nir: add always_active_io to nir variable
[mesa.git] / src / compiler / nir / nir.h
1 /*
2 * Copyright © 2014 Connor Abbott
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Connor Abbott (cwabbott0@gmail.com)
25 *
26 */
27
28 #ifndef NIR_H
29 #define NIR_H
30
31 #include "util/hash_table.h"
32 #include "compiler/glsl/list.h"
33 #include "GL/gl.h" /* GLenum */
34 #include "util/list.h"
35 #include "util/ralloc.h"
36 #include "util/set.h"
37 #include "util/bitset.h"
38 #include "util/macros.h"
39 #include "compiler/nir_types.h"
40 #include "compiler/shader_enums.h"
41 #include "compiler/shader_info.h"
42 #include <stdio.h>
43
44 #ifdef DEBUG
45 #include "util/debug.h"
46 #endif /* DEBUG */
47
48 #include "nir_opcodes.h"
49
50 #if defined(_WIN32) && !defined(snprintf)
51 #define snprintf _snprintf
52 #endif
53
54 #ifdef __cplusplus
55 extern "C" {
56 #endif
57
58 struct gl_program;
59 struct gl_shader_program;
60
61 #define NIR_FALSE 0u
62 #define NIR_TRUE (~0u)
63
64 /** Defines a cast function
65 *
66 * This macro defines a cast function from in_type to out_type where
67 * out_type is some structure type that contains a field of type out_type.
68 *
69 * Note that you have to be a bit careful as the generated cast function
70 * destroys constness.
71 */
72 #define NIR_DEFINE_CAST(name, in_type, out_type, field, \
73 type_field, type_value) \
74 static inline out_type * \
75 name(const in_type *parent) \
76 { \
77 assert(parent && parent->type_field == type_value); \
78 return exec_node_data(out_type, parent, field); \
79 }
80
81 struct nir_function;
82 struct nir_shader;
83 struct nir_instr;
84
85
86 /**
87 * Description of built-in state associated with a uniform
88 *
89 * \sa nir_variable::state_slots
90 */
91 typedef struct {
92 int tokens[5];
93 int swizzle;
94 } nir_state_slot;
95
96 typedef enum {
97 nir_var_shader_in = (1 << 0),
98 nir_var_shader_out = (1 << 1),
99 nir_var_global = (1 << 2),
100 nir_var_local = (1 << 3),
101 nir_var_uniform = (1 << 4),
102 nir_var_shader_storage = (1 << 5),
103 nir_var_system_value = (1 << 6),
104 nir_var_param = (1 << 7),
105 nir_var_shared = (1 << 8),
106 nir_var_all = ~0,
107 } nir_variable_mode;
108
109
110 typedef union {
111 float f32[4];
112 double f64[4];
113 int8_t i8[4];
114 uint8_t u8[4];
115 int16_t i16[4];
116 uint16_t u16[4];
117 int32_t i32[4];
118 uint32_t u32[4];
119 int64_t i64[4];
120 uint64_t u64[4];
121 } nir_const_value;
122
123 typedef struct nir_constant {
124 /**
125 * Value of the constant.
126 *
127 * The field used to back the values supplied by the constant is determined
128 * by the type associated with the \c nir_variable. Constants may be
129 * scalars, vectors, or matrices.
130 */
131 nir_const_value values[4];
132
133 /* we could get this from the var->type but makes clone *much* easier to
134 * not have to care about the type.
135 */
136 unsigned num_elements;
137
138 /* Array elements / Structure Fields */
139 struct nir_constant **elements;
140 } nir_constant;
141
142 /**
143 * \brief Layout qualifiers for gl_FragDepth.
144 *
145 * The AMD/ARB_conservative_depth extensions allow gl_FragDepth to be redeclared
146 * with a layout qualifier.
147 */
148 typedef enum {
149 nir_depth_layout_none, /**< No depth layout is specified. */
150 nir_depth_layout_any,
151 nir_depth_layout_greater,
152 nir_depth_layout_less,
153 nir_depth_layout_unchanged
154 } nir_depth_layout;
155
156 /**
157 * Either a uniform, global variable, shader input, or shader output. Based on
158 * ir_variable - it should be easy to translate between the two.
159 */
160
161 typedef struct nir_variable {
162 struct exec_node node;
163
164 /**
165 * Declared type of the variable
166 */
167 const struct glsl_type *type;
168
169 /**
170 * Declared name of the variable
171 */
172 char *name;
173
174 struct nir_variable_data {
175 /**
176 * Storage class of the variable.
177 *
178 * \sa nir_variable_mode
179 */
180 nir_variable_mode mode;
181
182 /**
183 * Is the variable read-only?
184 *
185 * This is set for variables declared as \c const, shader inputs,
186 * and uniforms.
187 */
188 unsigned read_only:1;
189 unsigned centroid:1;
190 unsigned sample:1;
191 unsigned patch:1;
192 unsigned invariant:1;
193
194 /**
195 * When separate shader programs are enabled, only input/outputs between
196 * the stages of a multi-stage separate program can be safely removed
197 * from the shader interface. Other input/outputs must remains active.
198 *
199 * This is also used to make sure xfb varyings that are unused by the
200 * fragment shader are not removed.
201 */
202 unsigned always_active_io:1;
203
204 /**
205 * Interpolation mode for shader inputs / outputs
206 *
207 * \sa glsl_interp_mode
208 */
209 unsigned interpolation:2;
210
211 /**
212 * \name ARB_fragment_coord_conventions
213 * @{
214 */
215 unsigned origin_upper_left:1;
216 unsigned pixel_center_integer:1;
217 /*@}*/
218
219 /**
220 * If non-zero, then this variable may be packed along with other variables
221 * into a single varying slot, so this offset should be applied when
222 * accessing components. For example, an offset of 1 means that the x
223 * component of this variable is actually stored in component y of the
224 * location specified by \c location.
225 */
226 unsigned location_frac:2;
227
228 /**
229 * If true, this variable represents an array of scalars that should
230 * be tightly packed. In other words, consecutive array elements
231 * should be stored one component apart, rather than one slot apart.
232 */
233 unsigned compact:1;
234
235 /**
236 * Whether this is a fragment shader output implicitly initialized with
237 * the previous contents of the specified render target at the
238 * framebuffer location corresponding to this shader invocation.
239 */
240 unsigned fb_fetch_output:1;
241
242 /**
243 * \brief Layout qualifier for gl_FragDepth.
244 *
245 * This is not equal to \c ir_depth_layout_none if and only if this
246 * variable is \c gl_FragDepth and a layout qualifier is specified.
247 */
248 nir_depth_layout depth_layout;
249
250 /**
251 * Storage location of the base of this variable
252 *
253 * The precise meaning of this field depends on the nature of the variable.
254 *
255 * - Vertex shader input: one of the values from \c gl_vert_attrib.
256 * - Vertex shader output: one of the values from \c gl_varying_slot.
257 * - Geometry shader input: one of the values from \c gl_varying_slot.
258 * - Geometry shader output: one of the values from \c gl_varying_slot.
259 * - Fragment shader input: one of the values from \c gl_varying_slot.
260 * - Fragment shader output: one of the values from \c gl_frag_result.
261 * - Uniforms: Per-stage uniform slot number for default uniform block.
262 * - Uniforms: Index within the uniform block definition for UBO members.
263 * - Non-UBO Uniforms: uniform slot number.
264 * - Other: This field is not currently used.
265 *
266 * If the variable is a uniform, shader input, or shader output, and the
267 * slot has not been assigned, the value will be -1.
268 */
269 int location;
270
271 /**
272 * The actual location of the variable in the IR. Only valid for inputs
273 * and outputs.
274 */
275 unsigned int driver_location;
276
277 /**
278 * output index for dual source blending.
279 */
280 int index;
281
282 /**
283 * Descriptor set binding for sampler or UBO.
284 */
285 int descriptor_set;
286
287 /**
288 * Initial binding point for a sampler or UBO.
289 *
290 * For array types, this represents the binding point for the first element.
291 */
292 int binding;
293
294 /**
295 * Location an atomic counter is stored at.
296 */
297 unsigned offset;
298
299 /**
300 * ARB_shader_image_load_store qualifiers.
301 */
302 struct {
303 bool read_only; /**< "readonly" qualifier. */
304 bool write_only; /**< "writeonly" qualifier. */
305 bool coherent;
306 bool _volatile;
307 bool restrict_flag;
308
309 /** Image internal format if specified explicitly, otherwise GL_NONE. */
310 GLenum format;
311 } image;
312 } data;
313
314 /**
315 * Built-in state that backs this uniform
316 *
317 * Once set at variable creation, \c state_slots must remain invariant.
318 * This is because, ideally, this array would be shared by all clones of
319 * this variable in the IR tree. In other words, we'd really like for it
320 * to be a fly-weight.
321 *
322 * If the variable is not a uniform, \c num_state_slots will be zero and
323 * \c state_slots will be \c NULL.
324 */
325 /*@{*/
326 unsigned num_state_slots; /**< Number of state slots used */
327 nir_state_slot *state_slots; /**< State descriptors. */
328 /*@}*/
329
330 /**
331 * Constant expression assigned in the initializer of the variable
332 *
333 * This field should only be used temporarily by creators of NIR shaders
334 * and then lower_constant_initializers can be used to get rid of them.
335 * Most of the rest of NIR ignores this field or asserts that it's NULL.
336 */
337 nir_constant *constant_initializer;
338
339 /**
340 * For variables that are in an interface block or are an instance of an
341 * interface block, this is the \c GLSL_TYPE_INTERFACE type for that block.
342 *
343 * \sa ir_variable::location
344 */
345 const struct glsl_type *interface_type;
346 } nir_variable;
347
348 #define nir_foreach_variable(var, var_list) \
349 foreach_list_typed(nir_variable, var, node, var_list)
350
351 #define nir_foreach_variable_safe(var, var_list) \
352 foreach_list_typed_safe(nir_variable, var, node, var_list)
353
354 static inline bool
355 nir_variable_is_global(const nir_variable *var)
356 {
357 return var->data.mode != nir_var_local && var->data.mode != nir_var_param;
358 }
359
360 typedef struct nir_register {
361 struct exec_node node;
362
363 unsigned num_components; /** < number of vector components */
364 unsigned num_array_elems; /** < size of array (0 for no array) */
365
366 /* The bit-size of each channel; must be one of 8, 16, 32, or 64 */
367 uint8_t bit_size;
368
369 /** generic register index. */
370 unsigned index;
371
372 /** only for debug purposes, can be NULL */
373 const char *name;
374
375 /** whether this register is local (per-function) or global (per-shader) */
376 bool is_global;
377
378 /**
379 * If this flag is set to true, then accessing channels >= num_components
380 * is well-defined, and simply spills over to the next array element. This
381 * is useful for backends that can do per-component accessing, in
382 * particular scalar backends. By setting this flag and making
383 * num_components equal to 1, structures can be packed tightly into
384 * registers and then registers can be accessed per-component to get to
385 * each structure member, even if it crosses vec4 boundaries.
386 */
387 bool is_packed;
388
389 /** set of nir_srcs where this register is used (read from) */
390 struct list_head uses;
391
392 /** set of nir_dests where this register is defined (written to) */
393 struct list_head defs;
394
395 /** set of nir_ifs where this register is used as a condition */
396 struct list_head if_uses;
397 } nir_register;
398
399 #define nir_foreach_register(reg, reg_list) \
400 foreach_list_typed(nir_register, reg, node, reg_list)
401 #define nir_foreach_register_safe(reg, reg_list) \
402 foreach_list_typed_safe(nir_register, reg, node, reg_list)
403
404 typedef enum {
405 nir_instr_type_alu,
406 nir_instr_type_call,
407 nir_instr_type_tex,
408 nir_instr_type_intrinsic,
409 nir_instr_type_load_const,
410 nir_instr_type_jump,
411 nir_instr_type_ssa_undef,
412 nir_instr_type_phi,
413 nir_instr_type_parallel_copy,
414 } nir_instr_type;
415
416 typedef struct nir_instr {
417 struct exec_node node;
418 nir_instr_type type;
419 struct nir_block *block;
420
421 /** generic instruction index. */
422 unsigned index;
423
424 /* A temporary for optimization and analysis passes to use for storing
425 * flags. For instance, DCE uses this to store the "dead/live" info.
426 */
427 uint8_t pass_flags;
428 } nir_instr;
429
430 static inline nir_instr *
431 nir_instr_next(nir_instr *instr)
432 {
433 struct exec_node *next = exec_node_get_next(&instr->node);
434 if (exec_node_is_tail_sentinel(next))
435 return NULL;
436 else
437 return exec_node_data(nir_instr, next, node);
438 }
439
440 static inline nir_instr *
441 nir_instr_prev(nir_instr *instr)
442 {
443 struct exec_node *prev = exec_node_get_prev(&instr->node);
444 if (exec_node_is_head_sentinel(prev))
445 return NULL;
446 else
447 return exec_node_data(nir_instr, prev, node);
448 }
449
450 static inline bool
451 nir_instr_is_first(const nir_instr *instr)
452 {
453 return exec_node_is_head_sentinel(exec_node_get_prev_const(&instr->node));
454 }
455
456 static inline bool
457 nir_instr_is_last(const nir_instr *instr)
458 {
459 return exec_node_is_tail_sentinel(exec_node_get_next_const(&instr->node));
460 }
461
462 typedef struct nir_ssa_def {
463 /** for debugging only, can be NULL */
464 const char* name;
465
466 /** generic SSA definition index. */
467 unsigned index;
468
469 /** Index into the live_in and live_out bitfields */
470 unsigned live_index;
471
472 nir_instr *parent_instr;
473
474 /** set of nir_instrs where this register is used (read from) */
475 struct list_head uses;
476
477 /** set of nir_ifs where this register is used as a condition */
478 struct list_head if_uses;
479
480 uint8_t num_components;
481
482 /* The bit-size of each channel; must be one of 8, 16, 32, or 64 */
483 uint8_t bit_size;
484 } nir_ssa_def;
485
486 struct nir_src;
487
488 typedef struct {
489 nir_register *reg;
490 struct nir_src *indirect; /** < NULL for no indirect offset */
491 unsigned base_offset;
492
493 /* TODO use-def chain goes here */
494 } nir_reg_src;
495
496 typedef struct {
497 nir_instr *parent_instr;
498 struct list_head def_link;
499
500 nir_register *reg;
501 struct nir_src *indirect; /** < NULL for no indirect offset */
502 unsigned base_offset;
503
504 /* TODO def-use chain goes here */
505 } nir_reg_dest;
506
507 struct nir_if;
508
509 typedef struct nir_src {
510 union {
511 nir_instr *parent_instr;
512 struct nir_if *parent_if;
513 };
514
515 struct list_head use_link;
516
517 union {
518 nir_reg_src reg;
519 nir_ssa_def *ssa;
520 };
521
522 bool is_ssa;
523 } nir_src;
524
525 static inline nir_src
526 nir_src_init(void)
527 {
528 nir_src src = { { NULL } };
529 return src;
530 }
531
532 #define NIR_SRC_INIT nir_src_init()
533
534 #define nir_foreach_use(src, reg_or_ssa_def) \
535 list_for_each_entry(nir_src, src, &(reg_or_ssa_def)->uses, use_link)
536
537 #define nir_foreach_use_safe(src, reg_or_ssa_def) \
538 list_for_each_entry_safe(nir_src, src, &(reg_or_ssa_def)->uses, use_link)
539
540 #define nir_foreach_if_use(src, reg_or_ssa_def) \
541 list_for_each_entry(nir_src, src, &(reg_or_ssa_def)->if_uses, use_link)
542
543 #define nir_foreach_if_use_safe(src, reg_or_ssa_def) \
544 list_for_each_entry_safe(nir_src, src, &(reg_or_ssa_def)->if_uses, use_link)
545
546 typedef struct {
547 union {
548 nir_reg_dest reg;
549 nir_ssa_def ssa;
550 };
551
552 bool is_ssa;
553 } nir_dest;
554
555 static inline nir_dest
556 nir_dest_init(void)
557 {
558 nir_dest dest = { { { NULL } } };
559 return dest;
560 }
561
562 #define NIR_DEST_INIT nir_dest_init()
563
564 #define nir_foreach_def(dest, reg) \
565 list_for_each_entry(nir_dest, dest, &(reg)->defs, reg.def_link)
566
567 #define nir_foreach_def_safe(dest, reg) \
568 list_for_each_entry_safe(nir_dest, dest, &(reg)->defs, reg.def_link)
569
570 static inline nir_src
571 nir_src_for_ssa(nir_ssa_def *def)
572 {
573 nir_src src = NIR_SRC_INIT;
574
575 src.is_ssa = true;
576 src.ssa = def;
577
578 return src;
579 }
580
581 static inline nir_src
582 nir_src_for_reg(nir_register *reg)
583 {
584 nir_src src = NIR_SRC_INIT;
585
586 src.is_ssa = false;
587 src.reg.reg = reg;
588 src.reg.indirect = NULL;
589 src.reg.base_offset = 0;
590
591 return src;
592 }
593
594 static inline nir_dest
595 nir_dest_for_reg(nir_register *reg)
596 {
597 nir_dest dest = NIR_DEST_INIT;
598
599 dest.reg.reg = reg;
600
601 return dest;
602 }
603
604 static inline unsigned
605 nir_src_bit_size(nir_src src)
606 {
607 return src.is_ssa ? src.ssa->bit_size : src.reg.reg->bit_size;
608 }
609
610 static inline unsigned
611 nir_dest_bit_size(nir_dest dest)
612 {
613 return dest.is_ssa ? dest.ssa.bit_size : dest.reg.reg->bit_size;
614 }
615
616 void nir_src_copy(nir_src *dest, const nir_src *src, void *instr_or_if);
617 void nir_dest_copy(nir_dest *dest, const nir_dest *src, nir_instr *instr);
618
619 typedef struct {
620 nir_src src;
621
622 /**
623 * \name input modifiers
624 */
625 /*@{*/
626 /**
627 * For inputs interpreted as floating point, flips the sign bit. For
628 * inputs interpreted as integers, performs the two's complement negation.
629 */
630 bool negate;
631
632 /**
633 * Clears the sign bit for floating point values, and computes the integer
634 * absolute value for integers. Note that the negate modifier acts after
635 * the absolute value modifier, therefore if both are set then all inputs
636 * will become negative.
637 */
638 bool abs;
639 /*@}*/
640
641 /**
642 * For each input component, says which component of the register it is
643 * chosen from. Note that which elements of the swizzle are used and which
644 * are ignored are based on the write mask for most opcodes - for example,
645 * a statement like "foo.xzw = bar.zyx" would have a writemask of 1101b and
646 * a swizzle of {2, x, 1, 0} where x means "don't care."
647 */
648 uint8_t swizzle[4];
649 } nir_alu_src;
650
651 typedef struct {
652 nir_dest dest;
653
654 /**
655 * \name saturate output modifier
656 *
657 * Only valid for opcodes that output floating-point numbers. Clamps the
658 * output to between 0.0 and 1.0 inclusive.
659 */
660
661 bool saturate;
662
663 unsigned write_mask : 4; /* ignored if dest.is_ssa is true */
664 } nir_alu_dest;
665
666 typedef enum {
667 nir_type_invalid = 0, /* Not a valid type */
668 nir_type_float,
669 nir_type_int,
670 nir_type_uint,
671 nir_type_bool,
672 nir_type_bool32 = 32 | nir_type_bool,
673 nir_type_int8 = 8 | nir_type_int,
674 nir_type_int16 = 16 | nir_type_int,
675 nir_type_int32 = 32 | nir_type_int,
676 nir_type_int64 = 64 | nir_type_int,
677 nir_type_uint8 = 8 | nir_type_uint,
678 nir_type_uint16 = 16 | nir_type_uint,
679 nir_type_uint32 = 32 | nir_type_uint,
680 nir_type_uint64 = 64 | nir_type_uint,
681 nir_type_float16 = 16 | nir_type_float,
682 nir_type_float32 = 32 | nir_type_float,
683 nir_type_float64 = 64 | nir_type_float,
684 } nir_alu_type;
685
686 #define NIR_ALU_TYPE_SIZE_MASK 0xfffffff8
687 #define NIR_ALU_TYPE_BASE_TYPE_MASK 0x00000007
688
689 static inline unsigned
690 nir_alu_type_get_type_size(nir_alu_type type)
691 {
692 return type & NIR_ALU_TYPE_SIZE_MASK;
693 }
694
695 static inline unsigned
696 nir_alu_type_get_base_type(nir_alu_type type)
697 {
698 return type & NIR_ALU_TYPE_BASE_TYPE_MASK;
699 }
700
701 static inline nir_alu_type
702 nir_get_nir_type_for_glsl_base_type(enum glsl_base_type base_type)
703 {
704 switch (base_type) {
705 case GLSL_TYPE_BOOL:
706 return nir_type_bool32;
707 break;
708 case GLSL_TYPE_UINT:
709 return nir_type_uint32;
710 break;
711 case GLSL_TYPE_INT:
712 return nir_type_int32;
713 break;
714 case GLSL_TYPE_UINT64:
715 return nir_type_uint64;
716 break;
717 case GLSL_TYPE_INT64:
718 return nir_type_int64;
719 break;
720 case GLSL_TYPE_FLOAT:
721 return nir_type_float32;
722 break;
723 case GLSL_TYPE_DOUBLE:
724 return nir_type_float64;
725 break;
726 default:
727 unreachable("unknown type");
728 }
729 }
730
731 static inline nir_alu_type
732 nir_get_nir_type_for_glsl_type(const struct glsl_type *type)
733 {
734 return nir_get_nir_type_for_glsl_base_type(glsl_get_base_type(type));
735 }
736
737 nir_op nir_type_conversion_op(nir_alu_type src, nir_alu_type dst);
738
739 typedef enum {
740 NIR_OP_IS_COMMUTATIVE = (1 << 0),
741 NIR_OP_IS_ASSOCIATIVE = (1 << 1),
742 } nir_op_algebraic_property;
743
744 typedef struct {
745 const char *name;
746
747 unsigned num_inputs;
748
749 /**
750 * The number of components in the output
751 *
752 * If non-zero, this is the size of the output and input sizes are
753 * explicitly given; swizzle and writemask are still in effect, but if
754 * the output component is masked out, then the input component may
755 * still be in use.
756 *
757 * If zero, the opcode acts in the standard, per-component manner; the
758 * operation is performed on each component (except the ones that are
759 * masked out) with the input being taken from the input swizzle for
760 * that component.
761 *
762 * The size of some of the inputs may be given (i.e. non-zero) even
763 * though output_size is zero; in that case, the inputs with a zero
764 * size act per-component, while the inputs with non-zero size don't.
765 */
766 unsigned output_size;
767
768 /**
769 * The type of vector that the instruction outputs. Note that the
770 * staurate modifier is only allowed on outputs with the float type.
771 */
772
773 nir_alu_type output_type;
774
775 /**
776 * The number of components in each input
777 */
778 unsigned input_sizes[4];
779
780 /**
781 * The type of vector that each input takes. Note that negate and
782 * absolute value are only allowed on inputs with int or float type and
783 * behave differently on the two.
784 */
785 nir_alu_type input_types[4];
786
787 nir_op_algebraic_property algebraic_properties;
788 } nir_op_info;
789
790 extern const nir_op_info nir_op_infos[nir_num_opcodes];
791
792 typedef struct nir_alu_instr {
793 nir_instr instr;
794 nir_op op;
795
796 /** Indicates that this ALU instruction generates an exact value
797 *
798 * This is kind of a mixture of GLSL "precise" and "invariant" and not
799 * really equivalent to either. This indicates that the value generated by
800 * this operation is high-precision and any code transformations that touch
801 * it must ensure that the resulting value is bit-for-bit identical to the
802 * original.
803 */
804 bool exact;
805
806 nir_alu_dest dest;
807 nir_alu_src src[];
808 } nir_alu_instr;
809
810 void nir_alu_src_copy(nir_alu_src *dest, const nir_alu_src *src,
811 nir_alu_instr *instr);
812 void nir_alu_dest_copy(nir_alu_dest *dest, const nir_alu_dest *src,
813 nir_alu_instr *instr);
814
815 /* is this source channel used? */
816 static inline bool
817 nir_alu_instr_channel_used(const nir_alu_instr *instr, unsigned src,
818 unsigned channel)
819 {
820 if (nir_op_infos[instr->op].input_sizes[src] > 0)
821 return channel < nir_op_infos[instr->op].input_sizes[src];
822
823 return (instr->dest.write_mask >> channel) & 1;
824 }
825
826 /*
827 * For instructions whose destinations are SSA, get the number of channels
828 * used for a source
829 */
830 static inline unsigned
831 nir_ssa_alu_instr_src_components(const nir_alu_instr *instr, unsigned src)
832 {
833 assert(instr->dest.dest.is_ssa);
834
835 if (nir_op_infos[instr->op].input_sizes[src] > 0)
836 return nir_op_infos[instr->op].input_sizes[src];
837
838 return instr->dest.dest.ssa.num_components;
839 }
840
841 bool nir_alu_srcs_equal(const nir_alu_instr *alu1, const nir_alu_instr *alu2,
842 unsigned src1, unsigned src2);
843
844 typedef enum {
845 nir_deref_type_var,
846 nir_deref_type_array,
847 nir_deref_type_struct
848 } nir_deref_type;
849
850 typedef struct nir_deref {
851 nir_deref_type deref_type;
852 struct nir_deref *child;
853 const struct glsl_type *type;
854 } nir_deref;
855
856 typedef struct {
857 nir_deref deref;
858
859 nir_variable *var;
860 } nir_deref_var;
861
862 /* This enum describes how the array is referenced. If the deref is
863 * direct then the base_offset is used. If the deref is indirect then
864 * offset is given by base_offset + indirect. If the deref is a wildcard
865 * then the deref refers to all of the elements of the array at the same
866 * time. Wildcard dereferences are only ever allowed in copy_var
867 * intrinsics and the source and destination derefs must have matching
868 * wildcards.
869 */
870 typedef enum {
871 nir_deref_array_type_direct,
872 nir_deref_array_type_indirect,
873 nir_deref_array_type_wildcard,
874 } nir_deref_array_type;
875
876 typedef struct {
877 nir_deref deref;
878
879 nir_deref_array_type deref_array_type;
880 unsigned base_offset;
881 nir_src indirect;
882 } nir_deref_array;
883
884 typedef struct {
885 nir_deref deref;
886
887 unsigned index;
888 } nir_deref_struct;
889
890 NIR_DEFINE_CAST(nir_deref_as_var, nir_deref, nir_deref_var, deref,
891 deref_type, nir_deref_type_var)
892 NIR_DEFINE_CAST(nir_deref_as_array, nir_deref, nir_deref_array, deref,
893 deref_type, nir_deref_type_array)
894 NIR_DEFINE_CAST(nir_deref_as_struct, nir_deref, nir_deref_struct, deref,
895 deref_type, nir_deref_type_struct)
896
897 /* Returns the last deref in the chain. */
898 static inline nir_deref *
899 nir_deref_tail(nir_deref *deref)
900 {
901 while (deref->child)
902 deref = deref->child;
903 return deref;
904 }
905
906 typedef struct {
907 nir_instr instr;
908
909 unsigned num_params;
910 nir_deref_var **params;
911 nir_deref_var *return_deref;
912
913 struct nir_function *callee;
914 } nir_call_instr;
915
916 #define INTRINSIC(name, num_srcs, src_components, has_dest, dest_components, \
917 num_variables, num_indices, idx0, idx1, idx2, flags) \
918 nir_intrinsic_##name,
919
920 #define LAST_INTRINSIC(name) nir_last_intrinsic = nir_intrinsic_##name,
921
922 typedef enum {
923 #include "nir_intrinsics.h"
924 nir_num_intrinsics = nir_last_intrinsic + 1
925 } nir_intrinsic_op;
926
927 #define NIR_INTRINSIC_MAX_CONST_INDEX 3
928
929 /** Represents an intrinsic
930 *
931 * An intrinsic is an instruction type for handling things that are
932 * more-or-less regular operations but don't just consume and produce SSA
933 * values like ALU operations do. Intrinsics are not for things that have
934 * special semantic meaning such as phi nodes and parallel copies.
935 * Examples of intrinsics include variable load/store operations, system
936 * value loads, and the like. Even though texturing more-or-less falls
937 * under this category, texturing is its own instruction type because
938 * trying to represent texturing with intrinsics would lead to a
939 * combinatorial explosion of intrinsic opcodes.
940 *
941 * By having a single instruction type for handling a lot of different
942 * cases, optimization passes can look for intrinsics and, for the most
943 * part, completely ignore them. Each intrinsic type also has a few
944 * possible flags that govern whether or not they can be reordered or
945 * eliminated. That way passes like dead code elimination can still work
946 * on intrisics without understanding the meaning of each.
947 *
948 * Each intrinsic has some number of constant indices, some number of
949 * variables, and some number of sources. What these sources, variables,
950 * and indices mean depends on the intrinsic and is documented with the
951 * intrinsic declaration in nir_intrinsics.h. Intrinsics and texture
952 * instructions are the only types of instruction that can operate on
953 * variables.
954 */
955 typedef struct {
956 nir_instr instr;
957
958 nir_intrinsic_op intrinsic;
959
960 nir_dest dest;
961
962 /** number of components if this is a vectorized intrinsic
963 *
964 * Similarly to ALU operations, some intrinsics are vectorized.
965 * An intrinsic is vectorized if nir_intrinsic_infos.dest_components == 0.
966 * For vectorized intrinsics, the num_components field specifies the
967 * number of destination components and the number of source components
968 * for all sources with nir_intrinsic_infos.src_components[i] == 0.
969 */
970 uint8_t num_components;
971
972 int const_index[NIR_INTRINSIC_MAX_CONST_INDEX];
973
974 nir_deref_var *variables[2];
975
976 nir_src src[];
977 } nir_intrinsic_instr;
978
979 /**
980 * \name NIR intrinsics semantic flags
981 *
982 * information about what the compiler can do with the intrinsics.
983 *
984 * \sa nir_intrinsic_info::flags
985 */
986 typedef enum {
987 /**
988 * whether the intrinsic can be safely eliminated if none of its output
989 * value is not being used.
990 */
991 NIR_INTRINSIC_CAN_ELIMINATE = (1 << 0),
992
993 /**
994 * Whether the intrinsic can be reordered with respect to any other
995 * intrinsic, i.e. whether the only reordering dependencies of the
996 * intrinsic are due to the register reads/writes.
997 */
998 NIR_INTRINSIC_CAN_REORDER = (1 << 1),
999 } nir_intrinsic_semantic_flag;
1000
1001 /**
1002 * \name NIR intrinsics const-index flag
1003 *
1004 * Indicates the usage of a const_index slot.
1005 *
1006 * \sa nir_intrinsic_info::index_map
1007 */
1008 typedef enum {
1009 /**
1010 * Generally instructions that take a offset src argument, can encode
1011 * a constant 'base' value which is added to the offset.
1012 */
1013 NIR_INTRINSIC_BASE = 1,
1014
1015 /**
1016 * For store instructions, a writemask for the store.
1017 */
1018 NIR_INTRINSIC_WRMASK = 2,
1019
1020 /**
1021 * The stream-id for GS emit_vertex/end_primitive intrinsics.
1022 */
1023 NIR_INTRINSIC_STREAM_ID = 3,
1024
1025 /**
1026 * The clip-plane id for load_user_clip_plane intrinsic.
1027 */
1028 NIR_INTRINSIC_UCP_ID = 4,
1029
1030 /**
1031 * The amount of data, starting from BASE, that this instruction may
1032 * access. This is used to provide bounds if the offset is not constant.
1033 */
1034 NIR_INTRINSIC_RANGE = 5,
1035
1036 /**
1037 * The Vulkan descriptor set for vulkan_resource_index intrinsic.
1038 */
1039 NIR_INTRINSIC_DESC_SET = 6,
1040
1041 /**
1042 * The Vulkan descriptor set binding for vulkan_resource_index intrinsic.
1043 */
1044 NIR_INTRINSIC_BINDING = 7,
1045
1046 /**
1047 * Component offset.
1048 */
1049 NIR_INTRINSIC_COMPONENT = 8,
1050
1051 /**
1052 * Interpolation mode (only meaningful for FS inputs).
1053 */
1054 NIR_INTRINSIC_INTERP_MODE = 9,
1055
1056 NIR_INTRINSIC_NUM_INDEX_FLAGS,
1057
1058 } nir_intrinsic_index_flag;
1059
1060 #define NIR_INTRINSIC_MAX_INPUTS 4
1061
1062 typedef struct {
1063 const char *name;
1064
1065 unsigned num_srcs; /** < number of register/SSA inputs */
1066
1067 /** number of components of each input register
1068 *
1069 * If this value is 0, the number of components is given by the
1070 * num_components field of nir_intrinsic_instr.
1071 */
1072 unsigned src_components[NIR_INTRINSIC_MAX_INPUTS];
1073
1074 bool has_dest;
1075
1076 /** number of components of the output register
1077 *
1078 * If this value is 0, the number of components is given by the
1079 * num_components field of nir_intrinsic_instr.
1080 */
1081 unsigned dest_components;
1082
1083 /** the number of inputs/outputs that are variables */
1084 unsigned num_variables;
1085
1086 /** the number of constant indices used by the intrinsic */
1087 unsigned num_indices;
1088
1089 /** indicates the usage of intr->const_index[n] */
1090 unsigned index_map[NIR_INTRINSIC_NUM_INDEX_FLAGS];
1091
1092 /** semantic flags for calls to this intrinsic */
1093 nir_intrinsic_semantic_flag flags;
1094 } nir_intrinsic_info;
1095
1096 extern const nir_intrinsic_info nir_intrinsic_infos[nir_num_intrinsics];
1097
1098
1099 #define INTRINSIC_IDX_ACCESSORS(name, flag, type) \
1100 static inline type \
1101 nir_intrinsic_##name(const nir_intrinsic_instr *instr) \
1102 { \
1103 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic]; \
1104 assert(info->index_map[NIR_INTRINSIC_##flag] > 0); \
1105 return instr->const_index[info->index_map[NIR_INTRINSIC_##flag] - 1]; \
1106 } \
1107 static inline void \
1108 nir_intrinsic_set_##name(nir_intrinsic_instr *instr, type val) \
1109 { \
1110 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic]; \
1111 assert(info->index_map[NIR_INTRINSIC_##flag] > 0); \
1112 instr->const_index[info->index_map[NIR_INTRINSIC_##flag] - 1] = val; \
1113 }
1114
1115 INTRINSIC_IDX_ACCESSORS(write_mask, WRMASK, unsigned)
1116 INTRINSIC_IDX_ACCESSORS(base, BASE, int)
1117 INTRINSIC_IDX_ACCESSORS(stream_id, STREAM_ID, unsigned)
1118 INTRINSIC_IDX_ACCESSORS(ucp_id, UCP_ID, unsigned)
1119 INTRINSIC_IDX_ACCESSORS(range, RANGE, unsigned)
1120 INTRINSIC_IDX_ACCESSORS(desc_set, DESC_SET, unsigned)
1121 INTRINSIC_IDX_ACCESSORS(binding, BINDING, unsigned)
1122 INTRINSIC_IDX_ACCESSORS(component, COMPONENT, unsigned)
1123 INTRINSIC_IDX_ACCESSORS(interp_mode, INTERP_MODE, unsigned)
1124
1125 /**
1126 * \group texture information
1127 *
1128 * This gives semantic information about textures which is useful to the
1129 * frontend, the backend, and lowering passes, but not the optimizer.
1130 */
1131
1132 typedef enum {
1133 nir_tex_src_coord,
1134 nir_tex_src_projector,
1135 nir_tex_src_comparator, /* shadow comparator */
1136 nir_tex_src_offset,
1137 nir_tex_src_bias,
1138 nir_tex_src_lod,
1139 nir_tex_src_ms_index, /* MSAA sample index */
1140 nir_tex_src_ms_mcs, /* MSAA compression value */
1141 nir_tex_src_ddx,
1142 nir_tex_src_ddy,
1143 nir_tex_src_texture_offset, /* < dynamically uniform indirect offset */
1144 nir_tex_src_sampler_offset, /* < dynamically uniform indirect offset */
1145 nir_tex_src_plane, /* < selects plane for planar textures */
1146 nir_num_tex_src_types
1147 } nir_tex_src_type;
1148
1149 typedef struct {
1150 nir_src src;
1151 nir_tex_src_type src_type;
1152 } nir_tex_src;
1153
1154 typedef enum {
1155 nir_texop_tex, /**< Regular texture look-up */
1156 nir_texop_txb, /**< Texture look-up with LOD bias */
1157 nir_texop_txl, /**< Texture look-up with explicit LOD */
1158 nir_texop_txd, /**< Texture look-up with partial derivatvies */
1159 nir_texop_txf, /**< Texel fetch with explicit LOD */
1160 nir_texop_txf_ms, /**< Multisample texture fetch */
1161 nir_texop_txf_ms_mcs, /**< Multisample compression value fetch */
1162 nir_texop_txs, /**< Texture size */
1163 nir_texop_lod, /**< Texture lod query */
1164 nir_texop_tg4, /**< Texture gather */
1165 nir_texop_query_levels, /**< Texture levels query */
1166 nir_texop_texture_samples, /**< Texture samples query */
1167 nir_texop_samples_identical, /**< Query whether all samples are definitely
1168 * identical.
1169 */
1170 } nir_texop;
1171
1172 typedef struct {
1173 nir_instr instr;
1174
1175 enum glsl_sampler_dim sampler_dim;
1176 nir_alu_type dest_type;
1177
1178 nir_texop op;
1179 nir_dest dest;
1180 nir_tex_src *src;
1181 unsigned num_srcs, coord_components;
1182 bool is_array, is_shadow;
1183
1184 /**
1185 * If is_shadow is true, whether this is the old-style shadow that outputs 4
1186 * components or the new-style shadow that outputs 1 component.
1187 */
1188 bool is_new_style_shadow;
1189
1190 /* gather component selector */
1191 unsigned component : 2;
1192
1193 /** The texture index
1194 *
1195 * If this texture instruction has a nir_tex_src_texture_offset source,
1196 * then the texture index is given by texture_index + texture_offset.
1197 */
1198 unsigned texture_index;
1199
1200 /** The size of the texture array or 0 if it's not an array */
1201 unsigned texture_array_size;
1202
1203 /** The texture deref
1204 *
1205 * If this is null, use texture_index instead.
1206 */
1207 nir_deref_var *texture;
1208
1209 /** The sampler index
1210 *
1211 * The following operations do not require a sampler and, as such, this
1212 * field should be ignored:
1213 * - nir_texop_txf
1214 * - nir_texop_txf_ms
1215 * - nir_texop_txs
1216 * - nir_texop_lod
1217 * - nir_texop_tg4
1218 * - nir_texop_query_levels
1219 * - nir_texop_texture_samples
1220 * - nir_texop_samples_identical
1221 *
1222 * If this texture instruction has a nir_tex_src_sampler_offset source,
1223 * then the sampler index is given by sampler_index + sampler_offset.
1224 */
1225 unsigned sampler_index;
1226
1227 /** The sampler deref
1228 *
1229 * If this is null, use sampler_index instead.
1230 */
1231 nir_deref_var *sampler;
1232 } nir_tex_instr;
1233
1234 static inline unsigned
1235 nir_tex_instr_dest_size(const nir_tex_instr *instr)
1236 {
1237 switch (instr->op) {
1238 case nir_texop_txs: {
1239 unsigned ret;
1240 switch (instr->sampler_dim) {
1241 case GLSL_SAMPLER_DIM_1D:
1242 case GLSL_SAMPLER_DIM_BUF:
1243 ret = 1;
1244 break;
1245 case GLSL_SAMPLER_DIM_2D:
1246 case GLSL_SAMPLER_DIM_CUBE:
1247 case GLSL_SAMPLER_DIM_MS:
1248 case GLSL_SAMPLER_DIM_RECT:
1249 case GLSL_SAMPLER_DIM_EXTERNAL:
1250 case GLSL_SAMPLER_DIM_SUBPASS:
1251 ret = 2;
1252 break;
1253 case GLSL_SAMPLER_DIM_3D:
1254 ret = 3;
1255 break;
1256 default:
1257 unreachable("not reached");
1258 }
1259 if (instr->is_array)
1260 ret++;
1261 return ret;
1262 }
1263
1264 case nir_texop_lod:
1265 return 2;
1266
1267 case nir_texop_texture_samples:
1268 case nir_texop_query_levels:
1269 case nir_texop_samples_identical:
1270 return 1;
1271
1272 default:
1273 if (instr->is_shadow && instr->is_new_style_shadow)
1274 return 1;
1275
1276 return 4;
1277 }
1278 }
1279
1280 /* Returns true if this texture operation queries something about the texture
1281 * rather than actually sampling it.
1282 */
1283 static inline bool
1284 nir_tex_instr_is_query(const nir_tex_instr *instr)
1285 {
1286 switch (instr->op) {
1287 case nir_texop_txs:
1288 case nir_texop_lod:
1289 case nir_texop_texture_samples:
1290 case nir_texop_query_levels:
1291 case nir_texop_txf_ms_mcs:
1292 return true;
1293 case nir_texop_tex:
1294 case nir_texop_txb:
1295 case nir_texop_txl:
1296 case nir_texop_txd:
1297 case nir_texop_txf:
1298 case nir_texop_txf_ms:
1299 case nir_texop_tg4:
1300 return false;
1301 default:
1302 unreachable("Invalid texture opcode");
1303 }
1304 }
1305
1306 static inline nir_alu_type
1307 nir_tex_instr_src_type(const nir_tex_instr *instr, unsigned src)
1308 {
1309 switch (instr->src[src].src_type) {
1310 case nir_tex_src_coord:
1311 switch (instr->op) {
1312 case nir_texop_txf:
1313 case nir_texop_txf_ms:
1314 case nir_texop_txf_ms_mcs:
1315 case nir_texop_samples_identical:
1316 return nir_type_int;
1317
1318 default:
1319 return nir_type_float;
1320 }
1321
1322 case nir_tex_src_lod:
1323 switch (instr->op) {
1324 case nir_texop_txs:
1325 case nir_texop_txf:
1326 return nir_type_int;
1327
1328 default:
1329 return nir_type_float;
1330 }
1331
1332 case nir_tex_src_projector:
1333 case nir_tex_src_comparator:
1334 case nir_tex_src_bias:
1335 case nir_tex_src_ddx:
1336 case nir_tex_src_ddy:
1337 return nir_type_float;
1338
1339 case nir_tex_src_offset:
1340 case nir_tex_src_ms_index:
1341 case nir_tex_src_texture_offset:
1342 case nir_tex_src_sampler_offset:
1343 return nir_type_int;
1344
1345 default:
1346 unreachable("Invalid texture source type");
1347 }
1348 }
1349
1350 static inline unsigned
1351 nir_tex_instr_src_size(const nir_tex_instr *instr, unsigned src)
1352 {
1353 if (instr->src[src].src_type == nir_tex_src_coord)
1354 return instr->coord_components;
1355
1356 /* The MCS value is expected to be a vec4 returned by a txf_ms_mcs */
1357 if (instr->src[src].src_type == nir_tex_src_ms_mcs)
1358 return 4;
1359
1360 if (instr->src[src].src_type == nir_tex_src_offset ||
1361 instr->src[src].src_type == nir_tex_src_ddx ||
1362 instr->src[src].src_type == nir_tex_src_ddy) {
1363 if (instr->is_array)
1364 return instr->coord_components - 1;
1365 else
1366 return instr->coord_components;
1367 }
1368
1369 return 1;
1370 }
1371
1372 static inline int
1373 nir_tex_instr_src_index(const nir_tex_instr *instr, nir_tex_src_type type)
1374 {
1375 for (unsigned i = 0; i < instr->num_srcs; i++)
1376 if (instr->src[i].src_type == type)
1377 return (int) i;
1378
1379 return -1;
1380 }
1381
1382 void nir_tex_instr_remove_src(nir_tex_instr *tex, unsigned src_idx);
1383
1384 typedef struct {
1385 nir_instr instr;
1386
1387 nir_const_value value;
1388
1389 nir_ssa_def def;
1390 } nir_load_const_instr;
1391
1392 typedef enum {
1393 nir_jump_return,
1394 nir_jump_break,
1395 nir_jump_continue,
1396 } nir_jump_type;
1397
1398 typedef struct {
1399 nir_instr instr;
1400 nir_jump_type type;
1401 } nir_jump_instr;
1402
1403 /* creates a new SSA variable in an undefined state */
1404
1405 typedef struct {
1406 nir_instr instr;
1407 nir_ssa_def def;
1408 } nir_ssa_undef_instr;
1409
1410 typedef struct {
1411 struct exec_node node;
1412
1413 /* The predecessor block corresponding to this source */
1414 struct nir_block *pred;
1415
1416 nir_src src;
1417 } nir_phi_src;
1418
1419 #define nir_foreach_phi_src(phi_src, phi) \
1420 foreach_list_typed(nir_phi_src, phi_src, node, &(phi)->srcs)
1421 #define nir_foreach_phi_src_safe(phi_src, phi) \
1422 foreach_list_typed_safe(nir_phi_src, phi_src, node, &(phi)->srcs)
1423
1424 typedef struct {
1425 nir_instr instr;
1426
1427 struct exec_list srcs; /** < list of nir_phi_src */
1428
1429 nir_dest dest;
1430 } nir_phi_instr;
1431
1432 typedef struct {
1433 struct exec_node node;
1434 nir_src src;
1435 nir_dest dest;
1436 } nir_parallel_copy_entry;
1437
1438 #define nir_foreach_parallel_copy_entry(entry, pcopy) \
1439 foreach_list_typed(nir_parallel_copy_entry, entry, node, &(pcopy)->entries)
1440
1441 typedef struct {
1442 nir_instr instr;
1443
1444 /* A list of nir_parallel_copy_entrys. The sources of all of the
1445 * entries are copied to the corresponding destinations "in parallel".
1446 * In other words, if we have two entries: a -> b and b -> a, the values
1447 * get swapped.
1448 */
1449 struct exec_list entries;
1450 } nir_parallel_copy_instr;
1451
1452 NIR_DEFINE_CAST(nir_instr_as_alu, nir_instr, nir_alu_instr, instr,
1453 type, nir_instr_type_alu)
1454 NIR_DEFINE_CAST(nir_instr_as_call, nir_instr, nir_call_instr, instr,
1455 type, nir_instr_type_call)
1456 NIR_DEFINE_CAST(nir_instr_as_jump, nir_instr, nir_jump_instr, instr,
1457 type, nir_instr_type_jump)
1458 NIR_DEFINE_CAST(nir_instr_as_tex, nir_instr, nir_tex_instr, instr,
1459 type, nir_instr_type_tex)
1460 NIR_DEFINE_CAST(nir_instr_as_intrinsic, nir_instr, nir_intrinsic_instr, instr,
1461 type, nir_instr_type_intrinsic)
1462 NIR_DEFINE_CAST(nir_instr_as_load_const, nir_instr, nir_load_const_instr, instr,
1463 type, nir_instr_type_load_const)
1464 NIR_DEFINE_CAST(nir_instr_as_ssa_undef, nir_instr, nir_ssa_undef_instr, instr,
1465 type, nir_instr_type_ssa_undef)
1466 NIR_DEFINE_CAST(nir_instr_as_phi, nir_instr, nir_phi_instr, instr,
1467 type, nir_instr_type_phi)
1468 NIR_DEFINE_CAST(nir_instr_as_parallel_copy, nir_instr,
1469 nir_parallel_copy_instr, instr,
1470 type, nir_instr_type_parallel_copy)
1471
1472 /*
1473 * Control flow
1474 *
1475 * Control flow consists of a tree of control flow nodes, which include
1476 * if-statements and loops. The leaves of the tree are basic blocks, lists of
1477 * instructions that always run start-to-finish. Each basic block also keeps
1478 * track of its successors (blocks which may run immediately after the current
1479 * block) and predecessors (blocks which could have run immediately before the
1480 * current block). Each function also has a start block and an end block which
1481 * all return statements point to (which is always empty). Together, all the
1482 * blocks with their predecessors and successors make up the control flow
1483 * graph (CFG) of the function. There are helpers that modify the tree of
1484 * control flow nodes while modifying the CFG appropriately; these should be
1485 * used instead of modifying the tree directly.
1486 */
1487
1488 typedef enum {
1489 nir_cf_node_block,
1490 nir_cf_node_if,
1491 nir_cf_node_loop,
1492 nir_cf_node_function
1493 } nir_cf_node_type;
1494
1495 typedef struct nir_cf_node {
1496 struct exec_node node;
1497 nir_cf_node_type type;
1498 struct nir_cf_node *parent;
1499 } nir_cf_node;
1500
1501 typedef struct nir_block {
1502 nir_cf_node cf_node;
1503
1504 struct exec_list instr_list; /** < list of nir_instr */
1505
1506 /** generic block index; generated by nir_index_blocks */
1507 unsigned index;
1508
1509 /*
1510 * Each block can only have up to 2 successors, so we put them in a simple
1511 * array - no need for anything more complicated.
1512 */
1513 struct nir_block *successors[2];
1514
1515 /* Set of nir_block predecessors in the CFG */
1516 struct set *predecessors;
1517
1518 /*
1519 * this node's immediate dominator in the dominance tree - set to NULL for
1520 * the start block.
1521 */
1522 struct nir_block *imm_dom;
1523
1524 /* This node's children in the dominance tree */
1525 unsigned num_dom_children;
1526 struct nir_block **dom_children;
1527
1528 /* Set of nir_blocks on the dominance frontier of this block */
1529 struct set *dom_frontier;
1530
1531 /*
1532 * These two indices have the property that dom_{pre,post}_index for each
1533 * child of this block in the dominance tree will always be between
1534 * dom_pre_index and dom_post_index for this block, which makes testing if
1535 * a given block is dominated by another block an O(1) operation.
1536 */
1537 unsigned dom_pre_index, dom_post_index;
1538
1539 /* live in and out for this block; used for liveness analysis */
1540 BITSET_WORD *live_in;
1541 BITSET_WORD *live_out;
1542 } nir_block;
1543
1544 static inline nir_instr *
1545 nir_block_first_instr(nir_block *block)
1546 {
1547 struct exec_node *head = exec_list_get_head(&block->instr_list);
1548 return exec_node_data(nir_instr, head, node);
1549 }
1550
1551 static inline nir_instr *
1552 nir_block_last_instr(nir_block *block)
1553 {
1554 struct exec_node *tail = exec_list_get_tail(&block->instr_list);
1555 return exec_node_data(nir_instr, tail, node);
1556 }
1557
1558 #define nir_foreach_instr(instr, block) \
1559 foreach_list_typed(nir_instr, instr, node, &(block)->instr_list)
1560 #define nir_foreach_instr_reverse(instr, block) \
1561 foreach_list_typed_reverse(nir_instr, instr, node, &(block)->instr_list)
1562 #define nir_foreach_instr_safe(instr, block) \
1563 foreach_list_typed_safe(nir_instr, instr, node, &(block)->instr_list)
1564 #define nir_foreach_instr_reverse_safe(instr, block) \
1565 foreach_list_typed_reverse_safe(nir_instr, instr, node, &(block)->instr_list)
1566
1567 typedef struct nir_if {
1568 nir_cf_node cf_node;
1569 nir_src condition;
1570
1571 struct exec_list then_list; /** < list of nir_cf_node */
1572 struct exec_list else_list; /** < list of nir_cf_node */
1573 } nir_if;
1574
1575 typedef struct {
1576 nir_if *nif;
1577
1578 nir_instr *conditional_instr;
1579
1580 nir_block *break_block;
1581 nir_block *continue_from_block;
1582
1583 bool continue_from_then;
1584
1585 struct list_head loop_terminator_link;
1586 } nir_loop_terminator;
1587
1588 typedef struct {
1589 /* Number of instructions in the loop */
1590 unsigned num_instructions;
1591
1592 /* How many times the loop is run (if known) */
1593 unsigned trip_count;
1594 bool is_trip_count_known;
1595
1596 /* Unroll the loop regardless of its size */
1597 bool force_unroll;
1598
1599 nir_loop_terminator *limiting_terminator;
1600
1601 /* A list of loop_terminators terminating this loop. */
1602 struct list_head loop_terminator_list;
1603 } nir_loop_info;
1604
1605 typedef struct {
1606 nir_cf_node cf_node;
1607
1608 struct exec_list body; /** < list of nir_cf_node */
1609
1610 nir_loop_info *info;
1611 } nir_loop;
1612
1613 /**
1614 * Various bits of metadata that can may be created or required by
1615 * optimization and analysis passes
1616 */
1617 typedef enum {
1618 nir_metadata_none = 0x0,
1619 nir_metadata_block_index = 0x1,
1620 nir_metadata_dominance = 0x2,
1621 nir_metadata_live_ssa_defs = 0x4,
1622 nir_metadata_not_properly_reset = 0x8,
1623 nir_metadata_loop_analysis = 0x10,
1624 } nir_metadata;
1625
1626 typedef struct {
1627 nir_cf_node cf_node;
1628
1629 /** pointer to the function of which this is an implementation */
1630 struct nir_function *function;
1631
1632 struct exec_list body; /** < list of nir_cf_node */
1633
1634 nir_block *end_block;
1635
1636 /** list for all local variables in the function */
1637 struct exec_list locals;
1638
1639 /** array of variables used as parameters */
1640 unsigned num_params;
1641 nir_variable **params;
1642
1643 /** variable used to hold the result of the function */
1644 nir_variable *return_var;
1645
1646 /** list of local registers in the function */
1647 struct exec_list registers;
1648
1649 /** next available local register index */
1650 unsigned reg_alloc;
1651
1652 /** next available SSA value index */
1653 unsigned ssa_alloc;
1654
1655 /* total number of basic blocks, only valid when block_index_dirty = false */
1656 unsigned num_blocks;
1657
1658 nir_metadata valid_metadata;
1659 } nir_function_impl;
1660
1661 ATTRIBUTE_RETURNS_NONNULL static inline nir_block *
1662 nir_start_block(nir_function_impl *impl)
1663 {
1664 return (nir_block *) impl->body.head_sentinel.next;
1665 }
1666
1667 ATTRIBUTE_RETURNS_NONNULL static inline nir_block *
1668 nir_impl_last_block(nir_function_impl *impl)
1669 {
1670 return (nir_block *) impl->body.tail_sentinel.prev;
1671 }
1672
1673 static inline nir_cf_node *
1674 nir_cf_node_next(nir_cf_node *node)
1675 {
1676 struct exec_node *next = exec_node_get_next(&node->node);
1677 if (exec_node_is_tail_sentinel(next))
1678 return NULL;
1679 else
1680 return exec_node_data(nir_cf_node, next, node);
1681 }
1682
1683 static inline nir_cf_node *
1684 nir_cf_node_prev(nir_cf_node *node)
1685 {
1686 struct exec_node *prev = exec_node_get_prev(&node->node);
1687 if (exec_node_is_head_sentinel(prev))
1688 return NULL;
1689 else
1690 return exec_node_data(nir_cf_node, prev, node);
1691 }
1692
1693 static inline bool
1694 nir_cf_node_is_first(const nir_cf_node *node)
1695 {
1696 return exec_node_is_head_sentinel(node->node.prev);
1697 }
1698
1699 static inline bool
1700 nir_cf_node_is_last(const nir_cf_node *node)
1701 {
1702 return exec_node_is_tail_sentinel(node->node.next);
1703 }
1704
1705 NIR_DEFINE_CAST(nir_cf_node_as_block, nir_cf_node, nir_block, cf_node,
1706 type, nir_cf_node_block)
1707 NIR_DEFINE_CAST(nir_cf_node_as_if, nir_cf_node, nir_if, cf_node,
1708 type, nir_cf_node_if)
1709 NIR_DEFINE_CAST(nir_cf_node_as_loop, nir_cf_node, nir_loop, cf_node,
1710 type, nir_cf_node_loop)
1711 NIR_DEFINE_CAST(nir_cf_node_as_function, nir_cf_node,
1712 nir_function_impl, cf_node, type, nir_cf_node_function)
1713
1714 static inline nir_block *
1715 nir_if_first_then_block(nir_if *if_stmt)
1716 {
1717 struct exec_node *head = exec_list_get_head(&if_stmt->then_list);
1718 return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
1719 }
1720
1721 static inline nir_block *
1722 nir_if_last_then_block(nir_if *if_stmt)
1723 {
1724 struct exec_node *tail = exec_list_get_tail(&if_stmt->then_list);
1725 return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
1726 }
1727
1728 static inline nir_block *
1729 nir_if_first_else_block(nir_if *if_stmt)
1730 {
1731 struct exec_node *head = exec_list_get_head(&if_stmt->else_list);
1732 return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
1733 }
1734
1735 static inline nir_block *
1736 nir_if_last_else_block(nir_if *if_stmt)
1737 {
1738 struct exec_node *tail = exec_list_get_tail(&if_stmt->else_list);
1739 return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
1740 }
1741
1742 static inline nir_block *
1743 nir_loop_first_block(nir_loop *loop)
1744 {
1745 struct exec_node *head = exec_list_get_head(&loop->body);
1746 return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
1747 }
1748
1749 static inline nir_block *
1750 nir_loop_last_block(nir_loop *loop)
1751 {
1752 struct exec_node *tail = exec_list_get_tail(&loop->body);
1753 return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
1754 }
1755
1756 typedef enum {
1757 nir_parameter_in,
1758 nir_parameter_out,
1759 nir_parameter_inout,
1760 } nir_parameter_type;
1761
1762 typedef struct {
1763 nir_parameter_type param_type;
1764 const struct glsl_type *type;
1765 } nir_parameter;
1766
1767 typedef struct nir_function {
1768 struct exec_node node;
1769
1770 const char *name;
1771 struct nir_shader *shader;
1772
1773 unsigned num_params;
1774 nir_parameter *params;
1775 const struct glsl_type *return_type;
1776
1777 /** The implementation of this function.
1778 *
1779 * If the function is only declared and not implemented, this is NULL.
1780 */
1781 nir_function_impl *impl;
1782 } nir_function;
1783
1784 typedef struct nir_shader_compiler_options {
1785 bool lower_fdiv;
1786 bool lower_ffma;
1787 bool fuse_ffma;
1788 bool lower_flrp32;
1789 /** Lowers flrp when it does not support doubles */
1790 bool lower_flrp64;
1791 bool lower_fpow;
1792 bool lower_fsat;
1793 bool lower_fsqrt;
1794 bool lower_fmod32;
1795 bool lower_fmod64;
1796 bool lower_bitfield_extract;
1797 bool lower_bitfield_insert;
1798 bool lower_uadd_carry;
1799 bool lower_usub_borrow;
1800 /** lowers fneg and ineg to fsub and isub. */
1801 bool lower_negate;
1802 /** lowers fsub and isub to fadd+fneg and iadd+ineg. */
1803 bool lower_sub;
1804
1805 /* lower {slt,sge,seq,sne} to {flt,fge,feq,fne} + b2f: */
1806 bool lower_scmp;
1807
1808 /** enables rules to lower idiv by power-of-two: */
1809 bool lower_idiv;
1810
1811 /* Does the native fdot instruction replicate its result for four
1812 * components? If so, then opt_algebraic_late will turn all fdotN
1813 * instructions into fdot_replicatedN instructions.
1814 */
1815 bool fdot_replicates;
1816
1817 /** lowers ffract to fsub+ffloor: */
1818 bool lower_ffract;
1819
1820 bool lower_pack_half_2x16;
1821 bool lower_pack_unorm_2x16;
1822 bool lower_pack_snorm_2x16;
1823 bool lower_pack_unorm_4x8;
1824 bool lower_pack_snorm_4x8;
1825 bool lower_unpack_half_2x16;
1826 bool lower_unpack_unorm_2x16;
1827 bool lower_unpack_snorm_2x16;
1828 bool lower_unpack_unorm_4x8;
1829 bool lower_unpack_snorm_4x8;
1830
1831 bool lower_extract_byte;
1832 bool lower_extract_word;
1833
1834 bool lower_vote_trivial;
1835 bool lower_subgroup_masks;
1836
1837 /**
1838 * Does the driver support real 32-bit integers? (Otherwise, integers
1839 * are simulated by floats.)
1840 */
1841 bool native_integers;
1842
1843 /* Indicates that the driver only has zero-based vertex id */
1844 bool vertex_id_zero_based;
1845
1846 bool lower_cs_local_index_from_id;
1847
1848 /**
1849 * Should nir_lower_io() create load_interpolated_input intrinsics?
1850 *
1851 * If not, it generates regular load_input intrinsics and interpolation
1852 * information must be inferred from the list of input nir_variables.
1853 */
1854 bool use_interpolated_input_intrinsics;
1855
1856 unsigned max_subgroup_size;
1857
1858 unsigned max_unroll_iterations;
1859 } nir_shader_compiler_options;
1860
1861 typedef struct nir_shader {
1862 /** list of uniforms (nir_variable) */
1863 struct exec_list uniforms;
1864
1865 /** list of inputs (nir_variable) */
1866 struct exec_list inputs;
1867
1868 /** list of outputs (nir_variable) */
1869 struct exec_list outputs;
1870
1871 /** list of shared compute variables (nir_variable) */
1872 struct exec_list shared;
1873
1874 /** Set of driver-specific options for the shader.
1875 *
1876 * The memory for the options is expected to be kept in a single static
1877 * copy by the driver.
1878 */
1879 const struct nir_shader_compiler_options *options;
1880
1881 /** Various bits of compile-time information about a given shader */
1882 struct shader_info info;
1883
1884 /** list of global variables in the shader (nir_variable) */
1885 struct exec_list globals;
1886
1887 /** list of system value variables in the shader (nir_variable) */
1888 struct exec_list system_values;
1889
1890 struct exec_list functions; /** < list of nir_function */
1891
1892 /** list of global register in the shader */
1893 struct exec_list registers;
1894
1895 /** next available global register index */
1896 unsigned reg_alloc;
1897
1898 /**
1899 * the highest index a load_input_*, load_uniform_*, etc. intrinsic can
1900 * access plus one
1901 */
1902 unsigned num_inputs, num_uniforms, num_outputs, num_shared;
1903
1904 /** The shader stage, such as MESA_SHADER_VERTEX. */
1905 gl_shader_stage stage;
1906 } nir_shader;
1907
1908 static inline nir_function_impl *
1909 nir_shader_get_entrypoint(nir_shader *shader)
1910 {
1911 assert(exec_list_length(&shader->functions) == 1);
1912 struct exec_node *func_node = exec_list_get_head(&shader->functions);
1913 nir_function *func = exec_node_data(nir_function, func_node, node);
1914 assert(func->return_type == glsl_void_type());
1915 assert(func->num_params == 0);
1916 assert(func->impl);
1917 return func->impl;
1918 }
1919
1920 #define nir_foreach_function(func, shader) \
1921 foreach_list_typed(nir_function, func, node, &(shader)->functions)
1922
1923 nir_shader *nir_shader_create(void *mem_ctx,
1924 gl_shader_stage stage,
1925 const nir_shader_compiler_options *options,
1926 shader_info *si);
1927
1928 /** creates a register, including assigning it an index and adding it to the list */
1929 nir_register *nir_global_reg_create(nir_shader *shader);
1930
1931 nir_register *nir_local_reg_create(nir_function_impl *impl);
1932
1933 void nir_reg_remove(nir_register *reg);
1934
1935 /** Adds a variable to the appropriate list in nir_shader */
1936 void nir_shader_add_variable(nir_shader *shader, nir_variable *var);
1937
1938 static inline void
1939 nir_function_impl_add_variable(nir_function_impl *impl, nir_variable *var)
1940 {
1941 assert(var->data.mode == nir_var_local);
1942 exec_list_push_tail(&impl->locals, &var->node);
1943 }
1944
1945 /** creates a variable, sets a few defaults, and adds it to the list */
1946 nir_variable *nir_variable_create(nir_shader *shader,
1947 nir_variable_mode mode,
1948 const struct glsl_type *type,
1949 const char *name);
1950 /** creates a local variable and adds it to the list */
1951 nir_variable *nir_local_variable_create(nir_function_impl *impl,
1952 const struct glsl_type *type,
1953 const char *name);
1954
1955 /** creates a function and adds it to the shader's list of functions */
1956 nir_function *nir_function_create(nir_shader *shader, const char *name);
1957
1958 nir_function_impl *nir_function_impl_create(nir_function *func);
1959 /** creates a function_impl that isn't tied to any particular function */
1960 nir_function_impl *nir_function_impl_create_bare(nir_shader *shader);
1961
1962 nir_block *nir_block_create(nir_shader *shader);
1963 nir_if *nir_if_create(nir_shader *shader);
1964 nir_loop *nir_loop_create(nir_shader *shader);
1965
1966 nir_function_impl *nir_cf_node_get_function(nir_cf_node *node);
1967
1968 /** requests that the given pieces of metadata be generated */
1969 void nir_metadata_require(nir_function_impl *impl, nir_metadata required, ...);
1970 /** dirties all but the preserved metadata */
1971 void nir_metadata_preserve(nir_function_impl *impl, nir_metadata preserved);
1972
1973 /** creates an instruction with default swizzle/writemask/etc. with NULL registers */
1974 nir_alu_instr *nir_alu_instr_create(nir_shader *shader, nir_op op);
1975
1976 nir_jump_instr *nir_jump_instr_create(nir_shader *shader, nir_jump_type type);
1977
1978 nir_load_const_instr *nir_load_const_instr_create(nir_shader *shader,
1979 unsigned num_components,
1980 unsigned bit_size);
1981
1982 nir_intrinsic_instr *nir_intrinsic_instr_create(nir_shader *shader,
1983 nir_intrinsic_op op);
1984
1985 nir_call_instr *nir_call_instr_create(nir_shader *shader,
1986 nir_function *callee);
1987
1988 nir_tex_instr *nir_tex_instr_create(nir_shader *shader, unsigned num_srcs);
1989
1990 nir_phi_instr *nir_phi_instr_create(nir_shader *shader);
1991
1992 nir_parallel_copy_instr *nir_parallel_copy_instr_create(nir_shader *shader);
1993
1994 nir_ssa_undef_instr *nir_ssa_undef_instr_create(nir_shader *shader,
1995 unsigned num_components,
1996 unsigned bit_size);
1997
1998 nir_deref_var *nir_deref_var_create(void *mem_ctx, nir_variable *var);
1999 nir_deref_array *nir_deref_array_create(void *mem_ctx);
2000 nir_deref_struct *nir_deref_struct_create(void *mem_ctx, unsigned field_index);
2001
2002 typedef bool (*nir_deref_foreach_leaf_cb)(nir_deref_var *deref, void *state);
2003 bool nir_deref_foreach_leaf(nir_deref_var *deref,
2004 nir_deref_foreach_leaf_cb cb, void *state);
2005
2006 nir_load_const_instr *
2007 nir_deref_get_const_initializer_load(nir_shader *shader, nir_deref_var *deref);
2008
2009 /**
2010 * NIR Cursors and Instruction Insertion API
2011 * @{
2012 *
2013 * A tiny struct representing a point to insert/extract instructions or
2014 * control flow nodes. Helps reduce the combinatorial explosion of possible
2015 * points to insert/extract.
2016 *
2017 * \sa nir_control_flow.h
2018 */
2019 typedef enum {
2020 nir_cursor_before_block,
2021 nir_cursor_after_block,
2022 nir_cursor_before_instr,
2023 nir_cursor_after_instr,
2024 } nir_cursor_option;
2025
2026 typedef struct {
2027 nir_cursor_option option;
2028 union {
2029 nir_block *block;
2030 nir_instr *instr;
2031 };
2032 } nir_cursor;
2033
2034 static inline nir_block *
2035 nir_cursor_current_block(nir_cursor cursor)
2036 {
2037 if (cursor.option == nir_cursor_before_instr ||
2038 cursor.option == nir_cursor_after_instr) {
2039 return cursor.instr->block;
2040 } else {
2041 return cursor.block;
2042 }
2043 }
2044
2045 bool nir_cursors_equal(nir_cursor a, nir_cursor b);
2046
2047 static inline nir_cursor
2048 nir_before_block(nir_block *block)
2049 {
2050 nir_cursor cursor;
2051 cursor.option = nir_cursor_before_block;
2052 cursor.block = block;
2053 return cursor;
2054 }
2055
2056 static inline nir_cursor
2057 nir_after_block(nir_block *block)
2058 {
2059 nir_cursor cursor;
2060 cursor.option = nir_cursor_after_block;
2061 cursor.block = block;
2062 return cursor;
2063 }
2064
2065 static inline nir_cursor
2066 nir_before_instr(nir_instr *instr)
2067 {
2068 nir_cursor cursor;
2069 cursor.option = nir_cursor_before_instr;
2070 cursor.instr = instr;
2071 return cursor;
2072 }
2073
2074 static inline nir_cursor
2075 nir_after_instr(nir_instr *instr)
2076 {
2077 nir_cursor cursor;
2078 cursor.option = nir_cursor_after_instr;
2079 cursor.instr = instr;
2080 return cursor;
2081 }
2082
2083 static inline nir_cursor
2084 nir_after_block_before_jump(nir_block *block)
2085 {
2086 nir_instr *last_instr = nir_block_last_instr(block);
2087 if (last_instr && last_instr->type == nir_instr_type_jump) {
2088 return nir_before_instr(last_instr);
2089 } else {
2090 return nir_after_block(block);
2091 }
2092 }
2093
2094 static inline nir_cursor
2095 nir_before_cf_node(nir_cf_node *node)
2096 {
2097 if (node->type == nir_cf_node_block)
2098 return nir_before_block(nir_cf_node_as_block(node));
2099
2100 return nir_after_block(nir_cf_node_as_block(nir_cf_node_prev(node)));
2101 }
2102
2103 static inline nir_cursor
2104 nir_after_cf_node(nir_cf_node *node)
2105 {
2106 if (node->type == nir_cf_node_block)
2107 return nir_after_block(nir_cf_node_as_block(node));
2108
2109 return nir_before_block(nir_cf_node_as_block(nir_cf_node_next(node)));
2110 }
2111
2112 static inline nir_cursor
2113 nir_after_phis(nir_block *block)
2114 {
2115 nir_foreach_instr(instr, block) {
2116 if (instr->type != nir_instr_type_phi)
2117 return nir_before_instr(instr);
2118 }
2119 return nir_after_block(block);
2120 }
2121
2122 static inline nir_cursor
2123 nir_after_cf_node_and_phis(nir_cf_node *node)
2124 {
2125 if (node->type == nir_cf_node_block)
2126 return nir_after_block(nir_cf_node_as_block(node));
2127
2128 nir_block *block = nir_cf_node_as_block(nir_cf_node_next(node));
2129
2130 return nir_after_phis(block);
2131 }
2132
2133 static inline nir_cursor
2134 nir_before_cf_list(struct exec_list *cf_list)
2135 {
2136 nir_cf_node *first_node = exec_node_data(nir_cf_node,
2137 exec_list_get_head(cf_list), node);
2138 return nir_before_cf_node(first_node);
2139 }
2140
2141 static inline nir_cursor
2142 nir_after_cf_list(struct exec_list *cf_list)
2143 {
2144 nir_cf_node *last_node = exec_node_data(nir_cf_node,
2145 exec_list_get_tail(cf_list), node);
2146 return nir_after_cf_node(last_node);
2147 }
2148
2149 /**
2150 * Insert a NIR instruction at the given cursor.
2151 *
2152 * Note: This does not update the cursor.
2153 */
2154 void nir_instr_insert(nir_cursor cursor, nir_instr *instr);
2155
2156 static inline void
2157 nir_instr_insert_before(nir_instr *instr, nir_instr *before)
2158 {
2159 nir_instr_insert(nir_before_instr(instr), before);
2160 }
2161
2162 static inline void
2163 nir_instr_insert_after(nir_instr *instr, nir_instr *after)
2164 {
2165 nir_instr_insert(nir_after_instr(instr), after);
2166 }
2167
2168 static inline void
2169 nir_instr_insert_before_block(nir_block *block, nir_instr *before)
2170 {
2171 nir_instr_insert(nir_before_block(block), before);
2172 }
2173
2174 static inline void
2175 nir_instr_insert_after_block(nir_block *block, nir_instr *after)
2176 {
2177 nir_instr_insert(nir_after_block(block), after);
2178 }
2179
2180 static inline void
2181 nir_instr_insert_before_cf(nir_cf_node *node, nir_instr *before)
2182 {
2183 nir_instr_insert(nir_before_cf_node(node), before);
2184 }
2185
2186 static inline void
2187 nir_instr_insert_after_cf(nir_cf_node *node, nir_instr *after)
2188 {
2189 nir_instr_insert(nir_after_cf_node(node), after);
2190 }
2191
2192 static inline void
2193 nir_instr_insert_before_cf_list(struct exec_list *list, nir_instr *before)
2194 {
2195 nir_instr_insert(nir_before_cf_list(list), before);
2196 }
2197
2198 static inline void
2199 nir_instr_insert_after_cf_list(struct exec_list *list, nir_instr *after)
2200 {
2201 nir_instr_insert(nir_after_cf_list(list), after);
2202 }
2203
2204 void nir_instr_remove(nir_instr *instr);
2205
2206 /** @} */
2207
2208 typedef bool (*nir_foreach_ssa_def_cb)(nir_ssa_def *def, void *state);
2209 typedef bool (*nir_foreach_dest_cb)(nir_dest *dest, void *state);
2210 typedef bool (*nir_foreach_src_cb)(nir_src *src, void *state);
2211 bool nir_foreach_ssa_def(nir_instr *instr, nir_foreach_ssa_def_cb cb,
2212 void *state);
2213 bool nir_foreach_dest(nir_instr *instr, nir_foreach_dest_cb cb, void *state);
2214 bool nir_foreach_src(nir_instr *instr, nir_foreach_src_cb cb, void *state);
2215
2216 nir_const_value *nir_src_as_const_value(nir_src src);
2217 bool nir_src_is_dynamically_uniform(nir_src src);
2218 bool nir_srcs_equal(nir_src src1, nir_src src2);
2219 void nir_instr_rewrite_src(nir_instr *instr, nir_src *src, nir_src new_src);
2220 void nir_instr_move_src(nir_instr *dest_instr, nir_src *dest, nir_src *src);
2221 void nir_if_rewrite_condition(nir_if *if_stmt, nir_src new_src);
2222 void nir_instr_rewrite_dest(nir_instr *instr, nir_dest *dest,
2223 nir_dest new_dest);
2224 void nir_instr_rewrite_deref(nir_instr *instr, nir_deref_var **deref,
2225 nir_deref_var *new_deref);
2226
2227 void nir_ssa_dest_init(nir_instr *instr, nir_dest *dest,
2228 unsigned num_components, unsigned bit_size,
2229 const char *name);
2230 void nir_ssa_def_init(nir_instr *instr, nir_ssa_def *def,
2231 unsigned num_components, unsigned bit_size,
2232 const char *name);
2233 void nir_ssa_def_rewrite_uses(nir_ssa_def *def, nir_src new_src);
2234 void nir_ssa_def_rewrite_uses_after(nir_ssa_def *def, nir_src new_src,
2235 nir_instr *after_me);
2236
2237 uint8_t nir_ssa_def_components_read(nir_ssa_def *def);
2238
2239 /*
2240 * finds the next basic block in source-code order, returns NULL if there is
2241 * none
2242 */
2243
2244 nir_block *nir_block_cf_tree_next(nir_block *block);
2245
2246 /* Performs the opposite of nir_block_cf_tree_next() */
2247
2248 nir_block *nir_block_cf_tree_prev(nir_block *block);
2249
2250 /* Gets the first block in a CF node in source-code order */
2251
2252 nir_block *nir_cf_node_cf_tree_first(nir_cf_node *node);
2253
2254 /* Gets the last block in a CF node in source-code order */
2255
2256 nir_block *nir_cf_node_cf_tree_last(nir_cf_node *node);
2257
2258 /* Gets the next block after a CF node in source-code order */
2259
2260 nir_block *nir_cf_node_cf_tree_next(nir_cf_node *node);
2261
2262 /* Macros for loops that visit blocks in source-code order */
2263
2264 #define nir_foreach_block(block, impl) \
2265 for (nir_block *block = nir_start_block(impl); block != NULL; \
2266 block = nir_block_cf_tree_next(block))
2267
2268 #define nir_foreach_block_safe(block, impl) \
2269 for (nir_block *block = nir_start_block(impl), \
2270 *next = nir_block_cf_tree_next(block); \
2271 block != NULL; \
2272 block = next, next = nir_block_cf_tree_next(block))
2273
2274 #define nir_foreach_block_reverse(block, impl) \
2275 for (nir_block *block = nir_impl_last_block(impl); block != NULL; \
2276 block = nir_block_cf_tree_prev(block))
2277
2278 #define nir_foreach_block_reverse_safe(block, impl) \
2279 for (nir_block *block = nir_impl_last_block(impl), \
2280 *prev = nir_block_cf_tree_prev(block); \
2281 block != NULL; \
2282 block = prev, prev = nir_block_cf_tree_prev(block))
2283
2284 #define nir_foreach_block_in_cf_node(block, node) \
2285 for (nir_block *block = nir_cf_node_cf_tree_first(node); \
2286 block != nir_cf_node_cf_tree_next(node); \
2287 block = nir_block_cf_tree_next(block))
2288
2289 /* If the following CF node is an if, this function returns that if.
2290 * Otherwise, it returns NULL.
2291 */
2292 nir_if *nir_block_get_following_if(nir_block *block);
2293
2294 nir_loop *nir_block_get_following_loop(nir_block *block);
2295
2296 void nir_index_local_regs(nir_function_impl *impl);
2297 void nir_index_global_regs(nir_shader *shader);
2298 void nir_index_ssa_defs(nir_function_impl *impl);
2299 unsigned nir_index_instrs(nir_function_impl *impl);
2300
2301 void nir_index_blocks(nir_function_impl *impl);
2302
2303 void nir_print_shader(nir_shader *shader, FILE *fp);
2304 void nir_print_shader_annotated(nir_shader *shader, FILE *fp, struct hash_table *errors);
2305 void nir_print_instr(const nir_instr *instr, FILE *fp);
2306
2307 nir_shader *nir_shader_clone(void *mem_ctx, const nir_shader *s);
2308 nir_function_impl *nir_function_impl_clone(const nir_function_impl *fi);
2309 nir_constant *nir_constant_clone(const nir_constant *c, nir_variable *var);
2310 nir_variable *nir_variable_clone(const nir_variable *c, nir_shader *shader);
2311 nir_deref *nir_deref_clone(const nir_deref *deref, void *mem_ctx);
2312 nir_deref_var *nir_deref_var_clone(const nir_deref_var *deref, void *mem_ctx);
2313
2314 #ifdef DEBUG
2315 void nir_validate_shader(nir_shader *shader);
2316 void nir_metadata_set_validation_flag(nir_shader *shader);
2317 void nir_metadata_check_validation_flag(nir_shader *shader);
2318
2319 static inline bool
2320 should_clone_nir(void)
2321 {
2322 static int should_clone = -1;
2323 if (should_clone < 0)
2324 should_clone = env_var_as_boolean("NIR_TEST_CLONE", false);
2325
2326 return should_clone;
2327 }
2328
2329 static inline bool
2330 should_print_nir(void)
2331 {
2332 static int should_print = -1;
2333 if (should_print < 0)
2334 should_print = env_var_as_boolean("NIR_PRINT", false);
2335
2336 return should_print;
2337 }
2338 #else
2339 static inline void nir_validate_shader(nir_shader *shader) { (void) shader; }
2340 static inline void nir_metadata_set_validation_flag(nir_shader *shader) { (void) shader; }
2341 static inline void nir_metadata_check_validation_flag(nir_shader *shader) { (void) shader; }
2342 static inline bool should_clone_nir(void) { return false; }
2343 static inline bool should_print_nir(void) { return false; }
2344 #endif /* DEBUG */
2345
2346 #define _PASS(nir, do_pass) do { \
2347 do_pass \
2348 nir_validate_shader(nir); \
2349 if (should_clone_nir()) { \
2350 nir_shader *clone = nir_shader_clone(ralloc_parent(nir), nir); \
2351 ralloc_free(nir); \
2352 nir = clone; \
2353 } \
2354 } while (0)
2355
2356 #define NIR_PASS(progress, nir, pass, ...) _PASS(nir, \
2357 nir_metadata_set_validation_flag(nir); \
2358 if (should_print_nir()) \
2359 printf("%s\n", #pass); \
2360 if (pass(nir, ##__VA_ARGS__)) { \
2361 progress = true; \
2362 if (should_print_nir()) \
2363 nir_print_shader(nir, stdout); \
2364 nir_metadata_check_validation_flag(nir); \
2365 } \
2366 )
2367
2368 #define NIR_PASS_V(nir, pass, ...) _PASS(nir, \
2369 if (should_print_nir()) \
2370 printf("%s\n", #pass); \
2371 pass(nir, ##__VA_ARGS__); \
2372 if (should_print_nir()) \
2373 nir_print_shader(nir, stdout); \
2374 )
2375
2376 void nir_calc_dominance_impl(nir_function_impl *impl);
2377 void nir_calc_dominance(nir_shader *shader);
2378
2379 nir_block *nir_dominance_lca(nir_block *b1, nir_block *b2);
2380 bool nir_block_dominates(nir_block *parent, nir_block *child);
2381
2382 void nir_dump_dom_tree_impl(nir_function_impl *impl, FILE *fp);
2383 void nir_dump_dom_tree(nir_shader *shader, FILE *fp);
2384
2385 void nir_dump_dom_frontier_impl(nir_function_impl *impl, FILE *fp);
2386 void nir_dump_dom_frontier(nir_shader *shader, FILE *fp);
2387
2388 void nir_dump_cfg_impl(nir_function_impl *impl, FILE *fp);
2389 void nir_dump_cfg(nir_shader *shader, FILE *fp);
2390
2391 int nir_gs_count_vertices(const nir_shader *shader);
2392
2393 bool nir_split_var_copies(nir_shader *shader);
2394
2395 bool nir_lower_returns_impl(nir_function_impl *impl);
2396 bool nir_lower_returns(nir_shader *shader);
2397
2398 bool nir_inline_functions(nir_shader *shader);
2399
2400 bool nir_propagate_invariant(nir_shader *shader);
2401
2402 void nir_lower_var_copy_instr(nir_intrinsic_instr *copy, nir_shader *shader);
2403 bool nir_lower_var_copies(nir_shader *shader);
2404
2405 bool nir_lower_global_vars_to_local(nir_shader *shader);
2406
2407 bool nir_lower_indirect_derefs(nir_shader *shader, nir_variable_mode modes);
2408
2409 bool nir_lower_locals_to_regs(nir_shader *shader);
2410
2411 void nir_lower_io_to_temporaries(nir_shader *shader,
2412 nir_function_impl *entrypoint,
2413 bool outputs, bool inputs);
2414
2415 void nir_shader_gather_info(nir_shader *shader, nir_function_impl *entrypoint);
2416
2417 void nir_assign_var_locations(struct exec_list *var_list, unsigned *size,
2418 int (*type_size)(const struct glsl_type *));
2419
2420 typedef enum {
2421 /* If set, this forces all non-flat fragment shader inputs to be
2422 * interpolated as if with the "sample" qualifier. This requires
2423 * nir_shader_compiler_options::use_interpolated_input_intrinsics.
2424 */
2425 nir_lower_io_force_sample_interpolation = (1 << 1),
2426 } nir_lower_io_options;
2427 bool nir_lower_io(nir_shader *shader,
2428 nir_variable_mode modes,
2429 int (*type_size)(const struct glsl_type *),
2430 nir_lower_io_options);
2431 nir_src *nir_get_io_offset_src(nir_intrinsic_instr *instr);
2432 nir_src *nir_get_io_vertex_index_src(nir_intrinsic_instr *instr);
2433
2434 bool nir_is_per_vertex_io(const nir_variable *var, gl_shader_stage stage);
2435
2436 void nir_lower_io_types(nir_shader *shader);
2437 bool nir_lower_regs_to_ssa_impl(nir_function_impl *impl);
2438 bool nir_lower_regs_to_ssa(nir_shader *shader);
2439 bool nir_lower_vars_to_ssa(nir_shader *shader);
2440
2441 bool nir_remove_dead_variables(nir_shader *shader, nir_variable_mode modes);
2442 bool nir_lower_constant_initializers(nir_shader *shader,
2443 nir_variable_mode modes);
2444
2445 bool nir_move_vec_src_uses_to_dest(nir_shader *shader);
2446 bool nir_lower_vec_to_movs(nir_shader *shader);
2447 bool nir_lower_alu_to_scalar(nir_shader *shader);
2448 bool nir_lower_load_const_to_scalar(nir_shader *shader);
2449 bool nir_lower_read_invocation_to_scalar(nir_shader *shader);
2450 bool nir_lower_phis_to_scalar(nir_shader *shader);
2451 void nir_lower_io_to_scalar(nir_shader *shader, nir_variable_mode mask);
2452
2453 bool nir_lower_samplers(nir_shader *shader,
2454 const struct gl_shader_program *shader_program);
2455 bool nir_lower_samplers_as_deref(nir_shader *shader,
2456 const struct gl_shader_program *shader_program);
2457
2458 bool nir_lower_system_values(nir_shader *shader);
2459
2460 typedef struct nir_lower_tex_options {
2461 /**
2462 * bitmask of (1 << GLSL_SAMPLER_DIM_x) to control for which
2463 * sampler types a texture projector is lowered.
2464 */
2465 unsigned lower_txp;
2466
2467 /**
2468 * If true, lower away nir_tex_src_offset for all texelfetch instructions.
2469 */
2470 bool lower_txf_offset;
2471
2472 /**
2473 * If true, lower away nir_tex_src_offset for all rect textures.
2474 */
2475 bool lower_rect_offset;
2476
2477 /**
2478 * If true, lower rect textures to 2D, using txs to fetch the
2479 * texture dimensions and dividing the texture coords by the
2480 * texture dims to normalize.
2481 */
2482 bool lower_rect;
2483
2484 /**
2485 * If true, convert yuv to rgb.
2486 */
2487 unsigned lower_y_uv_external;
2488 unsigned lower_y_u_v_external;
2489 unsigned lower_yx_xuxv_external;
2490 unsigned lower_xy_uxvx_external;
2491
2492 /**
2493 * To emulate certain texture wrap modes, this can be used
2494 * to saturate the specified tex coord to [0.0, 1.0]. The
2495 * bits are according to sampler #, ie. if, for example:
2496 *
2497 * (conf->saturate_s & (1 << n))
2498 *
2499 * is true, then the s coord for sampler n is saturated.
2500 *
2501 * Note that clamping must happen *after* projector lowering
2502 * so any projected texture sample instruction with a clamped
2503 * coordinate gets automatically lowered, regardless of the
2504 * 'lower_txp' setting.
2505 */
2506 unsigned saturate_s;
2507 unsigned saturate_t;
2508 unsigned saturate_r;
2509
2510 /* Bitmask of textures that need swizzling.
2511 *
2512 * If (swizzle_result & (1 << texture_index)), then the swizzle in
2513 * swizzles[texture_index] is applied to the result of the texturing
2514 * operation.
2515 */
2516 unsigned swizzle_result;
2517
2518 /* A swizzle for each texture. Values 0-3 represent x, y, z, or w swizzles
2519 * while 4 and 5 represent 0 and 1 respectively.
2520 */
2521 uint8_t swizzles[32][4];
2522
2523 /**
2524 * Bitmap of textures that need srgb to linear conversion. If
2525 * (lower_srgb & (1 << texture_index)) then the rgb (xyz) components
2526 * of the texture are lowered to linear.
2527 */
2528 unsigned lower_srgb;
2529
2530 /**
2531 * If true, lower nir_texop_txd on cube maps with nir_texop_txl.
2532 */
2533 bool lower_txd_cube_map;
2534
2535 /**
2536 * If true, lower nir_texop_txd on shadow samplers (except cube maps)
2537 * with nir_texop_txl. Notice that cube map shadow samplers are lowered
2538 * with lower_txd_cube_map.
2539 */
2540 bool lower_txd_shadow;
2541 } nir_lower_tex_options;
2542
2543 bool nir_lower_tex(nir_shader *shader,
2544 const nir_lower_tex_options *options);
2545
2546 bool nir_lower_idiv(nir_shader *shader);
2547
2548 bool nir_lower_clip_vs(nir_shader *shader, unsigned ucp_enables);
2549 bool nir_lower_clip_fs(nir_shader *shader, unsigned ucp_enables);
2550 bool nir_lower_clip_cull_distance_arrays(nir_shader *nir);
2551
2552 void nir_lower_two_sided_color(nir_shader *shader);
2553
2554 bool nir_lower_clamp_color_outputs(nir_shader *shader);
2555
2556 void nir_lower_passthrough_edgeflags(nir_shader *shader);
2557 void nir_lower_tes_patch_vertices(nir_shader *tes, unsigned patch_vertices);
2558
2559 typedef struct nir_lower_wpos_ytransform_options {
2560 int state_tokens[5];
2561 bool fs_coord_origin_upper_left :1;
2562 bool fs_coord_origin_lower_left :1;
2563 bool fs_coord_pixel_center_integer :1;
2564 bool fs_coord_pixel_center_half_integer :1;
2565 } nir_lower_wpos_ytransform_options;
2566
2567 bool nir_lower_wpos_ytransform(nir_shader *shader,
2568 const nir_lower_wpos_ytransform_options *options);
2569 bool nir_lower_wpos_center(nir_shader *shader, const bool for_sample_shading);
2570
2571 typedef struct nir_lower_drawpixels_options {
2572 int texcoord_state_tokens[5];
2573 int scale_state_tokens[5];
2574 int bias_state_tokens[5];
2575 unsigned drawpix_sampler;
2576 unsigned pixelmap_sampler;
2577 bool pixel_maps :1;
2578 bool scale_and_bias :1;
2579 } nir_lower_drawpixels_options;
2580
2581 void nir_lower_drawpixels(nir_shader *shader,
2582 const nir_lower_drawpixels_options *options);
2583
2584 typedef struct nir_lower_bitmap_options {
2585 unsigned sampler;
2586 bool swizzle_xxxx;
2587 } nir_lower_bitmap_options;
2588
2589 void nir_lower_bitmap(nir_shader *shader, const nir_lower_bitmap_options *options);
2590
2591 bool nir_lower_atomics(nir_shader *shader,
2592 const struct gl_shader_program *shader_program);
2593 bool nir_lower_atomics_to_ssbo(nir_shader *shader, unsigned ssbo_offset);
2594 bool nir_lower_uniforms_to_ubo(nir_shader *shader);
2595 bool nir_lower_to_source_mods(nir_shader *shader);
2596
2597 bool nir_lower_gs_intrinsics(nir_shader *shader);
2598
2599 typedef enum {
2600 nir_lower_imul64 = (1 << 0),
2601 nir_lower_isign64 = (1 << 1),
2602 /** Lower all int64 modulus and division opcodes */
2603 nir_lower_divmod64 = (1 << 2),
2604 } nir_lower_int64_options;
2605
2606 bool nir_lower_int64(nir_shader *shader, nir_lower_int64_options options);
2607
2608 typedef enum {
2609 nir_lower_drcp = (1 << 0),
2610 nir_lower_dsqrt = (1 << 1),
2611 nir_lower_drsq = (1 << 2),
2612 nir_lower_dtrunc = (1 << 3),
2613 nir_lower_dfloor = (1 << 4),
2614 nir_lower_dceil = (1 << 5),
2615 nir_lower_dfract = (1 << 6),
2616 nir_lower_dround_even = (1 << 7),
2617 nir_lower_dmod = (1 << 8)
2618 } nir_lower_doubles_options;
2619
2620 bool nir_lower_doubles(nir_shader *shader, nir_lower_doubles_options options);
2621 bool nir_lower_64bit_pack(nir_shader *shader);
2622
2623 bool nir_normalize_cubemap_coords(nir_shader *shader);
2624
2625 void nir_live_ssa_defs_impl(nir_function_impl *impl);
2626
2627 void nir_loop_analyze_impl(nir_function_impl *impl,
2628 nir_variable_mode indirect_mask);
2629
2630 bool nir_ssa_defs_interfere(nir_ssa_def *a, nir_ssa_def *b);
2631
2632 bool nir_repair_ssa_impl(nir_function_impl *impl);
2633 bool nir_repair_ssa(nir_shader *shader);
2634
2635 void nir_convert_loop_to_lcssa(nir_loop *loop);
2636
2637 /* If phi_webs_only is true, only convert SSA values involved in phi nodes to
2638 * registers. If false, convert all values (even those not involved in a phi
2639 * node) to registers.
2640 */
2641 bool nir_convert_from_ssa(nir_shader *shader, bool phi_webs_only);
2642
2643 bool nir_lower_phis_to_regs_block(nir_block *block);
2644 bool nir_lower_ssa_defs_to_regs_block(nir_block *block);
2645
2646 bool nir_opt_algebraic(nir_shader *shader);
2647 bool nir_opt_algebraic_before_ffma(nir_shader *shader);
2648 bool nir_opt_algebraic_late(nir_shader *shader);
2649 bool nir_opt_constant_folding(nir_shader *shader);
2650
2651 bool nir_opt_global_to_local(nir_shader *shader);
2652
2653 bool nir_copy_prop(nir_shader *shader);
2654
2655 bool nir_opt_copy_prop_vars(nir_shader *shader);
2656
2657 bool nir_opt_cse(nir_shader *shader);
2658
2659 bool nir_opt_dce(nir_shader *shader);
2660
2661 bool nir_opt_dead_cf(nir_shader *shader);
2662
2663 bool nir_opt_gcm(nir_shader *shader, bool value_number);
2664
2665 bool nir_opt_if(nir_shader *shader);
2666
2667 bool nir_opt_intrinsics(nir_shader *shader);
2668
2669 bool nir_opt_loop_unroll(nir_shader *shader, nir_variable_mode indirect_mask);
2670
2671 bool nir_opt_move_comparisons(nir_shader *shader);
2672
2673 bool nir_opt_peephole_select(nir_shader *shader, unsigned limit);
2674
2675 bool nir_opt_remove_phis(nir_shader *shader);
2676
2677 bool nir_opt_trivial_continues(nir_shader *shader);
2678
2679 bool nir_opt_undef(nir_shader *shader);
2680
2681 bool nir_opt_conditional_discard(nir_shader *shader);
2682
2683 void nir_sweep(nir_shader *shader);
2684
2685 nir_intrinsic_op nir_intrinsic_from_system_value(gl_system_value val);
2686 gl_system_value nir_system_value_from_intrinsic(nir_intrinsic_op intrin);
2687
2688 #ifdef __cplusplus
2689 } /* extern "C" */
2690 #endif
2691
2692 #endif /* NIR_H */