nir/algebraic: add fdot2 optimizations
[mesa.git] / src / compiler / nir / nir.h
1 /*
2 * Copyright © 2014 Connor Abbott
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Connor Abbott (cwabbott0@gmail.com)
25 *
26 */
27
28 #ifndef NIR_H
29 #define NIR_H
30
31 #include "util/hash_table.h"
32 #include "compiler/glsl/list.h"
33 #include "GL/gl.h" /* GLenum */
34 #include "util/list.h"
35 #include "util/ralloc.h"
36 #include "util/set.h"
37 #include "util/bitscan.h"
38 #include "util/bitset.h"
39 #include "util/macros.h"
40 #include "compiler/nir_types.h"
41 #include "compiler/shader_enums.h"
42 #include "compiler/shader_info.h"
43 #include <stdio.h>
44
45 #ifndef NDEBUG
46 #include "util/debug.h"
47 #endif /* NDEBUG */
48
49 #include "nir_opcodes.h"
50
51 #if defined(_WIN32) && !defined(snprintf)
52 #define snprintf _snprintf
53 #endif
54
55 #ifdef __cplusplus
56 extern "C" {
57 #endif
58
59 #define NIR_FALSE 0u
60 #define NIR_TRUE (~0u)
61 #define NIR_MAX_VEC_COMPONENTS 4
62 #define NIR_MAX_MATRIX_COLUMNS 4
63 typedef uint8_t nir_component_mask_t;
64
65 /** Defines a cast function
66 *
67 * This macro defines a cast function from in_type to out_type where
68 * out_type is some structure type that contains a field of type out_type.
69 *
70 * Note that you have to be a bit careful as the generated cast function
71 * destroys constness.
72 */
73 #define NIR_DEFINE_CAST(name, in_type, out_type, field, \
74 type_field, type_value) \
75 static inline out_type * \
76 name(const in_type *parent) \
77 { \
78 assert(parent && parent->type_field == type_value); \
79 return exec_node_data(out_type, parent, field); \
80 }
81
82 struct nir_function;
83 struct nir_shader;
84 struct nir_instr;
85 struct nir_builder;
86
87
88 /**
89 * Description of built-in state associated with a uniform
90 *
91 * \sa nir_variable::state_slots
92 */
93 typedef struct {
94 gl_state_index16 tokens[STATE_LENGTH];
95 int swizzle;
96 } nir_state_slot;
97
98 typedef enum {
99 nir_var_shader_in = (1 << 0),
100 nir_var_shader_out = (1 << 1),
101 nir_var_shader_temp = (1 << 2),
102 nir_var_function_temp = (1 << 3),
103 nir_var_uniform = (1 << 4),
104 nir_var_mem_ubo = (1 << 5),
105 nir_var_system_value = (1 << 6),
106 nir_var_mem_ssbo = (1 << 7),
107 nir_var_mem_shared = (1 << 8),
108 nir_var_mem_global = (1 << 9),
109 nir_var_all = ~0,
110 } nir_variable_mode;
111
112 /**
113 * Rounding modes.
114 */
115 typedef enum {
116 nir_rounding_mode_undef = 0,
117 nir_rounding_mode_rtne = 1, /* round to nearest even */
118 nir_rounding_mode_ru = 2, /* round up */
119 nir_rounding_mode_rd = 3, /* round down */
120 nir_rounding_mode_rtz = 4, /* round towards zero */
121 } nir_rounding_mode;
122
123 typedef union {
124 bool b;
125 float f32;
126 double f64;
127 int8_t i8;
128 uint8_t u8;
129 int16_t i16;
130 uint16_t u16;
131 int32_t i32;
132 uint32_t u32;
133 int64_t i64;
134 uint64_t u64;
135 } nir_const_value;
136
137 #define nir_const_value_to_array(arr, c, components, m) \
138 { \
139 for (unsigned i = 0; i < components; ++i) \
140 arr[i] = c[i].m; \
141 } while (false)
142
143 static inline nir_const_value
144 nir_const_value_for_raw_uint(uint64_t x, unsigned bit_size)
145 {
146 nir_const_value v;
147 memset(&v, 0, sizeof(v));
148
149 switch (bit_size) {
150 case 1: v.b = x; break;
151 case 8: v.u8 = x; break;
152 case 16: v.u16 = x; break;
153 case 32: v.u32 = x; break;
154 case 64: v.u64 = x; break;
155 default:
156 unreachable("Invalid bit size");
157 }
158
159 return v;
160 }
161
162 static inline nir_const_value
163 nir_const_value_for_int(int64_t i, unsigned bit_size)
164 {
165 nir_const_value v;
166 memset(&v, 0, sizeof(v));
167
168 assert(bit_size <= 64);
169 if (bit_size < 64) {
170 assert(i >= (-(1ll << (bit_size - 1))));
171 assert(i < (1ll << (bit_size - 1)));
172 }
173
174 return nir_const_value_for_raw_uint(i, bit_size);
175 }
176
177 static inline nir_const_value
178 nir_const_value_for_uint(uint64_t u, unsigned bit_size)
179 {
180 nir_const_value v;
181 memset(&v, 0, sizeof(v));
182
183 assert(bit_size <= 64);
184 if (bit_size < 64)
185 assert(u < (1ull << bit_size));
186
187 return nir_const_value_for_raw_uint(u, bit_size);
188 }
189
190 static inline nir_const_value
191 nir_const_value_for_bool(bool b, unsigned bit_size)
192 {
193 /* Booleans use a 0/-1 convention */
194 return nir_const_value_for_int(-(int)b, bit_size);
195 }
196
197 /* This one isn't inline because it requires half-float conversion */
198 nir_const_value nir_const_value_for_float(double b, unsigned bit_size);
199
200 static inline int64_t
201 nir_const_value_as_int(nir_const_value value, unsigned bit_size)
202 {
203 switch (bit_size) {
204 /* int1_t uses 0/-1 convention */
205 case 1: return -(int)value.b;
206 case 8: return value.i8;
207 case 16: return value.i16;
208 case 32: return value.i32;
209 case 64: return value.i64;
210 default:
211 unreachable("Invalid bit size");
212 }
213 }
214
215 static inline int64_t
216 nir_const_value_as_uint(nir_const_value value, unsigned bit_size)
217 {
218 switch (bit_size) {
219 case 1: return value.b;
220 case 8: return value.u8;
221 case 16: return value.u16;
222 case 32: return value.u32;
223 case 64: return value.u64;
224 default:
225 unreachable("Invalid bit size");
226 }
227 }
228
229 static inline bool
230 nir_const_value_as_bool(nir_const_value value, unsigned bit_size)
231 {
232 int64_t i = nir_const_value_as_int(value, bit_size);
233
234 /* Booleans of any size use 0/-1 convention */
235 assert(i == 0 || i == -1);
236
237 return i;
238 }
239
240 /* This one isn't inline because it requires half-float conversion */
241 double nir_const_value_as_float(nir_const_value value, unsigned bit_size);
242
243 typedef struct nir_constant {
244 /**
245 * Value of the constant.
246 *
247 * The field used to back the values supplied by the constant is determined
248 * by the type associated with the \c nir_variable. Constants may be
249 * scalars, vectors, or matrices.
250 */
251 nir_const_value values[NIR_MAX_VEC_COMPONENTS];
252
253 /* we could get this from the var->type but makes clone *much* easier to
254 * not have to care about the type.
255 */
256 unsigned num_elements;
257
258 /* Array elements / Structure Fields */
259 struct nir_constant **elements;
260 } nir_constant;
261
262 /**
263 * \brief Layout qualifiers for gl_FragDepth.
264 *
265 * The AMD/ARB_conservative_depth extensions allow gl_FragDepth to be redeclared
266 * with a layout qualifier.
267 */
268 typedef enum {
269 nir_depth_layout_none, /**< No depth layout is specified. */
270 nir_depth_layout_any,
271 nir_depth_layout_greater,
272 nir_depth_layout_less,
273 nir_depth_layout_unchanged
274 } nir_depth_layout;
275
276 /**
277 * Enum keeping track of how a variable was declared.
278 */
279 typedef enum {
280 /**
281 * Normal declaration.
282 */
283 nir_var_declared_normally = 0,
284
285 /**
286 * Variable is implicitly generated by the compiler and should not be
287 * visible via the API.
288 */
289 nir_var_hidden,
290 } nir_var_declaration_type;
291
292 /**
293 * Either a uniform, global variable, shader input, or shader output. Based on
294 * ir_variable - it should be easy to translate between the two.
295 */
296
297 typedef struct nir_variable {
298 struct exec_node node;
299
300 /**
301 * Declared type of the variable
302 */
303 const struct glsl_type *type;
304
305 /**
306 * Declared name of the variable
307 */
308 char *name;
309
310 struct nir_variable_data {
311 /**
312 * Storage class of the variable.
313 *
314 * \sa nir_variable_mode
315 */
316 nir_variable_mode mode;
317
318 /**
319 * Is the variable read-only?
320 *
321 * This is set for variables declared as \c const, shader inputs,
322 * and uniforms.
323 */
324 unsigned read_only:1;
325 unsigned centroid:1;
326 unsigned sample:1;
327 unsigned patch:1;
328 unsigned invariant:1;
329
330 /**
331 * Can this variable be coalesced with another?
332 *
333 * This is set by nir_lower_io_to_temporaries to say that any
334 * copies involving this variable should stay put. Propagating it can
335 * duplicate the resulting load/store, which is not wanted, and may
336 * result in a load/store of the variable with an indirect offset which
337 * the backend may not be able to handle.
338 */
339 unsigned cannot_coalesce:1;
340
341 /**
342 * When separate shader programs are enabled, only input/outputs between
343 * the stages of a multi-stage separate program can be safely removed
344 * from the shader interface. Other input/outputs must remains active.
345 *
346 * This is also used to make sure xfb varyings that are unused by the
347 * fragment shader are not removed.
348 */
349 unsigned always_active_io:1;
350
351 /**
352 * Interpolation mode for shader inputs / outputs
353 *
354 * \sa glsl_interp_mode
355 */
356 unsigned interpolation:2;
357
358 /**
359 * If non-zero, then this variable may be packed along with other variables
360 * into a single varying slot, so this offset should be applied when
361 * accessing components. For example, an offset of 1 means that the x
362 * component of this variable is actually stored in component y of the
363 * location specified by \c location.
364 */
365 unsigned location_frac:2;
366
367 /**
368 * If true, this variable represents an array of scalars that should
369 * be tightly packed. In other words, consecutive array elements
370 * should be stored one component apart, rather than one slot apart.
371 */
372 unsigned compact:1;
373
374 /**
375 * Whether this is a fragment shader output implicitly initialized with
376 * the previous contents of the specified render target at the
377 * framebuffer location corresponding to this shader invocation.
378 */
379 unsigned fb_fetch_output:1;
380
381 /**
382 * Non-zero if this variable is considered bindless as defined by
383 * ARB_bindless_texture.
384 */
385 unsigned bindless:1;
386
387 /**
388 * Was an explicit binding set in the shader?
389 */
390 unsigned explicit_binding:1;
391
392 /**
393 * Was a transfer feedback buffer set in the shader?
394 */
395 unsigned explicit_xfb_buffer:1;
396
397 /**
398 * Was a transfer feedback stride set in the shader?
399 */
400 unsigned explicit_xfb_stride:1;
401
402 /**
403 * Was an explicit offset set in the shader?
404 */
405 unsigned explicit_offset:1;
406
407 /**
408 * \brief Layout qualifier for gl_FragDepth.
409 *
410 * This is not equal to \c ir_depth_layout_none if and only if this
411 * variable is \c gl_FragDepth and a layout qualifier is specified.
412 */
413 nir_depth_layout depth_layout;
414
415 /**
416 * Storage location of the base of this variable
417 *
418 * The precise meaning of this field depends on the nature of the variable.
419 *
420 * - Vertex shader input: one of the values from \c gl_vert_attrib.
421 * - Vertex shader output: one of the values from \c gl_varying_slot.
422 * - Geometry shader input: one of the values from \c gl_varying_slot.
423 * - Geometry shader output: one of the values from \c gl_varying_slot.
424 * - Fragment shader input: one of the values from \c gl_varying_slot.
425 * - Fragment shader output: one of the values from \c gl_frag_result.
426 * - Uniforms: Per-stage uniform slot number for default uniform block.
427 * - Uniforms: Index within the uniform block definition for UBO members.
428 * - Non-UBO Uniforms: uniform slot number.
429 * - Other: This field is not currently used.
430 *
431 * If the variable is a uniform, shader input, or shader output, and the
432 * slot has not been assigned, the value will be -1.
433 */
434 int location;
435
436 /**
437 * The actual location of the variable in the IR. Only valid for inputs
438 * and outputs.
439 */
440 unsigned int driver_location;
441
442 /**
443 * Vertex stream output identifier.
444 *
445 * For packed outputs, bit 31 is set and bits [2*i+1,2*i] indicate the
446 * stream of the i-th component.
447 */
448 unsigned stream;
449
450 /**
451 * output index for dual source blending.
452 */
453 int index;
454
455 /**
456 * Descriptor set binding for sampler or UBO.
457 */
458 int descriptor_set;
459
460 /**
461 * Initial binding point for a sampler or UBO.
462 *
463 * For array types, this represents the binding point for the first element.
464 */
465 int binding;
466
467 /**
468 * Location an atomic counter or transform feedback is stored at.
469 */
470 unsigned offset;
471
472 /**
473 * Transform feedback buffer.
474 */
475 unsigned xfb_buffer;
476
477 /**
478 * Transform feedback stride.
479 */
480 unsigned xfb_stride;
481
482 /**
483 * How the variable was declared. See nir_var_declaration_type.
484 *
485 * This is used to detect variables generated by the compiler, so should
486 * not be visible via the API.
487 */
488 unsigned how_declared:2;
489
490 /**
491 * ARB_shader_image_load_store qualifiers.
492 */
493 struct {
494 enum gl_access_qualifier access;
495
496 /** Image internal format if specified explicitly, otherwise GL_NONE. */
497 GLenum format;
498 } image;
499 } data;
500
501 /**
502 * Built-in state that backs this uniform
503 *
504 * Once set at variable creation, \c state_slots must remain invariant.
505 * This is because, ideally, this array would be shared by all clones of
506 * this variable in the IR tree. In other words, we'd really like for it
507 * to be a fly-weight.
508 *
509 * If the variable is not a uniform, \c num_state_slots will be zero and
510 * \c state_slots will be \c NULL.
511 */
512 /*@{*/
513 unsigned num_state_slots; /**< Number of state slots used */
514 nir_state_slot *state_slots; /**< State descriptors. */
515 /*@}*/
516
517 /**
518 * Constant expression assigned in the initializer of the variable
519 *
520 * This field should only be used temporarily by creators of NIR shaders
521 * and then lower_constant_initializers can be used to get rid of them.
522 * Most of the rest of NIR ignores this field or asserts that it's NULL.
523 */
524 nir_constant *constant_initializer;
525
526 /**
527 * For variables that are in an interface block or are an instance of an
528 * interface block, this is the \c GLSL_TYPE_INTERFACE type for that block.
529 *
530 * \sa ir_variable::location
531 */
532 const struct glsl_type *interface_type;
533
534 /**
535 * Description of per-member data for per-member struct variables
536 *
537 * This is used for variables which are actually an amalgamation of
538 * multiple entities such as a struct of built-in values or a struct of
539 * inputs each with their own layout specifier. This is only allowed on
540 * variables with a struct or array of array of struct type.
541 */
542 unsigned num_members;
543 struct nir_variable_data *members;
544 } nir_variable;
545
546 #define nir_foreach_variable(var, var_list) \
547 foreach_list_typed(nir_variable, var, node, var_list)
548
549 #define nir_foreach_variable_safe(var, var_list) \
550 foreach_list_typed_safe(nir_variable, var, node, var_list)
551
552 static inline bool
553 nir_variable_is_global(const nir_variable *var)
554 {
555 return var->data.mode != nir_var_function_temp;
556 }
557
558 typedef struct nir_register {
559 struct exec_node node;
560
561 unsigned num_components; /** < number of vector components */
562 unsigned num_array_elems; /** < size of array (0 for no array) */
563
564 /* The bit-size of each channel; must be one of 8, 16, 32, or 64 */
565 uint8_t bit_size;
566
567 /** generic register index. */
568 unsigned index;
569
570 /** only for debug purposes, can be NULL */
571 const char *name;
572
573 /** set of nir_srcs where this register is used (read from) */
574 struct list_head uses;
575
576 /** set of nir_dests where this register is defined (written to) */
577 struct list_head defs;
578
579 /** set of nir_ifs where this register is used as a condition */
580 struct list_head if_uses;
581 } nir_register;
582
583 #define nir_foreach_register(reg, reg_list) \
584 foreach_list_typed(nir_register, reg, node, reg_list)
585 #define nir_foreach_register_safe(reg, reg_list) \
586 foreach_list_typed_safe(nir_register, reg, node, reg_list)
587
588 typedef enum PACKED {
589 nir_instr_type_alu,
590 nir_instr_type_deref,
591 nir_instr_type_call,
592 nir_instr_type_tex,
593 nir_instr_type_intrinsic,
594 nir_instr_type_load_const,
595 nir_instr_type_jump,
596 nir_instr_type_ssa_undef,
597 nir_instr_type_phi,
598 nir_instr_type_parallel_copy,
599 } nir_instr_type;
600
601 typedef struct nir_instr {
602 struct exec_node node;
603 struct nir_block *block;
604 nir_instr_type type;
605
606 /* A temporary for optimization and analysis passes to use for storing
607 * flags. For instance, DCE uses this to store the "dead/live" info.
608 */
609 uint8_t pass_flags;
610
611 /** generic instruction index. */
612 unsigned index;
613 } nir_instr;
614
615 static inline nir_instr *
616 nir_instr_next(nir_instr *instr)
617 {
618 struct exec_node *next = exec_node_get_next(&instr->node);
619 if (exec_node_is_tail_sentinel(next))
620 return NULL;
621 else
622 return exec_node_data(nir_instr, next, node);
623 }
624
625 static inline nir_instr *
626 nir_instr_prev(nir_instr *instr)
627 {
628 struct exec_node *prev = exec_node_get_prev(&instr->node);
629 if (exec_node_is_head_sentinel(prev))
630 return NULL;
631 else
632 return exec_node_data(nir_instr, prev, node);
633 }
634
635 static inline bool
636 nir_instr_is_first(const nir_instr *instr)
637 {
638 return exec_node_is_head_sentinel(exec_node_get_prev_const(&instr->node));
639 }
640
641 static inline bool
642 nir_instr_is_last(const nir_instr *instr)
643 {
644 return exec_node_is_tail_sentinel(exec_node_get_next_const(&instr->node));
645 }
646
647 typedef struct nir_ssa_def {
648 /** for debugging only, can be NULL */
649 const char* name;
650
651 /** generic SSA definition index. */
652 unsigned index;
653
654 /** Index into the live_in and live_out bitfields */
655 unsigned live_index;
656
657 /** Instruction which produces this SSA value. */
658 nir_instr *parent_instr;
659
660 /** set of nir_instrs where this register is used (read from) */
661 struct list_head uses;
662
663 /** set of nir_ifs where this register is used as a condition */
664 struct list_head if_uses;
665
666 uint8_t num_components;
667
668 /* The bit-size of each channel; must be one of 8, 16, 32, or 64 */
669 uint8_t bit_size;
670 } nir_ssa_def;
671
672 struct nir_src;
673
674 typedef struct {
675 nir_register *reg;
676 struct nir_src *indirect; /** < NULL for no indirect offset */
677 unsigned base_offset;
678
679 /* TODO use-def chain goes here */
680 } nir_reg_src;
681
682 typedef struct {
683 nir_instr *parent_instr;
684 struct list_head def_link;
685
686 nir_register *reg;
687 struct nir_src *indirect; /** < NULL for no indirect offset */
688 unsigned base_offset;
689
690 /* TODO def-use chain goes here */
691 } nir_reg_dest;
692
693 struct nir_if;
694
695 typedef struct nir_src {
696 union {
697 /** Instruction that consumes this value as a source. */
698 nir_instr *parent_instr;
699 struct nir_if *parent_if;
700 };
701
702 struct list_head use_link;
703
704 union {
705 nir_reg_src reg;
706 nir_ssa_def *ssa;
707 };
708
709 bool is_ssa;
710 } nir_src;
711
712 static inline nir_src
713 nir_src_init(void)
714 {
715 nir_src src = { { NULL } };
716 return src;
717 }
718
719 #define NIR_SRC_INIT nir_src_init()
720
721 #define nir_foreach_use(src, reg_or_ssa_def) \
722 list_for_each_entry(nir_src, src, &(reg_or_ssa_def)->uses, use_link)
723
724 #define nir_foreach_use_safe(src, reg_or_ssa_def) \
725 list_for_each_entry_safe(nir_src, src, &(reg_or_ssa_def)->uses, use_link)
726
727 #define nir_foreach_if_use(src, reg_or_ssa_def) \
728 list_for_each_entry(nir_src, src, &(reg_or_ssa_def)->if_uses, use_link)
729
730 #define nir_foreach_if_use_safe(src, reg_or_ssa_def) \
731 list_for_each_entry_safe(nir_src, src, &(reg_or_ssa_def)->if_uses, use_link)
732
733 typedef struct {
734 union {
735 nir_reg_dest reg;
736 nir_ssa_def ssa;
737 };
738
739 bool is_ssa;
740 } nir_dest;
741
742 static inline nir_dest
743 nir_dest_init(void)
744 {
745 nir_dest dest = { { { NULL } } };
746 return dest;
747 }
748
749 #define NIR_DEST_INIT nir_dest_init()
750
751 #define nir_foreach_def(dest, reg) \
752 list_for_each_entry(nir_dest, dest, &(reg)->defs, reg.def_link)
753
754 #define nir_foreach_def_safe(dest, reg) \
755 list_for_each_entry_safe(nir_dest, dest, &(reg)->defs, reg.def_link)
756
757 static inline nir_src
758 nir_src_for_ssa(nir_ssa_def *def)
759 {
760 nir_src src = NIR_SRC_INIT;
761
762 src.is_ssa = true;
763 src.ssa = def;
764
765 return src;
766 }
767
768 static inline nir_src
769 nir_src_for_reg(nir_register *reg)
770 {
771 nir_src src = NIR_SRC_INIT;
772
773 src.is_ssa = false;
774 src.reg.reg = reg;
775 src.reg.indirect = NULL;
776 src.reg.base_offset = 0;
777
778 return src;
779 }
780
781 static inline nir_dest
782 nir_dest_for_reg(nir_register *reg)
783 {
784 nir_dest dest = NIR_DEST_INIT;
785
786 dest.reg.reg = reg;
787
788 return dest;
789 }
790
791 static inline unsigned
792 nir_src_bit_size(nir_src src)
793 {
794 return src.is_ssa ? src.ssa->bit_size : src.reg.reg->bit_size;
795 }
796
797 static inline unsigned
798 nir_src_num_components(nir_src src)
799 {
800 return src.is_ssa ? src.ssa->num_components : src.reg.reg->num_components;
801 }
802
803 static inline bool
804 nir_src_is_const(nir_src src)
805 {
806 return src.is_ssa &&
807 src.ssa->parent_instr->type == nir_instr_type_load_const;
808 }
809
810 static inline unsigned
811 nir_dest_bit_size(nir_dest dest)
812 {
813 return dest.is_ssa ? dest.ssa.bit_size : dest.reg.reg->bit_size;
814 }
815
816 static inline unsigned
817 nir_dest_num_components(nir_dest dest)
818 {
819 return dest.is_ssa ? dest.ssa.num_components : dest.reg.reg->num_components;
820 }
821
822 void nir_src_copy(nir_src *dest, const nir_src *src, void *instr_or_if);
823 void nir_dest_copy(nir_dest *dest, const nir_dest *src, nir_instr *instr);
824
825 typedef struct {
826 nir_src src;
827
828 /**
829 * \name input modifiers
830 */
831 /*@{*/
832 /**
833 * For inputs interpreted as floating point, flips the sign bit. For
834 * inputs interpreted as integers, performs the two's complement negation.
835 */
836 bool negate;
837
838 /**
839 * Clears the sign bit for floating point values, and computes the integer
840 * absolute value for integers. Note that the negate modifier acts after
841 * the absolute value modifier, therefore if both are set then all inputs
842 * will become negative.
843 */
844 bool abs;
845 /*@}*/
846
847 /**
848 * For each input component, says which component of the register it is
849 * chosen from. Note that which elements of the swizzle are used and which
850 * are ignored are based on the write mask for most opcodes - for example,
851 * a statement like "foo.xzw = bar.zyx" would have a writemask of 1101b and
852 * a swizzle of {2, x, 1, 0} where x means "don't care."
853 */
854 uint8_t swizzle[NIR_MAX_VEC_COMPONENTS];
855 } nir_alu_src;
856
857 typedef struct {
858 nir_dest dest;
859
860 /**
861 * \name saturate output modifier
862 *
863 * Only valid for opcodes that output floating-point numbers. Clamps the
864 * output to between 0.0 and 1.0 inclusive.
865 */
866
867 bool saturate;
868
869 unsigned write_mask : NIR_MAX_VEC_COMPONENTS; /* ignored if dest.is_ssa is true */
870 } nir_alu_dest;
871
872 /** NIR sized and unsized types
873 *
874 * The values in this enum are carefully chosen so that the sized type is
875 * just the unsized type OR the number of bits.
876 */
877 typedef enum {
878 nir_type_invalid = 0, /* Not a valid type */
879 nir_type_int = 2,
880 nir_type_uint = 4,
881 nir_type_bool = 6,
882 nir_type_float = 128,
883 nir_type_bool1 = 1 | nir_type_bool,
884 nir_type_bool32 = 32 | nir_type_bool,
885 nir_type_int1 = 1 | nir_type_int,
886 nir_type_int8 = 8 | nir_type_int,
887 nir_type_int16 = 16 | nir_type_int,
888 nir_type_int32 = 32 | nir_type_int,
889 nir_type_int64 = 64 | nir_type_int,
890 nir_type_uint1 = 1 | nir_type_uint,
891 nir_type_uint8 = 8 | nir_type_uint,
892 nir_type_uint16 = 16 | nir_type_uint,
893 nir_type_uint32 = 32 | nir_type_uint,
894 nir_type_uint64 = 64 | nir_type_uint,
895 nir_type_float16 = 16 | nir_type_float,
896 nir_type_float32 = 32 | nir_type_float,
897 nir_type_float64 = 64 | nir_type_float,
898 } nir_alu_type;
899
900 #define NIR_ALU_TYPE_SIZE_MASK 0x79
901 #define NIR_ALU_TYPE_BASE_TYPE_MASK 0x86
902
903 static inline unsigned
904 nir_alu_type_get_type_size(nir_alu_type type)
905 {
906 return type & NIR_ALU_TYPE_SIZE_MASK;
907 }
908
909 static inline unsigned
910 nir_alu_type_get_base_type(nir_alu_type type)
911 {
912 return type & NIR_ALU_TYPE_BASE_TYPE_MASK;
913 }
914
915 static inline nir_alu_type
916 nir_get_nir_type_for_glsl_base_type(enum glsl_base_type base_type)
917 {
918 switch (base_type) {
919 case GLSL_TYPE_BOOL:
920 return nir_type_bool1;
921 break;
922 case GLSL_TYPE_UINT:
923 return nir_type_uint32;
924 break;
925 case GLSL_TYPE_INT:
926 return nir_type_int32;
927 break;
928 case GLSL_TYPE_UINT16:
929 return nir_type_uint16;
930 break;
931 case GLSL_TYPE_INT16:
932 return nir_type_int16;
933 break;
934 case GLSL_TYPE_UINT8:
935 return nir_type_uint8;
936 case GLSL_TYPE_INT8:
937 return nir_type_int8;
938 case GLSL_TYPE_UINT64:
939 return nir_type_uint64;
940 break;
941 case GLSL_TYPE_INT64:
942 return nir_type_int64;
943 break;
944 case GLSL_TYPE_FLOAT:
945 return nir_type_float32;
946 break;
947 case GLSL_TYPE_FLOAT16:
948 return nir_type_float16;
949 break;
950 case GLSL_TYPE_DOUBLE:
951 return nir_type_float64;
952 break;
953
954 case GLSL_TYPE_SAMPLER:
955 case GLSL_TYPE_IMAGE:
956 case GLSL_TYPE_ATOMIC_UINT:
957 case GLSL_TYPE_STRUCT:
958 case GLSL_TYPE_INTERFACE:
959 case GLSL_TYPE_ARRAY:
960 case GLSL_TYPE_VOID:
961 case GLSL_TYPE_SUBROUTINE:
962 case GLSL_TYPE_FUNCTION:
963 case GLSL_TYPE_ERROR:
964 return nir_type_invalid;
965 }
966
967 unreachable("unknown type");
968 }
969
970 static inline nir_alu_type
971 nir_get_nir_type_for_glsl_type(const struct glsl_type *type)
972 {
973 return nir_get_nir_type_for_glsl_base_type(glsl_get_base_type(type));
974 }
975
976 nir_op nir_type_conversion_op(nir_alu_type src, nir_alu_type dst,
977 nir_rounding_mode rnd);
978
979 static inline nir_op
980 nir_op_vec(unsigned components)
981 {
982 switch (components) {
983 case 1: return nir_op_mov;
984 case 2: return nir_op_vec2;
985 case 3: return nir_op_vec3;
986 case 4: return nir_op_vec4;
987 default: unreachable("bad component count");
988 }
989 }
990
991 typedef enum {
992 /**
993 * Operation where the first two sources are commutative.
994 *
995 * For 2-source operations, this just mathematical commutativity. Some
996 * 3-source operations, like ffma, are only commutative in the first two
997 * sources.
998 */
999 NIR_OP_IS_2SRC_COMMUTATIVE = (1 << 0),
1000 NIR_OP_IS_ASSOCIATIVE = (1 << 1),
1001 } nir_op_algebraic_property;
1002
1003 typedef struct {
1004 const char *name;
1005
1006 unsigned num_inputs;
1007
1008 /**
1009 * The number of components in the output
1010 *
1011 * If non-zero, this is the size of the output and input sizes are
1012 * explicitly given; swizzle and writemask are still in effect, but if
1013 * the output component is masked out, then the input component may
1014 * still be in use.
1015 *
1016 * If zero, the opcode acts in the standard, per-component manner; the
1017 * operation is performed on each component (except the ones that are
1018 * masked out) with the input being taken from the input swizzle for
1019 * that component.
1020 *
1021 * The size of some of the inputs may be given (i.e. non-zero) even
1022 * though output_size is zero; in that case, the inputs with a zero
1023 * size act per-component, while the inputs with non-zero size don't.
1024 */
1025 unsigned output_size;
1026
1027 /**
1028 * The type of vector that the instruction outputs. Note that the
1029 * staurate modifier is only allowed on outputs with the float type.
1030 */
1031
1032 nir_alu_type output_type;
1033
1034 /**
1035 * The number of components in each input
1036 */
1037 unsigned input_sizes[NIR_MAX_VEC_COMPONENTS];
1038
1039 /**
1040 * The type of vector that each input takes. Note that negate and
1041 * absolute value are only allowed on inputs with int or float type and
1042 * behave differently on the two.
1043 */
1044 nir_alu_type input_types[NIR_MAX_VEC_COMPONENTS];
1045
1046 nir_op_algebraic_property algebraic_properties;
1047
1048 /* Whether this represents a numeric conversion opcode */
1049 bool is_conversion;
1050 } nir_op_info;
1051
1052 extern const nir_op_info nir_op_infos[nir_num_opcodes];
1053
1054 typedef struct nir_alu_instr {
1055 nir_instr instr;
1056 nir_op op;
1057
1058 /** Indicates that this ALU instruction generates an exact value
1059 *
1060 * This is kind of a mixture of GLSL "precise" and "invariant" and not
1061 * really equivalent to either. This indicates that the value generated by
1062 * this operation is high-precision and any code transformations that touch
1063 * it must ensure that the resulting value is bit-for-bit identical to the
1064 * original.
1065 */
1066 bool exact:1;
1067
1068 /**
1069 * Indicates that this instruction do not cause wrapping to occur, in the
1070 * form of overflow or underflow.
1071 */
1072 bool no_signed_wrap:1;
1073 bool no_unsigned_wrap:1;
1074
1075 nir_alu_dest dest;
1076 nir_alu_src src[];
1077 } nir_alu_instr;
1078
1079 void nir_alu_src_copy(nir_alu_src *dest, const nir_alu_src *src,
1080 nir_alu_instr *instr);
1081 void nir_alu_dest_copy(nir_alu_dest *dest, const nir_alu_dest *src,
1082 nir_alu_instr *instr);
1083
1084 /* is this source channel used? */
1085 static inline bool
1086 nir_alu_instr_channel_used(const nir_alu_instr *instr, unsigned src,
1087 unsigned channel)
1088 {
1089 if (nir_op_infos[instr->op].input_sizes[src] > 0)
1090 return channel < nir_op_infos[instr->op].input_sizes[src];
1091
1092 return (instr->dest.write_mask >> channel) & 1;
1093 }
1094
1095 static inline nir_component_mask_t
1096 nir_alu_instr_src_read_mask(const nir_alu_instr *instr, unsigned src)
1097 {
1098 nir_component_mask_t read_mask = 0;
1099 for (unsigned c = 0; c < NIR_MAX_VEC_COMPONENTS; c++) {
1100 if (!nir_alu_instr_channel_used(instr, src, c))
1101 continue;
1102
1103 read_mask |= (1 << instr->src[src].swizzle[c]);
1104 }
1105 return read_mask;
1106 }
1107
1108 /**
1109 * Get the number of channels used for a source
1110 */
1111 static inline unsigned
1112 nir_ssa_alu_instr_src_components(const nir_alu_instr *instr, unsigned src)
1113 {
1114 if (nir_op_infos[instr->op].input_sizes[src] > 0)
1115 return nir_op_infos[instr->op].input_sizes[src];
1116
1117 return nir_dest_num_components(instr->dest.dest);
1118 }
1119
1120 static inline bool
1121 nir_alu_instr_is_comparison(const nir_alu_instr *instr)
1122 {
1123 switch (instr->op) {
1124 case nir_op_flt:
1125 case nir_op_fge:
1126 case nir_op_feq:
1127 case nir_op_fne:
1128 case nir_op_ilt:
1129 case nir_op_ult:
1130 case nir_op_ige:
1131 case nir_op_uge:
1132 case nir_op_ieq:
1133 case nir_op_ine:
1134 case nir_op_i2b1:
1135 case nir_op_f2b1:
1136 case nir_op_inot:
1137 return true;
1138 default:
1139 return false;
1140 }
1141 }
1142
1143 bool nir_const_value_negative_equal(nir_const_value c1, nir_const_value c2,
1144 nir_alu_type full_type);
1145
1146 bool nir_alu_srcs_equal(const nir_alu_instr *alu1, const nir_alu_instr *alu2,
1147 unsigned src1, unsigned src2);
1148
1149 bool nir_alu_srcs_negative_equal(const nir_alu_instr *alu1,
1150 const nir_alu_instr *alu2,
1151 unsigned src1, unsigned src2);
1152
1153 typedef enum {
1154 nir_deref_type_var,
1155 nir_deref_type_array,
1156 nir_deref_type_array_wildcard,
1157 nir_deref_type_ptr_as_array,
1158 nir_deref_type_struct,
1159 nir_deref_type_cast,
1160 } nir_deref_type;
1161
1162 typedef struct {
1163 nir_instr instr;
1164
1165 /** The type of this deref instruction */
1166 nir_deref_type deref_type;
1167
1168 /** The mode of the underlying variable */
1169 nir_variable_mode mode;
1170
1171 /** The dereferenced type of the resulting pointer value */
1172 const struct glsl_type *type;
1173
1174 union {
1175 /** Variable being dereferenced if deref_type is a deref_var */
1176 nir_variable *var;
1177
1178 /** Parent deref if deref_type is not deref_var */
1179 nir_src parent;
1180 };
1181
1182 /** Additional deref parameters */
1183 union {
1184 struct {
1185 nir_src index;
1186 } arr;
1187
1188 struct {
1189 unsigned index;
1190 } strct;
1191
1192 struct {
1193 unsigned ptr_stride;
1194 } cast;
1195 };
1196
1197 /** Destination to store the resulting "pointer" */
1198 nir_dest dest;
1199 } nir_deref_instr;
1200
1201 static inline nir_deref_instr *nir_src_as_deref(nir_src src);
1202
1203 static inline nir_deref_instr *
1204 nir_deref_instr_parent(const nir_deref_instr *instr)
1205 {
1206 if (instr->deref_type == nir_deref_type_var)
1207 return NULL;
1208 else
1209 return nir_src_as_deref(instr->parent);
1210 }
1211
1212 static inline nir_variable *
1213 nir_deref_instr_get_variable(const nir_deref_instr *instr)
1214 {
1215 while (instr->deref_type != nir_deref_type_var) {
1216 if (instr->deref_type == nir_deref_type_cast)
1217 return NULL;
1218
1219 instr = nir_deref_instr_parent(instr);
1220 }
1221
1222 return instr->var;
1223 }
1224
1225 bool nir_deref_instr_has_indirect(nir_deref_instr *instr);
1226 bool nir_deref_instr_has_complex_use(nir_deref_instr *instr);
1227
1228 bool nir_deref_instr_remove_if_unused(nir_deref_instr *instr);
1229
1230 unsigned nir_deref_instr_ptr_as_array_stride(nir_deref_instr *instr);
1231
1232 typedef struct {
1233 nir_instr instr;
1234
1235 struct nir_function *callee;
1236
1237 unsigned num_params;
1238 nir_src params[];
1239 } nir_call_instr;
1240
1241 #include "nir_intrinsics.h"
1242
1243 #define NIR_INTRINSIC_MAX_CONST_INDEX 4
1244
1245 /** Represents an intrinsic
1246 *
1247 * An intrinsic is an instruction type for handling things that are
1248 * more-or-less regular operations but don't just consume and produce SSA
1249 * values like ALU operations do. Intrinsics are not for things that have
1250 * special semantic meaning such as phi nodes and parallel copies.
1251 * Examples of intrinsics include variable load/store operations, system
1252 * value loads, and the like. Even though texturing more-or-less falls
1253 * under this category, texturing is its own instruction type because
1254 * trying to represent texturing with intrinsics would lead to a
1255 * combinatorial explosion of intrinsic opcodes.
1256 *
1257 * By having a single instruction type for handling a lot of different
1258 * cases, optimization passes can look for intrinsics and, for the most
1259 * part, completely ignore them. Each intrinsic type also has a few
1260 * possible flags that govern whether or not they can be reordered or
1261 * eliminated. That way passes like dead code elimination can still work
1262 * on intrisics without understanding the meaning of each.
1263 *
1264 * Each intrinsic has some number of constant indices, some number of
1265 * variables, and some number of sources. What these sources, variables,
1266 * and indices mean depends on the intrinsic and is documented with the
1267 * intrinsic declaration in nir_intrinsics.h. Intrinsics and texture
1268 * instructions are the only types of instruction that can operate on
1269 * variables.
1270 */
1271 typedef struct {
1272 nir_instr instr;
1273
1274 nir_intrinsic_op intrinsic;
1275
1276 nir_dest dest;
1277
1278 /** number of components if this is a vectorized intrinsic
1279 *
1280 * Similarly to ALU operations, some intrinsics are vectorized.
1281 * An intrinsic is vectorized if nir_intrinsic_infos.dest_components == 0.
1282 * For vectorized intrinsics, the num_components field specifies the
1283 * number of destination components and the number of source components
1284 * for all sources with nir_intrinsic_infos.src_components[i] == 0.
1285 */
1286 uint8_t num_components;
1287
1288 int const_index[NIR_INTRINSIC_MAX_CONST_INDEX];
1289
1290 nir_src src[];
1291 } nir_intrinsic_instr;
1292
1293 static inline nir_variable *
1294 nir_intrinsic_get_var(nir_intrinsic_instr *intrin, unsigned i)
1295 {
1296 return nir_deref_instr_get_variable(nir_src_as_deref(intrin->src[i]));
1297 }
1298
1299 /**
1300 * \name NIR intrinsics semantic flags
1301 *
1302 * information about what the compiler can do with the intrinsics.
1303 *
1304 * \sa nir_intrinsic_info::flags
1305 */
1306 typedef enum {
1307 /**
1308 * whether the intrinsic can be safely eliminated if none of its output
1309 * value is not being used.
1310 */
1311 NIR_INTRINSIC_CAN_ELIMINATE = (1 << 0),
1312
1313 /**
1314 * Whether the intrinsic can be reordered with respect to any other
1315 * intrinsic, i.e. whether the only reordering dependencies of the
1316 * intrinsic are due to the register reads/writes.
1317 */
1318 NIR_INTRINSIC_CAN_REORDER = (1 << 1),
1319 } nir_intrinsic_semantic_flag;
1320
1321 /**
1322 * \name NIR intrinsics const-index flag
1323 *
1324 * Indicates the usage of a const_index slot.
1325 *
1326 * \sa nir_intrinsic_info::index_map
1327 */
1328 typedef enum {
1329 /**
1330 * Generally instructions that take a offset src argument, can encode
1331 * a constant 'base' value which is added to the offset.
1332 */
1333 NIR_INTRINSIC_BASE = 1,
1334
1335 /**
1336 * For store instructions, a writemask for the store.
1337 */
1338 NIR_INTRINSIC_WRMASK,
1339
1340 /**
1341 * The stream-id for GS emit_vertex/end_primitive intrinsics.
1342 */
1343 NIR_INTRINSIC_STREAM_ID,
1344
1345 /**
1346 * The clip-plane id for load_user_clip_plane intrinsic.
1347 */
1348 NIR_INTRINSIC_UCP_ID,
1349
1350 /**
1351 * The amount of data, starting from BASE, that this instruction may
1352 * access. This is used to provide bounds if the offset is not constant.
1353 */
1354 NIR_INTRINSIC_RANGE,
1355
1356 /**
1357 * The Vulkan descriptor set for vulkan_resource_index intrinsic.
1358 */
1359 NIR_INTRINSIC_DESC_SET,
1360
1361 /**
1362 * The Vulkan descriptor set binding for vulkan_resource_index intrinsic.
1363 */
1364 NIR_INTRINSIC_BINDING,
1365
1366 /**
1367 * Component offset.
1368 */
1369 NIR_INTRINSIC_COMPONENT,
1370
1371 /**
1372 * Interpolation mode (only meaningful for FS inputs).
1373 */
1374 NIR_INTRINSIC_INTERP_MODE,
1375
1376 /**
1377 * A binary nir_op to use when performing a reduction or scan operation
1378 */
1379 NIR_INTRINSIC_REDUCTION_OP,
1380
1381 /**
1382 * Cluster size for reduction operations
1383 */
1384 NIR_INTRINSIC_CLUSTER_SIZE,
1385
1386 /**
1387 * Parameter index for a load_param intrinsic
1388 */
1389 NIR_INTRINSIC_PARAM_IDX,
1390
1391 /**
1392 * Image dimensionality for image intrinsics
1393 *
1394 * One of GLSL_SAMPLER_DIM_*
1395 */
1396 NIR_INTRINSIC_IMAGE_DIM,
1397
1398 /**
1399 * Non-zero if we are accessing an array image
1400 */
1401 NIR_INTRINSIC_IMAGE_ARRAY,
1402
1403 /**
1404 * Image format for image intrinsics
1405 */
1406 NIR_INTRINSIC_FORMAT,
1407
1408 /**
1409 * Access qualifiers for image and memory access intrinsics
1410 */
1411 NIR_INTRINSIC_ACCESS,
1412
1413 /**
1414 * Alignment for offsets and addresses
1415 *
1416 * These two parameters, specify an alignment in terms of a multiplier and
1417 * an offset. The offset or address parameter X of the intrinsic is
1418 * guaranteed to satisfy the following:
1419 *
1420 * (X - align_offset) % align_mul == 0
1421 */
1422 NIR_INTRINSIC_ALIGN_MUL,
1423 NIR_INTRINSIC_ALIGN_OFFSET,
1424
1425 /**
1426 * The Vulkan descriptor type for a vulkan_resource_[re]index intrinsic.
1427 */
1428 NIR_INTRINSIC_DESC_TYPE,
1429
1430 /**
1431 * The nir_alu_type of a uniform/input/output
1432 */
1433 NIR_INTRINSIC_TYPE,
1434
1435 /**
1436 * The swizzle mask for the instructions
1437 * SwizzleInvocationsAMD and SwizzleInvocationsMaskedAMD
1438 */
1439 NIR_INTRINSIC_SWIZZLE_MASK,
1440
1441 /* Separate source/dest access flags for copies */
1442 NIR_INTRINSIC_SRC_ACCESS = 21,
1443 NIR_INTRINSIC_DST_ACCESS = 22,
1444
1445 NIR_INTRINSIC_NUM_INDEX_FLAGS,
1446
1447 } nir_intrinsic_index_flag;
1448
1449 #define NIR_INTRINSIC_MAX_INPUTS 5
1450
1451 typedef struct {
1452 const char *name;
1453
1454 unsigned num_srcs; /** < number of register/SSA inputs */
1455
1456 /** number of components of each input register
1457 *
1458 * If this value is 0, the number of components is given by the
1459 * num_components field of nir_intrinsic_instr. If this value is -1, the
1460 * intrinsic consumes however many components are provided and it is not
1461 * validated at all.
1462 */
1463 int src_components[NIR_INTRINSIC_MAX_INPUTS];
1464
1465 bool has_dest;
1466
1467 /** number of components of the output register
1468 *
1469 * If this value is 0, the number of components is given by the
1470 * num_components field of nir_intrinsic_instr.
1471 */
1472 unsigned dest_components;
1473
1474 /** bitfield of legal bit sizes */
1475 unsigned dest_bit_sizes;
1476
1477 /** the number of constant indices used by the intrinsic */
1478 unsigned num_indices;
1479
1480 /** indicates the usage of intr->const_index[n] */
1481 unsigned index_map[NIR_INTRINSIC_NUM_INDEX_FLAGS];
1482
1483 /** semantic flags for calls to this intrinsic */
1484 nir_intrinsic_semantic_flag flags;
1485 } nir_intrinsic_info;
1486
1487 extern const nir_intrinsic_info nir_intrinsic_infos[nir_num_intrinsics];
1488
1489 static inline unsigned
1490 nir_intrinsic_src_components(nir_intrinsic_instr *intr, unsigned srcn)
1491 {
1492 const nir_intrinsic_info *info = &nir_intrinsic_infos[intr->intrinsic];
1493 assert(srcn < info->num_srcs);
1494 if (info->src_components[srcn] > 0)
1495 return info->src_components[srcn];
1496 else if (info->src_components[srcn] == 0)
1497 return intr->num_components;
1498 else
1499 return nir_src_num_components(intr->src[srcn]);
1500 }
1501
1502 static inline unsigned
1503 nir_intrinsic_dest_components(nir_intrinsic_instr *intr)
1504 {
1505 const nir_intrinsic_info *info = &nir_intrinsic_infos[intr->intrinsic];
1506 if (!info->has_dest)
1507 return 0;
1508 else if (info->dest_components)
1509 return info->dest_components;
1510 else
1511 return intr->num_components;
1512 }
1513
1514 #define INTRINSIC_IDX_ACCESSORS(name, flag, type) \
1515 static inline type \
1516 nir_intrinsic_##name(const nir_intrinsic_instr *instr) \
1517 { \
1518 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic]; \
1519 assert(info->index_map[NIR_INTRINSIC_##flag] > 0); \
1520 return (type)instr->const_index[info->index_map[NIR_INTRINSIC_##flag] - 1]; \
1521 } \
1522 static inline void \
1523 nir_intrinsic_set_##name(nir_intrinsic_instr *instr, type val) \
1524 { \
1525 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic]; \
1526 assert(info->index_map[NIR_INTRINSIC_##flag] > 0); \
1527 instr->const_index[info->index_map[NIR_INTRINSIC_##flag] - 1] = val; \
1528 }
1529
1530 INTRINSIC_IDX_ACCESSORS(write_mask, WRMASK, unsigned)
1531 INTRINSIC_IDX_ACCESSORS(base, BASE, int)
1532 INTRINSIC_IDX_ACCESSORS(stream_id, STREAM_ID, unsigned)
1533 INTRINSIC_IDX_ACCESSORS(ucp_id, UCP_ID, unsigned)
1534 INTRINSIC_IDX_ACCESSORS(range, RANGE, unsigned)
1535 INTRINSIC_IDX_ACCESSORS(desc_set, DESC_SET, unsigned)
1536 INTRINSIC_IDX_ACCESSORS(binding, BINDING, unsigned)
1537 INTRINSIC_IDX_ACCESSORS(component, COMPONENT, unsigned)
1538 INTRINSIC_IDX_ACCESSORS(interp_mode, INTERP_MODE, unsigned)
1539 INTRINSIC_IDX_ACCESSORS(reduction_op, REDUCTION_OP, unsigned)
1540 INTRINSIC_IDX_ACCESSORS(cluster_size, CLUSTER_SIZE, unsigned)
1541 INTRINSIC_IDX_ACCESSORS(param_idx, PARAM_IDX, unsigned)
1542 INTRINSIC_IDX_ACCESSORS(image_dim, IMAGE_DIM, enum glsl_sampler_dim)
1543 INTRINSIC_IDX_ACCESSORS(image_array, IMAGE_ARRAY, bool)
1544 INTRINSIC_IDX_ACCESSORS(access, ACCESS, enum gl_access_qualifier)
1545 INTRINSIC_IDX_ACCESSORS(src_access, SRC_ACCESS, enum gl_access_qualifier)
1546 INTRINSIC_IDX_ACCESSORS(dst_access, DST_ACCESS, enum gl_access_qualifier)
1547 INTRINSIC_IDX_ACCESSORS(format, FORMAT, unsigned)
1548 INTRINSIC_IDX_ACCESSORS(align_mul, ALIGN_MUL, unsigned)
1549 INTRINSIC_IDX_ACCESSORS(align_offset, ALIGN_OFFSET, unsigned)
1550 INTRINSIC_IDX_ACCESSORS(desc_type, DESC_TYPE, unsigned)
1551 INTRINSIC_IDX_ACCESSORS(type, TYPE, nir_alu_type)
1552 INTRINSIC_IDX_ACCESSORS(swizzle_mask, SWIZZLE_MASK, unsigned)
1553
1554 static inline void
1555 nir_intrinsic_set_align(nir_intrinsic_instr *intrin,
1556 unsigned align_mul, unsigned align_offset)
1557 {
1558 assert(util_is_power_of_two_nonzero(align_mul));
1559 assert(align_offset < align_mul);
1560 nir_intrinsic_set_align_mul(intrin, align_mul);
1561 nir_intrinsic_set_align_offset(intrin, align_offset);
1562 }
1563
1564 /** Returns a simple alignment for a load/store intrinsic offset
1565 *
1566 * Instead of the full mul+offset alignment scheme provided by the ALIGN_MUL
1567 * and ALIGN_OFFSET parameters, this helper takes both into account and
1568 * provides a single simple alignment parameter. The offset X is guaranteed
1569 * to satisfy X % align == 0.
1570 */
1571 static inline unsigned
1572 nir_intrinsic_align(const nir_intrinsic_instr *intrin)
1573 {
1574 const unsigned align_mul = nir_intrinsic_align_mul(intrin);
1575 const unsigned align_offset = nir_intrinsic_align_offset(intrin);
1576 assert(align_offset < align_mul);
1577 return align_offset ? 1 << (ffs(align_offset) - 1) : align_mul;
1578 }
1579
1580 /* Converts a image_deref_* intrinsic into a image_* one */
1581 void nir_rewrite_image_intrinsic(nir_intrinsic_instr *instr,
1582 nir_ssa_def *handle, bool bindless);
1583
1584 /* Determine if an intrinsic can be arbitrarily reordered and eliminated. */
1585 static inline bool
1586 nir_intrinsic_can_reorder(nir_intrinsic_instr *instr)
1587 {
1588 if (instr->intrinsic == nir_intrinsic_load_deref ||
1589 instr->intrinsic == nir_intrinsic_load_ssbo ||
1590 instr->intrinsic == nir_intrinsic_bindless_image_load ||
1591 instr->intrinsic == nir_intrinsic_image_deref_load ||
1592 instr->intrinsic == nir_intrinsic_image_load) {
1593 return nir_intrinsic_access(instr) & ACCESS_CAN_REORDER;
1594 } else {
1595 const nir_intrinsic_info *info =
1596 &nir_intrinsic_infos[instr->intrinsic];
1597 return (info->flags & NIR_INTRINSIC_CAN_ELIMINATE) &&
1598 (info->flags & NIR_INTRINSIC_CAN_REORDER);
1599 }
1600 }
1601
1602 /**
1603 * \group texture information
1604 *
1605 * This gives semantic information about textures which is useful to the
1606 * frontend, the backend, and lowering passes, but not the optimizer.
1607 */
1608
1609 typedef enum {
1610 nir_tex_src_coord,
1611 nir_tex_src_projector,
1612 nir_tex_src_comparator, /* shadow comparator */
1613 nir_tex_src_offset,
1614 nir_tex_src_bias,
1615 nir_tex_src_lod,
1616 nir_tex_src_min_lod,
1617 nir_tex_src_ms_index, /* MSAA sample index */
1618 nir_tex_src_ms_mcs, /* MSAA compression value */
1619 nir_tex_src_ddx,
1620 nir_tex_src_ddy,
1621 nir_tex_src_texture_deref, /* < deref pointing to the texture */
1622 nir_tex_src_sampler_deref, /* < deref pointing to the sampler */
1623 nir_tex_src_texture_offset, /* < dynamically uniform indirect offset */
1624 nir_tex_src_sampler_offset, /* < dynamically uniform indirect offset */
1625 nir_tex_src_texture_handle, /* < bindless texture handle */
1626 nir_tex_src_sampler_handle, /* < bindless sampler handle */
1627 nir_tex_src_plane, /* < selects plane for planar textures */
1628 nir_num_tex_src_types
1629 } nir_tex_src_type;
1630
1631 typedef struct {
1632 nir_src src;
1633 nir_tex_src_type src_type;
1634 } nir_tex_src;
1635
1636 typedef enum {
1637 nir_texop_tex, /**< Regular texture look-up */
1638 nir_texop_txb, /**< Texture look-up with LOD bias */
1639 nir_texop_txl, /**< Texture look-up with explicit LOD */
1640 nir_texop_txd, /**< Texture look-up with partial derivatives */
1641 nir_texop_txf, /**< Texel fetch with explicit LOD */
1642 nir_texop_txf_ms, /**< Multisample texture fetch */
1643 nir_texop_txf_ms_fb, /**< Multisample texture fetch from framebuffer */
1644 nir_texop_txf_ms_mcs, /**< Multisample compression value fetch */
1645 nir_texop_txs, /**< Texture size */
1646 nir_texop_lod, /**< Texture lod query */
1647 nir_texop_tg4, /**< Texture gather */
1648 nir_texop_query_levels, /**< Texture levels query */
1649 nir_texop_texture_samples, /**< Texture samples query */
1650 nir_texop_samples_identical, /**< Query whether all samples are definitely
1651 * identical.
1652 */
1653 } nir_texop;
1654
1655 typedef struct {
1656 nir_instr instr;
1657
1658 enum glsl_sampler_dim sampler_dim;
1659 nir_alu_type dest_type;
1660
1661 nir_texop op;
1662 nir_dest dest;
1663 nir_tex_src *src;
1664 unsigned num_srcs, coord_components;
1665 bool is_array, is_shadow;
1666
1667 /**
1668 * If is_shadow is true, whether this is the old-style shadow that outputs 4
1669 * components or the new-style shadow that outputs 1 component.
1670 */
1671 bool is_new_style_shadow;
1672
1673 /* gather component selector */
1674 unsigned component : 2;
1675
1676 /* gather offsets */
1677 int8_t tg4_offsets[4][2];
1678
1679 /* True if the texture index or handle is not dynamically uniform */
1680 bool texture_non_uniform;
1681
1682 /* True if the sampler index or handle is not dynamically uniform */
1683 bool sampler_non_uniform;
1684
1685 /** The texture index
1686 *
1687 * If this texture instruction has a nir_tex_src_texture_offset source,
1688 * then the texture index is given by texture_index + texture_offset.
1689 */
1690 unsigned texture_index;
1691
1692 /** The size of the texture array or 0 if it's not an array */
1693 unsigned texture_array_size;
1694
1695 /** The sampler index
1696 *
1697 * The following operations do not require a sampler and, as such, this
1698 * field should be ignored:
1699 * - nir_texop_txf
1700 * - nir_texop_txf_ms
1701 * - nir_texop_txs
1702 * - nir_texop_lod
1703 * - nir_texop_query_levels
1704 * - nir_texop_texture_samples
1705 * - nir_texop_samples_identical
1706 *
1707 * If this texture instruction has a nir_tex_src_sampler_offset source,
1708 * then the sampler index is given by sampler_index + sampler_offset.
1709 */
1710 unsigned sampler_index;
1711 } nir_tex_instr;
1712
1713 static inline unsigned
1714 nir_tex_instr_dest_size(const nir_tex_instr *instr)
1715 {
1716 switch (instr->op) {
1717 case nir_texop_txs: {
1718 unsigned ret;
1719 switch (instr->sampler_dim) {
1720 case GLSL_SAMPLER_DIM_1D:
1721 case GLSL_SAMPLER_DIM_BUF:
1722 ret = 1;
1723 break;
1724 case GLSL_SAMPLER_DIM_2D:
1725 case GLSL_SAMPLER_DIM_CUBE:
1726 case GLSL_SAMPLER_DIM_MS:
1727 case GLSL_SAMPLER_DIM_RECT:
1728 case GLSL_SAMPLER_DIM_EXTERNAL:
1729 case GLSL_SAMPLER_DIM_SUBPASS:
1730 ret = 2;
1731 break;
1732 case GLSL_SAMPLER_DIM_3D:
1733 ret = 3;
1734 break;
1735 default:
1736 unreachable("not reached");
1737 }
1738 if (instr->is_array)
1739 ret++;
1740 return ret;
1741 }
1742
1743 case nir_texop_lod:
1744 return 2;
1745
1746 case nir_texop_texture_samples:
1747 case nir_texop_query_levels:
1748 case nir_texop_samples_identical:
1749 return 1;
1750
1751 default:
1752 if (instr->is_shadow && instr->is_new_style_shadow)
1753 return 1;
1754
1755 return 4;
1756 }
1757 }
1758
1759 /* Returns true if this texture operation queries something about the texture
1760 * rather than actually sampling it.
1761 */
1762 static inline bool
1763 nir_tex_instr_is_query(const nir_tex_instr *instr)
1764 {
1765 switch (instr->op) {
1766 case nir_texop_txs:
1767 case nir_texop_lod:
1768 case nir_texop_texture_samples:
1769 case nir_texop_query_levels:
1770 case nir_texop_txf_ms_mcs:
1771 return true;
1772 case nir_texop_tex:
1773 case nir_texop_txb:
1774 case nir_texop_txl:
1775 case nir_texop_txd:
1776 case nir_texop_txf:
1777 case nir_texop_txf_ms:
1778 case nir_texop_txf_ms_fb:
1779 case nir_texop_tg4:
1780 return false;
1781 default:
1782 unreachable("Invalid texture opcode");
1783 }
1784 }
1785
1786 static inline bool
1787 nir_tex_instr_has_implicit_derivative(const nir_tex_instr *instr)
1788 {
1789 switch (instr->op) {
1790 case nir_texop_tex:
1791 case nir_texop_txb:
1792 case nir_texop_lod:
1793 return true;
1794 default:
1795 return false;
1796 }
1797 }
1798
1799 static inline nir_alu_type
1800 nir_tex_instr_src_type(const nir_tex_instr *instr, unsigned src)
1801 {
1802 switch (instr->src[src].src_type) {
1803 case nir_tex_src_coord:
1804 switch (instr->op) {
1805 case nir_texop_txf:
1806 case nir_texop_txf_ms:
1807 case nir_texop_txf_ms_fb:
1808 case nir_texop_txf_ms_mcs:
1809 case nir_texop_samples_identical:
1810 return nir_type_int;
1811
1812 default:
1813 return nir_type_float;
1814 }
1815
1816 case nir_tex_src_lod:
1817 switch (instr->op) {
1818 case nir_texop_txs:
1819 case nir_texop_txf:
1820 return nir_type_int;
1821
1822 default:
1823 return nir_type_float;
1824 }
1825
1826 case nir_tex_src_projector:
1827 case nir_tex_src_comparator:
1828 case nir_tex_src_bias:
1829 case nir_tex_src_ddx:
1830 case nir_tex_src_ddy:
1831 return nir_type_float;
1832
1833 case nir_tex_src_offset:
1834 case nir_tex_src_ms_index:
1835 case nir_tex_src_texture_offset:
1836 case nir_tex_src_sampler_offset:
1837 return nir_type_int;
1838
1839 default:
1840 unreachable("Invalid texture source type");
1841 }
1842 }
1843
1844 static inline unsigned
1845 nir_tex_instr_src_size(const nir_tex_instr *instr, unsigned src)
1846 {
1847 if (instr->src[src].src_type == nir_tex_src_coord)
1848 return instr->coord_components;
1849
1850 /* The MCS value is expected to be a vec4 returned by a txf_ms_mcs */
1851 if (instr->src[src].src_type == nir_tex_src_ms_mcs)
1852 return 4;
1853
1854 if (instr->src[src].src_type == nir_tex_src_ddx ||
1855 instr->src[src].src_type == nir_tex_src_ddy) {
1856 if (instr->is_array)
1857 return instr->coord_components - 1;
1858 else
1859 return instr->coord_components;
1860 }
1861
1862 /* Usual APIs don't allow cube + offset, but we allow it, with 2 coords for
1863 * the offset, since a cube maps to a single face.
1864 */
1865 if (instr->src[src].src_type == nir_tex_src_offset) {
1866 if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE)
1867 return 2;
1868 else if (instr->is_array)
1869 return instr->coord_components - 1;
1870 else
1871 return instr->coord_components;
1872 }
1873
1874 return 1;
1875 }
1876
1877 static inline int
1878 nir_tex_instr_src_index(const nir_tex_instr *instr, nir_tex_src_type type)
1879 {
1880 for (unsigned i = 0; i < instr->num_srcs; i++)
1881 if (instr->src[i].src_type == type)
1882 return (int) i;
1883
1884 return -1;
1885 }
1886
1887 void nir_tex_instr_add_src(nir_tex_instr *tex,
1888 nir_tex_src_type src_type,
1889 nir_src src);
1890
1891 void nir_tex_instr_remove_src(nir_tex_instr *tex, unsigned src_idx);
1892
1893 bool nir_tex_instr_has_explicit_tg4_offsets(nir_tex_instr *tex);
1894
1895 typedef struct {
1896 nir_instr instr;
1897
1898 nir_ssa_def def;
1899
1900 nir_const_value value[];
1901 } nir_load_const_instr;
1902
1903 #define nir_const_load_to_arr(arr, l, m) \
1904 { \
1905 nir_const_value_to_array(arr, l->value, l->def.num_components, m); \
1906 } while (false);
1907
1908 typedef enum {
1909 nir_jump_return,
1910 nir_jump_break,
1911 nir_jump_continue,
1912 } nir_jump_type;
1913
1914 typedef struct {
1915 nir_instr instr;
1916 nir_jump_type type;
1917 } nir_jump_instr;
1918
1919 /* creates a new SSA variable in an undefined state */
1920
1921 typedef struct {
1922 nir_instr instr;
1923 nir_ssa_def def;
1924 } nir_ssa_undef_instr;
1925
1926 typedef struct {
1927 struct exec_node node;
1928
1929 /* The predecessor block corresponding to this source */
1930 struct nir_block *pred;
1931
1932 nir_src src;
1933 } nir_phi_src;
1934
1935 #define nir_foreach_phi_src(phi_src, phi) \
1936 foreach_list_typed(nir_phi_src, phi_src, node, &(phi)->srcs)
1937 #define nir_foreach_phi_src_safe(phi_src, phi) \
1938 foreach_list_typed_safe(nir_phi_src, phi_src, node, &(phi)->srcs)
1939
1940 typedef struct {
1941 nir_instr instr;
1942
1943 struct exec_list srcs; /** < list of nir_phi_src */
1944
1945 nir_dest dest;
1946 } nir_phi_instr;
1947
1948 typedef struct {
1949 struct exec_node node;
1950 nir_src src;
1951 nir_dest dest;
1952 } nir_parallel_copy_entry;
1953
1954 #define nir_foreach_parallel_copy_entry(entry, pcopy) \
1955 foreach_list_typed(nir_parallel_copy_entry, entry, node, &(pcopy)->entries)
1956
1957 typedef struct {
1958 nir_instr instr;
1959
1960 /* A list of nir_parallel_copy_entrys. The sources of all of the
1961 * entries are copied to the corresponding destinations "in parallel".
1962 * In other words, if we have two entries: a -> b and b -> a, the values
1963 * get swapped.
1964 */
1965 struct exec_list entries;
1966 } nir_parallel_copy_instr;
1967
1968 NIR_DEFINE_CAST(nir_instr_as_alu, nir_instr, nir_alu_instr, instr,
1969 type, nir_instr_type_alu)
1970 NIR_DEFINE_CAST(nir_instr_as_deref, nir_instr, nir_deref_instr, instr,
1971 type, nir_instr_type_deref)
1972 NIR_DEFINE_CAST(nir_instr_as_call, nir_instr, nir_call_instr, instr,
1973 type, nir_instr_type_call)
1974 NIR_DEFINE_CAST(nir_instr_as_jump, nir_instr, nir_jump_instr, instr,
1975 type, nir_instr_type_jump)
1976 NIR_DEFINE_CAST(nir_instr_as_tex, nir_instr, nir_tex_instr, instr,
1977 type, nir_instr_type_tex)
1978 NIR_DEFINE_CAST(nir_instr_as_intrinsic, nir_instr, nir_intrinsic_instr, instr,
1979 type, nir_instr_type_intrinsic)
1980 NIR_DEFINE_CAST(nir_instr_as_load_const, nir_instr, nir_load_const_instr, instr,
1981 type, nir_instr_type_load_const)
1982 NIR_DEFINE_CAST(nir_instr_as_ssa_undef, nir_instr, nir_ssa_undef_instr, instr,
1983 type, nir_instr_type_ssa_undef)
1984 NIR_DEFINE_CAST(nir_instr_as_phi, nir_instr, nir_phi_instr, instr,
1985 type, nir_instr_type_phi)
1986 NIR_DEFINE_CAST(nir_instr_as_parallel_copy, nir_instr,
1987 nir_parallel_copy_instr, instr,
1988 type, nir_instr_type_parallel_copy)
1989
1990
1991 #define NIR_DEFINE_SRC_AS_CONST(type, suffix) \
1992 static inline type \
1993 nir_src_comp_as_##suffix(nir_src src, unsigned comp) \
1994 { \
1995 assert(nir_src_is_const(src)); \
1996 nir_load_const_instr *load = \
1997 nir_instr_as_load_const(src.ssa->parent_instr); \
1998 assert(comp < load->def.num_components); \
1999 return nir_const_value_as_##suffix(load->value[comp], \
2000 load->def.bit_size); \
2001 } \
2002 \
2003 static inline type \
2004 nir_src_as_##suffix(nir_src src) \
2005 { \
2006 assert(nir_src_num_components(src) == 1); \
2007 return nir_src_comp_as_##suffix(src, 0); \
2008 }
2009
2010 NIR_DEFINE_SRC_AS_CONST(int64_t, int)
2011 NIR_DEFINE_SRC_AS_CONST(uint64_t, uint)
2012 NIR_DEFINE_SRC_AS_CONST(bool, bool)
2013 NIR_DEFINE_SRC_AS_CONST(double, float)
2014
2015 #undef NIR_DEFINE_SRC_AS_CONST
2016
2017
2018 typedef struct {
2019 nir_ssa_def *def;
2020 unsigned comp;
2021 } nir_ssa_scalar;
2022
2023 static inline bool
2024 nir_ssa_scalar_is_const(nir_ssa_scalar s)
2025 {
2026 return s.def->parent_instr->type == nir_instr_type_load_const;
2027 }
2028
2029 static inline nir_const_value
2030 nir_ssa_scalar_as_const_value(nir_ssa_scalar s)
2031 {
2032 assert(s.comp < s.def->num_components);
2033 nir_load_const_instr *load = nir_instr_as_load_const(s.def->parent_instr);
2034 return load->value[s.comp];
2035 }
2036
2037 #define NIR_DEFINE_SCALAR_AS_CONST(type, suffix) \
2038 static inline type \
2039 nir_ssa_scalar_as_##suffix(nir_ssa_scalar s) \
2040 { \
2041 return nir_const_value_as_##suffix( \
2042 nir_ssa_scalar_as_const_value(s), s.def->bit_size); \
2043 }
2044
2045 NIR_DEFINE_SCALAR_AS_CONST(int64_t, int)
2046 NIR_DEFINE_SCALAR_AS_CONST(uint64_t, uint)
2047 NIR_DEFINE_SCALAR_AS_CONST(bool, bool)
2048 NIR_DEFINE_SCALAR_AS_CONST(double, float)
2049
2050 #undef NIR_DEFINE_SCALAR_AS_CONST
2051
2052 static inline bool
2053 nir_ssa_scalar_is_alu(nir_ssa_scalar s)
2054 {
2055 return s.def->parent_instr->type == nir_instr_type_alu;
2056 }
2057
2058 static inline nir_op
2059 nir_ssa_scalar_alu_op(nir_ssa_scalar s)
2060 {
2061 return nir_instr_as_alu(s.def->parent_instr)->op;
2062 }
2063
2064 static inline nir_ssa_scalar
2065 nir_ssa_scalar_chase_alu_src(nir_ssa_scalar s, unsigned alu_src_idx)
2066 {
2067 nir_ssa_scalar out = { NULL, 0 };
2068
2069 nir_alu_instr *alu = nir_instr_as_alu(s.def->parent_instr);
2070 assert(alu_src_idx < nir_op_infos[alu->op].num_inputs);
2071
2072 /* Our component must be written */
2073 assert(s.comp < s.def->num_components);
2074 assert(alu->dest.write_mask & (1u << s.comp));
2075
2076 assert(alu->src[alu_src_idx].src.is_ssa);
2077 out.def = alu->src[alu_src_idx].src.ssa;
2078
2079 if (nir_op_infos[alu->op].input_sizes[alu_src_idx] == 0) {
2080 /* The ALU src is unsized so the source component follows the
2081 * destination component.
2082 */
2083 out.comp = alu->src[alu_src_idx].swizzle[s.comp];
2084 } else {
2085 /* This is a sized source so all source components work together to
2086 * produce all the destination components. Since we need to return a
2087 * scalar, this only works if the source is a scalar.
2088 */
2089 assert(nir_op_infos[alu->op].input_sizes[alu_src_idx] == 1);
2090 out.comp = alu->src[alu_src_idx].swizzle[0];
2091 }
2092 assert(out.comp < out.def->num_components);
2093
2094 return out;
2095 }
2096
2097
2098 /*
2099 * Control flow
2100 *
2101 * Control flow consists of a tree of control flow nodes, which include
2102 * if-statements and loops. The leaves of the tree are basic blocks, lists of
2103 * instructions that always run start-to-finish. Each basic block also keeps
2104 * track of its successors (blocks which may run immediately after the current
2105 * block) and predecessors (blocks which could have run immediately before the
2106 * current block). Each function also has a start block and an end block which
2107 * all return statements point to (which is always empty). Together, all the
2108 * blocks with their predecessors and successors make up the control flow
2109 * graph (CFG) of the function. There are helpers that modify the tree of
2110 * control flow nodes while modifying the CFG appropriately; these should be
2111 * used instead of modifying the tree directly.
2112 */
2113
2114 typedef enum {
2115 nir_cf_node_block,
2116 nir_cf_node_if,
2117 nir_cf_node_loop,
2118 nir_cf_node_function
2119 } nir_cf_node_type;
2120
2121 typedef struct nir_cf_node {
2122 struct exec_node node;
2123 nir_cf_node_type type;
2124 struct nir_cf_node *parent;
2125 } nir_cf_node;
2126
2127 typedef struct nir_block {
2128 nir_cf_node cf_node;
2129
2130 struct exec_list instr_list; /** < list of nir_instr */
2131
2132 /** generic block index; generated by nir_index_blocks */
2133 unsigned index;
2134
2135 /*
2136 * Each block can only have up to 2 successors, so we put them in a simple
2137 * array - no need for anything more complicated.
2138 */
2139 struct nir_block *successors[2];
2140
2141 /* Set of nir_block predecessors in the CFG */
2142 struct set *predecessors;
2143
2144 /*
2145 * this node's immediate dominator in the dominance tree - set to NULL for
2146 * the start block.
2147 */
2148 struct nir_block *imm_dom;
2149
2150 /* This node's children in the dominance tree */
2151 unsigned num_dom_children;
2152 struct nir_block **dom_children;
2153
2154 /* Set of nir_blocks on the dominance frontier of this block */
2155 struct set *dom_frontier;
2156
2157 /*
2158 * These two indices have the property that dom_{pre,post}_index for each
2159 * child of this block in the dominance tree will always be between
2160 * dom_pre_index and dom_post_index for this block, which makes testing if
2161 * a given block is dominated by another block an O(1) operation.
2162 */
2163 unsigned dom_pre_index, dom_post_index;
2164
2165 /* live in and out for this block; used for liveness analysis */
2166 BITSET_WORD *live_in;
2167 BITSET_WORD *live_out;
2168 } nir_block;
2169
2170 static inline nir_instr *
2171 nir_block_first_instr(nir_block *block)
2172 {
2173 struct exec_node *head = exec_list_get_head(&block->instr_list);
2174 return exec_node_data(nir_instr, head, node);
2175 }
2176
2177 static inline nir_instr *
2178 nir_block_last_instr(nir_block *block)
2179 {
2180 struct exec_node *tail = exec_list_get_tail(&block->instr_list);
2181 return exec_node_data(nir_instr, tail, node);
2182 }
2183
2184 static inline bool
2185 nir_block_ends_in_jump(nir_block *block)
2186 {
2187 return !exec_list_is_empty(&block->instr_list) &&
2188 nir_block_last_instr(block)->type == nir_instr_type_jump;
2189 }
2190
2191 #define nir_foreach_instr(instr, block) \
2192 foreach_list_typed(nir_instr, instr, node, &(block)->instr_list)
2193 #define nir_foreach_instr_reverse(instr, block) \
2194 foreach_list_typed_reverse(nir_instr, instr, node, &(block)->instr_list)
2195 #define nir_foreach_instr_safe(instr, block) \
2196 foreach_list_typed_safe(nir_instr, instr, node, &(block)->instr_list)
2197 #define nir_foreach_instr_reverse_safe(instr, block) \
2198 foreach_list_typed_reverse_safe(nir_instr, instr, node, &(block)->instr_list)
2199
2200 typedef enum {
2201 nir_selection_control_none = 0x0,
2202 nir_selection_control_flatten = 0x1,
2203 nir_selection_control_dont_flatten = 0x2,
2204 } nir_selection_control;
2205
2206 typedef struct nir_if {
2207 nir_cf_node cf_node;
2208 nir_src condition;
2209 nir_selection_control control;
2210
2211 struct exec_list then_list; /** < list of nir_cf_node */
2212 struct exec_list else_list; /** < list of nir_cf_node */
2213 } nir_if;
2214
2215 typedef struct {
2216 nir_if *nif;
2217
2218 /** Instruction that generates nif::condition. */
2219 nir_instr *conditional_instr;
2220
2221 /** Block within ::nif that has the break instruction. */
2222 nir_block *break_block;
2223
2224 /** Last block for the then- or else-path that does not contain the break. */
2225 nir_block *continue_from_block;
2226
2227 /** True when ::break_block is in the else-path of ::nif. */
2228 bool continue_from_then;
2229 bool induction_rhs;
2230
2231 /* This is true if the terminators exact trip count is unknown. For
2232 * example:
2233 *
2234 * for (int i = 0; i < imin(x, 4); i++)
2235 * ...
2236 *
2237 * Here loop analysis would have set a max_trip_count of 4 however we dont
2238 * know for sure that this is the exact trip count.
2239 */
2240 bool exact_trip_count_unknown;
2241
2242 struct list_head loop_terminator_link;
2243 } nir_loop_terminator;
2244
2245 typedef struct {
2246 /* Estimated cost (in number of instructions) of the loop */
2247 unsigned instr_cost;
2248
2249 /* Guessed trip count based on array indexing */
2250 unsigned guessed_trip_count;
2251
2252 /* Maximum number of times the loop is run (if known) */
2253 unsigned max_trip_count;
2254
2255 /* Do we know the exact number of times the loop will be run */
2256 bool exact_trip_count_known;
2257
2258 /* Unroll the loop regardless of its size */
2259 bool force_unroll;
2260
2261 /* Does the loop contain complex loop terminators, continues or other
2262 * complex behaviours? If this is true we can't rely on
2263 * loop_terminator_list to be complete or accurate.
2264 */
2265 bool complex_loop;
2266
2267 nir_loop_terminator *limiting_terminator;
2268
2269 /* A list of loop_terminators terminating this loop. */
2270 struct list_head loop_terminator_list;
2271 } nir_loop_info;
2272
2273 typedef enum {
2274 nir_loop_control_none = 0x0,
2275 nir_loop_control_unroll = 0x1,
2276 nir_loop_control_dont_unroll = 0x2,
2277 } nir_loop_control;
2278
2279 typedef struct {
2280 nir_cf_node cf_node;
2281
2282 struct exec_list body; /** < list of nir_cf_node */
2283
2284 nir_loop_info *info;
2285 nir_loop_control control;
2286 bool partially_unrolled;
2287 } nir_loop;
2288
2289 /**
2290 * Various bits of metadata that can may be created or required by
2291 * optimization and analysis passes
2292 */
2293 typedef enum {
2294 nir_metadata_none = 0x0,
2295 nir_metadata_block_index = 0x1,
2296 nir_metadata_dominance = 0x2,
2297 nir_metadata_live_ssa_defs = 0x4,
2298 nir_metadata_not_properly_reset = 0x8,
2299 nir_metadata_loop_analysis = 0x10,
2300 } nir_metadata;
2301
2302 typedef struct {
2303 nir_cf_node cf_node;
2304
2305 /** pointer to the function of which this is an implementation */
2306 struct nir_function *function;
2307
2308 struct exec_list body; /** < list of nir_cf_node */
2309
2310 nir_block *end_block;
2311
2312 /** list for all local variables in the function */
2313 struct exec_list locals;
2314
2315 /** list of local registers in the function */
2316 struct exec_list registers;
2317
2318 /** next available local register index */
2319 unsigned reg_alloc;
2320
2321 /** next available SSA value index */
2322 unsigned ssa_alloc;
2323
2324 /* total number of basic blocks, only valid when block_index_dirty = false */
2325 unsigned num_blocks;
2326
2327 nir_metadata valid_metadata;
2328 } nir_function_impl;
2329
2330 ATTRIBUTE_RETURNS_NONNULL static inline nir_block *
2331 nir_start_block(nir_function_impl *impl)
2332 {
2333 return (nir_block *) impl->body.head_sentinel.next;
2334 }
2335
2336 ATTRIBUTE_RETURNS_NONNULL static inline nir_block *
2337 nir_impl_last_block(nir_function_impl *impl)
2338 {
2339 return (nir_block *) impl->body.tail_sentinel.prev;
2340 }
2341
2342 static inline nir_cf_node *
2343 nir_cf_node_next(nir_cf_node *node)
2344 {
2345 struct exec_node *next = exec_node_get_next(&node->node);
2346 if (exec_node_is_tail_sentinel(next))
2347 return NULL;
2348 else
2349 return exec_node_data(nir_cf_node, next, node);
2350 }
2351
2352 static inline nir_cf_node *
2353 nir_cf_node_prev(nir_cf_node *node)
2354 {
2355 struct exec_node *prev = exec_node_get_prev(&node->node);
2356 if (exec_node_is_head_sentinel(prev))
2357 return NULL;
2358 else
2359 return exec_node_data(nir_cf_node, prev, node);
2360 }
2361
2362 static inline bool
2363 nir_cf_node_is_first(const nir_cf_node *node)
2364 {
2365 return exec_node_is_head_sentinel(node->node.prev);
2366 }
2367
2368 static inline bool
2369 nir_cf_node_is_last(const nir_cf_node *node)
2370 {
2371 return exec_node_is_tail_sentinel(node->node.next);
2372 }
2373
2374 NIR_DEFINE_CAST(nir_cf_node_as_block, nir_cf_node, nir_block, cf_node,
2375 type, nir_cf_node_block)
2376 NIR_DEFINE_CAST(nir_cf_node_as_if, nir_cf_node, nir_if, cf_node,
2377 type, nir_cf_node_if)
2378 NIR_DEFINE_CAST(nir_cf_node_as_loop, nir_cf_node, nir_loop, cf_node,
2379 type, nir_cf_node_loop)
2380 NIR_DEFINE_CAST(nir_cf_node_as_function, nir_cf_node,
2381 nir_function_impl, cf_node, type, nir_cf_node_function)
2382
2383 static inline nir_block *
2384 nir_if_first_then_block(nir_if *if_stmt)
2385 {
2386 struct exec_node *head = exec_list_get_head(&if_stmt->then_list);
2387 return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
2388 }
2389
2390 static inline nir_block *
2391 nir_if_last_then_block(nir_if *if_stmt)
2392 {
2393 struct exec_node *tail = exec_list_get_tail(&if_stmt->then_list);
2394 return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
2395 }
2396
2397 static inline nir_block *
2398 nir_if_first_else_block(nir_if *if_stmt)
2399 {
2400 struct exec_node *head = exec_list_get_head(&if_stmt->else_list);
2401 return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
2402 }
2403
2404 static inline nir_block *
2405 nir_if_last_else_block(nir_if *if_stmt)
2406 {
2407 struct exec_node *tail = exec_list_get_tail(&if_stmt->else_list);
2408 return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
2409 }
2410
2411 static inline nir_block *
2412 nir_loop_first_block(nir_loop *loop)
2413 {
2414 struct exec_node *head = exec_list_get_head(&loop->body);
2415 return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
2416 }
2417
2418 static inline nir_block *
2419 nir_loop_last_block(nir_loop *loop)
2420 {
2421 struct exec_node *tail = exec_list_get_tail(&loop->body);
2422 return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
2423 }
2424
2425 /**
2426 * Return true if this list of cf_nodes contains a single empty block.
2427 */
2428 static inline bool
2429 nir_cf_list_is_empty_block(struct exec_list *cf_list)
2430 {
2431 if (exec_list_is_singular(cf_list)) {
2432 struct exec_node *head = exec_list_get_head(cf_list);
2433 nir_block *block =
2434 nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
2435 return exec_list_is_empty(&block->instr_list);
2436 }
2437 return false;
2438 }
2439
2440 typedef struct {
2441 uint8_t num_components;
2442 uint8_t bit_size;
2443 } nir_parameter;
2444
2445 typedef struct nir_function {
2446 struct exec_node node;
2447
2448 const char *name;
2449 struct nir_shader *shader;
2450
2451 unsigned num_params;
2452 nir_parameter *params;
2453
2454 /** The implementation of this function.
2455 *
2456 * If the function is only declared and not implemented, this is NULL.
2457 */
2458 nir_function_impl *impl;
2459
2460 bool is_entrypoint;
2461 } nir_function;
2462
2463 typedef enum {
2464 nir_lower_imul64 = (1 << 0),
2465 nir_lower_isign64 = (1 << 1),
2466 /** Lower all int64 modulus and division opcodes */
2467 nir_lower_divmod64 = (1 << 2),
2468 /** Lower all 64-bit umul_high and imul_high opcodes */
2469 nir_lower_imul_high64 = (1 << 3),
2470 nir_lower_mov64 = (1 << 4),
2471 nir_lower_icmp64 = (1 << 5),
2472 nir_lower_iadd64 = (1 << 6),
2473 nir_lower_iabs64 = (1 << 7),
2474 nir_lower_ineg64 = (1 << 8),
2475 nir_lower_logic64 = (1 << 9),
2476 nir_lower_minmax64 = (1 << 10),
2477 nir_lower_shift64 = (1 << 11),
2478 nir_lower_imul_2x32_64 = (1 << 12),
2479 nir_lower_extract64 = (1 << 13),
2480 } nir_lower_int64_options;
2481
2482 typedef enum {
2483 nir_lower_drcp = (1 << 0),
2484 nir_lower_dsqrt = (1 << 1),
2485 nir_lower_drsq = (1 << 2),
2486 nir_lower_dtrunc = (1 << 3),
2487 nir_lower_dfloor = (1 << 4),
2488 nir_lower_dceil = (1 << 5),
2489 nir_lower_dfract = (1 << 6),
2490 nir_lower_dround_even = (1 << 7),
2491 nir_lower_dmod = (1 << 8),
2492 nir_lower_dsub = (1 << 9),
2493 nir_lower_ddiv = (1 << 10),
2494 nir_lower_fp64_full_software = (1 << 11),
2495 } nir_lower_doubles_options;
2496
2497 typedef struct nir_shader_compiler_options {
2498 bool lower_fdiv;
2499 bool lower_ffma;
2500 bool fuse_ffma;
2501 bool lower_flrp16;
2502 bool lower_flrp32;
2503 /** Lowers flrp when it does not support doubles */
2504 bool lower_flrp64;
2505 bool lower_fpow;
2506 bool lower_fsat;
2507 bool lower_fsqrt;
2508 bool lower_sincos;
2509 bool lower_fmod;
2510 /** Lowers ibitfield_extract/ubitfield_extract to ibfe/ubfe. */
2511 bool lower_bitfield_extract;
2512 /** Lowers ibitfield_extract/ubitfield_extract to compares, shifts. */
2513 bool lower_bitfield_extract_to_shifts;
2514 /** Lowers bitfield_insert to bfi/bfm */
2515 bool lower_bitfield_insert;
2516 /** Lowers bitfield_insert to compares, and shifts. */
2517 bool lower_bitfield_insert_to_shifts;
2518 /** Lowers bitfield_insert to bfm/bitfield_select. */
2519 bool lower_bitfield_insert_to_bitfield_select;
2520 /** Lowers bitfield_reverse to shifts. */
2521 bool lower_bitfield_reverse;
2522 /** Lowers bit_count to shifts. */
2523 bool lower_bit_count;
2524 /** Lowers ifind_msb to compare and ufind_msb */
2525 bool lower_ifind_msb;
2526 /** Lowers find_lsb to ufind_msb and logic ops */
2527 bool lower_find_lsb;
2528 bool lower_uadd_carry;
2529 bool lower_usub_borrow;
2530 /** Lowers imul_high/umul_high to 16-bit multiplies and carry operations. */
2531 bool lower_mul_high;
2532 /** lowers fneg and ineg to fsub and isub. */
2533 bool lower_negate;
2534 /** lowers fsub and isub to fadd+fneg and iadd+ineg. */
2535 bool lower_sub;
2536
2537 /* lower {slt,sge,seq,sne} to {flt,fge,feq,fne} + b2f: */
2538 bool lower_scmp;
2539
2540 /** enables rules to lower idiv by power-of-two: */
2541 bool lower_idiv;
2542
2543 /** enable rules to avoid bit shifts */
2544 bool lower_bitshift;
2545
2546 /** enables rules to lower isign to imin+imax */
2547 bool lower_isign;
2548
2549 /** enables rules to lower fsign to fsub and flt */
2550 bool lower_fsign;
2551
2552 /* lower fdph to fdot4 */
2553 bool lower_fdph;
2554
2555 /* Does the native fdot instruction replicate its result for four
2556 * components? If so, then opt_algebraic_late will turn all fdotN
2557 * instructions into fdot_replicatedN instructions.
2558 */
2559 bool fdot_replicates;
2560
2561 /** lowers ffloor to fsub+ffract: */
2562 bool lower_ffloor;
2563
2564 /** lowers ffract to fsub+ffloor: */
2565 bool lower_ffract;
2566
2567 /** lowers fceil to fneg+ffloor+fneg: */
2568 bool lower_fceil;
2569
2570 bool lower_ftrunc;
2571
2572 bool lower_ldexp;
2573
2574 bool lower_pack_half_2x16;
2575 bool lower_pack_unorm_2x16;
2576 bool lower_pack_snorm_2x16;
2577 bool lower_pack_unorm_4x8;
2578 bool lower_pack_snorm_4x8;
2579 bool lower_unpack_half_2x16;
2580 bool lower_unpack_unorm_2x16;
2581 bool lower_unpack_snorm_2x16;
2582 bool lower_unpack_unorm_4x8;
2583 bool lower_unpack_snorm_4x8;
2584
2585 bool lower_extract_byte;
2586 bool lower_extract_word;
2587
2588 bool lower_all_io_to_temps;
2589 bool lower_all_io_to_elements;
2590
2591 /* Indicates that the driver only has zero-based vertex id */
2592 bool vertex_id_zero_based;
2593
2594 /**
2595 * If enabled, gl_BaseVertex will be lowered as:
2596 * is_indexed_draw (~0/0) & firstvertex
2597 */
2598 bool lower_base_vertex;
2599
2600 /**
2601 * If enabled, gl_HelperInvocation will be lowered as:
2602 *
2603 * !((1 << sample_id) & sample_mask_in))
2604 *
2605 * This depends on some possibly hw implementation details, which may
2606 * not be true for all hw. In particular that the FS is only executed
2607 * for covered samples or for helper invocations. So, do not blindly
2608 * enable this option.
2609 *
2610 * Note: See also issue #22 in ARB_shader_image_load_store
2611 */
2612 bool lower_helper_invocation;
2613
2614 /**
2615 * Convert gl_SampleMaskIn to gl_HelperInvocation as follows:
2616 *
2617 * gl_SampleMaskIn == 0 ---> gl_HelperInvocation
2618 * gl_SampleMaskIn != 0 ---> !gl_HelperInvocation
2619 */
2620 bool optimize_sample_mask_in;
2621
2622 bool lower_cs_local_index_from_id;
2623 bool lower_cs_local_id_from_index;
2624
2625 bool lower_device_index_to_zero;
2626
2627 /* Set if nir_lower_wpos_ytransform() should also invert gl_PointCoord. */
2628 bool lower_wpos_pntc;
2629
2630 bool lower_hadd;
2631 bool lower_add_sat;
2632
2633 /**
2634 * Should IO be re-vectorized? Some scalar ISAs still operate on vec4's
2635 * for IO purposes and would prefer loads/stores be vectorized.
2636 */
2637 bool vectorize_io;
2638
2639 /**
2640 * Should nir_lower_io() create load_interpolated_input intrinsics?
2641 *
2642 * If not, it generates regular load_input intrinsics and interpolation
2643 * information must be inferred from the list of input nir_variables.
2644 */
2645 bool use_interpolated_input_intrinsics;
2646
2647 /* Lowers when 32x32->64 bit multiplication is not supported */
2648 bool lower_mul_2x32_64;
2649
2650 /* Lowers when rotate instruction is not supported */
2651 bool lower_rotate;
2652
2653 /**
2654 * Is this the Intel vec4 backend?
2655 *
2656 * Used to inhibit algebraic optimizations that are known to be harmful on
2657 * the Intel vec4 backend. This is generally applicable to any
2658 * optimization that might cause more immediate values to be used in
2659 * 3-source (e.g., ffma and flrp) instructions.
2660 */
2661 bool intel_vec4;
2662
2663 unsigned max_unroll_iterations;
2664
2665 nir_lower_int64_options lower_int64_options;
2666 nir_lower_doubles_options lower_doubles_options;
2667 } nir_shader_compiler_options;
2668
2669 typedef struct nir_shader {
2670 /** list of uniforms (nir_variable) */
2671 struct exec_list uniforms;
2672
2673 /** list of inputs (nir_variable) */
2674 struct exec_list inputs;
2675
2676 /** list of outputs (nir_variable) */
2677 struct exec_list outputs;
2678
2679 /** list of shared compute variables (nir_variable) */
2680 struct exec_list shared;
2681
2682 /** Set of driver-specific options for the shader.
2683 *
2684 * The memory for the options is expected to be kept in a single static
2685 * copy by the driver.
2686 */
2687 const struct nir_shader_compiler_options *options;
2688
2689 /** Various bits of compile-time information about a given shader */
2690 struct shader_info info;
2691
2692 /** list of global variables in the shader (nir_variable) */
2693 struct exec_list globals;
2694
2695 /** list of system value variables in the shader (nir_variable) */
2696 struct exec_list system_values;
2697
2698 struct exec_list functions; /** < list of nir_function */
2699
2700 /**
2701 * the highest index a load_input_*, load_uniform_*, etc. intrinsic can
2702 * access plus one
2703 */
2704 unsigned num_inputs, num_uniforms, num_outputs, num_shared;
2705
2706 /** Size in bytes of required scratch space */
2707 unsigned scratch_size;
2708
2709 /** Constant data associated with this shader.
2710 *
2711 * Constant data is loaded through load_constant intrinsics. See also
2712 * nir_opt_large_constants.
2713 */
2714 void *constant_data;
2715 unsigned constant_data_size;
2716 } nir_shader;
2717
2718 #define nir_foreach_function(func, shader) \
2719 foreach_list_typed(nir_function, func, node, &(shader)->functions)
2720
2721 static inline nir_function_impl *
2722 nir_shader_get_entrypoint(nir_shader *shader)
2723 {
2724 nir_function *func = NULL;
2725
2726 nir_foreach_function(function, shader) {
2727 assert(func == NULL);
2728 if (function->is_entrypoint) {
2729 func = function;
2730 #ifndef NDEBUG
2731 break;
2732 #endif
2733 }
2734 }
2735
2736 if (!func)
2737 return NULL;
2738
2739 assert(func->num_params == 0);
2740 assert(func->impl);
2741 return func->impl;
2742 }
2743
2744 nir_shader *nir_shader_create(void *mem_ctx,
2745 gl_shader_stage stage,
2746 const nir_shader_compiler_options *options,
2747 shader_info *si);
2748
2749 nir_register *nir_local_reg_create(nir_function_impl *impl);
2750
2751 void nir_reg_remove(nir_register *reg);
2752
2753 /** Adds a variable to the appropriate list in nir_shader */
2754 void nir_shader_add_variable(nir_shader *shader, nir_variable *var);
2755
2756 static inline void
2757 nir_function_impl_add_variable(nir_function_impl *impl, nir_variable *var)
2758 {
2759 assert(var->data.mode == nir_var_function_temp);
2760 exec_list_push_tail(&impl->locals, &var->node);
2761 }
2762
2763 /** creates a variable, sets a few defaults, and adds it to the list */
2764 nir_variable *nir_variable_create(nir_shader *shader,
2765 nir_variable_mode mode,
2766 const struct glsl_type *type,
2767 const char *name);
2768 /** creates a local variable and adds it to the list */
2769 nir_variable *nir_local_variable_create(nir_function_impl *impl,
2770 const struct glsl_type *type,
2771 const char *name);
2772
2773 /** creates a function and adds it to the shader's list of functions */
2774 nir_function *nir_function_create(nir_shader *shader, const char *name);
2775
2776 nir_function_impl *nir_function_impl_create(nir_function *func);
2777 /** creates a function_impl that isn't tied to any particular function */
2778 nir_function_impl *nir_function_impl_create_bare(nir_shader *shader);
2779
2780 nir_block *nir_block_create(nir_shader *shader);
2781 nir_if *nir_if_create(nir_shader *shader);
2782 nir_loop *nir_loop_create(nir_shader *shader);
2783
2784 nir_function_impl *nir_cf_node_get_function(nir_cf_node *node);
2785
2786 /** requests that the given pieces of metadata be generated */
2787 void nir_metadata_require(nir_function_impl *impl, nir_metadata required, ...);
2788 /** dirties all but the preserved metadata */
2789 void nir_metadata_preserve(nir_function_impl *impl, nir_metadata preserved);
2790
2791 /** creates an instruction with default swizzle/writemask/etc. with NULL registers */
2792 nir_alu_instr *nir_alu_instr_create(nir_shader *shader, nir_op op);
2793
2794 nir_deref_instr *nir_deref_instr_create(nir_shader *shader,
2795 nir_deref_type deref_type);
2796
2797 nir_jump_instr *nir_jump_instr_create(nir_shader *shader, nir_jump_type type);
2798
2799 nir_load_const_instr *nir_load_const_instr_create(nir_shader *shader,
2800 unsigned num_components,
2801 unsigned bit_size);
2802
2803 nir_intrinsic_instr *nir_intrinsic_instr_create(nir_shader *shader,
2804 nir_intrinsic_op op);
2805
2806 nir_call_instr *nir_call_instr_create(nir_shader *shader,
2807 nir_function *callee);
2808
2809 nir_tex_instr *nir_tex_instr_create(nir_shader *shader, unsigned num_srcs);
2810
2811 nir_phi_instr *nir_phi_instr_create(nir_shader *shader);
2812
2813 nir_parallel_copy_instr *nir_parallel_copy_instr_create(nir_shader *shader);
2814
2815 nir_ssa_undef_instr *nir_ssa_undef_instr_create(nir_shader *shader,
2816 unsigned num_components,
2817 unsigned bit_size);
2818
2819 nir_const_value nir_alu_binop_identity(nir_op binop, unsigned bit_size);
2820
2821 /**
2822 * NIR Cursors and Instruction Insertion API
2823 * @{
2824 *
2825 * A tiny struct representing a point to insert/extract instructions or
2826 * control flow nodes. Helps reduce the combinatorial explosion of possible
2827 * points to insert/extract.
2828 *
2829 * \sa nir_control_flow.h
2830 */
2831 typedef enum {
2832 nir_cursor_before_block,
2833 nir_cursor_after_block,
2834 nir_cursor_before_instr,
2835 nir_cursor_after_instr,
2836 } nir_cursor_option;
2837
2838 typedef struct {
2839 nir_cursor_option option;
2840 union {
2841 nir_block *block;
2842 nir_instr *instr;
2843 };
2844 } nir_cursor;
2845
2846 static inline nir_block *
2847 nir_cursor_current_block(nir_cursor cursor)
2848 {
2849 if (cursor.option == nir_cursor_before_instr ||
2850 cursor.option == nir_cursor_after_instr) {
2851 return cursor.instr->block;
2852 } else {
2853 return cursor.block;
2854 }
2855 }
2856
2857 bool nir_cursors_equal(nir_cursor a, nir_cursor b);
2858
2859 static inline nir_cursor
2860 nir_before_block(nir_block *block)
2861 {
2862 nir_cursor cursor;
2863 cursor.option = nir_cursor_before_block;
2864 cursor.block = block;
2865 return cursor;
2866 }
2867
2868 static inline nir_cursor
2869 nir_after_block(nir_block *block)
2870 {
2871 nir_cursor cursor;
2872 cursor.option = nir_cursor_after_block;
2873 cursor.block = block;
2874 return cursor;
2875 }
2876
2877 static inline nir_cursor
2878 nir_before_instr(nir_instr *instr)
2879 {
2880 nir_cursor cursor;
2881 cursor.option = nir_cursor_before_instr;
2882 cursor.instr = instr;
2883 return cursor;
2884 }
2885
2886 static inline nir_cursor
2887 nir_after_instr(nir_instr *instr)
2888 {
2889 nir_cursor cursor;
2890 cursor.option = nir_cursor_after_instr;
2891 cursor.instr = instr;
2892 return cursor;
2893 }
2894
2895 static inline nir_cursor
2896 nir_after_block_before_jump(nir_block *block)
2897 {
2898 nir_instr *last_instr = nir_block_last_instr(block);
2899 if (last_instr && last_instr->type == nir_instr_type_jump) {
2900 return nir_before_instr(last_instr);
2901 } else {
2902 return nir_after_block(block);
2903 }
2904 }
2905
2906 static inline nir_cursor
2907 nir_before_src(nir_src *src, bool is_if_condition)
2908 {
2909 if (is_if_condition) {
2910 nir_block *prev_block =
2911 nir_cf_node_as_block(nir_cf_node_prev(&src->parent_if->cf_node));
2912 assert(!nir_block_ends_in_jump(prev_block));
2913 return nir_after_block(prev_block);
2914 } else if (src->parent_instr->type == nir_instr_type_phi) {
2915 #ifndef NDEBUG
2916 nir_phi_instr *cond_phi = nir_instr_as_phi(src->parent_instr);
2917 bool found = false;
2918 nir_foreach_phi_src(phi_src, cond_phi) {
2919 if (phi_src->src.ssa == src->ssa) {
2920 found = true;
2921 break;
2922 }
2923 }
2924 assert(found);
2925 #endif
2926 /* The LIST_ENTRY macro is a generic container-of macro, it just happens
2927 * to have a more specific name.
2928 */
2929 nir_phi_src *phi_src = LIST_ENTRY(nir_phi_src, src, src);
2930 return nir_after_block_before_jump(phi_src->pred);
2931 } else {
2932 return nir_before_instr(src->parent_instr);
2933 }
2934 }
2935
2936 static inline nir_cursor
2937 nir_before_cf_node(nir_cf_node *node)
2938 {
2939 if (node->type == nir_cf_node_block)
2940 return nir_before_block(nir_cf_node_as_block(node));
2941
2942 return nir_after_block(nir_cf_node_as_block(nir_cf_node_prev(node)));
2943 }
2944
2945 static inline nir_cursor
2946 nir_after_cf_node(nir_cf_node *node)
2947 {
2948 if (node->type == nir_cf_node_block)
2949 return nir_after_block(nir_cf_node_as_block(node));
2950
2951 return nir_before_block(nir_cf_node_as_block(nir_cf_node_next(node)));
2952 }
2953
2954 static inline nir_cursor
2955 nir_after_phis(nir_block *block)
2956 {
2957 nir_foreach_instr(instr, block) {
2958 if (instr->type != nir_instr_type_phi)
2959 return nir_before_instr(instr);
2960 }
2961 return nir_after_block(block);
2962 }
2963
2964 static inline nir_cursor
2965 nir_after_cf_node_and_phis(nir_cf_node *node)
2966 {
2967 if (node->type == nir_cf_node_block)
2968 return nir_after_block(nir_cf_node_as_block(node));
2969
2970 nir_block *block = nir_cf_node_as_block(nir_cf_node_next(node));
2971
2972 return nir_after_phis(block);
2973 }
2974
2975 static inline nir_cursor
2976 nir_before_cf_list(struct exec_list *cf_list)
2977 {
2978 nir_cf_node *first_node = exec_node_data(nir_cf_node,
2979 exec_list_get_head(cf_list), node);
2980 return nir_before_cf_node(first_node);
2981 }
2982
2983 static inline nir_cursor
2984 nir_after_cf_list(struct exec_list *cf_list)
2985 {
2986 nir_cf_node *last_node = exec_node_data(nir_cf_node,
2987 exec_list_get_tail(cf_list), node);
2988 return nir_after_cf_node(last_node);
2989 }
2990
2991 /**
2992 * Insert a NIR instruction at the given cursor.
2993 *
2994 * Note: This does not update the cursor.
2995 */
2996 void nir_instr_insert(nir_cursor cursor, nir_instr *instr);
2997
2998 static inline void
2999 nir_instr_insert_before(nir_instr *instr, nir_instr *before)
3000 {
3001 nir_instr_insert(nir_before_instr(instr), before);
3002 }
3003
3004 static inline void
3005 nir_instr_insert_after(nir_instr *instr, nir_instr *after)
3006 {
3007 nir_instr_insert(nir_after_instr(instr), after);
3008 }
3009
3010 static inline void
3011 nir_instr_insert_before_block(nir_block *block, nir_instr *before)
3012 {
3013 nir_instr_insert(nir_before_block(block), before);
3014 }
3015
3016 static inline void
3017 nir_instr_insert_after_block(nir_block *block, nir_instr *after)
3018 {
3019 nir_instr_insert(nir_after_block(block), after);
3020 }
3021
3022 static inline void
3023 nir_instr_insert_before_cf(nir_cf_node *node, nir_instr *before)
3024 {
3025 nir_instr_insert(nir_before_cf_node(node), before);
3026 }
3027
3028 static inline void
3029 nir_instr_insert_after_cf(nir_cf_node *node, nir_instr *after)
3030 {
3031 nir_instr_insert(nir_after_cf_node(node), after);
3032 }
3033
3034 static inline void
3035 nir_instr_insert_before_cf_list(struct exec_list *list, nir_instr *before)
3036 {
3037 nir_instr_insert(nir_before_cf_list(list), before);
3038 }
3039
3040 static inline void
3041 nir_instr_insert_after_cf_list(struct exec_list *list, nir_instr *after)
3042 {
3043 nir_instr_insert(nir_after_cf_list(list), after);
3044 }
3045
3046 void nir_instr_remove_v(nir_instr *instr);
3047
3048 static inline nir_cursor
3049 nir_instr_remove(nir_instr *instr)
3050 {
3051 nir_cursor cursor;
3052 nir_instr *prev = nir_instr_prev(instr);
3053 if (prev) {
3054 cursor = nir_after_instr(prev);
3055 } else {
3056 cursor = nir_before_block(instr->block);
3057 }
3058 nir_instr_remove_v(instr);
3059 return cursor;
3060 }
3061
3062 /** @} */
3063
3064 nir_ssa_def *nir_instr_ssa_def(nir_instr *instr);
3065
3066 typedef bool (*nir_foreach_ssa_def_cb)(nir_ssa_def *def, void *state);
3067 typedef bool (*nir_foreach_dest_cb)(nir_dest *dest, void *state);
3068 typedef bool (*nir_foreach_src_cb)(nir_src *src, void *state);
3069 bool nir_foreach_ssa_def(nir_instr *instr, nir_foreach_ssa_def_cb cb,
3070 void *state);
3071 bool nir_foreach_dest(nir_instr *instr, nir_foreach_dest_cb cb, void *state);
3072 bool nir_foreach_src(nir_instr *instr, nir_foreach_src_cb cb, void *state);
3073
3074 nir_const_value *nir_src_as_const_value(nir_src src);
3075
3076 #define NIR_SRC_AS_(name, c_type, type_enum, cast_macro) \
3077 static inline c_type * \
3078 nir_src_as_ ## name (nir_src src) \
3079 { \
3080 return src.is_ssa && src.ssa->parent_instr->type == type_enum \
3081 ? cast_macro(src.ssa->parent_instr) : NULL; \
3082 }
3083
3084 NIR_SRC_AS_(alu_instr, nir_alu_instr, nir_instr_type_alu, nir_instr_as_alu)
3085 NIR_SRC_AS_(intrinsic, nir_intrinsic_instr,
3086 nir_instr_type_intrinsic, nir_instr_as_intrinsic)
3087 NIR_SRC_AS_(deref, nir_deref_instr, nir_instr_type_deref, nir_instr_as_deref)
3088
3089 bool nir_src_is_dynamically_uniform(nir_src src);
3090 bool nir_srcs_equal(nir_src src1, nir_src src2);
3091 bool nir_instrs_equal(const nir_instr *instr1, const nir_instr *instr2);
3092 void nir_instr_rewrite_src(nir_instr *instr, nir_src *src, nir_src new_src);
3093 void nir_instr_move_src(nir_instr *dest_instr, nir_src *dest, nir_src *src);
3094 void nir_if_rewrite_condition(nir_if *if_stmt, nir_src new_src);
3095 void nir_instr_rewrite_dest(nir_instr *instr, nir_dest *dest,
3096 nir_dest new_dest);
3097
3098 void nir_ssa_dest_init(nir_instr *instr, nir_dest *dest,
3099 unsigned num_components, unsigned bit_size,
3100 const char *name);
3101 void nir_ssa_def_init(nir_instr *instr, nir_ssa_def *def,
3102 unsigned num_components, unsigned bit_size,
3103 const char *name);
3104 static inline void
3105 nir_ssa_dest_init_for_type(nir_instr *instr, nir_dest *dest,
3106 const struct glsl_type *type,
3107 const char *name)
3108 {
3109 assert(glsl_type_is_vector_or_scalar(type));
3110 nir_ssa_dest_init(instr, dest, glsl_get_components(type),
3111 glsl_get_bit_size(type), name);
3112 }
3113 void nir_ssa_def_rewrite_uses(nir_ssa_def *def, nir_src new_src);
3114 void nir_ssa_def_rewrite_uses_after(nir_ssa_def *def, nir_src new_src,
3115 nir_instr *after_me);
3116
3117 nir_component_mask_t nir_ssa_def_components_read(const nir_ssa_def *def);
3118
3119 /*
3120 * finds the next basic block in source-code order, returns NULL if there is
3121 * none
3122 */
3123
3124 nir_block *nir_block_cf_tree_next(nir_block *block);
3125
3126 /* Performs the opposite of nir_block_cf_tree_next() */
3127
3128 nir_block *nir_block_cf_tree_prev(nir_block *block);
3129
3130 /* Gets the first block in a CF node in source-code order */
3131
3132 nir_block *nir_cf_node_cf_tree_first(nir_cf_node *node);
3133
3134 /* Gets the last block in a CF node in source-code order */
3135
3136 nir_block *nir_cf_node_cf_tree_last(nir_cf_node *node);
3137
3138 /* Gets the next block after a CF node in source-code order */
3139
3140 nir_block *nir_cf_node_cf_tree_next(nir_cf_node *node);
3141
3142 /* Macros for loops that visit blocks in source-code order */
3143
3144 #define nir_foreach_block(block, impl) \
3145 for (nir_block *block = nir_start_block(impl); block != NULL; \
3146 block = nir_block_cf_tree_next(block))
3147
3148 #define nir_foreach_block_safe(block, impl) \
3149 for (nir_block *block = nir_start_block(impl), \
3150 *next = nir_block_cf_tree_next(block); \
3151 block != NULL; \
3152 block = next, next = nir_block_cf_tree_next(block))
3153
3154 #define nir_foreach_block_reverse(block, impl) \
3155 for (nir_block *block = nir_impl_last_block(impl); block != NULL; \
3156 block = nir_block_cf_tree_prev(block))
3157
3158 #define nir_foreach_block_reverse_safe(block, impl) \
3159 for (nir_block *block = nir_impl_last_block(impl), \
3160 *prev = nir_block_cf_tree_prev(block); \
3161 block != NULL; \
3162 block = prev, prev = nir_block_cf_tree_prev(block))
3163
3164 #define nir_foreach_block_in_cf_node(block, node) \
3165 for (nir_block *block = nir_cf_node_cf_tree_first(node); \
3166 block != nir_cf_node_cf_tree_next(node); \
3167 block = nir_block_cf_tree_next(block))
3168
3169 /* If the following CF node is an if, this function returns that if.
3170 * Otherwise, it returns NULL.
3171 */
3172 nir_if *nir_block_get_following_if(nir_block *block);
3173
3174 nir_loop *nir_block_get_following_loop(nir_block *block);
3175
3176 void nir_index_local_regs(nir_function_impl *impl);
3177 void nir_index_ssa_defs(nir_function_impl *impl);
3178 unsigned nir_index_instrs(nir_function_impl *impl);
3179
3180 void nir_index_blocks(nir_function_impl *impl);
3181
3182 void nir_print_shader(nir_shader *shader, FILE *fp);
3183 void nir_print_shader_annotated(nir_shader *shader, FILE *fp, struct hash_table *errors);
3184 void nir_print_instr(const nir_instr *instr, FILE *fp);
3185 void nir_print_deref(const nir_deref_instr *deref, FILE *fp);
3186
3187 /** Shallow clone of a single ALU instruction. */
3188 nir_alu_instr *nir_alu_instr_clone(nir_shader *s, const nir_alu_instr *orig);
3189
3190 nir_shader *nir_shader_clone(void *mem_ctx, const nir_shader *s);
3191 nir_function_impl *nir_function_impl_clone(nir_shader *shader,
3192 const nir_function_impl *fi);
3193 nir_constant *nir_constant_clone(const nir_constant *c, nir_variable *var);
3194 nir_variable *nir_variable_clone(const nir_variable *c, nir_shader *shader);
3195
3196 void nir_shader_replace(nir_shader *dest, nir_shader *src);
3197
3198 void nir_shader_serialize_deserialize(nir_shader *s);
3199
3200 #ifndef NDEBUG
3201 void nir_validate_shader(nir_shader *shader, const char *when);
3202 void nir_metadata_set_validation_flag(nir_shader *shader);
3203 void nir_metadata_check_validation_flag(nir_shader *shader);
3204
3205 static inline bool
3206 should_skip_nir(const char *name)
3207 {
3208 static const char *list = NULL;
3209 if (!list) {
3210 /* Comma separated list of names to skip. */
3211 list = getenv("NIR_SKIP");
3212 if (!list)
3213 list = "";
3214 }
3215
3216 if (!list[0])
3217 return false;
3218
3219 return comma_separated_list_contains(list, name);
3220 }
3221
3222 static inline bool
3223 should_clone_nir(void)
3224 {
3225 static int should_clone = -1;
3226 if (should_clone < 0)
3227 should_clone = env_var_as_boolean("NIR_TEST_CLONE", false);
3228
3229 return should_clone;
3230 }
3231
3232 static inline bool
3233 should_serialize_deserialize_nir(void)
3234 {
3235 static int test_serialize = -1;
3236 if (test_serialize < 0)
3237 test_serialize = env_var_as_boolean("NIR_TEST_SERIALIZE", false);
3238
3239 return test_serialize;
3240 }
3241
3242 static inline bool
3243 should_print_nir(void)
3244 {
3245 static int should_print = -1;
3246 if (should_print < 0)
3247 should_print = env_var_as_boolean("NIR_PRINT", false);
3248
3249 return should_print;
3250 }
3251 #else
3252 static inline void nir_validate_shader(nir_shader *shader, const char *when) { (void) shader; (void)when; }
3253 static inline void nir_metadata_set_validation_flag(nir_shader *shader) { (void) shader; }
3254 static inline void nir_metadata_check_validation_flag(nir_shader *shader) { (void) shader; }
3255 static inline bool should_skip_nir(UNUSED const char *pass_name) { return false; }
3256 static inline bool should_clone_nir(void) { return false; }
3257 static inline bool should_serialize_deserialize_nir(void) { return false; }
3258 static inline bool should_print_nir(void) { return false; }
3259 #endif /* NDEBUG */
3260
3261 #define _PASS(pass, nir, do_pass) do { \
3262 if (should_skip_nir(#pass)) { \
3263 printf("skipping %s\n", #pass); \
3264 break; \
3265 } \
3266 do_pass \
3267 nir_validate_shader(nir, "after " #pass); \
3268 if (should_clone_nir()) { \
3269 nir_shader *clone = nir_shader_clone(ralloc_parent(nir), nir); \
3270 nir_shader_replace(nir, clone); \
3271 } \
3272 if (should_serialize_deserialize_nir()) { \
3273 nir_shader_serialize_deserialize(nir); \
3274 } \
3275 } while (0)
3276
3277 #define NIR_PASS(progress, nir, pass, ...) _PASS(pass, nir, \
3278 nir_metadata_set_validation_flag(nir); \
3279 if (should_print_nir()) \
3280 printf("%s\n", #pass); \
3281 if (pass(nir, ##__VA_ARGS__)) { \
3282 progress = true; \
3283 if (should_print_nir()) \
3284 nir_print_shader(nir, stdout); \
3285 nir_metadata_check_validation_flag(nir); \
3286 } \
3287 )
3288
3289 #define NIR_PASS_V(nir, pass, ...) _PASS(pass, nir, \
3290 if (should_print_nir()) \
3291 printf("%s\n", #pass); \
3292 pass(nir, ##__VA_ARGS__); \
3293 if (should_print_nir()) \
3294 nir_print_shader(nir, stdout); \
3295 )
3296
3297 #define NIR_SKIP(name) should_skip_nir(#name)
3298
3299 /** An instruction filtering callback
3300 *
3301 * Returns true if the instruction should be processed and false otherwise.
3302 */
3303 typedef bool (*nir_instr_filter_cb)(const nir_instr *, const void *);
3304
3305 /** A simple instruction lowering callback
3306 *
3307 * Many instruction lowering passes can be written as a simple function which
3308 * takes an instruction as its input and returns a sequence of instructions
3309 * that implement the consumed instruction. This function type represents
3310 * such a lowering function. When called, a function with this prototype
3311 * should either return NULL indicating that no lowering needs to be done or
3312 * emit a sequence of instructions using the provided builder (whose cursor
3313 * will already be placed after the instruction to be lowered) and return the
3314 * resulting nir_ssa_def.
3315 */
3316 typedef nir_ssa_def *(*nir_lower_instr_cb)(struct nir_builder *,
3317 nir_instr *, void *);
3318
3319 /**
3320 * Special return value for nir_lower_instr_cb when some progress occurred
3321 * (like changing an input to the instr) that didn't result in a replacement
3322 * SSA def being generated.
3323 */
3324 #define NIR_LOWER_INSTR_PROGRESS ((nir_ssa_def *)(uintptr_t)1)
3325
3326 /** Iterate over all the instructions in a nir_function_impl and lower them
3327 * using the provided callbacks
3328 *
3329 * This function implements the guts of a standard lowering pass for you. It
3330 * iterates over all of the instructions in a nir_function_impl and calls the
3331 * filter callback on each one. If the filter callback returns true, it then
3332 * calls the lowering call back on the instruction. (Splitting it this way
3333 * allows us to avoid some save/restore work for instructions we know won't be
3334 * lowered.) If the instruction is dead after the lowering is complete, it
3335 * will be removed. If new instructions are added, the lowering callback will
3336 * also be called on them in case multiple lowerings are required.
3337 *
3338 * The metadata for the nir_function_impl will also be updated. If any blocks
3339 * are added (they cannot be removed), dominance and block indices will be
3340 * invalidated.
3341 */
3342 bool nir_function_impl_lower_instructions(nir_function_impl *impl,
3343 nir_instr_filter_cb filter,
3344 nir_lower_instr_cb lower,
3345 void *cb_data);
3346 bool nir_shader_lower_instructions(nir_shader *shader,
3347 nir_instr_filter_cb filter,
3348 nir_lower_instr_cb lower,
3349 void *cb_data);
3350
3351 void nir_calc_dominance_impl(nir_function_impl *impl);
3352 void nir_calc_dominance(nir_shader *shader);
3353
3354 nir_block *nir_dominance_lca(nir_block *b1, nir_block *b2);
3355 bool nir_block_dominates(nir_block *parent, nir_block *child);
3356
3357 void nir_dump_dom_tree_impl(nir_function_impl *impl, FILE *fp);
3358 void nir_dump_dom_tree(nir_shader *shader, FILE *fp);
3359
3360 void nir_dump_dom_frontier_impl(nir_function_impl *impl, FILE *fp);
3361 void nir_dump_dom_frontier(nir_shader *shader, FILE *fp);
3362
3363 void nir_dump_cfg_impl(nir_function_impl *impl, FILE *fp);
3364 void nir_dump_cfg(nir_shader *shader, FILE *fp);
3365
3366 int nir_gs_count_vertices(const nir_shader *shader);
3367
3368 bool nir_shrink_vec_array_vars(nir_shader *shader, nir_variable_mode modes);
3369 bool nir_split_array_vars(nir_shader *shader, nir_variable_mode modes);
3370 bool nir_split_var_copies(nir_shader *shader);
3371 bool nir_split_per_member_structs(nir_shader *shader);
3372 bool nir_split_struct_vars(nir_shader *shader, nir_variable_mode modes);
3373
3374 bool nir_lower_returns_impl(nir_function_impl *impl);
3375 bool nir_lower_returns(nir_shader *shader);
3376
3377 void nir_inline_function_impl(struct nir_builder *b,
3378 const nir_function_impl *impl,
3379 nir_ssa_def **params);
3380 bool nir_inline_functions(nir_shader *shader);
3381
3382 bool nir_propagate_invariant(nir_shader *shader);
3383
3384 void nir_lower_var_copy_instr(nir_intrinsic_instr *copy, nir_shader *shader);
3385 void nir_lower_deref_copy_instr(struct nir_builder *b,
3386 nir_intrinsic_instr *copy);
3387 bool nir_lower_var_copies(nir_shader *shader);
3388
3389 void nir_fixup_deref_modes(nir_shader *shader);
3390
3391 bool nir_lower_global_vars_to_local(nir_shader *shader);
3392
3393 typedef enum {
3394 nir_lower_direct_array_deref_of_vec_load = (1 << 0),
3395 nir_lower_indirect_array_deref_of_vec_load = (1 << 1),
3396 nir_lower_direct_array_deref_of_vec_store = (1 << 2),
3397 nir_lower_indirect_array_deref_of_vec_store = (1 << 3),
3398 } nir_lower_array_deref_of_vec_options;
3399
3400 bool nir_lower_array_deref_of_vec(nir_shader *shader, nir_variable_mode modes,
3401 nir_lower_array_deref_of_vec_options options);
3402
3403 bool nir_lower_indirect_derefs(nir_shader *shader, nir_variable_mode modes);
3404
3405 bool nir_lower_locals_to_regs(nir_shader *shader);
3406
3407 void nir_lower_io_to_temporaries(nir_shader *shader,
3408 nir_function_impl *entrypoint,
3409 bool outputs, bool inputs);
3410
3411 bool nir_lower_vars_to_scratch(nir_shader *shader,
3412 nir_variable_mode modes,
3413 int size_threshold,
3414 glsl_type_size_align_func size_align);
3415
3416 void nir_shader_gather_info(nir_shader *shader, nir_function_impl *entrypoint);
3417
3418 void nir_gather_ssa_types(nir_function_impl *impl,
3419 BITSET_WORD *float_types,
3420 BITSET_WORD *int_types);
3421
3422 void nir_assign_var_locations(struct exec_list *var_list, unsigned *size,
3423 int (*type_size)(const struct glsl_type *, bool));
3424
3425 /* Some helpers to do very simple linking */
3426 bool nir_remove_unused_varyings(nir_shader *producer, nir_shader *consumer);
3427 bool nir_remove_unused_io_vars(nir_shader *shader, struct exec_list *var_list,
3428 uint64_t *used_by_other_stage,
3429 uint64_t *used_by_other_stage_patches);
3430 void nir_compact_varyings(nir_shader *producer, nir_shader *consumer,
3431 bool default_to_smooth_interp);
3432 void nir_link_xfb_varyings(nir_shader *producer, nir_shader *consumer);
3433 bool nir_link_opt_varyings(nir_shader *producer, nir_shader *consumer);
3434
3435
3436 void nir_assign_io_var_locations(struct exec_list *var_list,
3437 unsigned *size,
3438 gl_shader_stage stage);
3439
3440 typedef enum {
3441 /* If set, this forces all non-flat fragment shader inputs to be
3442 * interpolated as if with the "sample" qualifier. This requires
3443 * nir_shader_compiler_options::use_interpolated_input_intrinsics.
3444 */
3445 nir_lower_io_force_sample_interpolation = (1 << 1),
3446 } nir_lower_io_options;
3447 bool nir_lower_io(nir_shader *shader,
3448 nir_variable_mode modes,
3449 int (*type_size)(const struct glsl_type *, bool),
3450 nir_lower_io_options);
3451
3452 bool nir_io_add_const_offset_to_base(nir_shader *nir, nir_variable_mode mode);
3453
3454 typedef enum {
3455 /**
3456 * An address format which is a simple 32-bit global GPU address.
3457 */
3458 nir_address_format_32bit_global,
3459
3460 /**
3461 * An address format which is a simple 64-bit global GPU address.
3462 */
3463 nir_address_format_64bit_global,
3464
3465 /**
3466 * An address format which is a bounds-checked 64-bit global GPU address.
3467 *
3468 * The address is comprised as a 32-bit vec4 where .xy are a uint64_t base
3469 * address stored with the low bits in .x and high bits in .y, .z is a
3470 * size, and .w is an offset. When the final I/O operation is lowered, .w
3471 * is checked against .z and the operation is predicated on the result.
3472 */
3473 nir_address_format_64bit_bounded_global,
3474
3475 /**
3476 * An address format which is comprised of a vec2 where the first
3477 * component is a buffer index and the second is an offset.
3478 */
3479 nir_address_format_32bit_index_offset,
3480
3481 /**
3482 * An address format which is a simple 32-bit offset.
3483 */
3484 nir_address_format_32bit_offset,
3485
3486 /**
3487 * An address format representing a purely logical addressing model. In
3488 * this model, all deref chains must be complete from the dereference
3489 * operation to the variable. Cast derefs are not allowed. These
3490 * addresses will be 32-bit scalars but the format is immaterial because
3491 * you can always chase the chain.
3492 */
3493 nir_address_format_logical,
3494 } nir_address_format;
3495
3496 static inline unsigned
3497 nir_address_format_bit_size(nir_address_format addr_format)
3498 {
3499 switch (addr_format) {
3500 case nir_address_format_32bit_global: return 32;
3501 case nir_address_format_64bit_global: return 64;
3502 case nir_address_format_64bit_bounded_global: return 32;
3503 case nir_address_format_32bit_index_offset: return 32;
3504 case nir_address_format_32bit_offset: return 32;
3505 case nir_address_format_logical: return 32;
3506 }
3507 unreachable("Invalid address format");
3508 }
3509
3510 static inline unsigned
3511 nir_address_format_num_components(nir_address_format addr_format)
3512 {
3513 switch (addr_format) {
3514 case nir_address_format_32bit_global: return 1;
3515 case nir_address_format_64bit_global: return 1;
3516 case nir_address_format_64bit_bounded_global: return 4;
3517 case nir_address_format_32bit_index_offset: return 2;
3518 case nir_address_format_32bit_offset: return 1;
3519 case nir_address_format_logical: return 1;
3520 }
3521 unreachable("Invalid address format");
3522 }
3523
3524 static inline const struct glsl_type *
3525 nir_address_format_to_glsl_type(nir_address_format addr_format)
3526 {
3527 unsigned bit_size = nir_address_format_bit_size(addr_format);
3528 assert(bit_size == 32 || bit_size == 64);
3529 return glsl_vector_type(bit_size == 32 ? GLSL_TYPE_UINT : GLSL_TYPE_UINT64,
3530 nir_address_format_num_components(addr_format));
3531 }
3532
3533 const nir_const_value *nir_address_format_null_value(nir_address_format addr_format);
3534
3535 nir_ssa_def *nir_build_addr_ieq(struct nir_builder *b, nir_ssa_def *addr0, nir_ssa_def *addr1,
3536 nir_address_format addr_format);
3537
3538 nir_ssa_def *nir_build_addr_isub(struct nir_builder *b, nir_ssa_def *addr0, nir_ssa_def *addr1,
3539 nir_address_format addr_format);
3540
3541 nir_ssa_def * nir_explicit_io_address_from_deref(struct nir_builder *b,
3542 nir_deref_instr *deref,
3543 nir_ssa_def *base_addr,
3544 nir_address_format addr_format);
3545 void nir_lower_explicit_io_instr(struct nir_builder *b,
3546 nir_intrinsic_instr *io_instr,
3547 nir_ssa_def *addr,
3548 nir_address_format addr_format);
3549
3550 bool nir_lower_explicit_io(nir_shader *shader,
3551 nir_variable_mode modes,
3552 nir_address_format);
3553
3554 nir_src *nir_get_io_offset_src(nir_intrinsic_instr *instr);
3555 nir_src *nir_get_io_vertex_index_src(nir_intrinsic_instr *instr);
3556
3557 bool nir_is_per_vertex_io(const nir_variable *var, gl_shader_stage stage);
3558
3559 bool nir_lower_regs_to_ssa_impl(nir_function_impl *impl);
3560 bool nir_lower_regs_to_ssa(nir_shader *shader);
3561 bool nir_lower_vars_to_ssa(nir_shader *shader);
3562
3563 bool nir_remove_dead_derefs(nir_shader *shader);
3564 bool nir_remove_dead_derefs_impl(nir_function_impl *impl);
3565 bool nir_remove_dead_variables(nir_shader *shader, nir_variable_mode modes);
3566 bool nir_lower_constant_initializers(nir_shader *shader,
3567 nir_variable_mode modes);
3568
3569 bool nir_move_load_const(nir_shader *shader);
3570 bool nir_move_vec_src_uses_to_dest(nir_shader *shader);
3571 bool nir_lower_vec_to_movs(nir_shader *shader);
3572 void nir_lower_alpha_test(nir_shader *shader, enum compare_func func,
3573 bool alpha_to_one);
3574 bool nir_lower_alu(nir_shader *shader);
3575
3576 bool nir_lower_flrp(nir_shader *shader, unsigned lowering_mask,
3577 bool always_precise, bool have_ffma);
3578
3579 bool nir_lower_alu_to_scalar(nir_shader *shader, BITSET_WORD *lower_set);
3580 bool nir_lower_bool_to_float(nir_shader *shader);
3581 bool nir_lower_bool_to_int32(nir_shader *shader);
3582 bool nir_lower_int_to_float(nir_shader *shader);
3583 bool nir_lower_load_const_to_scalar(nir_shader *shader);
3584 bool nir_lower_read_invocation_to_scalar(nir_shader *shader);
3585 bool nir_lower_phis_to_scalar(nir_shader *shader);
3586 void nir_lower_io_arrays_to_elements(nir_shader *producer, nir_shader *consumer);
3587 void nir_lower_io_arrays_to_elements_no_indirects(nir_shader *shader,
3588 bool outputs_only);
3589 void nir_lower_io_to_scalar(nir_shader *shader, nir_variable_mode mask);
3590 void nir_lower_io_to_scalar_early(nir_shader *shader, nir_variable_mode mask);
3591 bool nir_lower_io_to_vector(nir_shader *shader, nir_variable_mode mask);
3592
3593 void nir_lower_fragcoord_wtrans(nir_shader *shader);
3594 void nir_lower_viewport_transform(nir_shader *shader);
3595 bool nir_lower_uniforms_to_ubo(nir_shader *shader, int multiplier);
3596
3597 typedef struct nir_lower_subgroups_options {
3598 uint8_t subgroup_size;
3599 uint8_t ballot_bit_size;
3600 bool lower_to_scalar:1;
3601 bool lower_vote_trivial:1;
3602 bool lower_vote_eq_to_ballot:1;
3603 bool lower_subgroup_masks:1;
3604 bool lower_shuffle:1;
3605 bool lower_shuffle_to_32bit:1;
3606 bool lower_quad:1;
3607 } nir_lower_subgroups_options;
3608
3609 bool nir_lower_subgroups(nir_shader *shader,
3610 const nir_lower_subgroups_options *options);
3611
3612 bool nir_lower_system_values(nir_shader *shader);
3613
3614 enum PACKED nir_lower_tex_packing {
3615 nir_lower_tex_packing_none = 0,
3616 /* The sampler returns up to 2 32-bit words of half floats or 16-bit signed
3617 * or unsigned ints based on the sampler type
3618 */
3619 nir_lower_tex_packing_16,
3620 /* The sampler returns 1 32-bit word of 4x8 unorm */
3621 nir_lower_tex_packing_8,
3622 };
3623
3624 typedef struct nir_lower_tex_options {
3625 /**
3626 * bitmask of (1 << GLSL_SAMPLER_DIM_x) to control for which
3627 * sampler types a texture projector is lowered.
3628 */
3629 unsigned lower_txp;
3630
3631 /**
3632 * If true, lower away nir_tex_src_offset for all texelfetch instructions.
3633 */
3634 bool lower_txf_offset;
3635
3636 /**
3637 * If true, lower away nir_tex_src_offset for all rect textures.
3638 */
3639 bool lower_rect_offset;
3640
3641 /**
3642 * If true, lower rect textures to 2D, using txs to fetch the
3643 * texture dimensions and dividing the texture coords by the
3644 * texture dims to normalize.
3645 */
3646 bool lower_rect;
3647
3648 /**
3649 * If true, convert yuv to rgb.
3650 */
3651 unsigned lower_y_uv_external;
3652 unsigned lower_y_u_v_external;
3653 unsigned lower_yx_xuxv_external;
3654 unsigned lower_xy_uxvx_external;
3655 unsigned lower_ayuv_external;
3656 unsigned lower_xyuv_external;
3657
3658 /**
3659 * To emulate certain texture wrap modes, this can be used
3660 * to saturate the specified tex coord to [0.0, 1.0]. The
3661 * bits are according to sampler #, ie. if, for example:
3662 *
3663 * (conf->saturate_s & (1 << n))
3664 *
3665 * is true, then the s coord for sampler n is saturated.
3666 *
3667 * Note that clamping must happen *after* projector lowering
3668 * so any projected texture sample instruction with a clamped
3669 * coordinate gets automatically lowered, regardless of the
3670 * 'lower_txp' setting.
3671 */
3672 unsigned saturate_s;
3673 unsigned saturate_t;
3674 unsigned saturate_r;
3675
3676 /* Bitmask of textures that need swizzling.
3677 *
3678 * If (swizzle_result & (1 << texture_index)), then the swizzle in
3679 * swizzles[texture_index] is applied to the result of the texturing
3680 * operation.
3681 */
3682 unsigned swizzle_result;
3683
3684 /* A swizzle for each texture. Values 0-3 represent x, y, z, or w swizzles
3685 * while 4 and 5 represent 0 and 1 respectively.
3686 */
3687 uint8_t swizzles[32][4];
3688
3689 /* Can be used to scale sampled values in range required by the format. */
3690 float scale_factors[32];
3691
3692 /**
3693 * Bitmap of textures that need srgb to linear conversion. If
3694 * (lower_srgb & (1 << texture_index)) then the rgb (xyz) components
3695 * of the texture are lowered to linear.
3696 */
3697 unsigned lower_srgb;
3698
3699 /**
3700 * If true, lower nir_texop_tex on shaders that doesn't support implicit
3701 * LODs to nir_texop_txl.
3702 */
3703 bool lower_tex_without_implicit_lod;
3704
3705 /**
3706 * If true, lower nir_texop_txd on cube maps with nir_texop_txl.
3707 */
3708 bool lower_txd_cube_map;
3709
3710 /**
3711 * If true, lower nir_texop_txd on 3D surfaces with nir_texop_txl.
3712 */
3713 bool lower_txd_3d;
3714
3715 /**
3716 * If true, lower nir_texop_txd on shadow samplers (except cube maps)
3717 * with nir_texop_txl. Notice that cube map shadow samplers are lowered
3718 * with lower_txd_cube_map.
3719 */
3720 bool lower_txd_shadow;
3721
3722 /**
3723 * If true, lower nir_texop_txd on all samplers to a nir_texop_txl.
3724 * Implies lower_txd_cube_map and lower_txd_shadow.
3725 */
3726 bool lower_txd;
3727
3728 /**
3729 * If true, lower nir_texop_txb that try to use shadow compare and min_lod
3730 * at the same time to a nir_texop_lod, some math, and nir_texop_tex.
3731 */
3732 bool lower_txb_shadow_clamp;
3733
3734 /**
3735 * If true, lower nir_texop_txd on shadow samplers when it uses min_lod
3736 * with nir_texop_txl. This includes cube maps.
3737 */
3738 bool lower_txd_shadow_clamp;
3739
3740 /**
3741 * If true, lower nir_texop_txd on when it uses both offset and min_lod
3742 * with nir_texop_txl. This includes cube maps.
3743 */
3744 bool lower_txd_offset_clamp;
3745
3746 /**
3747 * If true, lower nir_texop_txd with min_lod to a nir_texop_txl if the
3748 * sampler is bindless.
3749 */
3750 bool lower_txd_clamp_bindless_sampler;
3751
3752 /**
3753 * If true, lower nir_texop_txd with min_lod to a nir_texop_txl if the
3754 * sampler index is not statically determinable to be less than 16.
3755 */
3756 bool lower_txd_clamp_if_sampler_index_not_lt_16;
3757
3758 /**
3759 * If true, lower nir_texop_txs with a non-0-lod into nir_texop_txs with
3760 * 0-lod followed by a nir_ishr.
3761 */
3762 bool lower_txs_lod;
3763
3764 /**
3765 * If true, apply a .bagr swizzle on tg4 results to handle Broadcom's
3766 * mixed-up tg4 locations.
3767 */
3768 bool lower_tg4_broadcom_swizzle;
3769
3770 /**
3771 * If true, lowers tg4 with 4 constant offsets to 4 tg4 calls
3772 */
3773 bool lower_tg4_offsets;
3774
3775 enum nir_lower_tex_packing lower_tex_packing[32];
3776 } nir_lower_tex_options;
3777
3778 bool nir_lower_tex(nir_shader *shader,
3779 const nir_lower_tex_options *options);
3780
3781 enum nir_lower_non_uniform_access_type {
3782 nir_lower_non_uniform_ubo_access = (1 << 0),
3783 nir_lower_non_uniform_ssbo_access = (1 << 1),
3784 nir_lower_non_uniform_texture_access = (1 << 2),
3785 nir_lower_non_uniform_image_access = (1 << 3),
3786 };
3787
3788 bool nir_lower_non_uniform_access(nir_shader *shader,
3789 enum nir_lower_non_uniform_access_type);
3790
3791 bool nir_lower_idiv(nir_shader *shader);
3792
3793 bool nir_lower_input_attachments(nir_shader *shader, bool use_fragcoord_sysval);
3794
3795 bool nir_lower_clip_vs(nir_shader *shader, unsigned ucp_enables, bool use_vars);
3796 bool nir_lower_clip_gs(nir_shader *shader, unsigned ucp_enables);
3797 bool nir_lower_clip_fs(nir_shader *shader, unsigned ucp_enables);
3798 bool nir_lower_clip_cull_distance_arrays(nir_shader *nir);
3799
3800 bool nir_lower_frexp(nir_shader *nir);
3801
3802 void nir_lower_two_sided_color(nir_shader *shader);
3803
3804 bool nir_lower_clamp_color_outputs(nir_shader *shader);
3805
3806 void nir_lower_passthrough_edgeflags(nir_shader *shader);
3807 bool nir_lower_patch_vertices(nir_shader *nir, unsigned static_count,
3808 const gl_state_index16 *uniform_state_tokens);
3809
3810 typedef struct nir_lower_wpos_ytransform_options {
3811 gl_state_index16 state_tokens[STATE_LENGTH];
3812 bool fs_coord_origin_upper_left :1;
3813 bool fs_coord_origin_lower_left :1;
3814 bool fs_coord_pixel_center_integer :1;
3815 bool fs_coord_pixel_center_half_integer :1;
3816 } nir_lower_wpos_ytransform_options;
3817
3818 bool nir_lower_wpos_ytransform(nir_shader *shader,
3819 const nir_lower_wpos_ytransform_options *options);
3820 bool nir_lower_wpos_center(nir_shader *shader, const bool for_sample_shading);
3821
3822 bool nir_lower_fb_read(nir_shader *shader);
3823
3824 typedef struct nir_lower_drawpixels_options {
3825 gl_state_index16 texcoord_state_tokens[STATE_LENGTH];
3826 gl_state_index16 scale_state_tokens[STATE_LENGTH];
3827 gl_state_index16 bias_state_tokens[STATE_LENGTH];
3828 unsigned drawpix_sampler;
3829 unsigned pixelmap_sampler;
3830 bool pixel_maps :1;
3831 bool scale_and_bias :1;
3832 } nir_lower_drawpixels_options;
3833
3834 void nir_lower_drawpixels(nir_shader *shader,
3835 const nir_lower_drawpixels_options *options);
3836
3837 typedef struct nir_lower_bitmap_options {
3838 unsigned sampler;
3839 bool swizzle_xxxx;
3840 } nir_lower_bitmap_options;
3841
3842 void nir_lower_bitmap(nir_shader *shader, const nir_lower_bitmap_options *options);
3843
3844 bool nir_lower_atomics_to_ssbo(nir_shader *shader, unsigned ssbo_offset);
3845
3846 typedef enum {
3847 nir_lower_int_source_mods = 1 << 0,
3848 nir_lower_float_source_mods = 1 << 1,
3849 nir_lower_triop_abs = 1 << 2,
3850 nir_lower_all_source_mods = (1 << 3) - 1
3851 } nir_lower_to_source_mods_flags;
3852
3853
3854 bool nir_lower_to_source_mods(nir_shader *shader, nir_lower_to_source_mods_flags options);
3855
3856 bool nir_lower_gs_intrinsics(nir_shader *shader);
3857
3858 typedef unsigned (*nir_lower_bit_size_callback)(const nir_alu_instr *, void *);
3859
3860 bool nir_lower_bit_size(nir_shader *shader,
3861 nir_lower_bit_size_callback callback,
3862 void *callback_data);
3863
3864 nir_lower_int64_options nir_lower_int64_op_to_options_mask(nir_op opcode);
3865 bool nir_lower_int64(nir_shader *shader, nir_lower_int64_options options);
3866
3867 nir_lower_doubles_options nir_lower_doubles_op_to_options_mask(nir_op opcode);
3868 bool nir_lower_doubles(nir_shader *shader, const nir_shader *softfp64,
3869 nir_lower_doubles_options options);
3870 bool nir_lower_pack(nir_shader *shader);
3871
3872 typedef enum {
3873 nir_lower_interpolation_at_sample = (1 << 1),
3874 nir_lower_interpolation_at_offset = (1 << 2),
3875 nir_lower_interpolation_centroid = (1 << 3),
3876 nir_lower_interpolation_pixel = (1 << 4),
3877 nir_lower_interpolation_sample = (1 << 5),
3878 } nir_lower_interpolation_options;
3879
3880 bool nir_lower_interpolation(nir_shader *shader,
3881 nir_lower_interpolation_options options);
3882
3883 bool nir_normalize_cubemap_coords(nir_shader *shader);
3884
3885 void nir_live_ssa_defs_impl(nir_function_impl *impl);
3886
3887 void nir_loop_analyze_impl(nir_function_impl *impl,
3888 nir_variable_mode indirect_mask);
3889
3890 bool nir_ssa_defs_interfere(nir_ssa_def *a, nir_ssa_def *b);
3891
3892 bool nir_repair_ssa_impl(nir_function_impl *impl);
3893 bool nir_repair_ssa(nir_shader *shader);
3894
3895 void nir_convert_loop_to_lcssa(nir_loop *loop);
3896
3897 /* If phi_webs_only is true, only convert SSA values involved in phi nodes to
3898 * registers. If false, convert all values (even those not involved in a phi
3899 * node) to registers.
3900 */
3901 bool nir_convert_from_ssa(nir_shader *shader, bool phi_webs_only);
3902
3903 bool nir_lower_phis_to_regs_block(nir_block *block);
3904 bool nir_lower_ssa_defs_to_regs_block(nir_block *block);
3905 bool nir_rematerialize_derefs_in_use_blocks_impl(nir_function_impl *impl);
3906
3907 /* This is here for unit tests. */
3908 bool nir_opt_comparison_pre_impl(nir_function_impl *impl);
3909
3910 bool nir_opt_comparison_pre(nir_shader *shader);
3911
3912 bool nir_opt_algebraic(nir_shader *shader);
3913 bool nir_opt_algebraic_before_ffma(nir_shader *shader);
3914 bool nir_opt_algebraic_late(nir_shader *shader);
3915 bool nir_opt_constant_folding(nir_shader *shader);
3916
3917 bool nir_opt_combine_stores(nir_shader *shader, nir_variable_mode modes);
3918
3919 bool nir_copy_prop(nir_shader *shader);
3920
3921 bool nir_opt_copy_prop_vars(nir_shader *shader);
3922
3923 bool nir_opt_cse(nir_shader *shader);
3924
3925 bool nir_opt_dce(nir_shader *shader);
3926
3927 bool nir_opt_dead_cf(nir_shader *shader);
3928
3929 bool nir_opt_dead_write_vars(nir_shader *shader);
3930
3931 bool nir_opt_deref_impl(nir_function_impl *impl);
3932 bool nir_opt_deref(nir_shader *shader);
3933
3934 bool nir_opt_find_array_copies(nir_shader *shader);
3935
3936 bool nir_opt_gcm(nir_shader *shader, bool value_number);
3937
3938 bool nir_opt_idiv_const(nir_shader *shader, unsigned min_bit_size);
3939
3940 bool nir_opt_if(nir_shader *shader, bool aggressive_last_continue);
3941
3942 bool nir_opt_intrinsics(nir_shader *shader);
3943
3944 bool nir_opt_large_constants(nir_shader *shader,
3945 glsl_type_size_align_func size_align,
3946 unsigned threshold);
3947
3948 bool nir_opt_loop_unroll(nir_shader *shader, nir_variable_mode indirect_mask);
3949
3950 bool nir_opt_move_comparisons(nir_shader *shader);
3951
3952 bool nir_opt_move_load_ubo(nir_shader *shader);
3953
3954 bool nir_opt_peephole_select(nir_shader *shader, unsigned limit,
3955 bool indirect_load_ok, bool expensive_alu_ok);
3956
3957 bool nir_opt_rematerialize_compares(nir_shader *shader);
3958
3959 bool nir_opt_remove_phis(nir_shader *shader);
3960 bool nir_opt_remove_phis_block(nir_block *block);
3961
3962 bool nir_opt_shrink_load(nir_shader *shader);
3963
3964 bool nir_opt_trivial_continues(nir_shader *shader);
3965
3966 bool nir_opt_undef(nir_shader *shader);
3967
3968 bool nir_opt_vectorize(nir_shader *shader);
3969
3970 bool nir_opt_conditional_discard(nir_shader *shader);
3971
3972 void nir_strip(nir_shader *shader);
3973
3974 void nir_sweep(nir_shader *shader);
3975
3976 void nir_remap_dual_slot_attributes(nir_shader *shader,
3977 uint64_t *dual_slot_inputs);
3978 uint64_t nir_get_single_slot_attribs_mask(uint64_t attribs, uint64_t dual_slot);
3979
3980 nir_intrinsic_op nir_intrinsic_from_system_value(gl_system_value val);
3981 gl_system_value nir_system_value_from_intrinsic(nir_intrinsic_op intrin);
3982
3983 static inline bool
3984 nir_variable_is_in_ubo(const nir_variable *var)
3985 {
3986 return (var->data.mode == nir_var_mem_ubo &&
3987 var->interface_type != NULL);
3988 }
3989
3990 static inline bool
3991 nir_variable_is_in_ssbo(const nir_variable *var)
3992 {
3993 return (var->data.mode == nir_var_mem_ssbo &&
3994 var->interface_type != NULL);
3995 }
3996
3997 static inline bool
3998 nir_variable_is_in_block(const nir_variable *var)
3999 {
4000 return nir_variable_is_in_ubo(var) || nir_variable_is_in_ssbo(var);
4001 }
4002
4003 #ifdef __cplusplus
4004 } /* extern "C" */
4005 #endif
4006
4007 #endif /* NIR_H */