nir/lower_clip: add support for geometry shaders
[mesa.git] / src / compiler / nir / nir.h
1 /*
2 * Copyright © 2014 Connor Abbott
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Connor Abbott (cwabbott0@gmail.com)
25 *
26 */
27
28 #ifndef NIR_H
29 #define NIR_H
30
31 #include "util/hash_table.h"
32 #include "compiler/glsl/list.h"
33 #include "GL/gl.h" /* GLenum */
34 #include "util/list.h"
35 #include "util/ralloc.h"
36 #include "util/set.h"
37 #include "util/bitscan.h"
38 #include "util/bitset.h"
39 #include "util/macros.h"
40 #include "compiler/nir_types.h"
41 #include "compiler/shader_enums.h"
42 #include "compiler/shader_info.h"
43 #include <stdio.h>
44
45 #ifndef NDEBUG
46 #include "util/debug.h"
47 #endif /* NDEBUG */
48
49 #include "nir_opcodes.h"
50
51 #if defined(_WIN32) && !defined(snprintf)
52 #define snprintf _snprintf
53 #endif
54
55 #ifdef __cplusplus
56 extern "C" {
57 #endif
58
59 #define NIR_FALSE 0u
60 #define NIR_TRUE (~0u)
61 #define NIR_MAX_VEC_COMPONENTS 4
62 #define NIR_MAX_MATRIX_COLUMNS 4
63 typedef uint8_t nir_component_mask_t;
64
65 /** Defines a cast function
66 *
67 * This macro defines a cast function from in_type to out_type where
68 * out_type is some structure type that contains a field of type out_type.
69 *
70 * Note that you have to be a bit careful as the generated cast function
71 * destroys constness.
72 */
73 #define NIR_DEFINE_CAST(name, in_type, out_type, field, \
74 type_field, type_value) \
75 static inline out_type * \
76 name(const in_type *parent) \
77 { \
78 assert(parent && parent->type_field == type_value); \
79 return exec_node_data(out_type, parent, field); \
80 }
81
82 struct nir_function;
83 struct nir_shader;
84 struct nir_instr;
85 struct nir_builder;
86
87
88 /**
89 * Description of built-in state associated with a uniform
90 *
91 * \sa nir_variable::state_slots
92 */
93 typedef struct {
94 gl_state_index16 tokens[STATE_LENGTH];
95 int swizzle;
96 } nir_state_slot;
97
98 typedef enum {
99 nir_var_shader_in = (1 << 0),
100 nir_var_shader_out = (1 << 1),
101 nir_var_shader_temp = (1 << 2),
102 nir_var_function_temp = (1 << 3),
103 nir_var_uniform = (1 << 4),
104 nir_var_mem_ubo = (1 << 5),
105 nir_var_system_value = (1 << 6),
106 nir_var_mem_ssbo = (1 << 7),
107 nir_var_mem_shared = (1 << 8),
108 nir_var_mem_global = (1 << 9),
109 nir_var_all = ~0,
110 } nir_variable_mode;
111
112 /**
113 * Rounding modes.
114 */
115 typedef enum {
116 nir_rounding_mode_undef = 0,
117 nir_rounding_mode_rtne = 1, /* round to nearest even */
118 nir_rounding_mode_ru = 2, /* round up */
119 nir_rounding_mode_rd = 3, /* round down */
120 nir_rounding_mode_rtz = 4, /* round towards zero */
121 } nir_rounding_mode;
122
123 typedef union {
124 bool b;
125 float f32;
126 double f64;
127 int8_t i8;
128 uint8_t u8;
129 int16_t i16;
130 uint16_t u16;
131 int32_t i32;
132 uint32_t u32;
133 int64_t i64;
134 uint64_t u64;
135 } nir_const_value;
136
137 #define nir_const_value_to_array(arr, c, components, m) \
138 { \
139 for (unsigned i = 0; i < components; ++i) \
140 arr[i] = c[i].m; \
141 } while (false)
142
143 static inline nir_const_value
144 nir_const_value_for_raw_uint(uint64_t x, unsigned bit_size)
145 {
146 nir_const_value v;
147 memset(&v, 0, sizeof(v));
148
149 switch (bit_size) {
150 case 1: v.b = x; break;
151 case 8: v.u8 = x; break;
152 case 16: v.u16 = x; break;
153 case 32: v.u32 = x; break;
154 case 64: v.u64 = x; break;
155 default:
156 unreachable("Invalid bit size");
157 }
158
159 return v;
160 }
161
162 static inline nir_const_value
163 nir_const_value_for_int(int64_t i, unsigned bit_size)
164 {
165 nir_const_value v;
166 memset(&v, 0, sizeof(v));
167
168 assert(bit_size <= 64);
169 if (bit_size < 64) {
170 assert(i >= (-(1ll << (bit_size - 1))));
171 assert(i < (1ll << (bit_size - 1)));
172 }
173
174 return nir_const_value_for_raw_uint(i, bit_size);
175 }
176
177 static inline nir_const_value
178 nir_const_value_for_uint(uint64_t u, unsigned bit_size)
179 {
180 nir_const_value v;
181 memset(&v, 0, sizeof(v));
182
183 assert(bit_size <= 64);
184 if (bit_size < 64)
185 assert(u < (1ull << bit_size));
186
187 return nir_const_value_for_raw_uint(u, bit_size);
188 }
189
190 static inline nir_const_value
191 nir_const_value_for_bool(bool b, unsigned bit_size)
192 {
193 /* Booleans use a 0/-1 convention */
194 return nir_const_value_for_int(-(int)b, bit_size);
195 }
196
197 /* This one isn't inline because it requires half-float conversion */
198 nir_const_value nir_const_value_for_float(double b, unsigned bit_size);
199
200 static inline int64_t
201 nir_const_value_as_int(nir_const_value value, unsigned bit_size)
202 {
203 switch (bit_size) {
204 /* int1_t uses 0/-1 convention */
205 case 1: return -(int)value.b;
206 case 8: return value.i8;
207 case 16: return value.i16;
208 case 32: return value.i32;
209 case 64: return value.i64;
210 default:
211 unreachable("Invalid bit size");
212 }
213 }
214
215 static inline int64_t
216 nir_const_value_as_uint(nir_const_value value, unsigned bit_size)
217 {
218 switch (bit_size) {
219 case 1: return value.b;
220 case 8: return value.u8;
221 case 16: return value.u16;
222 case 32: return value.u32;
223 case 64: return value.u64;
224 default:
225 unreachable("Invalid bit size");
226 }
227 }
228
229 static inline bool
230 nir_const_value_as_bool(nir_const_value value, unsigned bit_size)
231 {
232 int64_t i = nir_const_value_as_int(value, bit_size);
233
234 /* Booleans of any size use 0/-1 convention */
235 assert(i == 0 || i == -1);
236
237 return i;
238 }
239
240 /* This one isn't inline because it requires half-float conversion */
241 double nir_const_value_as_float(nir_const_value value, unsigned bit_size);
242
243 typedef struct nir_constant {
244 /**
245 * Value of the constant.
246 *
247 * The field used to back the values supplied by the constant is determined
248 * by the type associated with the \c nir_variable. Constants may be
249 * scalars, vectors, or matrices.
250 */
251 nir_const_value values[NIR_MAX_VEC_COMPONENTS];
252
253 /* we could get this from the var->type but makes clone *much* easier to
254 * not have to care about the type.
255 */
256 unsigned num_elements;
257
258 /* Array elements / Structure Fields */
259 struct nir_constant **elements;
260 } nir_constant;
261
262 /**
263 * \brief Layout qualifiers for gl_FragDepth.
264 *
265 * The AMD/ARB_conservative_depth extensions allow gl_FragDepth to be redeclared
266 * with a layout qualifier.
267 */
268 typedef enum {
269 nir_depth_layout_none, /**< No depth layout is specified. */
270 nir_depth_layout_any,
271 nir_depth_layout_greater,
272 nir_depth_layout_less,
273 nir_depth_layout_unchanged
274 } nir_depth_layout;
275
276 /**
277 * Enum keeping track of how a variable was declared.
278 */
279 typedef enum {
280 /**
281 * Normal declaration.
282 */
283 nir_var_declared_normally = 0,
284
285 /**
286 * Variable is implicitly generated by the compiler and should not be
287 * visible via the API.
288 */
289 nir_var_hidden,
290 } nir_var_declaration_type;
291
292 /**
293 * Either a uniform, global variable, shader input, or shader output. Based on
294 * ir_variable - it should be easy to translate between the two.
295 */
296
297 typedef struct nir_variable {
298 struct exec_node node;
299
300 /**
301 * Declared type of the variable
302 */
303 const struct glsl_type *type;
304
305 /**
306 * Declared name of the variable
307 */
308 char *name;
309
310 struct nir_variable_data {
311 /**
312 * Storage class of the variable.
313 *
314 * \sa nir_variable_mode
315 */
316 nir_variable_mode mode;
317
318 /**
319 * Is the variable read-only?
320 *
321 * This is set for variables declared as \c const, shader inputs,
322 * and uniforms.
323 */
324 unsigned read_only:1;
325 unsigned centroid:1;
326 unsigned sample:1;
327 unsigned patch:1;
328 unsigned invariant:1;
329
330 /**
331 * Can this variable be coalesced with another?
332 *
333 * This is set by nir_lower_io_to_temporaries to say that any
334 * copies involving this variable should stay put. Propagating it can
335 * duplicate the resulting load/store, which is not wanted, and may
336 * result in a load/store of the variable with an indirect offset which
337 * the backend may not be able to handle.
338 */
339 unsigned cannot_coalesce:1;
340
341 /**
342 * When separate shader programs are enabled, only input/outputs between
343 * the stages of a multi-stage separate program can be safely removed
344 * from the shader interface. Other input/outputs must remains active.
345 *
346 * This is also used to make sure xfb varyings that are unused by the
347 * fragment shader are not removed.
348 */
349 unsigned always_active_io:1;
350
351 /**
352 * Interpolation mode for shader inputs / outputs
353 *
354 * \sa glsl_interp_mode
355 */
356 unsigned interpolation:2;
357
358 /**
359 * If non-zero, then this variable may be packed along with other variables
360 * into a single varying slot, so this offset should be applied when
361 * accessing components. For example, an offset of 1 means that the x
362 * component of this variable is actually stored in component y of the
363 * location specified by \c location.
364 */
365 unsigned location_frac:2;
366
367 /**
368 * If true, this variable represents an array of scalars that should
369 * be tightly packed. In other words, consecutive array elements
370 * should be stored one component apart, rather than one slot apart.
371 */
372 unsigned compact:1;
373
374 /**
375 * Whether this is a fragment shader output implicitly initialized with
376 * the previous contents of the specified render target at the
377 * framebuffer location corresponding to this shader invocation.
378 */
379 unsigned fb_fetch_output:1;
380
381 /**
382 * Non-zero if this variable is considered bindless as defined by
383 * ARB_bindless_texture.
384 */
385 unsigned bindless:1;
386
387 /**
388 * Was an explicit binding set in the shader?
389 */
390 unsigned explicit_binding:1;
391
392 /**
393 * Was a transfer feedback buffer set in the shader?
394 */
395 unsigned explicit_xfb_buffer:1;
396
397 /**
398 * Was a transfer feedback stride set in the shader?
399 */
400 unsigned explicit_xfb_stride:1;
401
402 /**
403 * Was an explicit offset set in the shader?
404 */
405 unsigned explicit_offset:1;
406
407 /**
408 * \brief Layout qualifier for gl_FragDepth.
409 *
410 * This is not equal to \c ir_depth_layout_none if and only if this
411 * variable is \c gl_FragDepth and a layout qualifier is specified.
412 */
413 nir_depth_layout depth_layout;
414
415 /**
416 * Storage location of the base of this variable
417 *
418 * The precise meaning of this field depends on the nature of the variable.
419 *
420 * - Vertex shader input: one of the values from \c gl_vert_attrib.
421 * - Vertex shader output: one of the values from \c gl_varying_slot.
422 * - Geometry shader input: one of the values from \c gl_varying_slot.
423 * - Geometry shader output: one of the values from \c gl_varying_slot.
424 * - Fragment shader input: one of the values from \c gl_varying_slot.
425 * - Fragment shader output: one of the values from \c gl_frag_result.
426 * - Uniforms: Per-stage uniform slot number for default uniform block.
427 * - Uniforms: Index within the uniform block definition for UBO members.
428 * - Non-UBO Uniforms: uniform slot number.
429 * - Other: This field is not currently used.
430 *
431 * If the variable is a uniform, shader input, or shader output, and the
432 * slot has not been assigned, the value will be -1.
433 */
434 int location;
435
436 /**
437 * The actual location of the variable in the IR. Only valid for inputs
438 * and outputs.
439 */
440 unsigned int driver_location;
441
442 /**
443 * Vertex stream output identifier.
444 *
445 * For packed outputs, bit 31 is set and bits [2*i+1,2*i] indicate the
446 * stream of the i-th component.
447 */
448 unsigned stream;
449
450 /**
451 * output index for dual source blending.
452 */
453 int index;
454
455 /**
456 * Descriptor set binding for sampler or UBO.
457 */
458 int descriptor_set;
459
460 /**
461 * Initial binding point for a sampler or UBO.
462 *
463 * For array types, this represents the binding point for the first element.
464 */
465 int binding;
466
467 /**
468 * Location an atomic counter or transform feedback is stored at.
469 */
470 unsigned offset;
471
472 /**
473 * Transform feedback buffer.
474 */
475 unsigned xfb_buffer;
476
477 /**
478 * Transform feedback stride.
479 */
480 unsigned xfb_stride;
481
482 /**
483 * How the variable was declared. See nir_var_declaration_type.
484 *
485 * This is used to detect variables generated by the compiler, so should
486 * not be visible via the API.
487 */
488 unsigned how_declared:2;
489
490 /**
491 * ARB_shader_image_load_store qualifiers.
492 */
493 struct {
494 enum gl_access_qualifier access;
495
496 /** Image internal format if specified explicitly, otherwise GL_NONE. */
497 GLenum format;
498 } image;
499 } data;
500
501 /**
502 * Built-in state that backs this uniform
503 *
504 * Once set at variable creation, \c state_slots must remain invariant.
505 * This is because, ideally, this array would be shared by all clones of
506 * this variable in the IR tree. In other words, we'd really like for it
507 * to be a fly-weight.
508 *
509 * If the variable is not a uniform, \c num_state_slots will be zero and
510 * \c state_slots will be \c NULL.
511 */
512 /*@{*/
513 unsigned num_state_slots; /**< Number of state slots used */
514 nir_state_slot *state_slots; /**< State descriptors. */
515 /*@}*/
516
517 /**
518 * Constant expression assigned in the initializer of the variable
519 *
520 * This field should only be used temporarily by creators of NIR shaders
521 * and then lower_constant_initializers can be used to get rid of them.
522 * Most of the rest of NIR ignores this field or asserts that it's NULL.
523 */
524 nir_constant *constant_initializer;
525
526 /**
527 * For variables that are in an interface block or are an instance of an
528 * interface block, this is the \c GLSL_TYPE_INTERFACE type for that block.
529 *
530 * \sa ir_variable::location
531 */
532 const struct glsl_type *interface_type;
533
534 /**
535 * Description of per-member data for per-member struct variables
536 *
537 * This is used for variables which are actually an amalgamation of
538 * multiple entities such as a struct of built-in values or a struct of
539 * inputs each with their own layout specifier. This is only allowed on
540 * variables with a struct or array of array of struct type.
541 */
542 unsigned num_members;
543 struct nir_variable_data *members;
544 } nir_variable;
545
546 #define nir_foreach_variable(var, var_list) \
547 foreach_list_typed(nir_variable, var, node, var_list)
548
549 #define nir_foreach_variable_safe(var, var_list) \
550 foreach_list_typed_safe(nir_variable, var, node, var_list)
551
552 static inline bool
553 nir_variable_is_global(const nir_variable *var)
554 {
555 return var->data.mode != nir_var_function_temp;
556 }
557
558 typedef struct nir_register {
559 struct exec_node node;
560
561 unsigned num_components; /** < number of vector components */
562 unsigned num_array_elems; /** < size of array (0 for no array) */
563
564 /* The bit-size of each channel; must be one of 8, 16, 32, or 64 */
565 uint8_t bit_size;
566
567 /** generic register index. */
568 unsigned index;
569
570 /** only for debug purposes, can be NULL */
571 const char *name;
572
573 /** set of nir_srcs where this register is used (read from) */
574 struct list_head uses;
575
576 /** set of nir_dests where this register is defined (written to) */
577 struct list_head defs;
578
579 /** set of nir_ifs where this register is used as a condition */
580 struct list_head if_uses;
581 } nir_register;
582
583 #define nir_foreach_register(reg, reg_list) \
584 foreach_list_typed(nir_register, reg, node, reg_list)
585 #define nir_foreach_register_safe(reg, reg_list) \
586 foreach_list_typed_safe(nir_register, reg, node, reg_list)
587
588 typedef enum PACKED {
589 nir_instr_type_alu,
590 nir_instr_type_deref,
591 nir_instr_type_call,
592 nir_instr_type_tex,
593 nir_instr_type_intrinsic,
594 nir_instr_type_load_const,
595 nir_instr_type_jump,
596 nir_instr_type_ssa_undef,
597 nir_instr_type_phi,
598 nir_instr_type_parallel_copy,
599 } nir_instr_type;
600
601 typedef struct nir_instr {
602 struct exec_node node;
603 struct nir_block *block;
604 nir_instr_type type;
605
606 /* A temporary for optimization and analysis passes to use for storing
607 * flags. For instance, DCE uses this to store the "dead/live" info.
608 */
609 uint8_t pass_flags;
610
611 /** generic instruction index. */
612 unsigned index;
613 } nir_instr;
614
615 static inline nir_instr *
616 nir_instr_next(nir_instr *instr)
617 {
618 struct exec_node *next = exec_node_get_next(&instr->node);
619 if (exec_node_is_tail_sentinel(next))
620 return NULL;
621 else
622 return exec_node_data(nir_instr, next, node);
623 }
624
625 static inline nir_instr *
626 nir_instr_prev(nir_instr *instr)
627 {
628 struct exec_node *prev = exec_node_get_prev(&instr->node);
629 if (exec_node_is_head_sentinel(prev))
630 return NULL;
631 else
632 return exec_node_data(nir_instr, prev, node);
633 }
634
635 static inline bool
636 nir_instr_is_first(const nir_instr *instr)
637 {
638 return exec_node_is_head_sentinel(exec_node_get_prev_const(&instr->node));
639 }
640
641 static inline bool
642 nir_instr_is_last(const nir_instr *instr)
643 {
644 return exec_node_is_tail_sentinel(exec_node_get_next_const(&instr->node));
645 }
646
647 typedef struct nir_ssa_def {
648 /** for debugging only, can be NULL */
649 const char* name;
650
651 /** generic SSA definition index. */
652 unsigned index;
653
654 /** Index into the live_in and live_out bitfields */
655 unsigned live_index;
656
657 /** Instruction which produces this SSA value. */
658 nir_instr *parent_instr;
659
660 /** set of nir_instrs where this register is used (read from) */
661 struct list_head uses;
662
663 /** set of nir_ifs where this register is used as a condition */
664 struct list_head if_uses;
665
666 uint8_t num_components;
667
668 /* The bit-size of each channel; must be one of 8, 16, 32, or 64 */
669 uint8_t bit_size;
670 } nir_ssa_def;
671
672 struct nir_src;
673
674 typedef struct {
675 nir_register *reg;
676 struct nir_src *indirect; /** < NULL for no indirect offset */
677 unsigned base_offset;
678
679 /* TODO use-def chain goes here */
680 } nir_reg_src;
681
682 typedef struct {
683 nir_instr *parent_instr;
684 struct list_head def_link;
685
686 nir_register *reg;
687 struct nir_src *indirect; /** < NULL for no indirect offset */
688 unsigned base_offset;
689
690 /* TODO def-use chain goes here */
691 } nir_reg_dest;
692
693 struct nir_if;
694
695 typedef struct nir_src {
696 union {
697 /** Instruction that consumes this value as a source. */
698 nir_instr *parent_instr;
699 struct nir_if *parent_if;
700 };
701
702 struct list_head use_link;
703
704 union {
705 nir_reg_src reg;
706 nir_ssa_def *ssa;
707 };
708
709 bool is_ssa;
710 } nir_src;
711
712 static inline nir_src
713 nir_src_init(void)
714 {
715 nir_src src = { { NULL } };
716 return src;
717 }
718
719 #define NIR_SRC_INIT nir_src_init()
720
721 #define nir_foreach_use(src, reg_or_ssa_def) \
722 list_for_each_entry(nir_src, src, &(reg_or_ssa_def)->uses, use_link)
723
724 #define nir_foreach_use_safe(src, reg_or_ssa_def) \
725 list_for_each_entry_safe(nir_src, src, &(reg_or_ssa_def)->uses, use_link)
726
727 #define nir_foreach_if_use(src, reg_or_ssa_def) \
728 list_for_each_entry(nir_src, src, &(reg_or_ssa_def)->if_uses, use_link)
729
730 #define nir_foreach_if_use_safe(src, reg_or_ssa_def) \
731 list_for_each_entry_safe(nir_src, src, &(reg_or_ssa_def)->if_uses, use_link)
732
733 typedef struct {
734 union {
735 nir_reg_dest reg;
736 nir_ssa_def ssa;
737 };
738
739 bool is_ssa;
740 } nir_dest;
741
742 static inline nir_dest
743 nir_dest_init(void)
744 {
745 nir_dest dest = { { { NULL } } };
746 return dest;
747 }
748
749 #define NIR_DEST_INIT nir_dest_init()
750
751 #define nir_foreach_def(dest, reg) \
752 list_for_each_entry(nir_dest, dest, &(reg)->defs, reg.def_link)
753
754 #define nir_foreach_def_safe(dest, reg) \
755 list_for_each_entry_safe(nir_dest, dest, &(reg)->defs, reg.def_link)
756
757 static inline nir_src
758 nir_src_for_ssa(nir_ssa_def *def)
759 {
760 nir_src src = NIR_SRC_INIT;
761
762 src.is_ssa = true;
763 src.ssa = def;
764
765 return src;
766 }
767
768 static inline nir_src
769 nir_src_for_reg(nir_register *reg)
770 {
771 nir_src src = NIR_SRC_INIT;
772
773 src.is_ssa = false;
774 src.reg.reg = reg;
775 src.reg.indirect = NULL;
776 src.reg.base_offset = 0;
777
778 return src;
779 }
780
781 static inline nir_dest
782 nir_dest_for_reg(nir_register *reg)
783 {
784 nir_dest dest = NIR_DEST_INIT;
785
786 dest.reg.reg = reg;
787
788 return dest;
789 }
790
791 static inline unsigned
792 nir_src_bit_size(nir_src src)
793 {
794 return src.is_ssa ? src.ssa->bit_size : src.reg.reg->bit_size;
795 }
796
797 static inline unsigned
798 nir_src_num_components(nir_src src)
799 {
800 return src.is_ssa ? src.ssa->num_components : src.reg.reg->num_components;
801 }
802
803 static inline bool
804 nir_src_is_const(nir_src src)
805 {
806 return src.is_ssa &&
807 src.ssa->parent_instr->type == nir_instr_type_load_const;
808 }
809
810 static inline unsigned
811 nir_dest_bit_size(nir_dest dest)
812 {
813 return dest.is_ssa ? dest.ssa.bit_size : dest.reg.reg->bit_size;
814 }
815
816 static inline unsigned
817 nir_dest_num_components(nir_dest dest)
818 {
819 return dest.is_ssa ? dest.ssa.num_components : dest.reg.reg->num_components;
820 }
821
822 void nir_src_copy(nir_src *dest, const nir_src *src, void *instr_or_if);
823 void nir_dest_copy(nir_dest *dest, const nir_dest *src, nir_instr *instr);
824
825 typedef struct {
826 nir_src src;
827
828 /**
829 * \name input modifiers
830 */
831 /*@{*/
832 /**
833 * For inputs interpreted as floating point, flips the sign bit. For
834 * inputs interpreted as integers, performs the two's complement negation.
835 */
836 bool negate;
837
838 /**
839 * Clears the sign bit for floating point values, and computes the integer
840 * absolute value for integers. Note that the negate modifier acts after
841 * the absolute value modifier, therefore if both are set then all inputs
842 * will become negative.
843 */
844 bool abs;
845 /*@}*/
846
847 /**
848 * For each input component, says which component of the register it is
849 * chosen from. Note that which elements of the swizzle are used and which
850 * are ignored are based on the write mask for most opcodes - for example,
851 * a statement like "foo.xzw = bar.zyx" would have a writemask of 1101b and
852 * a swizzle of {2, x, 1, 0} where x means "don't care."
853 */
854 uint8_t swizzle[NIR_MAX_VEC_COMPONENTS];
855 } nir_alu_src;
856
857 typedef struct {
858 nir_dest dest;
859
860 /**
861 * \name saturate output modifier
862 *
863 * Only valid for opcodes that output floating-point numbers. Clamps the
864 * output to between 0.0 and 1.0 inclusive.
865 */
866
867 bool saturate;
868
869 unsigned write_mask : NIR_MAX_VEC_COMPONENTS; /* ignored if dest.is_ssa is true */
870 } nir_alu_dest;
871
872 /** NIR sized and unsized types
873 *
874 * The values in this enum are carefully chosen so that the sized type is
875 * just the unsized type OR the number of bits.
876 */
877 typedef enum {
878 nir_type_invalid = 0, /* Not a valid type */
879 nir_type_int = 2,
880 nir_type_uint = 4,
881 nir_type_bool = 6,
882 nir_type_float = 128,
883 nir_type_bool1 = 1 | nir_type_bool,
884 nir_type_bool32 = 32 | nir_type_bool,
885 nir_type_int1 = 1 | nir_type_int,
886 nir_type_int8 = 8 | nir_type_int,
887 nir_type_int16 = 16 | nir_type_int,
888 nir_type_int32 = 32 | nir_type_int,
889 nir_type_int64 = 64 | nir_type_int,
890 nir_type_uint1 = 1 | nir_type_uint,
891 nir_type_uint8 = 8 | nir_type_uint,
892 nir_type_uint16 = 16 | nir_type_uint,
893 nir_type_uint32 = 32 | nir_type_uint,
894 nir_type_uint64 = 64 | nir_type_uint,
895 nir_type_float16 = 16 | nir_type_float,
896 nir_type_float32 = 32 | nir_type_float,
897 nir_type_float64 = 64 | nir_type_float,
898 } nir_alu_type;
899
900 #define NIR_ALU_TYPE_SIZE_MASK 0x79
901 #define NIR_ALU_TYPE_BASE_TYPE_MASK 0x86
902
903 static inline unsigned
904 nir_alu_type_get_type_size(nir_alu_type type)
905 {
906 return type & NIR_ALU_TYPE_SIZE_MASK;
907 }
908
909 static inline unsigned
910 nir_alu_type_get_base_type(nir_alu_type type)
911 {
912 return type & NIR_ALU_TYPE_BASE_TYPE_MASK;
913 }
914
915 static inline nir_alu_type
916 nir_get_nir_type_for_glsl_base_type(enum glsl_base_type base_type)
917 {
918 switch (base_type) {
919 case GLSL_TYPE_BOOL:
920 return nir_type_bool1;
921 break;
922 case GLSL_TYPE_UINT:
923 return nir_type_uint32;
924 break;
925 case GLSL_TYPE_INT:
926 return nir_type_int32;
927 break;
928 case GLSL_TYPE_UINT16:
929 return nir_type_uint16;
930 break;
931 case GLSL_TYPE_INT16:
932 return nir_type_int16;
933 break;
934 case GLSL_TYPE_UINT8:
935 return nir_type_uint8;
936 case GLSL_TYPE_INT8:
937 return nir_type_int8;
938 case GLSL_TYPE_UINT64:
939 return nir_type_uint64;
940 break;
941 case GLSL_TYPE_INT64:
942 return nir_type_int64;
943 break;
944 case GLSL_TYPE_FLOAT:
945 return nir_type_float32;
946 break;
947 case GLSL_TYPE_FLOAT16:
948 return nir_type_float16;
949 break;
950 case GLSL_TYPE_DOUBLE:
951 return nir_type_float64;
952 break;
953
954 case GLSL_TYPE_SAMPLER:
955 case GLSL_TYPE_IMAGE:
956 case GLSL_TYPE_ATOMIC_UINT:
957 case GLSL_TYPE_STRUCT:
958 case GLSL_TYPE_INTERFACE:
959 case GLSL_TYPE_ARRAY:
960 case GLSL_TYPE_VOID:
961 case GLSL_TYPE_SUBROUTINE:
962 case GLSL_TYPE_FUNCTION:
963 case GLSL_TYPE_ERROR:
964 return nir_type_invalid;
965 }
966
967 unreachable("unknown type");
968 }
969
970 static inline nir_alu_type
971 nir_get_nir_type_for_glsl_type(const struct glsl_type *type)
972 {
973 return nir_get_nir_type_for_glsl_base_type(glsl_get_base_type(type));
974 }
975
976 nir_op nir_type_conversion_op(nir_alu_type src, nir_alu_type dst,
977 nir_rounding_mode rnd);
978
979 static inline nir_op
980 nir_op_vec(unsigned components)
981 {
982 switch (components) {
983 case 1: return nir_op_mov;
984 case 2: return nir_op_vec2;
985 case 3: return nir_op_vec3;
986 case 4: return nir_op_vec4;
987 default: unreachable("bad component count");
988 }
989 }
990
991 typedef enum {
992 /**
993 * Operation where the first two sources are commutative.
994 *
995 * For 2-source operations, this just mathematical commutativity. Some
996 * 3-source operations, like ffma, are only commutative in the first two
997 * sources.
998 */
999 NIR_OP_IS_2SRC_COMMUTATIVE = (1 << 0),
1000 NIR_OP_IS_ASSOCIATIVE = (1 << 1),
1001 } nir_op_algebraic_property;
1002
1003 typedef struct {
1004 const char *name;
1005
1006 unsigned num_inputs;
1007
1008 /**
1009 * The number of components in the output
1010 *
1011 * If non-zero, this is the size of the output and input sizes are
1012 * explicitly given; swizzle and writemask are still in effect, but if
1013 * the output component is masked out, then the input component may
1014 * still be in use.
1015 *
1016 * If zero, the opcode acts in the standard, per-component manner; the
1017 * operation is performed on each component (except the ones that are
1018 * masked out) with the input being taken from the input swizzle for
1019 * that component.
1020 *
1021 * The size of some of the inputs may be given (i.e. non-zero) even
1022 * though output_size is zero; in that case, the inputs with a zero
1023 * size act per-component, while the inputs with non-zero size don't.
1024 */
1025 unsigned output_size;
1026
1027 /**
1028 * The type of vector that the instruction outputs. Note that the
1029 * staurate modifier is only allowed on outputs with the float type.
1030 */
1031
1032 nir_alu_type output_type;
1033
1034 /**
1035 * The number of components in each input
1036 */
1037 unsigned input_sizes[NIR_MAX_VEC_COMPONENTS];
1038
1039 /**
1040 * The type of vector that each input takes. Note that negate and
1041 * absolute value are only allowed on inputs with int or float type and
1042 * behave differently on the two.
1043 */
1044 nir_alu_type input_types[NIR_MAX_VEC_COMPONENTS];
1045
1046 nir_op_algebraic_property algebraic_properties;
1047
1048 /* Whether this represents a numeric conversion opcode */
1049 bool is_conversion;
1050 } nir_op_info;
1051
1052 extern const nir_op_info nir_op_infos[nir_num_opcodes];
1053
1054 typedef struct nir_alu_instr {
1055 nir_instr instr;
1056 nir_op op;
1057
1058 /** Indicates that this ALU instruction generates an exact value
1059 *
1060 * This is kind of a mixture of GLSL "precise" and "invariant" and not
1061 * really equivalent to either. This indicates that the value generated by
1062 * this operation is high-precision and any code transformations that touch
1063 * it must ensure that the resulting value is bit-for-bit identical to the
1064 * original.
1065 */
1066 bool exact:1;
1067
1068 /**
1069 * Indicates that this instruction do not cause wrapping to occur, in the
1070 * form of overflow or underflow.
1071 */
1072 bool no_signed_wrap:1;
1073 bool no_unsigned_wrap:1;
1074
1075 nir_alu_dest dest;
1076 nir_alu_src src[];
1077 } nir_alu_instr;
1078
1079 void nir_alu_src_copy(nir_alu_src *dest, const nir_alu_src *src,
1080 nir_alu_instr *instr);
1081 void nir_alu_dest_copy(nir_alu_dest *dest, const nir_alu_dest *src,
1082 nir_alu_instr *instr);
1083
1084 /* is this source channel used? */
1085 static inline bool
1086 nir_alu_instr_channel_used(const nir_alu_instr *instr, unsigned src,
1087 unsigned channel)
1088 {
1089 if (nir_op_infos[instr->op].input_sizes[src] > 0)
1090 return channel < nir_op_infos[instr->op].input_sizes[src];
1091
1092 return (instr->dest.write_mask >> channel) & 1;
1093 }
1094
1095 static inline nir_component_mask_t
1096 nir_alu_instr_src_read_mask(const nir_alu_instr *instr, unsigned src)
1097 {
1098 nir_component_mask_t read_mask = 0;
1099 for (unsigned c = 0; c < NIR_MAX_VEC_COMPONENTS; c++) {
1100 if (!nir_alu_instr_channel_used(instr, src, c))
1101 continue;
1102
1103 read_mask |= (1 << instr->src[src].swizzle[c]);
1104 }
1105 return read_mask;
1106 }
1107
1108 /**
1109 * Get the number of channels used for a source
1110 */
1111 static inline unsigned
1112 nir_ssa_alu_instr_src_components(const nir_alu_instr *instr, unsigned src)
1113 {
1114 if (nir_op_infos[instr->op].input_sizes[src] > 0)
1115 return nir_op_infos[instr->op].input_sizes[src];
1116
1117 return nir_dest_num_components(instr->dest.dest);
1118 }
1119
1120 bool nir_const_value_negative_equal(nir_const_value c1, nir_const_value c2,
1121 nir_alu_type full_type);
1122
1123 bool nir_alu_srcs_equal(const nir_alu_instr *alu1, const nir_alu_instr *alu2,
1124 unsigned src1, unsigned src2);
1125
1126 bool nir_alu_srcs_negative_equal(const nir_alu_instr *alu1,
1127 const nir_alu_instr *alu2,
1128 unsigned src1, unsigned src2);
1129
1130 typedef enum {
1131 nir_deref_type_var,
1132 nir_deref_type_array,
1133 nir_deref_type_array_wildcard,
1134 nir_deref_type_ptr_as_array,
1135 nir_deref_type_struct,
1136 nir_deref_type_cast,
1137 } nir_deref_type;
1138
1139 typedef struct {
1140 nir_instr instr;
1141
1142 /** The type of this deref instruction */
1143 nir_deref_type deref_type;
1144
1145 /** The mode of the underlying variable */
1146 nir_variable_mode mode;
1147
1148 /** The dereferenced type of the resulting pointer value */
1149 const struct glsl_type *type;
1150
1151 union {
1152 /** Variable being dereferenced if deref_type is a deref_var */
1153 nir_variable *var;
1154
1155 /** Parent deref if deref_type is not deref_var */
1156 nir_src parent;
1157 };
1158
1159 /** Additional deref parameters */
1160 union {
1161 struct {
1162 nir_src index;
1163 } arr;
1164
1165 struct {
1166 unsigned index;
1167 } strct;
1168
1169 struct {
1170 unsigned ptr_stride;
1171 } cast;
1172 };
1173
1174 /** Destination to store the resulting "pointer" */
1175 nir_dest dest;
1176 } nir_deref_instr;
1177
1178 static inline nir_deref_instr *nir_src_as_deref(nir_src src);
1179
1180 static inline nir_deref_instr *
1181 nir_deref_instr_parent(const nir_deref_instr *instr)
1182 {
1183 if (instr->deref_type == nir_deref_type_var)
1184 return NULL;
1185 else
1186 return nir_src_as_deref(instr->parent);
1187 }
1188
1189 static inline nir_variable *
1190 nir_deref_instr_get_variable(const nir_deref_instr *instr)
1191 {
1192 while (instr->deref_type != nir_deref_type_var) {
1193 if (instr->deref_type == nir_deref_type_cast)
1194 return NULL;
1195
1196 instr = nir_deref_instr_parent(instr);
1197 }
1198
1199 return instr->var;
1200 }
1201
1202 bool nir_deref_instr_has_indirect(nir_deref_instr *instr);
1203 bool nir_deref_instr_has_complex_use(nir_deref_instr *instr);
1204
1205 bool nir_deref_instr_remove_if_unused(nir_deref_instr *instr);
1206
1207 unsigned nir_deref_instr_ptr_as_array_stride(nir_deref_instr *instr);
1208
1209 typedef struct {
1210 nir_instr instr;
1211
1212 struct nir_function *callee;
1213
1214 unsigned num_params;
1215 nir_src params[];
1216 } nir_call_instr;
1217
1218 #include "nir_intrinsics.h"
1219
1220 #define NIR_INTRINSIC_MAX_CONST_INDEX 4
1221
1222 /** Represents an intrinsic
1223 *
1224 * An intrinsic is an instruction type for handling things that are
1225 * more-or-less regular operations but don't just consume and produce SSA
1226 * values like ALU operations do. Intrinsics are not for things that have
1227 * special semantic meaning such as phi nodes and parallel copies.
1228 * Examples of intrinsics include variable load/store operations, system
1229 * value loads, and the like. Even though texturing more-or-less falls
1230 * under this category, texturing is its own instruction type because
1231 * trying to represent texturing with intrinsics would lead to a
1232 * combinatorial explosion of intrinsic opcodes.
1233 *
1234 * By having a single instruction type for handling a lot of different
1235 * cases, optimization passes can look for intrinsics and, for the most
1236 * part, completely ignore them. Each intrinsic type also has a few
1237 * possible flags that govern whether or not they can be reordered or
1238 * eliminated. That way passes like dead code elimination can still work
1239 * on intrisics without understanding the meaning of each.
1240 *
1241 * Each intrinsic has some number of constant indices, some number of
1242 * variables, and some number of sources. What these sources, variables,
1243 * and indices mean depends on the intrinsic and is documented with the
1244 * intrinsic declaration in nir_intrinsics.h. Intrinsics and texture
1245 * instructions are the only types of instruction that can operate on
1246 * variables.
1247 */
1248 typedef struct {
1249 nir_instr instr;
1250
1251 nir_intrinsic_op intrinsic;
1252
1253 nir_dest dest;
1254
1255 /** number of components if this is a vectorized intrinsic
1256 *
1257 * Similarly to ALU operations, some intrinsics are vectorized.
1258 * An intrinsic is vectorized if nir_intrinsic_infos.dest_components == 0.
1259 * For vectorized intrinsics, the num_components field specifies the
1260 * number of destination components and the number of source components
1261 * for all sources with nir_intrinsic_infos.src_components[i] == 0.
1262 */
1263 uint8_t num_components;
1264
1265 int const_index[NIR_INTRINSIC_MAX_CONST_INDEX];
1266
1267 nir_src src[];
1268 } nir_intrinsic_instr;
1269
1270 static inline nir_variable *
1271 nir_intrinsic_get_var(nir_intrinsic_instr *intrin, unsigned i)
1272 {
1273 return nir_deref_instr_get_variable(nir_src_as_deref(intrin->src[i]));
1274 }
1275
1276 /**
1277 * \name NIR intrinsics semantic flags
1278 *
1279 * information about what the compiler can do with the intrinsics.
1280 *
1281 * \sa nir_intrinsic_info::flags
1282 */
1283 typedef enum {
1284 /**
1285 * whether the intrinsic can be safely eliminated if none of its output
1286 * value is not being used.
1287 */
1288 NIR_INTRINSIC_CAN_ELIMINATE = (1 << 0),
1289
1290 /**
1291 * Whether the intrinsic can be reordered with respect to any other
1292 * intrinsic, i.e. whether the only reordering dependencies of the
1293 * intrinsic are due to the register reads/writes.
1294 */
1295 NIR_INTRINSIC_CAN_REORDER = (1 << 1),
1296 } nir_intrinsic_semantic_flag;
1297
1298 /**
1299 * \name NIR intrinsics const-index flag
1300 *
1301 * Indicates the usage of a const_index slot.
1302 *
1303 * \sa nir_intrinsic_info::index_map
1304 */
1305 typedef enum {
1306 /**
1307 * Generally instructions that take a offset src argument, can encode
1308 * a constant 'base' value which is added to the offset.
1309 */
1310 NIR_INTRINSIC_BASE = 1,
1311
1312 /**
1313 * For store instructions, a writemask for the store.
1314 */
1315 NIR_INTRINSIC_WRMASK,
1316
1317 /**
1318 * The stream-id for GS emit_vertex/end_primitive intrinsics.
1319 */
1320 NIR_INTRINSIC_STREAM_ID,
1321
1322 /**
1323 * The clip-plane id for load_user_clip_plane intrinsic.
1324 */
1325 NIR_INTRINSIC_UCP_ID,
1326
1327 /**
1328 * The amount of data, starting from BASE, that this instruction may
1329 * access. This is used to provide bounds if the offset is not constant.
1330 */
1331 NIR_INTRINSIC_RANGE,
1332
1333 /**
1334 * The Vulkan descriptor set for vulkan_resource_index intrinsic.
1335 */
1336 NIR_INTRINSIC_DESC_SET,
1337
1338 /**
1339 * The Vulkan descriptor set binding for vulkan_resource_index intrinsic.
1340 */
1341 NIR_INTRINSIC_BINDING,
1342
1343 /**
1344 * Component offset.
1345 */
1346 NIR_INTRINSIC_COMPONENT,
1347
1348 /**
1349 * Interpolation mode (only meaningful for FS inputs).
1350 */
1351 NIR_INTRINSIC_INTERP_MODE,
1352
1353 /**
1354 * A binary nir_op to use when performing a reduction or scan operation
1355 */
1356 NIR_INTRINSIC_REDUCTION_OP,
1357
1358 /**
1359 * Cluster size for reduction operations
1360 */
1361 NIR_INTRINSIC_CLUSTER_SIZE,
1362
1363 /**
1364 * Parameter index for a load_param intrinsic
1365 */
1366 NIR_INTRINSIC_PARAM_IDX,
1367
1368 /**
1369 * Image dimensionality for image intrinsics
1370 *
1371 * One of GLSL_SAMPLER_DIM_*
1372 */
1373 NIR_INTRINSIC_IMAGE_DIM,
1374
1375 /**
1376 * Non-zero if we are accessing an array image
1377 */
1378 NIR_INTRINSIC_IMAGE_ARRAY,
1379
1380 /**
1381 * Image format for image intrinsics
1382 */
1383 NIR_INTRINSIC_FORMAT,
1384
1385 /**
1386 * Access qualifiers for image and memory access intrinsics
1387 */
1388 NIR_INTRINSIC_ACCESS,
1389
1390 /**
1391 * Alignment for offsets and addresses
1392 *
1393 * These two parameters, specify an alignment in terms of a multiplier and
1394 * an offset. The offset or address parameter X of the intrinsic is
1395 * guaranteed to satisfy the following:
1396 *
1397 * (X - align_offset) % align_mul == 0
1398 */
1399 NIR_INTRINSIC_ALIGN_MUL,
1400 NIR_INTRINSIC_ALIGN_OFFSET,
1401
1402 /**
1403 * The Vulkan descriptor type for a vulkan_resource_[re]index intrinsic.
1404 */
1405 NIR_INTRINSIC_DESC_TYPE,
1406
1407 /**
1408 * The nir_alu_type of a uniform/input/output
1409 */
1410 NIR_INTRINSIC_TYPE,
1411
1412 /**
1413 * The swizzle mask for the instructions
1414 * SwizzleInvocationsAMD and SwizzleInvocationsMaskedAMD
1415 */
1416 NIR_INTRINSIC_SWIZZLE_MASK,
1417
1418 /* Separate source/dest access flags for copies */
1419 NIR_INTRINSIC_SRC_ACCESS = 21,
1420 NIR_INTRINSIC_DST_ACCESS = 22,
1421
1422 NIR_INTRINSIC_NUM_INDEX_FLAGS,
1423
1424 } nir_intrinsic_index_flag;
1425
1426 #define NIR_INTRINSIC_MAX_INPUTS 5
1427
1428 typedef struct {
1429 const char *name;
1430
1431 unsigned num_srcs; /** < number of register/SSA inputs */
1432
1433 /** number of components of each input register
1434 *
1435 * If this value is 0, the number of components is given by the
1436 * num_components field of nir_intrinsic_instr. If this value is -1, the
1437 * intrinsic consumes however many components are provided and it is not
1438 * validated at all.
1439 */
1440 int src_components[NIR_INTRINSIC_MAX_INPUTS];
1441
1442 bool has_dest;
1443
1444 /** number of components of the output register
1445 *
1446 * If this value is 0, the number of components is given by the
1447 * num_components field of nir_intrinsic_instr.
1448 */
1449 unsigned dest_components;
1450
1451 /** bitfield of legal bit sizes */
1452 unsigned dest_bit_sizes;
1453
1454 /** the number of constant indices used by the intrinsic */
1455 unsigned num_indices;
1456
1457 /** indicates the usage of intr->const_index[n] */
1458 unsigned index_map[NIR_INTRINSIC_NUM_INDEX_FLAGS];
1459
1460 /** semantic flags for calls to this intrinsic */
1461 nir_intrinsic_semantic_flag flags;
1462 } nir_intrinsic_info;
1463
1464 extern const nir_intrinsic_info nir_intrinsic_infos[nir_num_intrinsics];
1465
1466 static inline unsigned
1467 nir_intrinsic_src_components(nir_intrinsic_instr *intr, unsigned srcn)
1468 {
1469 const nir_intrinsic_info *info = &nir_intrinsic_infos[intr->intrinsic];
1470 assert(srcn < info->num_srcs);
1471 if (info->src_components[srcn] > 0)
1472 return info->src_components[srcn];
1473 else if (info->src_components[srcn] == 0)
1474 return intr->num_components;
1475 else
1476 return nir_src_num_components(intr->src[srcn]);
1477 }
1478
1479 static inline unsigned
1480 nir_intrinsic_dest_components(nir_intrinsic_instr *intr)
1481 {
1482 const nir_intrinsic_info *info = &nir_intrinsic_infos[intr->intrinsic];
1483 if (!info->has_dest)
1484 return 0;
1485 else if (info->dest_components)
1486 return info->dest_components;
1487 else
1488 return intr->num_components;
1489 }
1490
1491 #define INTRINSIC_IDX_ACCESSORS(name, flag, type) \
1492 static inline type \
1493 nir_intrinsic_##name(const nir_intrinsic_instr *instr) \
1494 { \
1495 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic]; \
1496 assert(info->index_map[NIR_INTRINSIC_##flag] > 0); \
1497 return (type)instr->const_index[info->index_map[NIR_INTRINSIC_##flag] - 1]; \
1498 } \
1499 static inline void \
1500 nir_intrinsic_set_##name(nir_intrinsic_instr *instr, type val) \
1501 { \
1502 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic]; \
1503 assert(info->index_map[NIR_INTRINSIC_##flag] > 0); \
1504 instr->const_index[info->index_map[NIR_INTRINSIC_##flag] - 1] = val; \
1505 }
1506
1507 INTRINSIC_IDX_ACCESSORS(write_mask, WRMASK, unsigned)
1508 INTRINSIC_IDX_ACCESSORS(base, BASE, int)
1509 INTRINSIC_IDX_ACCESSORS(stream_id, STREAM_ID, unsigned)
1510 INTRINSIC_IDX_ACCESSORS(ucp_id, UCP_ID, unsigned)
1511 INTRINSIC_IDX_ACCESSORS(range, RANGE, unsigned)
1512 INTRINSIC_IDX_ACCESSORS(desc_set, DESC_SET, unsigned)
1513 INTRINSIC_IDX_ACCESSORS(binding, BINDING, unsigned)
1514 INTRINSIC_IDX_ACCESSORS(component, COMPONENT, unsigned)
1515 INTRINSIC_IDX_ACCESSORS(interp_mode, INTERP_MODE, unsigned)
1516 INTRINSIC_IDX_ACCESSORS(reduction_op, REDUCTION_OP, unsigned)
1517 INTRINSIC_IDX_ACCESSORS(cluster_size, CLUSTER_SIZE, unsigned)
1518 INTRINSIC_IDX_ACCESSORS(param_idx, PARAM_IDX, unsigned)
1519 INTRINSIC_IDX_ACCESSORS(image_dim, IMAGE_DIM, enum glsl_sampler_dim)
1520 INTRINSIC_IDX_ACCESSORS(image_array, IMAGE_ARRAY, bool)
1521 INTRINSIC_IDX_ACCESSORS(access, ACCESS, enum gl_access_qualifier)
1522 INTRINSIC_IDX_ACCESSORS(src_access, SRC_ACCESS, enum gl_access_qualifier)
1523 INTRINSIC_IDX_ACCESSORS(dst_access, DST_ACCESS, enum gl_access_qualifier)
1524 INTRINSIC_IDX_ACCESSORS(format, FORMAT, unsigned)
1525 INTRINSIC_IDX_ACCESSORS(align_mul, ALIGN_MUL, unsigned)
1526 INTRINSIC_IDX_ACCESSORS(align_offset, ALIGN_OFFSET, unsigned)
1527 INTRINSIC_IDX_ACCESSORS(desc_type, DESC_TYPE, unsigned)
1528 INTRINSIC_IDX_ACCESSORS(type, TYPE, nir_alu_type)
1529 INTRINSIC_IDX_ACCESSORS(swizzle_mask, SWIZZLE_MASK, unsigned)
1530
1531 static inline void
1532 nir_intrinsic_set_align(nir_intrinsic_instr *intrin,
1533 unsigned align_mul, unsigned align_offset)
1534 {
1535 assert(util_is_power_of_two_nonzero(align_mul));
1536 assert(align_offset < align_mul);
1537 nir_intrinsic_set_align_mul(intrin, align_mul);
1538 nir_intrinsic_set_align_offset(intrin, align_offset);
1539 }
1540
1541 /** Returns a simple alignment for a load/store intrinsic offset
1542 *
1543 * Instead of the full mul+offset alignment scheme provided by the ALIGN_MUL
1544 * and ALIGN_OFFSET parameters, this helper takes both into account and
1545 * provides a single simple alignment parameter. The offset X is guaranteed
1546 * to satisfy X % align == 0.
1547 */
1548 static inline unsigned
1549 nir_intrinsic_align(const nir_intrinsic_instr *intrin)
1550 {
1551 const unsigned align_mul = nir_intrinsic_align_mul(intrin);
1552 const unsigned align_offset = nir_intrinsic_align_offset(intrin);
1553 assert(align_offset < align_mul);
1554 return align_offset ? 1 << (ffs(align_offset) - 1) : align_mul;
1555 }
1556
1557 /* Converts a image_deref_* intrinsic into a image_* one */
1558 void nir_rewrite_image_intrinsic(nir_intrinsic_instr *instr,
1559 nir_ssa_def *handle, bool bindless);
1560
1561 /* Determine if an intrinsic can be arbitrarily reordered and eliminated. */
1562 static inline bool
1563 nir_intrinsic_can_reorder(nir_intrinsic_instr *instr)
1564 {
1565 if (instr->intrinsic == nir_intrinsic_load_deref ||
1566 instr->intrinsic == nir_intrinsic_load_ssbo ||
1567 instr->intrinsic == nir_intrinsic_bindless_image_load ||
1568 instr->intrinsic == nir_intrinsic_image_deref_load ||
1569 instr->intrinsic == nir_intrinsic_image_load) {
1570 return nir_intrinsic_access(instr) & ACCESS_CAN_REORDER;
1571 } else {
1572 const nir_intrinsic_info *info =
1573 &nir_intrinsic_infos[instr->intrinsic];
1574 return (info->flags & NIR_INTRINSIC_CAN_ELIMINATE) &&
1575 (info->flags & NIR_INTRINSIC_CAN_REORDER);
1576 }
1577 }
1578
1579 /**
1580 * \group texture information
1581 *
1582 * This gives semantic information about textures which is useful to the
1583 * frontend, the backend, and lowering passes, but not the optimizer.
1584 */
1585
1586 typedef enum {
1587 nir_tex_src_coord,
1588 nir_tex_src_projector,
1589 nir_tex_src_comparator, /* shadow comparator */
1590 nir_tex_src_offset,
1591 nir_tex_src_bias,
1592 nir_tex_src_lod,
1593 nir_tex_src_min_lod,
1594 nir_tex_src_ms_index, /* MSAA sample index */
1595 nir_tex_src_ms_mcs, /* MSAA compression value */
1596 nir_tex_src_ddx,
1597 nir_tex_src_ddy,
1598 nir_tex_src_texture_deref, /* < deref pointing to the texture */
1599 nir_tex_src_sampler_deref, /* < deref pointing to the sampler */
1600 nir_tex_src_texture_offset, /* < dynamically uniform indirect offset */
1601 nir_tex_src_sampler_offset, /* < dynamically uniform indirect offset */
1602 nir_tex_src_texture_handle, /* < bindless texture handle */
1603 nir_tex_src_sampler_handle, /* < bindless sampler handle */
1604 nir_tex_src_plane, /* < selects plane for planar textures */
1605 nir_num_tex_src_types
1606 } nir_tex_src_type;
1607
1608 typedef struct {
1609 nir_src src;
1610 nir_tex_src_type src_type;
1611 } nir_tex_src;
1612
1613 typedef enum {
1614 nir_texop_tex, /**< Regular texture look-up */
1615 nir_texop_txb, /**< Texture look-up with LOD bias */
1616 nir_texop_txl, /**< Texture look-up with explicit LOD */
1617 nir_texop_txd, /**< Texture look-up with partial derivatives */
1618 nir_texop_txf, /**< Texel fetch with explicit LOD */
1619 nir_texop_txf_ms, /**< Multisample texture fetch */
1620 nir_texop_txf_ms_fb, /**< Multisample texture fetch from framebuffer */
1621 nir_texop_txf_ms_mcs, /**< Multisample compression value fetch */
1622 nir_texop_txs, /**< Texture size */
1623 nir_texop_lod, /**< Texture lod query */
1624 nir_texop_tg4, /**< Texture gather */
1625 nir_texop_query_levels, /**< Texture levels query */
1626 nir_texop_texture_samples, /**< Texture samples query */
1627 nir_texop_samples_identical, /**< Query whether all samples are definitely
1628 * identical.
1629 */
1630 } nir_texop;
1631
1632 typedef struct {
1633 nir_instr instr;
1634
1635 enum glsl_sampler_dim sampler_dim;
1636 nir_alu_type dest_type;
1637
1638 nir_texop op;
1639 nir_dest dest;
1640 nir_tex_src *src;
1641 unsigned num_srcs, coord_components;
1642 bool is_array, is_shadow;
1643
1644 /**
1645 * If is_shadow is true, whether this is the old-style shadow that outputs 4
1646 * components or the new-style shadow that outputs 1 component.
1647 */
1648 bool is_new_style_shadow;
1649
1650 /* gather component selector */
1651 unsigned component : 2;
1652
1653 /* gather offsets */
1654 int8_t tg4_offsets[4][2];
1655
1656 /* True if the texture index or handle is not dynamically uniform */
1657 bool texture_non_uniform;
1658
1659 /* True if the sampler index or handle is not dynamically uniform */
1660 bool sampler_non_uniform;
1661
1662 /** The texture index
1663 *
1664 * If this texture instruction has a nir_tex_src_texture_offset source,
1665 * then the texture index is given by texture_index + texture_offset.
1666 */
1667 unsigned texture_index;
1668
1669 /** The size of the texture array or 0 if it's not an array */
1670 unsigned texture_array_size;
1671
1672 /** The sampler index
1673 *
1674 * The following operations do not require a sampler and, as such, this
1675 * field should be ignored:
1676 * - nir_texop_txf
1677 * - nir_texop_txf_ms
1678 * - nir_texop_txs
1679 * - nir_texop_lod
1680 * - nir_texop_query_levels
1681 * - nir_texop_texture_samples
1682 * - nir_texop_samples_identical
1683 *
1684 * If this texture instruction has a nir_tex_src_sampler_offset source,
1685 * then the sampler index is given by sampler_index + sampler_offset.
1686 */
1687 unsigned sampler_index;
1688 } nir_tex_instr;
1689
1690 static inline unsigned
1691 nir_tex_instr_dest_size(const nir_tex_instr *instr)
1692 {
1693 switch (instr->op) {
1694 case nir_texop_txs: {
1695 unsigned ret;
1696 switch (instr->sampler_dim) {
1697 case GLSL_SAMPLER_DIM_1D:
1698 case GLSL_SAMPLER_DIM_BUF:
1699 ret = 1;
1700 break;
1701 case GLSL_SAMPLER_DIM_2D:
1702 case GLSL_SAMPLER_DIM_CUBE:
1703 case GLSL_SAMPLER_DIM_MS:
1704 case GLSL_SAMPLER_DIM_RECT:
1705 case GLSL_SAMPLER_DIM_EXTERNAL:
1706 case GLSL_SAMPLER_DIM_SUBPASS:
1707 ret = 2;
1708 break;
1709 case GLSL_SAMPLER_DIM_3D:
1710 ret = 3;
1711 break;
1712 default:
1713 unreachable("not reached");
1714 }
1715 if (instr->is_array)
1716 ret++;
1717 return ret;
1718 }
1719
1720 case nir_texop_lod:
1721 return 2;
1722
1723 case nir_texop_texture_samples:
1724 case nir_texop_query_levels:
1725 case nir_texop_samples_identical:
1726 return 1;
1727
1728 default:
1729 if (instr->is_shadow && instr->is_new_style_shadow)
1730 return 1;
1731
1732 return 4;
1733 }
1734 }
1735
1736 /* Returns true if this texture operation queries something about the texture
1737 * rather than actually sampling it.
1738 */
1739 static inline bool
1740 nir_tex_instr_is_query(const nir_tex_instr *instr)
1741 {
1742 switch (instr->op) {
1743 case nir_texop_txs:
1744 case nir_texop_lod:
1745 case nir_texop_texture_samples:
1746 case nir_texop_query_levels:
1747 case nir_texop_txf_ms_mcs:
1748 return true;
1749 case nir_texop_tex:
1750 case nir_texop_txb:
1751 case nir_texop_txl:
1752 case nir_texop_txd:
1753 case nir_texop_txf:
1754 case nir_texop_txf_ms:
1755 case nir_texop_txf_ms_fb:
1756 case nir_texop_tg4:
1757 return false;
1758 default:
1759 unreachable("Invalid texture opcode");
1760 }
1761 }
1762
1763 static inline bool
1764 nir_alu_instr_is_comparison(const nir_alu_instr *instr)
1765 {
1766 switch (instr->op) {
1767 case nir_op_flt:
1768 case nir_op_fge:
1769 case nir_op_feq:
1770 case nir_op_fne:
1771 case nir_op_ilt:
1772 case nir_op_ult:
1773 case nir_op_ige:
1774 case nir_op_uge:
1775 case nir_op_ieq:
1776 case nir_op_ine:
1777 case nir_op_i2b1:
1778 case nir_op_f2b1:
1779 case nir_op_inot:
1780 return true;
1781 default:
1782 return false;
1783 }
1784 }
1785
1786 static inline nir_alu_type
1787 nir_tex_instr_src_type(const nir_tex_instr *instr, unsigned src)
1788 {
1789 switch (instr->src[src].src_type) {
1790 case nir_tex_src_coord:
1791 switch (instr->op) {
1792 case nir_texop_txf:
1793 case nir_texop_txf_ms:
1794 case nir_texop_txf_ms_fb:
1795 case nir_texop_txf_ms_mcs:
1796 case nir_texop_samples_identical:
1797 return nir_type_int;
1798
1799 default:
1800 return nir_type_float;
1801 }
1802
1803 case nir_tex_src_lod:
1804 switch (instr->op) {
1805 case nir_texop_txs:
1806 case nir_texop_txf:
1807 return nir_type_int;
1808
1809 default:
1810 return nir_type_float;
1811 }
1812
1813 case nir_tex_src_projector:
1814 case nir_tex_src_comparator:
1815 case nir_tex_src_bias:
1816 case nir_tex_src_ddx:
1817 case nir_tex_src_ddy:
1818 return nir_type_float;
1819
1820 case nir_tex_src_offset:
1821 case nir_tex_src_ms_index:
1822 case nir_tex_src_texture_offset:
1823 case nir_tex_src_sampler_offset:
1824 return nir_type_int;
1825
1826 default:
1827 unreachable("Invalid texture source type");
1828 }
1829 }
1830
1831 static inline unsigned
1832 nir_tex_instr_src_size(const nir_tex_instr *instr, unsigned src)
1833 {
1834 if (instr->src[src].src_type == nir_tex_src_coord)
1835 return instr->coord_components;
1836
1837 /* The MCS value is expected to be a vec4 returned by a txf_ms_mcs */
1838 if (instr->src[src].src_type == nir_tex_src_ms_mcs)
1839 return 4;
1840
1841 if (instr->src[src].src_type == nir_tex_src_ddx ||
1842 instr->src[src].src_type == nir_tex_src_ddy) {
1843 if (instr->is_array)
1844 return instr->coord_components - 1;
1845 else
1846 return instr->coord_components;
1847 }
1848
1849 /* Usual APIs don't allow cube + offset, but we allow it, with 2 coords for
1850 * the offset, since a cube maps to a single face.
1851 */
1852 if (instr->src[src].src_type == nir_tex_src_offset) {
1853 if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE)
1854 return 2;
1855 else if (instr->is_array)
1856 return instr->coord_components - 1;
1857 else
1858 return instr->coord_components;
1859 }
1860
1861 return 1;
1862 }
1863
1864 static inline int
1865 nir_tex_instr_src_index(const nir_tex_instr *instr, nir_tex_src_type type)
1866 {
1867 for (unsigned i = 0; i < instr->num_srcs; i++)
1868 if (instr->src[i].src_type == type)
1869 return (int) i;
1870
1871 return -1;
1872 }
1873
1874 void nir_tex_instr_add_src(nir_tex_instr *tex,
1875 nir_tex_src_type src_type,
1876 nir_src src);
1877
1878 void nir_tex_instr_remove_src(nir_tex_instr *tex, unsigned src_idx);
1879
1880 bool nir_tex_instr_has_explicit_tg4_offsets(nir_tex_instr *tex);
1881
1882 typedef struct {
1883 nir_instr instr;
1884
1885 nir_ssa_def def;
1886
1887 nir_const_value value[];
1888 } nir_load_const_instr;
1889
1890 #define nir_const_load_to_arr(arr, l, m) \
1891 { \
1892 nir_const_value_to_array(arr, l->value, l->def.num_components, m); \
1893 } while (false);
1894
1895 typedef enum {
1896 nir_jump_return,
1897 nir_jump_break,
1898 nir_jump_continue,
1899 } nir_jump_type;
1900
1901 typedef struct {
1902 nir_instr instr;
1903 nir_jump_type type;
1904 } nir_jump_instr;
1905
1906 /* creates a new SSA variable in an undefined state */
1907
1908 typedef struct {
1909 nir_instr instr;
1910 nir_ssa_def def;
1911 } nir_ssa_undef_instr;
1912
1913 typedef struct {
1914 struct exec_node node;
1915
1916 /* The predecessor block corresponding to this source */
1917 struct nir_block *pred;
1918
1919 nir_src src;
1920 } nir_phi_src;
1921
1922 #define nir_foreach_phi_src(phi_src, phi) \
1923 foreach_list_typed(nir_phi_src, phi_src, node, &(phi)->srcs)
1924 #define nir_foreach_phi_src_safe(phi_src, phi) \
1925 foreach_list_typed_safe(nir_phi_src, phi_src, node, &(phi)->srcs)
1926
1927 typedef struct {
1928 nir_instr instr;
1929
1930 struct exec_list srcs; /** < list of nir_phi_src */
1931
1932 nir_dest dest;
1933 } nir_phi_instr;
1934
1935 typedef struct {
1936 struct exec_node node;
1937 nir_src src;
1938 nir_dest dest;
1939 } nir_parallel_copy_entry;
1940
1941 #define nir_foreach_parallel_copy_entry(entry, pcopy) \
1942 foreach_list_typed(nir_parallel_copy_entry, entry, node, &(pcopy)->entries)
1943
1944 typedef struct {
1945 nir_instr instr;
1946
1947 /* A list of nir_parallel_copy_entrys. The sources of all of the
1948 * entries are copied to the corresponding destinations "in parallel".
1949 * In other words, if we have two entries: a -> b and b -> a, the values
1950 * get swapped.
1951 */
1952 struct exec_list entries;
1953 } nir_parallel_copy_instr;
1954
1955 NIR_DEFINE_CAST(nir_instr_as_alu, nir_instr, nir_alu_instr, instr,
1956 type, nir_instr_type_alu)
1957 NIR_DEFINE_CAST(nir_instr_as_deref, nir_instr, nir_deref_instr, instr,
1958 type, nir_instr_type_deref)
1959 NIR_DEFINE_CAST(nir_instr_as_call, nir_instr, nir_call_instr, instr,
1960 type, nir_instr_type_call)
1961 NIR_DEFINE_CAST(nir_instr_as_jump, nir_instr, nir_jump_instr, instr,
1962 type, nir_instr_type_jump)
1963 NIR_DEFINE_CAST(nir_instr_as_tex, nir_instr, nir_tex_instr, instr,
1964 type, nir_instr_type_tex)
1965 NIR_DEFINE_CAST(nir_instr_as_intrinsic, nir_instr, nir_intrinsic_instr, instr,
1966 type, nir_instr_type_intrinsic)
1967 NIR_DEFINE_CAST(nir_instr_as_load_const, nir_instr, nir_load_const_instr, instr,
1968 type, nir_instr_type_load_const)
1969 NIR_DEFINE_CAST(nir_instr_as_ssa_undef, nir_instr, nir_ssa_undef_instr, instr,
1970 type, nir_instr_type_ssa_undef)
1971 NIR_DEFINE_CAST(nir_instr_as_phi, nir_instr, nir_phi_instr, instr,
1972 type, nir_instr_type_phi)
1973 NIR_DEFINE_CAST(nir_instr_as_parallel_copy, nir_instr,
1974 nir_parallel_copy_instr, instr,
1975 type, nir_instr_type_parallel_copy)
1976
1977
1978 #define NIR_DEFINE_SRC_AS_CONST(type, suffix) \
1979 static inline type \
1980 nir_src_comp_as_##suffix(nir_src src, unsigned comp) \
1981 { \
1982 assert(nir_src_is_const(src)); \
1983 nir_load_const_instr *load = \
1984 nir_instr_as_load_const(src.ssa->parent_instr); \
1985 assert(comp < load->def.num_components); \
1986 return nir_const_value_as_##suffix(load->value[comp], \
1987 load->def.bit_size); \
1988 } \
1989 \
1990 static inline type \
1991 nir_src_as_##suffix(nir_src src) \
1992 { \
1993 assert(nir_src_num_components(src) == 1); \
1994 return nir_src_comp_as_##suffix(src, 0); \
1995 }
1996
1997 NIR_DEFINE_SRC_AS_CONST(int64_t, int)
1998 NIR_DEFINE_SRC_AS_CONST(uint64_t, uint)
1999 NIR_DEFINE_SRC_AS_CONST(bool, bool)
2000 NIR_DEFINE_SRC_AS_CONST(double, float)
2001
2002 #undef NIR_DEFINE_SRC_AS_CONST
2003
2004
2005 typedef struct {
2006 nir_ssa_def *def;
2007 unsigned comp;
2008 } nir_ssa_scalar;
2009
2010 static inline bool
2011 nir_ssa_scalar_is_const(nir_ssa_scalar s)
2012 {
2013 return s.def->parent_instr->type == nir_instr_type_load_const;
2014 }
2015
2016 static inline nir_const_value
2017 nir_ssa_scalar_as_const_value(nir_ssa_scalar s)
2018 {
2019 assert(s.comp < s.def->num_components);
2020 nir_load_const_instr *load = nir_instr_as_load_const(s.def->parent_instr);
2021 return load->value[s.comp];
2022 }
2023
2024 #define NIR_DEFINE_SCALAR_AS_CONST(type, suffix) \
2025 static inline type \
2026 nir_ssa_scalar_as_##suffix(nir_ssa_scalar s) \
2027 { \
2028 return nir_const_value_as_##suffix( \
2029 nir_ssa_scalar_as_const_value(s), s.def->bit_size); \
2030 }
2031
2032 NIR_DEFINE_SCALAR_AS_CONST(int64_t, int)
2033 NIR_DEFINE_SCALAR_AS_CONST(uint64_t, uint)
2034 NIR_DEFINE_SCALAR_AS_CONST(bool, bool)
2035 NIR_DEFINE_SCALAR_AS_CONST(double, float)
2036
2037 #undef NIR_DEFINE_SCALAR_AS_CONST
2038
2039 static inline bool
2040 nir_ssa_scalar_is_alu(nir_ssa_scalar s)
2041 {
2042 return s.def->parent_instr->type == nir_instr_type_alu;
2043 }
2044
2045 static inline nir_op
2046 nir_ssa_scalar_alu_op(nir_ssa_scalar s)
2047 {
2048 return nir_instr_as_alu(s.def->parent_instr)->op;
2049 }
2050
2051 static inline nir_ssa_scalar
2052 nir_ssa_scalar_chase_alu_src(nir_ssa_scalar s, unsigned alu_src_idx)
2053 {
2054 nir_ssa_scalar out = { NULL, 0 };
2055
2056 nir_alu_instr *alu = nir_instr_as_alu(s.def->parent_instr);
2057 assert(alu_src_idx < nir_op_infos[alu->op].num_inputs);
2058
2059 /* Our component must be written */
2060 assert(s.comp < s.def->num_components);
2061 assert(alu->dest.write_mask & (1u << s.comp));
2062
2063 assert(alu->src[alu_src_idx].src.is_ssa);
2064 out.def = alu->src[alu_src_idx].src.ssa;
2065
2066 if (nir_op_infos[alu->op].input_sizes[alu_src_idx] == 0) {
2067 /* The ALU src is unsized so the source component follows the
2068 * destination component.
2069 */
2070 out.comp = alu->src[alu_src_idx].swizzle[s.comp];
2071 } else {
2072 /* This is a sized source so all source components work together to
2073 * produce all the destination components. Since we need to return a
2074 * scalar, this only works if the source is a scalar.
2075 */
2076 assert(nir_op_infos[alu->op].input_sizes[alu_src_idx] == 1);
2077 out.comp = alu->src[alu_src_idx].swizzle[0];
2078 }
2079 assert(out.comp < out.def->num_components);
2080
2081 return out;
2082 }
2083
2084
2085 /*
2086 * Control flow
2087 *
2088 * Control flow consists of a tree of control flow nodes, which include
2089 * if-statements and loops. The leaves of the tree are basic blocks, lists of
2090 * instructions that always run start-to-finish. Each basic block also keeps
2091 * track of its successors (blocks which may run immediately after the current
2092 * block) and predecessors (blocks which could have run immediately before the
2093 * current block). Each function also has a start block and an end block which
2094 * all return statements point to (which is always empty). Together, all the
2095 * blocks with their predecessors and successors make up the control flow
2096 * graph (CFG) of the function. There are helpers that modify the tree of
2097 * control flow nodes while modifying the CFG appropriately; these should be
2098 * used instead of modifying the tree directly.
2099 */
2100
2101 typedef enum {
2102 nir_cf_node_block,
2103 nir_cf_node_if,
2104 nir_cf_node_loop,
2105 nir_cf_node_function
2106 } nir_cf_node_type;
2107
2108 typedef struct nir_cf_node {
2109 struct exec_node node;
2110 nir_cf_node_type type;
2111 struct nir_cf_node *parent;
2112 } nir_cf_node;
2113
2114 typedef struct nir_block {
2115 nir_cf_node cf_node;
2116
2117 struct exec_list instr_list; /** < list of nir_instr */
2118
2119 /** generic block index; generated by nir_index_blocks */
2120 unsigned index;
2121
2122 /*
2123 * Each block can only have up to 2 successors, so we put them in a simple
2124 * array - no need for anything more complicated.
2125 */
2126 struct nir_block *successors[2];
2127
2128 /* Set of nir_block predecessors in the CFG */
2129 struct set *predecessors;
2130
2131 /*
2132 * this node's immediate dominator in the dominance tree - set to NULL for
2133 * the start block.
2134 */
2135 struct nir_block *imm_dom;
2136
2137 /* This node's children in the dominance tree */
2138 unsigned num_dom_children;
2139 struct nir_block **dom_children;
2140
2141 /* Set of nir_blocks on the dominance frontier of this block */
2142 struct set *dom_frontier;
2143
2144 /*
2145 * These two indices have the property that dom_{pre,post}_index for each
2146 * child of this block in the dominance tree will always be between
2147 * dom_pre_index and dom_post_index for this block, which makes testing if
2148 * a given block is dominated by another block an O(1) operation.
2149 */
2150 unsigned dom_pre_index, dom_post_index;
2151
2152 /* live in and out for this block; used for liveness analysis */
2153 BITSET_WORD *live_in;
2154 BITSET_WORD *live_out;
2155 } nir_block;
2156
2157 static inline nir_instr *
2158 nir_block_first_instr(nir_block *block)
2159 {
2160 struct exec_node *head = exec_list_get_head(&block->instr_list);
2161 return exec_node_data(nir_instr, head, node);
2162 }
2163
2164 static inline nir_instr *
2165 nir_block_last_instr(nir_block *block)
2166 {
2167 struct exec_node *tail = exec_list_get_tail(&block->instr_list);
2168 return exec_node_data(nir_instr, tail, node);
2169 }
2170
2171 static inline bool
2172 nir_block_ends_in_jump(nir_block *block)
2173 {
2174 return !exec_list_is_empty(&block->instr_list) &&
2175 nir_block_last_instr(block)->type == nir_instr_type_jump;
2176 }
2177
2178 #define nir_foreach_instr(instr, block) \
2179 foreach_list_typed(nir_instr, instr, node, &(block)->instr_list)
2180 #define nir_foreach_instr_reverse(instr, block) \
2181 foreach_list_typed_reverse(nir_instr, instr, node, &(block)->instr_list)
2182 #define nir_foreach_instr_safe(instr, block) \
2183 foreach_list_typed_safe(nir_instr, instr, node, &(block)->instr_list)
2184 #define nir_foreach_instr_reverse_safe(instr, block) \
2185 foreach_list_typed_reverse_safe(nir_instr, instr, node, &(block)->instr_list)
2186
2187 typedef enum {
2188 nir_selection_control_none = 0x0,
2189 nir_selection_control_flatten = 0x1,
2190 nir_selection_control_dont_flatten = 0x2,
2191 } nir_selection_control;
2192
2193 typedef struct nir_if {
2194 nir_cf_node cf_node;
2195 nir_src condition;
2196 nir_selection_control control;
2197
2198 struct exec_list then_list; /** < list of nir_cf_node */
2199 struct exec_list else_list; /** < list of nir_cf_node */
2200 } nir_if;
2201
2202 typedef struct {
2203 nir_if *nif;
2204
2205 /** Instruction that generates nif::condition. */
2206 nir_instr *conditional_instr;
2207
2208 /** Block within ::nif that has the break instruction. */
2209 nir_block *break_block;
2210
2211 /** Last block for the then- or else-path that does not contain the break. */
2212 nir_block *continue_from_block;
2213
2214 /** True when ::break_block is in the else-path of ::nif. */
2215 bool continue_from_then;
2216 bool induction_rhs;
2217
2218 /* This is true if the terminators exact trip count is unknown. For
2219 * example:
2220 *
2221 * for (int i = 0; i < imin(x, 4); i++)
2222 * ...
2223 *
2224 * Here loop analysis would have set a max_trip_count of 4 however we dont
2225 * know for sure that this is the exact trip count.
2226 */
2227 bool exact_trip_count_unknown;
2228
2229 struct list_head loop_terminator_link;
2230 } nir_loop_terminator;
2231
2232 typedef struct {
2233 /* Estimated cost (in number of instructions) of the loop */
2234 unsigned instr_cost;
2235
2236 /* Guessed trip count based on array indexing */
2237 unsigned guessed_trip_count;
2238
2239 /* Maximum number of times the loop is run (if known) */
2240 unsigned max_trip_count;
2241
2242 /* Do we know the exact number of times the loop will be run */
2243 bool exact_trip_count_known;
2244
2245 /* Unroll the loop regardless of its size */
2246 bool force_unroll;
2247
2248 /* Does the loop contain complex loop terminators, continues or other
2249 * complex behaviours? If this is true we can't rely on
2250 * loop_terminator_list to be complete or accurate.
2251 */
2252 bool complex_loop;
2253
2254 nir_loop_terminator *limiting_terminator;
2255
2256 /* A list of loop_terminators terminating this loop. */
2257 struct list_head loop_terminator_list;
2258 } nir_loop_info;
2259
2260 typedef enum {
2261 nir_loop_control_none = 0x0,
2262 nir_loop_control_unroll = 0x1,
2263 nir_loop_control_dont_unroll = 0x2,
2264 } nir_loop_control;
2265
2266 typedef struct {
2267 nir_cf_node cf_node;
2268
2269 struct exec_list body; /** < list of nir_cf_node */
2270
2271 nir_loop_info *info;
2272 nir_loop_control control;
2273 bool partially_unrolled;
2274 } nir_loop;
2275
2276 /**
2277 * Various bits of metadata that can may be created or required by
2278 * optimization and analysis passes
2279 */
2280 typedef enum {
2281 nir_metadata_none = 0x0,
2282 nir_metadata_block_index = 0x1,
2283 nir_metadata_dominance = 0x2,
2284 nir_metadata_live_ssa_defs = 0x4,
2285 nir_metadata_not_properly_reset = 0x8,
2286 nir_metadata_loop_analysis = 0x10,
2287 } nir_metadata;
2288
2289 typedef struct {
2290 nir_cf_node cf_node;
2291
2292 /** pointer to the function of which this is an implementation */
2293 struct nir_function *function;
2294
2295 struct exec_list body; /** < list of nir_cf_node */
2296
2297 nir_block *end_block;
2298
2299 /** list for all local variables in the function */
2300 struct exec_list locals;
2301
2302 /** list of local registers in the function */
2303 struct exec_list registers;
2304
2305 /** next available local register index */
2306 unsigned reg_alloc;
2307
2308 /** next available SSA value index */
2309 unsigned ssa_alloc;
2310
2311 /* total number of basic blocks, only valid when block_index_dirty = false */
2312 unsigned num_blocks;
2313
2314 nir_metadata valid_metadata;
2315 } nir_function_impl;
2316
2317 ATTRIBUTE_RETURNS_NONNULL static inline nir_block *
2318 nir_start_block(nir_function_impl *impl)
2319 {
2320 return (nir_block *) impl->body.head_sentinel.next;
2321 }
2322
2323 ATTRIBUTE_RETURNS_NONNULL static inline nir_block *
2324 nir_impl_last_block(nir_function_impl *impl)
2325 {
2326 return (nir_block *) impl->body.tail_sentinel.prev;
2327 }
2328
2329 static inline nir_cf_node *
2330 nir_cf_node_next(nir_cf_node *node)
2331 {
2332 struct exec_node *next = exec_node_get_next(&node->node);
2333 if (exec_node_is_tail_sentinel(next))
2334 return NULL;
2335 else
2336 return exec_node_data(nir_cf_node, next, node);
2337 }
2338
2339 static inline nir_cf_node *
2340 nir_cf_node_prev(nir_cf_node *node)
2341 {
2342 struct exec_node *prev = exec_node_get_prev(&node->node);
2343 if (exec_node_is_head_sentinel(prev))
2344 return NULL;
2345 else
2346 return exec_node_data(nir_cf_node, prev, node);
2347 }
2348
2349 static inline bool
2350 nir_cf_node_is_first(const nir_cf_node *node)
2351 {
2352 return exec_node_is_head_sentinel(node->node.prev);
2353 }
2354
2355 static inline bool
2356 nir_cf_node_is_last(const nir_cf_node *node)
2357 {
2358 return exec_node_is_tail_sentinel(node->node.next);
2359 }
2360
2361 NIR_DEFINE_CAST(nir_cf_node_as_block, nir_cf_node, nir_block, cf_node,
2362 type, nir_cf_node_block)
2363 NIR_DEFINE_CAST(nir_cf_node_as_if, nir_cf_node, nir_if, cf_node,
2364 type, nir_cf_node_if)
2365 NIR_DEFINE_CAST(nir_cf_node_as_loop, nir_cf_node, nir_loop, cf_node,
2366 type, nir_cf_node_loop)
2367 NIR_DEFINE_CAST(nir_cf_node_as_function, nir_cf_node,
2368 nir_function_impl, cf_node, type, nir_cf_node_function)
2369
2370 static inline nir_block *
2371 nir_if_first_then_block(nir_if *if_stmt)
2372 {
2373 struct exec_node *head = exec_list_get_head(&if_stmt->then_list);
2374 return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
2375 }
2376
2377 static inline nir_block *
2378 nir_if_last_then_block(nir_if *if_stmt)
2379 {
2380 struct exec_node *tail = exec_list_get_tail(&if_stmt->then_list);
2381 return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
2382 }
2383
2384 static inline nir_block *
2385 nir_if_first_else_block(nir_if *if_stmt)
2386 {
2387 struct exec_node *head = exec_list_get_head(&if_stmt->else_list);
2388 return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
2389 }
2390
2391 static inline nir_block *
2392 nir_if_last_else_block(nir_if *if_stmt)
2393 {
2394 struct exec_node *tail = exec_list_get_tail(&if_stmt->else_list);
2395 return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
2396 }
2397
2398 static inline nir_block *
2399 nir_loop_first_block(nir_loop *loop)
2400 {
2401 struct exec_node *head = exec_list_get_head(&loop->body);
2402 return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
2403 }
2404
2405 static inline nir_block *
2406 nir_loop_last_block(nir_loop *loop)
2407 {
2408 struct exec_node *tail = exec_list_get_tail(&loop->body);
2409 return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
2410 }
2411
2412 /**
2413 * Return true if this list of cf_nodes contains a single empty block.
2414 */
2415 static inline bool
2416 nir_cf_list_is_empty_block(struct exec_list *cf_list)
2417 {
2418 if (exec_list_is_singular(cf_list)) {
2419 struct exec_node *head = exec_list_get_head(cf_list);
2420 nir_block *block =
2421 nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
2422 return exec_list_is_empty(&block->instr_list);
2423 }
2424 return false;
2425 }
2426
2427 typedef struct {
2428 uint8_t num_components;
2429 uint8_t bit_size;
2430 } nir_parameter;
2431
2432 typedef struct nir_function {
2433 struct exec_node node;
2434
2435 const char *name;
2436 struct nir_shader *shader;
2437
2438 unsigned num_params;
2439 nir_parameter *params;
2440
2441 /** The implementation of this function.
2442 *
2443 * If the function is only declared and not implemented, this is NULL.
2444 */
2445 nir_function_impl *impl;
2446
2447 bool is_entrypoint;
2448 } nir_function;
2449
2450 typedef enum {
2451 nir_lower_imul64 = (1 << 0),
2452 nir_lower_isign64 = (1 << 1),
2453 /** Lower all int64 modulus and division opcodes */
2454 nir_lower_divmod64 = (1 << 2),
2455 /** Lower all 64-bit umul_high and imul_high opcodes */
2456 nir_lower_imul_high64 = (1 << 3),
2457 nir_lower_mov64 = (1 << 4),
2458 nir_lower_icmp64 = (1 << 5),
2459 nir_lower_iadd64 = (1 << 6),
2460 nir_lower_iabs64 = (1 << 7),
2461 nir_lower_ineg64 = (1 << 8),
2462 nir_lower_logic64 = (1 << 9),
2463 nir_lower_minmax64 = (1 << 10),
2464 nir_lower_shift64 = (1 << 11),
2465 nir_lower_imul_2x32_64 = (1 << 12),
2466 nir_lower_extract64 = (1 << 13),
2467 } nir_lower_int64_options;
2468
2469 typedef enum {
2470 nir_lower_drcp = (1 << 0),
2471 nir_lower_dsqrt = (1 << 1),
2472 nir_lower_drsq = (1 << 2),
2473 nir_lower_dtrunc = (1 << 3),
2474 nir_lower_dfloor = (1 << 4),
2475 nir_lower_dceil = (1 << 5),
2476 nir_lower_dfract = (1 << 6),
2477 nir_lower_dround_even = (1 << 7),
2478 nir_lower_dmod = (1 << 8),
2479 nir_lower_dsub = (1 << 9),
2480 nir_lower_ddiv = (1 << 10),
2481 nir_lower_fp64_full_software = (1 << 11),
2482 } nir_lower_doubles_options;
2483
2484 typedef struct nir_shader_compiler_options {
2485 bool lower_fdiv;
2486 bool lower_ffma;
2487 bool fuse_ffma;
2488 bool lower_flrp16;
2489 bool lower_flrp32;
2490 /** Lowers flrp when it does not support doubles */
2491 bool lower_flrp64;
2492 bool lower_fpow;
2493 bool lower_fsat;
2494 bool lower_fsqrt;
2495 bool lower_fmod;
2496 /** Lowers ibitfield_extract/ubitfield_extract to ibfe/ubfe. */
2497 bool lower_bitfield_extract;
2498 /** Lowers ibitfield_extract/ubitfield_extract to compares, shifts. */
2499 bool lower_bitfield_extract_to_shifts;
2500 /** Lowers bitfield_insert to bfi/bfm */
2501 bool lower_bitfield_insert;
2502 /** Lowers bitfield_insert to compares, and shifts. */
2503 bool lower_bitfield_insert_to_shifts;
2504 /** Lowers bitfield_insert to bfm/bitfield_select. */
2505 bool lower_bitfield_insert_to_bitfield_select;
2506 /** Lowers bitfield_reverse to shifts. */
2507 bool lower_bitfield_reverse;
2508 /** Lowers bit_count to shifts. */
2509 bool lower_bit_count;
2510 /** Lowers ifind_msb to compare and ufind_msb */
2511 bool lower_ifind_msb;
2512 /** Lowers find_lsb to ufind_msb and logic ops */
2513 bool lower_find_lsb;
2514 bool lower_uadd_carry;
2515 bool lower_usub_borrow;
2516 /** Lowers imul_high/umul_high to 16-bit multiplies and carry operations. */
2517 bool lower_mul_high;
2518 /** lowers fneg and ineg to fsub and isub. */
2519 bool lower_negate;
2520 /** lowers fsub and isub to fadd+fneg and iadd+ineg. */
2521 bool lower_sub;
2522
2523 /* lower {slt,sge,seq,sne} to {flt,fge,feq,fne} + b2f: */
2524 bool lower_scmp;
2525
2526 /** enables rules to lower idiv by power-of-two: */
2527 bool lower_idiv;
2528
2529 /** enable rules to avoid bit shifts */
2530 bool lower_bitshift;
2531
2532 /** enables rules to lower isign to imin+imax */
2533 bool lower_isign;
2534
2535 /** enables rules to lower fsign to fsub and flt */
2536 bool lower_fsign;
2537
2538 /* Does the native fdot instruction replicate its result for four
2539 * components? If so, then opt_algebraic_late will turn all fdotN
2540 * instructions into fdot_replicatedN instructions.
2541 */
2542 bool fdot_replicates;
2543
2544 /** lowers ffloor to fsub+ffract: */
2545 bool lower_ffloor;
2546
2547 /** lowers ffract to fsub+ffloor: */
2548 bool lower_ffract;
2549
2550 /** lowers fceil to fneg+ffloor+fneg: */
2551 bool lower_fceil;
2552
2553 bool lower_ftrunc;
2554
2555 bool lower_ldexp;
2556
2557 bool lower_pack_half_2x16;
2558 bool lower_pack_unorm_2x16;
2559 bool lower_pack_snorm_2x16;
2560 bool lower_pack_unorm_4x8;
2561 bool lower_pack_snorm_4x8;
2562 bool lower_unpack_half_2x16;
2563 bool lower_unpack_unorm_2x16;
2564 bool lower_unpack_snorm_2x16;
2565 bool lower_unpack_unorm_4x8;
2566 bool lower_unpack_snorm_4x8;
2567
2568 bool lower_extract_byte;
2569 bool lower_extract_word;
2570
2571 bool lower_all_io_to_temps;
2572 bool lower_all_io_to_elements;
2573
2574 /* Indicates that the driver only has zero-based vertex id */
2575 bool vertex_id_zero_based;
2576
2577 /**
2578 * If enabled, gl_BaseVertex will be lowered as:
2579 * is_indexed_draw (~0/0) & firstvertex
2580 */
2581 bool lower_base_vertex;
2582
2583 /**
2584 * If enabled, gl_HelperInvocation will be lowered as:
2585 *
2586 * !((1 << sample_id) & sample_mask_in))
2587 *
2588 * This depends on some possibly hw implementation details, which may
2589 * not be true for all hw. In particular that the FS is only executed
2590 * for covered samples or for helper invocations. So, do not blindly
2591 * enable this option.
2592 *
2593 * Note: See also issue #22 in ARB_shader_image_load_store
2594 */
2595 bool lower_helper_invocation;
2596
2597 /**
2598 * Convert gl_SampleMaskIn to gl_HelperInvocation as follows:
2599 *
2600 * gl_SampleMaskIn == 0 ---> gl_HelperInvocation
2601 * gl_SampleMaskIn != 0 ---> !gl_HelperInvocation
2602 */
2603 bool optimize_sample_mask_in;
2604
2605 bool lower_cs_local_index_from_id;
2606 bool lower_cs_local_id_from_index;
2607
2608 bool lower_device_index_to_zero;
2609
2610 /* Set if nir_lower_wpos_ytransform() should also invert gl_PointCoord. */
2611 bool lower_wpos_pntc;
2612
2613 bool lower_hadd;
2614 bool lower_add_sat;
2615
2616 /**
2617 * Should IO be re-vectorized? Some scalar ISAs still operate on vec4's
2618 * for IO purposes and would prefer loads/stores be vectorized.
2619 */
2620 bool vectorize_io;
2621
2622 /**
2623 * Should nir_lower_io() create load_interpolated_input intrinsics?
2624 *
2625 * If not, it generates regular load_input intrinsics and interpolation
2626 * information must be inferred from the list of input nir_variables.
2627 */
2628 bool use_interpolated_input_intrinsics;
2629
2630 /* Lowers when 32x32->64 bit multiplication is not supported */
2631 bool lower_mul_2x32_64;
2632
2633 /* Lowers when rotate instruction is not supported */
2634 bool lower_rotate;
2635
2636 /**
2637 * Is this the Intel vec4 backend?
2638 *
2639 * Used to inhibit algebraic optimizations that are known to be harmful on
2640 * the Intel vec4 backend. This is generally applicable to any
2641 * optimization that might cause more immediate values to be used in
2642 * 3-source (e.g., ffma and flrp) instructions.
2643 */
2644 bool intel_vec4;
2645
2646 unsigned max_unroll_iterations;
2647
2648 nir_lower_int64_options lower_int64_options;
2649 nir_lower_doubles_options lower_doubles_options;
2650 } nir_shader_compiler_options;
2651
2652 typedef struct nir_shader {
2653 /** list of uniforms (nir_variable) */
2654 struct exec_list uniforms;
2655
2656 /** list of inputs (nir_variable) */
2657 struct exec_list inputs;
2658
2659 /** list of outputs (nir_variable) */
2660 struct exec_list outputs;
2661
2662 /** list of shared compute variables (nir_variable) */
2663 struct exec_list shared;
2664
2665 /** Set of driver-specific options for the shader.
2666 *
2667 * The memory for the options is expected to be kept in a single static
2668 * copy by the driver.
2669 */
2670 const struct nir_shader_compiler_options *options;
2671
2672 /** Various bits of compile-time information about a given shader */
2673 struct shader_info info;
2674
2675 /** list of global variables in the shader (nir_variable) */
2676 struct exec_list globals;
2677
2678 /** list of system value variables in the shader (nir_variable) */
2679 struct exec_list system_values;
2680
2681 struct exec_list functions; /** < list of nir_function */
2682
2683 /**
2684 * the highest index a load_input_*, load_uniform_*, etc. intrinsic can
2685 * access plus one
2686 */
2687 unsigned num_inputs, num_uniforms, num_outputs, num_shared;
2688
2689 /** Size in bytes of required scratch space */
2690 unsigned scratch_size;
2691
2692 /** Constant data associated with this shader.
2693 *
2694 * Constant data is loaded through load_constant intrinsics. See also
2695 * nir_opt_large_constants.
2696 */
2697 void *constant_data;
2698 unsigned constant_data_size;
2699 } nir_shader;
2700
2701 #define nir_foreach_function(func, shader) \
2702 foreach_list_typed(nir_function, func, node, &(shader)->functions)
2703
2704 static inline nir_function_impl *
2705 nir_shader_get_entrypoint(nir_shader *shader)
2706 {
2707 nir_function *func = NULL;
2708
2709 nir_foreach_function(function, shader) {
2710 assert(func == NULL);
2711 if (function->is_entrypoint) {
2712 func = function;
2713 #ifndef NDEBUG
2714 break;
2715 #endif
2716 }
2717 }
2718
2719 if (!func)
2720 return NULL;
2721
2722 assert(func->num_params == 0);
2723 assert(func->impl);
2724 return func->impl;
2725 }
2726
2727 nir_shader *nir_shader_create(void *mem_ctx,
2728 gl_shader_stage stage,
2729 const nir_shader_compiler_options *options,
2730 shader_info *si);
2731
2732 nir_register *nir_local_reg_create(nir_function_impl *impl);
2733
2734 void nir_reg_remove(nir_register *reg);
2735
2736 /** Adds a variable to the appropriate list in nir_shader */
2737 void nir_shader_add_variable(nir_shader *shader, nir_variable *var);
2738
2739 static inline void
2740 nir_function_impl_add_variable(nir_function_impl *impl, nir_variable *var)
2741 {
2742 assert(var->data.mode == nir_var_function_temp);
2743 exec_list_push_tail(&impl->locals, &var->node);
2744 }
2745
2746 /** creates a variable, sets a few defaults, and adds it to the list */
2747 nir_variable *nir_variable_create(nir_shader *shader,
2748 nir_variable_mode mode,
2749 const struct glsl_type *type,
2750 const char *name);
2751 /** creates a local variable and adds it to the list */
2752 nir_variable *nir_local_variable_create(nir_function_impl *impl,
2753 const struct glsl_type *type,
2754 const char *name);
2755
2756 /** creates a function and adds it to the shader's list of functions */
2757 nir_function *nir_function_create(nir_shader *shader, const char *name);
2758
2759 nir_function_impl *nir_function_impl_create(nir_function *func);
2760 /** creates a function_impl that isn't tied to any particular function */
2761 nir_function_impl *nir_function_impl_create_bare(nir_shader *shader);
2762
2763 nir_block *nir_block_create(nir_shader *shader);
2764 nir_if *nir_if_create(nir_shader *shader);
2765 nir_loop *nir_loop_create(nir_shader *shader);
2766
2767 nir_function_impl *nir_cf_node_get_function(nir_cf_node *node);
2768
2769 /** requests that the given pieces of metadata be generated */
2770 void nir_metadata_require(nir_function_impl *impl, nir_metadata required, ...);
2771 /** dirties all but the preserved metadata */
2772 void nir_metadata_preserve(nir_function_impl *impl, nir_metadata preserved);
2773
2774 /** creates an instruction with default swizzle/writemask/etc. with NULL registers */
2775 nir_alu_instr *nir_alu_instr_create(nir_shader *shader, nir_op op);
2776
2777 nir_deref_instr *nir_deref_instr_create(nir_shader *shader,
2778 nir_deref_type deref_type);
2779
2780 nir_jump_instr *nir_jump_instr_create(nir_shader *shader, nir_jump_type type);
2781
2782 nir_load_const_instr *nir_load_const_instr_create(nir_shader *shader,
2783 unsigned num_components,
2784 unsigned bit_size);
2785
2786 nir_intrinsic_instr *nir_intrinsic_instr_create(nir_shader *shader,
2787 nir_intrinsic_op op);
2788
2789 nir_call_instr *nir_call_instr_create(nir_shader *shader,
2790 nir_function *callee);
2791
2792 nir_tex_instr *nir_tex_instr_create(nir_shader *shader, unsigned num_srcs);
2793
2794 nir_phi_instr *nir_phi_instr_create(nir_shader *shader);
2795
2796 nir_parallel_copy_instr *nir_parallel_copy_instr_create(nir_shader *shader);
2797
2798 nir_ssa_undef_instr *nir_ssa_undef_instr_create(nir_shader *shader,
2799 unsigned num_components,
2800 unsigned bit_size);
2801
2802 nir_const_value nir_alu_binop_identity(nir_op binop, unsigned bit_size);
2803
2804 /**
2805 * NIR Cursors and Instruction Insertion API
2806 * @{
2807 *
2808 * A tiny struct representing a point to insert/extract instructions or
2809 * control flow nodes. Helps reduce the combinatorial explosion of possible
2810 * points to insert/extract.
2811 *
2812 * \sa nir_control_flow.h
2813 */
2814 typedef enum {
2815 nir_cursor_before_block,
2816 nir_cursor_after_block,
2817 nir_cursor_before_instr,
2818 nir_cursor_after_instr,
2819 } nir_cursor_option;
2820
2821 typedef struct {
2822 nir_cursor_option option;
2823 union {
2824 nir_block *block;
2825 nir_instr *instr;
2826 };
2827 } nir_cursor;
2828
2829 static inline nir_block *
2830 nir_cursor_current_block(nir_cursor cursor)
2831 {
2832 if (cursor.option == nir_cursor_before_instr ||
2833 cursor.option == nir_cursor_after_instr) {
2834 return cursor.instr->block;
2835 } else {
2836 return cursor.block;
2837 }
2838 }
2839
2840 bool nir_cursors_equal(nir_cursor a, nir_cursor b);
2841
2842 static inline nir_cursor
2843 nir_before_block(nir_block *block)
2844 {
2845 nir_cursor cursor;
2846 cursor.option = nir_cursor_before_block;
2847 cursor.block = block;
2848 return cursor;
2849 }
2850
2851 static inline nir_cursor
2852 nir_after_block(nir_block *block)
2853 {
2854 nir_cursor cursor;
2855 cursor.option = nir_cursor_after_block;
2856 cursor.block = block;
2857 return cursor;
2858 }
2859
2860 static inline nir_cursor
2861 nir_before_instr(nir_instr *instr)
2862 {
2863 nir_cursor cursor;
2864 cursor.option = nir_cursor_before_instr;
2865 cursor.instr = instr;
2866 return cursor;
2867 }
2868
2869 static inline nir_cursor
2870 nir_after_instr(nir_instr *instr)
2871 {
2872 nir_cursor cursor;
2873 cursor.option = nir_cursor_after_instr;
2874 cursor.instr = instr;
2875 return cursor;
2876 }
2877
2878 static inline nir_cursor
2879 nir_after_block_before_jump(nir_block *block)
2880 {
2881 nir_instr *last_instr = nir_block_last_instr(block);
2882 if (last_instr && last_instr->type == nir_instr_type_jump) {
2883 return nir_before_instr(last_instr);
2884 } else {
2885 return nir_after_block(block);
2886 }
2887 }
2888
2889 static inline nir_cursor
2890 nir_before_src(nir_src *src, bool is_if_condition)
2891 {
2892 if (is_if_condition) {
2893 nir_block *prev_block =
2894 nir_cf_node_as_block(nir_cf_node_prev(&src->parent_if->cf_node));
2895 assert(!nir_block_ends_in_jump(prev_block));
2896 return nir_after_block(prev_block);
2897 } else if (src->parent_instr->type == nir_instr_type_phi) {
2898 #ifndef NDEBUG
2899 nir_phi_instr *cond_phi = nir_instr_as_phi(src->parent_instr);
2900 bool found = false;
2901 nir_foreach_phi_src(phi_src, cond_phi) {
2902 if (phi_src->src.ssa == src->ssa) {
2903 found = true;
2904 break;
2905 }
2906 }
2907 assert(found);
2908 #endif
2909 /* The LIST_ENTRY macro is a generic container-of macro, it just happens
2910 * to have a more specific name.
2911 */
2912 nir_phi_src *phi_src = LIST_ENTRY(nir_phi_src, src, src);
2913 return nir_after_block_before_jump(phi_src->pred);
2914 } else {
2915 return nir_before_instr(src->parent_instr);
2916 }
2917 }
2918
2919 static inline nir_cursor
2920 nir_before_cf_node(nir_cf_node *node)
2921 {
2922 if (node->type == nir_cf_node_block)
2923 return nir_before_block(nir_cf_node_as_block(node));
2924
2925 return nir_after_block(nir_cf_node_as_block(nir_cf_node_prev(node)));
2926 }
2927
2928 static inline nir_cursor
2929 nir_after_cf_node(nir_cf_node *node)
2930 {
2931 if (node->type == nir_cf_node_block)
2932 return nir_after_block(nir_cf_node_as_block(node));
2933
2934 return nir_before_block(nir_cf_node_as_block(nir_cf_node_next(node)));
2935 }
2936
2937 static inline nir_cursor
2938 nir_after_phis(nir_block *block)
2939 {
2940 nir_foreach_instr(instr, block) {
2941 if (instr->type != nir_instr_type_phi)
2942 return nir_before_instr(instr);
2943 }
2944 return nir_after_block(block);
2945 }
2946
2947 static inline nir_cursor
2948 nir_after_cf_node_and_phis(nir_cf_node *node)
2949 {
2950 if (node->type == nir_cf_node_block)
2951 return nir_after_block(nir_cf_node_as_block(node));
2952
2953 nir_block *block = nir_cf_node_as_block(nir_cf_node_next(node));
2954
2955 return nir_after_phis(block);
2956 }
2957
2958 static inline nir_cursor
2959 nir_before_cf_list(struct exec_list *cf_list)
2960 {
2961 nir_cf_node *first_node = exec_node_data(nir_cf_node,
2962 exec_list_get_head(cf_list), node);
2963 return nir_before_cf_node(first_node);
2964 }
2965
2966 static inline nir_cursor
2967 nir_after_cf_list(struct exec_list *cf_list)
2968 {
2969 nir_cf_node *last_node = exec_node_data(nir_cf_node,
2970 exec_list_get_tail(cf_list), node);
2971 return nir_after_cf_node(last_node);
2972 }
2973
2974 /**
2975 * Insert a NIR instruction at the given cursor.
2976 *
2977 * Note: This does not update the cursor.
2978 */
2979 void nir_instr_insert(nir_cursor cursor, nir_instr *instr);
2980
2981 static inline void
2982 nir_instr_insert_before(nir_instr *instr, nir_instr *before)
2983 {
2984 nir_instr_insert(nir_before_instr(instr), before);
2985 }
2986
2987 static inline void
2988 nir_instr_insert_after(nir_instr *instr, nir_instr *after)
2989 {
2990 nir_instr_insert(nir_after_instr(instr), after);
2991 }
2992
2993 static inline void
2994 nir_instr_insert_before_block(nir_block *block, nir_instr *before)
2995 {
2996 nir_instr_insert(nir_before_block(block), before);
2997 }
2998
2999 static inline void
3000 nir_instr_insert_after_block(nir_block *block, nir_instr *after)
3001 {
3002 nir_instr_insert(nir_after_block(block), after);
3003 }
3004
3005 static inline void
3006 nir_instr_insert_before_cf(nir_cf_node *node, nir_instr *before)
3007 {
3008 nir_instr_insert(nir_before_cf_node(node), before);
3009 }
3010
3011 static inline void
3012 nir_instr_insert_after_cf(nir_cf_node *node, nir_instr *after)
3013 {
3014 nir_instr_insert(nir_after_cf_node(node), after);
3015 }
3016
3017 static inline void
3018 nir_instr_insert_before_cf_list(struct exec_list *list, nir_instr *before)
3019 {
3020 nir_instr_insert(nir_before_cf_list(list), before);
3021 }
3022
3023 static inline void
3024 nir_instr_insert_after_cf_list(struct exec_list *list, nir_instr *after)
3025 {
3026 nir_instr_insert(nir_after_cf_list(list), after);
3027 }
3028
3029 void nir_instr_remove_v(nir_instr *instr);
3030
3031 static inline nir_cursor
3032 nir_instr_remove(nir_instr *instr)
3033 {
3034 nir_cursor cursor;
3035 nir_instr *prev = nir_instr_prev(instr);
3036 if (prev) {
3037 cursor = nir_after_instr(prev);
3038 } else {
3039 cursor = nir_before_block(instr->block);
3040 }
3041 nir_instr_remove_v(instr);
3042 return cursor;
3043 }
3044
3045 /** @} */
3046
3047 nir_ssa_def *nir_instr_ssa_def(nir_instr *instr);
3048
3049 typedef bool (*nir_foreach_ssa_def_cb)(nir_ssa_def *def, void *state);
3050 typedef bool (*nir_foreach_dest_cb)(nir_dest *dest, void *state);
3051 typedef bool (*nir_foreach_src_cb)(nir_src *src, void *state);
3052 bool nir_foreach_ssa_def(nir_instr *instr, nir_foreach_ssa_def_cb cb,
3053 void *state);
3054 bool nir_foreach_dest(nir_instr *instr, nir_foreach_dest_cb cb, void *state);
3055 bool nir_foreach_src(nir_instr *instr, nir_foreach_src_cb cb, void *state);
3056
3057 nir_const_value *nir_src_as_const_value(nir_src src);
3058
3059 #define NIR_SRC_AS_(name, c_type, type_enum, cast_macro) \
3060 static inline c_type * \
3061 nir_src_as_ ## name (nir_src src) \
3062 { \
3063 return src.is_ssa && src.ssa->parent_instr->type == type_enum \
3064 ? cast_macro(src.ssa->parent_instr) : NULL; \
3065 }
3066
3067 NIR_SRC_AS_(alu_instr, nir_alu_instr, nir_instr_type_alu, nir_instr_as_alu)
3068 NIR_SRC_AS_(intrinsic, nir_intrinsic_instr,
3069 nir_instr_type_intrinsic, nir_instr_as_intrinsic)
3070 NIR_SRC_AS_(deref, nir_deref_instr, nir_instr_type_deref, nir_instr_as_deref)
3071
3072 bool nir_src_is_dynamically_uniform(nir_src src);
3073 bool nir_srcs_equal(nir_src src1, nir_src src2);
3074 bool nir_instrs_equal(const nir_instr *instr1, const nir_instr *instr2);
3075 void nir_instr_rewrite_src(nir_instr *instr, nir_src *src, nir_src new_src);
3076 void nir_instr_move_src(nir_instr *dest_instr, nir_src *dest, nir_src *src);
3077 void nir_if_rewrite_condition(nir_if *if_stmt, nir_src new_src);
3078 void nir_instr_rewrite_dest(nir_instr *instr, nir_dest *dest,
3079 nir_dest new_dest);
3080
3081 void nir_ssa_dest_init(nir_instr *instr, nir_dest *dest,
3082 unsigned num_components, unsigned bit_size,
3083 const char *name);
3084 void nir_ssa_def_init(nir_instr *instr, nir_ssa_def *def,
3085 unsigned num_components, unsigned bit_size,
3086 const char *name);
3087 static inline void
3088 nir_ssa_dest_init_for_type(nir_instr *instr, nir_dest *dest,
3089 const struct glsl_type *type,
3090 const char *name)
3091 {
3092 assert(glsl_type_is_vector_or_scalar(type));
3093 nir_ssa_dest_init(instr, dest, glsl_get_components(type),
3094 glsl_get_bit_size(type), name);
3095 }
3096 void nir_ssa_def_rewrite_uses(nir_ssa_def *def, nir_src new_src);
3097 void nir_ssa_def_rewrite_uses_after(nir_ssa_def *def, nir_src new_src,
3098 nir_instr *after_me);
3099
3100 nir_component_mask_t nir_ssa_def_components_read(const nir_ssa_def *def);
3101
3102 /*
3103 * finds the next basic block in source-code order, returns NULL if there is
3104 * none
3105 */
3106
3107 nir_block *nir_block_cf_tree_next(nir_block *block);
3108
3109 /* Performs the opposite of nir_block_cf_tree_next() */
3110
3111 nir_block *nir_block_cf_tree_prev(nir_block *block);
3112
3113 /* Gets the first block in a CF node in source-code order */
3114
3115 nir_block *nir_cf_node_cf_tree_first(nir_cf_node *node);
3116
3117 /* Gets the last block in a CF node in source-code order */
3118
3119 nir_block *nir_cf_node_cf_tree_last(nir_cf_node *node);
3120
3121 /* Gets the next block after a CF node in source-code order */
3122
3123 nir_block *nir_cf_node_cf_tree_next(nir_cf_node *node);
3124
3125 /* Macros for loops that visit blocks in source-code order */
3126
3127 #define nir_foreach_block(block, impl) \
3128 for (nir_block *block = nir_start_block(impl); block != NULL; \
3129 block = nir_block_cf_tree_next(block))
3130
3131 #define nir_foreach_block_safe(block, impl) \
3132 for (nir_block *block = nir_start_block(impl), \
3133 *next = nir_block_cf_tree_next(block); \
3134 block != NULL; \
3135 block = next, next = nir_block_cf_tree_next(block))
3136
3137 #define nir_foreach_block_reverse(block, impl) \
3138 for (nir_block *block = nir_impl_last_block(impl); block != NULL; \
3139 block = nir_block_cf_tree_prev(block))
3140
3141 #define nir_foreach_block_reverse_safe(block, impl) \
3142 for (nir_block *block = nir_impl_last_block(impl), \
3143 *prev = nir_block_cf_tree_prev(block); \
3144 block != NULL; \
3145 block = prev, prev = nir_block_cf_tree_prev(block))
3146
3147 #define nir_foreach_block_in_cf_node(block, node) \
3148 for (nir_block *block = nir_cf_node_cf_tree_first(node); \
3149 block != nir_cf_node_cf_tree_next(node); \
3150 block = nir_block_cf_tree_next(block))
3151
3152 /* If the following CF node is an if, this function returns that if.
3153 * Otherwise, it returns NULL.
3154 */
3155 nir_if *nir_block_get_following_if(nir_block *block);
3156
3157 nir_loop *nir_block_get_following_loop(nir_block *block);
3158
3159 void nir_index_local_regs(nir_function_impl *impl);
3160 void nir_index_ssa_defs(nir_function_impl *impl);
3161 unsigned nir_index_instrs(nir_function_impl *impl);
3162
3163 void nir_index_blocks(nir_function_impl *impl);
3164
3165 void nir_print_shader(nir_shader *shader, FILE *fp);
3166 void nir_print_shader_annotated(nir_shader *shader, FILE *fp, struct hash_table *errors);
3167 void nir_print_instr(const nir_instr *instr, FILE *fp);
3168 void nir_print_deref(const nir_deref_instr *deref, FILE *fp);
3169
3170 /** Shallow clone of a single ALU instruction. */
3171 nir_alu_instr *nir_alu_instr_clone(nir_shader *s, const nir_alu_instr *orig);
3172
3173 nir_shader *nir_shader_clone(void *mem_ctx, const nir_shader *s);
3174 nir_function_impl *nir_function_impl_clone(nir_shader *shader,
3175 const nir_function_impl *fi);
3176 nir_constant *nir_constant_clone(const nir_constant *c, nir_variable *var);
3177 nir_variable *nir_variable_clone(const nir_variable *c, nir_shader *shader);
3178
3179 void nir_shader_replace(nir_shader *dest, nir_shader *src);
3180
3181 void nir_shader_serialize_deserialize(nir_shader *s);
3182
3183 #ifndef NDEBUG
3184 void nir_validate_shader(nir_shader *shader, const char *when);
3185 void nir_metadata_set_validation_flag(nir_shader *shader);
3186 void nir_metadata_check_validation_flag(nir_shader *shader);
3187
3188 static inline bool
3189 should_skip_nir(const char *name)
3190 {
3191 static const char *list = NULL;
3192 if (!list) {
3193 /* Comma separated list of names to skip. */
3194 list = getenv("NIR_SKIP");
3195 if (!list)
3196 list = "";
3197 }
3198
3199 if (!list[0])
3200 return false;
3201
3202 return comma_separated_list_contains(list, name);
3203 }
3204
3205 static inline bool
3206 should_clone_nir(void)
3207 {
3208 static int should_clone = -1;
3209 if (should_clone < 0)
3210 should_clone = env_var_as_boolean("NIR_TEST_CLONE", false);
3211
3212 return should_clone;
3213 }
3214
3215 static inline bool
3216 should_serialize_deserialize_nir(void)
3217 {
3218 static int test_serialize = -1;
3219 if (test_serialize < 0)
3220 test_serialize = env_var_as_boolean("NIR_TEST_SERIALIZE", false);
3221
3222 return test_serialize;
3223 }
3224
3225 static inline bool
3226 should_print_nir(void)
3227 {
3228 static int should_print = -1;
3229 if (should_print < 0)
3230 should_print = env_var_as_boolean("NIR_PRINT", false);
3231
3232 return should_print;
3233 }
3234 #else
3235 static inline void nir_validate_shader(nir_shader *shader, const char *when) { (void) shader; (void)when; }
3236 static inline void nir_metadata_set_validation_flag(nir_shader *shader) { (void) shader; }
3237 static inline void nir_metadata_check_validation_flag(nir_shader *shader) { (void) shader; }
3238 static inline bool should_skip_nir(UNUSED const char *pass_name) { return false; }
3239 static inline bool should_clone_nir(void) { return false; }
3240 static inline bool should_serialize_deserialize_nir(void) { return false; }
3241 static inline bool should_print_nir(void) { return false; }
3242 #endif /* NDEBUG */
3243
3244 #define _PASS(pass, nir, do_pass) do { \
3245 if (should_skip_nir(#pass)) { \
3246 printf("skipping %s\n", #pass); \
3247 break; \
3248 } \
3249 do_pass \
3250 nir_validate_shader(nir, "after " #pass); \
3251 if (should_clone_nir()) { \
3252 nir_shader *clone = nir_shader_clone(ralloc_parent(nir), nir); \
3253 nir_shader_replace(nir, clone); \
3254 } \
3255 if (should_serialize_deserialize_nir()) { \
3256 nir_shader_serialize_deserialize(nir); \
3257 } \
3258 } while (0)
3259
3260 #define NIR_PASS(progress, nir, pass, ...) _PASS(pass, nir, \
3261 nir_metadata_set_validation_flag(nir); \
3262 if (should_print_nir()) \
3263 printf("%s\n", #pass); \
3264 if (pass(nir, ##__VA_ARGS__)) { \
3265 progress = true; \
3266 if (should_print_nir()) \
3267 nir_print_shader(nir, stdout); \
3268 nir_metadata_check_validation_flag(nir); \
3269 } \
3270 )
3271
3272 #define NIR_PASS_V(nir, pass, ...) _PASS(pass, nir, \
3273 if (should_print_nir()) \
3274 printf("%s\n", #pass); \
3275 pass(nir, ##__VA_ARGS__); \
3276 if (should_print_nir()) \
3277 nir_print_shader(nir, stdout); \
3278 )
3279
3280 #define NIR_SKIP(name) should_skip_nir(#name)
3281
3282 /** An instruction filtering callback
3283 *
3284 * Returns true if the instruction should be processed and false otherwise.
3285 */
3286 typedef bool (*nir_instr_filter_cb)(const nir_instr *, const void *);
3287
3288 /** A simple instruction lowering callback
3289 *
3290 * Many instruction lowering passes can be written as a simple function which
3291 * takes an instruction as its input and returns a sequence of instructions
3292 * that implement the consumed instruction. This function type represents
3293 * such a lowering function. When called, a function with this prototype
3294 * should either return NULL indicating that no lowering needs to be done or
3295 * emit a sequence of instructions using the provided builder (whose cursor
3296 * will already be placed after the instruction to be lowered) and return the
3297 * resulting nir_ssa_def.
3298 */
3299 typedef nir_ssa_def *(*nir_lower_instr_cb)(struct nir_builder *,
3300 nir_instr *, void *);
3301
3302 /**
3303 * Special return value for nir_lower_instr_cb when some progress occurred
3304 * (like changing an input to the instr) that didn't result in a replacement
3305 * SSA def being generated.
3306 */
3307 #define NIR_LOWER_INSTR_PROGRESS ((nir_ssa_def *)(uintptr_t)1)
3308
3309 /** Iterate over all the instructions in a nir_function_impl and lower them
3310 * using the provided callbacks
3311 *
3312 * This function implements the guts of a standard lowering pass for you. It
3313 * iterates over all of the instructions in a nir_function_impl and calls the
3314 * filter callback on each one. If the filter callback returns true, it then
3315 * calls the lowering call back on the instruction. (Splitting it this way
3316 * allows us to avoid some save/restore work for instructions we know won't be
3317 * lowered.) If the instruction is dead after the lowering is complete, it
3318 * will be removed. If new instructions are added, the lowering callback will
3319 * also be called on them in case multiple lowerings are required.
3320 *
3321 * The metadata for the nir_function_impl will also be updated. If any blocks
3322 * are added (they cannot be removed), dominance and block indices will be
3323 * invalidated.
3324 */
3325 bool nir_function_impl_lower_instructions(nir_function_impl *impl,
3326 nir_instr_filter_cb filter,
3327 nir_lower_instr_cb lower,
3328 void *cb_data);
3329 bool nir_shader_lower_instructions(nir_shader *shader,
3330 nir_instr_filter_cb filter,
3331 nir_lower_instr_cb lower,
3332 void *cb_data);
3333
3334 void nir_calc_dominance_impl(nir_function_impl *impl);
3335 void nir_calc_dominance(nir_shader *shader);
3336
3337 nir_block *nir_dominance_lca(nir_block *b1, nir_block *b2);
3338 bool nir_block_dominates(nir_block *parent, nir_block *child);
3339
3340 void nir_dump_dom_tree_impl(nir_function_impl *impl, FILE *fp);
3341 void nir_dump_dom_tree(nir_shader *shader, FILE *fp);
3342
3343 void nir_dump_dom_frontier_impl(nir_function_impl *impl, FILE *fp);
3344 void nir_dump_dom_frontier(nir_shader *shader, FILE *fp);
3345
3346 void nir_dump_cfg_impl(nir_function_impl *impl, FILE *fp);
3347 void nir_dump_cfg(nir_shader *shader, FILE *fp);
3348
3349 int nir_gs_count_vertices(const nir_shader *shader);
3350
3351 bool nir_shrink_vec_array_vars(nir_shader *shader, nir_variable_mode modes);
3352 bool nir_split_array_vars(nir_shader *shader, nir_variable_mode modes);
3353 bool nir_split_var_copies(nir_shader *shader);
3354 bool nir_split_per_member_structs(nir_shader *shader);
3355 bool nir_split_struct_vars(nir_shader *shader, nir_variable_mode modes);
3356
3357 bool nir_lower_returns_impl(nir_function_impl *impl);
3358 bool nir_lower_returns(nir_shader *shader);
3359
3360 void nir_inline_function_impl(struct nir_builder *b,
3361 const nir_function_impl *impl,
3362 nir_ssa_def **params);
3363 bool nir_inline_functions(nir_shader *shader);
3364
3365 bool nir_propagate_invariant(nir_shader *shader);
3366
3367 void nir_lower_var_copy_instr(nir_intrinsic_instr *copy, nir_shader *shader);
3368 void nir_lower_deref_copy_instr(struct nir_builder *b,
3369 nir_intrinsic_instr *copy);
3370 bool nir_lower_var_copies(nir_shader *shader);
3371
3372 void nir_fixup_deref_modes(nir_shader *shader);
3373
3374 bool nir_lower_global_vars_to_local(nir_shader *shader);
3375
3376 typedef enum {
3377 nir_lower_direct_array_deref_of_vec_load = (1 << 0),
3378 nir_lower_indirect_array_deref_of_vec_load = (1 << 1),
3379 nir_lower_direct_array_deref_of_vec_store = (1 << 2),
3380 nir_lower_indirect_array_deref_of_vec_store = (1 << 3),
3381 } nir_lower_array_deref_of_vec_options;
3382
3383 bool nir_lower_array_deref_of_vec(nir_shader *shader, nir_variable_mode modes,
3384 nir_lower_array_deref_of_vec_options options);
3385
3386 bool nir_lower_indirect_derefs(nir_shader *shader, nir_variable_mode modes);
3387
3388 bool nir_lower_locals_to_regs(nir_shader *shader);
3389
3390 void nir_lower_io_to_temporaries(nir_shader *shader,
3391 nir_function_impl *entrypoint,
3392 bool outputs, bool inputs);
3393
3394 bool nir_lower_vars_to_scratch(nir_shader *shader,
3395 nir_variable_mode modes,
3396 int size_threshold,
3397 glsl_type_size_align_func size_align);
3398
3399 void nir_shader_gather_info(nir_shader *shader, nir_function_impl *entrypoint);
3400
3401 void nir_gather_ssa_types(nir_function_impl *impl,
3402 BITSET_WORD *float_types,
3403 BITSET_WORD *int_types);
3404
3405 void nir_assign_var_locations(struct exec_list *var_list, unsigned *size,
3406 int (*type_size)(const struct glsl_type *, bool));
3407
3408 /* Some helpers to do very simple linking */
3409 bool nir_remove_unused_varyings(nir_shader *producer, nir_shader *consumer);
3410 bool nir_remove_unused_io_vars(nir_shader *shader, struct exec_list *var_list,
3411 uint64_t *used_by_other_stage,
3412 uint64_t *used_by_other_stage_patches);
3413 void nir_compact_varyings(nir_shader *producer, nir_shader *consumer,
3414 bool default_to_smooth_interp);
3415 void nir_link_xfb_varyings(nir_shader *producer, nir_shader *consumer);
3416 bool nir_link_opt_varyings(nir_shader *producer, nir_shader *consumer);
3417
3418
3419 void nir_assign_io_var_locations(struct exec_list *var_list,
3420 unsigned *size,
3421 gl_shader_stage stage);
3422
3423 typedef enum {
3424 /* If set, this forces all non-flat fragment shader inputs to be
3425 * interpolated as if with the "sample" qualifier. This requires
3426 * nir_shader_compiler_options::use_interpolated_input_intrinsics.
3427 */
3428 nir_lower_io_force_sample_interpolation = (1 << 1),
3429 } nir_lower_io_options;
3430 bool nir_lower_io(nir_shader *shader,
3431 nir_variable_mode modes,
3432 int (*type_size)(const struct glsl_type *, bool),
3433 nir_lower_io_options);
3434
3435 bool nir_io_add_const_offset_to_base(nir_shader *nir, nir_variable_mode mode);
3436
3437 typedef enum {
3438 /**
3439 * An address format which is a simple 32-bit global GPU address.
3440 */
3441 nir_address_format_32bit_global,
3442
3443 /**
3444 * An address format which is a simple 64-bit global GPU address.
3445 */
3446 nir_address_format_64bit_global,
3447
3448 /**
3449 * An address format which is a bounds-checked 64-bit global GPU address.
3450 *
3451 * The address is comprised as a 32-bit vec4 where .xy are a uint64_t base
3452 * address stored with the low bits in .x and high bits in .y, .z is a
3453 * size, and .w is an offset. When the final I/O operation is lowered, .w
3454 * is checked against .z and the operation is predicated on the result.
3455 */
3456 nir_address_format_64bit_bounded_global,
3457
3458 /**
3459 * An address format which is comprised of a vec2 where the first
3460 * component is a buffer index and the second is an offset.
3461 */
3462 nir_address_format_32bit_index_offset,
3463
3464 /**
3465 * An address format which is a simple 32-bit offset.
3466 */
3467 nir_address_format_32bit_offset,
3468
3469 /**
3470 * An address format representing a purely logical addressing model. In
3471 * this model, all deref chains must be complete from the dereference
3472 * operation to the variable. Cast derefs are not allowed. These
3473 * addresses will be 32-bit scalars but the format is immaterial because
3474 * you can always chase the chain.
3475 */
3476 nir_address_format_logical,
3477 } nir_address_format;
3478
3479 static inline unsigned
3480 nir_address_format_bit_size(nir_address_format addr_format)
3481 {
3482 switch (addr_format) {
3483 case nir_address_format_32bit_global: return 32;
3484 case nir_address_format_64bit_global: return 64;
3485 case nir_address_format_64bit_bounded_global: return 32;
3486 case nir_address_format_32bit_index_offset: return 32;
3487 case nir_address_format_32bit_offset: return 32;
3488 case nir_address_format_logical: return 32;
3489 }
3490 unreachable("Invalid address format");
3491 }
3492
3493 static inline unsigned
3494 nir_address_format_num_components(nir_address_format addr_format)
3495 {
3496 switch (addr_format) {
3497 case nir_address_format_32bit_global: return 1;
3498 case nir_address_format_64bit_global: return 1;
3499 case nir_address_format_64bit_bounded_global: return 4;
3500 case nir_address_format_32bit_index_offset: return 2;
3501 case nir_address_format_32bit_offset: return 1;
3502 case nir_address_format_logical: return 1;
3503 }
3504 unreachable("Invalid address format");
3505 }
3506
3507 static inline const struct glsl_type *
3508 nir_address_format_to_glsl_type(nir_address_format addr_format)
3509 {
3510 unsigned bit_size = nir_address_format_bit_size(addr_format);
3511 assert(bit_size == 32 || bit_size == 64);
3512 return glsl_vector_type(bit_size == 32 ? GLSL_TYPE_UINT : GLSL_TYPE_UINT64,
3513 nir_address_format_num_components(addr_format));
3514 }
3515
3516 const nir_const_value *nir_address_format_null_value(nir_address_format addr_format);
3517
3518 nir_ssa_def *nir_build_addr_ieq(struct nir_builder *b, nir_ssa_def *addr0, nir_ssa_def *addr1,
3519 nir_address_format addr_format);
3520
3521 nir_ssa_def *nir_build_addr_isub(struct nir_builder *b, nir_ssa_def *addr0, nir_ssa_def *addr1,
3522 nir_address_format addr_format);
3523
3524 nir_ssa_def * nir_explicit_io_address_from_deref(struct nir_builder *b,
3525 nir_deref_instr *deref,
3526 nir_ssa_def *base_addr,
3527 nir_address_format addr_format);
3528 void nir_lower_explicit_io_instr(struct nir_builder *b,
3529 nir_intrinsic_instr *io_instr,
3530 nir_ssa_def *addr,
3531 nir_address_format addr_format);
3532
3533 bool nir_lower_explicit_io(nir_shader *shader,
3534 nir_variable_mode modes,
3535 nir_address_format);
3536
3537 nir_src *nir_get_io_offset_src(nir_intrinsic_instr *instr);
3538 nir_src *nir_get_io_vertex_index_src(nir_intrinsic_instr *instr);
3539
3540 bool nir_is_per_vertex_io(const nir_variable *var, gl_shader_stage stage);
3541
3542 bool nir_lower_regs_to_ssa_impl(nir_function_impl *impl);
3543 bool nir_lower_regs_to_ssa(nir_shader *shader);
3544 bool nir_lower_vars_to_ssa(nir_shader *shader);
3545
3546 bool nir_remove_dead_derefs(nir_shader *shader);
3547 bool nir_remove_dead_derefs_impl(nir_function_impl *impl);
3548 bool nir_remove_dead_variables(nir_shader *shader, nir_variable_mode modes);
3549 bool nir_lower_constant_initializers(nir_shader *shader,
3550 nir_variable_mode modes);
3551
3552 bool nir_move_load_const(nir_shader *shader);
3553 bool nir_move_vec_src_uses_to_dest(nir_shader *shader);
3554 bool nir_lower_vec_to_movs(nir_shader *shader);
3555 void nir_lower_alpha_test(nir_shader *shader, enum compare_func func,
3556 bool alpha_to_one);
3557 bool nir_lower_alu(nir_shader *shader);
3558
3559 bool nir_lower_flrp(nir_shader *shader, unsigned lowering_mask,
3560 bool always_precise, bool have_ffma);
3561
3562 bool nir_lower_alu_to_scalar(nir_shader *shader, BITSET_WORD *lower_set);
3563 bool nir_lower_bool_to_float(nir_shader *shader);
3564 bool nir_lower_bool_to_int32(nir_shader *shader);
3565 bool nir_lower_int_to_float(nir_shader *shader);
3566 bool nir_lower_load_const_to_scalar(nir_shader *shader);
3567 bool nir_lower_read_invocation_to_scalar(nir_shader *shader);
3568 bool nir_lower_phis_to_scalar(nir_shader *shader);
3569 void nir_lower_io_arrays_to_elements(nir_shader *producer, nir_shader *consumer);
3570 void nir_lower_io_arrays_to_elements_no_indirects(nir_shader *shader,
3571 bool outputs_only);
3572 void nir_lower_io_to_scalar(nir_shader *shader, nir_variable_mode mask);
3573 void nir_lower_io_to_scalar_early(nir_shader *shader, nir_variable_mode mask);
3574 bool nir_lower_io_to_vector(nir_shader *shader, nir_variable_mode mask);
3575
3576 void nir_lower_fragcoord_wtrans(nir_shader *shader);
3577 void nir_lower_viewport_transform(nir_shader *shader);
3578 bool nir_lower_uniforms_to_ubo(nir_shader *shader, int multiplier);
3579
3580 typedef struct nir_lower_subgroups_options {
3581 uint8_t subgroup_size;
3582 uint8_t ballot_bit_size;
3583 bool lower_to_scalar:1;
3584 bool lower_vote_trivial:1;
3585 bool lower_vote_eq_to_ballot:1;
3586 bool lower_subgroup_masks:1;
3587 bool lower_shuffle:1;
3588 bool lower_shuffle_to_32bit:1;
3589 bool lower_quad:1;
3590 } nir_lower_subgroups_options;
3591
3592 bool nir_lower_subgroups(nir_shader *shader,
3593 const nir_lower_subgroups_options *options);
3594
3595 bool nir_lower_system_values(nir_shader *shader);
3596
3597 enum PACKED nir_lower_tex_packing {
3598 nir_lower_tex_packing_none = 0,
3599 /* The sampler returns up to 2 32-bit words of half floats or 16-bit signed
3600 * or unsigned ints based on the sampler type
3601 */
3602 nir_lower_tex_packing_16,
3603 /* The sampler returns 1 32-bit word of 4x8 unorm */
3604 nir_lower_tex_packing_8,
3605 };
3606
3607 typedef struct nir_lower_tex_options {
3608 /**
3609 * bitmask of (1 << GLSL_SAMPLER_DIM_x) to control for which
3610 * sampler types a texture projector is lowered.
3611 */
3612 unsigned lower_txp;
3613
3614 /**
3615 * If true, lower away nir_tex_src_offset for all texelfetch instructions.
3616 */
3617 bool lower_txf_offset;
3618
3619 /**
3620 * If true, lower away nir_tex_src_offset for all rect textures.
3621 */
3622 bool lower_rect_offset;
3623
3624 /**
3625 * If true, lower rect textures to 2D, using txs to fetch the
3626 * texture dimensions and dividing the texture coords by the
3627 * texture dims to normalize.
3628 */
3629 bool lower_rect;
3630
3631 /**
3632 * If true, convert yuv to rgb.
3633 */
3634 unsigned lower_y_uv_external;
3635 unsigned lower_y_u_v_external;
3636 unsigned lower_yx_xuxv_external;
3637 unsigned lower_xy_uxvx_external;
3638 unsigned lower_ayuv_external;
3639 unsigned lower_xyuv_external;
3640
3641 /**
3642 * To emulate certain texture wrap modes, this can be used
3643 * to saturate the specified tex coord to [0.0, 1.0]. The
3644 * bits are according to sampler #, ie. if, for example:
3645 *
3646 * (conf->saturate_s & (1 << n))
3647 *
3648 * is true, then the s coord for sampler n is saturated.
3649 *
3650 * Note that clamping must happen *after* projector lowering
3651 * so any projected texture sample instruction with a clamped
3652 * coordinate gets automatically lowered, regardless of the
3653 * 'lower_txp' setting.
3654 */
3655 unsigned saturate_s;
3656 unsigned saturate_t;
3657 unsigned saturate_r;
3658
3659 /* Bitmask of textures that need swizzling.
3660 *
3661 * If (swizzle_result & (1 << texture_index)), then the swizzle in
3662 * swizzles[texture_index] is applied to the result of the texturing
3663 * operation.
3664 */
3665 unsigned swizzle_result;
3666
3667 /* A swizzle for each texture. Values 0-3 represent x, y, z, or w swizzles
3668 * while 4 and 5 represent 0 and 1 respectively.
3669 */
3670 uint8_t swizzles[32][4];
3671
3672 /* Can be used to scale sampled values in range required by the format. */
3673 float scale_factors[32];
3674
3675 /**
3676 * Bitmap of textures that need srgb to linear conversion. If
3677 * (lower_srgb & (1 << texture_index)) then the rgb (xyz) components
3678 * of the texture are lowered to linear.
3679 */
3680 unsigned lower_srgb;
3681
3682 /**
3683 * If true, lower nir_texop_tex on shaders that doesn't support implicit
3684 * LODs to nir_texop_txl.
3685 */
3686 bool lower_tex_without_implicit_lod;
3687
3688 /**
3689 * If true, lower nir_texop_txd on cube maps with nir_texop_txl.
3690 */
3691 bool lower_txd_cube_map;
3692
3693 /**
3694 * If true, lower nir_texop_txd on 3D surfaces with nir_texop_txl.
3695 */
3696 bool lower_txd_3d;
3697
3698 /**
3699 * If true, lower nir_texop_txd on shadow samplers (except cube maps)
3700 * with nir_texop_txl. Notice that cube map shadow samplers are lowered
3701 * with lower_txd_cube_map.
3702 */
3703 bool lower_txd_shadow;
3704
3705 /**
3706 * If true, lower nir_texop_txd on all samplers to a nir_texop_txl.
3707 * Implies lower_txd_cube_map and lower_txd_shadow.
3708 */
3709 bool lower_txd;
3710
3711 /**
3712 * If true, lower nir_texop_txb that try to use shadow compare and min_lod
3713 * at the same time to a nir_texop_lod, some math, and nir_texop_tex.
3714 */
3715 bool lower_txb_shadow_clamp;
3716
3717 /**
3718 * If true, lower nir_texop_txd on shadow samplers when it uses min_lod
3719 * with nir_texop_txl. This includes cube maps.
3720 */
3721 bool lower_txd_shadow_clamp;
3722
3723 /**
3724 * If true, lower nir_texop_txd on when it uses both offset and min_lod
3725 * with nir_texop_txl. This includes cube maps.
3726 */
3727 bool lower_txd_offset_clamp;
3728
3729 /**
3730 * If true, lower nir_texop_txd with min_lod to a nir_texop_txl if the
3731 * sampler is bindless.
3732 */
3733 bool lower_txd_clamp_bindless_sampler;
3734
3735 /**
3736 * If true, lower nir_texop_txd with min_lod to a nir_texop_txl if the
3737 * sampler index is not statically determinable to be less than 16.
3738 */
3739 bool lower_txd_clamp_if_sampler_index_not_lt_16;
3740
3741 /**
3742 * If true, lower nir_texop_txs with a non-0-lod into nir_texop_txs with
3743 * 0-lod followed by a nir_ishr.
3744 */
3745 bool lower_txs_lod;
3746
3747 /**
3748 * If true, apply a .bagr swizzle on tg4 results to handle Broadcom's
3749 * mixed-up tg4 locations.
3750 */
3751 bool lower_tg4_broadcom_swizzle;
3752
3753 /**
3754 * If true, lowers tg4 with 4 constant offsets to 4 tg4 calls
3755 */
3756 bool lower_tg4_offsets;
3757
3758 enum nir_lower_tex_packing lower_tex_packing[32];
3759 } nir_lower_tex_options;
3760
3761 bool nir_lower_tex(nir_shader *shader,
3762 const nir_lower_tex_options *options);
3763
3764 enum nir_lower_non_uniform_access_type {
3765 nir_lower_non_uniform_ubo_access = (1 << 0),
3766 nir_lower_non_uniform_ssbo_access = (1 << 1),
3767 nir_lower_non_uniform_texture_access = (1 << 2),
3768 nir_lower_non_uniform_image_access = (1 << 3),
3769 };
3770
3771 bool nir_lower_non_uniform_access(nir_shader *shader,
3772 enum nir_lower_non_uniform_access_type);
3773
3774 bool nir_lower_idiv(nir_shader *shader);
3775
3776 bool nir_lower_input_attachments(nir_shader *shader, bool use_fragcoord_sysval);
3777
3778 bool nir_lower_clip_vs(nir_shader *shader, unsigned ucp_enables, bool use_vars);
3779 bool nir_lower_clip_gs(nir_shader *shader, unsigned ucp_enables);
3780 bool nir_lower_clip_fs(nir_shader *shader, unsigned ucp_enables);
3781 bool nir_lower_clip_cull_distance_arrays(nir_shader *nir);
3782
3783 bool nir_lower_frexp(nir_shader *nir);
3784
3785 void nir_lower_two_sided_color(nir_shader *shader);
3786
3787 bool nir_lower_clamp_color_outputs(nir_shader *shader);
3788
3789 void nir_lower_passthrough_edgeflags(nir_shader *shader);
3790 bool nir_lower_patch_vertices(nir_shader *nir, unsigned static_count,
3791 const gl_state_index16 *uniform_state_tokens);
3792
3793 typedef struct nir_lower_wpos_ytransform_options {
3794 gl_state_index16 state_tokens[STATE_LENGTH];
3795 bool fs_coord_origin_upper_left :1;
3796 bool fs_coord_origin_lower_left :1;
3797 bool fs_coord_pixel_center_integer :1;
3798 bool fs_coord_pixel_center_half_integer :1;
3799 } nir_lower_wpos_ytransform_options;
3800
3801 bool nir_lower_wpos_ytransform(nir_shader *shader,
3802 const nir_lower_wpos_ytransform_options *options);
3803 bool nir_lower_wpos_center(nir_shader *shader, const bool for_sample_shading);
3804
3805 bool nir_lower_fb_read(nir_shader *shader);
3806
3807 typedef struct nir_lower_drawpixels_options {
3808 gl_state_index16 texcoord_state_tokens[STATE_LENGTH];
3809 gl_state_index16 scale_state_tokens[STATE_LENGTH];
3810 gl_state_index16 bias_state_tokens[STATE_LENGTH];
3811 unsigned drawpix_sampler;
3812 unsigned pixelmap_sampler;
3813 bool pixel_maps :1;
3814 bool scale_and_bias :1;
3815 } nir_lower_drawpixels_options;
3816
3817 void nir_lower_drawpixels(nir_shader *shader,
3818 const nir_lower_drawpixels_options *options);
3819
3820 typedef struct nir_lower_bitmap_options {
3821 unsigned sampler;
3822 bool swizzle_xxxx;
3823 } nir_lower_bitmap_options;
3824
3825 void nir_lower_bitmap(nir_shader *shader, const nir_lower_bitmap_options *options);
3826
3827 bool nir_lower_atomics_to_ssbo(nir_shader *shader, unsigned ssbo_offset);
3828
3829 typedef enum {
3830 nir_lower_int_source_mods = 1 << 0,
3831 nir_lower_float_source_mods = 1 << 1,
3832 nir_lower_triop_abs = 1 << 2,
3833 nir_lower_all_source_mods = (1 << 3) - 1
3834 } nir_lower_to_source_mods_flags;
3835
3836
3837 bool nir_lower_to_source_mods(nir_shader *shader, nir_lower_to_source_mods_flags options);
3838
3839 bool nir_lower_gs_intrinsics(nir_shader *shader);
3840
3841 typedef unsigned (*nir_lower_bit_size_callback)(const nir_alu_instr *, void *);
3842
3843 bool nir_lower_bit_size(nir_shader *shader,
3844 nir_lower_bit_size_callback callback,
3845 void *callback_data);
3846
3847 nir_lower_int64_options nir_lower_int64_op_to_options_mask(nir_op opcode);
3848 bool nir_lower_int64(nir_shader *shader, nir_lower_int64_options options);
3849
3850 nir_lower_doubles_options nir_lower_doubles_op_to_options_mask(nir_op opcode);
3851 bool nir_lower_doubles(nir_shader *shader, const nir_shader *softfp64,
3852 nir_lower_doubles_options options);
3853 bool nir_lower_pack(nir_shader *shader);
3854
3855 typedef enum {
3856 nir_lower_interpolation_at_sample = (1 << 1),
3857 nir_lower_interpolation_at_offset = (1 << 2),
3858 nir_lower_interpolation_centroid = (1 << 3),
3859 nir_lower_interpolation_pixel = (1 << 4),
3860 nir_lower_interpolation_sample = (1 << 5),
3861 } nir_lower_interpolation_options;
3862
3863 bool nir_lower_interpolation(nir_shader *shader,
3864 nir_lower_interpolation_options options);
3865
3866 bool nir_normalize_cubemap_coords(nir_shader *shader);
3867
3868 void nir_live_ssa_defs_impl(nir_function_impl *impl);
3869
3870 void nir_loop_analyze_impl(nir_function_impl *impl,
3871 nir_variable_mode indirect_mask);
3872
3873 bool nir_ssa_defs_interfere(nir_ssa_def *a, nir_ssa_def *b);
3874
3875 bool nir_repair_ssa_impl(nir_function_impl *impl);
3876 bool nir_repair_ssa(nir_shader *shader);
3877
3878 void nir_convert_loop_to_lcssa(nir_loop *loop);
3879
3880 /* If phi_webs_only is true, only convert SSA values involved in phi nodes to
3881 * registers. If false, convert all values (even those not involved in a phi
3882 * node) to registers.
3883 */
3884 bool nir_convert_from_ssa(nir_shader *shader, bool phi_webs_only);
3885
3886 bool nir_lower_phis_to_regs_block(nir_block *block);
3887 bool nir_lower_ssa_defs_to_regs_block(nir_block *block);
3888 bool nir_rematerialize_derefs_in_use_blocks_impl(nir_function_impl *impl);
3889
3890 /* This is here for unit tests. */
3891 bool nir_opt_comparison_pre_impl(nir_function_impl *impl);
3892
3893 bool nir_opt_comparison_pre(nir_shader *shader);
3894
3895 bool nir_opt_algebraic(nir_shader *shader);
3896 bool nir_opt_algebraic_before_ffma(nir_shader *shader);
3897 bool nir_opt_algebraic_late(nir_shader *shader);
3898 bool nir_opt_constant_folding(nir_shader *shader);
3899
3900 bool nir_opt_combine_stores(nir_shader *shader, nir_variable_mode modes);
3901
3902 bool nir_copy_prop(nir_shader *shader);
3903
3904 bool nir_opt_copy_prop_vars(nir_shader *shader);
3905
3906 bool nir_opt_cse(nir_shader *shader);
3907
3908 bool nir_opt_dce(nir_shader *shader);
3909
3910 bool nir_opt_dead_cf(nir_shader *shader);
3911
3912 bool nir_opt_dead_write_vars(nir_shader *shader);
3913
3914 bool nir_opt_deref_impl(nir_function_impl *impl);
3915 bool nir_opt_deref(nir_shader *shader);
3916
3917 bool nir_opt_find_array_copies(nir_shader *shader);
3918
3919 bool nir_opt_gcm(nir_shader *shader, bool value_number);
3920
3921 bool nir_opt_idiv_const(nir_shader *shader, unsigned min_bit_size);
3922
3923 bool nir_opt_if(nir_shader *shader, bool aggressive_last_continue);
3924
3925 bool nir_opt_intrinsics(nir_shader *shader);
3926
3927 bool nir_opt_large_constants(nir_shader *shader,
3928 glsl_type_size_align_func size_align,
3929 unsigned threshold);
3930
3931 bool nir_opt_loop_unroll(nir_shader *shader, nir_variable_mode indirect_mask);
3932
3933 bool nir_opt_move_comparisons(nir_shader *shader);
3934
3935 bool nir_opt_move_load_ubo(nir_shader *shader);
3936
3937 bool nir_opt_peephole_select(nir_shader *shader, unsigned limit,
3938 bool indirect_load_ok, bool expensive_alu_ok);
3939
3940 bool nir_opt_rematerialize_compares(nir_shader *shader);
3941
3942 bool nir_opt_remove_phis(nir_shader *shader);
3943 bool nir_opt_remove_phis_block(nir_block *block);
3944
3945 bool nir_opt_shrink_load(nir_shader *shader);
3946
3947 bool nir_opt_trivial_continues(nir_shader *shader);
3948
3949 bool nir_opt_undef(nir_shader *shader);
3950
3951 bool nir_opt_vectorize(nir_shader *shader);
3952
3953 bool nir_opt_conditional_discard(nir_shader *shader);
3954
3955 void nir_strip(nir_shader *shader);
3956
3957 void nir_sweep(nir_shader *shader);
3958
3959 void nir_remap_dual_slot_attributes(nir_shader *shader,
3960 uint64_t *dual_slot_inputs);
3961 uint64_t nir_get_single_slot_attribs_mask(uint64_t attribs, uint64_t dual_slot);
3962
3963 nir_intrinsic_op nir_intrinsic_from_system_value(gl_system_value val);
3964 gl_system_value nir_system_value_from_intrinsic(nir_intrinsic_op intrin);
3965
3966 bool nir_lower_sincos(nir_shader *shader);
3967
3968 static inline bool
3969 nir_variable_is_in_ubo(const nir_variable *var)
3970 {
3971 return (var->data.mode == nir_var_mem_ubo &&
3972 var->interface_type != NULL);
3973 }
3974
3975 static inline bool
3976 nir_variable_is_in_ssbo(const nir_variable *var)
3977 {
3978 return (var->data.mode == nir_var_mem_ssbo &&
3979 var->interface_type != NULL);
3980 }
3981
3982 static inline bool
3983 nir_variable_is_in_block(const nir_variable *var)
3984 {
3985 return nir_variable_is_in_ubo(var) || nir_variable_is_in_ssbo(var);
3986 }
3987
3988 #ifdef __cplusplus
3989 } /* extern "C" */
3990 #endif
3991
3992 #endif /* NIR_H */