nir: Add a simple int64 lowering pass
[mesa.git] / src / compiler / nir / nir.h
1 /*
2 * Copyright © 2014 Connor Abbott
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Connor Abbott (cwabbott0@gmail.com)
25 *
26 */
27
28 #pragma once
29
30 #include "util/hash_table.h"
31 #include "compiler/glsl/list.h"
32 #include "GL/gl.h" /* GLenum */
33 #include "util/list.h"
34 #include "util/ralloc.h"
35 #include "util/set.h"
36 #include "util/bitset.h"
37 #include "util/macros.h"
38 #include "compiler/nir_types.h"
39 #include "compiler/shader_enums.h"
40 #include "compiler/shader_info.h"
41 #include <stdio.h>
42
43 #ifdef DEBUG
44 #include "util/debug.h"
45 #endif /* DEBUG */
46
47 #include "nir_opcodes.h"
48
49 #ifdef __cplusplus
50 extern "C" {
51 #endif
52
53 struct gl_program;
54 struct gl_shader_program;
55
56 #define NIR_FALSE 0u
57 #define NIR_TRUE (~0u)
58
59 /** Defines a cast function
60 *
61 * This macro defines a cast function from in_type to out_type where
62 * out_type is some structure type that contains a field of type out_type.
63 *
64 * Note that you have to be a bit careful as the generated cast function
65 * destroys constness.
66 */
67 #define NIR_DEFINE_CAST(name, in_type, out_type, field, \
68 type_field, type_value) \
69 static inline out_type * \
70 name(const in_type *parent) \
71 { \
72 assert(parent && parent->type_field == type_value); \
73 return exec_node_data(out_type, parent, field); \
74 }
75
76 struct nir_function;
77 struct nir_shader;
78 struct nir_instr;
79
80
81 /**
82 * Description of built-in state associated with a uniform
83 *
84 * \sa nir_variable::state_slots
85 */
86 typedef struct {
87 int tokens[5];
88 int swizzle;
89 } nir_state_slot;
90
91 typedef enum {
92 nir_var_shader_in = (1 << 0),
93 nir_var_shader_out = (1 << 1),
94 nir_var_global = (1 << 2),
95 nir_var_local = (1 << 3),
96 nir_var_uniform = (1 << 4),
97 nir_var_shader_storage = (1 << 5),
98 nir_var_system_value = (1 << 6),
99 nir_var_param = (1 << 7),
100 nir_var_shared = (1 << 8),
101 nir_var_all = ~0,
102 } nir_variable_mode;
103
104
105 typedef union {
106 float f32[4];
107 double f64[4];
108 int32_t i32[4];
109 uint32_t u32[4];
110 int64_t i64[4];
111 uint64_t u64[4];
112 } nir_const_value;
113
114 typedef struct nir_constant {
115 /**
116 * Value of the constant.
117 *
118 * The field used to back the values supplied by the constant is determined
119 * by the type associated with the \c nir_variable. Constants may be
120 * scalars, vectors, or matrices.
121 */
122 nir_const_value values[4];
123
124 /* we could get this from the var->type but makes clone *much* easier to
125 * not have to care about the type.
126 */
127 unsigned num_elements;
128
129 /* Array elements / Structure Fields */
130 struct nir_constant **elements;
131 } nir_constant;
132
133 /**
134 * \brief Layout qualifiers for gl_FragDepth.
135 *
136 * The AMD/ARB_conservative_depth extensions allow gl_FragDepth to be redeclared
137 * with a layout qualifier.
138 */
139 typedef enum {
140 nir_depth_layout_none, /**< No depth layout is specified. */
141 nir_depth_layout_any,
142 nir_depth_layout_greater,
143 nir_depth_layout_less,
144 nir_depth_layout_unchanged
145 } nir_depth_layout;
146
147 /**
148 * Either a uniform, global variable, shader input, or shader output. Based on
149 * ir_variable - it should be easy to translate between the two.
150 */
151
152 typedef struct nir_variable {
153 struct exec_node node;
154
155 /**
156 * Declared type of the variable
157 */
158 const struct glsl_type *type;
159
160 /**
161 * Declared name of the variable
162 */
163 char *name;
164
165 struct nir_variable_data {
166 /**
167 * Storage class of the variable.
168 *
169 * \sa nir_variable_mode
170 */
171 nir_variable_mode mode;
172
173 /**
174 * Is the variable read-only?
175 *
176 * This is set for variables declared as \c const, shader inputs,
177 * and uniforms.
178 */
179 unsigned read_only:1;
180 unsigned centroid:1;
181 unsigned sample:1;
182 unsigned patch:1;
183 unsigned invariant:1;
184
185 /**
186 * Interpolation mode for shader inputs / outputs
187 *
188 * \sa glsl_interp_mode
189 */
190 unsigned interpolation:2;
191
192 /**
193 * \name ARB_fragment_coord_conventions
194 * @{
195 */
196 unsigned origin_upper_left:1;
197 unsigned pixel_center_integer:1;
198 /*@}*/
199
200 /**
201 * If non-zero, then this variable may be packed along with other variables
202 * into a single varying slot, so this offset should be applied when
203 * accessing components. For example, an offset of 1 means that the x
204 * component of this variable is actually stored in component y of the
205 * location specified by \c location.
206 */
207 unsigned location_frac:2;
208
209 /**
210 * If true, this variable represents an array of scalars that should
211 * be tightly packed. In other words, consecutive array elements
212 * should be stored one component apart, rather than one slot apart.
213 */
214 bool compact:1;
215
216 /**
217 * Whether this is a fragment shader output implicitly initialized with
218 * the previous contents of the specified render target at the
219 * framebuffer location corresponding to this shader invocation.
220 */
221 unsigned fb_fetch_output:1;
222
223 /**
224 * \brief Layout qualifier for gl_FragDepth.
225 *
226 * This is not equal to \c ir_depth_layout_none if and only if this
227 * variable is \c gl_FragDepth and a layout qualifier is specified.
228 */
229 nir_depth_layout depth_layout;
230
231 /**
232 * Storage location of the base of this variable
233 *
234 * The precise meaning of this field depends on the nature of the variable.
235 *
236 * - Vertex shader input: one of the values from \c gl_vert_attrib.
237 * - Vertex shader output: one of the values from \c gl_varying_slot.
238 * - Geometry shader input: one of the values from \c gl_varying_slot.
239 * - Geometry shader output: one of the values from \c gl_varying_slot.
240 * - Fragment shader input: one of the values from \c gl_varying_slot.
241 * - Fragment shader output: one of the values from \c gl_frag_result.
242 * - Uniforms: Per-stage uniform slot number for default uniform block.
243 * - Uniforms: Index within the uniform block definition for UBO members.
244 * - Non-UBO Uniforms: uniform slot number.
245 * - Other: This field is not currently used.
246 *
247 * If the variable is a uniform, shader input, or shader output, and the
248 * slot has not been assigned, the value will be -1.
249 */
250 int location;
251
252 /**
253 * The actual location of the variable in the IR. Only valid for inputs
254 * and outputs.
255 */
256 unsigned int driver_location;
257
258 /**
259 * output index for dual source blending.
260 */
261 int index;
262
263 /**
264 * Descriptor set binding for sampler or UBO.
265 */
266 int descriptor_set;
267
268 /**
269 * Initial binding point for a sampler or UBO.
270 *
271 * For array types, this represents the binding point for the first element.
272 */
273 int binding;
274
275 /**
276 * Location an atomic counter is stored at.
277 */
278 unsigned offset;
279
280 /**
281 * ARB_shader_image_load_store qualifiers.
282 */
283 struct {
284 bool read_only; /**< "readonly" qualifier. */
285 bool write_only; /**< "writeonly" qualifier. */
286 bool coherent;
287 bool _volatile;
288 bool restrict_flag;
289
290 /** Image internal format if specified explicitly, otherwise GL_NONE. */
291 GLenum format;
292 } image;
293 } data;
294
295 /**
296 * Built-in state that backs this uniform
297 *
298 * Once set at variable creation, \c state_slots must remain invariant.
299 * This is because, ideally, this array would be shared by all clones of
300 * this variable in the IR tree. In other words, we'd really like for it
301 * to be a fly-weight.
302 *
303 * If the variable is not a uniform, \c num_state_slots will be zero and
304 * \c state_slots will be \c NULL.
305 */
306 /*@{*/
307 unsigned num_state_slots; /**< Number of state slots used */
308 nir_state_slot *state_slots; /**< State descriptors. */
309 /*@}*/
310
311 /**
312 * Constant expression assigned in the initializer of the variable
313 *
314 * This field should only be used temporarily by creators of NIR shaders
315 * and then lower_constant_initializers can be used to get rid of them.
316 * Most of the rest of NIR ignores this field or asserts that it's NULL.
317 */
318 nir_constant *constant_initializer;
319
320 /**
321 * For variables that are in an interface block or are an instance of an
322 * interface block, this is the \c GLSL_TYPE_INTERFACE type for that block.
323 *
324 * \sa ir_variable::location
325 */
326 const struct glsl_type *interface_type;
327 } nir_variable;
328
329 #define nir_foreach_variable(var, var_list) \
330 foreach_list_typed(nir_variable, var, node, var_list)
331
332 #define nir_foreach_variable_safe(var, var_list) \
333 foreach_list_typed_safe(nir_variable, var, node, var_list)
334
335 static inline bool
336 nir_variable_is_global(const nir_variable *var)
337 {
338 return var->data.mode != nir_var_local && var->data.mode != nir_var_param;
339 }
340
341 typedef struct nir_register {
342 struct exec_node node;
343
344 unsigned num_components; /** < number of vector components */
345 unsigned num_array_elems; /** < size of array (0 for no array) */
346
347 /* The bit-size of each channel; must be one of 8, 16, 32, or 64 */
348 uint8_t bit_size;
349
350 /** generic register index. */
351 unsigned index;
352
353 /** only for debug purposes, can be NULL */
354 const char *name;
355
356 /** whether this register is local (per-function) or global (per-shader) */
357 bool is_global;
358
359 /**
360 * If this flag is set to true, then accessing channels >= num_components
361 * is well-defined, and simply spills over to the next array element. This
362 * is useful for backends that can do per-component accessing, in
363 * particular scalar backends. By setting this flag and making
364 * num_components equal to 1, structures can be packed tightly into
365 * registers and then registers can be accessed per-component to get to
366 * each structure member, even if it crosses vec4 boundaries.
367 */
368 bool is_packed;
369
370 /** set of nir_src's where this register is used (read from) */
371 struct list_head uses;
372
373 /** set of nir_dest's where this register is defined (written to) */
374 struct list_head defs;
375
376 /** set of nir_if's where this register is used as a condition */
377 struct list_head if_uses;
378 } nir_register;
379
380 #define nir_foreach_register(reg, reg_list) \
381 foreach_list_typed(nir_register, reg, node, reg_list)
382 #define nir_foreach_register_safe(reg, reg_list) \
383 foreach_list_typed_safe(nir_register, reg, node, reg_list)
384
385 typedef enum {
386 nir_instr_type_alu,
387 nir_instr_type_call,
388 nir_instr_type_tex,
389 nir_instr_type_intrinsic,
390 nir_instr_type_load_const,
391 nir_instr_type_jump,
392 nir_instr_type_ssa_undef,
393 nir_instr_type_phi,
394 nir_instr_type_parallel_copy,
395 } nir_instr_type;
396
397 typedef struct nir_instr {
398 struct exec_node node;
399 nir_instr_type type;
400 struct nir_block *block;
401
402 /** generic instruction index. */
403 unsigned index;
404
405 /* A temporary for optimization and analysis passes to use for storing
406 * flags. For instance, DCE uses this to store the "dead/live" info.
407 */
408 uint8_t pass_flags;
409 } nir_instr;
410
411 static inline nir_instr *
412 nir_instr_next(nir_instr *instr)
413 {
414 struct exec_node *next = exec_node_get_next(&instr->node);
415 if (exec_node_is_tail_sentinel(next))
416 return NULL;
417 else
418 return exec_node_data(nir_instr, next, node);
419 }
420
421 static inline nir_instr *
422 nir_instr_prev(nir_instr *instr)
423 {
424 struct exec_node *prev = exec_node_get_prev(&instr->node);
425 if (exec_node_is_head_sentinel(prev))
426 return NULL;
427 else
428 return exec_node_data(nir_instr, prev, node);
429 }
430
431 static inline bool
432 nir_instr_is_first(nir_instr *instr)
433 {
434 return exec_node_is_head_sentinel(exec_node_get_prev(&instr->node));
435 }
436
437 static inline bool
438 nir_instr_is_last(nir_instr *instr)
439 {
440 return exec_node_is_tail_sentinel(exec_node_get_next(&instr->node));
441 }
442
443 typedef struct nir_ssa_def {
444 /** for debugging only, can be NULL */
445 const char* name;
446
447 /** generic SSA definition index. */
448 unsigned index;
449
450 /** Index into the live_in and live_out bitfields */
451 unsigned live_index;
452
453 nir_instr *parent_instr;
454
455 /** set of nir_instr's where this register is used (read from) */
456 struct list_head uses;
457
458 /** set of nir_if's where this register is used as a condition */
459 struct list_head if_uses;
460
461 uint8_t num_components;
462
463 /* The bit-size of each channel; must be one of 8, 16, 32, or 64 */
464 uint8_t bit_size;
465 } nir_ssa_def;
466
467 struct nir_src;
468
469 typedef struct {
470 nir_register *reg;
471 struct nir_src *indirect; /** < NULL for no indirect offset */
472 unsigned base_offset;
473
474 /* TODO use-def chain goes here */
475 } nir_reg_src;
476
477 typedef struct {
478 nir_instr *parent_instr;
479 struct list_head def_link;
480
481 nir_register *reg;
482 struct nir_src *indirect; /** < NULL for no indirect offset */
483 unsigned base_offset;
484
485 /* TODO def-use chain goes here */
486 } nir_reg_dest;
487
488 struct nir_if;
489
490 typedef struct nir_src {
491 union {
492 nir_instr *parent_instr;
493 struct nir_if *parent_if;
494 };
495
496 struct list_head use_link;
497
498 union {
499 nir_reg_src reg;
500 nir_ssa_def *ssa;
501 };
502
503 bool is_ssa;
504 } nir_src;
505
506 static inline nir_src
507 nir_src_init(void)
508 {
509 nir_src src = { { NULL } };
510 return src;
511 }
512
513 #define NIR_SRC_INIT nir_src_init()
514
515 #define nir_foreach_use(src, reg_or_ssa_def) \
516 list_for_each_entry(nir_src, src, &(reg_or_ssa_def)->uses, use_link)
517
518 #define nir_foreach_use_safe(src, reg_or_ssa_def) \
519 list_for_each_entry_safe(nir_src, src, &(reg_or_ssa_def)->uses, use_link)
520
521 #define nir_foreach_if_use(src, reg_or_ssa_def) \
522 list_for_each_entry(nir_src, src, &(reg_or_ssa_def)->if_uses, use_link)
523
524 #define nir_foreach_if_use_safe(src, reg_or_ssa_def) \
525 list_for_each_entry_safe(nir_src, src, &(reg_or_ssa_def)->if_uses, use_link)
526
527 typedef struct {
528 union {
529 nir_reg_dest reg;
530 nir_ssa_def ssa;
531 };
532
533 bool is_ssa;
534 } nir_dest;
535
536 static inline nir_dest
537 nir_dest_init(void)
538 {
539 nir_dest dest = { { { NULL } } };
540 return dest;
541 }
542
543 #define NIR_DEST_INIT nir_dest_init()
544
545 #define nir_foreach_def(dest, reg) \
546 list_for_each_entry(nir_dest, dest, &(reg)->defs, reg.def_link)
547
548 #define nir_foreach_def_safe(dest, reg) \
549 list_for_each_entry_safe(nir_dest, dest, &(reg)->defs, reg.def_link)
550
551 static inline nir_src
552 nir_src_for_ssa(nir_ssa_def *def)
553 {
554 nir_src src = NIR_SRC_INIT;
555
556 src.is_ssa = true;
557 src.ssa = def;
558
559 return src;
560 }
561
562 static inline nir_src
563 nir_src_for_reg(nir_register *reg)
564 {
565 nir_src src = NIR_SRC_INIT;
566
567 src.is_ssa = false;
568 src.reg.reg = reg;
569 src.reg.indirect = NULL;
570 src.reg.base_offset = 0;
571
572 return src;
573 }
574
575 static inline nir_dest
576 nir_dest_for_reg(nir_register *reg)
577 {
578 nir_dest dest = NIR_DEST_INIT;
579
580 dest.reg.reg = reg;
581
582 return dest;
583 }
584
585 static inline unsigned
586 nir_src_bit_size(nir_src src)
587 {
588 return src.is_ssa ? src.ssa->bit_size : src.reg.reg->bit_size;
589 }
590
591 static inline unsigned
592 nir_dest_bit_size(nir_dest dest)
593 {
594 return dest.is_ssa ? dest.ssa.bit_size : dest.reg.reg->bit_size;
595 }
596
597 void nir_src_copy(nir_src *dest, const nir_src *src, void *instr_or_if);
598 void nir_dest_copy(nir_dest *dest, const nir_dest *src, nir_instr *instr);
599
600 typedef struct {
601 nir_src src;
602
603 /**
604 * \name input modifiers
605 */
606 /*@{*/
607 /**
608 * For inputs interpreted as floating point, flips the sign bit. For
609 * inputs interpreted as integers, performs the two's complement negation.
610 */
611 bool negate;
612
613 /**
614 * Clears the sign bit for floating point values, and computes the integer
615 * absolute value for integers. Note that the negate modifier acts after
616 * the absolute value modifier, therefore if both are set then all inputs
617 * will become negative.
618 */
619 bool abs;
620 /*@}*/
621
622 /**
623 * For each input component, says which component of the register it is
624 * chosen from. Note that which elements of the swizzle are used and which
625 * are ignored are based on the write mask for most opcodes - for example,
626 * a statement like "foo.xzw = bar.zyx" would have a writemask of 1101b and
627 * a swizzle of {2, x, 1, 0} where x means "don't care."
628 */
629 uint8_t swizzle[4];
630 } nir_alu_src;
631
632 typedef struct {
633 nir_dest dest;
634
635 /**
636 * \name saturate output modifier
637 *
638 * Only valid for opcodes that output floating-point numbers. Clamps the
639 * output to between 0.0 and 1.0 inclusive.
640 */
641
642 bool saturate;
643
644 unsigned write_mask : 4; /* ignored if dest.is_ssa is true */
645 } nir_alu_dest;
646
647 typedef enum {
648 nir_type_invalid = 0, /* Not a valid type */
649 nir_type_float,
650 nir_type_int,
651 nir_type_uint,
652 nir_type_bool,
653 nir_type_bool32 = 32 | nir_type_bool,
654 nir_type_int8 = 8 | nir_type_int,
655 nir_type_int16 = 16 | nir_type_int,
656 nir_type_int32 = 32 | nir_type_int,
657 nir_type_int64 = 64 | nir_type_int,
658 nir_type_uint8 = 8 | nir_type_uint,
659 nir_type_uint16 = 16 | nir_type_uint,
660 nir_type_uint32 = 32 | nir_type_uint,
661 nir_type_uint64 = 64 | nir_type_uint,
662 nir_type_float16 = 16 | nir_type_float,
663 nir_type_float32 = 32 | nir_type_float,
664 nir_type_float64 = 64 | nir_type_float,
665 } nir_alu_type;
666
667 #define NIR_ALU_TYPE_SIZE_MASK 0xfffffff8
668 #define NIR_ALU_TYPE_BASE_TYPE_MASK 0x00000007
669
670 static inline unsigned
671 nir_alu_type_get_type_size(nir_alu_type type)
672 {
673 return type & NIR_ALU_TYPE_SIZE_MASK;
674 }
675
676 static inline unsigned
677 nir_alu_type_get_base_type(nir_alu_type type)
678 {
679 return type & NIR_ALU_TYPE_BASE_TYPE_MASK;
680 }
681
682 static inline nir_alu_type
683 nir_get_nir_type_for_glsl_type(const struct glsl_type *type)
684 {
685 switch (glsl_get_base_type(type)) {
686 case GLSL_TYPE_BOOL:
687 return nir_type_bool32;
688 break;
689 case GLSL_TYPE_UINT:
690 return nir_type_uint32;
691 break;
692 case GLSL_TYPE_INT:
693 return nir_type_int32;
694 break;
695 case GLSL_TYPE_UINT64:
696 return nir_type_uint64;
697 break;
698 case GLSL_TYPE_INT64:
699 return nir_type_int64;
700 break;
701 case GLSL_TYPE_FLOAT:
702 return nir_type_float32;
703 break;
704 case GLSL_TYPE_DOUBLE:
705 return nir_type_float64;
706 break;
707 default:
708 unreachable("unknown type");
709 }
710 }
711
712 nir_op nir_type_conversion_op(nir_alu_type src, nir_alu_type dst);
713
714 typedef enum {
715 NIR_OP_IS_COMMUTATIVE = (1 << 0),
716 NIR_OP_IS_ASSOCIATIVE = (1 << 1),
717 } nir_op_algebraic_property;
718
719 typedef struct {
720 const char *name;
721
722 unsigned num_inputs;
723
724 /**
725 * The number of components in the output
726 *
727 * If non-zero, this is the size of the output and input sizes are
728 * explicitly given; swizzle and writemask are still in effect, but if
729 * the output component is masked out, then the input component may
730 * still be in use.
731 *
732 * If zero, the opcode acts in the standard, per-component manner; the
733 * operation is performed on each component (except the ones that are
734 * masked out) with the input being taken from the input swizzle for
735 * that component.
736 *
737 * The size of some of the inputs may be given (i.e. non-zero) even
738 * though output_size is zero; in that case, the inputs with a zero
739 * size act per-component, while the inputs with non-zero size don't.
740 */
741 unsigned output_size;
742
743 /**
744 * The type of vector that the instruction outputs. Note that the
745 * staurate modifier is only allowed on outputs with the float type.
746 */
747
748 nir_alu_type output_type;
749
750 /**
751 * The number of components in each input
752 */
753 unsigned input_sizes[4];
754
755 /**
756 * The type of vector that each input takes. Note that negate and
757 * absolute value are only allowed on inputs with int or float type and
758 * behave differently on the two.
759 */
760 nir_alu_type input_types[4];
761
762 nir_op_algebraic_property algebraic_properties;
763 } nir_op_info;
764
765 extern const nir_op_info nir_op_infos[nir_num_opcodes];
766
767 typedef struct nir_alu_instr {
768 nir_instr instr;
769 nir_op op;
770
771 /** Indicates that this ALU instruction generates an exact value
772 *
773 * This is kind of a mixture of GLSL "precise" and "invariant" and not
774 * really equivalent to either. This indicates that the value generated by
775 * this operation is high-precision and any code transformations that touch
776 * it must ensure that the resulting value is bit-for-bit identical to the
777 * original.
778 */
779 bool exact;
780
781 nir_alu_dest dest;
782 nir_alu_src src[];
783 } nir_alu_instr;
784
785 void nir_alu_src_copy(nir_alu_src *dest, const nir_alu_src *src,
786 nir_alu_instr *instr);
787 void nir_alu_dest_copy(nir_alu_dest *dest, const nir_alu_dest *src,
788 nir_alu_instr *instr);
789
790 /* is this source channel used? */
791 static inline bool
792 nir_alu_instr_channel_used(nir_alu_instr *instr, unsigned src, unsigned channel)
793 {
794 if (nir_op_infos[instr->op].input_sizes[src] > 0)
795 return channel < nir_op_infos[instr->op].input_sizes[src];
796
797 return (instr->dest.write_mask >> channel) & 1;
798 }
799
800 /*
801 * For instructions whose destinations are SSA, get the number of channels
802 * used for a source
803 */
804 static inline unsigned
805 nir_ssa_alu_instr_src_components(const nir_alu_instr *instr, unsigned src)
806 {
807 assert(instr->dest.dest.is_ssa);
808
809 if (nir_op_infos[instr->op].input_sizes[src] > 0)
810 return nir_op_infos[instr->op].input_sizes[src];
811
812 return instr->dest.dest.ssa.num_components;
813 }
814
815 bool nir_alu_srcs_equal(const nir_alu_instr *alu1, const nir_alu_instr *alu2,
816 unsigned src1, unsigned src2);
817
818 typedef enum {
819 nir_deref_type_var,
820 nir_deref_type_array,
821 nir_deref_type_struct
822 } nir_deref_type;
823
824 typedef struct nir_deref {
825 nir_deref_type deref_type;
826 struct nir_deref *child;
827 const struct glsl_type *type;
828 } nir_deref;
829
830 typedef struct {
831 nir_deref deref;
832
833 nir_variable *var;
834 } nir_deref_var;
835
836 /* This enum describes how the array is referenced. If the deref is
837 * direct then the base_offset is used. If the deref is indirect then
838 * offset is given by base_offset + indirect. If the deref is a wildcard
839 * then the deref refers to all of the elements of the array at the same
840 * time. Wildcard dereferences are only ever allowed in copy_var
841 * intrinsics and the source and destination derefs must have matching
842 * wildcards.
843 */
844 typedef enum {
845 nir_deref_array_type_direct,
846 nir_deref_array_type_indirect,
847 nir_deref_array_type_wildcard,
848 } nir_deref_array_type;
849
850 typedef struct {
851 nir_deref deref;
852
853 nir_deref_array_type deref_array_type;
854 unsigned base_offset;
855 nir_src indirect;
856 } nir_deref_array;
857
858 typedef struct {
859 nir_deref deref;
860
861 unsigned index;
862 } nir_deref_struct;
863
864 NIR_DEFINE_CAST(nir_deref_as_var, nir_deref, nir_deref_var, deref,
865 deref_type, nir_deref_type_var)
866 NIR_DEFINE_CAST(nir_deref_as_array, nir_deref, nir_deref_array, deref,
867 deref_type, nir_deref_type_array)
868 NIR_DEFINE_CAST(nir_deref_as_struct, nir_deref, nir_deref_struct, deref,
869 deref_type, nir_deref_type_struct)
870
871 /* Returns the last deref in the chain. */
872 static inline nir_deref *
873 nir_deref_tail(nir_deref *deref)
874 {
875 while (deref->child)
876 deref = deref->child;
877 return deref;
878 }
879
880 typedef struct {
881 nir_instr instr;
882
883 unsigned num_params;
884 nir_deref_var **params;
885 nir_deref_var *return_deref;
886
887 struct nir_function *callee;
888 } nir_call_instr;
889
890 #define INTRINSIC(name, num_srcs, src_components, has_dest, dest_components, \
891 num_variables, num_indices, idx0, idx1, idx2, flags) \
892 nir_intrinsic_##name,
893
894 #define LAST_INTRINSIC(name) nir_last_intrinsic = nir_intrinsic_##name,
895
896 typedef enum {
897 #include "nir_intrinsics.h"
898 nir_num_intrinsics = nir_last_intrinsic + 1
899 } nir_intrinsic_op;
900
901 #define NIR_INTRINSIC_MAX_CONST_INDEX 3
902
903 /** Represents an intrinsic
904 *
905 * An intrinsic is an instruction type for handling things that are
906 * more-or-less regular operations but don't just consume and produce SSA
907 * values like ALU operations do. Intrinsics are not for things that have
908 * special semantic meaning such as phi nodes and parallel copies.
909 * Examples of intrinsics include variable load/store operations, system
910 * value loads, and the like. Even though texturing more-or-less falls
911 * under this category, texturing is its own instruction type because
912 * trying to represent texturing with intrinsics would lead to a
913 * combinatorial explosion of intrinsic opcodes.
914 *
915 * By having a single instruction type for handling a lot of different
916 * cases, optimization passes can look for intrinsics and, for the most
917 * part, completely ignore them. Each intrinsic type also has a few
918 * possible flags that govern whether or not they can be reordered or
919 * eliminated. That way passes like dead code elimination can still work
920 * on intrisics without understanding the meaning of each.
921 *
922 * Each intrinsic has some number of constant indices, some number of
923 * variables, and some number of sources. What these sources, variables,
924 * and indices mean depends on the intrinsic and is documented with the
925 * intrinsic declaration in nir_intrinsics.h. Intrinsics and texture
926 * instructions are the only types of instruction that can operate on
927 * variables.
928 */
929 typedef struct {
930 nir_instr instr;
931
932 nir_intrinsic_op intrinsic;
933
934 nir_dest dest;
935
936 /** number of components if this is a vectorized intrinsic
937 *
938 * Similarly to ALU operations, some intrinsics are vectorized.
939 * An intrinsic is vectorized if nir_intrinsic_infos.dest_components == 0.
940 * For vectorized intrinsics, the num_components field specifies the
941 * number of destination components and the number of source components
942 * for all sources with nir_intrinsic_infos.src_components[i] == 0.
943 */
944 uint8_t num_components;
945
946 int const_index[NIR_INTRINSIC_MAX_CONST_INDEX];
947
948 nir_deref_var *variables[2];
949
950 nir_src src[];
951 } nir_intrinsic_instr;
952
953 /**
954 * \name NIR intrinsics semantic flags
955 *
956 * information about what the compiler can do with the intrinsics.
957 *
958 * \sa nir_intrinsic_info::flags
959 */
960 typedef enum {
961 /**
962 * whether the intrinsic can be safely eliminated if none of its output
963 * value is not being used.
964 */
965 NIR_INTRINSIC_CAN_ELIMINATE = (1 << 0),
966
967 /**
968 * Whether the intrinsic can be reordered with respect to any other
969 * intrinsic, i.e. whether the only reordering dependencies of the
970 * intrinsic are due to the register reads/writes.
971 */
972 NIR_INTRINSIC_CAN_REORDER = (1 << 1),
973 } nir_intrinsic_semantic_flag;
974
975 /**
976 * \name NIR intrinsics const-index flag
977 *
978 * Indicates the usage of a const_index slot.
979 *
980 * \sa nir_intrinsic_info::index_map
981 */
982 typedef enum {
983 /**
984 * Generally instructions that take a offset src argument, can encode
985 * a constant 'base' value which is added to the offset.
986 */
987 NIR_INTRINSIC_BASE = 1,
988
989 /**
990 * For store instructions, a writemask for the store.
991 */
992 NIR_INTRINSIC_WRMASK = 2,
993
994 /**
995 * The stream-id for GS emit_vertex/end_primitive intrinsics.
996 */
997 NIR_INTRINSIC_STREAM_ID = 3,
998
999 /**
1000 * The clip-plane id for load_user_clip_plane intrinsic.
1001 */
1002 NIR_INTRINSIC_UCP_ID = 4,
1003
1004 /**
1005 * The amount of data, starting from BASE, that this instruction may
1006 * access. This is used to provide bounds if the offset is not constant.
1007 */
1008 NIR_INTRINSIC_RANGE = 5,
1009
1010 /**
1011 * The Vulkan descriptor set for vulkan_resource_index intrinsic.
1012 */
1013 NIR_INTRINSIC_DESC_SET = 6,
1014
1015 /**
1016 * The Vulkan descriptor set binding for vulkan_resource_index intrinsic.
1017 */
1018 NIR_INTRINSIC_BINDING = 7,
1019
1020 /**
1021 * Component offset.
1022 */
1023 NIR_INTRINSIC_COMPONENT = 8,
1024
1025 /**
1026 * Interpolation mode (only meaningful for FS inputs).
1027 */
1028 NIR_INTRINSIC_INTERP_MODE = 9,
1029
1030 NIR_INTRINSIC_NUM_INDEX_FLAGS,
1031
1032 } nir_intrinsic_index_flag;
1033
1034 #define NIR_INTRINSIC_MAX_INPUTS 4
1035
1036 typedef struct {
1037 const char *name;
1038
1039 unsigned num_srcs; /** < number of register/SSA inputs */
1040
1041 /** number of components of each input register
1042 *
1043 * If this value is 0, the number of components is given by the
1044 * num_components field of nir_intrinsic_instr.
1045 */
1046 unsigned src_components[NIR_INTRINSIC_MAX_INPUTS];
1047
1048 bool has_dest;
1049
1050 /** number of components of the output register
1051 *
1052 * If this value is 0, the number of components is given by the
1053 * num_components field of nir_intrinsic_instr.
1054 */
1055 unsigned dest_components;
1056
1057 /** the number of inputs/outputs that are variables */
1058 unsigned num_variables;
1059
1060 /** the number of constant indices used by the intrinsic */
1061 unsigned num_indices;
1062
1063 /** indicates the usage of intr->const_index[n] */
1064 unsigned index_map[NIR_INTRINSIC_NUM_INDEX_FLAGS];
1065
1066 /** semantic flags for calls to this intrinsic */
1067 nir_intrinsic_semantic_flag flags;
1068 } nir_intrinsic_info;
1069
1070 extern const nir_intrinsic_info nir_intrinsic_infos[nir_num_intrinsics];
1071
1072
1073 #define INTRINSIC_IDX_ACCESSORS(name, flag, type) \
1074 static inline type \
1075 nir_intrinsic_##name(nir_intrinsic_instr *instr) \
1076 { \
1077 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic]; \
1078 assert(info->index_map[NIR_INTRINSIC_##flag] > 0); \
1079 return instr->const_index[info->index_map[NIR_INTRINSIC_##flag] - 1]; \
1080 } \
1081 static inline void \
1082 nir_intrinsic_set_##name(nir_intrinsic_instr *instr, type val) \
1083 { \
1084 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic]; \
1085 assert(info->index_map[NIR_INTRINSIC_##flag] > 0); \
1086 instr->const_index[info->index_map[NIR_INTRINSIC_##flag] - 1] = val; \
1087 }
1088
1089 INTRINSIC_IDX_ACCESSORS(write_mask, WRMASK, unsigned)
1090 INTRINSIC_IDX_ACCESSORS(base, BASE, int)
1091 INTRINSIC_IDX_ACCESSORS(stream_id, STREAM_ID, unsigned)
1092 INTRINSIC_IDX_ACCESSORS(ucp_id, UCP_ID, unsigned)
1093 INTRINSIC_IDX_ACCESSORS(range, RANGE, unsigned)
1094 INTRINSIC_IDX_ACCESSORS(desc_set, DESC_SET, unsigned)
1095 INTRINSIC_IDX_ACCESSORS(binding, BINDING, unsigned)
1096 INTRINSIC_IDX_ACCESSORS(component, COMPONENT, unsigned)
1097 INTRINSIC_IDX_ACCESSORS(interp_mode, INTERP_MODE, unsigned)
1098
1099 /**
1100 * \group texture information
1101 *
1102 * This gives semantic information about textures which is useful to the
1103 * frontend, the backend, and lowering passes, but not the optimizer.
1104 */
1105
1106 typedef enum {
1107 nir_tex_src_coord,
1108 nir_tex_src_projector,
1109 nir_tex_src_comparator, /* shadow comparator */
1110 nir_tex_src_offset,
1111 nir_tex_src_bias,
1112 nir_tex_src_lod,
1113 nir_tex_src_ms_index, /* MSAA sample index */
1114 nir_tex_src_ms_mcs, /* MSAA compression value */
1115 nir_tex_src_ddx,
1116 nir_tex_src_ddy,
1117 nir_tex_src_texture_offset, /* < dynamically uniform indirect offset */
1118 nir_tex_src_sampler_offset, /* < dynamically uniform indirect offset */
1119 nir_tex_src_plane, /* < selects plane for planar textures */
1120 nir_num_tex_src_types
1121 } nir_tex_src_type;
1122
1123 typedef struct {
1124 nir_src src;
1125 nir_tex_src_type src_type;
1126 } nir_tex_src;
1127
1128 typedef enum {
1129 nir_texop_tex, /**< Regular texture look-up */
1130 nir_texop_txb, /**< Texture look-up with LOD bias */
1131 nir_texop_txl, /**< Texture look-up with explicit LOD */
1132 nir_texop_txd, /**< Texture look-up with partial derivatvies */
1133 nir_texop_txf, /**< Texel fetch with explicit LOD */
1134 nir_texop_txf_ms, /**< Multisample texture fetch */
1135 nir_texop_txf_ms_mcs, /**< Multisample compression value fetch */
1136 nir_texop_txs, /**< Texture size */
1137 nir_texop_lod, /**< Texture lod query */
1138 nir_texop_tg4, /**< Texture gather */
1139 nir_texop_query_levels, /**< Texture levels query */
1140 nir_texop_texture_samples, /**< Texture samples query */
1141 nir_texop_samples_identical, /**< Query whether all samples are definitely
1142 * identical.
1143 */
1144 } nir_texop;
1145
1146 typedef struct {
1147 nir_instr instr;
1148
1149 enum glsl_sampler_dim sampler_dim;
1150 nir_alu_type dest_type;
1151
1152 nir_texop op;
1153 nir_dest dest;
1154 nir_tex_src *src;
1155 unsigned num_srcs, coord_components;
1156 bool is_array, is_shadow;
1157
1158 /**
1159 * If is_shadow is true, whether this is the old-style shadow that outputs 4
1160 * components or the new-style shadow that outputs 1 component.
1161 */
1162 bool is_new_style_shadow;
1163
1164 /* gather component selector */
1165 unsigned component : 2;
1166
1167 /** The texture index
1168 *
1169 * If this texture instruction has a nir_tex_src_texture_offset source,
1170 * then the texture index is given by texture_index + texture_offset.
1171 */
1172 unsigned texture_index;
1173
1174 /** The size of the texture array or 0 if it's not an array */
1175 unsigned texture_array_size;
1176
1177 /** The texture deref
1178 *
1179 * If this is null, use texture_index instead.
1180 */
1181 nir_deref_var *texture;
1182
1183 /** The sampler index
1184 *
1185 * The following operations do not require a sampler and, as such, this
1186 * field should be ignored:
1187 * - nir_texop_txf
1188 * - nir_texop_txf_ms
1189 * - nir_texop_txs
1190 * - nir_texop_lod
1191 * - nir_texop_tg4
1192 * - nir_texop_query_levels
1193 * - nir_texop_texture_samples
1194 * - nir_texop_samples_identical
1195 *
1196 * If this texture instruction has a nir_tex_src_sampler_offset source,
1197 * then the sampler index is given by sampler_index + sampler_offset.
1198 */
1199 unsigned sampler_index;
1200
1201 /** The sampler deref
1202 *
1203 * If this is null, use sampler_index instead.
1204 */
1205 nir_deref_var *sampler;
1206 } nir_tex_instr;
1207
1208 static inline unsigned
1209 nir_tex_instr_dest_size(nir_tex_instr *instr)
1210 {
1211 switch (instr->op) {
1212 case nir_texop_txs: {
1213 unsigned ret;
1214 switch (instr->sampler_dim) {
1215 case GLSL_SAMPLER_DIM_1D:
1216 case GLSL_SAMPLER_DIM_BUF:
1217 ret = 1;
1218 break;
1219 case GLSL_SAMPLER_DIM_2D:
1220 case GLSL_SAMPLER_DIM_CUBE:
1221 case GLSL_SAMPLER_DIM_MS:
1222 case GLSL_SAMPLER_DIM_RECT:
1223 case GLSL_SAMPLER_DIM_EXTERNAL:
1224 case GLSL_SAMPLER_DIM_SUBPASS:
1225 ret = 2;
1226 break;
1227 case GLSL_SAMPLER_DIM_3D:
1228 ret = 3;
1229 break;
1230 default:
1231 unreachable("not reached");
1232 }
1233 if (instr->is_array)
1234 ret++;
1235 return ret;
1236 }
1237
1238 case nir_texop_lod:
1239 return 2;
1240
1241 case nir_texop_texture_samples:
1242 case nir_texop_query_levels:
1243 case nir_texop_samples_identical:
1244 return 1;
1245
1246 default:
1247 if (instr->is_shadow && instr->is_new_style_shadow)
1248 return 1;
1249
1250 return 4;
1251 }
1252 }
1253
1254 /* Returns true if this texture operation queries something about the texture
1255 * rather than actually sampling it.
1256 */
1257 static inline bool
1258 nir_tex_instr_is_query(nir_tex_instr *instr)
1259 {
1260 switch (instr->op) {
1261 case nir_texop_txs:
1262 case nir_texop_lod:
1263 case nir_texop_texture_samples:
1264 case nir_texop_query_levels:
1265 case nir_texop_txf_ms_mcs:
1266 return true;
1267 case nir_texop_tex:
1268 case nir_texop_txb:
1269 case nir_texop_txl:
1270 case nir_texop_txd:
1271 case nir_texop_txf:
1272 case nir_texop_txf_ms:
1273 case nir_texop_tg4:
1274 return false;
1275 default:
1276 unreachable("Invalid texture opcode");
1277 }
1278 }
1279
1280 static inline nir_alu_type
1281 nir_tex_instr_src_type(nir_tex_instr *instr, unsigned src)
1282 {
1283 switch (instr->src[src].src_type) {
1284 case nir_tex_src_coord:
1285 switch (instr->op) {
1286 case nir_texop_txf:
1287 case nir_texop_txf_ms:
1288 case nir_texop_txf_ms_mcs:
1289 case nir_texop_samples_identical:
1290 return nir_type_int;
1291
1292 default:
1293 return nir_type_float;
1294 }
1295
1296 case nir_tex_src_lod:
1297 switch (instr->op) {
1298 case nir_texop_txs:
1299 case nir_texop_txf:
1300 return nir_type_int;
1301
1302 default:
1303 return nir_type_float;
1304 }
1305
1306 case nir_tex_src_projector:
1307 case nir_tex_src_comparator:
1308 case nir_tex_src_bias:
1309 case nir_tex_src_ddx:
1310 case nir_tex_src_ddy:
1311 return nir_type_float;
1312
1313 case nir_tex_src_offset:
1314 case nir_tex_src_ms_index:
1315 case nir_tex_src_texture_offset:
1316 case nir_tex_src_sampler_offset:
1317 return nir_type_int;
1318
1319 default:
1320 unreachable("Invalid texture source type");
1321 }
1322 }
1323
1324 static inline unsigned
1325 nir_tex_instr_src_size(nir_tex_instr *instr, unsigned src)
1326 {
1327 if (instr->src[src].src_type == nir_tex_src_coord)
1328 return instr->coord_components;
1329
1330 /* The MCS value is expected to be a vec4 returned by a txf_ms_mcs */
1331 if (instr->src[src].src_type == nir_tex_src_ms_mcs)
1332 return 4;
1333
1334 if (instr->src[src].src_type == nir_tex_src_offset ||
1335 instr->src[src].src_type == nir_tex_src_ddx ||
1336 instr->src[src].src_type == nir_tex_src_ddy) {
1337 if (instr->is_array)
1338 return instr->coord_components - 1;
1339 else
1340 return instr->coord_components;
1341 }
1342
1343 return 1;
1344 }
1345
1346 static inline int
1347 nir_tex_instr_src_index(nir_tex_instr *instr, nir_tex_src_type type)
1348 {
1349 for (unsigned i = 0; i < instr->num_srcs; i++)
1350 if (instr->src[i].src_type == type)
1351 return (int) i;
1352
1353 return -1;
1354 }
1355
1356 void nir_tex_instr_remove_src(nir_tex_instr *tex, unsigned src_idx);
1357
1358 typedef struct {
1359 nir_instr instr;
1360
1361 nir_const_value value;
1362
1363 nir_ssa_def def;
1364 } nir_load_const_instr;
1365
1366 typedef enum {
1367 nir_jump_return,
1368 nir_jump_break,
1369 nir_jump_continue,
1370 } nir_jump_type;
1371
1372 typedef struct {
1373 nir_instr instr;
1374 nir_jump_type type;
1375 } nir_jump_instr;
1376
1377 /* creates a new SSA variable in an undefined state */
1378
1379 typedef struct {
1380 nir_instr instr;
1381 nir_ssa_def def;
1382 } nir_ssa_undef_instr;
1383
1384 typedef struct {
1385 struct exec_node node;
1386
1387 /* The predecessor block corresponding to this source */
1388 struct nir_block *pred;
1389
1390 nir_src src;
1391 } nir_phi_src;
1392
1393 #define nir_foreach_phi_src(phi_src, phi) \
1394 foreach_list_typed(nir_phi_src, phi_src, node, &(phi)->srcs)
1395 #define nir_foreach_phi_src_safe(phi_src, phi) \
1396 foreach_list_typed_safe(nir_phi_src, phi_src, node, &(phi)->srcs)
1397
1398 typedef struct {
1399 nir_instr instr;
1400
1401 struct exec_list srcs; /** < list of nir_phi_src */
1402
1403 nir_dest dest;
1404 } nir_phi_instr;
1405
1406 typedef struct {
1407 struct exec_node node;
1408 nir_src src;
1409 nir_dest dest;
1410 } nir_parallel_copy_entry;
1411
1412 #define nir_foreach_parallel_copy_entry(entry, pcopy) \
1413 foreach_list_typed(nir_parallel_copy_entry, entry, node, &(pcopy)->entries)
1414
1415 typedef struct {
1416 nir_instr instr;
1417
1418 /* A list of nir_parallel_copy_entry's. The sources of all of the
1419 * entries are copied to the corresponding destinations "in parallel".
1420 * In other words, if we have two entries: a -> b and b -> a, the values
1421 * get swapped.
1422 */
1423 struct exec_list entries;
1424 } nir_parallel_copy_instr;
1425
1426 NIR_DEFINE_CAST(nir_instr_as_alu, nir_instr, nir_alu_instr, instr,
1427 type, nir_instr_type_alu)
1428 NIR_DEFINE_CAST(nir_instr_as_call, nir_instr, nir_call_instr, instr,
1429 type, nir_instr_type_call)
1430 NIR_DEFINE_CAST(nir_instr_as_jump, nir_instr, nir_jump_instr, instr,
1431 type, nir_instr_type_jump)
1432 NIR_DEFINE_CAST(nir_instr_as_tex, nir_instr, nir_tex_instr, instr,
1433 type, nir_instr_type_tex)
1434 NIR_DEFINE_CAST(nir_instr_as_intrinsic, nir_instr, nir_intrinsic_instr, instr,
1435 type, nir_instr_type_intrinsic)
1436 NIR_DEFINE_CAST(nir_instr_as_load_const, nir_instr, nir_load_const_instr, instr,
1437 type, nir_instr_type_load_const)
1438 NIR_DEFINE_CAST(nir_instr_as_ssa_undef, nir_instr, nir_ssa_undef_instr, instr,
1439 type, nir_instr_type_ssa_undef)
1440 NIR_DEFINE_CAST(nir_instr_as_phi, nir_instr, nir_phi_instr, instr,
1441 type, nir_instr_type_phi)
1442 NIR_DEFINE_CAST(nir_instr_as_parallel_copy, nir_instr,
1443 nir_parallel_copy_instr, instr,
1444 type, nir_instr_type_parallel_copy)
1445
1446 /*
1447 * Control flow
1448 *
1449 * Control flow consists of a tree of control flow nodes, which include
1450 * if-statements and loops. The leaves of the tree are basic blocks, lists of
1451 * instructions that always run start-to-finish. Each basic block also keeps
1452 * track of its successors (blocks which may run immediately after the current
1453 * block) and predecessors (blocks which could have run immediately before the
1454 * current block). Each function also has a start block and an end block which
1455 * all return statements point to (which is always empty). Together, all the
1456 * blocks with their predecessors and successors make up the control flow
1457 * graph (CFG) of the function. There are helpers that modify the tree of
1458 * control flow nodes while modifying the CFG appropriately; these should be
1459 * used instead of modifying the tree directly.
1460 */
1461
1462 typedef enum {
1463 nir_cf_node_block,
1464 nir_cf_node_if,
1465 nir_cf_node_loop,
1466 nir_cf_node_function
1467 } nir_cf_node_type;
1468
1469 typedef struct nir_cf_node {
1470 struct exec_node node;
1471 nir_cf_node_type type;
1472 struct nir_cf_node *parent;
1473 } nir_cf_node;
1474
1475 typedef struct nir_block {
1476 nir_cf_node cf_node;
1477
1478 struct exec_list instr_list; /** < list of nir_instr */
1479
1480 /** generic block index; generated by nir_index_blocks */
1481 unsigned index;
1482
1483 /*
1484 * Each block can only have up to 2 successors, so we put them in a simple
1485 * array - no need for anything more complicated.
1486 */
1487 struct nir_block *successors[2];
1488
1489 /* Set of nir_block predecessors in the CFG */
1490 struct set *predecessors;
1491
1492 /*
1493 * this node's immediate dominator in the dominance tree - set to NULL for
1494 * the start block.
1495 */
1496 struct nir_block *imm_dom;
1497
1498 /* This node's children in the dominance tree */
1499 unsigned num_dom_children;
1500 struct nir_block **dom_children;
1501
1502 /* Set of nir_block's on the dominance frontier of this block */
1503 struct set *dom_frontier;
1504
1505 /*
1506 * These two indices have the property that dom_{pre,post}_index for each
1507 * child of this block in the dominance tree will always be between
1508 * dom_pre_index and dom_post_index for this block, which makes testing if
1509 * a given block is dominated by another block an O(1) operation.
1510 */
1511 unsigned dom_pre_index, dom_post_index;
1512
1513 /* live in and out for this block; used for liveness analysis */
1514 BITSET_WORD *live_in;
1515 BITSET_WORD *live_out;
1516 } nir_block;
1517
1518 static inline nir_instr *
1519 nir_block_first_instr(nir_block *block)
1520 {
1521 struct exec_node *head = exec_list_get_head(&block->instr_list);
1522 return exec_node_data(nir_instr, head, node);
1523 }
1524
1525 static inline nir_instr *
1526 nir_block_last_instr(nir_block *block)
1527 {
1528 struct exec_node *tail = exec_list_get_tail(&block->instr_list);
1529 return exec_node_data(nir_instr, tail, node);
1530 }
1531
1532 #define nir_foreach_instr(instr, block) \
1533 foreach_list_typed(nir_instr, instr, node, &(block)->instr_list)
1534 #define nir_foreach_instr_reverse(instr, block) \
1535 foreach_list_typed_reverse(nir_instr, instr, node, &(block)->instr_list)
1536 #define nir_foreach_instr_safe(instr, block) \
1537 foreach_list_typed_safe(nir_instr, instr, node, &(block)->instr_list)
1538 #define nir_foreach_instr_reverse_safe(instr, block) \
1539 foreach_list_typed_reverse_safe(nir_instr, instr, node, &(block)->instr_list)
1540
1541 typedef struct nir_if {
1542 nir_cf_node cf_node;
1543 nir_src condition;
1544
1545 struct exec_list then_list; /** < list of nir_cf_node */
1546 struct exec_list else_list; /** < list of nir_cf_node */
1547 } nir_if;
1548
1549 typedef struct {
1550 nir_if *nif;
1551
1552 nir_instr *conditional_instr;
1553
1554 nir_block *break_block;
1555 nir_block *continue_from_block;
1556
1557 bool continue_from_then;
1558
1559 struct list_head loop_terminator_link;
1560 } nir_loop_terminator;
1561
1562 typedef struct {
1563 /* Number of instructions in the loop */
1564 unsigned num_instructions;
1565
1566 /* How many times the loop is run (if known) */
1567 unsigned trip_count;
1568 bool is_trip_count_known;
1569
1570 /* Unroll the loop regardless of its size */
1571 bool force_unroll;
1572
1573 nir_loop_terminator *limiting_terminator;
1574
1575 /* A list of loop_terminators terminating this loop. */
1576 struct list_head loop_terminator_list;
1577 } nir_loop_info;
1578
1579 typedef struct {
1580 nir_cf_node cf_node;
1581
1582 struct exec_list body; /** < list of nir_cf_node */
1583
1584 nir_loop_info *info;
1585 } nir_loop;
1586
1587 /**
1588 * Various bits of metadata that can may be created or required by
1589 * optimization and analysis passes
1590 */
1591 typedef enum {
1592 nir_metadata_none = 0x0,
1593 nir_metadata_block_index = 0x1,
1594 nir_metadata_dominance = 0x2,
1595 nir_metadata_live_ssa_defs = 0x4,
1596 nir_metadata_not_properly_reset = 0x8,
1597 nir_metadata_loop_analysis = 0x10,
1598 } nir_metadata;
1599
1600 typedef struct {
1601 nir_cf_node cf_node;
1602
1603 /** pointer to the function of which this is an implementation */
1604 struct nir_function *function;
1605
1606 struct exec_list body; /** < list of nir_cf_node */
1607
1608 nir_block *end_block;
1609
1610 /** list for all local variables in the function */
1611 struct exec_list locals;
1612
1613 /** array of variables used as parameters */
1614 unsigned num_params;
1615 nir_variable **params;
1616
1617 /** variable used to hold the result of the function */
1618 nir_variable *return_var;
1619
1620 /** list of local registers in the function */
1621 struct exec_list registers;
1622
1623 /** next available local register index */
1624 unsigned reg_alloc;
1625
1626 /** next available SSA value index */
1627 unsigned ssa_alloc;
1628
1629 /* total number of basic blocks, only valid when block_index_dirty = false */
1630 unsigned num_blocks;
1631
1632 nir_metadata valid_metadata;
1633 } nir_function_impl;
1634
1635 ATTRIBUTE_RETURNS_NONNULL static inline nir_block *
1636 nir_start_block(nir_function_impl *impl)
1637 {
1638 return (nir_block *) impl->body.head_sentinel.next;
1639 }
1640
1641 ATTRIBUTE_RETURNS_NONNULL static inline nir_block *
1642 nir_impl_last_block(nir_function_impl *impl)
1643 {
1644 return (nir_block *) impl->body.tail_sentinel.prev;
1645 }
1646
1647 static inline nir_cf_node *
1648 nir_cf_node_next(nir_cf_node *node)
1649 {
1650 struct exec_node *next = exec_node_get_next(&node->node);
1651 if (exec_node_is_tail_sentinel(next))
1652 return NULL;
1653 else
1654 return exec_node_data(nir_cf_node, next, node);
1655 }
1656
1657 static inline nir_cf_node *
1658 nir_cf_node_prev(nir_cf_node *node)
1659 {
1660 struct exec_node *prev = exec_node_get_prev(&node->node);
1661 if (exec_node_is_head_sentinel(prev))
1662 return NULL;
1663 else
1664 return exec_node_data(nir_cf_node, prev, node);
1665 }
1666
1667 static inline bool
1668 nir_cf_node_is_first(const nir_cf_node *node)
1669 {
1670 return exec_node_is_head_sentinel(node->node.prev);
1671 }
1672
1673 static inline bool
1674 nir_cf_node_is_last(const nir_cf_node *node)
1675 {
1676 return exec_node_is_tail_sentinel(node->node.next);
1677 }
1678
1679 NIR_DEFINE_CAST(nir_cf_node_as_block, nir_cf_node, nir_block, cf_node,
1680 type, nir_cf_node_block)
1681 NIR_DEFINE_CAST(nir_cf_node_as_if, nir_cf_node, nir_if, cf_node,
1682 type, nir_cf_node_if)
1683 NIR_DEFINE_CAST(nir_cf_node_as_loop, nir_cf_node, nir_loop, cf_node,
1684 type, nir_cf_node_loop)
1685 NIR_DEFINE_CAST(nir_cf_node_as_function, nir_cf_node,
1686 nir_function_impl, cf_node, type, nir_cf_node_function)
1687
1688 static inline nir_block *
1689 nir_if_first_then_block(nir_if *if_stmt)
1690 {
1691 struct exec_node *head = exec_list_get_head(&if_stmt->then_list);
1692 return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
1693 }
1694
1695 static inline nir_block *
1696 nir_if_last_then_block(nir_if *if_stmt)
1697 {
1698 struct exec_node *tail = exec_list_get_tail(&if_stmt->then_list);
1699 return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
1700 }
1701
1702 static inline nir_block *
1703 nir_if_first_else_block(nir_if *if_stmt)
1704 {
1705 struct exec_node *head = exec_list_get_head(&if_stmt->else_list);
1706 return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
1707 }
1708
1709 static inline nir_block *
1710 nir_if_last_else_block(nir_if *if_stmt)
1711 {
1712 struct exec_node *tail = exec_list_get_tail(&if_stmt->else_list);
1713 return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
1714 }
1715
1716 static inline nir_block *
1717 nir_loop_first_block(nir_loop *loop)
1718 {
1719 struct exec_node *head = exec_list_get_head(&loop->body);
1720 return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
1721 }
1722
1723 static inline nir_block *
1724 nir_loop_last_block(nir_loop *loop)
1725 {
1726 struct exec_node *tail = exec_list_get_tail(&loop->body);
1727 return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
1728 }
1729
1730 typedef enum {
1731 nir_parameter_in,
1732 nir_parameter_out,
1733 nir_parameter_inout,
1734 } nir_parameter_type;
1735
1736 typedef struct {
1737 nir_parameter_type param_type;
1738 const struct glsl_type *type;
1739 } nir_parameter;
1740
1741 typedef struct nir_function {
1742 struct exec_node node;
1743
1744 const char *name;
1745 struct nir_shader *shader;
1746
1747 unsigned num_params;
1748 nir_parameter *params;
1749 const struct glsl_type *return_type;
1750
1751 /** The implementation of this function.
1752 *
1753 * If the function is only declared and not implemented, this is NULL.
1754 */
1755 nir_function_impl *impl;
1756 } nir_function;
1757
1758 typedef struct nir_shader_compiler_options {
1759 bool lower_fdiv;
1760 bool lower_ffma;
1761 bool fuse_ffma;
1762 bool lower_flrp32;
1763 /** Lowers flrp when it does not support doubles */
1764 bool lower_flrp64;
1765 bool lower_fpow;
1766 bool lower_fsat;
1767 bool lower_fsqrt;
1768 bool lower_fmod32;
1769 bool lower_fmod64;
1770 bool lower_bitfield_extract;
1771 bool lower_bitfield_insert;
1772 bool lower_uadd_carry;
1773 bool lower_usub_borrow;
1774 /** lowers fneg and ineg to fsub and isub. */
1775 bool lower_negate;
1776 /** lowers fsub and isub to fadd+fneg and iadd+ineg. */
1777 bool lower_sub;
1778
1779 /* lower {slt,sge,seq,sne} to {flt,fge,feq,fne} + b2f: */
1780 bool lower_scmp;
1781
1782 /** enables rules to lower idiv by power-of-two: */
1783 bool lower_idiv;
1784
1785 /* Does the native fdot instruction replicate its result for four
1786 * components? If so, then opt_algebraic_late will turn all fdotN
1787 * instructions into fdot_replicatedN instructions.
1788 */
1789 bool fdot_replicates;
1790
1791 /** lowers ffract to fsub+ffloor: */
1792 bool lower_ffract;
1793
1794 bool lower_pack_half_2x16;
1795 bool lower_pack_unorm_2x16;
1796 bool lower_pack_snorm_2x16;
1797 bool lower_pack_unorm_4x8;
1798 bool lower_pack_snorm_4x8;
1799 bool lower_unpack_half_2x16;
1800 bool lower_unpack_unorm_2x16;
1801 bool lower_unpack_snorm_2x16;
1802 bool lower_unpack_unorm_4x8;
1803 bool lower_unpack_snorm_4x8;
1804
1805 bool lower_extract_byte;
1806 bool lower_extract_word;
1807
1808 /**
1809 * Does the driver support real 32-bit integers? (Otherwise, integers
1810 * are simulated by floats.)
1811 */
1812 bool native_integers;
1813
1814 /* Indicates that the driver only has zero-based vertex id */
1815 bool vertex_id_zero_based;
1816
1817 bool lower_cs_local_index_from_id;
1818
1819 /**
1820 * Should nir_lower_io() create load_interpolated_input intrinsics?
1821 *
1822 * If not, it generates regular load_input intrinsics and interpolation
1823 * information must be inferred from the list of input nir_variables.
1824 */
1825 bool use_interpolated_input_intrinsics;
1826
1827 unsigned max_unroll_iterations;
1828 } nir_shader_compiler_options;
1829
1830 typedef struct nir_shader {
1831 /** list of uniforms (nir_variable) */
1832 struct exec_list uniforms;
1833
1834 /** list of inputs (nir_variable) */
1835 struct exec_list inputs;
1836
1837 /** list of outputs (nir_variable) */
1838 struct exec_list outputs;
1839
1840 /** list of shared compute variables (nir_variable) */
1841 struct exec_list shared;
1842
1843 /** Set of driver-specific options for the shader.
1844 *
1845 * The memory for the options is expected to be kept in a single static
1846 * copy by the driver.
1847 */
1848 const struct nir_shader_compiler_options *options;
1849
1850 /** Various bits of compile-time information about a given shader */
1851 struct shader_info *info;
1852
1853 /** list of global variables in the shader (nir_variable) */
1854 struct exec_list globals;
1855
1856 /** list of system value variables in the shader (nir_variable) */
1857 struct exec_list system_values;
1858
1859 struct exec_list functions; /** < list of nir_function */
1860
1861 /** list of global register in the shader */
1862 struct exec_list registers;
1863
1864 /** next available global register index */
1865 unsigned reg_alloc;
1866
1867 /**
1868 * the highest index a load_input_*, load_uniform_*, etc. intrinsic can
1869 * access plus one
1870 */
1871 unsigned num_inputs, num_uniforms, num_outputs, num_shared;
1872
1873 /** The shader stage, such as MESA_SHADER_VERTEX. */
1874 gl_shader_stage stage;
1875 } nir_shader;
1876
1877 static inline nir_function_impl *
1878 nir_shader_get_entrypoint(nir_shader *shader)
1879 {
1880 assert(exec_list_length(&shader->functions) == 1);
1881 struct exec_node *func_node = exec_list_get_head(&shader->functions);
1882 nir_function *func = exec_node_data(nir_function, func_node, node);
1883 assert(func->return_type == glsl_void_type());
1884 assert(func->num_params == 0);
1885 assert(func->impl);
1886 return func->impl;
1887 }
1888
1889 #define nir_foreach_function(func, shader) \
1890 foreach_list_typed(nir_function, func, node, &(shader)->functions)
1891
1892 nir_shader *nir_shader_create(void *mem_ctx,
1893 gl_shader_stage stage,
1894 const nir_shader_compiler_options *options,
1895 shader_info *si);
1896
1897 /** creates a register, including assigning it an index and adding it to the list */
1898 nir_register *nir_global_reg_create(nir_shader *shader);
1899
1900 nir_register *nir_local_reg_create(nir_function_impl *impl);
1901
1902 void nir_reg_remove(nir_register *reg);
1903
1904 /** Adds a variable to the appropreate list in nir_shader */
1905 void nir_shader_add_variable(nir_shader *shader, nir_variable *var);
1906
1907 static inline void
1908 nir_function_impl_add_variable(nir_function_impl *impl, nir_variable *var)
1909 {
1910 assert(var->data.mode == nir_var_local);
1911 exec_list_push_tail(&impl->locals, &var->node);
1912 }
1913
1914 /** creates a variable, sets a few defaults, and adds it to the list */
1915 nir_variable *nir_variable_create(nir_shader *shader,
1916 nir_variable_mode mode,
1917 const struct glsl_type *type,
1918 const char *name);
1919 /** creates a local variable and adds it to the list */
1920 nir_variable *nir_local_variable_create(nir_function_impl *impl,
1921 const struct glsl_type *type,
1922 const char *name);
1923
1924 /** creates a function and adds it to the shader's list of functions */
1925 nir_function *nir_function_create(nir_shader *shader, const char *name);
1926
1927 nir_function_impl *nir_function_impl_create(nir_function *func);
1928 /** creates a function_impl that isn't tied to any particular function */
1929 nir_function_impl *nir_function_impl_create_bare(nir_shader *shader);
1930
1931 nir_block *nir_block_create(nir_shader *shader);
1932 nir_if *nir_if_create(nir_shader *shader);
1933 nir_loop *nir_loop_create(nir_shader *shader);
1934
1935 nir_function_impl *nir_cf_node_get_function(nir_cf_node *node);
1936
1937 /** requests that the given pieces of metadata be generated */
1938 void nir_metadata_require(nir_function_impl *impl, nir_metadata required, ...);
1939 /** dirties all but the preserved metadata */
1940 void nir_metadata_preserve(nir_function_impl *impl, nir_metadata preserved);
1941
1942 /** creates an instruction with default swizzle/writemask/etc. with NULL registers */
1943 nir_alu_instr *nir_alu_instr_create(nir_shader *shader, nir_op op);
1944
1945 nir_jump_instr *nir_jump_instr_create(nir_shader *shader, nir_jump_type type);
1946
1947 nir_load_const_instr *nir_load_const_instr_create(nir_shader *shader,
1948 unsigned num_components,
1949 unsigned bit_size);
1950
1951 nir_intrinsic_instr *nir_intrinsic_instr_create(nir_shader *shader,
1952 nir_intrinsic_op op);
1953
1954 nir_call_instr *nir_call_instr_create(nir_shader *shader,
1955 nir_function *callee);
1956
1957 nir_tex_instr *nir_tex_instr_create(nir_shader *shader, unsigned num_srcs);
1958
1959 nir_phi_instr *nir_phi_instr_create(nir_shader *shader);
1960
1961 nir_parallel_copy_instr *nir_parallel_copy_instr_create(nir_shader *shader);
1962
1963 nir_ssa_undef_instr *nir_ssa_undef_instr_create(nir_shader *shader,
1964 unsigned num_components,
1965 unsigned bit_size);
1966
1967 nir_deref_var *nir_deref_var_create(void *mem_ctx, nir_variable *var);
1968 nir_deref_array *nir_deref_array_create(void *mem_ctx);
1969 nir_deref_struct *nir_deref_struct_create(void *mem_ctx, unsigned field_index);
1970
1971 typedef bool (*nir_deref_foreach_leaf_cb)(nir_deref_var *deref, void *state);
1972 bool nir_deref_foreach_leaf(nir_deref_var *deref,
1973 nir_deref_foreach_leaf_cb cb, void *state);
1974
1975 nir_load_const_instr *
1976 nir_deref_get_const_initializer_load(nir_shader *shader, nir_deref_var *deref);
1977
1978 /**
1979 * NIR Cursors and Instruction Insertion API
1980 * @{
1981 *
1982 * A tiny struct representing a point to insert/extract instructions or
1983 * control flow nodes. Helps reduce the combinatorial explosion of possible
1984 * points to insert/extract.
1985 *
1986 * \sa nir_control_flow.h
1987 */
1988 typedef enum {
1989 nir_cursor_before_block,
1990 nir_cursor_after_block,
1991 nir_cursor_before_instr,
1992 nir_cursor_after_instr,
1993 } nir_cursor_option;
1994
1995 typedef struct {
1996 nir_cursor_option option;
1997 union {
1998 nir_block *block;
1999 nir_instr *instr;
2000 };
2001 } nir_cursor;
2002
2003 static inline nir_block *
2004 nir_cursor_current_block(nir_cursor cursor)
2005 {
2006 if (cursor.option == nir_cursor_before_instr ||
2007 cursor.option == nir_cursor_after_instr) {
2008 return cursor.instr->block;
2009 } else {
2010 return cursor.block;
2011 }
2012 }
2013
2014 bool nir_cursors_equal(nir_cursor a, nir_cursor b);
2015
2016 static inline nir_cursor
2017 nir_before_block(nir_block *block)
2018 {
2019 nir_cursor cursor;
2020 cursor.option = nir_cursor_before_block;
2021 cursor.block = block;
2022 return cursor;
2023 }
2024
2025 static inline nir_cursor
2026 nir_after_block(nir_block *block)
2027 {
2028 nir_cursor cursor;
2029 cursor.option = nir_cursor_after_block;
2030 cursor.block = block;
2031 return cursor;
2032 }
2033
2034 static inline nir_cursor
2035 nir_before_instr(nir_instr *instr)
2036 {
2037 nir_cursor cursor;
2038 cursor.option = nir_cursor_before_instr;
2039 cursor.instr = instr;
2040 return cursor;
2041 }
2042
2043 static inline nir_cursor
2044 nir_after_instr(nir_instr *instr)
2045 {
2046 nir_cursor cursor;
2047 cursor.option = nir_cursor_after_instr;
2048 cursor.instr = instr;
2049 return cursor;
2050 }
2051
2052 static inline nir_cursor
2053 nir_after_block_before_jump(nir_block *block)
2054 {
2055 nir_instr *last_instr = nir_block_last_instr(block);
2056 if (last_instr && last_instr->type == nir_instr_type_jump) {
2057 return nir_before_instr(last_instr);
2058 } else {
2059 return nir_after_block(block);
2060 }
2061 }
2062
2063 static inline nir_cursor
2064 nir_before_cf_node(nir_cf_node *node)
2065 {
2066 if (node->type == nir_cf_node_block)
2067 return nir_before_block(nir_cf_node_as_block(node));
2068
2069 return nir_after_block(nir_cf_node_as_block(nir_cf_node_prev(node)));
2070 }
2071
2072 static inline nir_cursor
2073 nir_after_cf_node(nir_cf_node *node)
2074 {
2075 if (node->type == nir_cf_node_block)
2076 return nir_after_block(nir_cf_node_as_block(node));
2077
2078 return nir_before_block(nir_cf_node_as_block(nir_cf_node_next(node)));
2079 }
2080
2081 static inline nir_cursor
2082 nir_after_phis(nir_block *block)
2083 {
2084 nir_foreach_instr(instr, block) {
2085 if (instr->type != nir_instr_type_phi)
2086 return nir_before_instr(instr);
2087 }
2088 return nir_after_block(block);
2089 }
2090
2091 static inline nir_cursor
2092 nir_after_cf_node_and_phis(nir_cf_node *node)
2093 {
2094 if (node->type == nir_cf_node_block)
2095 return nir_after_block(nir_cf_node_as_block(node));
2096
2097 nir_block *block = nir_cf_node_as_block(nir_cf_node_next(node));
2098
2099 return nir_after_phis(block);
2100 }
2101
2102 static inline nir_cursor
2103 nir_before_cf_list(struct exec_list *cf_list)
2104 {
2105 nir_cf_node *first_node = exec_node_data(nir_cf_node,
2106 exec_list_get_head(cf_list), node);
2107 return nir_before_cf_node(first_node);
2108 }
2109
2110 static inline nir_cursor
2111 nir_after_cf_list(struct exec_list *cf_list)
2112 {
2113 nir_cf_node *last_node = exec_node_data(nir_cf_node,
2114 exec_list_get_tail(cf_list), node);
2115 return nir_after_cf_node(last_node);
2116 }
2117
2118 /**
2119 * Insert a NIR instruction at the given cursor.
2120 *
2121 * Note: This does not update the cursor.
2122 */
2123 void nir_instr_insert(nir_cursor cursor, nir_instr *instr);
2124
2125 static inline void
2126 nir_instr_insert_before(nir_instr *instr, nir_instr *before)
2127 {
2128 nir_instr_insert(nir_before_instr(instr), before);
2129 }
2130
2131 static inline void
2132 nir_instr_insert_after(nir_instr *instr, nir_instr *after)
2133 {
2134 nir_instr_insert(nir_after_instr(instr), after);
2135 }
2136
2137 static inline void
2138 nir_instr_insert_before_block(nir_block *block, nir_instr *before)
2139 {
2140 nir_instr_insert(nir_before_block(block), before);
2141 }
2142
2143 static inline void
2144 nir_instr_insert_after_block(nir_block *block, nir_instr *after)
2145 {
2146 nir_instr_insert(nir_after_block(block), after);
2147 }
2148
2149 static inline void
2150 nir_instr_insert_before_cf(nir_cf_node *node, nir_instr *before)
2151 {
2152 nir_instr_insert(nir_before_cf_node(node), before);
2153 }
2154
2155 static inline void
2156 nir_instr_insert_after_cf(nir_cf_node *node, nir_instr *after)
2157 {
2158 nir_instr_insert(nir_after_cf_node(node), after);
2159 }
2160
2161 static inline void
2162 nir_instr_insert_before_cf_list(struct exec_list *list, nir_instr *before)
2163 {
2164 nir_instr_insert(nir_before_cf_list(list), before);
2165 }
2166
2167 static inline void
2168 nir_instr_insert_after_cf_list(struct exec_list *list, nir_instr *after)
2169 {
2170 nir_instr_insert(nir_after_cf_list(list), after);
2171 }
2172
2173 void nir_instr_remove(nir_instr *instr);
2174
2175 /** @} */
2176
2177 typedef bool (*nir_foreach_ssa_def_cb)(nir_ssa_def *def, void *state);
2178 typedef bool (*nir_foreach_dest_cb)(nir_dest *dest, void *state);
2179 typedef bool (*nir_foreach_src_cb)(nir_src *src, void *state);
2180 bool nir_foreach_ssa_def(nir_instr *instr, nir_foreach_ssa_def_cb cb,
2181 void *state);
2182 bool nir_foreach_dest(nir_instr *instr, nir_foreach_dest_cb cb, void *state);
2183 bool nir_foreach_src(nir_instr *instr, nir_foreach_src_cb cb, void *state);
2184
2185 nir_const_value *nir_src_as_const_value(nir_src src);
2186 bool nir_src_is_dynamically_uniform(nir_src src);
2187 bool nir_srcs_equal(nir_src src1, nir_src src2);
2188 void nir_instr_rewrite_src(nir_instr *instr, nir_src *src, nir_src new_src);
2189 void nir_instr_move_src(nir_instr *dest_instr, nir_src *dest, nir_src *src);
2190 void nir_if_rewrite_condition(nir_if *if_stmt, nir_src new_src);
2191 void nir_instr_rewrite_dest(nir_instr *instr, nir_dest *dest,
2192 nir_dest new_dest);
2193
2194 void nir_ssa_dest_init(nir_instr *instr, nir_dest *dest,
2195 unsigned num_components, unsigned bit_size,
2196 const char *name);
2197 void nir_ssa_def_init(nir_instr *instr, nir_ssa_def *def,
2198 unsigned num_components, unsigned bit_size,
2199 const char *name);
2200 void nir_ssa_def_rewrite_uses(nir_ssa_def *def, nir_src new_src);
2201 void nir_ssa_def_rewrite_uses_after(nir_ssa_def *def, nir_src new_src,
2202 nir_instr *after_me);
2203
2204 uint8_t nir_ssa_def_components_read(nir_ssa_def *def);
2205
2206 /*
2207 * finds the next basic block in source-code order, returns NULL if there is
2208 * none
2209 */
2210
2211 nir_block *nir_block_cf_tree_next(nir_block *block);
2212
2213 /* Performs the opposite of nir_block_cf_tree_next() */
2214
2215 nir_block *nir_block_cf_tree_prev(nir_block *block);
2216
2217 /* Gets the first block in a CF node in source-code order */
2218
2219 nir_block *nir_cf_node_cf_tree_first(nir_cf_node *node);
2220
2221 /* Gets the last block in a CF node in source-code order */
2222
2223 nir_block *nir_cf_node_cf_tree_last(nir_cf_node *node);
2224
2225 /* Gets the next block after a CF node in source-code order */
2226
2227 nir_block *nir_cf_node_cf_tree_next(nir_cf_node *node);
2228
2229 /* Macros for loops that visit blocks in source-code order */
2230
2231 #define nir_foreach_block(block, impl) \
2232 for (nir_block *block = nir_start_block(impl); block != NULL; \
2233 block = nir_block_cf_tree_next(block))
2234
2235 #define nir_foreach_block_safe(block, impl) \
2236 for (nir_block *block = nir_start_block(impl), \
2237 *next = nir_block_cf_tree_next(block); \
2238 block != NULL; \
2239 block = next, next = nir_block_cf_tree_next(block))
2240
2241 #define nir_foreach_block_reverse(block, impl) \
2242 for (nir_block *block = nir_impl_last_block(impl); block != NULL; \
2243 block = nir_block_cf_tree_prev(block))
2244
2245 #define nir_foreach_block_reverse_safe(block, impl) \
2246 for (nir_block *block = nir_impl_last_block(impl), \
2247 *prev = nir_block_cf_tree_prev(block); \
2248 block != NULL; \
2249 block = prev, prev = nir_block_cf_tree_prev(block))
2250
2251 #define nir_foreach_block_in_cf_node(block, node) \
2252 for (nir_block *block = nir_cf_node_cf_tree_first(node); \
2253 block != nir_cf_node_cf_tree_next(node); \
2254 block = nir_block_cf_tree_next(block))
2255
2256 /* If the following CF node is an if, this function returns that if.
2257 * Otherwise, it returns NULL.
2258 */
2259 nir_if *nir_block_get_following_if(nir_block *block);
2260
2261 nir_loop *nir_block_get_following_loop(nir_block *block);
2262
2263 void nir_index_local_regs(nir_function_impl *impl);
2264 void nir_index_global_regs(nir_shader *shader);
2265 void nir_index_ssa_defs(nir_function_impl *impl);
2266 unsigned nir_index_instrs(nir_function_impl *impl);
2267
2268 void nir_index_blocks(nir_function_impl *impl);
2269
2270 void nir_print_shader(nir_shader *shader, FILE *fp);
2271 void nir_print_shader_annotated(nir_shader *shader, FILE *fp, struct hash_table *errors);
2272 void nir_print_instr(const nir_instr *instr, FILE *fp);
2273
2274 nir_shader *nir_shader_clone(void *mem_ctx, const nir_shader *s);
2275 nir_function_impl *nir_function_impl_clone(const nir_function_impl *fi);
2276 nir_constant *nir_constant_clone(const nir_constant *c, nir_variable *var);
2277 nir_variable *nir_variable_clone(const nir_variable *c, nir_shader *shader);
2278 nir_deref *nir_deref_clone(const nir_deref *deref, void *mem_ctx);
2279 nir_deref_var *nir_deref_var_clone(const nir_deref_var *deref, void *mem_ctx);
2280
2281 #ifdef DEBUG
2282 void nir_validate_shader(nir_shader *shader);
2283 void nir_metadata_set_validation_flag(nir_shader *shader);
2284 void nir_metadata_check_validation_flag(nir_shader *shader);
2285
2286 static inline bool
2287 should_clone_nir(void)
2288 {
2289 static int should_clone = -1;
2290 if (should_clone < 0)
2291 should_clone = env_var_as_boolean("NIR_TEST_CLONE", false);
2292
2293 return should_clone;
2294 }
2295 #else
2296 static inline void nir_validate_shader(nir_shader *shader) { (void) shader; }
2297 static inline void nir_metadata_set_validation_flag(nir_shader *shader) { (void) shader; }
2298 static inline void nir_metadata_check_validation_flag(nir_shader *shader) { (void) shader; }
2299 static inline bool should_clone_nir(void) { return false; }
2300 #endif /* DEBUG */
2301
2302 #define _PASS(nir, do_pass) do { \
2303 do_pass \
2304 nir_validate_shader(nir); \
2305 if (should_clone_nir()) { \
2306 nir_shader *clone = nir_shader_clone(ralloc_parent(nir), nir); \
2307 ralloc_free(nir); \
2308 nir = clone; \
2309 } \
2310 } while (0)
2311
2312 #define NIR_PASS(progress, nir, pass, ...) _PASS(nir, \
2313 nir_metadata_set_validation_flag(nir); \
2314 if (pass(nir, ##__VA_ARGS__)) { \
2315 progress = true; \
2316 nir_metadata_check_validation_flag(nir); \
2317 } \
2318 )
2319
2320 #define NIR_PASS_V(nir, pass, ...) _PASS(nir, \
2321 pass(nir, ##__VA_ARGS__); \
2322 )
2323
2324 void nir_calc_dominance_impl(nir_function_impl *impl);
2325 void nir_calc_dominance(nir_shader *shader);
2326
2327 nir_block *nir_dominance_lca(nir_block *b1, nir_block *b2);
2328 bool nir_block_dominates(nir_block *parent, nir_block *child);
2329
2330 void nir_dump_dom_tree_impl(nir_function_impl *impl, FILE *fp);
2331 void nir_dump_dom_tree(nir_shader *shader, FILE *fp);
2332
2333 void nir_dump_dom_frontier_impl(nir_function_impl *impl, FILE *fp);
2334 void nir_dump_dom_frontier(nir_shader *shader, FILE *fp);
2335
2336 void nir_dump_cfg_impl(nir_function_impl *impl, FILE *fp);
2337 void nir_dump_cfg(nir_shader *shader, FILE *fp);
2338
2339 int nir_gs_count_vertices(const nir_shader *shader);
2340
2341 bool nir_split_var_copies(nir_shader *shader);
2342
2343 bool nir_lower_returns_impl(nir_function_impl *impl);
2344 bool nir_lower_returns(nir_shader *shader);
2345
2346 bool nir_inline_functions(nir_shader *shader);
2347
2348 bool nir_propagate_invariant(nir_shader *shader);
2349
2350 void nir_lower_var_copy_instr(nir_intrinsic_instr *copy, nir_shader *shader);
2351 void nir_lower_var_copies(nir_shader *shader);
2352
2353 bool nir_lower_global_vars_to_local(nir_shader *shader);
2354
2355 bool nir_lower_indirect_derefs(nir_shader *shader, nir_variable_mode modes);
2356
2357 bool nir_lower_locals_to_regs(nir_shader *shader);
2358
2359 void nir_lower_io_to_temporaries(nir_shader *shader,
2360 nir_function_impl *entrypoint,
2361 bool outputs, bool inputs);
2362
2363 void nir_shader_gather_info(nir_shader *shader, nir_function_impl *entrypoint);
2364
2365 void nir_assign_var_locations(struct exec_list *var_list, unsigned *size,
2366 int (*type_size)(const struct glsl_type *));
2367
2368 typedef enum {
2369 /* If set, this forces all non-flat fragment shader inputs to be
2370 * interpolated as if with the "sample" qualifier. This requires
2371 * nir_shader_compiler_options::use_interpolated_input_intrinsics.
2372 */
2373 nir_lower_io_force_sample_interpolation = (1 << 1),
2374 } nir_lower_io_options;
2375 void nir_lower_io(nir_shader *shader,
2376 nir_variable_mode modes,
2377 int (*type_size)(const struct glsl_type *),
2378 nir_lower_io_options);
2379 nir_src *nir_get_io_offset_src(nir_intrinsic_instr *instr);
2380 nir_src *nir_get_io_vertex_index_src(nir_intrinsic_instr *instr);
2381
2382 bool nir_is_per_vertex_io(nir_variable *var, gl_shader_stage stage);
2383
2384 void nir_lower_io_types(nir_shader *shader);
2385 void nir_lower_regs_to_ssa_impl(nir_function_impl *impl);
2386 void nir_lower_regs_to_ssa(nir_shader *shader);
2387 void nir_lower_vars_to_ssa(nir_shader *shader);
2388
2389 bool nir_remove_dead_variables(nir_shader *shader, nir_variable_mode modes);
2390 bool nir_lower_constant_initializers(nir_shader *shader,
2391 nir_variable_mode modes);
2392
2393 void nir_move_vec_src_uses_to_dest(nir_shader *shader);
2394 bool nir_lower_vec_to_movs(nir_shader *shader);
2395 bool nir_lower_alu_to_scalar(nir_shader *shader);
2396 void nir_lower_load_const_to_scalar(nir_shader *shader);
2397
2398 bool nir_lower_phis_to_scalar(nir_shader *shader);
2399 void nir_lower_io_to_scalar(nir_shader *shader, nir_variable_mode mask);
2400
2401 void nir_lower_samplers(nir_shader *shader,
2402 const struct gl_shader_program *shader_program);
2403
2404 bool nir_lower_system_values(nir_shader *shader);
2405
2406 typedef struct nir_lower_tex_options {
2407 /**
2408 * bitmask of (1 << GLSL_SAMPLER_DIM_x) to control for which
2409 * sampler types a texture projector is lowered.
2410 */
2411 unsigned lower_txp;
2412
2413 /**
2414 * If true, lower away nir_tex_src_offset for all texelfetch instructions.
2415 */
2416 bool lower_txf_offset;
2417
2418 /**
2419 * If true, lower away nir_tex_src_offset for all rect textures.
2420 */
2421 bool lower_rect_offset;
2422
2423 /**
2424 * If true, lower rect textures to 2D, using txs to fetch the
2425 * texture dimensions and dividing the texture coords by the
2426 * texture dims to normalize.
2427 */
2428 bool lower_rect;
2429
2430 /**
2431 * If true, convert yuv to rgb.
2432 */
2433 unsigned lower_y_uv_external;
2434 unsigned lower_y_u_v_external;
2435 unsigned lower_yx_xuxv_external;
2436
2437 /**
2438 * To emulate certain texture wrap modes, this can be used
2439 * to saturate the specified tex coord to [0.0, 1.0]. The
2440 * bits are according to sampler #, ie. if, for example:
2441 *
2442 * (conf->saturate_s & (1 << n))
2443 *
2444 * is true, then the s coord for sampler n is saturated.
2445 *
2446 * Note that clamping must happen *after* projector lowering
2447 * so any projected texture sample instruction with a clamped
2448 * coordinate gets automatically lowered, regardless of the
2449 * 'lower_txp' setting.
2450 */
2451 unsigned saturate_s;
2452 unsigned saturate_t;
2453 unsigned saturate_r;
2454
2455 /* Bitmask of textures that need swizzling.
2456 *
2457 * If (swizzle_result & (1 << texture_index)), then the swizzle in
2458 * swizzles[texture_index] is applied to the result of the texturing
2459 * operation.
2460 */
2461 unsigned swizzle_result;
2462
2463 /* A swizzle for each texture. Values 0-3 represent x, y, z, or w swizzles
2464 * while 4 and 5 represent 0 and 1 respectively.
2465 */
2466 uint8_t swizzles[32][4];
2467
2468 /**
2469 * Bitmap of textures that need srgb to linear conversion. If
2470 * (lower_srgb & (1 << texture_index)) then the rgb (xyz) components
2471 * of the texture are lowered to linear.
2472 */
2473 unsigned lower_srgb;
2474
2475 /**
2476 * If true, lower nir_texop_txd on cube maps with nir_texop_txl.
2477 */
2478 bool lower_txd_cube_map;
2479
2480 /**
2481 * If true, lower nir_texop_txd on shadow samplers (except cube maps)
2482 * with nir_texop_txl. Notice that cube map shadow samplers are lowered
2483 * with lower_txd_cube_map.
2484 */
2485 bool lower_txd_shadow;
2486 } nir_lower_tex_options;
2487
2488 bool nir_lower_tex(nir_shader *shader,
2489 const nir_lower_tex_options *options);
2490
2491 bool nir_lower_idiv(nir_shader *shader);
2492
2493 void nir_lower_clip_vs(nir_shader *shader, unsigned ucp_enables);
2494 void nir_lower_clip_fs(nir_shader *shader, unsigned ucp_enables);
2495 void nir_lower_clip_cull_distance_arrays(nir_shader *nir);
2496
2497 void nir_lower_two_sided_color(nir_shader *shader);
2498
2499 void nir_lower_clamp_color_outputs(nir_shader *shader);
2500
2501 void nir_lower_passthrough_edgeflags(nir_shader *shader);
2502 void nir_lower_tes_patch_vertices(nir_shader *tes, unsigned patch_vertices);
2503
2504 typedef struct nir_lower_wpos_ytransform_options {
2505 int state_tokens[5];
2506 bool fs_coord_origin_upper_left :1;
2507 bool fs_coord_origin_lower_left :1;
2508 bool fs_coord_pixel_center_integer :1;
2509 bool fs_coord_pixel_center_half_integer :1;
2510 } nir_lower_wpos_ytransform_options;
2511
2512 bool nir_lower_wpos_ytransform(nir_shader *shader,
2513 const nir_lower_wpos_ytransform_options *options);
2514 bool nir_lower_wpos_center(nir_shader *shader);
2515
2516 typedef struct nir_lower_drawpixels_options {
2517 int texcoord_state_tokens[5];
2518 int scale_state_tokens[5];
2519 int bias_state_tokens[5];
2520 unsigned drawpix_sampler;
2521 unsigned pixelmap_sampler;
2522 bool pixel_maps :1;
2523 bool scale_and_bias :1;
2524 } nir_lower_drawpixels_options;
2525
2526 void nir_lower_drawpixels(nir_shader *shader,
2527 const nir_lower_drawpixels_options *options);
2528
2529 typedef struct nir_lower_bitmap_options {
2530 unsigned sampler;
2531 bool swizzle_xxxx;
2532 } nir_lower_bitmap_options;
2533
2534 void nir_lower_bitmap(nir_shader *shader, const nir_lower_bitmap_options *options);
2535
2536 void nir_lower_atomics(nir_shader *shader,
2537 const struct gl_shader_program *shader_program);
2538 void nir_lower_to_source_mods(nir_shader *shader);
2539
2540 bool nir_lower_gs_intrinsics(nir_shader *shader);
2541
2542 typedef enum {
2543 nir_lower_imul64 = (1 << 0),
2544 nir_lower_isign64 = (1 << 1),
2545 /** Lower all int64 modulus and division opcodes */
2546 nir_lower_divmod64 = (1 << 2),
2547 } nir_lower_int64_options;
2548
2549 bool nir_lower_int64(nir_shader *shader, nir_lower_int64_options options);
2550
2551 typedef enum {
2552 nir_lower_drcp = (1 << 0),
2553 nir_lower_dsqrt = (1 << 1),
2554 nir_lower_drsq = (1 << 2),
2555 nir_lower_dtrunc = (1 << 3),
2556 nir_lower_dfloor = (1 << 4),
2557 nir_lower_dceil = (1 << 5),
2558 nir_lower_dfract = (1 << 6),
2559 nir_lower_dround_even = (1 << 7),
2560 nir_lower_dmod = (1 << 8)
2561 } nir_lower_doubles_options;
2562
2563 void nir_lower_doubles(nir_shader *shader, nir_lower_doubles_options options);
2564 void nir_lower_64bit_pack(nir_shader *shader);
2565
2566 bool nir_normalize_cubemap_coords(nir_shader *shader);
2567
2568 void nir_live_ssa_defs_impl(nir_function_impl *impl);
2569
2570 void nir_loop_analyze_impl(nir_function_impl *impl,
2571 nir_variable_mode indirect_mask);
2572
2573 bool nir_ssa_defs_interfere(nir_ssa_def *a, nir_ssa_def *b);
2574
2575 bool nir_repair_ssa_impl(nir_function_impl *impl);
2576 bool nir_repair_ssa(nir_shader *shader);
2577
2578 void nir_convert_loop_to_lcssa(nir_loop *loop);
2579
2580 /* If phi_webs_only is true, only convert SSA values involved in phi nodes to
2581 * registers. If false, convert all values (even those not involved in a phi
2582 * node) to registers.
2583 */
2584 void nir_convert_from_ssa(nir_shader *shader, bool phi_webs_only);
2585
2586 bool nir_lower_phis_to_regs_block(nir_block *block);
2587 bool nir_lower_ssa_defs_to_regs_block(nir_block *block);
2588
2589 bool nir_opt_algebraic(nir_shader *shader);
2590 bool nir_opt_algebraic_late(nir_shader *shader);
2591 bool nir_opt_constant_folding(nir_shader *shader);
2592
2593 bool nir_opt_global_to_local(nir_shader *shader);
2594
2595 bool nir_copy_prop(nir_shader *shader);
2596
2597 bool nir_opt_copy_prop_vars(nir_shader *shader);
2598
2599 bool nir_opt_cse(nir_shader *shader);
2600
2601 bool nir_opt_dce(nir_shader *shader);
2602
2603 bool nir_opt_dead_cf(nir_shader *shader);
2604
2605 bool nir_opt_gcm(nir_shader *shader, bool value_number);
2606
2607 bool nir_opt_if(nir_shader *shader);
2608
2609 bool nir_opt_loop_unroll(nir_shader *shader, nir_variable_mode indirect_mask);
2610
2611 bool nir_opt_move_comparisons(nir_shader *shader);
2612
2613 bool nir_opt_peephole_select(nir_shader *shader, unsigned limit);
2614
2615 bool nir_opt_remove_phis(nir_shader *shader);
2616
2617 bool nir_opt_trivial_continues(nir_shader *shader);
2618
2619 bool nir_opt_undef(nir_shader *shader);
2620
2621 bool nir_opt_conditional_discard(nir_shader *shader);
2622
2623 void nir_sweep(nir_shader *shader);
2624
2625 nir_intrinsic_op nir_intrinsic_from_system_value(gl_system_value val);
2626 gl_system_value nir_system_value_from_intrinsic(nir_intrinsic_op intrin);
2627
2628 #ifdef __cplusplus
2629 } /* extern "C" */
2630 #endif