nir: Add a new nir_cf_list_is_empty_block() helper.
[mesa.git] / src / compiler / nir / nir.h
1 /*
2 * Copyright © 2014 Connor Abbott
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Connor Abbott (cwabbott0@gmail.com)
25 *
26 */
27
28 #ifndef NIR_H
29 #define NIR_H
30
31 #include "util/hash_table.h"
32 #include "compiler/glsl/list.h"
33 #include "GL/gl.h" /* GLenum */
34 #include "util/list.h"
35 #include "util/ralloc.h"
36 #include "util/set.h"
37 #include "util/bitscan.h"
38 #include "util/bitset.h"
39 #include "util/macros.h"
40 #include "compiler/nir_types.h"
41 #include "compiler/shader_enums.h"
42 #include "compiler/shader_info.h"
43 #include <stdio.h>
44
45 #ifndef NDEBUG
46 #include "util/debug.h"
47 #endif /* NDEBUG */
48
49 #include "nir_opcodes.h"
50
51 #if defined(_WIN32) && !defined(snprintf)
52 #define snprintf _snprintf
53 #endif
54
55 #ifdef __cplusplus
56 extern "C" {
57 #endif
58
59 #define NIR_FALSE 0u
60 #define NIR_TRUE (~0u)
61 #define NIR_MAX_VEC_COMPONENTS 4
62 #define NIR_MAX_MATRIX_COLUMNS 4
63 typedef uint8_t nir_component_mask_t;
64
65 /** Defines a cast function
66 *
67 * This macro defines a cast function from in_type to out_type where
68 * out_type is some structure type that contains a field of type out_type.
69 *
70 * Note that you have to be a bit careful as the generated cast function
71 * destroys constness.
72 */
73 #define NIR_DEFINE_CAST(name, in_type, out_type, field, \
74 type_field, type_value) \
75 static inline out_type * \
76 name(const in_type *parent) \
77 { \
78 assert(parent && parent->type_field == type_value); \
79 return exec_node_data(out_type, parent, field); \
80 }
81
82 struct nir_function;
83 struct nir_shader;
84 struct nir_instr;
85 struct nir_builder;
86
87
88 /**
89 * Description of built-in state associated with a uniform
90 *
91 * \sa nir_variable::state_slots
92 */
93 typedef struct {
94 gl_state_index16 tokens[STATE_LENGTH];
95 int swizzle;
96 } nir_state_slot;
97
98 typedef enum {
99 nir_var_shader_in = (1 << 0),
100 nir_var_shader_out = (1 << 1),
101 nir_var_shader_temp = (1 << 2),
102 nir_var_function_temp = (1 << 3),
103 nir_var_uniform = (1 << 4),
104 nir_var_mem_ubo = (1 << 5),
105 nir_var_system_value = (1 << 6),
106 nir_var_mem_ssbo = (1 << 7),
107 nir_var_mem_shared = (1 << 8),
108 nir_var_mem_global = (1 << 9),
109 nir_var_all = ~0,
110 } nir_variable_mode;
111
112 /**
113 * Rounding modes.
114 */
115 typedef enum {
116 nir_rounding_mode_undef = 0,
117 nir_rounding_mode_rtne = 1, /* round to nearest even */
118 nir_rounding_mode_ru = 2, /* round up */
119 nir_rounding_mode_rd = 3, /* round down */
120 nir_rounding_mode_rtz = 4, /* round towards zero */
121 } nir_rounding_mode;
122
123 typedef union {
124 bool b;
125 float f32;
126 double f64;
127 int8_t i8;
128 uint8_t u8;
129 int16_t i16;
130 uint16_t u16;
131 int32_t i32;
132 uint32_t u32;
133 int64_t i64;
134 uint64_t u64;
135 } nir_const_value;
136
137 #define nir_const_value_to_array(arr, c, components, m) \
138 { \
139 for (unsigned i = 0; i < components; ++i) \
140 arr[i] = c[i].m; \
141 } while (false)
142
143 typedef struct nir_constant {
144 /**
145 * Value of the constant.
146 *
147 * The field used to back the values supplied by the constant is determined
148 * by the type associated with the \c nir_variable. Constants may be
149 * scalars, vectors, or matrices.
150 */
151 nir_const_value values[NIR_MAX_MATRIX_COLUMNS][NIR_MAX_VEC_COMPONENTS];
152
153 /* we could get this from the var->type but makes clone *much* easier to
154 * not have to care about the type.
155 */
156 unsigned num_elements;
157
158 /* Array elements / Structure Fields */
159 struct nir_constant **elements;
160 } nir_constant;
161
162 /**
163 * \brief Layout qualifiers for gl_FragDepth.
164 *
165 * The AMD/ARB_conservative_depth extensions allow gl_FragDepth to be redeclared
166 * with a layout qualifier.
167 */
168 typedef enum {
169 nir_depth_layout_none, /**< No depth layout is specified. */
170 nir_depth_layout_any,
171 nir_depth_layout_greater,
172 nir_depth_layout_less,
173 nir_depth_layout_unchanged
174 } nir_depth_layout;
175
176 /**
177 * Enum keeping track of how a variable was declared.
178 */
179 typedef enum {
180 /**
181 * Normal declaration.
182 */
183 nir_var_declared_normally = 0,
184
185 /**
186 * Variable is implicitly generated by the compiler and should not be
187 * visible via the API.
188 */
189 nir_var_hidden,
190 } nir_var_declaration_type;
191
192 /**
193 * Either a uniform, global variable, shader input, or shader output. Based on
194 * ir_variable - it should be easy to translate between the two.
195 */
196
197 typedef struct nir_variable {
198 struct exec_node node;
199
200 /**
201 * Declared type of the variable
202 */
203 const struct glsl_type *type;
204
205 /**
206 * Declared name of the variable
207 */
208 char *name;
209
210 struct nir_variable_data {
211 /**
212 * Storage class of the variable.
213 *
214 * \sa nir_variable_mode
215 */
216 nir_variable_mode mode;
217
218 /**
219 * Is the variable read-only?
220 *
221 * This is set for variables declared as \c const, shader inputs,
222 * and uniforms.
223 */
224 unsigned read_only:1;
225 unsigned centroid:1;
226 unsigned sample:1;
227 unsigned patch:1;
228 unsigned invariant:1;
229
230 /**
231 * When separate shader programs are enabled, only input/outputs between
232 * the stages of a multi-stage separate program can be safely removed
233 * from the shader interface. Other input/outputs must remains active.
234 *
235 * This is also used to make sure xfb varyings that are unused by the
236 * fragment shader are not removed.
237 */
238 unsigned always_active_io:1;
239
240 /**
241 * Interpolation mode for shader inputs / outputs
242 *
243 * \sa glsl_interp_mode
244 */
245 unsigned interpolation:2;
246
247 /**
248 * If non-zero, then this variable may be packed along with other variables
249 * into a single varying slot, so this offset should be applied when
250 * accessing components. For example, an offset of 1 means that the x
251 * component of this variable is actually stored in component y of the
252 * location specified by \c location.
253 */
254 unsigned location_frac:2;
255
256 /**
257 * If true, this variable represents an array of scalars that should
258 * be tightly packed. In other words, consecutive array elements
259 * should be stored one component apart, rather than one slot apart.
260 */
261 unsigned compact:1;
262
263 /**
264 * Whether this is a fragment shader output implicitly initialized with
265 * the previous contents of the specified render target at the
266 * framebuffer location corresponding to this shader invocation.
267 */
268 unsigned fb_fetch_output:1;
269
270 /**
271 * Non-zero if this variable is considered bindless as defined by
272 * ARB_bindless_texture.
273 */
274 unsigned bindless:1;
275
276 /**
277 * Was an explicit binding set in the shader?
278 */
279 unsigned explicit_binding:1;
280
281 /**
282 * Was a transfer feedback buffer set in the shader?
283 */
284 unsigned explicit_xfb_buffer:1;
285
286 /**
287 * Was a transfer feedback stride set in the shader?
288 */
289 unsigned explicit_xfb_stride:1;
290
291 /**
292 * Was an explicit offset set in the shader?
293 */
294 unsigned explicit_offset:1;
295
296 /**
297 * \brief Layout qualifier for gl_FragDepth.
298 *
299 * This is not equal to \c ir_depth_layout_none if and only if this
300 * variable is \c gl_FragDepth and a layout qualifier is specified.
301 */
302 nir_depth_layout depth_layout;
303
304 /**
305 * Storage location of the base of this variable
306 *
307 * The precise meaning of this field depends on the nature of the variable.
308 *
309 * - Vertex shader input: one of the values from \c gl_vert_attrib.
310 * - Vertex shader output: one of the values from \c gl_varying_slot.
311 * - Geometry shader input: one of the values from \c gl_varying_slot.
312 * - Geometry shader output: one of the values from \c gl_varying_slot.
313 * - Fragment shader input: one of the values from \c gl_varying_slot.
314 * - Fragment shader output: one of the values from \c gl_frag_result.
315 * - Uniforms: Per-stage uniform slot number for default uniform block.
316 * - Uniforms: Index within the uniform block definition for UBO members.
317 * - Non-UBO Uniforms: uniform slot number.
318 * - Other: This field is not currently used.
319 *
320 * If the variable is a uniform, shader input, or shader output, and the
321 * slot has not been assigned, the value will be -1.
322 */
323 int location;
324
325 /**
326 * The actual location of the variable in the IR. Only valid for inputs
327 * and outputs.
328 */
329 unsigned int driver_location;
330
331 /**
332 * Vertex stream output identifier.
333 *
334 * For packed outputs, bit 31 is set and bits [2*i+1,2*i] indicate the
335 * stream of the i-th component.
336 */
337 unsigned stream;
338
339 /**
340 * output index for dual source blending.
341 */
342 int index;
343
344 /**
345 * Descriptor set binding for sampler or UBO.
346 */
347 int descriptor_set;
348
349 /**
350 * Initial binding point for a sampler or UBO.
351 *
352 * For array types, this represents the binding point for the first element.
353 */
354 int binding;
355
356 /**
357 * Location an atomic counter or transform feedback is stored at.
358 */
359 unsigned offset;
360
361 /**
362 * Transform feedback buffer.
363 */
364 unsigned xfb_buffer;
365
366 /**
367 * Transform feedback stride.
368 */
369 unsigned xfb_stride;
370
371 /**
372 * How the variable was declared. See nir_var_declaration_type.
373 *
374 * This is used to detect variables generated by the compiler, so should
375 * not be visible via the API.
376 */
377 unsigned how_declared:2;
378
379 /**
380 * ARB_shader_image_load_store qualifiers.
381 */
382 struct {
383 enum gl_access_qualifier access;
384
385 /** Image internal format if specified explicitly, otherwise GL_NONE. */
386 GLenum format;
387 } image;
388 } data;
389
390 /**
391 * Built-in state that backs this uniform
392 *
393 * Once set at variable creation, \c state_slots must remain invariant.
394 * This is because, ideally, this array would be shared by all clones of
395 * this variable in the IR tree. In other words, we'd really like for it
396 * to be a fly-weight.
397 *
398 * If the variable is not a uniform, \c num_state_slots will be zero and
399 * \c state_slots will be \c NULL.
400 */
401 /*@{*/
402 unsigned num_state_slots; /**< Number of state slots used */
403 nir_state_slot *state_slots; /**< State descriptors. */
404 /*@}*/
405
406 /**
407 * Constant expression assigned in the initializer of the variable
408 *
409 * This field should only be used temporarily by creators of NIR shaders
410 * and then lower_constant_initializers can be used to get rid of them.
411 * Most of the rest of NIR ignores this field or asserts that it's NULL.
412 */
413 nir_constant *constant_initializer;
414
415 /**
416 * For variables that are in an interface block or are an instance of an
417 * interface block, this is the \c GLSL_TYPE_INTERFACE type for that block.
418 *
419 * \sa ir_variable::location
420 */
421 const struct glsl_type *interface_type;
422
423 /**
424 * Description of per-member data for per-member struct variables
425 *
426 * This is used for variables which are actually an amalgamation of
427 * multiple entities such as a struct of built-in values or a struct of
428 * inputs each with their own layout specifier. This is only allowed on
429 * variables with a struct or array of array of struct type.
430 */
431 unsigned num_members;
432 struct nir_variable_data *members;
433 } nir_variable;
434
435 #define nir_foreach_variable(var, var_list) \
436 foreach_list_typed(nir_variable, var, node, var_list)
437
438 #define nir_foreach_variable_safe(var, var_list) \
439 foreach_list_typed_safe(nir_variable, var, node, var_list)
440
441 static inline bool
442 nir_variable_is_global(const nir_variable *var)
443 {
444 return var->data.mode != nir_var_function_temp;
445 }
446
447 typedef struct nir_register {
448 struct exec_node node;
449
450 unsigned num_components; /** < number of vector components */
451 unsigned num_array_elems; /** < size of array (0 for no array) */
452
453 /* The bit-size of each channel; must be one of 8, 16, 32, or 64 */
454 uint8_t bit_size;
455
456 /** generic register index. */
457 unsigned index;
458
459 /** only for debug purposes, can be NULL */
460 const char *name;
461
462 /** set of nir_srcs where this register is used (read from) */
463 struct list_head uses;
464
465 /** set of nir_dests where this register is defined (written to) */
466 struct list_head defs;
467
468 /** set of nir_ifs where this register is used as a condition */
469 struct list_head if_uses;
470 } nir_register;
471
472 #define nir_foreach_register(reg, reg_list) \
473 foreach_list_typed(nir_register, reg, node, reg_list)
474 #define nir_foreach_register_safe(reg, reg_list) \
475 foreach_list_typed_safe(nir_register, reg, node, reg_list)
476
477 typedef enum PACKED {
478 nir_instr_type_alu,
479 nir_instr_type_deref,
480 nir_instr_type_call,
481 nir_instr_type_tex,
482 nir_instr_type_intrinsic,
483 nir_instr_type_load_const,
484 nir_instr_type_jump,
485 nir_instr_type_ssa_undef,
486 nir_instr_type_phi,
487 nir_instr_type_parallel_copy,
488 } nir_instr_type;
489
490 typedef struct nir_instr {
491 struct exec_node node;
492 struct nir_block *block;
493 nir_instr_type type;
494
495 /* A temporary for optimization and analysis passes to use for storing
496 * flags. For instance, DCE uses this to store the "dead/live" info.
497 */
498 uint8_t pass_flags;
499
500 /** generic instruction index. */
501 unsigned index;
502 } nir_instr;
503
504 static inline nir_instr *
505 nir_instr_next(nir_instr *instr)
506 {
507 struct exec_node *next = exec_node_get_next(&instr->node);
508 if (exec_node_is_tail_sentinel(next))
509 return NULL;
510 else
511 return exec_node_data(nir_instr, next, node);
512 }
513
514 static inline nir_instr *
515 nir_instr_prev(nir_instr *instr)
516 {
517 struct exec_node *prev = exec_node_get_prev(&instr->node);
518 if (exec_node_is_head_sentinel(prev))
519 return NULL;
520 else
521 return exec_node_data(nir_instr, prev, node);
522 }
523
524 static inline bool
525 nir_instr_is_first(const nir_instr *instr)
526 {
527 return exec_node_is_head_sentinel(exec_node_get_prev_const(&instr->node));
528 }
529
530 static inline bool
531 nir_instr_is_last(const nir_instr *instr)
532 {
533 return exec_node_is_tail_sentinel(exec_node_get_next_const(&instr->node));
534 }
535
536 typedef struct nir_ssa_def {
537 /** for debugging only, can be NULL */
538 const char* name;
539
540 /** generic SSA definition index. */
541 unsigned index;
542
543 /** Index into the live_in and live_out bitfields */
544 unsigned live_index;
545
546 /** Instruction which produces this SSA value. */
547 nir_instr *parent_instr;
548
549 /** set of nir_instrs where this register is used (read from) */
550 struct list_head uses;
551
552 /** set of nir_ifs where this register is used as a condition */
553 struct list_head if_uses;
554
555 uint8_t num_components;
556
557 /* The bit-size of each channel; must be one of 8, 16, 32, or 64 */
558 uint8_t bit_size;
559 } nir_ssa_def;
560
561 struct nir_src;
562
563 typedef struct {
564 nir_register *reg;
565 struct nir_src *indirect; /** < NULL for no indirect offset */
566 unsigned base_offset;
567
568 /* TODO use-def chain goes here */
569 } nir_reg_src;
570
571 typedef struct {
572 nir_instr *parent_instr;
573 struct list_head def_link;
574
575 nir_register *reg;
576 struct nir_src *indirect; /** < NULL for no indirect offset */
577 unsigned base_offset;
578
579 /* TODO def-use chain goes here */
580 } nir_reg_dest;
581
582 struct nir_if;
583
584 typedef struct nir_src {
585 union {
586 /** Instruction that consumes this value as a source. */
587 nir_instr *parent_instr;
588 struct nir_if *parent_if;
589 };
590
591 struct list_head use_link;
592
593 union {
594 nir_reg_src reg;
595 nir_ssa_def *ssa;
596 };
597
598 bool is_ssa;
599 } nir_src;
600
601 static inline nir_src
602 nir_src_init(void)
603 {
604 nir_src src = { { NULL } };
605 return src;
606 }
607
608 #define NIR_SRC_INIT nir_src_init()
609
610 #define nir_foreach_use(src, reg_or_ssa_def) \
611 list_for_each_entry(nir_src, src, &(reg_or_ssa_def)->uses, use_link)
612
613 #define nir_foreach_use_safe(src, reg_or_ssa_def) \
614 list_for_each_entry_safe(nir_src, src, &(reg_or_ssa_def)->uses, use_link)
615
616 #define nir_foreach_if_use(src, reg_or_ssa_def) \
617 list_for_each_entry(nir_src, src, &(reg_or_ssa_def)->if_uses, use_link)
618
619 #define nir_foreach_if_use_safe(src, reg_or_ssa_def) \
620 list_for_each_entry_safe(nir_src, src, &(reg_or_ssa_def)->if_uses, use_link)
621
622 typedef struct {
623 union {
624 nir_reg_dest reg;
625 nir_ssa_def ssa;
626 };
627
628 bool is_ssa;
629 } nir_dest;
630
631 static inline nir_dest
632 nir_dest_init(void)
633 {
634 nir_dest dest = { { { NULL } } };
635 return dest;
636 }
637
638 #define NIR_DEST_INIT nir_dest_init()
639
640 #define nir_foreach_def(dest, reg) \
641 list_for_each_entry(nir_dest, dest, &(reg)->defs, reg.def_link)
642
643 #define nir_foreach_def_safe(dest, reg) \
644 list_for_each_entry_safe(nir_dest, dest, &(reg)->defs, reg.def_link)
645
646 static inline nir_src
647 nir_src_for_ssa(nir_ssa_def *def)
648 {
649 nir_src src = NIR_SRC_INIT;
650
651 src.is_ssa = true;
652 src.ssa = def;
653
654 return src;
655 }
656
657 static inline nir_src
658 nir_src_for_reg(nir_register *reg)
659 {
660 nir_src src = NIR_SRC_INIT;
661
662 src.is_ssa = false;
663 src.reg.reg = reg;
664 src.reg.indirect = NULL;
665 src.reg.base_offset = 0;
666
667 return src;
668 }
669
670 static inline nir_dest
671 nir_dest_for_reg(nir_register *reg)
672 {
673 nir_dest dest = NIR_DEST_INIT;
674
675 dest.reg.reg = reg;
676
677 return dest;
678 }
679
680 static inline unsigned
681 nir_src_bit_size(nir_src src)
682 {
683 return src.is_ssa ? src.ssa->bit_size : src.reg.reg->bit_size;
684 }
685
686 static inline unsigned
687 nir_src_num_components(nir_src src)
688 {
689 return src.is_ssa ? src.ssa->num_components : src.reg.reg->num_components;
690 }
691
692 static inline bool
693 nir_src_is_const(nir_src src)
694 {
695 return src.is_ssa &&
696 src.ssa->parent_instr->type == nir_instr_type_load_const;
697 }
698
699 int64_t nir_src_as_int(nir_src src);
700 uint64_t nir_src_as_uint(nir_src src);
701 bool nir_src_as_bool(nir_src src);
702 double nir_src_as_float(nir_src src);
703 int64_t nir_src_comp_as_int(nir_src src, unsigned component);
704 uint64_t nir_src_comp_as_uint(nir_src src, unsigned component);
705 bool nir_src_comp_as_bool(nir_src src, unsigned component);
706 double nir_src_comp_as_float(nir_src src, unsigned component);
707
708 static inline unsigned
709 nir_dest_bit_size(nir_dest dest)
710 {
711 return dest.is_ssa ? dest.ssa.bit_size : dest.reg.reg->bit_size;
712 }
713
714 static inline unsigned
715 nir_dest_num_components(nir_dest dest)
716 {
717 return dest.is_ssa ? dest.ssa.num_components : dest.reg.reg->num_components;
718 }
719
720 void nir_src_copy(nir_src *dest, const nir_src *src, void *instr_or_if);
721 void nir_dest_copy(nir_dest *dest, const nir_dest *src, nir_instr *instr);
722
723 typedef struct {
724 nir_src src;
725
726 /**
727 * \name input modifiers
728 */
729 /*@{*/
730 /**
731 * For inputs interpreted as floating point, flips the sign bit. For
732 * inputs interpreted as integers, performs the two's complement negation.
733 */
734 bool negate;
735
736 /**
737 * Clears the sign bit for floating point values, and computes the integer
738 * absolute value for integers. Note that the negate modifier acts after
739 * the absolute value modifier, therefore if both are set then all inputs
740 * will become negative.
741 */
742 bool abs;
743 /*@}*/
744
745 /**
746 * For each input component, says which component of the register it is
747 * chosen from. Note that which elements of the swizzle are used and which
748 * are ignored are based on the write mask for most opcodes - for example,
749 * a statement like "foo.xzw = bar.zyx" would have a writemask of 1101b and
750 * a swizzle of {2, x, 1, 0} where x means "don't care."
751 */
752 uint8_t swizzle[NIR_MAX_VEC_COMPONENTS];
753 } nir_alu_src;
754
755 typedef struct {
756 nir_dest dest;
757
758 /**
759 * \name saturate output modifier
760 *
761 * Only valid for opcodes that output floating-point numbers. Clamps the
762 * output to between 0.0 and 1.0 inclusive.
763 */
764
765 bool saturate;
766
767 unsigned write_mask : NIR_MAX_VEC_COMPONENTS; /* ignored if dest.is_ssa is true */
768 } nir_alu_dest;
769
770 /** NIR sized and unsized types
771 *
772 * The values in this enum are carefully chosen so that the sized type is
773 * just the unsized type OR the number of bits.
774 */
775 typedef enum {
776 nir_type_invalid = 0, /* Not a valid type */
777 nir_type_int = 2,
778 nir_type_uint = 4,
779 nir_type_bool = 6,
780 nir_type_float = 128,
781 nir_type_bool1 = 1 | nir_type_bool,
782 nir_type_bool32 = 32 | nir_type_bool,
783 nir_type_int1 = 1 | nir_type_int,
784 nir_type_int8 = 8 | nir_type_int,
785 nir_type_int16 = 16 | nir_type_int,
786 nir_type_int32 = 32 | nir_type_int,
787 nir_type_int64 = 64 | nir_type_int,
788 nir_type_uint1 = 1 | nir_type_uint,
789 nir_type_uint8 = 8 | nir_type_uint,
790 nir_type_uint16 = 16 | nir_type_uint,
791 nir_type_uint32 = 32 | nir_type_uint,
792 nir_type_uint64 = 64 | nir_type_uint,
793 nir_type_float16 = 16 | nir_type_float,
794 nir_type_float32 = 32 | nir_type_float,
795 nir_type_float64 = 64 | nir_type_float,
796 } nir_alu_type;
797
798 #define NIR_ALU_TYPE_SIZE_MASK 0x79
799 #define NIR_ALU_TYPE_BASE_TYPE_MASK 0x86
800
801 static inline unsigned
802 nir_alu_type_get_type_size(nir_alu_type type)
803 {
804 return type & NIR_ALU_TYPE_SIZE_MASK;
805 }
806
807 static inline unsigned
808 nir_alu_type_get_base_type(nir_alu_type type)
809 {
810 return type & NIR_ALU_TYPE_BASE_TYPE_MASK;
811 }
812
813 static inline nir_alu_type
814 nir_get_nir_type_for_glsl_base_type(enum glsl_base_type base_type)
815 {
816 switch (base_type) {
817 case GLSL_TYPE_BOOL:
818 return nir_type_bool1;
819 break;
820 case GLSL_TYPE_UINT:
821 return nir_type_uint32;
822 break;
823 case GLSL_TYPE_INT:
824 return nir_type_int32;
825 break;
826 case GLSL_TYPE_UINT16:
827 return nir_type_uint16;
828 break;
829 case GLSL_TYPE_INT16:
830 return nir_type_int16;
831 break;
832 case GLSL_TYPE_UINT8:
833 return nir_type_uint8;
834 case GLSL_TYPE_INT8:
835 return nir_type_int8;
836 case GLSL_TYPE_UINT64:
837 return nir_type_uint64;
838 break;
839 case GLSL_TYPE_INT64:
840 return nir_type_int64;
841 break;
842 case GLSL_TYPE_FLOAT:
843 return nir_type_float32;
844 break;
845 case GLSL_TYPE_FLOAT16:
846 return nir_type_float16;
847 break;
848 case GLSL_TYPE_DOUBLE:
849 return nir_type_float64;
850 break;
851 default:
852 unreachable("unknown type");
853 }
854 }
855
856 static inline nir_alu_type
857 nir_get_nir_type_for_glsl_type(const struct glsl_type *type)
858 {
859 return nir_get_nir_type_for_glsl_base_type(glsl_get_base_type(type));
860 }
861
862 nir_op nir_type_conversion_op(nir_alu_type src, nir_alu_type dst,
863 nir_rounding_mode rnd);
864
865 typedef enum {
866 NIR_OP_IS_COMMUTATIVE = (1 << 0),
867 NIR_OP_IS_ASSOCIATIVE = (1 << 1),
868 } nir_op_algebraic_property;
869
870 typedef struct {
871 const char *name;
872
873 unsigned num_inputs;
874
875 /**
876 * The number of components in the output
877 *
878 * If non-zero, this is the size of the output and input sizes are
879 * explicitly given; swizzle and writemask are still in effect, but if
880 * the output component is masked out, then the input component may
881 * still be in use.
882 *
883 * If zero, the opcode acts in the standard, per-component manner; the
884 * operation is performed on each component (except the ones that are
885 * masked out) with the input being taken from the input swizzle for
886 * that component.
887 *
888 * The size of some of the inputs may be given (i.e. non-zero) even
889 * though output_size is zero; in that case, the inputs with a zero
890 * size act per-component, while the inputs with non-zero size don't.
891 */
892 unsigned output_size;
893
894 /**
895 * The type of vector that the instruction outputs. Note that the
896 * staurate modifier is only allowed on outputs with the float type.
897 */
898
899 nir_alu_type output_type;
900
901 /**
902 * The number of components in each input
903 */
904 unsigned input_sizes[NIR_MAX_VEC_COMPONENTS];
905
906 /**
907 * The type of vector that each input takes. Note that negate and
908 * absolute value are only allowed on inputs with int or float type and
909 * behave differently on the two.
910 */
911 nir_alu_type input_types[NIR_MAX_VEC_COMPONENTS];
912
913 nir_op_algebraic_property algebraic_properties;
914
915 /* Whether this represents a numeric conversion opcode */
916 bool is_conversion;
917 } nir_op_info;
918
919 extern const nir_op_info nir_op_infos[nir_num_opcodes];
920
921 typedef struct nir_alu_instr {
922 nir_instr instr;
923 nir_op op;
924
925 /** Indicates that this ALU instruction generates an exact value
926 *
927 * This is kind of a mixture of GLSL "precise" and "invariant" and not
928 * really equivalent to either. This indicates that the value generated by
929 * this operation is high-precision and any code transformations that touch
930 * it must ensure that the resulting value is bit-for-bit identical to the
931 * original.
932 */
933 bool exact;
934
935 nir_alu_dest dest;
936 nir_alu_src src[];
937 } nir_alu_instr;
938
939 void nir_alu_src_copy(nir_alu_src *dest, const nir_alu_src *src,
940 nir_alu_instr *instr);
941 void nir_alu_dest_copy(nir_alu_dest *dest, const nir_alu_dest *src,
942 nir_alu_instr *instr);
943
944 /* is this source channel used? */
945 static inline bool
946 nir_alu_instr_channel_used(const nir_alu_instr *instr, unsigned src,
947 unsigned channel)
948 {
949 if (nir_op_infos[instr->op].input_sizes[src] > 0)
950 return channel < nir_op_infos[instr->op].input_sizes[src];
951
952 return (instr->dest.write_mask >> channel) & 1;
953 }
954
955 static inline nir_component_mask_t
956 nir_alu_instr_src_read_mask(const nir_alu_instr *instr, unsigned src)
957 {
958 nir_component_mask_t read_mask = 0;
959 for (unsigned c = 0; c < NIR_MAX_VEC_COMPONENTS; c++) {
960 if (!nir_alu_instr_channel_used(instr, src, c))
961 continue;
962
963 read_mask |= (1 << instr->src[src].swizzle[c]);
964 }
965 return read_mask;
966 }
967
968 /*
969 * For instructions whose destinations are SSA, get the number of channels
970 * used for a source
971 */
972 static inline unsigned
973 nir_ssa_alu_instr_src_components(const nir_alu_instr *instr, unsigned src)
974 {
975 assert(instr->dest.dest.is_ssa);
976
977 if (nir_op_infos[instr->op].input_sizes[src] > 0)
978 return nir_op_infos[instr->op].input_sizes[src];
979
980 return instr->dest.dest.ssa.num_components;
981 }
982
983 bool nir_const_value_negative_equal(const nir_const_value *c1,
984 const nir_const_value *c2,
985 unsigned components,
986 nir_alu_type base_type,
987 unsigned bits);
988
989 bool nir_alu_srcs_equal(const nir_alu_instr *alu1, const nir_alu_instr *alu2,
990 unsigned src1, unsigned src2);
991
992 bool nir_alu_srcs_negative_equal(const nir_alu_instr *alu1,
993 const nir_alu_instr *alu2,
994 unsigned src1, unsigned src2);
995
996 typedef enum {
997 nir_deref_type_var,
998 nir_deref_type_array,
999 nir_deref_type_array_wildcard,
1000 nir_deref_type_ptr_as_array,
1001 nir_deref_type_struct,
1002 nir_deref_type_cast,
1003 } nir_deref_type;
1004
1005 typedef struct {
1006 nir_instr instr;
1007
1008 /** The type of this deref instruction */
1009 nir_deref_type deref_type;
1010
1011 /** The mode of the underlying variable */
1012 nir_variable_mode mode;
1013
1014 /** The dereferenced type of the resulting pointer value */
1015 const struct glsl_type *type;
1016
1017 union {
1018 /** Variable being dereferenced if deref_type is a deref_var */
1019 nir_variable *var;
1020
1021 /** Parent deref if deref_type is not deref_var */
1022 nir_src parent;
1023 };
1024
1025 /** Additional deref parameters */
1026 union {
1027 struct {
1028 nir_src index;
1029 } arr;
1030
1031 struct {
1032 unsigned index;
1033 } strct;
1034
1035 struct {
1036 unsigned ptr_stride;
1037 } cast;
1038 };
1039
1040 /** Destination to store the resulting "pointer" */
1041 nir_dest dest;
1042 } nir_deref_instr;
1043
1044 static inline nir_deref_instr *nir_src_as_deref(nir_src src);
1045
1046 static inline nir_deref_instr *
1047 nir_deref_instr_parent(const nir_deref_instr *instr)
1048 {
1049 if (instr->deref_type == nir_deref_type_var)
1050 return NULL;
1051 else
1052 return nir_src_as_deref(instr->parent);
1053 }
1054
1055 static inline nir_variable *
1056 nir_deref_instr_get_variable(const nir_deref_instr *instr)
1057 {
1058 while (instr->deref_type != nir_deref_type_var) {
1059 if (instr->deref_type == nir_deref_type_cast)
1060 return NULL;
1061
1062 instr = nir_deref_instr_parent(instr);
1063 }
1064
1065 return instr->var;
1066 }
1067
1068 bool nir_deref_instr_has_indirect(nir_deref_instr *instr);
1069
1070 bool nir_deref_instr_remove_if_unused(nir_deref_instr *instr);
1071
1072 unsigned nir_deref_instr_ptr_as_array_stride(nir_deref_instr *instr);
1073
1074 typedef struct {
1075 nir_instr instr;
1076
1077 struct nir_function *callee;
1078
1079 unsigned num_params;
1080 nir_src params[];
1081 } nir_call_instr;
1082
1083 #include "nir_intrinsics.h"
1084
1085 #define NIR_INTRINSIC_MAX_CONST_INDEX 4
1086
1087 /** Represents an intrinsic
1088 *
1089 * An intrinsic is an instruction type for handling things that are
1090 * more-or-less regular operations but don't just consume and produce SSA
1091 * values like ALU operations do. Intrinsics are not for things that have
1092 * special semantic meaning such as phi nodes and parallel copies.
1093 * Examples of intrinsics include variable load/store operations, system
1094 * value loads, and the like. Even though texturing more-or-less falls
1095 * under this category, texturing is its own instruction type because
1096 * trying to represent texturing with intrinsics would lead to a
1097 * combinatorial explosion of intrinsic opcodes.
1098 *
1099 * By having a single instruction type for handling a lot of different
1100 * cases, optimization passes can look for intrinsics and, for the most
1101 * part, completely ignore them. Each intrinsic type also has a few
1102 * possible flags that govern whether or not they can be reordered or
1103 * eliminated. That way passes like dead code elimination can still work
1104 * on intrisics without understanding the meaning of each.
1105 *
1106 * Each intrinsic has some number of constant indices, some number of
1107 * variables, and some number of sources. What these sources, variables,
1108 * and indices mean depends on the intrinsic and is documented with the
1109 * intrinsic declaration in nir_intrinsics.h. Intrinsics and texture
1110 * instructions are the only types of instruction that can operate on
1111 * variables.
1112 */
1113 typedef struct {
1114 nir_instr instr;
1115
1116 nir_intrinsic_op intrinsic;
1117
1118 nir_dest dest;
1119
1120 /** number of components if this is a vectorized intrinsic
1121 *
1122 * Similarly to ALU operations, some intrinsics are vectorized.
1123 * An intrinsic is vectorized if nir_intrinsic_infos.dest_components == 0.
1124 * For vectorized intrinsics, the num_components field specifies the
1125 * number of destination components and the number of source components
1126 * for all sources with nir_intrinsic_infos.src_components[i] == 0.
1127 */
1128 uint8_t num_components;
1129
1130 int const_index[NIR_INTRINSIC_MAX_CONST_INDEX];
1131
1132 nir_src src[];
1133 } nir_intrinsic_instr;
1134
1135 static inline nir_variable *
1136 nir_intrinsic_get_var(nir_intrinsic_instr *intrin, unsigned i)
1137 {
1138 return nir_deref_instr_get_variable(nir_src_as_deref(intrin->src[i]));
1139 }
1140
1141 /**
1142 * \name NIR intrinsics semantic flags
1143 *
1144 * information about what the compiler can do with the intrinsics.
1145 *
1146 * \sa nir_intrinsic_info::flags
1147 */
1148 typedef enum {
1149 /**
1150 * whether the intrinsic can be safely eliminated if none of its output
1151 * value is not being used.
1152 */
1153 NIR_INTRINSIC_CAN_ELIMINATE = (1 << 0),
1154
1155 /**
1156 * Whether the intrinsic can be reordered with respect to any other
1157 * intrinsic, i.e. whether the only reordering dependencies of the
1158 * intrinsic are due to the register reads/writes.
1159 */
1160 NIR_INTRINSIC_CAN_REORDER = (1 << 1),
1161 } nir_intrinsic_semantic_flag;
1162
1163 /**
1164 * \name NIR intrinsics const-index flag
1165 *
1166 * Indicates the usage of a const_index slot.
1167 *
1168 * \sa nir_intrinsic_info::index_map
1169 */
1170 typedef enum {
1171 /**
1172 * Generally instructions that take a offset src argument, can encode
1173 * a constant 'base' value which is added to the offset.
1174 */
1175 NIR_INTRINSIC_BASE = 1,
1176
1177 /**
1178 * For store instructions, a writemask for the store.
1179 */
1180 NIR_INTRINSIC_WRMASK = 2,
1181
1182 /**
1183 * The stream-id for GS emit_vertex/end_primitive intrinsics.
1184 */
1185 NIR_INTRINSIC_STREAM_ID = 3,
1186
1187 /**
1188 * The clip-plane id for load_user_clip_plane intrinsic.
1189 */
1190 NIR_INTRINSIC_UCP_ID = 4,
1191
1192 /**
1193 * The amount of data, starting from BASE, that this instruction may
1194 * access. This is used to provide bounds if the offset is not constant.
1195 */
1196 NIR_INTRINSIC_RANGE = 5,
1197
1198 /**
1199 * The Vulkan descriptor set for vulkan_resource_index intrinsic.
1200 */
1201 NIR_INTRINSIC_DESC_SET = 6,
1202
1203 /**
1204 * The Vulkan descriptor set binding for vulkan_resource_index intrinsic.
1205 */
1206 NIR_INTRINSIC_BINDING = 7,
1207
1208 /**
1209 * Component offset.
1210 */
1211 NIR_INTRINSIC_COMPONENT = 8,
1212
1213 /**
1214 * Interpolation mode (only meaningful for FS inputs).
1215 */
1216 NIR_INTRINSIC_INTERP_MODE = 9,
1217
1218 /**
1219 * A binary nir_op to use when performing a reduction or scan operation
1220 */
1221 NIR_INTRINSIC_REDUCTION_OP = 10,
1222
1223 /**
1224 * Cluster size for reduction operations
1225 */
1226 NIR_INTRINSIC_CLUSTER_SIZE = 11,
1227
1228 /**
1229 * Parameter index for a load_param intrinsic
1230 */
1231 NIR_INTRINSIC_PARAM_IDX = 12,
1232
1233 /**
1234 * Image dimensionality for image intrinsics
1235 *
1236 * One of GLSL_SAMPLER_DIM_*
1237 */
1238 NIR_INTRINSIC_IMAGE_DIM = 13,
1239
1240 /**
1241 * Non-zero if we are accessing an array image
1242 */
1243 NIR_INTRINSIC_IMAGE_ARRAY = 14,
1244
1245 /**
1246 * Image format for image intrinsics
1247 */
1248 NIR_INTRINSIC_FORMAT = 15,
1249
1250 /**
1251 * Access qualifiers for image and memory access intrinsics
1252 */
1253 NIR_INTRINSIC_ACCESS = 16,
1254
1255 /**
1256 * Alignment for offsets and addresses
1257 *
1258 * These two parameters, specify an alignment in terms of a multiplier and
1259 * an offset. The offset or address parameter X of the intrinsic is
1260 * guaranteed to satisfy the following:
1261 *
1262 * (X - align_offset) % align_mul == 0
1263 */
1264 NIR_INTRINSIC_ALIGN_MUL = 17,
1265 NIR_INTRINSIC_ALIGN_OFFSET = 18,
1266
1267 /**
1268 * The Vulkan descriptor type for a vulkan_resource_[re]index intrinsic.
1269 */
1270 NIR_INTRINSIC_DESC_TYPE = 19,
1271
1272 NIR_INTRINSIC_NUM_INDEX_FLAGS,
1273
1274 } nir_intrinsic_index_flag;
1275
1276 #define NIR_INTRINSIC_MAX_INPUTS 5
1277
1278 typedef struct {
1279 const char *name;
1280
1281 unsigned num_srcs; /** < number of register/SSA inputs */
1282
1283 /** number of components of each input register
1284 *
1285 * If this value is 0, the number of components is given by the
1286 * num_components field of nir_intrinsic_instr. If this value is -1, the
1287 * intrinsic consumes however many components are provided and it is not
1288 * validated at all.
1289 */
1290 int src_components[NIR_INTRINSIC_MAX_INPUTS];
1291
1292 bool has_dest;
1293
1294 /** number of components of the output register
1295 *
1296 * If this value is 0, the number of components is given by the
1297 * num_components field of nir_intrinsic_instr.
1298 */
1299 unsigned dest_components;
1300
1301 /** bitfield of legal bit sizes */
1302 unsigned dest_bit_sizes;
1303
1304 /** the number of constant indices used by the intrinsic */
1305 unsigned num_indices;
1306
1307 /** indicates the usage of intr->const_index[n] */
1308 unsigned index_map[NIR_INTRINSIC_NUM_INDEX_FLAGS];
1309
1310 /** semantic flags for calls to this intrinsic */
1311 nir_intrinsic_semantic_flag flags;
1312 } nir_intrinsic_info;
1313
1314 extern const nir_intrinsic_info nir_intrinsic_infos[nir_num_intrinsics];
1315
1316 static inline unsigned
1317 nir_intrinsic_src_components(nir_intrinsic_instr *intr, unsigned srcn)
1318 {
1319 const nir_intrinsic_info *info = &nir_intrinsic_infos[intr->intrinsic];
1320 assert(srcn < info->num_srcs);
1321 if (info->src_components[srcn] > 0)
1322 return info->src_components[srcn];
1323 else if (info->src_components[srcn] == 0)
1324 return intr->num_components;
1325 else
1326 return nir_src_num_components(intr->src[srcn]);
1327 }
1328
1329 static inline unsigned
1330 nir_intrinsic_dest_components(nir_intrinsic_instr *intr)
1331 {
1332 const nir_intrinsic_info *info = &nir_intrinsic_infos[intr->intrinsic];
1333 if (!info->has_dest)
1334 return 0;
1335 else if (info->dest_components)
1336 return info->dest_components;
1337 else
1338 return intr->num_components;
1339 }
1340
1341 #define INTRINSIC_IDX_ACCESSORS(name, flag, type) \
1342 static inline type \
1343 nir_intrinsic_##name(const nir_intrinsic_instr *instr) \
1344 { \
1345 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic]; \
1346 assert(info->index_map[NIR_INTRINSIC_##flag] > 0); \
1347 return (type)instr->const_index[info->index_map[NIR_INTRINSIC_##flag] - 1]; \
1348 } \
1349 static inline void \
1350 nir_intrinsic_set_##name(nir_intrinsic_instr *instr, type val) \
1351 { \
1352 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic]; \
1353 assert(info->index_map[NIR_INTRINSIC_##flag] > 0); \
1354 instr->const_index[info->index_map[NIR_INTRINSIC_##flag] - 1] = val; \
1355 }
1356
1357 INTRINSIC_IDX_ACCESSORS(write_mask, WRMASK, unsigned)
1358 INTRINSIC_IDX_ACCESSORS(base, BASE, int)
1359 INTRINSIC_IDX_ACCESSORS(stream_id, STREAM_ID, unsigned)
1360 INTRINSIC_IDX_ACCESSORS(ucp_id, UCP_ID, unsigned)
1361 INTRINSIC_IDX_ACCESSORS(range, RANGE, unsigned)
1362 INTRINSIC_IDX_ACCESSORS(desc_set, DESC_SET, unsigned)
1363 INTRINSIC_IDX_ACCESSORS(binding, BINDING, unsigned)
1364 INTRINSIC_IDX_ACCESSORS(component, COMPONENT, unsigned)
1365 INTRINSIC_IDX_ACCESSORS(interp_mode, INTERP_MODE, unsigned)
1366 INTRINSIC_IDX_ACCESSORS(reduction_op, REDUCTION_OP, unsigned)
1367 INTRINSIC_IDX_ACCESSORS(cluster_size, CLUSTER_SIZE, unsigned)
1368 INTRINSIC_IDX_ACCESSORS(param_idx, PARAM_IDX, unsigned)
1369 INTRINSIC_IDX_ACCESSORS(image_dim, IMAGE_DIM, enum glsl_sampler_dim)
1370 INTRINSIC_IDX_ACCESSORS(image_array, IMAGE_ARRAY, bool)
1371 INTRINSIC_IDX_ACCESSORS(access, ACCESS, enum gl_access_qualifier)
1372 INTRINSIC_IDX_ACCESSORS(format, FORMAT, unsigned)
1373 INTRINSIC_IDX_ACCESSORS(align_mul, ALIGN_MUL, unsigned)
1374 INTRINSIC_IDX_ACCESSORS(align_offset, ALIGN_OFFSET, unsigned)
1375 INTRINSIC_IDX_ACCESSORS(desc_type, DESC_TYPE, unsigned)
1376
1377 static inline void
1378 nir_intrinsic_set_align(nir_intrinsic_instr *intrin,
1379 unsigned align_mul, unsigned align_offset)
1380 {
1381 assert(util_is_power_of_two_nonzero(align_mul));
1382 assert(align_offset < align_mul);
1383 nir_intrinsic_set_align_mul(intrin, align_mul);
1384 nir_intrinsic_set_align_offset(intrin, align_offset);
1385 }
1386
1387 /** Returns a simple alignment for a load/store intrinsic offset
1388 *
1389 * Instead of the full mul+offset alignment scheme provided by the ALIGN_MUL
1390 * and ALIGN_OFFSET parameters, this helper takes both into account and
1391 * provides a single simple alignment parameter. The offset X is guaranteed
1392 * to satisfy X % align == 0.
1393 */
1394 static inline unsigned
1395 nir_intrinsic_align(const nir_intrinsic_instr *intrin)
1396 {
1397 const unsigned align_mul = nir_intrinsic_align_mul(intrin);
1398 const unsigned align_offset = nir_intrinsic_align_offset(intrin);
1399 assert(align_offset < align_mul);
1400 return align_offset ? 1 << (ffs(align_offset) - 1) : align_mul;
1401 }
1402
1403 /* Converts a image_deref_* intrinsic into a image_* one */
1404 void nir_rewrite_image_intrinsic(nir_intrinsic_instr *instr,
1405 nir_ssa_def *handle, bool bindless);
1406
1407 /**
1408 * \group texture information
1409 *
1410 * This gives semantic information about textures which is useful to the
1411 * frontend, the backend, and lowering passes, but not the optimizer.
1412 */
1413
1414 typedef enum {
1415 nir_tex_src_coord,
1416 nir_tex_src_projector,
1417 nir_tex_src_comparator, /* shadow comparator */
1418 nir_tex_src_offset,
1419 nir_tex_src_bias,
1420 nir_tex_src_lod,
1421 nir_tex_src_min_lod,
1422 nir_tex_src_ms_index, /* MSAA sample index */
1423 nir_tex_src_ms_mcs, /* MSAA compression value */
1424 nir_tex_src_ddx,
1425 nir_tex_src_ddy,
1426 nir_tex_src_texture_deref, /* < deref pointing to the texture */
1427 nir_tex_src_sampler_deref, /* < deref pointing to the sampler */
1428 nir_tex_src_texture_offset, /* < dynamically uniform indirect offset */
1429 nir_tex_src_sampler_offset, /* < dynamically uniform indirect offset */
1430 nir_tex_src_texture_handle, /* < bindless texture handle */
1431 nir_tex_src_sampler_handle, /* < bindless sampler handle */
1432 nir_tex_src_plane, /* < selects plane for planar textures */
1433 nir_num_tex_src_types
1434 } nir_tex_src_type;
1435
1436 typedef struct {
1437 nir_src src;
1438 nir_tex_src_type src_type;
1439 } nir_tex_src;
1440
1441 typedef enum {
1442 nir_texop_tex, /**< Regular texture look-up */
1443 nir_texop_txb, /**< Texture look-up with LOD bias */
1444 nir_texop_txl, /**< Texture look-up with explicit LOD */
1445 nir_texop_txd, /**< Texture look-up with partial derivatives */
1446 nir_texop_txf, /**< Texel fetch with explicit LOD */
1447 nir_texop_txf_ms, /**< Multisample texture fetch */
1448 nir_texop_txf_ms_mcs, /**< Multisample compression value fetch */
1449 nir_texop_txs, /**< Texture size */
1450 nir_texop_lod, /**< Texture lod query */
1451 nir_texop_tg4, /**< Texture gather */
1452 nir_texop_query_levels, /**< Texture levels query */
1453 nir_texop_texture_samples, /**< Texture samples query */
1454 nir_texop_samples_identical, /**< Query whether all samples are definitely
1455 * identical.
1456 */
1457 } nir_texop;
1458
1459 typedef struct {
1460 nir_instr instr;
1461
1462 enum glsl_sampler_dim sampler_dim;
1463 nir_alu_type dest_type;
1464
1465 nir_texop op;
1466 nir_dest dest;
1467 nir_tex_src *src;
1468 unsigned num_srcs, coord_components;
1469 bool is_array, is_shadow;
1470
1471 /**
1472 * If is_shadow is true, whether this is the old-style shadow that outputs 4
1473 * components or the new-style shadow that outputs 1 component.
1474 */
1475 bool is_new_style_shadow;
1476
1477 /* gather component selector */
1478 unsigned component : 2;
1479
1480 /* gather offsets */
1481 int8_t tg4_offsets[4][2];
1482
1483 /* True if the texture index or handle is not dynamically uniform */
1484 bool texture_non_uniform;
1485
1486 /* True if the sampler index or handle is not dynamically uniform */
1487 bool sampler_non_uniform;
1488
1489 /** The texture index
1490 *
1491 * If this texture instruction has a nir_tex_src_texture_offset source,
1492 * then the texture index is given by texture_index + texture_offset.
1493 */
1494 unsigned texture_index;
1495
1496 /** The size of the texture array or 0 if it's not an array */
1497 unsigned texture_array_size;
1498
1499 /** The sampler index
1500 *
1501 * The following operations do not require a sampler and, as such, this
1502 * field should be ignored:
1503 * - nir_texop_txf
1504 * - nir_texop_txf_ms
1505 * - nir_texop_txs
1506 * - nir_texop_lod
1507 * - nir_texop_query_levels
1508 * - nir_texop_texture_samples
1509 * - nir_texop_samples_identical
1510 *
1511 * If this texture instruction has a nir_tex_src_sampler_offset source,
1512 * then the sampler index is given by sampler_index + sampler_offset.
1513 */
1514 unsigned sampler_index;
1515 } nir_tex_instr;
1516
1517 static inline unsigned
1518 nir_tex_instr_dest_size(const nir_tex_instr *instr)
1519 {
1520 switch (instr->op) {
1521 case nir_texop_txs: {
1522 unsigned ret;
1523 switch (instr->sampler_dim) {
1524 case GLSL_SAMPLER_DIM_1D:
1525 case GLSL_SAMPLER_DIM_BUF:
1526 ret = 1;
1527 break;
1528 case GLSL_SAMPLER_DIM_2D:
1529 case GLSL_SAMPLER_DIM_CUBE:
1530 case GLSL_SAMPLER_DIM_MS:
1531 case GLSL_SAMPLER_DIM_RECT:
1532 case GLSL_SAMPLER_DIM_EXTERNAL:
1533 case GLSL_SAMPLER_DIM_SUBPASS:
1534 ret = 2;
1535 break;
1536 case GLSL_SAMPLER_DIM_3D:
1537 ret = 3;
1538 break;
1539 default:
1540 unreachable("not reached");
1541 }
1542 if (instr->is_array)
1543 ret++;
1544 return ret;
1545 }
1546
1547 case nir_texop_lod:
1548 return 2;
1549
1550 case nir_texop_texture_samples:
1551 case nir_texop_query_levels:
1552 case nir_texop_samples_identical:
1553 return 1;
1554
1555 default:
1556 if (instr->is_shadow && instr->is_new_style_shadow)
1557 return 1;
1558
1559 return 4;
1560 }
1561 }
1562
1563 /* Returns true if this texture operation queries something about the texture
1564 * rather than actually sampling it.
1565 */
1566 static inline bool
1567 nir_tex_instr_is_query(const nir_tex_instr *instr)
1568 {
1569 switch (instr->op) {
1570 case nir_texop_txs:
1571 case nir_texop_lod:
1572 case nir_texop_texture_samples:
1573 case nir_texop_query_levels:
1574 case nir_texop_txf_ms_mcs:
1575 return true;
1576 case nir_texop_tex:
1577 case nir_texop_txb:
1578 case nir_texop_txl:
1579 case nir_texop_txd:
1580 case nir_texop_txf:
1581 case nir_texop_txf_ms:
1582 case nir_texop_tg4:
1583 return false;
1584 default:
1585 unreachable("Invalid texture opcode");
1586 }
1587 }
1588
1589 static inline bool
1590 nir_alu_instr_is_comparison(const nir_alu_instr *instr)
1591 {
1592 switch (instr->op) {
1593 case nir_op_flt:
1594 case nir_op_fge:
1595 case nir_op_feq:
1596 case nir_op_fne:
1597 case nir_op_ilt:
1598 case nir_op_ult:
1599 case nir_op_ige:
1600 case nir_op_uge:
1601 case nir_op_ieq:
1602 case nir_op_ine:
1603 case nir_op_i2b1:
1604 case nir_op_f2b1:
1605 case nir_op_inot:
1606 case nir_op_fnot:
1607 return true;
1608 default:
1609 return false;
1610 }
1611 }
1612
1613 static inline nir_alu_type
1614 nir_tex_instr_src_type(const nir_tex_instr *instr, unsigned src)
1615 {
1616 switch (instr->src[src].src_type) {
1617 case nir_tex_src_coord:
1618 switch (instr->op) {
1619 case nir_texop_txf:
1620 case nir_texop_txf_ms:
1621 case nir_texop_txf_ms_mcs:
1622 case nir_texop_samples_identical:
1623 return nir_type_int;
1624
1625 default:
1626 return nir_type_float;
1627 }
1628
1629 case nir_tex_src_lod:
1630 switch (instr->op) {
1631 case nir_texop_txs:
1632 case nir_texop_txf:
1633 return nir_type_int;
1634
1635 default:
1636 return nir_type_float;
1637 }
1638
1639 case nir_tex_src_projector:
1640 case nir_tex_src_comparator:
1641 case nir_tex_src_bias:
1642 case nir_tex_src_ddx:
1643 case nir_tex_src_ddy:
1644 return nir_type_float;
1645
1646 case nir_tex_src_offset:
1647 case nir_tex_src_ms_index:
1648 case nir_tex_src_texture_offset:
1649 case nir_tex_src_sampler_offset:
1650 return nir_type_int;
1651
1652 default:
1653 unreachable("Invalid texture source type");
1654 }
1655 }
1656
1657 static inline unsigned
1658 nir_tex_instr_src_size(const nir_tex_instr *instr, unsigned src)
1659 {
1660 if (instr->src[src].src_type == nir_tex_src_coord)
1661 return instr->coord_components;
1662
1663 /* The MCS value is expected to be a vec4 returned by a txf_ms_mcs */
1664 if (instr->src[src].src_type == nir_tex_src_ms_mcs)
1665 return 4;
1666
1667 if (instr->src[src].src_type == nir_tex_src_ddx ||
1668 instr->src[src].src_type == nir_tex_src_ddy) {
1669 if (instr->is_array)
1670 return instr->coord_components - 1;
1671 else
1672 return instr->coord_components;
1673 }
1674
1675 /* Usual APIs don't allow cube + offset, but we allow it, with 2 coords for
1676 * the offset, since a cube maps to a single face.
1677 */
1678 if (instr->src[src].src_type == nir_tex_src_offset) {
1679 if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE)
1680 return 2;
1681 else if (instr->is_array)
1682 return instr->coord_components - 1;
1683 else
1684 return instr->coord_components;
1685 }
1686
1687 return 1;
1688 }
1689
1690 static inline int
1691 nir_tex_instr_src_index(const nir_tex_instr *instr, nir_tex_src_type type)
1692 {
1693 for (unsigned i = 0; i < instr->num_srcs; i++)
1694 if (instr->src[i].src_type == type)
1695 return (int) i;
1696
1697 return -1;
1698 }
1699
1700 void nir_tex_instr_add_src(nir_tex_instr *tex,
1701 nir_tex_src_type src_type,
1702 nir_src src);
1703
1704 void nir_tex_instr_remove_src(nir_tex_instr *tex, unsigned src_idx);
1705
1706 bool nir_tex_instr_has_explicit_tg4_offsets(nir_tex_instr *tex);
1707
1708 typedef struct {
1709 nir_instr instr;
1710
1711 nir_ssa_def def;
1712
1713 nir_const_value value[];
1714 } nir_load_const_instr;
1715
1716 #define nir_const_load_to_arr(arr, l, m) \
1717 { \
1718 nir_const_value_to_array(arr, l->value, l->def.num_components, m); \
1719 } while (false);
1720
1721 typedef enum {
1722 nir_jump_return,
1723 nir_jump_break,
1724 nir_jump_continue,
1725 } nir_jump_type;
1726
1727 typedef struct {
1728 nir_instr instr;
1729 nir_jump_type type;
1730 } nir_jump_instr;
1731
1732 /* creates a new SSA variable in an undefined state */
1733
1734 typedef struct {
1735 nir_instr instr;
1736 nir_ssa_def def;
1737 } nir_ssa_undef_instr;
1738
1739 typedef struct {
1740 struct exec_node node;
1741
1742 /* The predecessor block corresponding to this source */
1743 struct nir_block *pred;
1744
1745 nir_src src;
1746 } nir_phi_src;
1747
1748 #define nir_foreach_phi_src(phi_src, phi) \
1749 foreach_list_typed(nir_phi_src, phi_src, node, &(phi)->srcs)
1750 #define nir_foreach_phi_src_safe(phi_src, phi) \
1751 foreach_list_typed_safe(nir_phi_src, phi_src, node, &(phi)->srcs)
1752
1753 typedef struct {
1754 nir_instr instr;
1755
1756 struct exec_list srcs; /** < list of nir_phi_src */
1757
1758 nir_dest dest;
1759 } nir_phi_instr;
1760
1761 typedef struct {
1762 struct exec_node node;
1763 nir_src src;
1764 nir_dest dest;
1765 } nir_parallel_copy_entry;
1766
1767 #define nir_foreach_parallel_copy_entry(entry, pcopy) \
1768 foreach_list_typed(nir_parallel_copy_entry, entry, node, &(pcopy)->entries)
1769
1770 typedef struct {
1771 nir_instr instr;
1772
1773 /* A list of nir_parallel_copy_entrys. The sources of all of the
1774 * entries are copied to the corresponding destinations "in parallel".
1775 * In other words, if we have two entries: a -> b and b -> a, the values
1776 * get swapped.
1777 */
1778 struct exec_list entries;
1779 } nir_parallel_copy_instr;
1780
1781 NIR_DEFINE_CAST(nir_instr_as_alu, nir_instr, nir_alu_instr, instr,
1782 type, nir_instr_type_alu)
1783 NIR_DEFINE_CAST(nir_instr_as_deref, nir_instr, nir_deref_instr, instr,
1784 type, nir_instr_type_deref)
1785 NIR_DEFINE_CAST(nir_instr_as_call, nir_instr, nir_call_instr, instr,
1786 type, nir_instr_type_call)
1787 NIR_DEFINE_CAST(nir_instr_as_jump, nir_instr, nir_jump_instr, instr,
1788 type, nir_instr_type_jump)
1789 NIR_DEFINE_CAST(nir_instr_as_tex, nir_instr, nir_tex_instr, instr,
1790 type, nir_instr_type_tex)
1791 NIR_DEFINE_CAST(nir_instr_as_intrinsic, nir_instr, nir_intrinsic_instr, instr,
1792 type, nir_instr_type_intrinsic)
1793 NIR_DEFINE_CAST(nir_instr_as_load_const, nir_instr, nir_load_const_instr, instr,
1794 type, nir_instr_type_load_const)
1795 NIR_DEFINE_CAST(nir_instr_as_ssa_undef, nir_instr, nir_ssa_undef_instr, instr,
1796 type, nir_instr_type_ssa_undef)
1797 NIR_DEFINE_CAST(nir_instr_as_phi, nir_instr, nir_phi_instr, instr,
1798 type, nir_instr_type_phi)
1799 NIR_DEFINE_CAST(nir_instr_as_parallel_copy, nir_instr,
1800 nir_parallel_copy_instr, instr,
1801 type, nir_instr_type_parallel_copy)
1802
1803 /*
1804 * Control flow
1805 *
1806 * Control flow consists of a tree of control flow nodes, which include
1807 * if-statements and loops. The leaves of the tree are basic blocks, lists of
1808 * instructions that always run start-to-finish. Each basic block also keeps
1809 * track of its successors (blocks which may run immediately after the current
1810 * block) and predecessors (blocks which could have run immediately before the
1811 * current block). Each function also has a start block and an end block which
1812 * all return statements point to (which is always empty). Together, all the
1813 * blocks with their predecessors and successors make up the control flow
1814 * graph (CFG) of the function. There are helpers that modify the tree of
1815 * control flow nodes while modifying the CFG appropriately; these should be
1816 * used instead of modifying the tree directly.
1817 */
1818
1819 typedef enum {
1820 nir_cf_node_block,
1821 nir_cf_node_if,
1822 nir_cf_node_loop,
1823 nir_cf_node_function
1824 } nir_cf_node_type;
1825
1826 typedef struct nir_cf_node {
1827 struct exec_node node;
1828 nir_cf_node_type type;
1829 struct nir_cf_node *parent;
1830 } nir_cf_node;
1831
1832 typedef struct nir_block {
1833 nir_cf_node cf_node;
1834
1835 struct exec_list instr_list; /** < list of nir_instr */
1836
1837 /** generic block index; generated by nir_index_blocks */
1838 unsigned index;
1839
1840 /*
1841 * Each block can only have up to 2 successors, so we put them in a simple
1842 * array - no need for anything more complicated.
1843 */
1844 struct nir_block *successors[2];
1845
1846 /* Set of nir_block predecessors in the CFG */
1847 struct set *predecessors;
1848
1849 /*
1850 * this node's immediate dominator in the dominance tree - set to NULL for
1851 * the start block.
1852 */
1853 struct nir_block *imm_dom;
1854
1855 /* This node's children in the dominance tree */
1856 unsigned num_dom_children;
1857 struct nir_block **dom_children;
1858
1859 /* Set of nir_blocks on the dominance frontier of this block */
1860 struct set *dom_frontier;
1861
1862 /*
1863 * These two indices have the property that dom_{pre,post}_index for each
1864 * child of this block in the dominance tree will always be between
1865 * dom_pre_index and dom_post_index for this block, which makes testing if
1866 * a given block is dominated by another block an O(1) operation.
1867 */
1868 unsigned dom_pre_index, dom_post_index;
1869
1870 /* live in and out for this block; used for liveness analysis */
1871 BITSET_WORD *live_in;
1872 BITSET_WORD *live_out;
1873 } nir_block;
1874
1875 static inline nir_instr *
1876 nir_block_first_instr(nir_block *block)
1877 {
1878 struct exec_node *head = exec_list_get_head(&block->instr_list);
1879 return exec_node_data(nir_instr, head, node);
1880 }
1881
1882 static inline nir_instr *
1883 nir_block_last_instr(nir_block *block)
1884 {
1885 struct exec_node *tail = exec_list_get_tail(&block->instr_list);
1886 return exec_node_data(nir_instr, tail, node);
1887 }
1888
1889 static inline bool
1890 nir_block_ends_in_jump(nir_block *block)
1891 {
1892 return !exec_list_is_empty(&block->instr_list) &&
1893 nir_block_last_instr(block)->type == nir_instr_type_jump;
1894 }
1895
1896 #define nir_foreach_instr(instr, block) \
1897 foreach_list_typed(nir_instr, instr, node, &(block)->instr_list)
1898 #define nir_foreach_instr_reverse(instr, block) \
1899 foreach_list_typed_reverse(nir_instr, instr, node, &(block)->instr_list)
1900 #define nir_foreach_instr_safe(instr, block) \
1901 foreach_list_typed_safe(nir_instr, instr, node, &(block)->instr_list)
1902 #define nir_foreach_instr_reverse_safe(instr, block) \
1903 foreach_list_typed_reverse_safe(nir_instr, instr, node, &(block)->instr_list)
1904
1905 typedef enum {
1906 nir_selection_control_none = 0x0,
1907 nir_selection_control_flatten = 0x1,
1908 nir_selection_control_dont_flatten = 0x2,
1909 } nir_selection_control;
1910
1911 typedef struct nir_if {
1912 nir_cf_node cf_node;
1913 nir_src condition;
1914 nir_selection_control control;
1915
1916 struct exec_list then_list; /** < list of nir_cf_node */
1917 struct exec_list else_list; /** < list of nir_cf_node */
1918 } nir_if;
1919
1920 typedef struct {
1921 nir_if *nif;
1922
1923 /** Instruction that generates nif::condition. */
1924 nir_instr *conditional_instr;
1925
1926 /** Block within ::nif that has the break instruction. */
1927 nir_block *break_block;
1928
1929 /** Last block for the then- or else-path that does not contain the break. */
1930 nir_block *continue_from_block;
1931
1932 /** True when ::break_block is in the else-path of ::nif. */
1933 bool continue_from_then;
1934 bool induction_rhs;
1935
1936 /* This is true if the terminators exact trip count is unknown. For
1937 * example:
1938 *
1939 * for (int i = 0; i < imin(x, 4); i++)
1940 * ...
1941 *
1942 * Here loop analysis would have set a max_trip_count of 4 however we dont
1943 * know for sure that this is the exact trip count.
1944 */
1945 bool exact_trip_count_unknown;
1946
1947 struct list_head loop_terminator_link;
1948 } nir_loop_terminator;
1949
1950 typedef struct {
1951 /* Estimated cost (in number of instructions) of the loop */
1952 unsigned instr_cost;
1953
1954 /* Guessed trip count based on array indexing */
1955 unsigned guessed_trip_count;
1956
1957 /* Maximum number of times the loop is run (if known) */
1958 unsigned max_trip_count;
1959
1960 /* Do we know the exact number of times the loop will be run */
1961 bool exact_trip_count_known;
1962
1963 /* Unroll the loop regardless of its size */
1964 bool force_unroll;
1965
1966 /* Does the loop contain complex loop terminators, continues or other
1967 * complex behaviours? If this is true we can't rely on
1968 * loop_terminator_list to be complete or accurate.
1969 */
1970 bool complex_loop;
1971
1972 nir_loop_terminator *limiting_terminator;
1973
1974 /* A list of loop_terminators terminating this loop. */
1975 struct list_head loop_terminator_list;
1976 } nir_loop_info;
1977
1978 typedef enum {
1979 nir_loop_control_none = 0x0,
1980 nir_loop_control_unroll = 0x1,
1981 nir_loop_control_dont_unroll = 0x2,
1982 } nir_loop_control;
1983
1984 typedef struct {
1985 nir_cf_node cf_node;
1986
1987 struct exec_list body; /** < list of nir_cf_node */
1988
1989 nir_loop_info *info;
1990 nir_loop_control control;
1991 bool partially_unrolled;
1992 } nir_loop;
1993
1994 /**
1995 * Various bits of metadata that can may be created or required by
1996 * optimization and analysis passes
1997 */
1998 typedef enum {
1999 nir_metadata_none = 0x0,
2000 nir_metadata_block_index = 0x1,
2001 nir_metadata_dominance = 0x2,
2002 nir_metadata_live_ssa_defs = 0x4,
2003 nir_metadata_not_properly_reset = 0x8,
2004 nir_metadata_loop_analysis = 0x10,
2005 } nir_metadata;
2006
2007 typedef struct {
2008 nir_cf_node cf_node;
2009
2010 /** pointer to the function of which this is an implementation */
2011 struct nir_function *function;
2012
2013 struct exec_list body; /** < list of nir_cf_node */
2014
2015 nir_block *end_block;
2016
2017 /** list for all local variables in the function */
2018 struct exec_list locals;
2019
2020 /** list of local registers in the function */
2021 struct exec_list registers;
2022
2023 /** next available local register index */
2024 unsigned reg_alloc;
2025
2026 /** next available SSA value index */
2027 unsigned ssa_alloc;
2028
2029 /* total number of basic blocks, only valid when block_index_dirty = false */
2030 unsigned num_blocks;
2031
2032 nir_metadata valid_metadata;
2033 } nir_function_impl;
2034
2035 ATTRIBUTE_RETURNS_NONNULL static inline nir_block *
2036 nir_start_block(nir_function_impl *impl)
2037 {
2038 return (nir_block *) impl->body.head_sentinel.next;
2039 }
2040
2041 ATTRIBUTE_RETURNS_NONNULL static inline nir_block *
2042 nir_impl_last_block(nir_function_impl *impl)
2043 {
2044 return (nir_block *) impl->body.tail_sentinel.prev;
2045 }
2046
2047 static inline nir_cf_node *
2048 nir_cf_node_next(nir_cf_node *node)
2049 {
2050 struct exec_node *next = exec_node_get_next(&node->node);
2051 if (exec_node_is_tail_sentinel(next))
2052 return NULL;
2053 else
2054 return exec_node_data(nir_cf_node, next, node);
2055 }
2056
2057 static inline nir_cf_node *
2058 nir_cf_node_prev(nir_cf_node *node)
2059 {
2060 struct exec_node *prev = exec_node_get_prev(&node->node);
2061 if (exec_node_is_head_sentinel(prev))
2062 return NULL;
2063 else
2064 return exec_node_data(nir_cf_node, prev, node);
2065 }
2066
2067 static inline bool
2068 nir_cf_node_is_first(const nir_cf_node *node)
2069 {
2070 return exec_node_is_head_sentinel(node->node.prev);
2071 }
2072
2073 static inline bool
2074 nir_cf_node_is_last(const nir_cf_node *node)
2075 {
2076 return exec_node_is_tail_sentinel(node->node.next);
2077 }
2078
2079 NIR_DEFINE_CAST(nir_cf_node_as_block, nir_cf_node, nir_block, cf_node,
2080 type, nir_cf_node_block)
2081 NIR_DEFINE_CAST(nir_cf_node_as_if, nir_cf_node, nir_if, cf_node,
2082 type, nir_cf_node_if)
2083 NIR_DEFINE_CAST(nir_cf_node_as_loop, nir_cf_node, nir_loop, cf_node,
2084 type, nir_cf_node_loop)
2085 NIR_DEFINE_CAST(nir_cf_node_as_function, nir_cf_node,
2086 nir_function_impl, cf_node, type, nir_cf_node_function)
2087
2088 static inline nir_block *
2089 nir_if_first_then_block(nir_if *if_stmt)
2090 {
2091 struct exec_node *head = exec_list_get_head(&if_stmt->then_list);
2092 return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
2093 }
2094
2095 static inline nir_block *
2096 nir_if_last_then_block(nir_if *if_stmt)
2097 {
2098 struct exec_node *tail = exec_list_get_tail(&if_stmt->then_list);
2099 return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
2100 }
2101
2102 static inline nir_block *
2103 nir_if_first_else_block(nir_if *if_stmt)
2104 {
2105 struct exec_node *head = exec_list_get_head(&if_stmt->else_list);
2106 return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
2107 }
2108
2109 static inline nir_block *
2110 nir_if_last_else_block(nir_if *if_stmt)
2111 {
2112 struct exec_node *tail = exec_list_get_tail(&if_stmt->else_list);
2113 return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
2114 }
2115
2116 static inline nir_block *
2117 nir_loop_first_block(nir_loop *loop)
2118 {
2119 struct exec_node *head = exec_list_get_head(&loop->body);
2120 return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
2121 }
2122
2123 static inline nir_block *
2124 nir_loop_last_block(nir_loop *loop)
2125 {
2126 struct exec_node *tail = exec_list_get_tail(&loop->body);
2127 return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
2128 }
2129
2130 /**
2131 * Return true if this list of cf_nodes contains a single empty block.
2132 */
2133 static inline bool
2134 nir_cf_list_is_empty_block(struct exec_list *cf_list)
2135 {
2136 if (exec_list_is_singular(cf_list)) {
2137 struct exec_node *head = exec_list_get_head(cf_list);
2138 nir_block *block =
2139 nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
2140 return exec_list_is_empty(&block->instr_list);
2141 }
2142 return false;
2143 }
2144
2145 typedef struct {
2146 uint8_t num_components;
2147 uint8_t bit_size;
2148 } nir_parameter;
2149
2150 typedef struct nir_function {
2151 struct exec_node node;
2152
2153 const char *name;
2154 struct nir_shader *shader;
2155
2156 unsigned num_params;
2157 nir_parameter *params;
2158
2159 /** The implementation of this function.
2160 *
2161 * If the function is only declared and not implemented, this is NULL.
2162 */
2163 nir_function_impl *impl;
2164
2165 bool is_entrypoint;
2166 } nir_function;
2167
2168 typedef enum {
2169 nir_lower_imul64 = (1 << 0),
2170 nir_lower_isign64 = (1 << 1),
2171 /** Lower all int64 modulus and division opcodes */
2172 nir_lower_divmod64 = (1 << 2),
2173 /** Lower all 64-bit umul_high and imul_high opcodes */
2174 nir_lower_imul_high64 = (1 << 3),
2175 nir_lower_mov64 = (1 << 4),
2176 nir_lower_icmp64 = (1 << 5),
2177 nir_lower_iadd64 = (1 << 6),
2178 nir_lower_iabs64 = (1 << 7),
2179 nir_lower_ineg64 = (1 << 8),
2180 nir_lower_logic64 = (1 << 9),
2181 nir_lower_minmax64 = (1 << 10),
2182 nir_lower_shift64 = (1 << 11),
2183 nir_lower_imul_2x32_64 = (1 << 12),
2184 } nir_lower_int64_options;
2185
2186 typedef enum {
2187 nir_lower_drcp = (1 << 0),
2188 nir_lower_dsqrt = (1 << 1),
2189 nir_lower_drsq = (1 << 2),
2190 nir_lower_dtrunc = (1 << 3),
2191 nir_lower_dfloor = (1 << 4),
2192 nir_lower_dceil = (1 << 5),
2193 nir_lower_dfract = (1 << 6),
2194 nir_lower_dround_even = (1 << 7),
2195 nir_lower_dmod = (1 << 8),
2196 nir_lower_fp64_full_software = (1 << 9),
2197 } nir_lower_doubles_options;
2198
2199 typedef struct nir_shader_compiler_options {
2200 bool lower_fdiv;
2201 bool lower_ffma;
2202 bool fuse_ffma;
2203 bool lower_flrp16;
2204 bool lower_flrp32;
2205 /** Lowers flrp when it does not support doubles */
2206 bool lower_flrp64;
2207 bool lower_fpow;
2208 bool lower_fsat;
2209 bool lower_fsqrt;
2210 bool lower_fmod16;
2211 bool lower_fmod32;
2212 bool lower_fmod64;
2213 /** Lowers ibitfield_extract/ubitfield_extract to ibfe/ubfe. */
2214 bool lower_bitfield_extract;
2215 /** Lowers ibitfield_extract/ubitfield_extract to bfm, compares, shifts. */
2216 bool lower_bitfield_extract_to_shifts;
2217 /** Lowers bitfield_insert to bfi/bfm */
2218 bool lower_bitfield_insert;
2219 /** Lowers bitfield_insert to bfm, compares, and shifts. */
2220 bool lower_bitfield_insert_to_shifts;
2221 /** Lowers bitfield_reverse to shifts. */
2222 bool lower_bitfield_reverse;
2223 /** Lowers bit_count to shifts. */
2224 bool lower_bit_count;
2225 /** Lowers bfm to shifts and subtracts. */
2226 bool lower_bfm;
2227 /** Lowers ifind_msb to compare and ufind_msb */
2228 bool lower_ifind_msb;
2229 /** Lowers find_lsb to ufind_msb and logic ops */
2230 bool lower_find_lsb;
2231 bool lower_uadd_carry;
2232 bool lower_usub_borrow;
2233 /** Lowers imul_high/umul_high to 16-bit multiplies and carry operations. */
2234 bool lower_mul_high;
2235 /** lowers fneg and ineg to fsub and isub. */
2236 bool lower_negate;
2237 /** lowers fsub and isub to fadd+fneg and iadd+ineg. */
2238 bool lower_sub;
2239
2240 /* lower {slt,sge,seq,sne} to {flt,fge,feq,fne} + b2f: */
2241 bool lower_scmp;
2242
2243 /** enables rules to lower idiv by power-of-two: */
2244 bool lower_idiv;
2245
2246 /** enables rules to lower isign to imin+imax */
2247 bool lower_isign;
2248
2249 /** enables rules to lower fsign to fsub and flt */
2250 bool lower_fsign;
2251
2252 /* Does the native fdot instruction replicate its result for four
2253 * components? If so, then opt_algebraic_late will turn all fdotN
2254 * instructions into fdot_replicatedN instructions.
2255 */
2256 bool fdot_replicates;
2257
2258 /** lowers ffloor to fsub+ffract: */
2259 bool lower_ffloor;
2260
2261 /** lowers ffract to fsub+ffloor: */
2262 bool lower_ffract;
2263
2264 /** lowers fceil to fneg+ffloor+fneg: */
2265 bool lower_fceil;
2266
2267 bool lower_ftrunc;
2268
2269 bool lower_ldexp;
2270
2271 bool lower_pack_half_2x16;
2272 bool lower_pack_unorm_2x16;
2273 bool lower_pack_snorm_2x16;
2274 bool lower_pack_unorm_4x8;
2275 bool lower_pack_snorm_4x8;
2276 bool lower_unpack_half_2x16;
2277 bool lower_unpack_unorm_2x16;
2278 bool lower_unpack_snorm_2x16;
2279 bool lower_unpack_unorm_4x8;
2280 bool lower_unpack_snorm_4x8;
2281
2282 bool lower_extract_byte;
2283 bool lower_extract_word;
2284
2285 bool lower_all_io_to_temps;
2286 bool lower_all_io_to_elements;
2287
2288 /**
2289 * Does the driver support real 32-bit integers? (Otherwise, integers
2290 * are simulated by floats.)
2291 */
2292 bool native_integers;
2293
2294 /* Indicates that the driver only has zero-based vertex id */
2295 bool vertex_id_zero_based;
2296
2297 /**
2298 * If enabled, gl_BaseVertex will be lowered as:
2299 * is_indexed_draw (~0/0) & firstvertex
2300 */
2301 bool lower_base_vertex;
2302
2303 /**
2304 * If enabled, gl_HelperInvocation will be lowered as:
2305 *
2306 * !((1 << sample_id) & sample_mask_in))
2307 *
2308 * This depends on some possibly hw implementation details, which may
2309 * not be true for all hw. In particular that the FS is only executed
2310 * for covered samples or for helper invocations. So, do not blindly
2311 * enable this option.
2312 *
2313 * Note: See also issue #22 in ARB_shader_image_load_store
2314 */
2315 bool lower_helper_invocation;
2316
2317 /**
2318 * Convert gl_SampleMaskIn to gl_HelperInvocation as follows:
2319 *
2320 * gl_SampleMaskIn == 0 ---> gl_HelperInvocation
2321 * gl_SampleMaskIn != 0 ---> !gl_HelperInvocation
2322 */
2323 bool optimize_sample_mask_in;
2324
2325 bool lower_cs_local_index_from_id;
2326 bool lower_cs_local_id_from_index;
2327
2328 bool lower_device_index_to_zero;
2329
2330 /* Set if nir_lower_wpos_ytransform() should also invert gl_PointCoord. */
2331 bool lower_wpos_pntc;
2332
2333 bool lower_hadd;
2334 bool lower_add_sat;
2335
2336 /**
2337 * Should nir_lower_io() create load_interpolated_input intrinsics?
2338 *
2339 * If not, it generates regular load_input intrinsics and interpolation
2340 * information must be inferred from the list of input nir_variables.
2341 */
2342 bool use_interpolated_input_intrinsics;
2343
2344 /* Lowers when 32x32->64 bit multiplication is not supported */
2345 bool lower_mul_2x32_64;
2346
2347 unsigned max_unroll_iterations;
2348
2349 nir_lower_int64_options lower_int64_options;
2350 nir_lower_doubles_options lower_doubles_options;
2351 } nir_shader_compiler_options;
2352
2353 typedef struct nir_shader {
2354 /** list of uniforms (nir_variable) */
2355 struct exec_list uniforms;
2356
2357 /** list of inputs (nir_variable) */
2358 struct exec_list inputs;
2359
2360 /** list of outputs (nir_variable) */
2361 struct exec_list outputs;
2362
2363 /** list of shared compute variables (nir_variable) */
2364 struct exec_list shared;
2365
2366 /** Set of driver-specific options for the shader.
2367 *
2368 * The memory for the options is expected to be kept in a single static
2369 * copy by the driver.
2370 */
2371 const struct nir_shader_compiler_options *options;
2372
2373 /** Various bits of compile-time information about a given shader */
2374 struct shader_info info;
2375
2376 /** list of global variables in the shader (nir_variable) */
2377 struct exec_list globals;
2378
2379 /** list of system value variables in the shader (nir_variable) */
2380 struct exec_list system_values;
2381
2382 struct exec_list functions; /** < list of nir_function */
2383
2384 /**
2385 * the highest index a load_input_*, load_uniform_*, etc. intrinsic can
2386 * access plus one
2387 */
2388 unsigned num_inputs, num_uniforms, num_outputs, num_shared;
2389
2390 /** Size in bytes of required scratch space */
2391 unsigned scratch_size;
2392
2393 /** Constant data associated with this shader.
2394 *
2395 * Constant data is loaded through load_constant intrinsics. See also
2396 * nir_opt_large_constants.
2397 */
2398 void *constant_data;
2399 unsigned constant_data_size;
2400 } nir_shader;
2401
2402 #define nir_foreach_function(func, shader) \
2403 foreach_list_typed(nir_function, func, node, &(shader)->functions)
2404
2405 static inline nir_function_impl *
2406 nir_shader_get_entrypoint(nir_shader *shader)
2407 {
2408 nir_function *func = NULL;
2409
2410 nir_foreach_function(function, shader) {
2411 assert(func == NULL);
2412 if (function->is_entrypoint) {
2413 func = function;
2414 #ifndef NDEBUG
2415 break;
2416 #endif
2417 }
2418 }
2419
2420 if (!func)
2421 return NULL;
2422
2423 assert(func->num_params == 0);
2424 assert(func->impl);
2425 return func->impl;
2426 }
2427
2428 nir_shader *nir_shader_create(void *mem_ctx,
2429 gl_shader_stage stage,
2430 const nir_shader_compiler_options *options,
2431 shader_info *si);
2432
2433 nir_register *nir_local_reg_create(nir_function_impl *impl);
2434
2435 void nir_reg_remove(nir_register *reg);
2436
2437 /** Adds a variable to the appropriate list in nir_shader */
2438 void nir_shader_add_variable(nir_shader *shader, nir_variable *var);
2439
2440 static inline void
2441 nir_function_impl_add_variable(nir_function_impl *impl, nir_variable *var)
2442 {
2443 assert(var->data.mode == nir_var_function_temp);
2444 exec_list_push_tail(&impl->locals, &var->node);
2445 }
2446
2447 /** creates a variable, sets a few defaults, and adds it to the list */
2448 nir_variable *nir_variable_create(nir_shader *shader,
2449 nir_variable_mode mode,
2450 const struct glsl_type *type,
2451 const char *name);
2452 /** creates a local variable and adds it to the list */
2453 nir_variable *nir_local_variable_create(nir_function_impl *impl,
2454 const struct glsl_type *type,
2455 const char *name);
2456
2457 /** creates a function and adds it to the shader's list of functions */
2458 nir_function *nir_function_create(nir_shader *shader, const char *name);
2459
2460 nir_function_impl *nir_function_impl_create(nir_function *func);
2461 /** creates a function_impl that isn't tied to any particular function */
2462 nir_function_impl *nir_function_impl_create_bare(nir_shader *shader);
2463
2464 nir_block *nir_block_create(nir_shader *shader);
2465 nir_if *nir_if_create(nir_shader *shader);
2466 nir_loop *nir_loop_create(nir_shader *shader);
2467
2468 nir_function_impl *nir_cf_node_get_function(nir_cf_node *node);
2469
2470 /** requests that the given pieces of metadata be generated */
2471 void nir_metadata_require(nir_function_impl *impl, nir_metadata required, ...);
2472 /** dirties all but the preserved metadata */
2473 void nir_metadata_preserve(nir_function_impl *impl, nir_metadata preserved);
2474
2475 /** creates an instruction with default swizzle/writemask/etc. with NULL registers */
2476 nir_alu_instr *nir_alu_instr_create(nir_shader *shader, nir_op op);
2477
2478 nir_deref_instr *nir_deref_instr_create(nir_shader *shader,
2479 nir_deref_type deref_type);
2480
2481 nir_jump_instr *nir_jump_instr_create(nir_shader *shader, nir_jump_type type);
2482
2483 nir_load_const_instr *nir_load_const_instr_create(nir_shader *shader,
2484 unsigned num_components,
2485 unsigned bit_size);
2486
2487 nir_intrinsic_instr *nir_intrinsic_instr_create(nir_shader *shader,
2488 nir_intrinsic_op op);
2489
2490 nir_call_instr *nir_call_instr_create(nir_shader *shader,
2491 nir_function *callee);
2492
2493 nir_tex_instr *nir_tex_instr_create(nir_shader *shader, unsigned num_srcs);
2494
2495 nir_phi_instr *nir_phi_instr_create(nir_shader *shader);
2496
2497 nir_parallel_copy_instr *nir_parallel_copy_instr_create(nir_shader *shader);
2498
2499 nir_ssa_undef_instr *nir_ssa_undef_instr_create(nir_shader *shader,
2500 unsigned num_components,
2501 unsigned bit_size);
2502
2503 nir_const_value nir_alu_binop_identity(nir_op binop, unsigned bit_size);
2504
2505 /**
2506 * NIR Cursors and Instruction Insertion API
2507 * @{
2508 *
2509 * A tiny struct representing a point to insert/extract instructions or
2510 * control flow nodes. Helps reduce the combinatorial explosion of possible
2511 * points to insert/extract.
2512 *
2513 * \sa nir_control_flow.h
2514 */
2515 typedef enum {
2516 nir_cursor_before_block,
2517 nir_cursor_after_block,
2518 nir_cursor_before_instr,
2519 nir_cursor_after_instr,
2520 } nir_cursor_option;
2521
2522 typedef struct {
2523 nir_cursor_option option;
2524 union {
2525 nir_block *block;
2526 nir_instr *instr;
2527 };
2528 } nir_cursor;
2529
2530 static inline nir_block *
2531 nir_cursor_current_block(nir_cursor cursor)
2532 {
2533 if (cursor.option == nir_cursor_before_instr ||
2534 cursor.option == nir_cursor_after_instr) {
2535 return cursor.instr->block;
2536 } else {
2537 return cursor.block;
2538 }
2539 }
2540
2541 bool nir_cursors_equal(nir_cursor a, nir_cursor b);
2542
2543 static inline nir_cursor
2544 nir_before_block(nir_block *block)
2545 {
2546 nir_cursor cursor;
2547 cursor.option = nir_cursor_before_block;
2548 cursor.block = block;
2549 return cursor;
2550 }
2551
2552 static inline nir_cursor
2553 nir_after_block(nir_block *block)
2554 {
2555 nir_cursor cursor;
2556 cursor.option = nir_cursor_after_block;
2557 cursor.block = block;
2558 return cursor;
2559 }
2560
2561 static inline nir_cursor
2562 nir_before_instr(nir_instr *instr)
2563 {
2564 nir_cursor cursor;
2565 cursor.option = nir_cursor_before_instr;
2566 cursor.instr = instr;
2567 return cursor;
2568 }
2569
2570 static inline nir_cursor
2571 nir_after_instr(nir_instr *instr)
2572 {
2573 nir_cursor cursor;
2574 cursor.option = nir_cursor_after_instr;
2575 cursor.instr = instr;
2576 return cursor;
2577 }
2578
2579 static inline nir_cursor
2580 nir_after_block_before_jump(nir_block *block)
2581 {
2582 nir_instr *last_instr = nir_block_last_instr(block);
2583 if (last_instr && last_instr->type == nir_instr_type_jump) {
2584 return nir_before_instr(last_instr);
2585 } else {
2586 return nir_after_block(block);
2587 }
2588 }
2589
2590 static inline nir_cursor
2591 nir_before_src(nir_src *src, bool is_if_condition)
2592 {
2593 if (is_if_condition) {
2594 nir_block *prev_block =
2595 nir_cf_node_as_block(nir_cf_node_prev(&src->parent_if->cf_node));
2596 assert(!nir_block_ends_in_jump(prev_block));
2597 return nir_after_block(prev_block);
2598 } else if (src->parent_instr->type == nir_instr_type_phi) {
2599 #ifndef NDEBUG
2600 nir_phi_instr *cond_phi = nir_instr_as_phi(src->parent_instr);
2601 bool found = false;
2602 nir_foreach_phi_src(phi_src, cond_phi) {
2603 if (phi_src->src.ssa == src->ssa) {
2604 found = true;
2605 break;
2606 }
2607 }
2608 assert(found);
2609 #endif
2610 /* The LIST_ENTRY macro is a generic container-of macro, it just happens
2611 * to have a more specific name.
2612 */
2613 nir_phi_src *phi_src = LIST_ENTRY(nir_phi_src, src, src);
2614 return nir_after_block_before_jump(phi_src->pred);
2615 } else {
2616 return nir_before_instr(src->parent_instr);
2617 }
2618 }
2619
2620 static inline nir_cursor
2621 nir_before_cf_node(nir_cf_node *node)
2622 {
2623 if (node->type == nir_cf_node_block)
2624 return nir_before_block(nir_cf_node_as_block(node));
2625
2626 return nir_after_block(nir_cf_node_as_block(nir_cf_node_prev(node)));
2627 }
2628
2629 static inline nir_cursor
2630 nir_after_cf_node(nir_cf_node *node)
2631 {
2632 if (node->type == nir_cf_node_block)
2633 return nir_after_block(nir_cf_node_as_block(node));
2634
2635 return nir_before_block(nir_cf_node_as_block(nir_cf_node_next(node)));
2636 }
2637
2638 static inline nir_cursor
2639 nir_after_phis(nir_block *block)
2640 {
2641 nir_foreach_instr(instr, block) {
2642 if (instr->type != nir_instr_type_phi)
2643 return nir_before_instr(instr);
2644 }
2645 return nir_after_block(block);
2646 }
2647
2648 static inline nir_cursor
2649 nir_after_cf_node_and_phis(nir_cf_node *node)
2650 {
2651 if (node->type == nir_cf_node_block)
2652 return nir_after_block(nir_cf_node_as_block(node));
2653
2654 nir_block *block = nir_cf_node_as_block(nir_cf_node_next(node));
2655
2656 return nir_after_phis(block);
2657 }
2658
2659 static inline nir_cursor
2660 nir_before_cf_list(struct exec_list *cf_list)
2661 {
2662 nir_cf_node *first_node = exec_node_data(nir_cf_node,
2663 exec_list_get_head(cf_list), node);
2664 return nir_before_cf_node(first_node);
2665 }
2666
2667 static inline nir_cursor
2668 nir_after_cf_list(struct exec_list *cf_list)
2669 {
2670 nir_cf_node *last_node = exec_node_data(nir_cf_node,
2671 exec_list_get_tail(cf_list), node);
2672 return nir_after_cf_node(last_node);
2673 }
2674
2675 /**
2676 * Insert a NIR instruction at the given cursor.
2677 *
2678 * Note: This does not update the cursor.
2679 */
2680 void nir_instr_insert(nir_cursor cursor, nir_instr *instr);
2681
2682 static inline void
2683 nir_instr_insert_before(nir_instr *instr, nir_instr *before)
2684 {
2685 nir_instr_insert(nir_before_instr(instr), before);
2686 }
2687
2688 static inline void
2689 nir_instr_insert_after(nir_instr *instr, nir_instr *after)
2690 {
2691 nir_instr_insert(nir_after_instr(instr), after);
2692 }
2693
2694 static inline void
2695 nir_instr_insert_before_block(nir_block *block, nir_instr *before)
2696 {
2697 nir_instr_insert(nir_before_block(block), before);
2698 }
2699
2700 static inline void
2701 nir_instr_insert_after_block(nir_block *block, nir_instr *after)
2702 {
2703 nir_instr_insert(nir_after_block(block), after);
2704 }
2705
2706 static inline void
2707 nir_instr_insert_before_cf(nir_cf_node *node, nir_instr *before)
2708 {
2709 nir_instr_insert(nir_before_cf_node(node), before);
2710 }
2711
2712 static inline void
2713 nir_instr_insert_after_cf(nir_cf_node *node, nir_instr *after)
2714 {
2715 nir_instr_insert(nir_after_cf_node(node), after);
2716 }
2717
2718 static inline void
2719 nir_instr_insert_before_cf_list(struct exec_list *list, nir_instr *before)
2720 {
2721 nir_instr_insert(nir_before_cf_list(list), before);
2722 }
2723
2724 static inline void
2725 nir_instr_insert_after_cf_list(struct exec_list *list, nir_instr *after)
2726 {
2727 nir_instr_insert(nir_after_cf_list(list), after);
2728 }
2729
2730 void nir_instr_remove_v(nir_instr *instr);
2731
2732 static inline nir_cursor
2733 nir_instr_remove(nir_instr *instr)
2734 {
2735 nir_cursor cursor;
2736 nir_instr *prev = nir_instr_prev(instr);
2737 if (prev) {
2738 cursor = nir_after_instr(prev);
2739 } else {
2740 cursor = nir_before_block(instr->block);
2741 }
2742 nir_instr_remove_v(instr);
2743 return cursor;
2744 }
2745
2746 /** @} */
2747
2748 typedef bool (*nir_foreach_ssa_def_cb)(nir_ssa_def *def, void *state);
2749 typedef bool (*nir_foreach_dest_cb)(nir_dest *dest, void *state);
2750 typedef bool (*nir_foreach_src_cb)(nir_src *src, void *state);
2751 bool nir_foreach_ssa_def(nir_instr *instr, nir_foreach_ssa_def_cb cb,
2752 void *state);
2753 bool nir_foreach_dest(nir_instr *instr, nir_foreach_dest_cb cb, void *state);
2754 bool nir_foreach_src(nir_instr *instr, nir_foreach_src_cb cb, void *state);
2755
2756 nir_const_value *nir_src_as_const_value(nir_src src);
2757
2758 #define NIR_SRC_AS_(name, c_type, type_enum, cast_macro) \
2759 static inline c_type * \
2760 nir_src_as_ ## name (nir_src src) \
2761 { \
2762 return src.is_ssa && src.ssa->parent_instr->type == type_enum \
2763 ? cast_macro(src.ssa->parent_instr) : NULL; \
2764 }
2765
2766 NIR_SRC_AS_(alu_instr, nir_alu_instr, nir_instr_type_alu, nir_instr_as_alu)
2767 NIR_SRC_AS_(intrinsic, nir_intrinsic_instr,
2768 nir_instr_type_intrinsic, nir_instr_as_intrinsic)
2769 NIR_SRC_AS_(deref, nir_deref_instr, nir_instr_type_deref, nir_instr_as_deref)
2770
2771 bool nir_src_is_dynamically_uniform(nir_src src);
2772 bool nir_srcs_equal(nir_src src1, nir_src src2);
2773 void nir_instr_rewrite_src(nir_instr *instr, nir_src *src, nir_src new_src);
2774 void nir_instr_move_src(nir_instr *dest_instr, nir_src *dest, nir_src *src);
2775 void nir_if_rewrite_condition(nir_if *if_stmt, nir_src new_src);
2776 void nir_instr_rewrite_dest(nir_instr *instr, nir_dest *dest,
2777 nir_dest new_dest);
2778
2779 void nir_ssa_dest_init(nir_instr *instr, nir_dest *dest,
2780 unsigned num_components, unsigned bit_size,
2781 const char *name);
2782 void nir_ssa_def_init(nir_instr *instr, nir_ssa_def *def,
2783 unsigned num_components, unsigned bit_size,
2784 const char *name);
2785 static inline void
2786 nir_ssa_dest_init_for_type(nir_instr *instr, nir_dest *dest,
2787 const struct glsl_type *type,
2788 const char *name)
2789 {
2790 assert(glsl_type_is_vector_or_scalar(type));
2791 nir_ssa_dest_init(instr, dest, glsl_get_components(type),
2792 glsl_get_bit_size(type), name);
2793 }
2794 void nir_ssa_def_rewrite_uses(nir_ssa_def *def, nir_src new_src);
2795 void nir_ssa_def_rewrite_uses_after(nir_ssa_def *def, nir_src new_src,
2796 nir_instr *after_me);
2797
2798 nir_component_mask_t nir_ssa_def_components_read(const nir_ssa_def *def);
2799
2800 /*
2801 * finds the next basic block in source-code order, returns NULL if there is
2802 * none
2803 */
2804
2805 nir_block *nir_block_cf_tree_next(nir_block *block);
2806
2807 /* Performs the opposite of nir_block_cf_tree_next() */
2808
2809 nir_block *nir_block_cf_tree_prev(nir_block *block);
2810
2811 /* Gets the first block in a CF node in source-code order */
2812
2813 nir_block *nir_cf_node_cf_tree_first(nir_cf_node *node);
2814
2815 /* Gets the last block in a CF node in source-code order */
2816
2817 nir_block *nir_cf_node_cf_tree_last(nir_cf_node *node);
2818
2819 /* Gets the next block after a CF node in source-code order */
2820
2821 nir_block *nir_cf_node_cf_tree_next(nir_cf_node *node);
2822
2823 /* Macros for loops that visit blocks in source-code order */
2824
2825 #define nir_foreach_block(block, impl) \
2826 for (nir_block *block = nir_start_block(impl); block != NULL; \
2827 block = nir_block_cf_tree_next(block))
2828
2829 #define nir_foreach_block_safe(block, impl) \
2830 for (nir_block *block = nir_start_block(impl), \
2831 *next = nir_block_cf_tree_next(block); \
2832 block != NULL; \
2833 block = next, next = nir_block_cf_tree_next(block))
2834
2835 #define nir_foreach_block_reverse(block, impl) \
2836 for (nir_block *block = nir_impl_last_block(impl); block != NULL; \
2837 block = nir_block_cf_tree_prev(block))
2838
2839 #define nir_foreach_block_reverse_safe(block, impl) \
2840 for (nir_block *block = nir_impl_last_block(impl), \
2841 *prev = nir_block_cf_tree_prev(block); \
2842 block != NULL; \
2843 block = prev, prev = nir_block_cf_tree_prev(block))
2844
2845 #define nir_foreach_block_in_cf_node(block, node) \
2846 for (nir_block *block = nir_cf_node_cf_tree_first(node); \
2847 block != nir_cf_node_cf_tree_next(node); \
2848 block = nir_block_cf_tree_next(block))
2849
2850 /* If the following CF node is an if, this function returns that if.
2851 * Otherwise, it returns NULL.
2852 */
2853 nir_if *nir_block_get_following_if(nir_block *block);
2854
2855 nir_loop *nir_block_get_following_loop(nir_block *block);
2856
2857 void nir_index_local_regs(nir_function_impl *impl);
2858 void nir_index_ssa_defs(nir_function_impl *impl);
2859 unsigned nir_index_instrs(nir_function_impl *impl);
2860
2861 void nir_index_blocks(nir_function_impl *impl);
2862
2863 void nir_print_shader(nir_shader *shader, FILE *fp);
2864 void nir_print_shader_annotated(nir_shader *shader, FILE *fp, struct hash_table *errors);
2865 void nir_print_instr(const nir_instr *instr, FILE *fp);
2866 void nir_print_deref(const nir_deref_instr *deref, FILE *fp);
2867
2868 nir_shader *nir_shader_clone(void *mem_ctx, const nir_shader *s);
2869 nir_function_impl *nir_function_impl_clone(nir_shader *shader,
2870 const nir_function_impl *fi);
2871 nir_constant *nir_constant_clone(const nir_constant *c, nir_variable *var);
2872 nir_variable *nir_variable_clone(const nir_variable *c, nir_shader *shader);
2873
2874 nir_shader *nir_shader_serialize_deserialize(void *mem_ctx, nir_shader *s);
2875
2876 #ifndef NDEBUG
2877 void nir_validate_shader(nir_shader *shader, const char *when);
2878 void nir_metadata_set_validation_flag(nir_shader *shader);
2879 void nir_metadata_check_validation_flag(nir_shader *shader);
2880
2881 static inline bool
2882 should_skip_nir(const char *name)
2883 {
2884 static const char *list = NULL;
2885 if (!list) {
2886 /* Comma separated list of names to skip. */
2887 list = getenv("NIR_SKIP");
2888 if (!list)
2889 list = "";
2890 }
2891
2892 if (!list[0])
2893 return false;
2894
2895 return comma_separated_list_contains(list, name);
2896 }
2897
2898 static inline bool
2899 should_clone_nir(void)
2900 {
2901 static int should_clone = -1;
2902 if (should_clone < 0)
2903 should_clone = env_var_as_boolean("NIR_TEST_CLONE", false);
2904
2905 return should_clone;
2906 }
2907
2908 static inline bool
2909 should_serialize_deserialize_nir(void)
2910 {
2911 static int test_serialize = -1;
2912 if (test_serialize < 0)
2913 test_serialize = env_var_as_boolean("NIR_TEST_SERIALIZE", false);
2914
2915 return test_serialize;
2916 }
2917
2918 static inline bool
2919 should_print_nir(void)
2920 {
2921 static int should_print = -1;
2922 if (should_print < 0)
2923 should_print = env_var_as_boolean("NIR_PRINT", false);
2924
2925 return should_print;
2926 }
2927 #else
2928 static inline void nir_validate_shader(nir_shader *shader, const char *when) { (void) shader; (void)when; }
2929 static inline void nir_metadata_set_validation_flag(nir_shader *shader) { (void) shader; }
2930 static inline void nir_metadata_check_validation_flag(nir_shader *shader) { (void) shader; }
2931 static inline bool should_skip_nir(UNUSED const char *pass_name) { return false; }
2932 static inline bool should_clone_nir(void) { return false; }
2933 static inline bool should_serialize_deserialize_nir(void) { return false; }
2934 static inline bool should_print_nir(void) { return false; }
2935 #endif /* NDEBUG */
2936
2937 #define _PASS(pass, nir, do_pass) do { \
2938 if (should_skip_nir(#pass)) { \
2939 printf("skipping %s\n", #pass); \
2940 break; \
2941 } \
2942 do_pass \
2943 nir_validate_shader(nir, "after " #pass); \
2944 if (should_clone_nir()) { \
2945 nir_shader *clone = nir_shader_clone(ralloc_parent(nir), nir); \
2946 ralloc_free(nir); \
2947 nir = clone; \
2948 } \
2949 if (should_serialize_deserialize_nir()) { \
2950 void *mem_ctx = ralloc_parent(nir); \
2951 nir = nir_shader_serialize_deserialize(mem_ctx, nir); \
2952 } \
2953 } while (0)
2954
2955 #define NIR_PASS(progress, nir, pass, ...) _PASS(pass, nir, \
2956 nir_metadata_set_validation_flag(nir); \
2957 if (should_print_nir()) \
2958 printf("%s\n", #pass); \
2959 if (pass(nir, ##__VA_ARGS__)) { \
2960 progress = true; \
2961 if (should_print_nir()) \
2962 nir_print_shader(nir, stdout); \
2963 nir_metadata_check_validation_flag(nir); \
2964 } \
2965 )
2966
2967 #define NIR_PASS_V(nir, pass, ...) _PASS(pass, nir, \
2968 if (should_print_nir()) \
2969 printf("%s\n", #pass); \
2970 pass(nir, ##__VA_ARGS__); \
2971 if (should_print_nir()) \
2972 nir_print_shader(nir, stdout); \
2973 )
2974
2975 #define NIR_SKIP(name) should_skip_nir(#name)
2976
2977 void nir_calc_dominance_impl(nir_function_impl *impl);
2978 void nir_calc_dominance(nir_shader *shader);
2979
2980 nir_block *nir_dominance_lca(nir_block *b1, nir_block *b2);
2981 bool nir_block_dominates(nir_block *parent, nir_block *child);
2982
2983 void nir_dump_dom_tree_impl(nir_function_impl *impl, FILE *fp);
2984 void nir_dump_dom_tree(nir_shader *shader, FILE *fp);
2985
2986 void nir_dump_dom_frontier_impl(nir_function_impl *impl, FILE *fp);
2987 void nir_dump_dom_frontier(nir_shader *shader, FILE *fp);
2988
2989 void nir_dump_cfg_impl(nir_function_impl *impl, FILE *fp);
2990 void nir_dump_cfg(nir_shader *shader, FILE *fp);
2991
2992 int nir_gs_count_vertices(const nir_shader *shader);
2993
2994 bool nir_shrink_vec_array_vars(nir_shader *shader, nir_variable_mode modes);
2995 bool nir_split_array_vars(nir_shader *shader, nir_variable_mode modes);
2996 bool nir_split_var_copies(nir_shader *shader);
2997 bool nir_split_per_member_structs(nir_shader *shader);
2998 bool nir_split_struct_vars(nir_shader *shader, nir_variable_mode modes);
2999
3000 bool nir_lower_returns_impl(nir_function_impl *impl);
3001 bool nir_lower_returns(nir_shader *shader);
3002
3003 void nir_inline_function_impl(struct nir_builder *b,
3004 const nir_function_impl *impl,
3005 nir_ssa_def **params);
3006 bool nir_inline_functions(nir_shader *shader);
3007
3008 bool nir_propagate_invariant(nir_shader *shader);
3009
3010 void nir_lower_var_copy_instr(nir_intrinsic_instr *copy, nir_shader *shader);
3011 void nir_lower_deref_copy_instr(struct nir_builder *b,
3012 nir_intrinsic_instr *copy);
3013 bool nir_lower_var_copies(nir_shader *shader);
3014
3015 void nir_fixup_deref_modes(nir_shader *shader);
3016
3017 bool nir_lower_global_vars_to_local(nir_shader *shader);
3018
3019 typedef enum {
3020 nir_lower_direct_array_deref_of_vec_load = (1 << 0),
3021 nir_lower_indirect_array_deref_of_vec_load = (1 << 1),
3022 nir_lower_direct_array_deref_of_vec_store = (1 << 2),
3023 nir_lower_indirect_array_deref_of_vec_store = (1 << 3),
3024 } nir_lower_array_deref_of_vec_options;
3025
3026 bool nir_lower_array_deref_of_vec(nir_shader *shader, nir_variable_mode modes,
3027 nir_lower_array_deref_of_vec_options options);
3028
3029 bool nir_lower_indirect_derefs(nir_shader *shader, nir_variable_mode modes);
3030
3031 bool nir_lower_locals_to_regs(nir_shader *shader);
3032
3033 void nir_lower_io_to_temporaries(nir_shader *shader,
3034 nir_function_impl *entrypoint,
3035 bool outputs, bool inputs);
3036
3037 bool nir_lower_vars_to_scratch(nir_shader *shader,
3038 nir_variable_mode modes,
3039 int size_threshold,
3040 glsl_type_size_align_func size_align);
3041
3042 void nir_shader_gather_info(nir_shader *shader, nir_function_impl *entrypoint);
3043
3044 void nir_assign_var_locations(struct exec_list *var_list, unsigned *size,
3045 int (*type_size)(const struct glsl_type *, bool));
3046
3047 /* Some helpers to do very simple linking */
3048 bool nir_remove_unused_varyings(nir_shader *producer, nir_shader *consumer);
3049 bool nir_remove_unused_io_vars(nir_shader *shader, struct exec_list *var_list,
3050 uint64_t *used_by_other_stage,
3051 uint64_t *used_by_other_stage_patches);
3052 void nir_compact_varyings(nir_shader *producer, nir_shader *consumer,
3053 bool default_to_smooth_interp);
3054 void nir_link_xfb_varyings(nir_shader *producer, nir_shader *consumer);
3055 bool nir_link_opt_varyings(nir_shader *producer, nir_shader *consumer);
3056
3057 typedef enum {
3058 /* If set, this forces all non-flat fragment shader inputs to be
3059 * interpolated as if with the "sample" qualifier. This requires
3060 * nir_shader_compiler_options::use_interpolated_input_intrinsics.
3061 */
3062 nir_lower_io_force_sample_interpolation = (1 << 1),
3063 } nir_lower_io_options;
3064 bool nir_lower_io(nir_shader *shader,
3065 nir_variable_mode modes,
3066 int (*type_size)(const struct glsl_type *, bool),
3067 nir_lower_io_options);
3068
3069 typedef enum {
3070 /**
3071 * An address format which is a simple 32-bit global GPU address.
3072 */
3073 nir_address_format_32bit_global,
3074
3075 /**
3076 * An address format which is a simple 64-bit global GPU address.
3077 */
3078 nir_address_format_64bit_global,
3079
3080 /**
3081 * An address format which is a bounds-checked 64-bit global GPU address.
3082 *
3083 * The address is comprised as a 32-bit vec4 where .xy are a uint64_t base
3084 * address stored with the low bits in .x and high bits in .y, .z is a
3085 * size, and .w is an offset. When the final I/O operation is lowered, .w
3086 * is checked against .z and the operation is predicated on the result.
3087 */
3088 nir_address_format_64bit_bounded_global,
3089
3090 /**
3091 * An address format which is comprised of a vec2 where the first
3092 * component is a buffer index and the second is an offset.
3093 */
3094 nir_address_format_32bit_index_offset,
3095 } nir_address_format;
3096
3097 static inline unsigned
3098 nir_address_format_bit_size(nir_address_format addr_format)
3099 {
3100 switch (addr_format) {
3101 case nir_address_format_32bit_global: return 32;
3102 case nir_address_format_64bit_global: return 64;
3103 case nir_address_format_64bit_bounded_global: return 32;
3104 case nir_address_format_32bit_index_offset: return 32;
3105 }
3106 unreachable("Invalid address format");
3107 }
3108
3109 static inline unsigned
3110 nir_address_format_num_components(nir_address_format addr_format)
3111 {
3112 switch (addr_format) {
3113 case nir_address_format_32bit_global: return 1;
3114 case nir_address_format_64bit_global: return 1;
3115 case nir_address_format_64bit_bounded_global: return 4;
3116 case nir_address_format_32bit_index_offset: return 2;
3117 }
3118 unreachable("Invalid address format");
3119 }
3120
3121 static inline const struct glsl_type *
3122 nir_address_format_to_glsl_type(nir_address_format addr_format)
3123 {
3124 unsigned bit_size = nir_address_format_bit_size(addr_format);
3125 assert(bit_size == 32 || bit_size == 64);
3126 return glsl_vector_type(bit_size == 32 ? GLSL_TYPE_UINT : GLSL_TYPE_UINT64,
3127 nir_address_format_num_components(addr_format));
3128 }
3129
3130 nir_ssa_def * nir_explicit_io_address_from_deref(struct nir_builder *b,
3131 nir_deref_instr *deref,
3132 nir_ssa_def *base_addr,
3133 nir_address_format addr_format);
3134 void nir_lower_explicit_io_instr(struct nir_builder *b,
3135 nir_intrinsic_instr *io_instr,
3136 nir_ssa_def *addr,
3137 nir_address_format addr_format);
3138
3139 bool nir_lower_explicit_io(nir_shader *shader,
3140 nir_variable_mode modes,
3141 nir_address_format);
3142
3143 nir_src *nir_get_io_offset_src(nir_intrinsic_instr *instr);
3144 nir_src *nir_get_io_vertex_index_src(nir_intrinsic_instr *instr);
3145
3146 bool nir_is_per_vertex_io(const nir_variable *var, gl_shader_stage stage);
3147
3148 bool nir_lower_regs_to_ssa_impl(nir_function_impl *impl);
3149 bool nir_lower_regs_to_ssa(nir_shader *shader);
3150 bool nir_lower_vars_to_ssa(nir_shader *shader);
3151
3152 bool nir_remove_dead_derefs(nir_shader *shader);
3153 bool nir_remove_dead_derefs_impl(nir_function_impl *impl);
3154 bool nir_remove_dead_variables(nir_shader *shader, nir_variable_mode modes);
3155 bool nir_lower_constant_initializers(nir_shader *shader,
3156 nir_variable_mode modes);
3157
3158 bool nir_move_load_const(nir_shader *shader);
3159 bool nir_move_vec_src_uses_to_dest(nir_shader *shader);
3160 bool nir_lower_vec_to_movs(nir_shader *shader);
3161 void nir_lower_alpha_test(nir_shader *shader, enum compare_func func,
3162 bool alpha_to_one);
3163 bool nir_lower_alu(nir_shader *shader);
3164 bool nir_lower_alu_to_scalar(nir_shader *shader);
3165 bool nir_lower_bool_to_float(nir_shader *shader);
3166 bool nir_lower_bool_to_int32(nir_shader *shader);
3167 bool nir_lower_load_const_to_scalar(nir_shader *shader);
3168 bool nir_lower_read_invocation_to_scalar(nir_shader *shader);
3169 bool nir_lower_phis_to_scalar(nir_shader *shader);
3170 void nir_lower_io_arrays_to_elements(nir_shader *producer, nir_shader *consumer);
3171 void nir_lower_io_arrays_to_elements_no_indirects(nir_shader *shader,
3172 bool outputs_only);
3173 void nir_lower_io_to_scalar(nir_shader *shader, nir_variable_mode mask);
3174 void nir_lower_io_to_scalar_early(nir_shader *shader, nir_variable_mode mask);
3175 bool nir_lower_io_to_vector(nir_shader *shader, nir_variable_mode mask);
3176
3177 void nir_lower_fragcoord_wtrans(nir_shader *shader);
3178 void nir_lower_viewport_transform(nir_shader *shader);
3179 bool nir_lower_uniforms_to_ubo(nir_shader *shader, int multiplier);
3180
3181 typedef struct nir_lower_subgroups_options {
3182 uint8_t subgroup_size;
3183 uint8_t ballot_bit_size;
3184 bool lower_to_scalar:1;
3185 bool lower_vote_trivial:1;
3186 bool lower_vote_eq_to_ballot:1;
3187 bool lower_subgroup_masks:1;
3188 bool lower_shuffle:1;
3189 bool lower_shuffle_to_32bit:1;
3190 bool lower_quad:1;
3191 } nir_lower_subgroups_options;
3192
3193 bool nir_lower_subgroups(nir_shader *shader,
3194 const nir_lower_subgroups_options *options);
3195
3196 bool nir_lower_system_values(nir_shader *shader);
3197
3198 enum PACKED nir_lower_tex_packing {
3199 nir_lower_tex_packing_none = 0,
3200 /* The sampler returns up to 2 32-bit words of half floats or 16-bit signed
3201 * or unsigned ints based on the sampler type
3202 */
3203 nir_lower_tex_packing_16,
3204 /* The sampler returns 1 32-bit word of 4x8 unorm */
3205 nir_lower_tex_packing_8,
3206 };
3207
3208 typedef struct nir_lower_tex_options {
3209 /**
3210 * bitmask of (1 << GLSL_SAMPLER_DIM_x) to control for which
3211 * sampler types a texture projector is lowered.
3212 */
3213 unsigned lower_txp;
3214
3215 /**
3216 * If true, lower away nir_tex_src_offset for all texelfetch instructions.
3217 */
3218 bool lower_txf_offset;
3219
3220 /**
3221 * If true, lower away nir_tex_src_offset for all rect textures.
3222 */
3223 bool lower_rect_offset;
3224
3225 /**
3226 * If true, lower rect textures to 2D, using txs to fetch the
3227 * texture dimensions and dividing the texture coords by the
3228 * texture dims to normalize.
3229 */
3230 bool lower_rect;
3231
3232 /**
3233 * If true, convert yuv to rgb.
3234 */
3235 unsigned lower_y_uv_external;
3236 unsigned lower_y_u_v_external;
3237 unsigned lower_yx_xuxv_external;
3238 unsigned lower_xy_uxvx_external;
3239 unsigned lower_ayuv_external;
3240 unsigned lower_xyuv_external;
3241
3242 /**
3243 * To emulate certain texture wrap modes, this can be used
3244 * to saturate the specified tex coord to [0.0, 1.0]. The
3245 * bits are according to sampler #, ie. if, for example:
3246 *
3247 * (conf->saturate_s & (1 << n))
3248 *
3249 * is true, then the s coord for sampler n is saturated.
3250 *
3251 * Note that clamping must happen *after* projector lowering
3252 * so any projected texture sample instruction with a clamped
3253 * coordinate gets automatically lowered, regardless of the
3254 * 'lower_txp' setting.
3255 */
3256 unsigned saturate_s;
3257 unsigned saturate_t;
3258 unsigned saturate_r;
3259
3260 /* Bitmask of textures that need swizzling.
3261 *
3262 * If (swizzle_result & (1 << texture_index)), then the swizzle in
3263 * swizzles[texture_index] is applied to the result of the texturing
3264 * operation.
3265 */
3266 unsigned swizzle_result;
3267
3268 /* A swizzle for each texture. Values 0-3 represent x, y, z, or w swizzles
3269 * while 4 and 5 represent 0 and 1 respectively.
3270 */
3271 uint8_t swizzles[32][4];
3272
3273 /* Can be used to scale sampled values in range required by the format. */
3274 float scale_factors[32];
3275
3276 /**
3277 * Bitmap of textures that need srgb to linear conversion. If
3278 * (lower_srgb & (1 << texture_index)) then the rgb (xyz) components
3279 * of the texture are lowered to linear.
3280 */
3281 unsigned lower_srgb;
3282
3283 /**
3284 * If true, lower nir_texop_tex on shaders that doesn't support implicit
3285 * LODs to nir_texop_txl.
3286 */
3287 bool lower_tex_without_implicit_lod;
3288
3289 /**
3290 * If true, lower nir_texop_txd on cube maps with nir_texop_txl.
3291 */
3292 bool lower_txd_cube_map;
3293
3294 /**
3295 * If true, lower nir_texop_txd on 3D surfaces with nir_texop_txl.
3296 */
3297 bool lower_txd_3d;
3298
3299 /**
3300 * If true, lower nir_texop_txd on shadow samplers (except cube maps)
3301 * with nir_texop_txl. Notice that cube map shadow samplers are lowered
3302 * with lower_txd_cube_map.
3303 */
3304 bool lower_txd_shadow;
3305
3306 /**
3307 * If true, lower nir_texop_txd on all samplers to a nir_texop_txl.
3308 * Implies lower_txd_cube_map and lower_txd_shadow.
3309 */
3310 bool lower_txd;
3311
3312 /**
3313 * If true, lower nir_texop_txb that try to use shadow compare and min_lod
3314 * at the same time to a nir_texop_lod, some math, and nir_texop_tex.
3315 */
3316 bool lower_txb_shadow_clamp;
3317
3318 /**
3319 * If true, lower nir_texop_txd on shadow samplers when it uses min_lod
3320 * with nir_texop_txl. This includes cube maps.
3321 */
3322 bool lower_txd_shadow_clamp;
3323
3324 /**
3325 * If true, lower nir_texop_txd on when it uses both offset and min_lod
3326 * with nir_texop_txl. This includes cube maps.
3327 */
3328 bool lower_txd_offset_clamp;
3329
3330 /**
3331 * If true, lower nir_texop_txd with min_lod to a nir_texop_txl if the
3332 * sampler is bindless.
3333 */
3334 bool lower_txd_clamp_bindless_sampler;
3335
3336 /**
3337 * If true, lower nir_texop_txd with min_lod to a nir_texop_txl if the
3338 * sampler index is not statically determinable to be less than 16.
3339 */
3340 bool lower_txd_clamp_if_sampler_index_not_lt_16;
3341
3342 /**
3343 * If true, apply a .bagr swizzle on tg4 results to handle Broadcom's
3344 * mixed-up tg4 locations.
3345 */
3346 bool lower_tg4_broadcom_swizzle;
3347
3348 /**
3349 * If true, lowers tg4 with 4 constant offsets to 4 tg4 calls
3350 */
3351 bool lower_tg4_offsets;
3352
3353 enum nir_lower_tex_packing lower_tex_packing[32];
3354 } nir_lower_tex_options;
3355
3356 bool nir_lower_tex(nir_shader *shader,
3357 const nir_lower_tex_options *options);
3358
3359 enum nir_lower_non_uniform_access_type {
3360 nir_lower_non_uniform_ubo_access = (1 << 0),
3361 nir_lower_non_uniform_ssbo_access = (1 << 1),
3362 nir_lower_non_uniform_texture_access = (1 << 2),
3363 nir_lower_non_uniform_image_access = (1 << 3),
3364 };
3365
3366 bool nir_lower_non_uniform_access(nir_shader *shader,
3367 enum nir_lower_non_uniform_access_type);
3368
3369 bool nir_lower_idiv(nir_shader *shader);
3370
3371 bool nir_lower_clip_vs(nir_shader *shader, unsigned ucp_enables, bool use_vars);
3372 bool nir_lower_clip_fs(nir_shader *shader, unsigned ucp_enables);
3373 bool nir_lower_clip_cull_distance_arrays(nir_shader *nir);
3374
3375 bool nir_lower_frexp(nir_shader *nir);
3376
3377 void nir_lower_two_sided_color(nir_shader *shader);
3378
3379 bool nir_lower_clamp_color_outputs(nir_shader *shader);
3380
3381 void nir_lower_passthrough_edgeflags(nir_shader *shader);
3382 bool nir_lower_patch_vertices(nir_shader *nir, unsigned static_count,
3383 const gl_state_index16 *uniform_state_tokens);
3384
3385 typedef struct nir_lower_wpos_ytransform_options {
3386 gl_state_index16 state_tokens[STATE_LENGTH];
3387 bool fs_coord_origin_upper_left :1;
3388 bool fs_coord_origin_lower_left :1;
3389 bool fs_coord_pixel_center_integer :1;
3390 bool fs_coord_pixel_center_half_integer :1;
3391 } nir_lower_wpos_ytransform_options;
3392
3393 bool nir_lower_wpos_ytransform(nir_shader *shader,
3394 const nir_lower_wpos_ytransform_options *options);
3395 bool nir_lower_wpos_center(nir_shader *shader, const bool for_sample_shading);
3396
3397 typedef struct nir_lower_drawpixels_options {
3398 gl_state_index16 texcoord_state_tokens[STATE_LENGTH];
3399 gl_state_index16 scale_state_tokens[STATE_LENGTH];
3400 gl_state_index16 bias_state_tokens[STATE_LENGTH];
3401 unsigned drawpix_sampler;
3402 unsigned pixelmap_sampler;
3403 bool pixel_maps :1;
3404 bool scale_and_bias :1;
3405 } nir_lower_drawpixels_options;
3406
3407 void nir_lower_drawpixels(nir_shader *shader,
3408 const nir_lower_drawpixels_options *options);
3409
3410 typedef struct nir_lower_bitmap_options {
3411 unsigned sampler;
3412 bool swizzle_xxxx;
3413 } nir_lower_bitmap_options;
3414
3415 void nir_lower_bitmap(nir_shader *shader, const nir_lower_bitmap_options *options);
3416
3417 bool nir_lower_atomics_to_ssbo(nir_shader *shader, unsigned ssbo_offset);
3418
3419 typedef enum {
3420 nir_lower_int_source_mods = 1 << 0,
3421 nir_lower_float_source_mods = 1 << 1,
3422 nir_lower_triop_abs = 1 << 2,
3423 nir_lower_all_source_mods = (1 << 3) - 1
3424 } nir_lower_to_source_mods_flags;
3425
3426
3427 bool nir_lower_to_source_mods(nir_shader *shader, nir_lower_to_source_mods_flags options);
3428
3429 bool nir_lower_gs_intrinsics(nir_shader *shader);
3430
3431 typedef unsigned (*nir_lower_bit_size_callback)(const nir_alu_instr *, void *);
3432
3433 bool nir_lower_bit_size(nir_shader *shader,
3434 nir_lower_bit_size_callback callback,
3435 void *callback_data);
3436
3437 nir_lower_int64_options nir_lower_int64_op_to_options_mask(nir_op opcode);
3438 bool nir_lower_int64(nir_shader *shader, nir_lower_int64_options options);
3439
3440 nir_lower_doubles_options nir_lower_doubles_op_to_options_mask(nir_op opcode);
3441 bool nir_lower_doubles(nir_shader *shader, const nir_shader *softfp64,
3442 nir_lower_doubles_options options);
3443 bool nir_lower_pack(nir_shader *shader);
3444
3445 bool nir_normalize_cubemap_coords(nir_shader *shader);
3446
3447 void nir_live_ssa_defs_impl(nir_function_impl *impl);
3448
3449 void nir_loop_analyze_impl(nir_function_impl *impl,
3450 nir_variable_mode indirect_mask);
3451
3452 bool nir_ssa_defs_interfere(nir_ssa_def *a, nir_ssa_def *b);
3453
3454 bool nir_repair_ssa_impl(nir_function_impl *impl);
3455 bool nir_repair_ssa(nir_shader *shader);
3456
3457 void nir_convert_loop_to_lcssa(nir_loop *loop);
3458
3459 /* If phi_webs_only is true, only convert SSA values involved in phi nodes to
3460 * registers. If false, convert all values (even those not involved in a phi
3461 * node) to registers.
3462 */
3463 bool nir_convert_from_ssa(nir_shader *shader, bool phi_webs_only);
3464
3465 bool nir_lower_phis_to_regs_block(nir_block *block);
3466 bool nir_lower_ssa_defs_to_regs_block(nir_block *block);
3467 bool nir_rematerialize_derefs_in_use_blocks_impl(nir_function_impl *impl);
3468
3469 bool nir_opt_comparison_pre(nir_shader *shader);
3470
3471 bool nir_opt_algebraic(nir_shader *shader);
3472 bool nir_opt_algebraic_before_ffma(nir_shader *shader);
3473 bool nir_opt_algebraic_late(nir_shader *shader);
3474 bool nir_opt_constant_folding(nir_shader *shader);
3475
3476 bool nir_opt_combine_stores(nir_shader *shader, nir_variable_mode modes);
3477
3478 bool nir_copy_prop(nir_shader *shader);
3479
3480 bool nir_opt_copy_prop_vars(nir_shader *shader);
3481
3482 bool nir_opt_cse(nir_shader *shader);
3483
3484 bool nir_opt_dce(nir_shader *shader);
3485
3486 bool nir_opt_dead_cf(nir_shader *shader);
3487
3488 bool nir_opt_dead_write_vars(nir_shader *shader);
3489
3490 bool nir_opt_deref_impl(nir_function_impl *impl);
3491 bool nir_opt_deref(nir_shader *shader);
3492
3493 bool nir_opt_find_array_copies(nir_shader *shader);
3494
3495 bool nir_opt_gcm(nir_shader *shader, bool value_number);
3496
3497 bool nir_opt_idiv_const(nir_shader *shader, unsigned min_bit_size);
3498
3499 bool nir_opt_if(nir_shader *shader, bool aggressive_last_continue);
3500
3501 bool nir_opt_intrinsics(nir_shader *shader);
3502
3503 bool nir_opt_large_constants(nir_shader *shader,
3504 glsl_type_size_align_func size_align,
3505 unsigned threshold);
3506
3507 bool nir_opt_loop_unroll(nir_shader *shader, nir_variable_mode indirect_mask);
3508
3509 bool nir_opt_move_comparisons(nir_shader *shader);
3510
3511 bool nir_opt_move_load_ubo(nir_shader *shader);
3512
3513 bool nir_opt_peephole_select(nir_shader *shader, unsigned limit,
3514 bool indirect_load_ok, bool expensive_alu_ok);
3515
3516 bool nir_opt_remove_phis(nir_shader *shader);
3517
3518 bool nir_opt_shrink_load(nir_shader *shader);
3519
3520 bool nir_opt_trivial_continues(nir_shader *shader);
3521
3522 bool nir_opt_undef(nir_shader *shader);
3523
3524 bool nir_opt_conditional_discard(nir_shader *shader);
3525
3526 void nir_strip(nir_shader *shader);
3527
3528 void nir_sweep(nir_shader *shader);
3529
3530 void nir_remap_dual_slot_attributes(nir_shader *shader,
3531 uint64_t *dual_slot_inputs);
3532 uint64_t nir_get_single_slot_attribs_mask(uint64_t attribs, uint64_t dual_slot);
3533
3534 nir_intrinsic_op nir_intrinsic_from_system_value(gl_system_value val);
3535 gl_system_value nir_system_value_from_intrinsic(nir_intrinsic_op intrin);
3536
3537 #ifdef __cplusplus
3538 } /* extern "C" */
3539 #endif
3540
3541 #endif /* NIR_H */