f8e71d54a50d0783cc1a6b6a22573b9a82c1f196
[mesa.git] / src / compiler / nir / nir.h
1 /*
2 * Copyright © 2014 Connor Abbott
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Connor Abbott (cwabbott0@gmail.com)
25 *
26 */
27
28 #ifndef NIR_H
29 #define NIR_H
30
31 #include "util/hash_table.h"
32 #include "compiler/glsl/list.h"
33 #include "GL/gl.h" /* GLenum */
34 #include "util/list.h"
35 #include "util/ralloc.h"
36 #include "util/set.h"
37 #include "util/bitset.h"
38 #include "util/macros.h"
39 #include "compiler/nir_types.h"
40 #include "compiler/shader_enums.h"
41 #include "compiler/shader_info.h"
42 #include <stdio.h>
43
44 #ifndef NDEBUG
45 #include "util/debug.h"
46 #endif /* NDEBUG */
47
48 #include "nir_opcodes.h"
49
50 #if defined(_WIN32) && !defined(snprintf)
51 #define snprintf _snprintf
52 #endif
53
54 #ifdef __cplusplus
55 extern "C" {
56 #endif
57
58 #define NIR_FALSE 0u
59 #define NIR_TRUE (~0u)
60
61 /** Defines a cast function
62 *
63 * This macro defines a cast function from in_type to out_type where
64 * out_type is some structure type that contains a field of type out_type.
65 *
66 * Note that you have to be a bit careful as the generated cast function
67 * destroys constness.
68 */
69 #define NIR_DEFINE_CAST(name, in_type, out_type, field, \
70 type_field, type_value) \
71 static inline out_type * \
72 name(const in_type *parent) \
73 { \
74 assert(parent && parent->type_field == type_value); \
75 return exec_node_data(out_type, parent, field); \
76 }
77
78 struct nir_function;
79 struct nir_shader;
80 struct nir_instr;
81
82
83 /**
84 * Description of built-in state associated with a uniform
85 *
86 * \sa nir_variable::state_slots
87 */
88 typedef struct {
89 gl_state_index16 tokens[STATE_LENGTH];
90 int swizzle;
91 } nir_state_slot;
92
93 typedef enum {
94 nir_var_shader_in = (1 << 0),
95 nir_var_shader_out = (1 << 1),
96 nir_var_global = (1 << 2),
97 nir_var_local = (1 << 3),
98 nir_var_uniform = (1 << 4),
99 nir_var_shader_storage = (1 << 5),
100 nir_var_system_value = (1 << 6),
101 nir_var_param = (1 << 7),
102 nir_var_shared = (1 << 8),
103 nir_var_all = ~0,
104 } nir_variable_mode;
105
106 /**
107 * Rounding modes.
108 */
109 typedef enum {
110 nir_rounding_mode_undef = 0,
111 nir_rounding_mode_rtne = 1, /* round to nearest even */
112 nir_rounding_mode_ru = 2, /* round up */
113 nir_rounding_mode_rd = 3, /* round down */
114 nir_rounding_mode_rtz = 4, /* round towards zero */
115 } nir_rounding_mode;
116
117 typedef union {
118 float f32[4];
119 double f64[4];
120 int8_t i8[4];
121 uint8_t u8[4];
122 int16_t i16[4];
123 uint16_t u16[4];
124 int32_t i32[4];
125 uint32_t u32[4];
126 int64_t i64[4];
127 uint64_t u64[4];
128 } nir_const_value;
129
130 typedef struct nir_constant {
131 /**
132 * Value of the constant.
133 *
134 * The field used to back the values supplied by the constant is determined
135 * by the type associated with the \c nir_variable. Constants may be
136 * scalars, vectors, or matrices.
137 */
138 nir_const_value values[4];
139
140 /* we could get this from the var->type but makes clone *much* easier to
141 * not have to care about the type.
142 */
143 unsigned num_elements;
144
145 /* Array elements / Structure Fields */
146 struct nir_constant **elements;
147 } nir_constant;
148
149 /**
150 * \brief Layout qualifiers for gl_FragDepth.
151 *
152 * The AMD/ARB_conservative_depth extensions allow gl_FragDepth to be redeclared
153 * with a layout qualifier.
154 */
155 typedef enum {
156 nir_depth_layout_none, /**< No depth layout is specified. */
157 nir_depth_layout_any,
158 nir_depth_layout_greater,
159 nir_depth_layout_less,
160 nir_depth_layout_unchanged
161 } nir_depth_layout;
162
163 /**
164 * Either a uniform, global variable, shader input, or shader output. Based on
165 * ir_variable - it should be easy to translate between the two.
166 */
167
168 typedef struct nir_variable {
169 struct exec_node node;
170
171 /**
172 * Declared type of the variable
173 */
174 const struct glsl_type *type;
175
176 /**
177 * Declared name of the variable
178 */
179 char *name;
180
181 struct nir_variable_data {
182 /**
183 * Storage class of the variable.
184 *
185 * \sa nir_variable_mode
186 */
187 nir_variable_mode mode;
188
189 /**
190 * Is the variable read-only?
191 *
192 * This is set for variables declared as \c const, shader inputs,
193 * and uniforms.
194 */
195 unsigned read_only:1;
196 unsigned centroid:1;
197 unsigned sample:1;
198 unsigned patch:1;
199 unsigned invariant:1;
200
201 /**
202 * When separate shader programs are enabled, only input/outputs between
203 * the stages of a multi-stage separate program can be safely removed
204 * from the shader interface. Other input/outputs must remains active.
205 *
206 * This is also used to make sure xfb varyings that are unused by the
207 * fragment shader are not removed.
208 */
209 unsigned always_active_io:1;
210
211 /**
212 * Interpolation mode for shader inputs / outputs
213 *
214 * \sa glsl_interp_mode
215 */
216 unsigned interpolation:2;
217
218 /**
219 * \name ARB_fragment_coord_conventions
220 * @{
221 */
222 unsigned origin_upper_left:1;
223 unsigned pixel_center_integer:1;
224 /*@}*/
225
226 /**
227 * If non-zero, then this variable may be packed along with other variables
228 * into a single varying slot, so this offset should be applied when
229 * accessing components. For example, an offset of 1 means that the x
230 * component of this variable is actually stored in component y of the
231 * location specified by \c location.
232 */
233 unsigned location_frac:2;
234
235 /**
236 * If true, this variable represents an array of scalars that should
237 * be tightly packed. In other words, consecutive array elements
238 * should be stored one component apart, rather than one slot apart.
239 */
240 unsigned compact:1;
241
242 /**
243 * Whether this is a fragment shader output implicitly initialized with
244 * the previous contents of the specified render target at the
245 * framebuffer location corresponding to this shader invocation.
246 */
247 unsigned fb_fetch_output:1;
248
249 /**
250 * Non-zero if this variable is considered bindless as defined by
251 * ARB_bindless_texture.
252 */
253 unsigned bindless:1;
254
255 /**
256 * \brief Layout qualifier for gl_FragDepth.
257 *
258 * This is not equal to \c ir_depth_layout_none if and only if this
259 * variable is \c gl_FragDepth and a layout qualifier is specified.
260 */
261 nir_depth_layout depth_layout;
262
263 /**
264 * Storage location of the base of this variable
265 *
266 * The precise meaning of this field depends on the nature of the variable.
267 *
268 * - Vertex shader input: one of the values from \c gl_vert_attrib.
269 * - Vertex shader output: one of the values from \c gl_varying_slot.
270 * - Geometry shader input: one of the values from \c gl_varying_slot.
271 * - Geometry shader output: one of the values from \c gl_varying_slot.
272 * - Fragment shader input: one of the values from \c gl_varying_slot.
273 * - Fragment shader output: one of the values from \c gl_frag_result.
274 * - Uniforms: Per-stage uniform slot number for default uniform block.
275 * - Uniforms: Index within the uniform block definition for UBO members.
276 * - Non-UBO Uniforms: uniform slot number.
277 * - Other: This field is not currently used.
278 *
279 * If the variable is a uniform, shader input, or shader output, and the
280 * slot has not been assigned, the value will be -1.
281 */
282 int location;
283
284 /**
285 * The actual location of the variable in the IR. Only valid for inputs
286 * and outputs.
287 */
288 unsigned int driver_location;
289
290 /**
291 * Vertex stream output identifier.
292 *
293 * For packed outputs, bit 31 is set and bits [2*i+1,2*i] indicate the
294 * stream of the i-th component.
295 */
296 unsigned stream;
297
298 /**
299 * output index for dual source blending.
300 */
301 int index;
302
303 /**
304 * Descriptor set binding for sampler or UBO.
305 */
306 int descriptor_set;
307
308 /**
309 * Initial binding point for a sampler or UBO.
310 *
311 * For array types, this represents the binding point for the first element.
312 */
313 int binding;
314
315 /**
316 * Location an atomic counter is stored at.
317 */
318 unsigned offset;
319
320 /**
321 * ARB_shader_image_load_store qualifiers.
322 */
323 struct {
324 bool read_only; /**< "readonly" qualifier. */
325 bool write_only; /**< "writeonly" qualifier. */
326 bool coherent;
327 bool _volatile;
328 bool restrict_flag;
329
330 /** Image internal format if specified explicitly, otherwise GL_NONE. */
331 GLenum format;
332 } image;
333 } data;
334
335 /**
336 * Built-in state that backs this uniform
337 *
338 * Once set at variable creation, \c state_slots must remain invariant.
339 * This is because, ideally, this array would be shared by all clones of
340 * this variable in the IR tree. In other words, we'd really like for it
341 * to be a fly-weight.
342 *
343 * If the variable is not a uniform, \c num_state_slots will be zero and
344 * \c state_slots will be \c NULL.
345 */
346 /*@{*/
347 unsigned num_state_slots; /**< Number of state slots used */
348 nir_state_slot *state_slots; /**< State descriptors. */
349 /*@}*/
350
351 /**
352 * Constant expression assigned in the initializer of the variable
353 *
354 * This field should only be used temporarily by creators of NIR shaders
355 * and then lower_constant_initializers can be used to get rid of them.
356 * Most of the rest of NIR ignores this field or asserts that it's NULL.
357 */
358 nir_constant *constant_initializer;
359
360 /**
361 * For variables that are in an interface block or are an instance of an
362 * interface block, this is the \c GLSL_TYPE_INTERFACE type for that block.
363 *
364 * \sa ir_variable::location
365 */
366 const struct glsl_type *interface_type;
367 } nir_variable;
368
369 #define nir_foreach_variable(var, var_list) \
370 foreach_list_typed(nir_variable, var, node, var_list)
371
372 #define nir_foreach_variable_safe(var, var_list) \
373 foreach_list_typed_safe(nir_variable, var, node, var_list)
374
375 static inline bool
376 nir_variable_is_global(const nir_variable *var)
377 {
378 return var->data.mode != nir_var_local && var->data.mode != nir_var_param;
379 }
380
381 typedef struct nir_register {
382 struct exec_node node;
383
384 unsigned num_components; /** < number of vector components */
385 unsigned num_array_elems; /** < size of array (0 for no array) */
386
387 /* The bit-size of each channel; must be one of 8, 16, 32, or 64 */
388 uint8_t bit_size;
389
390 /** generic register index. */
391 unsigned index;
392
393 /** only for debug purposes, can be NULL */
394 const char *name;
395
396 /** whether this register is local (per-function) or global (per-shader) */
397 bool is_global;
398
399 /**
400 * If this flag is set to true, then accessing channels >= num_components
401 * is well-defined, and simply spills over to the next array element. This
402 * is useful for backends that can do per-component accessing, in
403 * particular scalar backends. By setting this flag and making
404 * num_components equal to 1, structures can be packed tightly into
405 * registers and then registers can be accessed per-component to get to
406 * each structure member, even if it crosses vec4 boundaries.
407 */
408 bool is_packed;
409
410 /** set of nir_srcs where this register is used (read from) */
411 struct list_head uses;
412
413 /** set of nir_dests where this register is defined (written to) */
414 struct list_head defs;
415
416 /** set of nir_ifs where this register is used as a condition */
417 struct list_head if_uses;
418 } nir_register;
419
420 #define nir_foreach_register(reg, reg_list) \
421 foreach_list_typed(nir_register, reg, node, reg_list)
422 #define nir_foreach_register_safe(reg, reg_list) \
423 foreach_list_typed_safe(nir_register, reg, node, reg_list)
424
425 typedef enum {
426 nir_instr_type_alu,
427 nir_instr_type_call,
428 nir_instr_type_tex,
429 nir_instr_type_intrinsic,
430 nir_instr_type_load_const,
431 nir_instr_type_jump,
432 nir_instr_type_ssa_undef,
433 nir_instr_type_phi,
434 nir_instr_type_parallel_copy,
435 } nir_instr_type;
436
437 typedef struct nir_instr {
438 struct exec_node node;
439 nir_instr_type type;
440 struct nir_block *block;
441
442 /** generic instruction index. */
443 unsigned index;
444
445 /* A temporary for optimization and analysis passes to use for storing
446 * flags. For instance, DCE uses this to store the "dead/live" info.
447 */
448 uint8_t pass_flags;
449 } nir_instr;
450
451 static inline nir_instr *
452 nir_instr_next(nir_instr *instr)
453 {
454 struct exec_node *next = exec_node_get_next(&instr->node);
455 if (exec_node_is_tail_sentinel(next))
456 return NULL;
457 else
458 return exec_node_data(nir_instr, next, node);
459 }
460
461 static inline nir_instr *
462 nir_instr_prev(nir_instr *instr)
463 {
464 struct exec_node *prev = exec_node_get_prev(&instr->node);
465 if (exec_node_is_head_sentinel(prev))
466 return NULL;
467 else
468 return exec_node_data(nir_instr, prev, node);
469 }
470
471 static inline bool
472 nir_instr_is_first(const nir_instr *instr)
473 {
474 return exec_node_is_head_sentinel(exec_node_get_prev_const(&instr->node));
475 }
476
477 static inline bool
478 nir_instr_is_last(const nir_instr *instr)
479 {
480 return exec_node_is_tail_sentinel(exec_node_get_next_const(&instr->node));
481 }
482
483 typedef struct nir_ssa_def {
484 /** for debugging only, can be NULL */
485 const char* name;
486
487 /** generic SSA definition index. */
488 unsigned index;
489
490 /** Index into the live_in and live_out bitfields */
491 unsigned live_index;
492
493 nir_instr *parent_instr;
494
495 /** set of nir_instrs where this register is used (read from) */
496 struct list_head uses;
497
498 /** set of nir_ifs where this register is used as a condition */
499 struct list_head if_uses;
500
501 uint8_t num_components;
502
503 /* The bit-size of each channel; must be one of 8, 16, 32, or 64 */
504 uint8_t bit_size;
505 } nir_ssa_def;
506
507 struct nir_src;
508
509 typedef struct {
510 nir_register *reg;
511 struct nir_src *indirect; /** < NULL for no indirect offset */
512 unsigned base_offset;
513
514 /* TODO use-def chain goes here */
515 } nir_reg_src;
516
517 typedef struct {
518 nir_instr *parent_instr;
519 struct list_head def_link;
520
521 nir_register *reg;
522 struct nir_src *indirect; /** < NULL for no indirect offset */
523 unsigned base_offset;
524
525 /* TODO def-use chain goes here */
526 } nir_reg_dest;
527
528 struct nir_if;
529
530 typedef struct nir_src {
531 union {
532 nir_instr *parent_instr;
533 struct nir_if *parent_if;
534 };
535
536 struct list_head use_link;
537
538 union {
539 nir_reg_src reg;
540 nir_ssa_def *ssa;
541 };
542
543 bool is_ssa;
544 } nir_src;
545
546 static inline nir_src
547 nir_src_init(void)
548 {
549 nir_src src = { { NULL } };
550 return src;
551 }
552
553 #define NIR_SRC_INIT nir_src_init()
554
555 #define nir_foreach_use(src, reg_or_ssa_def) \
556 list_for_each_entry(nir_src, src, &(reg_or_ssa_def)->uses, use_link)
557
558 #define nir_foreach_use_safe(src, reg_or_ssa_def) \
559 list_for_each_entry_safe(nir_src, src, &(reg_or_ssa_def)->uses, use_link)
560
561 #define nir_foreach_if_use(src, reg_or_ssa_def) \
562 list_for_each_entry(nir_src, src, &(reg_or_ssa_def)->if_uses, use_link)
563
564 #define nir_foreach_if_use_safe(src, reg_or_ssa_def) \
565 list_for_each_entry_safe(nir_src, src, &(reg_or_ssa_def)->if_uses, use_link)
566
567 typedef struct {
568 union {
569 nir_reg_dest reg;
570 nir_ssa_def ssa;
571 };
572
573 bool is_ssa;
574 } nir_dest;
575
576 static inline nir_dest
577 nir_dest_init(void)
578 {
579 nir_dest dest = { { { NULL } } };
580 return dest;
581 }
582
583 #define NIR_DEST_INIT nir_dest_init()
584
585 #define nir_foreach_def(dest, reg) \
586 list_for_each_entry(nir_dest, dest, &(reg)->defs, reg.def_link)
587
588 #define nir_foreach_def_safe(dest, reg) \
589 list_for_each_entry_safe(nir_dest, dest, &(reg)->defs, reg.def_link)
590
591 static inline nir_src
592 nir_src_for_ssa(nir_ssa_def *def)
593 {
594 nir_src src = NIR_SRC_INIT;
595
596 src.is_ssa = true;
597 src.ssa = def;
598
599 return src;
600 }
601
602 static inline nir_src
603 nir_src_for_reg(nir_register *reg)
604 {
605 nir_src src = NIR_SRC_INIT;
606
607 src.is_ssa = false;
608 src.reg.reg = reg;
609 src.reg.indirect = NULL;
610 src.reg.base_offset = 0;
611
612 return src;
613 }
614
615 static inline nir_dest
616 nir_dest_for_reg(nir_register *reg)
617 {
618 nir_dest dest = NIR_DEST_INIT;
619
620 dest.reg.reg = reg;
621
622 return dest;
623 }
624
625 static inline unsigned
626 nir_src_bit_size(nir_src src)
627 {
628 return src.is_ssa ? src.ssa->bit_size : src.reg.reg->bit_size;
629 }
630
631 static inline unsigned
632 nir_src_num_components(nir_src src)
633 {
634 return src.is_ssa ? src.ssa->num_components : src.reg.reg->num_components;
635 }
636
637 static inline unsigned
638 nir_dest_bit_size(nir_dest dest)
639 {
640 return dest.is_ssa ? dest.ssa.bit_size : dest.reg.reg->bit_size;
641 }
642
643 static inline unsigned
644 nir_dest_num_components(nir_dest dest)
645 {
646 return dest.is_ssa ? dest.ssa.num_components : dest.reg.reg->num_components;
647 }
648
649 void nir_src_copy(nir_src *dest, const nir_src *src, void *instr_or_if);
650 void nir_dest_copy(nir_dest *dest, const nir_dest *src, nir_instr *instr);
651
652 typedef struct {
653 nir_src src;
654
655 /**
656 * \name input modifiers
657 */
658 /*@{*/
659 /**
660 * For inputs interpreted as floating point, flips the sign bit. For
661 * inputs interpreted as integers, performs the two's complement negation.
662 */
663 bool negate;
664
665 /**
666 * Clears the sign bit for floating point values, and computes the integer
667 * absolute value for integers. Note that the negate modifier acts after
668 * the absolute value modifier, therefore if both are set then all inputs
669 * will become negative.
670 */
671 bool abs;
672 /*@}*/
673
674 /**
675 * For each input component, says which component of the register it is
676 * chosen from. Note that which elements of the swizzle are used and which
677 * are ignored are based on the write mask for most opcodes - for example,
678 * a statement like "foo.xzw = bar.zyx" would have a writemask of 1101b and
679 * a swizzle of {2, x, 1, 0} where x means "don't care."
680 */
681 uint8_t swizzle[4];
682 } nir_alu_src;
683
684 typedef struct {
685 nir_dest dest;
686
687 /**
688 * \name saturate output modifier
689 *
690 * Only valid for opcodes that output floating-point numbers. Clamps the
691 * output to between 0.0 and 1.0 inclusive.
692 */
693
694 bool saturate;
695
696 unsigned write_mask : 4; /* ignored if dest.is_ssa is true */
697 } nir_alu_dest;
698
699 typedef enum {
700 nir_type_invalid = 0, /* Not a valid type */
701 nir_type_float,
702 nir_type_int,
703 nir_type_uint,
704 nir_type_bool,
705 nir_type_bool32 = 32 | nir_type_bool,
706 nir_type_int8 = 8 | nir_type_int,
707 nir_type_int16 = 16 | nir_type_int,
708 nir_type_int32 = 32 | nir_type_int,
709 nir_type_int64 = 64 | nir_type_int,
710 nir_type_uint8 = 8 | nir_type_uint,
711 nir_type_uint16 = 16 | nir_type_uint,
712 nir_type_uint32 = 32 | nir_type_uint,
713 nir_type_uint64 = 64 | nir_type_uint,
714 nir_type_float16 = 16 | nir_type_float,
715 nir_type_float32 = 32 | nir_type_float,
716 nir_type_float64 = 64 | nir_type_float,
717 } nir_alu_type;
718
719 #define NIR_ALU_TYPE_SIZE_MASK 0xfffffff8
720 #define NIR_ALU_TYPE_BASE_TYPE_MASK 0x00000007
721
722 static inline unsigned
723 nir_alu_type_get_type_size(nir_alu_type type)
724 {
725 return type & NIR_ALU_TYPE_SIZE_MASK;
726 }
727
728 static inline unsigned
729 nir_alu_type_get_base_type(nir_alu_type type)
730 {
731 return type & NIR_ALU_TYPE_BASE_TYPE_MASK;
732 }
733
734 static inline nir_alu_type
735 nir_get_nir_type_for_glsl_base_type(enum glsl_base_type base_type)
736 {
737 switch (base_type) {
738 case GLSL_TYPE_BOOL:
739 return nir_type_bool32;
740 break;
741 case GLSL_TYPE_UINT:
742 return nir_type_uint32;
743 break;
744 case GLSL_TYPE_INT:
745 return nir_type_int32;
746 break;
747 case GLSL_TYPE_UINT16:
748 return nir_type_uint16;
749 break;
750 case GLSL_TYPE_INT16:
751 return nir_type_int16;
752 break;
753 case GLSL_TYPE_UINT8:
754 return nir_type_uint8;
755 case GLSL_TYPE_INT8:
756 return nir_type_int8;
757 case GLSL_TYPE_UINT64:
758 return nir_type_uint64;
759 break;
760 case GLSL_TYPE_INT64:
761 return nir_type_int64;
762 break;
763 case GLSL_TYPE_FLOAT:
764 return nir_type_float32;
765 break;
766 case GLSL_TYPE_FLOAT16:
767 return nir_type_float16;
768 break;
769 case GLSL_TYPE_DOUBLE:
770 return nir_type_float64;
771 break;
772 default:
773 unreachable("unknown type");
774 }
775 }
776
777 static inline nir_alu_type
778 nir_get_nir_type_for_glsl_type(const struct glsl_type *type)
779 {
780 return nir_get_nir_type_for_glsl_base_type(glsl_get_base_type(type));
781 }
782
783 nir_op nir_type_conversion_op(nir_alu_type src, nir_alu_type dst,
784 nir_rounding_mode rnd);
785
786 typedef enum {
787 NIR_OP_IS_COMMUTATIVE = (1 << 0),
788 NIR_OP_IS_ASSOCIATIVE = (1 << 1),
789 } nir_op_algebraic_property;
790
791 typedef struct {
792 const char *name;
793
794 unsigned num_inputs;
795
796 /**
797 * The number of components in the output
798 *
799 * If non-zero, this is the size of the output and input sizes are
800 * explicitly given; swizzle and writemask are still in effect, but if
801 * the output component is masked out, then the input component may
802 * still be in use.
803 *
804 * If zero, the opcode acts in the standard, per-component manner; the
805 * operation is performed on each component (except the ones that are
806 * masked out) with the input being taken from the input swizzle for
807 * that component.
808 *
809 * The size of some of the inputs may be given (i.e. non-zero) even
810 * though output_size is zero; in that case, the inputs with a zero
811 * size act per-component, while the inputs with non-zero size don't.
812 */
813 unsigned output_size;
814
815 /**
816 * The type of vector that the instruction outputs. Note that the
817 * staurate modifier is only allowed on outputs with the float type.
818 */
819
820 nir_alu_type output_type;
821
822 /**
823 * The number of components in each input
824 */
825 unsigned input_sizes[4];
826
827 /**
828 * The type of vector that each input takes. Note that negate and
829 * absolute value are only allowed on inputs with int or float type and
830 * behave differently on the two.
831 */
832 nir_alu_type input_types[4];
833
834 nir_op_algebraic_property algebraic_properties;
835 } nir_op_info;
836
837 extern const nir_op_info nir_op_infos[nir_num_opcodes];
838
839 typedef struct nir_alu_instr {
840 nir_instr instr;
841 nir_op op;
842
843 /** Indicates that this ALU instruction generates an exact value
844 *
845 * This is kind of a mixture of GLSL "precise" and "invariant" and not
846 * really equivalent to either. This indicates that the value generated by
847 * this operation is high-precision and any code transformations that touch
848 * it must ensure that the resulting value is bit-for-bit identical to the
849 * original.
850 */
851 bool exact;
852
853 nir_alu_dest dest;
854 nir_alu_src src[];
855 } nir_alu_instr;
856
857 void nir_alu_src_copy(nir_alu_src *dest, const nir_alu_src *src,
858 nir_alu_instr *instr);
859 void nir_alu_dest_copy(nir_alu_dest *dest, const nir_alu_dest *src,
860 nir_alu_instr *instr);
861
862 /* is this source channel used? */
863 static inline bool
864 nir_alu_instr_channel_used(const nir_alu_instr *instr, unsigned src,
865 unsigned channel)
866 {
867 if (nir_op_infos[instr->op].input_sizes[src] > 0)
868 return channel < nir_op_infos[instr->op].input_sizes[src];
869
870 return (instr->dest.write_mask >> channel) & 1;
871 }
872
873 /*
874 * For instructions whose destinations are SSA, get the number of channels
875 * used for a source
876 */
877 static inline unsigned
878 nir_ssa_alu_instr_src_components(const nir_alu_instr *instr, unsigned src)
879 {
880 assert(instr->dest.dest.is_ssa);
881
882 if (nir_op_infos[instr->op].input_sizes[src] > 0)
883 return nir_op_infos[instr->op].input_sizes[src];
884
885 return instr->dest.dest.ssa.num_components;
886 }
887
888 bool nir_alu_srcs_equal(const nir_alu_instr *alu1, const nir_alu_instr *alu2,
889 unsigned src1, unsigned src2);
890
891 typedef enum {
892 nir_deref_type_var,
893 nir_deref_type_array,
894 nir_deref_type_struct
895 } nir_deref_type;
896
897 typedef struct nir_deref {
898 nir_deref_type deref_type;
899 struct nir_deref *child;
900 const struct glsl_type *type;
901 } nir_deref;
902
903 typedef struct {
904 nir_deref deref;
905
906 nir_variable *var;
907 } nir_deref_var;
908
909 /* This enum describes how the array is referenced. If the deref is
910 * direct then the base_offset is used. If the deref is indirect then
911 * offset is given by base_offset + indirect. If the deref is a wildcard
912 * then the deref refers to all of the elements of the array at the same
913 * time. Wildcard dereferences are only ever allowed in copy_var
914 * intrinsics and the source and destination derefs must have matching
915 * wildcards.
916 */
917 typedef enum {
918 nir_deref_array_type_direct,
919 nir_deref_array_type_indirect,
920 nir_deref_array_type_wildcard,
921 } nir_deref_array_type;
922
923 typedef struct {
924 nir_deref deref;
925
926 nir_deref_array_type deref_array_type;
927 unsigned base_offset;
928 nir_src indirect;
929 } nir_deref_array;
930
931 typedef struct {
932 nir_deref deref;
933
934 unsigned index;
935 } nir_deref_struct;
936
937 NIR_DEFINE_CAST(nir_deref_as_var, nir_deref, nir_deref_var, deref,
938 deref_type, nir_deref_type_var)
939 NIR_DEFINE_CAST(nir_deref_as_array, nir_deref, nir_deref_array, deref,
940 deref_type, nir_deref_type_array)
941 NIR_DEFINE_CAST(nir_deref_as_struct, nir_deref, nir_deref_struct, deref,
942 deref_type, nir_deref_type_struct)
943
944 /* Returns the last deref in the chain. */
945 static inline nir_deref *
946 nir_deref_tail(nir_deref *deref)
947 {
948 while (deref->child)
949 deref = deref->child;
950 return deref;
951 }
952
953 typedef struct {
954 nir_instr instr;
955
956 unsigned num_params;
957 nir_deref_var **params;
958 nir_deref_var *return_deref;
959
960 struct nir_function *callee;
961 } nir_call_instr;
962
963 #include "nir_intrinsics.h"
964
965 #define NIR_INTRINSIC_MAX_CONST_INDEX 3
966
967 /** Represents an intrinsic
968 *
969 * An intrinsic is an instruction type for handling things that are
970 * more-or-less regular operations but don't just consume and produce SSA
971 * values like ALU operations do. Intrinsics are not for things that have
972 * special semantic meaning such as phi nodes and parallel copies.
973 * Examples of intrinsics include variable load/store operations, system
974 * value loads, and the like. Even though texturing more-or-less falls
975 * under this category, texturing is its own instruction type because
976 * trying to represent texturing with intrinsics would lead to a
977 * combinatorial explosion of intrinsic opcodes.
978 *
979 * By having a single instruction type for handling a lot of different
980 * cases, optimization passes can look for intrinsics and, for the most
981 * part, completely ignore them. Each intrinsic type also has a few
982 * possible flags that govern whether or not they can be reordered or
983 * eliminated. That way passes like dead code elimination can still work
984 * on intrisics without understanding the meaning of each.
985 *
986 * Each intrinsic has some number of constant indices, some number of
987 * variables, and some number of sources. What these sources, variables,
988 * and indices mean depends on the intrinsic and is documented with the
989 * intrinsic declaration in nir_intrinsics.h. Intrinsics and texture
990 * instructions are the only types of instruction that can operate on
991 * variables.
992 */
993 typedef struct {
994 nir_instr instr;
995
996 nir_intrinsic_op intrinsic;
997
998 nir_dest dest;
999
1000 /** number of components if this is a vectorized intrinsic
1001 *
1002 * Similarly to ALU operations, some intrinsics are vectorized.
1003 * An intrinsic is vectorized if nir_intrinsic_infos.dest_components == 0.
1004 * For vectorized intrinsics, the num_components field specifies the
1005 * number of destination components and the number of source components
1006 * for all sources with nir_intrinsic_infos.src_components[i] == 0.
1007 */
1008 uint8_t num_components;
1009
1010 int const_index[NIR_INTRINSIC_MAX_CONST_INDEX];
1011
1012 nir_deref_var *variables[2];
1013
1014 nir_src src[];
1015 } nir_intrinsic_instr;
1016
1017 /**
1018 * \name NIR intrinsics semantic flags
1019 *
1020 * information about what the compiler can do with the intrinsics.
1021 *
1022 * \sa nir_intrinsic_info::flags
1023 */
1024 typedef enum {
1025 /**
1026 * whether the intrinsic can be safely eliminated if none of its output
1027 * value is not being used.
1028 */
1029 NIR_INTRINSIC_CAN_ELIMINATE = (1 << 0),
1030
1031 /**
1032 * Whether the intrinsic can be reordered with respect to any other
1033 * intrinsic, i.e. whether the only reordering dependencies of the
1034 * intrinsic are due to the register reads/writes.
1035 */
1036 NIR_INTRINSIC_CAN_REORDER = (1 << 1),
1037 } nir_intrinsic_semantic_flag;
1038
1039 /**
1040 * \name NIR intrinsics const-index flag
1041 *
1042 * Indicates the usage of a const_index slot.
1043 *
1044 * \sa nir_intrinsic_info::index_map
1045 */
1046 typedef enum {
1047 /**
1048 * Generally instructions that take a offset src argument, can encode
1049 * a constant 'base' value which is added to the offset.
1050 */
1051 NIR_INTRINSIC_BASE = 1,
1052
1053 /**
1054 * For store instructions, a writemask for the store.
1055 */
1056 NIR_INTRINSIC_WRMASK = 2,
1057
1058 /**
1059 * The stream-id for GS emit_vertex/end_primitive intrinsics.
1060 */
1061 NIR_INTRINSIC_STREAM_ID = 3,
1062
1063 /**
1064 * The clip-plane id for load_user_clip_plane intrinsic.
1065 */
1066 NIR_INTRINSIC_UCP_ID = 4,
1067
1068 /**
1069 * The amount of data, starting from BASE, that this instruction may
1070 * access. This is used to provide bounds if the offset is not constant.
1071 */
1072 NIR_INTRINSIC_RANGE = 5,
1073
1074 /**
1075 * The Vulkan descriptor set for vulkan_resource_index intrinsic.
1076 */
1077 NIR_INTRINSIC_DESC_SET = 6,
1078
1079 /**
1080 * The Vulkan descriptor set binding for vulkan_resource_index intrinsic.
1081 */
1082 NIR_INTRINSIC_BINDING = 7,
1083
1084 /**
1085 * Component offset.
1086 */
1087 NIR_INTRINSIC_COMPONENT = 8,
1088
1089 /**
1090 * Interpolation mode (only meaningful for FS inputs).
1091 */
1092 NIR_INTRINSIC_INTERP_MODE = 9,
1093
1094 /**
1095 * A binary nir_op to use when performing a reduction or scan operation
1096 */
1097 NIR_INTRINSIC_REDUCTION_OP = 10,
1098
1099 /**
1100 * Cluster size for reduction operations
1101 */
1102 NIR_INTRINSIC_CLUSTER_SIZE = 11,
1103
1104 NIR_INTRINSIC_NUM_INDEX_FLAGS,
1105
1106 } nir_intrinsic_index_flag;
1107
1108 #define NIR_INTRINSIC_MAX_INPUTS 4
1109
1110 typedef struct {
1111 const char *name;
1112
1113 unsigned num_srcs; /** < number of register/SSA inputs */
1114
1115 /** number of components of each input register
1116 *
1117 * If this value is 0, the number of components is given by the
1118 * num_components field of nir_intrinsic_instr.
1119 */
1120 unsigned src_components[NIR_INTRINSIC_MAX_INPUTS];
1121
1122 bool has_dest;
1123
1124 /** number of components of the output register
1125 *
1126 * If this value is 0, the number of components is given by the
1127 * num_components field of nir_intrinsic_instr.
1128 */
1129 unsigned dest_components;
1130
1131 /** the number of inputs/outputs that are variables */
1132 unsigned num_variables;
1133
1134 /** the number of constant indices used by the intrinsic */
1135 unsigned num_indices;
1136
1137 /** indicates the usage of intr->const_index[n] */
1138 unsigned index_map[NIR_INTRINSIC_NUM_INDEX_FLAGS];
1139
1140 /** semantic flags for calls to this intrinsic */
1141 nir_intrinsic_semantic_flag flags;
1142 } nir_intrinsic_info;
1143
1144 extern const nir_intrinsic_info nir_intrinsic_infos[nir_num_intrinsics];
1145
1146 static inline unsigned
1147 nir_intrinsic_src_components(nir_intrinsic_instr *intr, unsigned srcn)
1148 {
1149 const nir_intrinsic_info *info = &nir_intrinsic_infos[intr->intrinsic];
1150 assert(srcn < info->num_srcs);
1151 if (info->src_components[srcn])
1152 return info->src_components[srcn];
1153 else
1154 return intr->num_components;
1155 }
1156
1157 static inline unsigned
1158 nir_intrinsic_dest_components(nir_intrinsic_instr *intr)
1159 {
1160 const nir_intrinsic_info *info = &nir_intrinsic_infos[intr->intrinsic];
1161 if (!info->has_dest)
1162 return 0;
1163 else if (info->dest_components)
1164 return info->dest_components;
1165 else
1166 return intr->num_components;
1167 }
1168
1169 #define INTRINSIC_IDX_ACCESSORS(name, flag, type) \
1170 static inline type \
1171 nir_intrinsic_##name(const nir_intrinsic_instr *instr) \
1172 { \
1173 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic]; \
1174 assert(info->index_map[NIR_INTRINSIC_##flag] > 0); \
1175 return instr->const_index[info->index_map[NIR_INTRINSIC_##flag] - 1]; \
1176 } \
1177 static inline void \
1178 nir_intrinsic_set_##name(nir_intrinsic_instr *instr, type val) \
1179 { \
1180 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic]; \
1181 assert(info->index_map[NIR_INTRINSIC_##flag] > 0); \
1182 instr->const_index[info->index_map[NIR_INTRINSIC_##flag] - 1] = val; \
1183 }
1184
1185 INTRINSIC_IDX_ACCESSORS(write_mask, WRMASK, unsigned)
1186 INTRINSIC_IDX_ACCESSORS(base, BASE, int)
1187 INTRINSIC_IDX_ACCESSORS(stream_id, STREAM_ID, unsigned)
1188 INTRINSIC_IDX_ACCESSORS(ucp_id, UCP_ID, unsigned)
1189 INTRINSIC_IDX_ACCESSORS(range, RANGE, unsigned)
1190 INTRINSIC_IDX_ACCESSORS(desc_set, DESC_SET, unsigned)
1191 INTRINSIC_IDX_ACCESSORS(binding, BINDING, unsigned)
1192 INTRINSIC_IDX_ACCESSORS(component, COMPONENT, unsigned)
1193 INTRINSIC_IDX_ACCESSORS(interp_mode, INTERP_MODE, unsigned)
1194 INTRINSIC_IDX_ACCESSORS(reduction_op, REDUCTION_OP, unsigned)
1195 INTRINSIC_IDX_ACCESSORS(cluster_size, CLUSTER_SIZE, unsigned)
1196
1197 /**
1198 * \group texture information
1199 *
1200 * This gives semantic information about textures which is useful to the
1201 * frontend, the backend, and lowering passes, but not the optimizer.
1202 */
1203
1204 typedef enum {
1205 nir_tex_src_coord,
1206 nir_tex_src_projector,
1207 nir_tex_src_comparator, /* shadow comparator */
1208 nir_tex_src_offset,
1209 nir_tex_src_bias,
1210 nir_tex_src_lod,
1211 nir_tex_src_ms_index, /* MSAA sample index */
1212 nir_tex_src_ms_mcs, /* MSAA compression value */
1213 nir_tex_src_ddx,
1214 nir_tex_src_ddy,
1215 nir_tex_src_texture_offset, /* < dynamically uniform indirect offset */
1216 nir_tex_src_sampler_offset, /* < dynamically uniform indirect offset */
1217 nir_tex_src_plane, /* < selects plane for planar textures */
1218 nir_num_tex_src_types
1219 } nir_tex_src_type;
1220
1221 typedef struct {
1222 nir_src src;
1223 nir_tex_src_type src_type;
1224 } nir_tex_src;
1225
1226 typedef enum {
1227 nir_texop_tex, /**< Regular texture look-up */
1228 nir_texop_txb, /**< Texture look-up with LOD bias */
1229 nir_texop_txl, /**< Texture look-up with explicit LOD */
1230 nir_texop_txd, /**< Texture look-up with partial derivatives */
1231 nir_texop_txf, /**< Texel fetch with explicit LOD */
1232 nir_texop_txf_ms, /**< Multisample texture fetch */
1233 nir_texop_txf_ms_mcs, /**< Multisample compression value fetch */
1234 nir_texop_txs, /**< Texture size */
1235 nir_texop_lod, /**< Texture lod query */
1236 nir_texop_tg4, /**< Texture gather */
1237 nir_texop_query_levels, /**< Texture levels query */
1238 nir_texop_texture_samples, /**< Texture samples query */
1239 nir_texop_samples_identical, /**< Query whether all samples are definitely
1240 * identical.
1241 */
1242 } nir_texop;
1243
1244 typedef struct {
1245 nir_instr instr;
1246
1247 enum glsl_sampler_dim sampler_dim;
1248 nir_alu_type dest_type;
1249
1250 nir_texop op;
1251 nir_dest dest;
1252 nir_tex_src *src;
1253 unsigned num_srcs, coord_components;
1254 bool is_array, is_shadow;
1255
1256 /**
1257 * If is_shadow is true, whether this is the old-style shadow that outputs 4
1258 * components or the new-style shadow that outputs 1 component.
1259 */
1260 bool is_new_style_shadow;
1261
1262 /* gather component selector */
1263 unsigned component : 2;
1264
1265 /** The texture index
1266 *
1267 * If this texture instruction has a nir_tex_src_texture_offset source,
1268 * then the texture index is given by texture_index + texture_offset.
1269 */
1270 unsigned texture_index;
1271
1272 /** The size of the texture array or 0 if it's not an array */
1273 unsigned texture_array_size;
1274
1275 /** The texture deref
1276 *
1277 * If this is null, use texture_index instead.
1278 */
1279 nir_deref_var *texture;
1280
1281 /** The sampler index
1282 *
1283 * The following operations do not require a sampler and, as such, this
1284 * field should be ignored:
1285 * - nir_texop_txf
1286 * - nir_texop_txf_ms
1287 * - nir_texop_txs
1288 * - nir_texop_lod
1289 * - nir_texop_query_levels
1290 * - nir_texop_texture_samples
1291 * - nir_texop_samples_identical
1292 *
1293 * If this texture instruction has a nir_tex_src_sampler_offset source,
1294 * then the sampler index is given by sampler_index + sampler_offset.
1295 */
1296 unsigned sampler_index;
1297
1298 /** The sampler deref
1299 *
1300 * If this is null, use sampler_index instead.
1301 */
1302 nir_deref_var *sampler;
1303 } nir_tex_instr;
1304
1305 static inline unsigned
1306 nir_tex_instr_dest_size(const nir_tex_instr *instr)
1307 {
1308 switch (instr->op) {
1309 case nir_texop_txs: {
1310 unsigned ret;
1311 switch (instr->sampler_dim) {
1312 case GLSL_SAMPLER_DIM_1D:
1313 case GLSL_SAMPLER_DIM_BUF:
1314 ret = 1;
1315 break;
1316 case GLSL_SAMPLER_DIM_2D:
1317 case GLSL_SAMPLER_DIM_CUBE:
1318 case GLSL_SAMPLER_DIM_MS:
1319 case GLSL_SAMPLER_DIM_RECT:
1320 case GLSL_SAMPLER_DIM_EXTERNAL:
1321 case GLSL_SAMPLER_DIM_SUBPASS:
1322 ret = 2;
1323 break;
1324 case GLSL_SAMPLER_DIM_3D:
1325 ret = 3;
1326 break;
1327 default:
1328 unreachable("not reached");
1329 }
1330 if (instr->is_array)
1331 ret++;
1332 return ret;
1333 }
1334
1335 case nir_texop_lod:
1336 return 2;
1337
1338 case nir_texop_texture_samples:
1339 case nir_texop_query_levels:
1340 case nir_texop_samples_identical:
1341 return 1;
1342
1343 default:
1344 if (instr->is_shadow && instr->is_new_style_shadow)
1345 return 1;
1346
1347 return 4;
1348 }
1349 }
1350
1351 /* Returns true if this texture operation queries something about the texture
1352 * rather than actually sampling it.
1353 */
1354 static inline bool
1355 nir_tex_instr_is_query(const nir_tex_instr *instr)
1356 {
1357 switch (instr->op) {
1358 case nir_texop_txs:
1359 case nir_texop_lod:
1360 case nir_texop_texture_samples:
1361 case nir_texop_query_levels:
1362 case nir_texop_txf_ms_mcs:
1363 return true;
1364 case nir_texop_tex:
1365 case nir_texop_txb:
1366 case nir_texop_txl:
1367 case nir_texop_txd:
1368 case nir_texop_txf:
1369 case nir_texop_txf_ms:
1370 case nir_texop_tg4:
1371 return false;
1372 default:
1373 unreachable("Invalid texture opcode");
1374 }
1375 }
1376
1377 static inline nir_alu_type
1378 nir_tex_instr_src_type(const nir_tex_instr *instr, unsigned src)
1379 {
1380 switch (instr->src[src].src_type) {
1381 case nir_tex_src_coord:
1382 switch (instr->op) {
1383 case nir_texop_txf:
1384 case nir_texop_txf_ms:
1385 case nir_texop_txf_ms_mcs:
1386 case nir_texop_samples_identical:
1387 return nir_type_int;
1388
1389 default:
1390 return nir_type_float;
1391 }
1392
1393 case nir_tex_src_lod:
1394 switch (instr->op) {
1395 case nir_texop_txs:
1396 case nir_texop_txf:
1397 return nir_type_int;
1398
1399 default:
1400 return nir_type_float;
1401 }
1402
1403 case nir_tex_src_projector:
1404 case nir_tex_src_comparator:
1405 case nir_tex_src_bias:
1406 case nir_tex_src_ddx:
1407 case nir_tex_src_ddy:
1408 return nir_type_float;
1409
1410 case nir_tex_src_offset:
1411 case nir_tex_src_ms_index:
1412 case nir_tex_src_texture_offset:
1413 case nir_tex_src_sampler_offset:
1414 return nir_type_int;
1415
1416 default:
1417 unreachable("Invalid texture source type");
1418 }
1419 }
1420
1421 static inline unsigned
1422 nir_tex_instr_src_size(const nir_tex_instr *instr, unsigned src)
1423 {
1424 if (instr->src[src].src_type == nir_tex_src_coord)
1425 return instr->coord_components;
1426
1427 /* The MCS value is expected to be a vec4 returned by a txf_ms_mcs */
1428 if (instr->src[src].src_type == nir_tex_src_ms_mcs)
1429 return 4;
1430
1431 if (instr->src[src].src_type == nir_tex_src_ddx ||
1432 instr->src[src].src_type == nir_tex_src_ddy) {
1433 if (instr->is_array)
1434 return instr->coord_components - 1;
1435 else
1436 return instr->coord_components;
1437 }
1438
1439 /* Usual APIs don't allow cube + offset, but we allow it, with 2 coords for
1440 * the offset, since a cube maps to a single face.
1441 */
1442 if (instr->src[src].src_type == nir_tex_src_offset) {
1443 if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE)
1444 return 2;
1445 else if (instr->is_array)
1446 return instr->coord_components - 1;
1447 else
1448 return instr->coord_components;
1449 }
1450
1451 return 1;
1452 }
1453
1454 static inline int
1455 nir_tex_instr_src_index(const nir_tex_instr *instr, nir_tex_src_type type)
1456 {
1457 for (unsigned i = 0; i < instr->num_srcs; i++)
1458 if (instr->src[i].src_type == type)
1459 return (int) i;
1460
1461 return -1;
1462 }
1463
1464 void nir_tex_instr_add_src(nir_tex_instr *tex,
1465 nir_tex_src_type src_type,
1466 nir_src src);
1467
1468 void nir_tex_instr_remove_src(nir_tex_instr *tex, unsigned src_idx);
1469
1470 typedef struct {
1471 nir_instr instr;
1472
1473 nir_const_value value;
1474
1475 nir_ssa_def def;
1476 } nir_load_const_instr;
1477
1478 typedef enum {
1479 nir_jump_return,
1480 nir_jump_break,
1481 nir_jump_continue,
1482 } nir_jump_type;
1483
1484 typedef struct {
1485 nir_instr instr;
1486 nir_jump_type type;
1487 } nir_jump_instr;
1488
1489 /* creates a new SSA variable in an undefined state */
1490
1491 typedef struct {
1492 nir_instr instr;
1493 nir_ssa_def def;
1494 } nir_ssa_undef_instr;
1495
1496 typedef struct {
1497 struct exec_node node;
1498
1499 /* The predecessor block corresponding to this source */
1500 struct nir_block *pred;
1501
1502 nir_src src;
1503 } nir_phi_src;
1504
1505 #define nir_foreach_phi_src(phi_src, phi) \
1506 foreach_list_typed(nir_phi_src, phi_src, node, &(phi)->srcs)
1507 #define nir_foreach_phi_src_safe(phi_src, phi) \
1508 foreach_list_typed_safe(nir_phi_src, phi_src, node, &(phi)->srcs)
1509
1510 typedef struct {
1511 nir_instr instr;
1512
1513 struct exec_list srcs; /** < list of nir_phi_src */
1514
1515 nir_dest dest;
1516 } nir_phi_instr;
1517
1518 typedef struct {
1519 struct exec_node node;
1520 nir_src src;
1521 nir_dest dest;
1522 } nir_parallel_copy_entry;
1523
1524 #define nir_foreach_parallel_copy_entry(entry, pcopy) \
1525 foreach_list_typed(nir_parallel_copy_entry, entry, node, &(pcopy)->entries)
1526
1527 typedef struct {
1528 nir_instr instr;
1529
1530 /* A list of nir_parallel_copy_entrys. The sources of all of the
1531 * entries are copied to the corresponding destinations "in parallel".
1532 * In other words, if we have two entries: a -> b and b -> a, the values
1533 * get swapped.
1534 */
1535 struct exec_list entries;
1536 } nir_parallel_copy_instr;
1537
1538 NIR_DEFINE_CAST(nir_instr_as_alu, nir_instr, nir_alu_instr, instr,
1539 type, nir_instr_type_alu)
1540 NIR_DEFINE_CAST(nir_instr_as_call, nir_instr, nir_call_instr, instr,
1541 type, nir_instr_type_call)
1542 NIR_DEFINE_CAST(nir_instr_as_jump, nir_instr, nir_jump_instr, instr,
1543 type, nir_instr_type_jump)
1544 NIR_DEFINE_CAST(nir_instr_as_tex, nir_instr, nir_tex_instr, instr,
1545 type, nir_instr_type_tex)
1546 NIR_DEFINE_CAST(nir_instr_as_intrinsic, nir_instr, nir_intrinsic_instr, instr,
1547 type, nir_instr_type_intrinsic)
1548 NIR_DEFINE_CAST(nir_instr_as_load_const, nir_instr, nir_load_const_instr, instr,
1549 type, nir_instr_type_load_const)
1550 NIR_DEFINE_CAST(nir_instr_as_ssa_undef, nir_instr, nir_ssa_undef_instr, instr,
1551 type, nir_instr_type_ssa_undef)
1552 NIR_DEFINE_CAST(nir_instr_as_phi, nir_instr, nir_phi_instr, instr,
1553 type, nir_instr_type_phi)
1554 NIR_DEFINE_CAST(nir_instr_as_parallel_copy, nir_instr,
1555 nir_parallel_copy_instr, instr,
1556 type, nir_instr_type_parallel_copy)
1557
1558 /*
1559 * Control flow
1560 *
1561 * Control flow consists of a tree of control flow nodes, which include
1562 * if-statements and loops. The leaves of the tree are basic blocks, lists of
1563 * instructions that always run start-to-finish. Each basic block also keeps
1564 * track of its successors (blocks which may run immediately after the current
1565 * block) and predecessors (blocks which could have run immediately before the
1566 * current block). Each function also has a start block and an end block which
1567 * all return statements point to (which is always empty). Together, all the
1568 * blocks with their predecessors and successors make up the control flow
1569 * graph (CFG) of the function. There are helpers that modify the tree of
1570 * control flow nodes while modifying the CFG appropriately; these should be
1571 * used instead of modifying the tree directly.
1572 */
1573
1574 typedef enum {
1575 nir_cf_node_block,
1576 nir_cf_node_if,
1577 nir_cf_node_loop,
1578 nir_cf_node_function
1579 } nir_cf_node_type;
1580
1581 typedef struct nir_cf_node {
1582 struct exec_node node;
1583 nir_cf_node_type type;
1584 struct nir_cf_node *parent;
1585 } nir_cf_node;
1586
1587 typedef struct nir_block {
1588 nir_cf_node cf_node;
1589
1590 struct exec_list instr_list; /** < list of nir_instr */
1591
1592 /** generic block index; generated by nir_index_blocks */
1593 unsigned index;
1594
1595 /*
1596 * Each block can only have up to 2 successors, so we put them in a simple
1597 * array - no need for anything more complicated.
1598 */
1599 struct nir_block *successors[2];
1600
1601 /* Set of nir_block predecessors in the CFG */
1602 struct set *predecessors;
1603
1604 /*
1605 * this node's immediate dominator in the dominance tree - set to NULL for
1606 * the start block.
1607 */
1608 struct nir_block *imm_dom;
1609
1610 /* This node's children in the dominance tree */
1611 unsigned num_dom_children;
1612 struct nir_block **dom_children;
1613
1614 /* Set of nir_blocks on the dominance frontier of this block */
1615 struct set *dom_frontier;
1616
1617 /*
1618 * These two indices have the property that dom_{pre,post}_index for each
1619 * child of this block in the dominance tree will always be between
1620 * dom_pre_index and dom_post_index for this block, which makes testing if
1621 * a given block is dominated by another block an O(1) operation.
1622 */
1623 unsigned dom_pre_index, dom_post_index;
1624
1625 /* live in and out for this block; used for liveness analysis */
1626 BITSET_WORD *live_in;
1627 BITSET_WORD *live_out;
1628 } nir_block;
1629
1630 static inline nir_instr *
1631 nir_block_first_instr(nir_block *block)
1632 {
1633 struct exec_node *head = exec_list_get_head(&block->instr_list);
1634 return exec_node_data(nir_instr, head, node);
1635 }
1636
1637 static inline nir_instr *
1638 nir_block_last_instr(nir_block *block)
1639 {
1640 struct exec_node *tail = exec_list_get_tail(&block->instr_list);
1641 return exec_node_data(nir_instr, tail, node);
1642 }
1643
1644 #define nir_foreach_instr(instr, block) \
1645 foreach_list_typed(nir_instr, instr, node, &(block)->instr_list)
1646 #define nir_foreach_instr_reverse(instr, block) \
1647 foreach_list_typed_reverse(nir_instr, instr, node, &(block)->instr_list)
1648 #define nir_foreach_instr_safe(instr, block) \
1649 foreach_list_typed_safe(nir_instr, instr, node, &(block)->instr_list)
1650 #define nir_foreach_instr_reverse_safe(instr, block) \
1651 foreach_list_typed_reverse_safe(nir_instr, instr, node, &(block)->instr_list)
1652
1653 typedef struct nir_if {
1654 nir_cf_node cf_node;
1655 nir_src condition;
1656
1657 struct exec_list then_list; /** < list of nir_cf_node */
1658 struct exec_list else_list; /** < list of nir_cf_node */
1659 } nir_if;
1660
1661 typedef struct {
1662 nir_if *nif;
1663
1664 nir_instr *conditional_instr;
1665
1666 nir_block *break_block;
1667 nir_block *continue_from_block;
1668
1669 bool continue_from_then;
1670
1671 struct list_head loop_terminator_link;
1672 } nir_loop_terminator;
1673
1674 typedef struct {
1675 /* Number of instructions in the loop */
1676 unsigned num_instructions;
1677
1678 /* How many times the loop is run (if known) */
1679 unsigned trip_count;
1680 bool is_trip_count_known;
1681
1682 /* Unroll the loop regardless of its size */
1683 bool force_unroll;
1684
1685 nir_loop_terminator *limiting_terminator;
1686
1687 /* A list of loop_terminators terminating this loop. */
1688 struct list_head loop_terminator_list;
1689 } nir_loop_info;
1690
1691 typedef struct {
1692 nir_cf_node cf_node;
1693
1694 struct exec_list body; /** < list of nir_cf_node */
1695
1696 nir_loop_info *info;
1697 } nir_loop;
1698
1699 /**
1700 * Various bits of metadata that can may be created or required by
1701 * optimization and analysis passes
1702 */
1703 typedef enum {
1704 nir_metadata_none = 0x0,
1705 nir_metadata_block_index = 0x1,
1706 nir_metadata_dominance = 0x2,
1707 nir_metadata_live_ssa_defs = 0x4,
1708 nir_metadata_not_properly_reset = 0x8,
1709 nir_metadata_loop_analysis = 0x10,
1710 } nir_metadata;
1711
1712 typedef struct {
1713 nir_cf_node cf_node;
1714
1715 /** pointer to the function of which this is an implementation */
1716 struct nir_function *function;
1717
1718 struct exec_list body; /** < list of nir_cf_node */
1719
1720 nir_block *end_block;
1721
1722 /** list for all local variables in the function */
1723 struct exec_list locals;
1724
1725 /** array of variables used as parameters */
1726 unsigned num_params;
1727 nir_variable **params;
1728
1729 /** variable used to hold the result of the function */
1730 nir_variable *return_var;
1731
1732 /** list of local registers in the function */
1733 struct exec_list registers;
1734
1735 /** next available local register index */
1736 unsigned reg_alloc;
1737
1738 /** next available SSA value index */
1739 unsigned ssa_alloc;
1740
1741 /* total number of basic blocks, only valid when block_index_dirty = false */
1742 unsigned num_blocks;
1743
1744 nir_metadata valid_metadata;
1745 } nir_function_impl;
1746
1747 ATTRIBUTE_RETURNS_NONNULL static inline nir_block *
1748 nir_start_block(nir_function_impl *impl)
1749 {
1750 return (nir_block *) impl->body.head_sentinel.next;
1751 }
1752
1753 ATTRIBUTE_RETURNS_NONNULL static inline nir_block *
1754 nir_impl_last_block(nir_function_impl *impl)
1755 {
1756 return (nir_block *) impl->body.tail_sentinel.prev;
1757 }
1758
1759 static inline nir_cf_node *
1760 nir_cf_node_next(nir_cf_node *node)
1761 {
1762 struct exec_node *next = exec_node_get_next(&node->node);
1763 if (exec_node_is_tail_sentinel(next))
1764 return NULL;
1765 else
1766 return exec_node_data(nir_cf_node, next, node);
1767 }
1768
1769 static inline nir_cf_node *
1770 nir_cf_node_prev(nir_cf_node *node)
1771 {
1772 struct exec_node *prev = exec_node_get_prev(&node->node);
1773 if (exec_node_is_head_sentinel(prev))
1774 return NULL;
1775 else
1776 return exec_node_data(nir_cf_node, prev, node);
1777 }
1778
1779 static inline bool
1780 nir_cf_node_is_first(const nir_cf_node *node)
1781 {
1782 return exec_node_is_head_sentinel(node->node.prev);
1783 }
1784
1785 static inline bool
1786 nir_cf_node_is_last(const nir_cf_node *node)
1787 {
1788 return exec_node_is_tail_sentinel(node->node.next);
1789 }
1790
1791 NIR_DEFINE_CAST(nir_cf_node_as_block, nir_cf_node, nir_block, cf_node,
1792 type, nir_cf_node_block)
1793 NIR_DEFINE_CAST(nir_cf_node_as_if, nir_cf_node, nir_if, cf_node,
1794 type, nir_cf_node_if)
1795 NIR_DEFINE_CAST(nir_cf_node_as_loop, nir_cf_node, nir_loop, cf_node,
1796 type, nir_cf_node_loop)
1797 NIR_DEFINE_CAST(nir_cf_node_as_function, nir_cf_node,
1798 nir_function_impl, cf_node, type, nir_cf_node_function)
1799
1800 static inline nir_block *
1801 nir_if_first_then_block(nir_if *if_stmt)
1802 {
1803 struct exec_node *head = exec_list_get_head(&if_stmt->then_list);
1804 return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
1805 }
1806
1807 static inline nir_block *
1808 nir_if_last_then_block(nir_if *if_stmt)
1809 {
1810 struct exec_node *tail = exec_list_get_tail(&if_stmt->then_list);
1811 return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
1812 }
1813
1814 static inline nir_block *
1815 nir_if_first_else_block(nir_if *if_stmt)
1816 {
1817 struct exec_node *head = exec_list_get_head(&if_stmt->else_list);
1818 return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
1819 }
1820
1821 static inline nir_block *
1822 nir_if_last_else_block(nir_if *if_stmt)
1823 {
1824 struct exec_node *tail = exec_list_get_tail(&if_stmt->else_list);
1825 return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
1826 }
1827
1828 static inline nir_block *
1829 nir_loop_first_block(nir_loop *loop)
1830 {
1831 struct exec_node *head = exec_list_get_head(&loop->body);
1832 return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
1833 }
1834
1835 static inline nir_block *
1836 nir_loop_last_block(nir_loop *loop)
1837 {
1838 struct exec_node *tail = exec_list_get_tail(&loop->body);
1839 return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
1840 }
1841
1842 typedef enum {
1843 nir_parameter_in,
1844 nir_parameter_out,
1845 nir_parameter_inout,
1846 } nir_parameter_type;
1847
1848 typedef struct {
1849 nir_parameter_type param_type;
1850 const struct glsl_type *type;
1851 } nir_parameter;
1852
1853 typedef struct nir_function {
1854 struct exec_node node;
1855
1856 const char *name;
1857 struct nir_shader *shader;
1858
1859 unsigned num_params;
1860 nir_parameter *params;
1861 const struct glsl_type *return_type;
1862
1863 /** The implementation of this function.
1864 *
1865 * If the function is only declared and not implemented, this is NULL.
1866 */
1867 nir_function_impl *impl;
1868 } nir_function;
1869
1870 typedef struct nir_shader_compiler_options {
1871 bool lower_fdiv;
1872 bool lower_ffma;
1873 bool fuse_ffma;
1874 bool lower_flrp32;
1875 /** Lowers flrp when it does not support doubles */
1876 bool lower_flrp64;
1877 bool lower_fpow;
1878 bool lower_fsat;
1879 bool lower_fsqrt;
1880 bool lower_fmod32;
1881 bool lower_fmod64;
1882 bool lower_bitfield_extract;
1883 bool lower_bitfield_insert;
1884 bool lower_uadd_carry;
1885 bool lower_usub_borrow;
1886 /** lowers fneg and ineg to fsub and isub. */
1887 bool lower_negate;
1888 /** lowers fsub and isub to fadd+fneg and iadd+ineg. */
1889 bool lower_sub;
1890
1891 /* lower {slt,sge,seq,sne} to {flt,fge,feq,fne} + b2f: */
1892 bool lower_scmp;
1893
1894 /** enables rules to lower idiv by power-of-two: */
1895 bool lower_idiv;
1896
1897 /* Does the native fdot instruction replicate its result for four
1898 * components? If so, then opt_algebraic_late will turn all fdotN
1899 * instructions into fdot_replicatedN instructions.
1900 */
1901 bool fdot_replicates;
1902
1903 /** lowers ffract to fsub+ffloor: */
1904 bool lower_ffract;
1905
1906 bool lower_ldexp;
1907
1908 bool lower_pack_half_2x16;
1909 bool lower_pack_unorm_2x16;
1910 bool lower_pack_snorm_2x16;
1911 bool lower_pack_unorm_4x8;
1912 bool lower_pack_snorm_4x8;
1913 bool lower_unpack_half_2x16;
1914 bool lower_unpack_unorm_2x16;
1915 bool lower_unpack_snorm_2x16;
1916 bool lower_unpack_unorm_4x8;
1917 bool lower_unpack_snorm_4x8;
1918
1919 bool lower_extract_byte;
1920 bool lower_extract_word;
1921
1922 bool lower_all_io_to_temps;
1923
1924 /**
1925 * Does the driver support real 32-bit integers? (Otherwise, integers
1926 * are simulated by floats.)
1927 */
1928 bool native_integers;
1929
1930 /* Indicates that the driver only has zero-based vertex id */
1931 bool vertex_id_zero_based;
1932
1933 bool lower_cs_local_index_from_id;
1934
1935 bool lower_device_index_to_zero;
1936
1937 /**
1938 * Should nir_lower_io() create load_interpolated_input intrinsics?
1939 *
1940 * If not, it generates regular load_input intrinsics and interpolation
1941 * information must be inferred from the list of input nir_variables.
1942 */
1943 bool use_interpolated_input_intrinsics;
1944
1945 /**
1946 * Do vertex shader double inputs use two locations? The Vulkan spec
1947 * requires two locations to be used, OpenGL allows a single location.
1948 */
1949 bool vs_inputs_dual_locations;
1950
1951 unsigned max_unroll_iterations;
1952 } nir_shader_compiler_options;
1953
1954 typedef struct nir_shader {
1955 /** list of uniforms (nir_variable) */
1956 struct exec_list uniforms;
1957
1958 /** list of inputs (nir_variable) */
1959 struct exec_list inputs;
1960
1961 /** list of outputs (nir_variable) */
1962 struct exec_list outputs;
1963
1964 /** list of shared compute variables (nir_variable) */
1965 struct exec_list shared;
1966
1967 /** Set of driver-specific options for the shader.
1968 *
1969 * The memory for the options is expected to be kept in a single static
1970 * copy by the driver.
1971 */
1972 const struct nir_shader_compiler_options *options;
1973
1974 /** Various bits of compile-time information about a given shader */
1975 struct shader_info info;
1976
1977 /** list of global variables in the shader (nir_variable) */
1978 struct exec_list globals;
1979
1980 /** list of system value variables in the shader (nir_variable) */
1981 struct exec_list system_values;
1982
1983 struct exec_list functions; /** < list of nir_function */
1984
1985 /** list of global register in the shader */
1986 struct exec_list registers;
1987
1988 /** next available global register index */
1989 unsigned reg_alloc;
1990
1991 /**
1992 * the highest index a load_input_*, load_uniform_*, etc. intrinsic can
1993 * access plus one
1994 */
1995 unsigned num_inputs, num_uniforms, num_outputs, num_shared;
1996 } nir_shader;
1997
1998 static inline nir_function_impl *
1999 nir_shader_get_entrypoint(nir_shader *shader)
2000 {
2001 assert(exec_list_length(&shader->functions) == 1);
2002 struct exec_node *func_node = exec_list_get_head(&shader->functions);
2003 nir_function *func = exec_node_data(nir_function, func_node, node);
2004 assert(func->return_type == glsl_void_type());
2005 assert(func->num_params == 0);
2006 assert(func->impl);
2007 return func->impl;
2008 }
2009
2010 #define nir_foreach_function(func, shader) \
2011 foreach_list_typed(nir_function, func, node, &(shader)->functions)
2012
2013 nir_shader *nir_shader_create(void *mem_ctx,
2014 gl_shader_stage stage,
2015 const nir_shader_compiler_options *options,
2016 shader_info *si);
2017
2018 /** creates a register, including assigning it an index and adding it to the list */
2019 nir_register *nir_global_reg_create(nir_shader *shader);
2020
2021 nir_register *nir_local_reg_create(nir_function_impl *impl);
2022
2023 void nir_reg_remove(nir_register *reg);
2024
2025 /** Adds a variable to the appropriate list in nir_shader */
2026 void nir_shader_add_variable(nir_shader *shader, nir_variable *var);
2027
2028 static inline void
2029 nir_function_impl_add_variable(nir_function_impl *impl, nir_variable *var)
2030 {
2031 assert(var->data.mode == nir_var_local);
2032 exec_list_push_tail(&impl->locals, &var->node);
2033 }
2034
2035 /** creates a variable, sets a few defaults, and adds it to the list */
2036 nir_variable *nir_variable_create(nir_shader *shader,
2037 nir_variable_mode mode,
2038 const struct glsl_type *type,
2039 const char *name);
2040 /** creates a local variable and adds it to the list */
2041 nir_variable *nir_local_variable_create(nir_function_impl *impl,
2042 const struct glsl_type *type,
2043 const char *name);
2044
2045 /** creates a function and adds it to the shader's list of functions */
2046 nir_function *nir_function_create(nir_shader *shader, const char *name);
2047
2048 nir_function_impl *nir_function_impl_create(nir_function *func);
2049 /** creates a function_impl that isn't tied to any particular function */
2050 nir_function_impl *nir_function_impl_create_bare(nir_shader *shader);
2051
2052 nir_block *nir_block_create(nir_shader *shader);
2053 nir_if *nir_if_create(nir_shader *shader);
2054 nir_loop *nir_loop_create(nir_shader *shader);
2055
2056 nir_function_impl *nir_cf_node_get_function(nir_cf_node *node);
2057
2058 /** requests that the given pieces of metadata be generated */
2059 void nir_metadata_require(nir_function_impl *impl, nir_metadata required, ...);
2060 /** dirties all but the preserved metadata */
2061 void nir_metadata_preserve(nir_function_impl *impl, nir_metadata preserved);
2062
2063 /** creates an instruction with default swizzle/writemask/etc. with NULL registers */
2064 nir_alu_instr *nir_alu_instr_create(nir_shader *shader, nir_op op);
2065
2066 nir_jump_instr *nir_jump_instr_create(nir_shader *shader, nir_jump_type type);
2067
2068 nir_load_const_instr *nir_load_const_instr_create(nir_shader *shader,
2069 unsigned num_components,
2070 unsigned bit_size);
2071
2072 nir_intrinsic_instr *nir_intrinsic_instr_create(nir_shader *shader,
2073 nir_intrinsic_op op);
2074
2075 nir_call_instr *nir_call_instr_create(nir_shader *shader,
2076 nir_function *callee);
2077
2078 nir_tex_instr *nir_tex_instr_create(nir_shader *shader, unsigned num_srcs);
2079
2080 nir_phi_instr *nir_phi_instr_create(nir_shader *shader);
2081
2082 nir_parallel_copy_instr *nir_parallel_copy_instr_create(nir_shader *shader);
2083
2084 nir_ssa_undef_instr *nir_ssa_undef_instr_create(nir_shader *shader,
2085 unsigned num_components,
2086 unsigned bit_size);
2087
2088 nir_deref_var *nir_deref_var_create(void *mem_ctx, nir_variable *var);
2089 nir_deref_array *nir_deref_array_create(void *mem_ctx);
2090 nir_deref_struct *nir_deref_struct_create(void *mem_ctx, unsigned field_index);
2091
2092 typedef bool (*nir_deref_foreach_leaf_cb)(nir_deref_var *deref, void *state);
2093 bool nir_deref_foreach_leaf(nir_deref_var *deref,
2094 nir_deref_foreach_leaf_cb cb, void *state);
2095
2096 nir_load_const_instr *
2097 nir_deref_get_const_initializer_load(nir_shader *shader, nir_deref_var *deref);
2098
2099 nir_const_value nir_alu_binop_identity(nir_op binop, unsigned bit_size);
2100
2101 /**
2102 * NIR Cursors and Instruction Insertion API
2103 * @{
2104 *
2105 * A tiny struct representing a point to insert/extract instructions or
2106 * control flow nodes. Helps reduce the combinatorial explosion of possible
2107 * points to insert/extract.
2108 *
2109 * \sa nir_control_flow.h
2110 */
2111 typedef enum {
2112 nir_cursor_before_block,
2113 nir_cursor_after_block,
2114 nir_cursor_before_instr,
2115 nir_cursor_after_instr,
2116 } nir_cursor_option;
2117
2118 typedef struct {
2119 nir_cursor_option option;
2120 union {
2121 nir_block *block;
2122 nir_instr *instr;
2123 };
2124 } nir_cursor;
2125
2126 static inline nir_block *
2127 nir_cursor_current_block(nir_cursor cursor)
2128 {
2129 if (cursor.option == nir_cursor_before_instr ||
2130 cursor.option == nir_cursor_after_instr) {
2131 return cursor.instr->block;
2132 } else {
2133 return cursor.block;
2134 }
2135 }
2136
2137 bool nir_cursors_equal(nir_cursor a, nir_cursor b);
2138
2139 static inline nir_cursor
2140 nir_before_block(nir_block *block)
2141 {
2142 nir_cursor cursor;
2143 cursor.option = nir_cursor_before_block;
2144 cursor.block = block;
2145 return cursor;
2146 }
2147
2148 static inline nir_cursor
2149 nir_after_block(nir_block *block)
2150 {
2151 nir_cursor cursor;
2152 cursor.option = nir_cursor_after_block;
2153 cursor.block = block;
2154 return cursor;
2155 }
2156
2157 static inline nir_cursor
2158 nir_before_instr(nir_instr *instr)
2159 {
2160 nir_cursor cursor;
2161 cursor.option = nir_cursor_before_instr;
2162 cursor.instr = instr;
2163 return cursor;
2164 }
2165
2166 static inline nir_cursor
2167 nir_after_instr(nir_instr *instr)
2168 {
2169 nir_cursor cursor;
2170 cursor.option = nir_cursor_after_instr;
2171 cursor.instr = instr;
2172 return cursor;
2173 }
2174
2175 static inline nir_cursor
2176 nir_after_block_before_jump(nir_block *block)
2177 {
2178 nir_instr *last_instr = nir_block_last_instr(block);
2179 if (last_instr && last_instr->type == nir_instr_type_jump) {
2180 return nir_before_instr(last_instr);
2181 } else {
2182 return nir_after_block(block);
2183 }
2184 }
2185
2186 static inline nir_cursor
2187 nir_before_cf_node(nir_cf_node *node)
2188 {
2189 if (node->type == nir_cf_node_block)
2190 return nir_before_block(nir_cf_node_as_block(node));
2191
2192 return nir_after_block(nir_cf_node_as_block(nir_cf_node_prev(node)));
2193 }
2194
2195 static inline nir_cursor
2196 nir_after_cf_node(nir_cf_node *node)
2197 {
2198 if (node->type == nir_cf_node_block)
2199 return nir_after_block(nir_cf_node_as_block(node));
2200
2201 return nir_before_block(nir_cf_node_as_block(nir_cf_node_next(node)));
2202 }
2203
2204 static inline nir_cursor
2205 nir_after_phis(nir_block *block)
2206 {
2207 nir_foreach_instr(instr, block) {
2208 if (instr->type != nir_instr_type_phi)
2209 return nir_before_instr(instr);
2210 }
2211 return nir_after_block(block);
2212 }
2213
2214 static inline nir_cursor
2215 nir_after_cf_node_and_phis(nir_cf_node *node)
2216 {
2217 if (node->type == nir_cf_node_block)
2218 return nir_after_block(nir_cf_node_as_block(node));
2219
2220 nir_block *block = nir_cf_node_as_block(nir_cf_node_next(node));
2221
2222 return nir_after_phis(block);
2223 }
2224
2225 static inline nir_cursor
2226 nir_before_cf_list(struct exec_list *cf_list)
2227 {
2228 nir_cf_node *first_node = exec_node_data(nir_cf_node,
2229 exec_list_get_head(cf_list), node);
2230 return nir_before_cf_node(first_node);
2231 }
2232
2233 static inline nir_cursor
2234 nir_after_cf_list(struct exec_list *cf_list)
2235 {
2236 nir_cf_node *last_node = exec_node_data(nir_cf_node,
2237 exec_list_get_tail(cf_list), node);
2238 return nir_after_cf_node(last_node);
2239 }
2240
2241 /**
2242 * Insert a NIR instruction at the given cursor.
2243 *
2244 * Note: This does not update the cursor.
2245 */
2246 void nir_instr_insert(nir_cursor cursor, nir_instr *instr);
2247
2248 static inline void
2249 nir_instr_insert_before(nir_instr *instr, nir_instr *before)
2250 {
2251 nir_instr_insert(nir_before_instr(instr), before);
2252 }
2253
2254 static inline void
2255 nir_instr_insert_after(nir_instr *instr, nir_instr *after)
2256 {
2257 nir_instr_insert(nir_after_instr(instr), after);
2258 }
2259
2260 static inline void
2261 nir_instr_insert_before_block(nir_block *block, nir_instr *before)
2262 {
2263 nir_instr_insert(nir_before_block(block), before);
2264 }
2265
2266 static inline void
2267 nir_instr_insert_after_block(nir_block *block, nir_instr *after)
2268 {
2269 nir_instr_insert(nir_after_block(block), after);
2270 }
2271
2272 static inline void
2273 nir_instr_insert_before_cf(nir_cf_node *node, nir_instr *before)
2274 {
2275 nir_instr_insert(nir_before_cf_node(node), before);
2276 }
2277
2278 static inline void
2279 nir_instr_insert_after_cf(nir_cf_node *node, nir_instr *after)
2280 {
2281 nir_instr_insert(nir_after_cf_node(node), after);
2282 }
2283
2284 static inline void
2285 nir_instr_insert_before_cf_list(struct exec_list *list, nir_instr *before)
2286 {
2287 nir_instr_insert(nir_before_cf_list(list), before);
2288 }
2289
2290 static inline void
2291 nir_instr_insert_after_cf_list(struct exec_list *list, nir_instr *after)
2292 {
2293 nir_instr_insert(nir_after_cf_list(list), after);
2294 }
2295
2296 void nir_instr_remove_v(nir_instr *instr);
2297
2298 static inline nir_cursor
2299 nir_instr_remove(nir_instr *instr)
2300 {
2301 nir_cursor cursor;
2302 nir_instr *prev = nir_instr_prev(instr);
2303 if (prev) {
2304 cursor = nir_after_instr(prev);
2305 } else {
2306 cursor = nir_before_block(instr->block);
2307 }
2308 nir_instr_remove_v(instr);
2309 return cursor;
2310 }
2311
2312 /** @} */
2313
2314 typedef bool (*nir_foreach_ssa_def_cb)(nir_ssa_def *def, void *state);
2315 typedef bool (*nir_foreach_dest_cb)(nir_dest *dest, void *state);
2316 typedef bool (*nir_foreach_src_cb)(nir_src *src, void *state);
2317 bool nir_foreach_ssa_def(nir_instr *instr, nir_foreach_ssa_def_cb cb,
2318 void *state);
2319 bool nir_foreach_dest(nir_instr *instr, nir_foreach_dest_cb cb, void *state);
2320 bool nir_foreach_src(nir_instr *instr, nir_foreach_src_cb cb, void *state);
2321
2322 nir_const_value *nir_src_as_const_value(nir_src src);
2323 bool nir_src_is_dynamically_uniform(nir_src src);
2324 bool nir_srcs_equal(nir_src src1, nir_src src2);
2325 void nir_instr_rewrite_src(nir_instr *instr, nir_src *src, nir_src new_src);
2326 void nir_instr_move_src(nir_instr *dest_instr, nir_src *dest, nir_src *src);
2327 void nir_if_rewrite_condition(nir_if *if_stmt, nir_src new_src);
2328 void nir_instr_rewrite_dest(nir_instr *instr, nir_dest *dest,
2329 nir_dest new_dest);
2330 void nir_instr_rewrite_deref(nir_instr *instr, nir_deref_var **deref,
2331 nir_deref_var *new_deref);
2332
2333 void nir_ssa_dest_init(nir_instr *instr, nir_dest *dest,
2334 unsigned num_components, unsigned bit_size,
2335 const char *name);
2336 void nir_ssa_def_init(nir_instr *instr, nir_ssa_def *def,
2337 unsigned num_components, unsigned bit_size,
2338 const char *name);
2339 static inline void
2340 nir_ssa_dest_init_for_type(nir_instr *instr, nir_dest *dest,
2341 const struct glsl_type *type,
2342 const char *name)
2343 {
2344 assert(glsl_type_is_vector_or_scalar(type));
2345 nir_ssa_dest_init(instr, dest, glsl_get_components(type),
2346 glsl_get_bit_size(type), name);
2347 }
2348 void nir_ssa_def_rewrite_uses(nir_ssa_def *def, nir_src new_src);
2349 void nir_ssa_def_rewrite_uses_after(nir_ssa_def *def, nir_src new_src,
2350 nir_instr *after_me);
2351
2352 uint8_t nir_ssa_def_components_read(const nir_ssa_def *def);
2353
2354 /*
2355 * finds the next basic block in source-code order, returns NULL if there is
2356 * none
2357 */
2358
2359 nir_block *nir_block_cf_tree_next(nir_block *block);
2360
2361 /* Performs the opposite of nir_block_cf_tree_next() */
2362
2363 nir_block *nir_block_cf_tree_prev(nir_block *block);
2364
2365 /* Gets the first block in a CF node in source-code order */
2366
2367 nir_block *nir_cf_node_cf_tree_first(nir_cf_node *node);
2368
2369 /* Gets the last block in a CF node in source-code order */
2370
2371 nir_block *nir_cf_node_cf_tree_last(nir_cf_node *node);
2372
2373 /* Gets the next block after a CF node in source-code order */
2374
2375 nir_block *nir_cf_node_cf_tree_next(nir_cf_node *node);
2376
2377 /* Macros for loops that visit blocks in source-code order */
2378
2379 #define nir_foreach_block(block, impl) \
2380 for (nir_block *block = nir_start_block(impl); block != NULL; \
2381 block = nir_block_cf_tree_next(block))
2382
2383 #define nir_foreach_block_safe(block, impl) \
2384 for (nir_block *block = nir_start_block(impl), \
2385 *next = nir_block_cf_tree_next(block); \
2386 block != NULL; \
2387 block = next, next = nir_block_cf_tree_next(block))
2388
2389 #define nir_foreach_block_reverse(block, impl) \
2390 for (nir_block *block = nir_impl_last_block(impl); block != NULL; \
2391 block = nir_block_cf_tree_prev(block))
2392
2393 #define nir_foreach_block_reverse_safe(block, impl) \
2394 for (nir_block *block = nir_impl_last_block(impl), \
2395 *prev = nir_block_cf_tree_prev(block); \
2396 block != NULL; \
2397 block = prev, prev = nir_block_cf_tree_prev(block))
2398
2399 #define nir_foreach_block_in_cf_node(block, node) \
2400 for (nir_block *block = nir_cf_node_cf_tree_first(node); \
2401 block != nir_cf_node_cf_tree_next(node); \
2402 block = nir_block_cf_tree_next(block))
2403
2404 /* If the following CF node is an if, this function returns that if.
2405 * Otherwise, it returns NULL.
2406 */
2407 nir_if *nir_block_get_following_if(nir_block *block);
2408
2409 nir_loop *nir_block_get_following_loop(nir_block *block);
2410
2411 void nir_index_local_regs(nir_function_impl *impl);
2412 void nir_index_global_regs(nir_shader *shader);
2413 void nir_index_ssa_defs(nir_function_impl *impl);
2414 unsigned nir_index_instrs(nir_function_impl *impl);
2415
2416 void nir_index_blocks(nir_function_impl *impl);
2417
2418 void nir_print_shader(nir_shader *shader, FILE *fp);
2419 void nir_print_shader_annotated(nir_shader *shader, FILE *fp, struct hash_table *errors);
2420 void nir_print_instr(const nir_instr *instr, FILE *fp);
2421
2422 nir_shader *nir_shader_clone(void *mem_ctx, const nir_shader *s);
2423 nir_function_impl *nir_function_impl_clone(const nir_function_impl *fi);
2424 nir_constant *nir_constant_clone(const nir_constant *c, nir_variable *var);
2425 nir_variable *nir_variable_clone(const nir_variable *c, nir_shader *shader);
2426 nir_deref *nir_deref_clone(const nir_deref *deref, void *mem_ctx);
2427 nir_deref_var *nir_deref_var_clone(const nir_deref_var *deref, void *mem_ctx);
2428
2429 nir_shader *nir_shader_serialize_deserialize(void *mem_ctx, nir_shader *s);
2430
2431 #ifndef NDEBUG
2432 void nir_validate_shader(nir_shader *shader);
2433 void nir_metadata_set_validation_flag(nir_shader *shader);
2434 void nir_metadata_check_validation_flag(nir_shader *shader);
2435
2436 static inline bool
2437 should_clone_nir(void)
2438 {
2439 static int should_clone = -1;
2440 if (should_clone < 0)
2441 should_clone = env_var_as_boolean("NIR_TEST_CLONE", false);
2442
2443 return should_clone;
2444 }
2445
2446 static inline bool
2447 should_serialize_deserialize_nir(void)
2448 {
2449 static int test_serialize = -1;
2450 if (test_serialize < 0)
2451 test_serialize = env_var_as_boolean("NIR_TEST_SERIALIZE", false);
2452
2453 return test_serialize;
2454 }
2455
2456 static inline bool
2457 should_print_nir(void)
2458 {
2459 static int should_print = -1;
2460 if (should_print < 0)
2461 should_print = env_var_as_boolean("NIR_PRINT", false);
2462
2463 return should_print;
2464 }
2465 #else
2466 static inline void nir_validate_shader(nir_shader *shader) { (void) shader; }
2467 static inline void nir_metadata_set_validation_flag(nir_shader *shader) { (void) shader; }
2468 static inline void nir_metadata_check_validation_flag(nir_shader *shader) { (void) shader; }
2469 static inline bool should_clone_nir(void) { return false; }
2470 static inline bool should_serialize_deserialize_nir(void) { return false; }
2471 static inline bool should_print_nir(void) { return false; }
2472 #endif /* NDEBUG */
2473
2474 #define _PASS(nir, do_pass) do { \
2475 do_pass \
2476 nir_validate_shader(nir); \
2477 if (should_clone_nir()) { \
2478 nir_shader *clone = nir_shader_clone(ralloc_parent(nir), nir); \
2479 ralloc_free(nir); \
2480 nir = clone; \
2481 } \
2482 if (should_serialize_deserialize_nir()) { \
2483 void *mem_ctx = ralloc_parent(nir); \
2484 nir = nir_shader_serialize_deserialize(mem_ctx, nir); \
2485 } \
2486 } while (0)
2487
2488 #define NIR_PASS(progress, nir, pass, ...) _PASS(nir, \
2489 nir_metadata_set_validation_flag(nir); \
2490 if (should_print_nir()) \
2491 printf("%s\n", #pass); \
2492 if (pass(nir, ##__VA_ARGS__)) { \
2493 progress = true; \
2494 if (should_print_nir()) \
2495 nir_print_shader(nir, stdout); \
2496 nir_metadata_check_validation_flag(nir); \
2497 } \
2498 )
2499
2500 #define NIR_PASS_V(nir, pass, ...) _PASS(nir, \
2501 if (should_print_nir()) \
2502 printf("%s\n", #pass); \
2503 pass(nir, ##__VA_ARGS__); \
2504 if (should_print_nir()) \
2505 nir_print_shader(nir, stdout); \
2506 )
2507
2508 void nir_calc_dominance_impl(nir_function_impl *impl);
2509 void nir_calc_dominance(nir_shader *shader);
2510
2511 nir_block *nir_dominance_lca(nir_block *b1, nir_block *b2);
2512 bool nir_block_dominates(nir_block *parent, nir_block *child);
2513
2514 void nir_dump_dom_tree_impl(nir_function_impl *impl, FILE *fp);
2515 void nir_dump_dom_tree(nir_shader *shader, FILE *fp);
2516
2517 void nir_dump_dom_frontier_impl(nir_function_impl *impl, FILE *fp);
2518 void nir_dump_dom_frontier(nir_shader *shader, FILE *fp);
2519
2520 void nir_dump_cfg_impl(nir_function_impl *impl, FILE *fp);
2521 void nir_dump_cfg(nir_shader *shader, FILE *fp);
2522
2523 int nir_gs_count_vertices(const nir_shader *shader);
2524
2525 bool nir_split_var_copies(nir_shader *shader);
2526
2527 bool nir_lower_returns_impl(nir_function_impl *impl);
2528 bool nir_lower_returns(nir_shader *shader);
2529
2530 bool nir_inline_functions(nir_shader *shader);
2531
2532 bool nir_propagate_invariant(nir_shader *shader);
2533
2534 void nir_lower_var_copy_instr(nir_intrinsic_instr *copy, nir_shader *shader);
2535 bool nir_lower_var_copies(nir_shader *shader);
2536
2537 bool nir_lower_global_vars_to_local(nir_shader *shader);
2538
2539 bool nir_lower_indirect_derefs(nir_shader *shader, nir_variable_mode modes);
2540
2541 bool nir_lower_locals_to_regs(nir_shader *shader);
2542
2543 void nir_lower_io_to_temporaries(nir_shader *shader,
2544 nir_function_impl *entrypoint,
2545 bool outputs, bool inputs);
2546
2547 void nir_shader_gather_info(nir_shader *shader, nir_function_impl *entrypoint);
2548
2549 void nir_assign_var_locations(struct exec_list *var_list, unsigned *size,
2550 int (*type_size)(const struct glsl_type *));
2551
2552 /* Some helpers to do very simple linking */
2553 bool nir_remove_unused_varyings(nir_shader *producer, nir_shader *consumer);
2554 void nir_compact_varyings(nir_shader *producer, nir_shader *consumer,
2555 bool default_to_smooth_interp);
2556
2557 typedef enum {
2558 /* If set, this forces all non-flat fragment shader inputs to be
2559 * interpolated as if with the "sample" qualifier. This requires
2560 * nir_shader_compiler_options::use_interpolated_input_intrinsics.
2561 */
2562 nir_lower_io_force_sample_interpolation = (1 << 1),
2563 } nir_lower_io_options;
2564 bool nir_lower_io(nir_shader *shader,
2565 nir_variable_mode modes,
2566 int (*type_size)(const struct glsl_type *),
2567 nir_lower_io_options);
2568 nir_src *nir_get_io_offset_src(nir_intrinsic_instr *instr);
2569 nir_src *nir_get_io_vertex_index_src(nir_intrinsic_instr *instr);
2570
2571 bool nir_is_per_vertex_io(const nir_variable *var, gl_shader_stage stage);
2572
2573 void nir_lower_io_types(nir_shader *shader);
2574 bool nir_lower_regs_to_ssa_impl(nir_function_impl *impl);
2575 bool nir_lower_regs_to_ssa(nir_shader *shader);
2576 bool nir_lower_vars_to_ssa(nir_shader *shader);
2577
2578 bool nir_remove_dead_variables(nir_shader *shader, nir_variable_mode modes);
2579 bool nir_lower_constant_initializers(nir_shader *shader,
2580 nir_variable_mode modes);
2581
2582 bool nir_move_vec_src_uses_to_dest(nir_shader *shader);
2583 bool nir_lower_vec_to_movs(nir_shader *shader);
2584 void nir_lower_alpha_test(nir_shader *shader, enum compare_func func,
2585 bool alpha_to_one);
2586 bool nir_lower_alu_to_scalar(nir_shader *shader);
2587 bool nir_lower_load_const_to_scalar(nir_shader *shader);
2588 bool nir_lower_read_invocation_to_scalar(nir_shader *shader);
2589 bool nir_lower_phis_to_scalar(nir_shader *shader);
2590 void nir_lower_io_arrays_to_elements(nir_shader *producer, nir_shader *consumer);
2591 void nir_lower_io_arrays_to_elements_no_indirects(nir_shader *shader,
2592 bool outputs_only);
2593 void nir_lower_io_to_scalar(nir_shader *shader, nir_variable_mode mask);
2594 void nir_lower_io_to_scalar_early(nir_shader *shader, nir_variable_mode mask);
2595
2596 typedef struct nir_lower_subgroups_options {
2597 uint8_t subgroup_size;
2598 uint8_t ballot_bit_size;
2599 bool lower_to_scalar:1;
2600 bool lower_vote_trivial:1;
2601 bool lower_vote_eq_to_ballot:1;
2602 bool lower_subgroup_masks:1;
2603 bool lower_shuffle:1;
2604 bool lower_shuffle_to_32bit:1;
2605 bool lower_quad:1;
2606 } nir_lower_subgroups_options;
2607
2608 bool nir_lower_subgroups(nir_shader *shader,
2609 const nir_lower_subgroups_options *options);
2610
2611 bool nir_lower_system_values(nir_shader *shader);
2612
2613 typedef struct nir_lower_tex_options {
2614 /**
2615 * bitmask of (1 << GLSL_SAMPLER_DIM_x) to control for which
2616 * sampler types a texture projector is lowered.
2617 */
2618 unsigned lower_txp;
2619
2620 /**
2621 * If true, lower away nir_tex_src_offset for all texelfetch instructions.
2622 */
2623 bool lower_txf_offset;
2624
2625 /**
2626 * If true, lower away nir_tex_src_offset for all rect textures.
2627 */
2628 bool lower_rect_offset;
2629
2630 /**
2631 * If true, lower rect textures to 2D, using txs to fetch the
2632 * texture dimensions and dividing the texture coords by the
2633 * texture dims to normalize.
2634 */
2635 bool lower_rect;
2636
2637 /**
2638 * If true, convert yuv to rgb.
2639 */
2640 unsigned lower_y_uv_external;
2641 unsigned lower_y_u_v_external;
2642 unsigned lower_yx_xuxv_external;
2643 unsigned lower_xy_uxvx_external;
2644
2645 /**
2646 * To emulate certain texture wrap modes, this can be used
2647 * to saturate the specified tex coord to [0.0, 1.0]. The
2648 * bits are according to sampler #, ie. if, for example:
2649 *
2650 * (conf->saturate_s & (1 << n))
2651 *
2652 * is true, then the s coord for sampler n is saturated.
2653 *
2654 * Note that clamping must happen *after* projector lowering
2655 * so any projected texture sample instruction with a clamped
2656 * coordinate gets automatically lowered, regardless of the
2657 * 'lower_txp' setting.
2658 */
2659 unsigned saturate_s;
2660 unsigned saturate_t;
2661 unsigned saturate_r;
2662
2663 /* Bitmask of textures that need swizzling.
2664 *
2665 * If (swizzle_result & (1 << texture_index)), then the swizzle in
2666 * swizzles[texture_index] is applied to the result of the texturing
2667 * operation.
2668 */
2669 unsigned swizzle_result;
2670
2671 /* A swizzle for each texture. Values 0-3 represent x, y, z, or w swizzles
2672 * while 4 and 5 represent 0 and 1 respectively.
2673 */
2674 uint8_t swizzles[32][4];
2675
2676 /**
2677 * Bitmap of textures that need srgb to linear conversion. If
2678 * (lower_srgb & (1 << texture_index)) then the rgb (xyz) components
2679 * of the texture are lowered to linear.
2680 */
2681 unsigned lower_srgb;
2682
2683 /**
2684 * If true, lower nir_texop_txd on cube maps with nir_texop_txl.
2685 */
2686 bool lower_txd_cube_map;
2687
2688 /**
2689 * If true, lower nir_texop_txd on shadow samplers (except cube maps)
2690 * with nir_texop_txl. Notice that cube map shadow samplers are lowered
2691 * with lower_txd_cube_map.
2692 */
2693 bool lower_txd_shadow;
2694
2695 /**
2696 * If true, lower nir_texop_txd on all samplers to a nir_texop_txl.
2697 * Implies lower_txd_cube_map and lower_txd_shadow.
2698 */
2699 bool lower_txd;
2700 } nir_lower_tex_options;
2701
2702 bool nir_lower_tex(nir_shader *shader,
2703 const nir_lower_tex_options *options);
2704
2705 bool nir_lower_idiv(nir_shader *shader);
2706
2707 bool nir_lower_clip_vs(nir_shader *shader, unsigned ucp_enables);
2708 bool nir_lower_clip_fs(nir_shader *shader, unsigned ucp_enables);
2709 bool nir_lower_clip_cull_distance_arrays(nir_shader *nir);
2710
2711 void nir_lower_two_sided_color(nir_shader *shader);
2712
2713 bool nir_lower_clamp_color_outputs(nir_shader *shader);
2714
2715 void nir_lower_passthrough_edgeflags(nir_shader *shader);
2716 void nir_lower_tes_patch_vertices(nir_shader *tes, unsigned patch_vertices);
2717
2718 typedef struct nir_lower_wpos_ytransform_options {
2719 gl_state_index16 state_tokens[STATE_LENGTH];
2720 bool fs_coord_origin_upper_left :1;
2721 bool fs_coord_origin_lower_left :1;
2722 bool fs_coord_pixel_center_integer :1;
2723 bool fs_coord_pixel_center_half_integer :1;
2724 } nir_lower_wpos_ytransform_options;
2725
2726 bool nir_lower_wpos_ytransform(nir_shader *shader,
2727 const nir_lower_wpos_ytransform_options *options);
2728 bool nir_lower_wpos_center(nir_shader *shader, const bool for_sample_shading);
2729
2730 typedef struct nir_lower_drawpixels_options {
2731 gl_state_index16 texcoord_state_tokens[STATE_LENGTH];
2732 gl_state_index16 scale_state_tokens[STATE_LENGTH];
2733 gl_state_index16 bias_state_tokens[STATE_LENGTH];
2734 unsigned drawpix_sampler;
2735 unsigned pixelmap_sampler;
2736 bool pixel_maps :1;
2737 bool scale_and_bias :1;
2738 } nir_lower_drawpixels_options;
2739
2740 void nir_lower_drawpixels(nir_shader *shader,
2741 const nir_lower_drawpixels_options *options);
2742
2743 typedef struct nir_lower_bitmap_options {
2744 unsigned sampler;
2745 bool swizzle_xxxx;
2746 } nir_lower_bitmap_options;
2747
2748 void nir_lower_bitmap(nir_shader *shader, const nir_lower_bitmap_options *options);
2749
2750 bool nir_lower_atomics_to_ssbo(nir_shader *shader, unsigned ssbo_offset);
2751 bool nir_lower_to_source_mods(nir_shader *shader);
2752
2753 bool nir_lower_gs_intrinsics(nir_shader *shader);
2754
2755 typedef enum {
2756 nir_lower_imul64 = (1 << 0),
2757 nir_lower_isign64 = (1 << 1),
2758 /** Lower all int64 modulus and division opcodes */
2759 nir_lower_divmod64 = (1 << 2),
2760 } nir_lower_int64_options;
2761
2762 bool nir_lower_int64(nir_shader *shader, nir_lower_int64_options options);
2763
2764 typedef enum {
2765 nir_lower_drcp = (1 << 0),
2766 nir_lower_dsqrt = (1 << 1),
2767 nir_lower_drsq = (1 << 2),
2768 nir_lower_dtrunc = (1 << 3),
2769 nir_lower_dfloor = (1 << 4),
2770 nir_lower_dceil = (1 << 5),
2771 nir_lower_dfract = (1 << 6),
2772 nir_lower_dround_even = (1 << 7),
2773 nir_lower_dmod = (1 << 8)
2774 } nir_lower_doubles_options;
2775
2776 bool nir_lower_doubles(nir_shader *shader, nir_lower_doubles_options options);
2777 bool nir_lower_64bit_pack(nir_shader *shader);
2778
2779 bool nir_normalize_cubemap_coords(nir_shader *shader);
2780
2781 void nir_live_ssa_defs_impl(nir_function_impl *impl);
2782
2783 void nir_loop_analyze_impl(nir_function_impl *impl,
2784 nir_variable_mode indirect_mask);
2785
2786 bool nir_ssa_defs_interfere(nir_ssa_def *a, nir_ssa_def *b);
2787
2788 bool nir_repair_ssa_impl(nir_function_impl *impl);
2789 bool nir_repair_ssa(nir_shader *shader);
2790
2791 void nir_convert_loop_to_lcssa(nir_loop *loop);
2792
2793 /* If phi_webs_only is true, only convert SSA values involved in phi nodes to
2794 * registers. If false, convert all values (even those not involved in a phi
2795 * node) to registers.
2796 */
2797 bool nir_convert_from_ssa(nir_shader *shader, bool phi_webs_only);
2798
2799 bool nir_lower_phis_to_regs_block(nir_block *block);
2800 bool nir_lower_ssa_defs_to_regs_block(nir_block *block);
2801
2802 bool nir_opt_algebraic(nir_shader *shader);
2803 bool nir_opt_algebraic_before_ffma(nir_shader *shader);
2804 bool nir_opt_algebraic_late(nir_shader *shader);
2805 bool nir_opt_constant_folding(nir_shader *shader);
2806
2807 bool nir_opt_global_to_local(nir_shader *shader);
2808
2809 bool nir_copy_prop(nir_shader *shader);
2810
2811 bool nir_opt_copy_prop_vars(nir_shader *shader);
2812
2813 bool nir_opt_cse(nir_shader *shader);
2814
2815 bool nir_opt_dce(nir_shader *shader);
2816
2817 bool nir_opt_dead_cf(nir_shader *shader);
2818
2819 bool nir_opt_gcm(nir_shader *shader, bool value_number);
2820
2821 bool nir_opt_if(nir_shader *shader);
2822
2823 bool nir_opt_intrinsics(nir_shader *shader);
2824
2825 bool nir_opt_loop_unroll(nir_shader *shader, nir_variable_mode indirect_mask);
2826
2827 bool nir_opt_move_comparisons(nir_shader *shader);
2828
2829 bool nir_opt_move_load_ubo(nir_shader *shader);
2830
2831 bool nir_opt_peephole_select(nir_shader *shader, unsigned limit);
2832
2833 bool nir_opt_remove_phis(nir_shader *shader);
2834
2835 bool nir_opt_shrink_load(nir_shader *shader);
2836
2837 bool nir_opt_trivial_continues(nir_shader *shader);
2838
2839 bool nir_opt_undef(nir_shader *shader);
2840
2841 bool nir_opt_conditional_discard(nir_shader *shader);
2842
2843 void nir_sweep(nir_shader *shader);
2844
2845 nir_intrinsic_op nir_intrinsic_from_system_value(gl_system_value val);
2846 gl_system_value nir_system_value_from_intrinsic(nir_intrinsic_op intrin);
2847
2848 #ifdef __cplusplus
2849 } /* extern "C" */
2850 #endif
2851
2852 #endif /* NIR_H */