doubles_options;
3152
3153 bool nir_lower_doubles(nir_shader *shader, nir_lower_doubles_options options);
3154 bool nir_lower_pack(nir_shader *shader);
3155
3156 bool nir_normalize_cubemap_coords(nir_shader *shader);
3157
3158 void nir_live_ssa_defs_impl(nir_function_impl *impl);
3159
3160 void nir_loop_analyze_impl(nir_function_impl *impl,
3161 nir_variable_mode indirect_mask);
3162
3163 bool nir_ssa_defs_interfere(nir_ssa_def *a, nir_ssa_def *b);
3164
3165 bool nir_repair_ssa_impl(nir_function_impl *impl);
3166 bool nir_repair_ssa(nir_shader *shader);
3167
3168 void nir_convert_loop_to_lcssa(nir_loop *loop);
3169
3170 /* If phi_webs_only is true, only convert SSA values involved in phi nodes to
3171 * registers. If false, convert all values (even those not involved in a phi
3172 * node) to registers.
3173 */
3174 bool nir_convert_from_ssa(nir_shader *shader, bool phi_webs_only);
3175
3176 bool nir_lower_phis_to_regs_block(nir_block *block);
3177 bool nir_lower_ssa_defs_to_regs_block(nir_block *block);
3178 bool nir_rematerialize_derefs_in_use_blocks_impl(nir_function_impl *impl);
3179
3180 bool nir_opt_algebraic(nir_shader *shader);
3181 bool nir_opt_algebraic_before_ffma(nir_shader *shader);
3182 bool nir_opt_algebraic_late(nir_shader *shader);
3183 bool nir_opt_constant_folding(nir_shader *shader);
3184
3185 bool nir_opt_global_to_local(nir_shader *shader);
3186
3187 bool nir_copy_prop(nir_shader *shader);
3188
3189 bool nir_opt_copy_prop_vars(nir_shader *shader);
3190
3191 bool nir_opt_cse(nir_shader *shader);
3192
3193 bool nir_opt_dce(nir_shader *shader);
3194
3195 bool nir_opt_dead_cf(nir_shader *shader);
3196
3197 bool nir_opt_dead_write_vars(nir_shader *shader);
3198
3199 bool nir_opt_find_array_copies(nir_shader *shader);
3200
3201 bool nir_opt_gcm(nir_shader *shader, bool value_number);
3202
3203 bool nir_opt_idiv_const(nir_shader *shader, unsigned min_bit_size);
3204
3205 bool nir_opt_if(nir_shader *shader);
3206
3207 bool nir_opt_intrinsics(nir_shader *shader);
3208
3209 bool nir_opt_large_constants(nir_shader *shader,
3210 glsl_type_size_align_func size_align,
3211 unsigned threshold);
3212
3213 bool nir_opt_loop_unroll(nir_shader *shader, nir_variable_mode indirect_mask);
3214
3215 bool nir_opt_move_comparisons(nir_shader *shader);
3216
3217 bool nir_opt_move_load_ubo(nir_shader *shader);
3218
3219 bool nir_opt_peephole_select(nir_shader *shader, unsigned limit,
3220 bool indirect_load_ok, bool expensive_alu_ok);
3221
3222 bool nir_opt_remove_phis(nir_shader *shader);
3223
3224 bool nir_opt_shrink_load(nir_shader *shader);
3225
3226 bool nir_opt_trivial_continues(nir_shader *shader);
3227
3228 bool nir_opt_undef(nir_shader *shader);
3229
3230 bool nir_opt_conditional_discard(nir_shader *shader);
3231
3232 void nir_sweep(nir_shader *shader);
3233
3234 void nir_remap_dual_slot_attributes(nir_shader *shader,
3235 uint64_t *dual_slot_inputs);
3236 uint64_t nir_get_single_slot_attribs_mask(uint64_t attribs, uint64_t dual_slot);
3237
3238 nir_intrinsic_op nir_intrinsic_from_system_value(gl_system_value val);
3239 gl_system_value nir_system_value_from_intrinsic(nir_intrinsic_op intrin);
3240
3241 #ifdef __cplusplus
3242 } /* extern "C" */
3243 #endif
3244
3245 #endif /* NIR_H */