nir: Add a shallow clone function for nir_alu_instr
[mesa.git] / src / compiler / nir / nir.h
1 /*
2 * Copyright © 2014 Connor Abbott
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Connor Abbott (cwabbott0@gmail.com)
25 *
26 */
27
28 #ifndef NIR_H
29 #define NIR_H
30
31 #include "util/hash_table.h"
32 #include "compiler/glsl/list.h"
33 #include "GL/gl.h" /* GLenum */
34 #include "util/list.h"
35 #include "util/ralloc.h"
36 #include "util/set.h"
37 #include "util/bitscan.h"
38 #include "util/bitset.h"
39 #include "util/macros.h"
40 #include "compiler/nir_types.h"
41 #include "compiler/shader_enums.h"
42 #include "compiler/shader_info.h"
43 #include <stdio.h>
44
45 #ifndef NDEBUG
46 #include "util/debug.h"
47 #endif /* NDEBUG */
48
49 #include "nir_opcodes.h"
50
51 #if defined(_WIN32) && !defined(snprintf)
52 #define snprintf _snprintf
53 #endif
54
55 #ifdef __cplusplus
56 extern "C" {
57 #endif
58
59 #define NIR_FALSE 0u
60 #define NIR_TRUE (~0u)
61 #define NIR_MAX_VEC_COMPONENTS 4
62 #define NIR_MAX_MATRIX_COLUMNS 4
63 typedef uint8_t nir_component_mask_t;
64
65 /** Defines a cast function
66 *
67 * This macro defines a cast function from in_type to out_type where
68 * out_type is some structure type that contains a field of type out_type.
69 *
70 * Note that you have to be a bit careful as the generated cast function
71 * destroys constness.
72 */
73 #define NIR_DEFINE_CAST(name, in_type, out_type, field, \
74 type_field, type_value) \
75 static inline out_type * \
76 name(const in_type *parent) \
77 { \
78 assert(parent && parent->type_field == type_value); \
79 return exec_node_data(out_type, parent, field); \
80 }
81
82 struct nir_function;
83 struct nir_shader;
84 struct nir_instr;
85 struct nir_builder;
86
87
88 /**
89 * Description of built-in state associated with a uniform
90 *
91 * \sa nir_variable::state_slots
92 */
93 typedef struct {
94 gl_state_index16 tokens[STATE_LENGTH];
95 int swizzle;
96 } nir_state_slot;
97
98 typedef enum {
99 nir_var_shader_in = (1 << 0),
100 nir_var_shader_out = (1 << 1),
101 nir_var_shader_temp = (1 << 2),
102 nir_var_function_temp = (1 << 3),
103 nir_var_uniform = (1 << 4),
104 nir_var_mem_ubo = (1 << 5),
105 nir_var_system_value = (1 << 6),
106 nir_var_mem_ssbo = (1 << 7),
107 nir_var_mem_shared = (1 << 8),
108 nir_var_mem_global = (1 << 9),
109 nir_var_all = ~0,
110 } nir_variable_mode;
111
112 /**
113 * Rounding modes.
114 */
115 typedef enum {
116 nir_rounding_mode_undef = 0,
117 nir_rounding_mode_rtne = 1, /* round to nearest even */
118 nir_rounding_mode_ru = 2, /* round up */
119 nir_rounding_mode_rd = 3, /* round down */
120 nir_rounding_mode_rtz = 4, /* round towards zero */
121 } nir_rounding_mode;
122
123 typedef union {
124 bool b;
125 float f32;
126 double f64;
127 int8_t i8;
128 uint8_t u8;
129 int16_t i16;
130 uint16_t u16;
131 int32_t i32;
132 uint32_t u32;
133 int64_t i64;
134 uint64_t u64;
135 } nir_const_value;
136
137 #define nir_const_value_to_array(arr, c, components, m) \
138 { \
139 for (unsigned i = 0; i < components; ++i) \
140 arr[i] = c[i].m; \
141 } while (false)
142
143 typedef struct nir_constant {
144 /**
145 * Value of the constant.
146 *
147 * The field used to back the values supplied by the constant is determined
148 * by the type associated with the \c nir_variable. Constants may be
149 * scalars, vectors, or matrices.
150 */
151 nir_const_value values[NIR_MAX_MATRIX_COLUMNS][NIR_MAX_VEC_COMPONENTS];
152
153 /* we could get this from the var->type but makes clone *much* easier to
154 * not have to care about the type.
155 */
156 unsigned num_elements;
157
158 /* Array elements / Structure Fields */
159 struct nir_constant **elements;
160 } nir_constant;
161
162 /**
163 * \brief Layout qualifiers for gl_FragDepth.
164 *
165 * The AMD/ARB_conservative_depth extensions allow gl_FragDepth to be redeclared
166 * with a layout qualifier.
167 */
168 typedef enum {
169 nir_depth_layout_none, /**< No depth layout is specified. */
170 nir_depth_layout_any,
171 nir_depth_layout_greater,
172 nir_depth_layout_less,
173 nir_depth_layout_unchanged
174 } nir_depth_layout;
175
176 /**
177 * Enum keeping track of how a variable was declared.
178 */
179 typedef enum {
180 /**
181 * Normal declaration.
182 */
183 nir_var_declared_normally = 0,
184
185 /**
186 * Variable is implicitly generated by the compiler and should not be
187 * visible via the API.
188 */
189 nir_var_hidden,
190 } nir_var_declaration_type;
191
192 /**
193 * Either a uniform, global variable, shader input, or shader output. Based on
194 * ir_variable - it should be easy to translate between the two.
195 */
196
197 typedef struct nir_variable {
198 struct exec_node node;
199
200 /**
201 * Declared type of the variable
202 */
203 const struct glsl_type *type;
204
205 /**
206 * Declared name of the variable
207 */
208 char *name;
209
210 struct nir_variable_data {
211 /**
212 * Storage class of the variable.
213 *
214 * \sa nir_variable_mode
215 */
216 nir_variable_mode mode;
217
218 /**
219 * Is the variable read-only?
220 *
221 * This is set for variables declared as \c const, shader inputs,
222 * and uniforms.
223 */
224 unsigned read_only:1;
225 unsigned centroid:1;
226 unsigned sample:1;
227 unsigned patch:1;
228 unsigned invariant:1;
229
230 /**
231 * When separate shader programs are enabled, only input/outputs between
232 * the stages of a multi-stage separate program can be safely removed
233 * from the shader interface. Other input/outputs must remains active.
234 *
235 * This is also used to make sure xfb varyings that are unused by the
236 * fragment shader are not removed.
237 */
238 unsigned always_active_io:1;
239
240 /**
241 * Interpolation mode for shader inputs / outputs
242 *
243 * \sa glsl_interp_mode
244 */
245 unsigned interpolation:2;
246
247 /**
248 * If non-zero, then this variable may be packed along with other variables
249 * into a single varying slot, so this offset should be applied when
250 * accessing components. For example, an offset of 1 means that the x
251 * component of this variable is actually stored in component y of the
252 * location specified by \c location.
253 */
254 unsigned location_frac:2;
255
256 /**
257 * If true, this variable represents an array of scalars that should
258 * be tightly packed. In other words, consecutive array elements
259 * should be stored one component apart, rather than one slot apart.
260 */
261 unsigned compact:1;
262
263 /**
264 * Whether this is a fragment shader output implicitly initialized with
265 * the previous contents of the specified render target at the
266 * framebuffer location corresponding to this shader invocation.
267 */
268 unsigned fb_fetch_output:1;
269
270 /**
271 * Non-zero if this variable is considered bindless as defined by
272 * ARB_bindless_texture.
273 */
274 unsigned bindless:1;
275
276 /**
277 * Was an explicit binding set in the shader?
278 */
279 unsigned explicit_binding:1;
280
281 /**
282 * Was a transfer feedback buffer set in the shader?
283 */
284 unsigned explicit_xfb_buffer:1;
285
286 /**
287 * Was a transfer feedback stride set in the shader?
288 */
289 unsigned explicit_xfb_stride:1;
290
291 /**
292 * Was an explicit offset set in the shader?
293 */
294 unsigned explicit_offset:1;
295
296 /**
297 * \brief Layout qualifier for gl_FragDepth.
298 *
299 * This is not equal to \c ir_depth_layout_none if and only if this
300 * variable is \c gl_FragDepth and a layout qualifier is specified.
301 */
302 nir_depth_layout depth_layout;
303
304 /**
305 * Storage location of the base of this variable
306 *
307 * The precise meaning of this field depends on the nature of the variable.
308 *
309 * - Vertex shader input: one of the values from \c gl_vert_attrib.
310 * - Vertex shader output: one of the values from \c gl_varying_slot.
311 * - Geometry shader input: one of the values from \c gl_varying_slot.
312 * - Geometry shader output: one of the values from \c gl_varying_slot.
313 * - Fragment shader input: one of the values from \c gl_varying_slot.
314 * - Fragment shader output: one of the values from \c gl_frag_result.
315 * - Uniforms: Per-stage uniform slot number for default uniform block.
316 * - Uniforms: Index within the uniform block definition for UBO members.
317 * - Non-UBO Uniforms: uniform slot number.
318 * - Other: This field is not currently used.
319 *
320 * If the variable is a uniform, shader input, or shader output, and the
321 * slot has not been assigned, the value will be -1.
322 */
323 int location;
324
325 /**
326 * The actual location of the variable in the IR. Only valid for inputs
327 * and outputs.
328 */
329 unsigned int driver_location;
330
331 /**
332 * Vertex stream output identifier.
333 *
334 * For packed outputs, bit 31 is set and bits [2*i+1,2*i] indicate the
335 * stream of the i-th component.
336 */
337 unsigned stream;
338
339 /**
340 * output index for dual source blending.
341 */
342 int index;
343
344 /**
345 * Descriptor set binding for sampler or UBO.
346 */
347 int descriptor_set;
348
349 /**
350 * Initial binding point for a sampler or UBO.
351 *
352 * For array types, this represents the binding point for the first element.
353 */
354 int binding;
355
356 /**
357 * Location an atomic counter or transform feedback is stored at.
358 */
359 unsigned offset;
360
361 /**
362 * Transform feedback buffer.
363 */
364 unsigned xfb_buffer;
365
366 /**
367 * Transform feedback stride.
368 */
369 unsigned xfb_stride;
370
371 /**
372 * How the variable was declared. See nir_var_declaration_type.
373 *
374 * This is used to detect variables generated by the compiler, so should
375 * not be visible via the API.
376 */
377 unsigned how_declared:2;
378
379 /**
380 * ARB_shader_image_load_store qualifiers.
381 */
382 struct {
383 enum gl_access_qualifier access;
384
385 /** Image internal format if specified explicitly, otherwise GL_NONE. */
386 GLenum format;
387 } image;
388 } data;
389
390 /**
391 * Built-in state that backs this uniform
392 *
393 * Once set at variable creation, \c state_slots must remain invariant.
394 * This is because, ideally, this array would be shared by all clones of
395 * this variable in the IR tree. In other words, we'd really like for it
396 * to be a fly-weight.
397 *
398 * If the variable is not a uniform, \c num_state_slots will be zero and
399 * \c state_slots will be \c NULL.
400 */
401 /*@{*/
402 unsigned num_state_slots; /**< Number of state slots used */
403 nir_state_slot *state_slots; /**< State descriptors. */
404 /*@}*/
405
406 /**
407 * Constant expression assigned in the initializer of the variable
408 *
409 * This field should only be used temporarily by creators of NIR shaders
410 * and then lower_constant_initializers can be used to get rid of them.
411 * Most of the rest of NIR ignores this field or asserts that it's NULL.
412 */
413 nir_constant *constant_initializer;
414
415 /**
416 * For variables that are in an interface block or are an instance of an
417 * interface block, this is the \c GLSL_TYPE_INTERFACE type for that block.
418 *
419 * \sa ir_variable::location
420 */
421 const struct glsl_type *interface_type;
422
423 /**
424 * Description of per-member data for per-member struct variables
425 *
426 * This is used for variables which are actually an amalgamation of
427 * multiple entities such as a struct of built-in values or a struct of
428 * inputs each with their own layout specifier. This is only allowed on
429 * variables with a struct or array of array of struct type.
430 */
431 unsigned num_members;
432 struct nir_variable_data *members;
433 } nir_variable;
434
435 #define nir_foreach_variable(var, var_list) \
436 foreach_list_typed(nir_variable, var, node, var_list)
437
438 #define nir_foreach_variable_safe(var, var_list) \
439 foreach_list_typed_safe(nir_variable, var, node, var_list)
440
441 static inline bool
442 nir_variable_is_global(const nir_variable *var)
443 {
444 return var->data.mode != nir_var_function_temp;
445 }
446
447 typedef struct nir_register {
448 struct exec_node node;
449
450 unsigned num_components; /** < number of vector components */
451 unsigned num_array_elems; /** < size of array (0 for no array) */
452
453 /* The bit-size of each channel; must be one of 8, 16, 32, or 64 */
454 uint8_t bit_size;
455
456 /** generic register index. */
457 unsigned index;
458
459 /** only for debug purposes, can be NULL */
460 const char *name;
461
462 /** set of nir_srcs where this register is used (read from) */
463 struct list_head uses;
464
465 /** set of nir_dests where this register is defined (written to) */
466 struct list_head defs;
467
468 /** set of nir_ifs where this register is used as a condition */
469 struct list_head if_uses;
470 } nir_register;
471
472 #define nir_foreach_register(reg, reg_list) \
473 foreach_list_typed(nir_register, reg, node, reg_list)
474 #define nir_foreach_register_safe(reg, reg_list) \
475 foreach_list_typed_safe(nir_register, reg, node, reg_list)
476
477 typedef enum PACKED {
478 nir_instr_type_alu,
479 nir_instr_type_deref,
480 nir_instr_type_call,
481 nir_instr_type_tex,
482 nir_instr_type_intrinsic,
483 nir_instr_type_load_const,
484 nir_instr_type_jump,
485 nir_instr_type_ssa_undef,
486 nir_instr_type_phi,
487 nir_instr_type_parallel_copy,
488 } nir_instr_type;
489
490 typedef struct nir_instr {
491 struct exec_node node;
492 struct nir_block *block;
493 nir_instr_type type;
494
495 /* A temporary for optimization and analysis passes to use for storing
496 * flags. For instance, DCE uses this to store the "dead/live" info.
497 */
498 uint8_t pass_flags;
499
500 /** generic instruction index. */
501 unsigned index;
502 } nir_instr;
503
504 static inline nir_instr *
505 nir_instr_next(nir_instr *instr)
506 {
507 struct exec_node *next = exec_node_get_next(&instr->node);
508 if (exec_node_is_tail_sentinel(next))
509 return NULL;
510 else
511 return exec_node_data(nir_instr, next, node);
512 }
513
514 static inline nir_instr *
515 nir_instr_prev(nir_instr *instr)
516 {
517 struct exec_node *prev = exec_node_get_prev(&instr->node);
518 if (exec_node_is_head_sentinel(prev))
519 return NULL;
520 else
521 return exec_node_data(nir_instr, prev, node);
522 }
523
524 static inline bool
525 nir_instr_is_first(const nir_instr *instr)
526 {
527 return exec_node_is_head_sentinel(exec_node_get_prev_const(&instr->node));
528 }
529
530 static inline bool
531 nir_instr_is_last(const nir_instr *instr)
532 {
533 return exec_node_is_tail_sentinel(exec_node_get_next_const(&instr->node));
534 }
535
536 typedef struct nir_ssa_def {
537 /** for debugging only, can be NULL */
538 const char* name;
539
540 /** generic SSA definition index. */
541 unsigned index;
542
543 /** Index into the live_in and live_out bitfields */
544 unsigned live_index;
545
546 /** Instruction which produces this SSA value. */
547 nir_instr *parent_instr;
548
549 /** set of nir_instrs where this register is used (read from) */
550 struct list_head uses;
551
552 /** set of nir_ifs where this register is used as a condition */
553 struct list_head if_uses;
554
555 uint8_t num_components;
556
557 /* The bit-size of each channel; must be one of 8, 16, 32, or 64 */
558 uint8_t bit_size;
559 } nir_ssa_def;
560
561 struct nir_src;
562
563 typedef struct {
564 nir_register *reg;
565 struct nir_src *indirect; /** < NULL for no indirect offset */
566 unsigned base_offset;
567
568 /* TODO use-def chain goes here */
569 } nir_reg_src;
570
571 typedef struct {
572 nir_instr *parent_instr;
573 struct list_head def_link;
574
575 nir_register *reg;
576 struct nir_src *indirect; /** < NULL for no indirect offset */
577 unsigned base_offset;
578
579 /* TODO def-use chain goes here */
580 } nir_reg_dest;
581
582 struct nir_if;
583
584 typedef struct nir_src {
585 union {
586 /** Instruction that consumes this value as a source. */
587 nir_instr *parent_instr;
588 struct nir_if *parent_if;
589 };
590
591 struct list_head use_link;
592
593 union {
594 nir_reg_src reg;
595 nir_ssa_def *ssa;
596 };
597
598 bool is_ssa;
599 } nir_src;
600
601 static inline nir_src
602 nir_src_init(void)
603 {
604 nir_src src = { { NULL } };
605 return src;
606 }
607
608 #define NIR_SRC_INIT nir_src_init()
609
610 #define nir_foreach_use(src, reg_or_ssa_def) \
611 list_for_each_entry(nir_src, src, &(reg_or_ssa_def)->uses, use_link)
612
613 #define nir_foreach_use_safe(src, reg_or_ssa_def) \
614 list_for_each_entry_safe(nir_src, src, &(reg_or_ssa_def)->uses, use_link)
615
616 #define nir_foreach_if_use(src, reg_or_ssa_def) \
617 list_for_each_entry(nir_src, src, &(reg_or_ssa_def)->if_uses, use_link)
618
619 #define nir_foreach_if_use_safe(src, reg_or_ssa_def) \
620 list_for_each_entry_safe(nir_src, src, &(reg_or_ssa_def)->if_uses, use_link)
621
622 typedef struct {
623 union {
624 nir_reg_dest reg;
625 nir_ssa_def ssa;
626 };
627
628 bool is_ssa;
629 } nir_dest;
630
631 static inline nir_dest
632 nir_dest_init(void)
633 {
634 nir_dest dest = { { { NULL } } };
635 return dest;
636 }
637
638 #define NIR_DEST_INIT nir_dest_init()
639
640 #define nir_foreach_def(dest, reg) \
641 list_for_each_entry(nir_dest, dest, &(reg)->defs, reg.def_link)
642
643 #define nir_foreach_def_safe(dest, reg) \
644 list_for_each_entry_safe(nir_dest, dest, &(reg)->defs, reg.def_link)
645
646 static inline nir_src
647 nir_src_for_ssa(nir_ssa_def *def)
648 {
649 nir_src src = NIR_SRC_INIT;
650
651 src.is_ssa = true;
652 src.ssa = def;
653
654 return src;
655 }
656
657 static inline nir_src
658 nir_src_for_reg(nir_register *reg)
659 {
660 nir_src src = NIR_SRC_INIT;
661
662 src.is_ssa = false;
663 src.reg.reg = reg;
664 src.reg.indirect = NULL;
665 src.reg.base_offset = 0;
666
667 return src;
668 }
669
670 static inline nir_dest
671 nir_dest_for_reg(nir_register *reg)
672 {
673 nir_dest dest = NIR_DEST_INIT;
674
675 dest.reg.reg = reg;
676
677 return dest;
678 }
679
680 static inline unsigned
681 nir_src_bit_size(nir_src src)
682 {
683 return src.is_ssa ? src.ssa->bit_size : src.reg.reg->bit_size;
684 }
685
686 static inline unsigned
687 nir_src_num_components(nir_src src)
688 {
689 return src.is_ssa ? src.ssa->num_components : src.reg.reg->num_components;
690 }
691
692 static inline bool
693 nir_src_is_const(nir_src src)
694 {
695 return src.is_ssa &&
696 src.ssa->parent_instr->type == nir_instr_type_load_const;
697 }
698
699 int64_t nir_src_as_int(nir_src src);
700 uint64_t nir_src_as_uint(nir_src src);
701 bool nir_src_as_bool(nir_src src);
702 double nir_src_as_float(nir_src src);
703 int64_t nir_src_comp_as_int(nir_src src, unsigned component);
704 uint64_t nir_src_comp_as_uint(nir_src src, unsigned component);
705 bool nir_src_comp_as_bool(nir_src src, unsigned component);
706 double nir_src_comp_as_float(nir_src src, unsigned component);
707
708 static inline unsigned
709 nir_dest_bit_size(nir_dest dest)
710 {
711 return dest.is_ssa ? dest.ssa.bit_size : dest.reg.reg->bit_size;
712 }
713
714 static inline unsigned
715 nir_dest_num_components(nir_dest dest)
716 {
717 return dest.is_ssa ? dest.ssa.num_components : dest.reg.reg->num_components;
718 }
719
720 void nir_src_copy(nir_src *dest, const nir_src *src, void *instr_or_if);
721 void nir_dest_copy(nir_dest *dest, const nir_dest *src, nir_instr *instr);
722
723 typedef struct {
724 nir_src src;
725
726 /**
727 * \name input modifiers
728 */
729 /*@{*/
730 /**
731 * For inputs interpreted as floating point, flips the sign bit. For
732 * inputs interpreted as integers, performs the two's complement negation.
733 */
734 bool negate;
735
736 /**
737 * Clears the sign bit for floating point values, and computes the integer
738 * absolute value for integers. Note that the negate modifier acts after
739 * the absolute value modifier, therefore if both are set then all inputs
740 * will become negative.
741 */
742 bool abs;
743 /*@}*/
744
745 /**
746 * For each input component, says which component of the register it is
747 * chosen from. Note that which elements of the swizzle are used and which
748 * are ignored are based on the write mask for most opcodes - for example,
749 * a statement like "foo.xzw = bar.zyx" would have a writemask of 1101b and
750 * a swizzle of {2, x, 1, 0} where x means "don't care."
751 */
752 uint8_t swizzle[NIR_MAX_VEC_COMPONENTS];
753 } nir_alu_src;
754
755 typedef struct {
756 nir_dest dest;
757
758 /**
759 * \name saturate output modifier
760 *
761 * Only valid for opcodes that output floating-point numbers. Clamps the
762 * output to between 0.0 and 1.0 inclusive.
763 */
764
765 bool saturate;
766
767 unsigned write_mask : NIR_MAX_VEC_COMPONENTS; /* ignored if dest.is_ssa is true */
768 } nir_alu_dest;
769
770 /** NIR sized and unsized types
771 *
772 * The values in this enum are carefully chosen so that the sized type is
773 * just the unsized type OR the number of bits.
774 */
775 typedef enum {
776 nir_type_invalid = 0, /* Not a valid type */
777 nir_type_int = 2,
778 nir_type_uint = 4,
779 nir_type_bool = 6,
780 nir_type_float = 128,
781 nir_type_bool1 = 1 | nir_type_bool,
782 nir_type_bool32 = 32 | nir_type_bool,
783 nir_type_int1 = 1 | nir_type_int,
784 nir_type_int8 = 8 | nir_type_int,
785 nir_type_int16 = 16 | nir_type_int,
786 nir_type_int32 = 32 | nir_type_int,
787 nir_type_int64 = 64 | nir_type_int,
788 nir_type_uint1 = 1 | nir_type_uint,
789 nir_type_uint8 = 8 | nir_type_uint,
790 nir_type_uint16 = 16 | nir_type_uint,
791 nir_type_uint32 = 32 | nir_type_uint,
792 nir_type_uint64 = 64 | nir_type_uint,
793 nir_type_float16 = 16 | nir_type_float,
794 nir_type_float32 = 32 | nir_type_float,
795 nir_type_float64 = 64 | nir_type_float,
796 } nir_alu_type;
797
798 #define NIR_ALU_TYPE_SIZE_MASK 0x79
799 #define NIR_ALU_TYPE_BASE_TYPE_MASK 0x86
800
801 static inline unsigned
802 nir_alu_type_get_type_size(nir_alu_type type)
803 {
804 return type & NIR_ALU_TYPE_SIZE_MASK;
805 }
806
807 static inline unsigned
808 nir_alu_type_get_base_type(nir_alu_type type)
809 {
810 return type & NIR_ALU_TYPE_BASE_TYPE_MASK;
811 }
812
813 static inline nir_alu_type
814 nir_get_nir_type_for_glsl_base_type(enum glsl_base_type base_type)
815 {
816 switch (base_type) {
817 case GLSL_TYPE_BOOL:
818 return nir_type_bool1;
819 break;
820 case GLSL_TYPE_UINT:
821 return nir_type_uint32;
822 break;
823 case GLSL_TYPE_INT:
824 return nir_type_int32;
825 break;
826 case GLSL_TYPE_UINT16:
827 return nir_type_uint16;
828 break;
829 case GLSL_TYPE_INT16:
830 return nir_type_int16;
831 break;
832 case GLSL_TYPE_UINT8:
833 return nir_type_uint8;
834 case GLSL_TYPE_INT8:
835 return nir_type_int8;
836 case GLSL_TYPE_UINT64:
837 return nir_type_uint64;
838 break;
839 case GLSL_TYPE_INT64:
840 return nir_type_int64;
841 break;
842 case GLSL_TYPE_FLOAT:
843 return nir_type_float32;
844 break;
845 case GLSL_TYPE_FLOAT16:
846 return nir_type_float16;
847 break;
848 case GLSL_TYPE_DOUBLE:
849 return nir_type_float64;
850 break;
851 default:
852 unreachable("unknown type");
853 }
854 }
855
856 static inline nir_alu_type
857 nir_get_nir_type_for_glsl_type(const struct glsl_type *type)
858 {
859 return nir_get_nir_type_for_glsl_base_type(glsl_get_base_type(type));
860 }
861
862 nir_op nir_type_conversion_op(nir_alu_type src, nir_alu_type dst,
863 nir_rounding_mode rnd);
864
865 static inline nir_op
866 nir_op_vec(unsigned components)
867 {
868 switch (components) {
869 case 1: return nir_op_mov;
870 case 2: return nir_op_vec2;
871 case 3: return nir_op_vec3;
872 case 4: return nir_op_vec4;
873 default: unreachable("bad component count");
874 }
875 }
876
877 typedef enum {
878 /**
879 * Operation where the first two sources are commutative.
880 *
881 * For 2-source operations, this just mathematical commutativity. Some
882 * 3-source operations, like ffma, are only commutative in the first two
883 * sources.
884 */
885 NIR_OP_IS_2SRC_COMMUTATIVE = (1 << 0),
886 NIR_OP_IS_ASSOCIATIVE = (1 << 1),
887 } nir_op_algebraic_property;
888
889 typedef struct {
890 const char *name;
891
892 unsigned num_inputs;
893
894 /**
895 * The number of components in the output
896 *
897 * If non-zero, this is the size of the output and input sizes are
898 * explicitly given; swizzle and writemask are still in effect, but if
899 * the output component is masked out, then the input component may
900 * still be in use.
901 *
902 * If zero, the opcode acts in the standard, per-component manner; the
903 * operation is performed on each component (except the ones that are
904 * masked out) with the input being taken from the input swizzle for
905 * that component.
906 *
907 * The size of some of the inputs may be given (i.e. non-zero) even
908 * though output_size is zero; in that case, the inputs with a zero
909 * size act per-component, while the inputs with non-zero size don't.
910 */
911 unsigned output_size;
912
913 /**
914 * The type of vector that the instruction outputs. Note that the
915 * staurate modifier is only allowed on outputs with the float type.
916 */
917
918 nir_alu_type output_type;
919
920 /**
921 * The number of components in each input
922 */
923 unsigned input_sizes[NIR_MAX_VEC_COMPONENTS];
924
925 /**
926 * The type of vector that each input takes. Note that negate and
927 * absolute value are only allowed on inputs with int or float type and
928 * behave differently on the two.
929 */
930 nir_alu_type input_types[NIR_MAX_VEC_COMPONENTS];
931
932 nir_op_algebraic_property algebraic_properties;
933
934 /* Whether this represents a numeric conversion opcode */
935 bool is_conversion;
936 } nir_op_info;
937
938 extern const nir_op_info nir_op_infos[nir_num_opcodes];
939
940 typedef struct nir_alu_instr {
941 nir_instr instr;
942 nir_op op;
943
944 /** Indicates that this ALU instruction generates an exact value
945 *
946 * This is kind of a mixture of GLSL "precise" and "invariant" and not
947 * really equivalent to either. This indicates that the value generated by
948 * this operation is high-precision and any code transformations that touch
949 * it must ensure that the resulting value is bit-for-bit identical to the
950 * original.
951 */
952 bool exact;
953
954 nir_alu_dest dest;
955 nir_alu_src src[];
956 } nir_alu_instr;
957
958 void nir_alu_src_copy(nir_alu_src *dest, const nir_alu_src *src,
959 nir_alu_instr *instr);
960 void nir_alu_dest_copy(nir_alu_dest *dest, const nir_alu_dest *src,
961 nir_alu_instr *instr);
962
963 /* is this source channel used? */
964 static inline bool
965 nir_alu_instr_channel_used(const nir_alu_instr *instr, unsigned src,
966 unsigned channel)
967 {
968 if (nir_op_infos[instr->op].input_sizes[src] > 0)
969 return channel < nir_op_infos[instr->op].input_sizes[src];
970
971 return (instr->dest.write_mask >> channel) & 1;
972 }
973
974 static inline nir_component_mask_t
975 nir_alu_instr_src_read_mask(const nir_alu_instr *instr, unsigned src)
976 {
977 nir_component_mask_t read_mask = 0;
978 for (unsigned c = 0; c < NIR_MAX_VEC_COMPONENTS; c++) {
979 if (!nir_alu_instr_channel_used(instr, src, c))
980 continue;
981
982 read_mask |= (1 << instr->src[src].swizzle[c]);
983 }
984 return read_mask;
985 }
986
987 /*
988 * For instructions whose destinations are SSA, get the number of channels
989 * used for a source
990 */
991 static inline unsigned
992 nir_ssa_alu_instr_src_components(const nir_alu_instr *instr, unsigned src)
993 {
994 assert(instr->dest.dest.is_ssa);
995
996 if (nir_op_infos[instr->op].input_sizes[src] > 0)
997 return nir_op_infos[instr->op].input_sizes[src];
998
999 return instr->dest.dest.ssa.num_components;
1000 }
1001
1002 bool nir_const_value_negative_equal(const nir_const_value *c1,
1003 const nir_const_value *c2,
1004 unsigned components,
1005 nir_alu_type base_type,
1006 unsigned bits);
1007
1008 bool nir_alu_srcs_equal(const nir_alu_instr *alu1, const nir_alu_instr *alu2,
1009 unsigned src1, unsigned src2);
1010
1011 bool nir_alu_srcs_negative_equal(const nir_alu_instr *alu1,
1012 const nir_alu_instr *alu2,
1013 unsigned src1, unsigned src2);
1014
1015 typedef enum {
1016 nir_deref_type_var,
1017 nir_deref_type_array,
1018 nir_deref_type_array_wildcard,
1019 nir_deref_type_ptr_as_array,
1020 nir_deref_type_struct,
1021 nir_deref_type_cast,
1022 } nir_deref_type;
1023
1024 typedef struct {
1025 nir_instr instr;
1026
1027 /** The type of this deref instruction */
1028 nir_deref_type deref_type;
1029
1030 /** The mode of the underlying variable */
1031 nir_variable_mode mode;
1032
1033 /** The dereferenced type of the resulting pointer value */
1034 const struct glsl_type *type;
1035
1036 union {
1037 /** Variable being dereferenced if deref_type is a deref_var */
1038 nir_variable *var;
1039
1040 /** Parent deref if deref_type is not deref_var */
1041 nir_src parent;
1042 };
1043
1044 /** Additional deref parameters */
1045 union {
1046 struct {
1047 nir_src index;
1048 } arr;
1049
1050 struct {
1051 unsigned index;
1052 } strct;
1053
1054 struct {
1055 unsigned ptr_stride;
1056 } cast;
1057 };
1058
1059 /** Destination to store the resulting "pointer" */
1060 nir_dest dest;
1061 } nir_deref_instr;
1062
1063 static inline nir_deref_instr *nir_src_as_deref(nir_src src);
1064
1065 static inline nir_deref_instr *
1066 nir_deref_instr_parent(const nir_deref_instr *instr)
1067 {
1068 if (instr->deref_type == nir_deref_type_var)
1069 return NULL;
1070 else
1071 return nir_src_as_deref(instr->parent);
1072 }
1073
1074 static inline nir_variable *
1075 nir_deref_instr_get_variable(const nir_deref_instr *instr)
1076 {
1077 while (instr->deref_type != nir_deref_type_var) {
1078 if (instr->deref_type == nir_deref_type_cast)
1079 return NULL;
1080
1081 instr = nir_deref_instr_parent(instr);
1082 }
1083
1084 return instr->var;
1085 }
1086
1087 bool nir_deref_instr_has_indirect(nir_deref_instr *instr);
1088 bool nir_deref_instr_has_complex_use(nir_deref_instr *instr);
1089
1090 bool nir_deref_instr_remove_if_unused(nir_deref_instr *instr);
1091
1092 unsigned nir_deref_instr_ptr_as_array_stride(nir_deref_instr *instr);
1093
1094 typedef struct {
1095 nir_instr instr;
1096
1097 struct nir_function *callee;
1098
1099 unsigned num_params;
1100 nir_src params[];
1101 } nir_call_instr;
1102
1103 #include "nir_intrinsics.h"
1104
1105 #define NIR_INTRINSIC_MAX_CONST_INDEX 4
1106
1107 /** Represents an intrinsic
1108 *
1109 * An intrinsic is an instruction type for handling things that are
1110 * more-or-less regular operations but don't just consume and produce SSA
1111 * values like ALU operations do. Intrinsics are not for things that have
1112 * special semantic meaning such as phi nodes and parallel copies.
1113 * Examples of intrinsics include variable load/store operations, system
1114 * value loads, and the like. Even though texturing more-or-less falls
1115 * under this category, texturing is its own instruction type because
1116 * trying to represent texturing with intrinsics would lead to a
1117 * combinatorial explosion of intrinsic opcodes.
1118 *
1119 * By having a single instruction type for handling a lot of different
1120 * cases, optimization passes can look for intrinsics and, for the most
1121 * part, completely ignore them. Each intrinsic type also has a few
1122 * possible flags that govern whether or not they can be reordered or
1123 * eliminated. That way passes like dead code elimination can still work
1124 * on intrisics without understanding the meaning of each.
1125 *
1126 * Each intrinsic has some number of constant indices, some number of
1127 * variables, and some number of sources. What these sources, variables,
1128 * and indices mean depends on the intrinsic and is documented with the
1129 * intrinsic declaration in nir_intrinsics.h. Intrinsics and texture
1130 * instructions are the only types of instruction that can operate on
1131 * variables.
1132 */
1133 typedef struct {
1134 nir_instr instr;
1135
1136 nir_intrinsic_op intrinsic;
1137
1138 nir_dest dest;
1139
1140 /** number of components if this is a vectorized intrinsic
1141 *
1142 * Similarly to ALU operations, some intrinsics are vectorized.
1143 * An intrinsic is vectorized if nir_intrinsic_infos.dest_components == 0.
1144 * For vectorized intrinsics, the num_components field specifies the
1145 * number of destination components and the number of source components
1146 * for all sources with nir_intrinsic_infos.src_components[i] == 0.
1147 */
1148 uint8_t num_components;
1149
1150 int const_index[NIR_INTRINSIC_MAX_CONST_INDEX];
1151
1152 nir_src src[];
1153 } nir_intrinsic_instr;
1154
1155 static inline nir_variable *
1156 nir_intrinsic_get_var(nir_intrinsic_instr *intrin, unsigned i)
1157 {
1158 return nir_deref_instr_get_variable(nir_src_as_deref(intrin->src[i]));
1159 }
1160
1161 /**
1162 * \name NIR intrinsics semantic flags
1163 *
1164 * information about what the compiler can do with the intrinsics.
1165 *
1166 * \sa nir_intrinsic_info::flags
1167 */
1168 typedef enum {
1169 /**
1170 * whether the intrinsic can be safely eliminated if none of its output
1171 * value is not being used.
1172 */
1173 NIR_INTRINSIC_CAN_ELIMINATE = (1 << 0),
1174
1175 /**
1176 * Whether the intrinsic can be reordered with respect to any other
1177 * intrinsic, i.e. whether the only reordering dependencies of the
1178 * intrinsic are due to the register reads/writes.
1179 */
1180 NIR_INTRINSIC_CAN_REORDER = (1 << 1),
1181 } nir_intrinsic_semantic_flag;
1182
1183 /**
1184 * \name NIR intrinsics const-index flag
1185 *
1186 * Indicates the usage of a const_index slot.
1187 *
1188 * \sa nir_intrinsic_info::index_map
1189 */
1190 typedef enum {
1191 /**
1192 * Generally instructions that take a offset src argument, can encode
1193 * a constant 'base' value which is added to the offset.
1194 */
1195 NIR_INTRINSIC_BASE = 1,
1196
1197 /**
1198 * For store instructions, a writemask for the store.
1199 */
1200 NIR_INTRINSIC_WRMASK = 2,
1201
1202 /**
1203 * The stream-id for GS emit_vertex/end_primitive intrinsics.
1204 */
1205 NIR_INTRINSIC_STREAM_ID = 3,
1206
1207 /**
1208 * The clip-plane id for load_user_clip_plane intrinsic.
1209 */
1210 NIR_INTRINSIC_UCP_ID = 4,
1211
1212 /**
1213 * The amount of data, starting from BASE, that this instruction may
1214 * access. This is used to provide bounds if the offset is not constant.
1215 */
1216 NIR_INTRINSIC_RANGE = 5,
1217
1218 /**
1219 * The Vulkan descriptor set for vulkan_resource_index intrinsic.
1220 */
1221 NIR_INTRINSIC_DESC_SET = 6,
1222
1223 /**
1224 * The Vulkan descriptor set binding for vulkan_resource_index intrinsic.
1225 */
1226 NIR_INTRINSIC_BINDING = 7,
1227
1228 /**
1229 * Component offset.
1230 */
1231 NIR_INTRINSIC_COMPONENT = 8,
1232
1233 /**
1234 * Interpolation mode (only meaningful for FS inputs).
1235 */
1236 NIR_INTRINSIC_INTERP_MODE = 9,
1237
1238 /**
1239 * A binary nir_op to use when performing a reduction or scan operation
1240 */
1241 NIR_INTRINSIC_REDUCTION_OP = 10,
1242
1243 /**
1244 * Cluster size for reduction operations
1245 */
1246 NIR_INTRINSIC_CLUSTER_SIZE = 11,
1247
1248 /**
1249 * Parameter index for a load_param intrinsic
1250 */
1251 NIR_INTRINSIC_PARAM_IDX = 12,
1252
1253 /**
1254 * Image dimensionality for image intrinsics
1255 *
1256 * One of GLSL_SAMPLER_DIM_*
1257 */
1258 NIR_INTRINSIC_IMAGE_DIM = 13,
1259
1260 /**
1261 * Non-zero if we are accessing an array image
1262 */
1263 NIR_INTRINSIC_IMAGE_ARRAY = 14,
1264
1265 /**
1266 * Image format for image intrinsics
1267 */
1268 NIR_INTRINSIC_FORMAT = 15,
1269
1270 /**
1271 * Access qualifiers for image and memory access intrinsics
1272 */
1273 NIR_INTRINSIC_ACCESS = 16,
1274
1275 /**
1276 * Alignment for offsets and addresses
1277 *
1278 * These two parameters, specify an alignment in terms of a multiplier and
1279 * an offset. The offset or address parameter X of the intrinsic is
1280 * guaranteed to satisfy the following:
1281 *
1282 * (X - align_offset) % align_mul == 0
1283 */
1284 NIR_INTRINSIC_ALIGN_MUL = 17,
1285 NIR_INTRINSIC_ALIGN_OFFSET = 18,
1286
1287 /**
1288 * The Vulkan descriptor type for a vulkan_resource_[re]index intrinsic.
1289 */
1290 NIR_INTRINSIC_DESC_TYPE = 19,
1291
1292 NIR_INTRINSIC_NUM_INDEX_FLAGS,
1293
1294 } nir_intrinsic_index_flag;
1295
1296 #define NIR_INTRINSIC_MAX_INPUTS 5
1297
1298 typedef struct {
1299 const char *name;
1300
1301 unsigned num_srcs; /** < number of register/SSA inputs */
1302
1303 /** number of components of each input register
1304 *
1305 * If this value is 0, the number of components is given by the
1306 * num_components field of nir_intrinsic_instr. If this value is -1, the
1307 * intrinsic consumes however many components are provided and it is not
1308 * validated at all.
1309 */
1310 int src_components[NIR_INTRINSIC_MAX_INPUTS];
1311
1312 bool has_dest;
1313
1314 /** number of components of the output register
1315 *
1316 * If this value is 0, the number of components is given by the
1317 * num_components field of nir_intrinsic_instr.
1318 */
1319 unsigned dest_components;
1320
1321 /** bitfield of legal bit sizes */
1322 unsigned dest_bit_sizes;
1323
1324 /** the number of constant indices used by the intrinsic */
1325 unsigned num_indices;
1326
1327 /** indicates the usage of intr->const_index[n] */
1328 unsigned index_map[NIR_INTRINSIC_NUM_INDEX_FLAGS];
1329
1330 /** semantic flags for calls to this intrinsic */
1331 nir_intrinsic_semantic_flag flags;
1332 } nir_intrinsic_info;
1333
1334 extern const nir_intrinsic_info nir_intrinsic_infos[nir_num_intrinsics];
1335
1336 static inline unsigned
1337 nir_intrinsic_src_components(nir_intrinsic_instr *intr, unsigned srcn)
1338 {
1339 const nir_intrinsic_info *info = &nir_intrinsic_infos[intr->intrinsic];
1340 assert(srcn < info->num_srcs);
1341 if (info->src_components[srcn] > 0)
1342 return info->src_components[srcn];
1343 else if (info->src_components[srcn] == 0)
1344 return intr->num_components;
1345 else
1346 return nir_src_num_components(intr->src[srcn]);
1347 }
1348
1349 static inline unsigned
1350 nir_intrinsic_dest_components(nir_intrinsic_instr *intr)
1351 {
1352 const nir_intrinsic_info *info = &nir_intrinsic_infos[intr->intrinsic];
1353 if (!info->has_dest)
1354 return 0;
1355 else if (info->dest_components)
1356 return info->dest_components;
1357 else
1358 return intr->num_components;
1359 }
1360
1361 #define INTRINSIC_IDX_ACCESSORS(name, flag, type) \
1362 static inline type \
1363 nir_intrinsic_##name(const nir_intrinsic_instr *instr) \
1364 { \
1365 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic]; \
1366 assert(info->index_map[NIR_INTRINSIC_##flag] > 0); \
1367 return (type)instr->const_index[info->index_map[NIR_INTRINSIC_##flag] - 1]; \
1368 } \
1369 static inline void \
1370 nir_intrinsic_set_##name(nir_intrinsic_instr *instr, type val) \
1371 { \
1372 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic]; \
1373 assert(info->index_map[NIR_INTRINSIC_##flag] > 0); \
1374 instr->const_index[info->index_map[NIR_INTRINSIC_##flag] - 1] = val; \
1375 }
1376
1377 INTRINSIC_IDX_ACCESSORS(write_mask, WRMASK, unsigned)
1378 INTRINSIC_IDX_ACCESSORS(base, BASE, int)
1379 INTRINSIC_IDX_ACCESSORS(stream_id, STREAM_ID, unsigned)
1380 INTRINSIC_IDX_ACCESSORS(ucp_id, UCP_ID, unsigned)
1381 INTRINSIC_IDX_ACCESSORS(range, RANGE, unsigned)
1382 INTRINSIC_IDX_ACCESSORS(desc_set, DESC_SET, unsigned)
1383 INTRINSIC_IDX_ACCESSORS(binding, BINDING, unsigned)
1384 INTRINSIC_IDX_ACCESSORS(component, COMPONENT, unsigned)
1385 INTRINSIC_IDX_ACCESSORS(interp_mode, INTERP_MODE, unsigned)
1386 INTRINSIC_IDX_ACCESSORS(reduction_op, REDUCTION_OP, unsigned)
1387 INTRINSIC_IDX_ACCESSORS(cluster_size, CLUSTER_SIZE, unsigned)
1388 INTRINSIC_IDX_ACCESSORS(param_idx, PARAM_IDX, unsigned)
1389 INTRINSIC_IDX_ACCESSORS(image_dim, IMAGE_DIM, enum glsl_sampler_dim)
1390 INTRINSIC_IDX_ACCESSORS(image_array, IMAGE_ARRAY, bool)
1391 INTRINSIC_IDX_ACCESSORS(access, ACCESS, enum gl_access_qualifier)
1392 INTRINSIC_IDX_ACCESSORS(format, FORMAT, unsigned)
1393 INTRINSIC_IDX_ACCESSORS(align_mul, ALIGN_MUL, unsigned)
1394 INTRINSIC_IDX_ACCESSORS(align_offset, ALIGN_OFFSET, unsigned)
1395 INTRINSIC_IDX_ACCESSORS(desc_type, DESC_TYPE, unsigned)
1396
1397 static inline void
1398 nir_intrinsic_set_align(nir_intrinsic_instr *intrin,
1399 unsigned align_mul, unsigned align_offset)
1400 {
1401 assert(util_is_power_of_two_nonzero(align_mul));
1402 assert(align_offset < align_mul);
1403 nir_intrinsic_set_align_mul(intrin, align_mul);
1404 nir_intrinsic_set_align_offset(intrin, align_offset);
1405 }
1406
1407 /** Returns a simple alignment for a load/store intrinsic offset
1408 *
1409 * Instead of the full mul+offset alignment scheme provided by the ALIGN_MUL
1410 * and ALIGN_OFFSET parameters, this helper takes both into account and
1411 * provides a single simple alignment parameter. The offset X is guaranteed
1412 * to satisfy X % align == 0.
1413 */
1414 static inline unsigned
1415 nir_intrinsic_align(const nir_intrinsic_instr *intrin)
1416 {
1417 const unsigned align_mul = nir_intrinsic_align_mul(intrin);
1418 const unsigned align_offset = nir_intrinsic_align_offset(intrin);
1419 assert(align_offset < align_mul);
1420 return align_offset ? 1 << (ffs(align_offset) - 1) : align_mul;
1421 }
1422
1423 /* Converts a image_deref_* intrinsic into a image_* one */
1424 void nir_rewrite_image_intrinsic(nir_intrinsic_instr *instr,
1425 nir_ssa_def *handle, bool bindless);
1426
1427 /**
1428 * \group texture information
1429 *
1430 * This gives semantic information about textures which is useful to the
1431 * frontend, the backend, and lowering passes, but not the optimizer.
1432 */
1433
1434 typedef enum {
1435 nir_tex_src_coord,
1436 nir_tex_src_projector,
1437 nir_tex_src_comparator, /* shadow comparator */
1438 nir_tex_src_offset,
1439 nir_tex_src_bias,
1440 nir_tex_src_lod,
1441 nir_tex_src_min_lod,
1442 nir_tex_src_ms_index, /* MSAA sample index */
1443 nir_tex_src_ms_mcs, /* MSAA compression value */
1444 nir_tex_src_ddx,
1445 nir_tex_src_ddy,
1446 nir_tex_src_texture_deref, /* < deref pointing to the texture */
1447 nir_tex_src_sampler_deref, /* < deref pointing to the sampler */
1448 nir_tex_src_texture_offset, /* < dynamically uniform indirect offset */
1449 nir_tex_src_sampler_offset, /* < dynamically uniform indirect offset */
1450 nir_tex_src_texture_handle, /* < bindless texture handle */
1451 nir_tex_src_sampler_handle, /* < bindless sampler handle */
1452 nir_tex_src_plane, /* < selects plane for planar textures */
1453 nir_num_tex_src_types
1454 } nir_tex_src_type;
1455
1456 typedef struct {
1457 nir_src src;
1458 nir_tex_src_type src_type;
1459 } nir_tex_src;
1460
1461 typedef enum {
1462 nir_texop_tex, /**< Regular texture look-up */
1463 nir_texop_txb, /**< Texture look-up with LOD bias */
1464 nir_texop_txl, /**< Texture look-up with explicit LOD */
1465 nir_texop_txd, /**< Texture look-up with partial derivatives */
1466 nir_texop_txf, /**< Texel fetch with explicit LOD */
1467 nir_texop_txf_ms, /**< Multisample texture fetch */
1468 nir_texop_txf_ms_fb, /**< Multisample texture fetch from framebuffer */
1469 nir_texop_txf_ms_mcs, /**< Multisample compression value fetch */
1470 nir_texop_txs, /**< Texture size */
1471 nir_texop_lod, /**< Texture lod query */
1472 nir_texop_tg4, /**< Texture gather */
1473 nir_texop_query_levels, /**< Texture levels query */
1474 nir_texop_texture_samples, /**< Texture samples query */
1475 nir_texop_samples_identical, /**< Query whether all samples are definitely
1476 * identical.
1477 */
1478 } nir_texop;
1479
1480 typedef struct {
1481 nir_instr instr;
1482
1483 enum glsl_sampler_dim sampler_dim;
1484 nir_alu_type dest_type;
1485
1486 nir_texop op;
1487 nir_dest dest;
1488 nir_tex_src *src;
1489 unsigned num_srcs, coord_components;
1490 bool is_array, is_shadow;
1491
1492 /**
1493 * If is_shadow is true, whether this is the old-style shadow that outputs 4
1494 * components or the new-style shadow that outputs 1 component.
1495 */
1496 bool is_new_style_shadow;
1497
1498 /* gather component selector */
1499 unsigned component : 2;
1500
1501 /* gather offsets */
1502 int8_t tg4_offsets[4][2];
1503
1504 /* True if the texture index or handle is not dynamically uniform */
1505 bool texture_non_uniform;
1506
1507 /* True if the sampler index or handle is not dynamically uniform */
1508 bool sampler_non_uniform;
1509
1510 /** The texture index
1511 *
1512 * If this texture instruction has a nir_tex_src_texture_offset source,
1513 * then the texture index is given by texture_index + texture_offset.
1514 */
1515 unsigned texture_index;
1516
1517 /** The size of the texture array or 0 if it's not an array */
1518 unsigned texture_array_size;
1519
1520 /** The sampler index
1521 *
1522 * The following operations do not require a sampler and, as such, this
1523 * field should be ignored:
1524 * - nir_texop_txf
1525 * - nir_texop_txf_ms
1526 * - nir_texop_txs
1527 * - nir_texop_lod
1528 * - nir_texop_query_levels
1529 * - nir_texop_texture_samples
1530 * - nir_texop_samples_identical
1531 *
1532 * If this texture instruction has a nir_tex_src_sampler_offset source,
1533 * then the sampler index is given by sampler_index + sampler_offset.
1534 */
1535 unsigned sampler_index;
1536 } nir_tex_instr;
1537
1538 static inline unsigned
1539 nir_tex_instr_dest_size(const nir_tex_instr *instr)
1540 {
1541 switch (instr->op) {
1542 case nir_texop_txs: {
1543 unsigned ret;
1544 switch (instr->sampler_dim) {
1545 case GLSL_SAMPLER_DIM_1D:
1546 case GLSL_SAMPLER_DIM_BUF:
1547 ret = 1;
1548 break;
1549 case GLSL_SAMPLER_DIM_2D:
1550 case GLSL_SAMPLER_DIM_CUBE:
1551 case GLSL_SAMPLER_DIM_MS:
1552 case GLSL_SAMPLER_DIM_RECT:
1553 case GLSL_SAMPLER_DIM_EXTERNAL:
1554 case GLSL_SAMPLER_DIM_SUBPASS:
1555 ret = 2;
1556 break;
1557 case GLSL_SAMPLER_DIM_3D:
1558 ret = 3;
1559 break;
1560 default:
1561 unreachable("not reached");
1562 }
1563 if (instr->is_array)
1564 ret++;
1565 return ret;
1566 }
1567
1568 case nir_texop_lod:
1569 return 2;
1570
1571 case nir_texop_texture_samples:
1572 case nir_texop_query_levels:
1573 case nir_texop_samples_identical:
1574 return 1;
1575
1576 default:
1577 if (instr->is_shadow && instr->is_new_style_shadow)
1578 return 1;
1579
1580 return 4;
1581 }
1582 }
1583
1584 /* Returns true if this texture operation queries something about the texture
1585 * rather than actually sampling it.
1586 */
1587 static inline bool
1588 nir_tex_instr_is_query(const nir_tex_instr *instr)
1589 {
1590 switch (instr->op) {
1591 case nir_texop_txs:
1592 case nir_texop_lod:
1593 case nir_texop_texture_samples:
1594 case nir_texop_query_levels:
1595 case nir_texop_txf_ms_mcs:
1596 return true;
1597 case nir_texop_tex:
1598 case nir_texop_txb:
1599 case nir_texop_txl:
1600 case nir_texop_txd:
1601 case nir_texop_txf:
1602 case nir_texop_txf_ms:
1603 case nir_texop_txf_ms_fb:
1604 case nir_texop_tg4:
1605 return false;
1606 default:
1607 unreachable("Invalid texture opcode");
1608 }
1609 }
1610
1611 static inline bool
1612 nir_alu_instr_is_comparison(const nir_alu_instr *instr)
1613 {
1614 switch (instr->op) {
1615 case nir_op_flt:
1616 case nir_op_fge:
1617 case nir_op_feq:
1618 case nir_op_fne:
1619 case nir_op_ilt:
1620 case nir_op_ult:
1621 case nir_op_ige:
1622 case nir_op_uge:
1623 case nir_op_ieq:
1624 case nir_op_ine:
1625 case nir_op_i2b1:
1626 case nir_op_f2b1:
1627 case nir_op_inot:
1628 case nir_op_fnot:
1629 return true;
1630 default:
1631 return false;
1632 }
1633 }
1634
1635 static inline nir_alu_type
1636 nir_tex_instr_src_type(const nir_tex_instr *instr, unsigned src)
1637 {
1638 switch (instr->src[src].src_type) {
1639 case nir_tex_src_coord:
1640 switch (instr->op) {
1641 case nir_texop_txf:
1642 case nir_texop_txf_ms:
1643 case nir_texop_txf_ms_fb:
1644 case nir_texop_txf_ms_mcs:
1645 case nir_texop_samples_identical:
1646 return nir_type_int;
1647
1648 default:
1649 return nir_type_float;
1650 }
1651
1652 case nir_tex_src_lod:
1653 switch (instr->op) {
1654 case nir_texop_txs:
1655 case nir_texop_txf:
1656 return nir_type_int;
1657
1658 default:
1659 return nir_type_float;
1660 }
1661
1662 case nir_tex_src_projector:
1663 case nir_tex_src_comparator:
1664 case nir_tex_src_bias:
1665 case nir_tex_src_ddx:
1666 case nir_tex_src_ddy:
1667 return nir_type_float;
1668
1669 case nir_tex_src_offset:
1670 case nir_tex_src_ms_index:
1671 case nir_tex_src_texture_offset:
1672 case nir_tex_src_sampler_offset:
1673 return nir_type_int;
1674
1675 default:
1676 unreachable("Invalid texture source type");
1677 }
1678 }
1679
1680 static inline unsigned
1681 nir_tex_instr_src_size(const nir_tex_instr *instr, unsigned src)
1682 {
1683 if (instr->src[src].src_type == nir_tex_src_coord)
1684 return instr->coord_components;
1685
1686 /* The MCS value is expected to be a vec4 returned by a txf_ms_mcs */
1687 if (instr->src[src].src_type == nir_tex_src_ms_mcs)
1688 return 4;
1689
1690 if (instr->src[src].src_type == nir_tex_src_ddx ||
1691 instr->src[src].src_type == nir_tex_src_ddy) {
1692 if (instr->is_array)
1693 return instr->coord_components - 1;
1694 else
1695 return instr->coord_components;
1696 }
1697
1698 /* Usual APIs don't allow cube + offset, but we allow it, with 2 coords for
1699 * the offset, since a cube maps to a single face.
1700 */
1701 if (instr->src[src].src_type == nir_tex_src_offset) {
1702 if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE)
1703 return 2;
1704 else if (instr->is_array)
1705 return instr->coord_components - 1;
1706 else
1707 return instr->coord_components;
1708 }
1709
1710 return 1;
1711 }
1712
1713 static inline int
1714 nir_tex_instr_src_index(const nir_tex_instr *instr, nir_tex_src_type type)
1715 {
1716 for (unsigned i = 0; i < instr->num_srcs; i++)
1717 if (instr->src[i].src_type == type)
1718 return (int) i;
1719
1720 return -1;
1721 }
1722
1723 void nir_tex_instr_add_src(nir_tex_instr *tex,
1724 nir_tex_src_type src_type,
1725 nir_src src);
1726
1727 void nir_tex_instr_remove_src(nir_tex_instr *tex, unsigned src_idx);
1728
1729 bool nir_tex_instr_has_explicit_tg4_offsets(nir_tex_instr *tex);
1730
1731 typedef struct {
1732 nir_instr instr;
1733
1734 nir_ssa_def def;
1735
1736 nir_const_value value[];
1737 } nir_load_const_instr;
1738
1739 #define nir_const_load_to_arr(arr, l, m) \
1740 { \
1741 nir_const_value_to_array(arr, l->value, l->def.num_components, m); \
1742 } while (false);
1743
1744 typedef enum {
1745 nir_jump_return,
1746 nir_jump_break,
1747 nir_jump_continue,
1748 } nir_jump_type;
1749
1750 typedef struct {
1751 nir_instr instr;
1752 nir_jump_type type;
1753 } nir_jump_instr;
1754
1755 /* creates a new SSA variable in an undefined state */
1756
1757 typedef struct {
1758 nir_instr instr;
1759 nir_ssa_def def;
1760 } nir_ssa_undef_instr;
1761
1762 typedef struct {
1763 struct exec_node node;
1764
1765 /* The predecessor block corresponding to this source */
1766 struct nir_block *pred;
1767
1768 nir_src src;
1769 } nir_phi_src;
1770
1771 #define nir_foreach_phi_src(phi_src, phi) \
1772 foreach_list_typed(nir_phi_src, phi_src, node, &(phi)->srcs)
1773 #define nir_foreach_phi_src_safe(phi_src, phi) \
1774 foreach_list_typed_safe(nir_phi_src, phi_src, node, &(phi)->srcs)
1775
1776 typedef struct {
1777 nir_instr instr;
1778
1779 struct exec_list srcs; /** < list of nir_phi_src */
1780
1781 nir_dest dest;
1782 } nir_phi_instr;
1783
1784 typedef struct {
1785 struct exec_node node;
1786 nir_src src;
1787 nir_dest dest;
1788 } nir_parallel_copy_entry;
1789
1790 #define nir_foreach_parallel_copy_entry(entry, pcopy) \
1791 foreach_list_typed(nir_parallel_copy_entry, entry, node, &(pcopy)->entries)
1792
1793 typedef struct {
1794 nir_instr instr;
1795
1796 /* A list of nir_parallel_copy_entrys. The sources of all of the
1797 * entries are copied to the corresponding destinations "in parallel".
1798 * In other words, if we have two entries: a -> b and b -> a, the values
1799 * get swapped.
1800 */
1801 struct exec_list entries;
1802 } nir_parallel_copy_instr;
1803
1804 NIR_DEFINE_CAST(nir_instr_as_alu, nir_instr, nir_alu_instr, instr,
1805 type, nir_instr_type_alu)
1806 NIR_DEFINE_CAST(nir_instr_as_deref, nir_instr, nir_deref_instr, instr,
1807 type, nir_instr_type_deref)
1808 NIR_DEFINE_CAST(nir_instr_as_call, nir_instr, nir_call_instr, instr,
1809 type, nir_instr_type_call)
1810 NIR_DEFINE_CAST(nir_instr_as_jump, nir_instr, nir_jump_instr, instr,
1811 type, nir_instr_type_jump)
1812 NIR_DEFINE_CAST(nir_instr_as_tex, nir_instr, nir_tex_instr, instr,
1813 type, nir_instr_type_tex)
1814 NIR_DEFINE_CAST(nir_instr_as_intrinsic, nir_instr, nir_intrinsic_instr, instr,
1815 type, nir_instr_type_intrinsic)
1816 NIR_DEFINE_CAST(nir_instr_as_load_const, nir_instr, nir_load_const_instr, instr,
1817 type, nir_instr_type_load_const)
1818 NIR_DEFINE_CAST(nir_instr_as_ssa_undef, nir_instr, nir_ssa_undef_instr, instr,
1819 type, nir_instr_type_ssa_undef)
1820 NIR_DEFINE_CAST(nir_instr_as_phi, nir_instr, nir_phi_instr, instr,
1821 type, nir_instr_type_phi)
1822 NIR_DEFINE_CAST(nir_instr_as_parallel_copy, nir_instr,
1823 nir_parallel_copy_instr, instr,
1824 type, nir_instr_type_parallel_copy)
1825
1826 /*
1827 * Control flow
1828 *
1829 * Control flow consists of a tree of control flow nodes, which include
1830 * if-statements and loops. The leaves of the tree are basic blocks, lists of
1831 * instructions that always run start-to-finish. Each basic block also keeps
1832 * track of its successors (blocks which may run immediately after the current
1833 * block) and predecessors (blocks which could have run immediately before the
1834 * current block). Each function also has a start block and an end block which
1835 * all return statements point to (which is always empty). Together, all the
1836 * blocks with their predecessors and successors make up the control flow
1837 * graph (CFG) of the function. There are helpers that modify the tree of
1838 * control flow nodes while modifying the CFG appropriately; these should be
1839 * used instead of modifying the tree directly.
1840 */
1841
1842 typedef enum {
1843 nir_cf_node_block,
1844 nir_cf_node_if,
1845 nir_cf_node_loop,
1846 nir_cf_node_function
1847 } nir_cf_node_type;
1848
1849 typedef struct nir_cf_node {
1850 struct exec_node node;
1851 nir_cf_node_type type;
1852 struct nir_cf_node *parent;
1853 } nir_cf_node;
1854
1855 typedef struct nir_block {
1856 nir_cf_node cf_node;
1857
1858 struct exec_list instr_list; /** < list of nir_instr */
1859
1860 /** generic block index; generated by nir_index_blocks */
1861 unsigned index;
1862
1863 /*
1864 * Each block can only have up to 2 successors, so we put them in a simple
1865 * array - no need for anything more complicated.
1866 */
1867 struct nir_block *successors[2];
1868
1869 /* Set of nir_block predecessors in the CFG */
1870 struct set *predecessors;
1871
1872 /*
1873 * this node's immediate dominator in the dominance tree - set to NULL for
1874 * the start block.
1875 */
1876 struct nir_block *imm_dom;
1877
1878 /* This node's children in the dominance tree */
1879 unsigned num_dom_children;
1880 struct nir_block **dom_children;
1881
1882 /* Set of nir_blocks on the dominance frontier of this block */
1883 struct set *dom_frontier;
1884
1885 /*
1886 * These two indices have the property that dom_{pre,post}_index for each
1887 * child of this block in the dominance tree will always be between
1888 * dom_pre_index and dom_post_index for this block, which makes testing if
1889 * a given block is dominated by another block an O(1) operation.
1890 */
1891 unsigned dom_pre_index, dom_post_index;
1892
1893 /* live in and out for this block; used for liveness analysis */
1894 BITSET_WORD *live_in;
1895 BITSET_WORD *live_out;
1896 } nir_block;
1897
1898 static inline nir_instr *
1899 nir_block_first_instr(nir_block *block)
1900 {
1901 struct exec_node *head = exec_list_get_head(&block->instr_list);
1902 return exec_node_data(nir_instr, head, node);
1903 }
1904
1905 static inline nir_instr *
1906 nir_block_last_instr(nir_block *block)
1907 {
1908 struct exec_node *tail = exec_list_get_tail(&block->instr_list);
1909 return exec_node_data(nir_instr, tail, node);
1910 }
1911
1912 static inline bool
1913 nir_block_ends_in_jump(nir_block *block)
1914 {
1915 return !exec_list_is_empty(&block->instr_list) &&
1916 nir_block_last_instr(block)->type == nir_instr_type_jump;
1917 }
1918
1919 #define nir_foreach_instr(instr, block) \
1920 foreach_list_typed(nir_instr, instr, node, &(block)->instr_list)
1921 #define nir_foreach_instr_reverse(instr, block) \
1922 foreach_list_typed_reverse(nir_instr, instr, node, &(block)->instr_list)
1923 #define nir_foreach_instr_safe(instr, block) \
1924 foreach_list_typed_safe(nir_instr, instr, node, &(block)->instr_list)
1925 #define nir_foreach_instr_reverse_safe(instr, block) \
1926 foreach_list_typed_reverse_safe(nir_instr, instr, node, &(block)->instr_list)
1927
1928 typedef enum {
1929 nir_selection_control_none = 0x0,
1930 nir_selection_control_flatten = 0x1,
1931 nir_selection_control_dont_flatten = 0x2,
1932 } nir_selection_control;
1933
1934 typedef struct nir_if {
1935 nir_cf_node cf_node;
1936 nir_src condition;
1937 nir_selection_control control;
1938
1939 struct exec_list then_list; /** < list of nir_cf_node */
1940 struct exec_list else_list; /** < list of nir_cf_node */
1941 } nir_if;
1942
1943 typedef struct {
1944 nir_if *nif;
1945
1946 /** Instruction that generates nif::condition. */
1947 nir_instr *conditional_instr;
1948
1949 /** Block within ::nif that has the break instruction. */
1950 nir_block *break_block;
1951
1952 /** Last block for the then- or else-path that does not contain the break. */
1953 nir_block *continue_from_block;
1954
1955 /** True when ::break_block is in the else-path of ::nif. */
1956 bool continue_from_then;
1957 bool induction_rhs;
1958
1959 /* This is true if the terminators exact trip count is unknown. For
1960 * example:
1961 *
1962 * for (int i = 0; i < imin(x, 4); i++)
1963 * ...
1964 *
1965 * Here loop analysis would have set a max_trip_count of 4 however we dont
1966 * know for sure that this is the exact trip count.
1967 */
1968 bool exact_trip_count_unknown;
1969
1970 struct list_head loop_terminator_link;
1971 } nir_loop_terminator;
1972
1973 typedef struct {
1974 /* Estimated cost (in number of instructions) of the loop */
1975 unsigned instr_cost;
1976
1977 /* Guessed trip count based on array indexing */
1978 unsigned guessed_trip_count;
1979
1980 /* Maximum number of times the loop is run (if known) */
1981 unsigned max_trip_count;
1982
1983 /* Do we know the exact number of times the loop will be run */
1984 bool exact_trip_count_known;
1985
1986 /* Unroll the loop regardless of its size */
1987 bool force_unroll;
1988
1989 /* Does the loop contain complex loop terminators, continues or other
1990 * complex behaviours? If this is true we can't rely on
1991 * loop_terminator_list to be complete or accurate.
1992 */
1993 bool complex_loop;
1994
1995 nir_loop_terminator *limiting_terminator;
1996
1997 /* A list of loop_terminators terminating this loop. */
1998 struct list_head loop_terminator_list;
1999 } nir_loop_info;
2000
2001 typedef enum {
2002 nir_loop_control_none = 0x0,
2003 nir_loop_control_unroll = 0x1,
2004 nir_loop_control_dont_unroll = 0x2,
2005 } nir_loop_control;
2006
2007 typedef struct {
2008 nir_cf_node cf_node;
2009
2010 struct exec_list body; /** < list of nir_cf_node */
2011
2012 nir_loop_info *info;
2013 nir_loop_control control;
2014 bool partially_unrolled;
2015 } nir_loop;
2016
2017 /**
2018 * Various bits of metadata that can may be created or required by
2019 * optimization and analysis passes
2020 */
2021 typedef enum {
2022 nir_metadata_none = 0x0,
2023 nir_metadata_block_index = 0x1,
2024 nir_metadata_dominance = 0x2,
2025 nir_metadata_live_ssa_defs = 0x4,
2026 nir_metadata_not_properly_reset = 0x8,
2027 nir_metadata_loop_analysis = 0x10,
2028 } nir_metadata;
2029
2030 typedef struct {
2031 nir_cf_node cf_node;
2032
2033 /** pointer to the function of which this is an implementation */
2034 struct nir_function *function;
2035
2036 struct exec_list body; /** < list of nir_cf_node */
2037
2038 nir_block *end_block;
2039
2040 /** list for all local variables in the function */
2041 struct exec_list locals;
2042
2043 /** list of local registers in the function */
2044 struct exec_list registers;
2045
2046 /** next available local register index */
2047 unsigned reg_alloc;
2048
2049 /** next available SSA value index */
2050 unsigned ssa_alloc;
2051
2052 /* total number of basic blocks, only valid when block_index_dirty = false */
2053 unsigned num_blocks;
2054
2055 nir_metadata valid_metadata;
2056 } nir_function_impl;
2057
2058 ATTRIBUTE_RETURNS_NONNULL static inline nir_block *
2059 nir_start_block(nir_function_impl *impl)
2060 {
2061 return (nir_block *) impl->body.head_sentinel.next;
2062 }
2063
2064 ATTRIBUTE_RETURNS_NONNULL static inline nir_block *
2065 nir_impl_last_block(nir_function_impl *impl)
2066 {
2067 return (nir_block *) impl->body.tail_sentinel.prev;
2068 }
2069
2070 static inline nir_cf_node *
2071 nir_cf_node_next(nir_cf_node *node)
2072 {
2073 struct exec_node *next = exec_node_get_next(&node->node);
2074 if (exec_node_is_tail_sentinel(next))
2075 return NULL;
2076 else
2077 return exec_node_data(nir_cf_node, next, node);
2078 }
2079
2080 static inline nir_cf_node *
2081 nir_cf_node_prev(nir_cf_node *node)
2082 {
2083 struct exec_node *prev = exec_node_get_prev(&node->node);
2084 if (exec_node_is_head_sentinel(prev))
2085 return NULL;
2086 else
2087 return exec_node_data(nir_cf_node, prev, node);
2088 }
2089
2090 static inline bool
2091 nir_cf_node_is_first(const nir_cf_node *node)
2092 {
2093 return exec_node_is_head_sentinel(node->node.prev);
2094 }
2095
2096 static inline bool
2097 nir_cf_node_is_last(const nir_cf_node *node)
2098 {
2099 return exec_node_is_tail_sentinel(node->node.next);
2100 }
2101
2102 NIR_DEFINE_CAST(nir_cf_node_as_block, nir_cf_node, nir_block, cf_node,
2103 type, nir_cf_node_block)
2104 NIR_DEFINE_CAST(nir_cf_node_as_if, nir_cf_node, nir_if, cf_node,
2105 type, nir_cf_node_if)
2106 NIR_DEFINE_CAST(nir_cf_node_as_loop, nir_cf_node, nir_loop, cf_node,
2107 type, nir_cf_node_loop)
2108 NIR_DEFINE_CAST(nir_cf_node_as_function, nir_cf_node,
2109 nir_function_impl, cf_node, type, nir_cf_node_function)
2110
2111 static inline nir_block *
2112 nir_if_first_then_block(nir_if *if_stmt)
2113 {
2114 struct exec_node *head = exec_list_get_head(&if_stmt->then_list);
2115 return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
2116 }
2117
2118 static inline nir_block *
2119 nir_if_last_then_block(nir_if *if_stmt)
2120 {
2121 struct exec_node *tail = exec_list_get_tail(&if_stmt->then_list);
2122 return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
2123 }
2124
2125 static inline nir_block *
2126 nir_if_first_else_block(nir_if *if_stmt)
2127 {
2128 struct exec_node *head = exec_list_get_head(&if_stmt->else_list);
2129 return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
2130 }
2131
2132 static inline nir_block *
2133 nir_if_last_else_block(nir_if *if_stmt)
2134 {
2135 struct exec_node *tail = exec_list_get_tail(&if_stmt->else_list);
2136 return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
2137 }
2138
2139 static inline nir_block *
2140 nir_loop_first_block(nir_loop *loop)
2141 {
2142 struct exec_node *head = exec_list_get_head(&loop->body);
2143 return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
2144 }
2145
2146 static inline nir_block *
2147 nir_loop_last_block(nir_loop *loop)
2148 {
2149 struct exec_node *tail = exec_list_get_tail(&loop->body);
2150 return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
2151 }
2152
2153 /**
2154 * Return true if this list of cf_nodes contains a single empty block.
2155 */
2156 static inline bool
2157 nir_cf_list_is_empty_block(struct exec_list *cf_list)
2158 {
2159 if (exec_list_is_singular(cf_list)) {
2160 struct exec_node *head = exec_list_get_head(cf_list);
2161 nir_block *block =
2162 nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
2163 return exec_list_is_empty(&block->instr_list);
2164 }
2165 return false;
2166 }
2167
2168 typedef struct {
2169 uint8_t num_components;
2170 uint8_t bit_size;
2171 } nir_parameter;
2172
2173 typedef struct nir_function {
2174 struct exec_node node;
2175
2176 const char *name;
2177 struct nir_shader *shader;
2178
2179 unsigned num_params;
2180 nir_parameter *params;
2181
2182 /** The implementation of this function.
2183 *
2184 * If the function is only declared and not implemented, this is NULL.
2185 */
2186 nir_function_impl *impl;
2187
2188 bool is_entrypoint;
2189 } nir_function;
2190
2191 typedef enum {
2192 nir_lower_imul64 = (1 << 0),
2193 nir_lower_isign64 = (1 << 1),
2194 /** Lower all int64 modulus and division opcodes */
2195 nir_lower_divmod64 = (1 << 2),
2196 /** Lower all 64-bit umul_high and imul_high opcodes */
2197 nir_lower_imul_high64 = (1 << 3),
2198 nir_lower_mov64 = (1 << 4),
2199 nir_lower_icmp64 = (1 << 5),
2200 nir_lower_iadd64 = (1 << 6),
2201 nir_lower_iabs64 = (1 << 7),
2202 nir_lower_ineg64 = (1 << 8),
2203 nir_lower_logic64 = (1 << 9),
2204 nir_lower_minmax64 = (1 << 10),
2205 nir_lower_shift64 = (1 << 11),
2206 nir_lower_imul_2x32_64 = (1 << 12),
2207 } nir_lower_int64_options;
2208
2209 typedef enum {
2210 nir_lower_drcp = (1 << 0),
2211 nir_lower_dsqrt = (1 << 1),
2212 nir_lower_drsq = (1 << 2),
2213 nir_lower_dtrunc = (1 << 3),
2214 nir_lower_dfloor = (1 << 4),
2215 nir_lower_dceil = (1 << 5),
2216 nir_lower_dfract = (1 << 6),
2217 nir_lower_dround_even = (1 << 7),
2218 nir_lower_dmod = (1 << 8),
2219 nir_lower_fp64_full_software = (1 << 9),
2220 } nir_lower_doubles_options;
2221
2222 typedef struct nir_shader_compiler_options {
2223 bool lower_fdiv;
2224 bool lower_ffma;
2225 bool fuse_ffma;
2226 bool lower_flrp16;
2227 bool lower_flrp32;
2228 /** Lowers flrp when it does not support doubles */
2229 bool lower_flrp64;
2230 bool lower_fpow;
2231 bool lower_fsat;
2232 bool lower_fsqrt;
2233 bool lower_fmod16;
2234 bool lower_fmod32;
2235 bool lower_fmod64;
2236 /** Lowers ibitfield_extract/ubitfield_extract to ibfe/ubfe. */
2237 bool lower_bitfield_extract;
2238 /** Lowers ibitfield_extract/ubitfield_extract to bfm, compares, shifts. */
2239 bool lower_bitfield_extract_to_shifts;
2240 /** Lowers bitfield_insert to bfi/bfm */
2241 bool lower_bitfield_insert;
2242 /** Lowers bitfield_insert to bfm, compares, and shifts. */
2243 bool lower_bitfield_insert_to_shifts;
2244 /** Lowers bitfield_reverse to shifts. */
2245 bool lower_bitfield_reverse;
2246 /** Lowers bit_count to shifts. */
2247 bool lower_bit_count;
2248 /** Lowers bfm to shifts and subtracts. */
2249 bool lower_bfm;
2250 /** Lowers ifind_msb to compare and ufind_msb */
2251 bool lower_ifind_msb;
2252 /** Lowers find_lsb to ufind_msb and logic ops */
2253 bool lower_find_lsb;
2254 bool lower_uadd_carry;
2255 bool lower_usub_borrow;
2256 /** Lowers imul_high/umul_high to 16-bit multiplies and carry operations. */
2257 bool lower_mul_high;
2258 /** lowers fneg and ineg to fsub and isub. */
2259 bool lower_negate;
2260 /** lowers fsub and isub to fadd+fneg and iadd+ineg. */
2261 bool lower_sub;
2262
2263 /* lower {slt,sge,seq,sne} to {flt,fge,feq,fne} + b2f: */
2264 bool lower_scmp;
2265
2266 /** enables rules to lower idiv by power-of-two: */
2267 bool lower_idiv;
2268
2269 /** enables rules to lower isign to imin+imax */
2270 bool lower_isign;
2271
2272 /** enables rules to lower fsign to fsub and flt */
2273 bool lower_fsign;
2274
2275 /* Does the native fdot instruction replicate its result for four
2276 * components? If so, then opt_algebraic_late will turn all fdotN
2277 * instructions into fdot_replicatedN instructions.
2278 */
2279 bool fdot_replicates;
2280
2281 /** lowers ffloor to fsub+ffract: */
2282 bool lower_ffloor;
2283
2284 /** lowers ffract to fsub+ffloor: */
2285 bool lower_ffract;
2286
2287 /** lowers fceil to fneg+ffloor+fneg: */
2288 bool lower_fceil;
2289
2290 bool lower_ftrunc;
2291
2292 bool lower_ldexp;
2293
2294 bool lower_pack_half_2x16;
2295 bool lower_pack_unorm_2x16;
2296 bool lower_pack_snorm_2x16;
2297 bool lower_pack_unorm_4x8;
2298 bool lower_pack_snorm_4x8;
2299 bool lower_unpack_half_2x16;
2300 bool lower_unpack_unorm_2x16;
2301 bool lower_unpack_snorm_2x16;
2302 bool lower_unpack_unorm_4x8;
2303 bool lower_unpack_snorm_4x8;
2304
2305 bool lower_extract_byte;
2306 bool lower_extract_word;
2307
2308 bool lower_all_io_to_temps;
2309 bool lower_all_io_to_elements;
2310
2311 /* Indicates that the driver only has zero-based vertex id */
2312 bool vertex_id_zero_based;
2313
2314 /**
2315 * If enabled, gl_BaseVertex will be lowered as:
2316 * is_indexed_draw (~0/0) & firstvertex
2317 */
2318 bool lower_base_vertex;
2319
2320 /**
2321 * If enabled, gl_HelperInvocation will be lowered as:
2322 *
2323 * !((1 << sample_id) & sample_mask_in))
2324 *
2325 * This depends on some possibly hw implementation details, which may
2326 * not be true for all hw. In particular that the FS is only executed
2327 * for covered samples or for helper invocations. So, do not blindly
2328 * enable this option.
2329 *
2330 * Note: See also issue #22 in ARB_shader_image_load_store
2331 */
2332 bool lower_helper_invocation;
2333
2334 /**
2335 * Convert gl_SampleMaskIn to gl_HelperInvocation as follows:
2336 *
2337 * gl_SampleMaskIn == 0 ---> gl_HelperInvocation
2338 * gl_SampleMaskIn != 0 ---> !gl_HelperInvocation
2339 */
2340 bool optimize_sample_mask_in;
2341
2342 bool lower_cs_local_index_from_id;
2343 bool lower_cs_local_id_from_index;
2344
2345 bool lower_device_index_to_zero;
2346
2347 /* Set if nir_lower_wpos_ytransform() should also invert gl_PointCoord. */
2348 bool lower_wpos_pntc;
2349
2350 bool lower_hadd;
2351 bool lower_add_sat;
2352
2353 /**
2354 * Should IO be re-vectorized? Some scalar ISAs still operate on vec4's
2355 * for IO purposes and would prefer loads/stores be vectorized.
2356 */
2357 bool vectorize_io;
2358
2359 /**
2360 * Should nir_lower_io() create load_interpolated_input intrinsics?
2361 *
2362 * If not, it generates regular load_input intrinsics and interpolation
2363 * information must be inferred from the list of input nir_variables.
2364 */
2365 bool use_interpolated_input_intrinsics;
2366
2367 /* Lowers when 32x32->64 bit multiplication is not supported */
2368 bool lower_mul_2x32_64;
2369
2370 unsigned max_unroll_iterations;
2371
2372 nir_lower_int64_options lower_int64_options;
2373 nir_lower_doubles_options lower_doubles_options;
2374 } nir_shader_compiler_options;
2375
2376 typedef struct nir_shader {
2377 /** list of uniforms (nir_variable) */
2378 struct exec_list uniforms;
2379
2380 /** list of inputs (nir_variable) */
2381 struct exec_list inputs;
2382
2383 /** list of outputs (nir_variable) */
2384 struct exec_list outputs;
2385
2386 /** list of shared compute variables (nir_variable) */
2387 struct exec_list shared;
2388
2389 /** Set of driver-specific options for the shader.
2390 *
2391 * The memory for the options is expected to be kept in a single static
2392 * copy by the driver.
2393 */
2394 const struct nir_shader_compiler_options *options;
2395
2396 /** Various bits of compile-time information about a given shader */
2397 struct shader_info info;
2398
2399 /** list of global variables in the shader (nir_variable) */
2400 struct exec_list globals;
2401
2402 /** list of system value variables in the shader (nir_variable) */
2403 struct exec_list system_values;
2404
2405 struct exec_list functions; /** < list of nir_function */
2406
2407 /**
2408 * the highest index a load_input_*, load_uniform_*, etc. intrinsic can
2409 * access plus one
2410 */
2411 unsigned num_inputs, num_uniforms, num_outputs, num_shared;
2412
2413 /** Size in bytes of required scratch space */
2414 unsigned scratch_size;
2415
2416 /** Constant data associated with this shader.
2417 *
2418 * Constant data is loaded through load_constant intrinsics. See also
2419 * nir_opt_large_constants.
2420 */
2421 void *constant_data;
2422 unsigned constant_data_size;
2423 } nir_shader;
2424
2425 #define nir_foreach_function(func, shader) \
2426 foreach_list_typed(nir_function, func, node, &(shader)->functions)
2427
2428 static inline nir_function_impl *
2429 nir_shader_get_entrypoint(nir_shader *shader)
2430 {
2431 nir_function *func = NULL;
2432
2433 nir_foreach_function(function, shader) {
2434 assert(func == NULL);
2435 if (function->is_entrypoint) {
2436 func = function;
2437 #ifndef NDEBUG
2438 break;
2439 #endif
2440 }
2441 }
2442
2443 if (!func)
2444 return NULL;
2445
2446 assert(func->num_params == 0);
2447 assert(func->impl);
2448 return func->impl;
2449 }
2450
2451 nir_shader *nir_shader_create(void *mem_ctx,
2452 gl_shader_stage stage,
2453 const nir_shader_compiler_options *options,
2454 shader_info *si);
2455
2456 nir_register *nir_local_reg_create(nir_function_impl *impl);
2457
2458 void nir_reg_remove(nir_register *reg);
2459
2460 /** Adds a variable to the appropriate list in nir_shader */
2461 void nir_shader_add_variable(nir_shader *shader, nir_variable *var);
2462
2463 static inline void
2464 nir_function_impl_add_variable(nir_function_impl *impl, nir_variable *var)
2465 {
2466 assert(var->data.mode == nir_var_function_temp);
2467 exec_list_push_tail(&impl->locals, &var->node);
2468 }
2469
2470 /** creates a variable, sets a few defaults, and adds it to the list */
2471 nir_variable *nir_variable_create(nir_shader *shader,
2472 nir_variable_mode mode,
2473 const struct glsl_type *type,
2474 const char *name);
2475 /** creates a local variable and adds it to the list */
2476 nir_variable *nir_local_variable_create(nir_function_impl *impl,
2477 const struct glsl_type *type,
2478 const char *name);
2479
2480 /** creates a function and adds it to the shader's list of functions */
2481 nir_function *nir_function_create(nir_shader *shader, const char *name);
2482
2483 nir_function_impl *nir_function_impl_create(nir_function *func);
2484 /** creates a function_impl that isn't tied to any particular function */
2485 nir_function_impl *nir_function_impl_create_bare(nir_shader *shader);
2486
2487 nir_block *nir_block_create(nir_shader *shader);
2488 nir_if *nir_if_create(nir_shader *shader);
2489 nir_loop *nir_loop_create(nir_shader *shader);
2490
2491 nir_function_impl *nir_cf_node_get_function(nir_cf_node *node);
2492
2493 /** requests that the given pieces of metadata be generated */
2494 void nir_metadata_require(nir_function_impl *impl, nir_metadata required, ...);
2495 /** dirties all but the preserved metadata */
2496 void nir_metadata_preserve(nir_function_impl *impl, nir_metadata preserved);
2497
2498 /** creates an instruction with default swizzle/writemask/etc. with NULL registers */
2499 nir_alu_instr *nir_alu_instr_create(nir_shader *shader, nir_op op);
2500
2501 nir_deref_instr *nir_deref_instr_create(nir_shader *shader,
2502 nir_deref_type deref_type);
2503
2504 nir_jump_instr *nir_jump_instr_create(nir_shader *shader, nir_jump_type type);
2505
2506 nir_load_const_instr *nir_load_const_instr_create(nir_shader *shader,
2507 unsigned num_components,
2508 unsigned bit_size);
2509
2510 nir_intrinsic_instr *nir_intrinsic_instr_create(nir_shader *shader,
2511 nir_intrinsic_op op);
2512
2513 nir_call_instr *nir_call_instr_create(nir_shader *shader,
2514 nir_function *callee);
2515
2516 nir_tex_instr *nir_tex_instr_create(nir_shader *shader, unsigned num_srcs);
2517
2518 nir_phi_instr *nir_phi_instr_create(nir_shader *shader);
2519
2520 nir_parallel_copy_instr *nir_parallel_copy_instr_create(nir_shader *shader);
2521
2522 nir_ssa_undef_instr *nir_ssa_undef_instr_create(nir_shader *shader,
2523 unsigned num_components,
2524 unsigned bit_size);
2525
2526 nir_const_value nir_alu_binop_identity(nir_op binop, unsigned bit_size);
2527
2528 /**
2529 * NIR Cursors and Instruction Insertion API
2530 * @{
2531 *
2532 * A tiny struct representing a point to insert/extract instructions or
2533 * control flow nodes. Helps reduce the combinatorial explosion of possible
2534 * points to insert/extract.
2535 *
2536 * \sa nir_control_flow.h
2537 */
2538 typedef enum {
2539 nir_cursor_before_block,
2540 nir_cursor_after_block,
2541 nir_cursor_before_instr,
2542 nir_cursor_after_instr,
2543 } nir_cursor_option;
2544
2545 typedef struct {
2546 nir_cursor_option option;
2547 union {
2548 nir_block *block;
2549 nir_instr *instr;
2550 };
2551 } nir_cursor;
2552
2553 static inline nir_block *
2554 nir_cursor_current_block(nir_cursor cursor)
2555 {
2556 if (cursor.option == nir_cursor_before_instr ||
2557 cursor.option == nir_cursor_after_instr) {
2558 return cursor.instr->block;
2559 } else {
2560 return cursor.block;
2561 }
2562 }
2563
2564 bool nir_cursors_equal(nir_cursor a, nir_cursor b);
2565
2566 static inline nir_cursor
2567 nir_before_block(nir_block *block)
2568 {
2569 nir_cursor cursor;
2570 cursor.option = nir_cursor_before_block;
2571 cursor.block = block;
2572 return cursor;
2573 }
2574
2575 static inline nir_cursor
2576 nir_after_block(nir_block *block)
2577 {
2578 nir_cursor cursor;
2579 cursor.option = nir_cursor_after_block;
2580 cursor.block = block;
2581 return cursor;
2582 }
2583
2584 static inline nir_cursor
2585 nir_before_instr(nir_instr *instr)
2586 {
2587 nir_cursor cursor;
2588 cursor.option = nir_cursor_before_instr;
2589 cursor.instr = instr;
2590 return cursor;
2591 }
2592
2593 static inline nir_cursor
2594 nir_after_instr(nir_instr *instr)
2595 {
2596 nir_cursor cursor;
2597 cursor.option = nir_cursor_after_instr;
2598 cursor.instr = instr;
2599 return cursor;
2600 }
2601
2602 static inline nir_cursor
2603 nir_after_block_before_jump(nir_block *block)
2604 {
2605 nir_instr *last_instr = nir_block_last_instr(block);
2606 if (last_instr && last_instr->type == nir_instr_type_jump) {
2607 return nir_before_instr(last_instr);
2608 } else {
2609 return nir_after_block(block);
2610 }
2611 }
2612
2613 static inline nir_cursor
2614 nir_before_src(nir_src *src, bool is_if_condition)
2615 {
2616 if (is_if_condition) {
2617 nir_block *prev_block =
2618 nir_cf_node_as_block(nir_cf_node_prev(&src->parent_if->cf_node));
2619 assert(!nir_block_ends_in_jump(prev_block));
2620 return nir_after_block(prev_block);
2621 } else if (src->parent_instr->type == nir_instr_type_phi) {
2622 #ifndef NDEBUG
2623 nir_phi_instr *cond_phi = nir_instr_as_phi(src->parent_instr);
2624 bool found = false;
2625 nir_foreach_phi_src(phi_src, cond_phi) {
2626 if (phi_src->src.ssa == src->ssa) {
2627 found = true;
2628 break;
2629 }
2630 }
2631 assert(found);
2632 #endif
2633 /* The LIST_ENTRY macro is a generic container-of macro, it just happens
2634 * to have a more specific name.
2635 */
2636 nir_phi_src *phi_src = LIST_ENTRY(nir_phi_src, src, src);
2637 return nir_after_block_before_jump(phi_src->pred);
2638 } else {
2639 return nir_before_instr(src->parent_instr);
2640 }
2641 }
2642
2643 static inline nir_cursor
2644 nir_before_cf_node(nir_cf_node *node)
2645 {
2646 if (node->type == nir_cf_node_block)
2647 return nir_before_block(nir_cf_node_as_block(node));
2648
2649 return nir_after_block(nir_cf_node_as_block(nir_cf_node_prev(node)));
2650 }
2651
2652 static inline nir_cursor
2653 nir_after_cf_node(nir_cf_node *node)
2654 {
2655 if (node->type == nir_cf_node_block)
2656 return nir_after_block(nir_cf_node_as_block(node));
2657
2658 return nir_before_block(nir_cf_node_as_block(nir_cf_node_next(node)));
2659 }
2660
2661 static inline nir_cursor
2662 nir_after_phis(nir_block *block)
2663 {
2664 nir_foreach_instr(instr, block) {
2665 if (instr->type != nir_instr_type_phi)
2666 return nir_before_instr(instr);
2667 }
2668 return nir_after_block(block);
2669 }
2670
2671 static inline nir_cursor
2672 nir_after_cf_node_and_phis(nir_cf_node *node)
2673 {
2674 if (node->type == nir_cf_node_block)
2675 return nir_after_block(nir_cf_node_as_block(node));
2676
2677 nir_block *block = nir_cf_node_as_block(nir_cf_node_next(node));
2678
2679 return nir_after_phis(block);
2680 }
2681
2682 static inline nir_cursor
2683 nir_before_cf_list(struct exec_list *cf_list)
2684 {
2685 nir_cf_node *first_node = exec_node_data(nir_cf_node,
2686 exec_list_get_head(cf_list), node);
2687 return nir_before_cf_node(first_node);
2688 }
2689
2690 static inline nir_cursor
2691 nir_after_cf_list(struct exec_list *cf_list)
2692 {
2693 nir_cf_node *last_node = exec_node_data(nir_cf_node,
2694 exec_list_get_tail(cf_list), node);
2695 return nir_after_cf_node(last_node);
2696 }
2697
2698 /**
2699 * Insert a NIR instruction at the given cursor.
2700 *
2701 * Note: This does not update the cursor.
2702 */
2703 void nir_instr_insert(nir_cursor cursor, nir_instr *instr);
2704
2705 static inline void
2706 nir_instr_insert_before(nir_instr *instr, nir_instr *before)
2707 {
2708 nir_instr_insert(nir_before_instr(instr), before);
2709 }
2710
2711 static inline void
2712 nir_instr_insert_after(nir_instr *instr, nir_instr *after)
2713 {
2714 nir_instr_insert(nir_after_instr(instr), after);
2715 }
2716
2717 static inline void
2718 nir_instr_insert_before_block(nir_block *block, nir_instr *before)
2719 {
2720 nir_instr_insert(nir_before_block(block), before);
2721 }
2722
2723 static inline void
2724 nir_instr_insert_after_block(nir_block *block, nir_instr *after)
2725 {
2726 nir_instr_insert(nir_after_block(block), after);
2727 }
2728
2729 static inline void
2730 nir_instr_insert_before_cf(nir_cf_node *node, nir_instr *before)
2731 {
2732 nir_instr_insert(nir_before_cf_node(node), before);
2733 }
2734
2735 static inline void
2736 nir_instr_insert_after_cf(nir_cf_node *node, nir_instr *after)
2737 {
2738 nir_instr_insert(nir_after_cf_node(node), after);
2739 }
2740
2741 static inline void
2742 nir_instr_insert_before_cf_list(struct exec_list *list, nir_instr *before)
2743 {
2744 nir_instr_insert(nir_before_cf_list(list), before);
2745 }
2746
2747 static inline void
2748 nir_instr_insert_after_cf_list(struct exec_list *list, nir_instr *after)
2749 {
2750 nir_instr_insert(nir_after_cf_list(list), after);
2751 }
2752
2753 void nir_instr_remove_v(nir_instr *instr);
2754
2755 static inline nir_cursor
2756 nir_instr_remove(nir_instr *instr)
2757 {
2758 nir_cursor cursor;
2759 nir_instr *prev = nir_instr_prev(instr);
2760 if (prev) {
2761 cursor = nir_after_instr(prev);
2762 } else {
2763 cursor = nir_before_block(instr->block);
2764 }
2765 nir_instr_remove_v(instr);
2766 return cursor;
2767 }
2768
2769 /** @} */
2770
2771 typedef bool (*nir_foreach_ssa_def_cb)(nir_ssa_def *def, void *state);
2772 typedef bool (*nir_foreach_dest_cb)(nir_dest *dest, void *state);
2773 typedef bool (*nir_foreach_src_cb)(nir_src *src, void *state);
2774 bool nir_foreach_ssa_def(nir_instr *instr, nir_foreach_ssa_def_cb cb,
2775 void *state);
2776 bool nir_foreach_dest(nir_instr *instr, nir_foreach_dest_cb cb, void *state);
2777 bool nir_foreach_src(nir_instr *instr, nir_foreach_src_cb cb, void *state);
2778
2779 nir_const_value *nir_src_as_const_value(nir_src src);
2780
2781 #define NIR_SRC_AS_(name, c_type, type_enum, cast_macro) \
2782 static inline c_type * \
2783 nir_src_as_ ## name (nir_src src) \
2784 { \
2785 return src.is_ssa && src.ssa->parent_instr->type == type_enum \
2786 ? cast_macro(src.ssa->parent_instr) : NULL; \
2787 }
2788
2789 NIR_SRC_AS_(alu_instr, nir_alu_instr, nir_instr_type_alu, nir_instr_as_alu)
2790 NIR_SRC_AS_(intrinsic, nir_intrinsic_instr,
2791 nir_instr_type_intrinsic, nir_instr_as_intrinsic)
2792 NIR_SRC_AS_(deref, nir_deref_instr, nir_instr_type_deref, nir_instr_as_deref)
2793
2794 bool nir_src_is_dynamically_uniform(nir_src src);
2795 bool nir_srcs_equal(nir_src src1, nir_src src2);
2796 void nir_instr_rewrite_src(nir_instr *instr, nir_src *src, nir_src new_src);
2797 void nir_instr_move_src(nir_instr *dest_instr, nir_src *dest, nir_src *src);
2798 void nir_if_rewrite_condition(nir_if *if_stmt, nir_src new_src);
2799 void nir_instr_rewrite_dest(nir_instr *instr, nir_dest *dest,
2800 nir_dest new_dest);
2801
2802 void nir_ssa_dest_init(nir_instr *instr, nir_dest *dest,
2803 unsigned num_components, unsigned bit_size,
2804 const char *name);
2805 void nir_ssa_def_init(nir_instr *instr, nir_ssa_def *def,
2806 unsigned num_components, unsigned bit_size,
2807 const char *name);
2808 static inline void
2809 nir_ssa_dest_init_for_type(nir_instr *instr, nir_dest *dest,
2810 const struct glsl_type *type,
2811 const char *name)
2812 {
2813 assert(glsl_type_is_vector_or_scalar(type));
2814 nir_ssa_dest_init(instr, dest, glsl_get_components(type),
2815 glsl_get_bit_size(type), name);
2816 }
2817 void nir_ssa_def_rewrite_uses(nir_ssa_def *def, nir_src new_src);
2818 void nir_ssa_def_rewrite_uses_after(nir_ssa_def *def, nir_src new_src,
2819 nir_instr *after_me);
2820
2821 nir_component_mask_t nir_ssa_def_components_read(const nir_ssa_def *def);
2822
2823 /*
2824 * finds the next basic block in source-code order, returns NULL if there is
2825 * none
2826 */
2827
2828 nir_block *nir_block_cf_tree_next(nir_block *block);
2829
2830 /* Performs the opposite of nir_block_cf_tree_next() */
2831
2832 nir_block *nir_block_cf_tree_prev(nir_block *block);
2833
2834 /* Gets the first block in a CF node in source-code order */
2835
2836 nir_block *nir_cf_node_cf_tree_first(nir_cf_node *node);
2837
2838 /* Gets the last block in a CF node in source-code order */
2839
2840 nir_block *nir_cf_node_cf_tree_last(nir_cf_node *node);
2841
2842 /* Gets the next block after a CF node in source-code order */
2843
2844 nir_block *nir_cf_node_cf_tree_next(nir_cf_node *node);
2845
2846 /* Macros for loops that visit blocks in source-code order */
2847
2848 #define nir_foreach_block(block, impl) \
2849 for (nir_block *block = nir_start_block(impl); block != NULL; \
2850 block = nir_block_cf_tree_next(block))
2851
2852 #define nir_foreach_block_safe(block, impl) \
2853 for (nir_block *block = nir_start_block(impl), \
2854 *next = nir_block_cf_tree_next(block); \
2855 block != NULL; \
2856 block = next, next = nir_block_cf_tree_next(block))
2857
2858 #define nir_foreach_block_reverse(block, impl) \
2859 for (nir_block *block = nir_impl_last_block(impl); block != NULL; \
2860 block = nir_block_cf_tree_prev(block))
2861
2862 #define nir_foreach_block_reverse_safe(block, impl) \
2863 for (nir_block *block = nir_impl_last_block(impl), \
2864 *prev = nir_block_cf_tree_prev(block); \
2865 block != NULL; \
2866 block = prev, prev = nir_block_cf_tree_prev(block))
2867
2868 #define nir_foreach_block_in_cf_node(block, node) \
2869 for (nir_block *block = nir_cf_node_cf_tree_first(node); \
2870 block != nir_cf_node_cf_tree_next(node); \
2871 block = nir_block_cf_tree_next(block))
2872
2873 /* If the following CF node is an if, this function returns that if.
2874 * Otherwise, it returns NULL.
2875 */
2876 nir_if *nir_block_get_following_if(nir_block *block);
2877
2878 nir_loop *nir_block_get_following_loop(nir_block *block);
2879
2880 void nir_index_local_regs(nir_function_impl *impl);
2881 void nir_index_ssa_defs(nir_function_impl *impl);
2882 unsigned nir_index_instrs(nir_function_impl *impl);
2883
2884 void nir_index_blocks(nir_function_impl *impl);
2885
2886 void nir_print_shader(nir_shader *shader, FILE *fp);
2887 void nir_print_shader_annotated(nir_shader *shader, FILE *fp, struct hash_table *errors);
2888 void nir_print_instr(const nir_instr *instr, FILE *fp);
2889 void nir_print_deref(const nir_deref_instr *deref, FILE *fp);
2890
2891 /** Shallow clone of a single ALU instruction. */
2892 nir_alu_instr *nir_alu_instr_clone(nir_shader *s, const nir_alu_instr *orig);
2893
2894 nir_shader *nir_shader_clone(void *mem_ctx, const nir_shader *s);
2895 nir_function_impl *nir_function_impl_clone(nir_shader *shader,
2896 const nir_function_impl *fi);
2897 nir_constant *nir_constant_clone(const nir_constant *c, nir_variable *var);
2898 nir_variable *nir_variable_clone(const nir_variable *c, nir_shader *shader);
2899
2900 nir_shader *nir_shader_serialize_deserialize(void *mem_ctx, nir_shader *s);
2901
2902 #ifndef NDEBUG
2903 void nir_validate_shader(nir_shader *shader, const char *when);
2904 void nir_metadata_set_validation_flag(nir_shader *shader);
2905 void nir_metadata_check_validation_flag(nir_shader *shader);
2906
2907 static inline bool
2908 should_skip_nir(const char *name)
2909 {
2910 static const char *list = NULL;
2911 if (!list) {
2912 /* Comma separated list of names to skip. */
2913 list = getenv("NIR_SKIP");
2914 if (!list)
2915 list = "";
2916 }
2917
2918 if (!list[0])
2919 return false;
2920
2921 return comma_separated_list_contains(list, name);
2922 }
2923
2924 static inline bool
2925 should_clone_nir(void)
2926 {
2927 static int should_clone = -1;
2928 if (should_clone < 0)
2929 should_clone = env_var_as_boolean("NIR_TEST_CLONE", false);
2930
2931 return should_clone;
2932 }
2933
2934 static inline bool
2935 should_serialize_deserialize_nir(void)
2936 {
2937 static int test_serialize = -1;
2938 if (test_serialize < 0)
2939 test_serialize = env_var_as_boolean("NIR_TEST_SERIALIZE", false);
2940
2941 return test_serialize;
2942 }
2943
2944 static inline bool
2945 should_print_nir(void)
2946 {
2947 static int should_print = -1;
2948 if (should_print < 0)
2949 should_print = env_var_as_boolean("NIR_PRINT", false);
2950
2951 return should_print;
2952 }
2953 #else
2954 static inline void nir_validate_shader(nir_shader *shader, const char *when) { (void) shader; (void)when; }
2955 static inline void nir_metadata_set_validation_flag(nir_shader *shader) { (void) shader; }
2956 static inline void nir_metadata_check_validation_flag(nir_shader *shader) { (void) shader; }
2957 static inline bool should_skip_nir(UNUSED const char *pass_name) { return false; }
2958 static inline bool should_clone_nir(void) { return false; }
2959 static inline bool should_serialize_deserialize_nir(void) { return false; }
2960 static inline bool should_print_nir(void) { return false; }
2961 #endif /* NDEBUG */
2962
2963 #define _PASS(pass, nir, do_pass) do { \
2964 if (should_skip_nir(#pass)) { \
2965 printf("skipping %s\n", #pass); \
2966 break; \
2967 } \
2968 do_pass \
2969 nir_validate_shader(nir, "after " #pass); \
2970 if (should_clone_nir()) { \
2971 nir_shader *clone = nir_shader_clone(ralloc_parent(nir), nir); \
2972 ralloc_free(nir); \
2973 nir = clone; \
2974 } \
2975 if (should_serialize_deserialize_nir()) { \
2976 void *mem_ctx = ralloc_parent(nir); \
2977 nir = nir_shader_serialize_deserialize(mem_ctx, nir); \
2978 } \
2979 } while (0)
2980
2981 #define NIR_PASS(progress, nir, pass, ...) _PASS(pass, nir, \
2982 nir_metadata_set_validation_flag(nir); \
2983 if (should_print_nir()) \
2984 printf("%s\n", #pass); \
2985 if (pass(nir, ##__VA_ARGS__)) { \
2986 progress = true; \
2987 if (should_print_nir()) \
2988 nir_print_shader(nir, stdout); \
2989 nir_metadata_check_validation_flag(nir); \
2990 } \
2991 )
2992
2993 #define NIR_PASS_V(nir, pass, ...) _PASS(pass, nir, \
2994 if (should_print_nir()) \
2995 printf("%s\n", #pass); \
2996 pass(nir, ##__VA_ARGS__); \
2997 if (should_print_nir()) \
2998 nir_print_shader(nir, stdout); \
2999 )
3000
3001 #define NIR_SKIP(name) should_skip_nir(#name)
3002
3003 void nir_calc_dominance_impl(nir_function_impl *impl);
3004 void nir_calc_dominance(nir_shader *shader);
3005
3006 nir_block *nir_dominance_lca(nir_block *b1, nir_block *b2);
3007 bool nir_block_dominates(nir_block *parent, nir_block *child);
3008
3009 void nir_dump_dom_tree_impl(nir_function_impl *impl, FILE *fp);
3010 void nir_dump_dom_tree(nir_shader *shader, FILE *fp);
3011
3012 void nir_dump_dom_frontier_impl(nir_function_impl *impl, FILE *fp);
3013 void nir_dump_dom_frontier(nir_shader *shader, FILE *fp);
3014
3015 void nir_dump_cfg_impl(nir_function_impl *impl, FILE *fp);
3016 void nir_dump_cfg(nir_shader *shader, FILE *fp);
3017
3018 int nir_gs_count_vertices(const nir_shader *shader);
3019
3020 bool nir_shrink_vec_array_vars(nir_shader *shader, nir_variable_mode modes);
3021 bool nir_split_array_vars(nir_shader *shader, nir_variable_mode modes);
3022 bool nir_split_var_copies(nir_shader *shader);
3023 bool nir_split_per_member_structs(nir_shader *shader);
3024 bool nir_split_struct_vars(nir_shader *shader, nir_variable_mode modes);
3025
3026 bool nir_lower_returns_impl(nir_function_impl *impl);
3027 bool nir_lower_returns(nir_shader *shader);
3028
3029 void nir_inline_function_impl(struct nir_builder *b,
3030 const nir_function_impl *impl,
3031 nir_ssa_def **params);
3032 bool nir_inline_functions(nir_shader *shader);
3033
3034 bool nir_propagate_invariant(nir_shader *shader);
3035
3036 void nir_lower_var_copy_instr(nir_intrinsic_instr *copy, nir_shader *shader);
3037 void nir_lower_deref_copy_instr(struct nir_builder *b,
3038 nir_intrinsic_instr *copy);
3039 bool nir_lower_var_copies(nir_shader *shader);
3040
3041 void nir_fixup_deref_modes(nir_shader *shader);
3042
3043 bool nir_lower_global_vars_to_local(nir_shader *shader);
3044
3045 typedef enum {
3046 nir_lower_direct_array_deref_of_vec_load = (1 << 0),
3047 nir_lower_indirect_array_deref_of_vec_load = (1 << 1),
3048 nir_lower_direct_array_deref_of_vec_store = (1 << 2),
3049 nir_lower_indirect_array_deref_of_vec_store = (1 << 3),
3050 } nir_lower_array_deref_of_vec_options;
3051
3052 bool nir_lower_array_deref_of_vec(nir_shader *shader, nir_variable_mode modes,
3053 nir_lower_array_deref_of_vec_options options);
3054
3055 bool nir_lower_indirect_derefs(nir_shader *shader, nir_variable_mode modes);
3056
3057 bool nir_lower_locals_to_regs(nir_shader *shader);
3058
3059 void nir_lower_io_to_temporaries(nir_shader *shader,
3060 nir_function_impl *entrypoint,
3061 bool outputs, bool inputs);
3062
3063 bool nir_lower_vars_to_scratch(nir_shader *shader,
3064 nir_variable_mode modes,
3065 int size_threshold,
3066 glsl_type_size_align_func size_align);
3067
3068 void nir_shader_gather_info(nir_shader *shader, nir_function_impl *entrypoint);
3069
3070 void nir_gather_ssa_types(nir_function_impl *impl,
3071 BITSET_WORD *float_types,
3072 BITSET_WORD *int_types);
3073
3074 void nir_assign_var_locations(struct exec_list *var_list, unsigned *size,
3075 int (*type_size)(const struct glsl_type *, bool));
3076
3077 /* Some helpers to do very simple linking */
3078 bool nir_remove_unused_varyings(nir_shader *producer, nir_shader *consumer);
3079 bool nir_remove_unused_io_vars(nir_shader *shader, struct exec_list *var_list,
3080 uint64_t *used_by_other_stage,
3081 uint64_t *used_by_other_stage_patches);
3082 void nir_compact_varyings(nir_shader *producer, nir_shader *consumer,
3083 bool default_to_smooth_interp);
3084 void nir_link_xfb_varyings(nir_shader *producer, nir_shader *consumer);
3085 bool nir_link_opt_varyings(nir_shader *producer, nir_shader *consumer);
3086
3087 typedef enum {
3088 /* If set, this forces all non-flat fragment shader inputs to be
3089 * interpolated as if with the "sample" qualifier. This requires
3090 * nir_shader_compiler_options::use_interpolated_input_intrinsics.
3091 */
3092 nir_lower_io_force_sample_interpolation = (1 << 1),
3093 } nir_lower_io_options;
3094 bool nir_lower_io(nir_shader *shader,
3095 nir_variable_mode modes,
3096 int (*type_size)(const struct glsl_type *, bool),
3097 nir_lower_io_options);
3098
3099 typedef enum {
3100 /**
3101 * An address format which is a simple 32-bit global GPU address.
3102 */
3103 nir_address_format_32bit_global,
3104
3105 /**
3106 * An address format which is a simple 64-bit global GPU address.
3107 */
3108 nir_address_format_64bit_global,
3109
3110 /**
3111 * An address format which is a bounds-checked 64-bit global GPU address.
3112 *
3113 * The address is comprised as a 32-bit vec4 where .xy are a uint64_t base
3114 * address stored with the low bits in .x and high bits in .y, .z is a
3115 * size, and .w is an offset. When the final I/O operation is lowered, .w
3116 * is checked against .z and the operation is predicated on the result.
3117 */
3118 nir_address_format_64bit_bounded_global,
3119
3120 /**
3121 * An address format which is comprised of a vec2 where the first
3122 * component is a buffer index and the second is an offset.
3123 */
3124 nir_address_format_32bit_index_offset,
3125
3126 /**
3127 * An address format which is a simple 32-bit offset.
3128 */
3129 nir_address_format_32bit_offset,
3130
3131 /**
3132 * An address format representing a purely logical addressing model. In
3133 * this model, all deref chains must be complete from the dereference
3134 * operation to the variable. Cast derefs are not allowed. These
3135 * addresses will be 32-bit scalars but the format is immaterial because
3136 * you can always chase the chain.
3137 */
3138 nir_address_format_logical,
3139 } nir_address_format;
3140
3141 static inline unsigned
3142 nir_address_format_bit_size(nir_address_format addr_format)
3143 {
3144 switch (addr_format) {
3145 case nir_address_format_32bit_global: return 32;
3146 case nir_address_format_64bit_global: return 64;
3147 case nir_address_format_64bit_bounded_global: return 32;
3148 case nir_address_format_32bit_index_offset: return 32;
3149 case nir_address_format_32bit_offset: return 32;
3150 case nir_address_format_logical: return 32;
3151 }
3152 unreachable("Invalid address format");
3153 }
3154
3155 static inline unsigned
3156 nir_address_format_num_components(nir_address_format addr_format)
3157 {
3158 switch (addr_format) {
3159 case nir_address_format_32bit_global: return 1;
3160 case nir_address_format_64bit_global: return 1;
3161 case nir_address_format_64bit_bounded_global: return 4;
3162 case nir_address_format_32bit_index_offset: return 2;
3163 case nir_address_format_32bit_offset: return 1;
3164 case nir_address_format_logical: return 1;
3165 }
3166 unreachable("Invalid address format");
3167 }
3168
3169 static inline const struct glsl_type *
3170 nir_address_format_to_glsl_type(nir_address_format addr_format)
3171 {
3172 unsigned bit_size = nir_address_format_bit_size(addr_format);
3173 assert(bit_size == 32 || bit_size == 64);
3174 return glsl_vector_type(bit_size == 32 ? GLSL_TYPE_UINT : GLSL_TYPE_UINT64,
3175 nir_address_format_num_components(addr_format));
3176 }
3177
3178 const nir_const_value *nir_address_format_null_value(nir_address_format addr_format);
3179
3180 nir_ssa_def * nir_explicit_io_address_from_deref(struct nir_builder *b,
3181 nir_deref_instr *deref,
3182 nir_ssa_def *base_addr,
3183 nir_address_format addr_format);
3184 void nir_lower_explicit_io_instr(struct nir_builder *b,
3185 nir_intrinsic_instr *io_instr,
3186 nir_ssa_def *addr,
3187 nir_address_format addr_format);
3188
3189 bool nir_lower_explicit_io(nir_shader *shader,
3190 nir_variable_mode modes,
3191 nir_address_format);
3192
3193 nir_src *nir_get_io_offset_src(nir_intrinsic_instr *instr);
3194 nir_src *nir_get_io_vertex_index_src(nir_intrinsic_instr *instr);
3195
3196 bool nir_is_per_vertex_io(const nir_variable *var, gl_shader_stage stage);
3197
3198 bool nir_lower_regs_to_ssa_impl(nir_function_impl *impl);
3199 bool nir_lower_regs_to_ssa(nir_shader *shader);
3200 bool nir_lower_vars_to_ssa(nir_shader *shader);
3201
3202 bool nir_remove_dead_derefs(nir_shader *shader);
3203 bool nir_remove_dead_derefs_impl(nir_function_impl *impl);
3204 bool nir_remove_dead_variables(nir_shader *shader, nir_variable_mode modes);
3205 bool nir_lower_constant_initializers(nir_shader *shader,
3206 nir_variable_mode modes);
3207
3208 bool nir_move_load_const(nir_shader *shader);
3209 bool nir_move_vec_src_uses_to_dest(nir_shader *shader);
3210 bool nir_lower_vec_to_movs(nir_shader *shader);
3211 void nir_lower_alpha_test(nir_shader *shader, enum compare_func func,
3212 bool alpha_to_one);
3213 bool nir_lower_alu(nir_shader *shader);
3214
3215 bool nir_lower_flrp(nir_shader *shader, unsigned lowering_mask,
3216 bool always_precise, bool have_ffma);
3217
3218 bool nir_lower_alu_to_scalar(nir_shader *shader, BITSET_WORD *lower_set);
3219 bool nir_lower_bool_to_float(nir_shader *shader);
3220 bool nir_lower_bool_to_int32(nir_shader *shader);
3221 bool nir_lower_int_to_float(nir_shader *shader);
3222 bool nir_lower_load_const_to_scalar(nir_shader *shader);
3223 bool nir_lower_read_invocation_to_scalar(nir_shader *shader);
3224 bool nir_lower_phis_to_scalar(nir_shader *shader);
3225 void nir_lower_io_arrays_to_elements(nir_shader *producer, nir_shader *consumer);
3226 void nir_lower_io_arrays_to_elements_no_indirects(nir_shader *shader,
3227 bool outputs_only);
3228 void nir_lower_io_to_scalar(nir_shader *shader, nir_variable_mode mask);
3229 void nir_lower_io_to_scalar_early(nir_shader *shader, nir_variable_mode mask);
3230 bool nir_lower_io_to_vector(nir_shader *shader, nir_variable_mode mask);
3231
3232 void nir_lower_fragcoord_wtrans(nir_shader *shader);
3233 void nir_lower_viewport_transform(nir_shader *shader);
3234 bool nir_lower_uniforms_to_ubo(nir_shader *shader, int multiplier);
3235
3236 typedef struct nir_lower_subgroups_options {
3237 uint8_t subgroup_size;
3238 uint8_t ballot_bit_size;
3239 bool lower_to_scalar:1;
3240 bool lower_vote_trivial:1;
3241 bool lower_vote_eq_to_ballot:1;
3242 bool lower_subgroup_masks:1;
3243 bool lower_shuffle:1;
3244 bool lower_shuffle_to_32bit:1;
3245 bool lower_quad:1;
3246 } nir_lower_subgroups_options;
3247
3248 bool nir_lower_subgroups(nir_shader *shader,
3249 const nir_lower_subgroups_options *options);
3250
3251 bool nir_lower_system_values(nir_shader *shader);
3252
3253 enum PACKED nir_lower_tex_packing {
3254 nir_lower_tex_packing_none = 0,
3255 /* The sampler returns up to 2 32-bit words of half floats or 16-bit signed
3256 * or unsigned ints based on the sampler type
3257 */
3258 nir_lower_tex_packing_16,
3259 /* The sampler returns 1 32-bit word of 4x8 unorm */
3260 nir_lower_tex_packing_8,
3261 };
3262
3263 typedef struct nir_lower_tex_options {
3264 /**
3265 * bitmask of (1 << GLSL_SAMPLER_DIM_x) to control for which
3266 * sampler types a texture projector is lowered.
3267 */
3268 unsigned lower_txp;
3269
3270 /**
3271 * If true, lower away nir_tex_src_offset for all texelfetch instructions.
3272 */
3273 bool lower_txf_offset;
3274
3275 /**
3276 * If true, lower away nir_tex_src_offset for all rect textures.
3277 */
3278 bool lower_rect_offset;
3279
3280 /**
3281 * If true, lower rect textures to 2D, using txs to fetch the
3282 * texture dimensions and dividing the texture coords by the
3283 * texture dims to normalize.
3284 */
3285 bool lower_rect;
3286
3287 /**
3288 * If true, convert yuv to rgb.
3289 */
3290 unsigned lower_y_uv_external;
3291 unsigned lower_y_u_v_external;
3292 unsigned lower_yx_xuxv_external;
3293 unsigned lower_xy_uxvx_external;
3294 unsigned lower_ayuv_external;
3295 unsigned lower_xyuv_external;
3296
3297 /**
3298 * To emulate certain texture wrap modes, this can be used
3299 * to saturate the specified tex coord to [0.0, 1.0]. The
3300 * bits are according to sampler #, ie. if, for example:
3301 *
3302 * (conf->saturate_s & (1 << n))
3303 *
3304 * is true, then the s coord for sampler n is saturated.
3305 *
3306 * Note that clamping must happen *after* projector lowering
3307 * so any projected texture sample instruction with a clamped
3308 * coordinate gets automatically lowered, regardless of the
3309 * 'lower_txp' setting.
3310 */
3311 unsigned saturate_s;
3312 unsigned saturate_t;
3313 unsigned saturate_r;
3314
3315 /* Bitmask of textures that need swizzling.
3316 *
3317 * If (swizzle_result & (1 << texture_index)), then the swizzle in
3318 * swizzles[texture_index] is applied to the result of the texturing
3319 * operation.
3320 */
3321 unsigned swizzle_result;
3322
3323 /* A swizzle for each texture. Values 0-3 represent x, y, z, or w swizzles
3324 * while 4 and 5 represent 0 and 1 respectively.
3325 */
3326 uint8_t swizzles[32][4];
3327
3328 /* Can be used to scale sampled values in range required by the format. */
3329 float scale_factors[32];
3330
3331 /**
3332 * Bitmap of textures that need srgb to linear conversion. If
3333 * (lower_srgb & (1 << texture_index)) then the rgb (xyz) components
3334 * of the texture are lowered to linear.
3335 */
3336 unsigned lower_srgb;
3337
3338 /**
3339 * If true, lower nir_texop_tex on shaders that doesn't support implicit
3340 * LODs to nir_texop_txl.
3341 */
3342 bool lower_tex_without_implicit_lod;
3343
3344 /**
3345 * If true, lower nir_texop_txd on cube maps with nir_texop_txl.
3346 */
3347 bool lower_txd_cube_map;
3348
3349 /**
3350 * If true, lower nir_texop_txd on 3D surfaces with nir_texop_txl.
3351 */
3352 bool lower_txd_3d;
3353
3354 /**
3355 * If true, lower nir_texop_txd on shadow samplers (except cube maps)
3356 * with nir_texop_txl. Notice that cube map shadow samplers are lowered
3357 * with lower_txd_cube_map.
3358 */
3359 bool lower_txd_shadow;
3360
3361 /**
3362 * If true, lower nir_texop_txd on all samplers to a nir_texop_txl.
3363 * Implies lower_txd_cube_map and lower_txd_shadow.
3364 */
3365 bool lower_txd;
3366
3367 /**
3368 * If true, lower nir_texop_txb that try to use shadow compare and min_lod
3369 * at the same time to a nir_texop_lod, some math, and nir_texop_tex.
3370 */
3371 bool lower_txb_shadow_clamp;
3372
3373 /**
3374 * If true, lower nir_texop_txd on shadow samplers when it uses min_lod
3375 * with nir_texop_txl. This includes cube maps.
3376 */
3377 bool lower_txd_shadow_clamp;
3378
3379 /**
3380 * If true, lower nir_texop_txd on when it uses both offset and min_lod
3381 * with nir_texop_txl. This includes cube maps.
3382 */
3383 bool lower_txd_offset_clamp;
3384
3385 /**
3386 * If true, lower nir_texop_txd with min_lod to a nir_texop_txl if the
3387 * sampler is bindless.
3388 */
3389 bool lower_txd_clamp_bindless_sampler;
3390
3391 /**
3392 * If true, lower nir_texop_txd with min_lod to a nir_texop_txl if the
3393 * sampler index is not statically determinable to be less than 16.
3394 */
3395 bool lower_txd_clamp_if_sampler_index_not_lt_16;
3396
3397 /**
3398 * If true, apply a .bagr swizzle on tg4 results to handle Broadcom's
3399 * mixed-up tg4 locations.
3400 */
3401 bool lower_tg4_broadcom_swizzle;
3402
3403 /**
3404 * If true, lowers tg4 with 4 constant offsets to 4 tg4 calls
3405 */
3406 bool lower_tg4_offsets;
3407
3408 enum nir_lower_tex_packing lower_tex_packing[32];
3409 } nir_lower_tex_options;
3410
3411 bool nir_lower_tex(nir_shader *shader,
3412 const nir_lower_tex_options *options);
3413
3414 enum nir_lower_non_uniform_access_type {
3415 nir_lower_non_uniform_ubo_access = (1 << 0),
3416 nir_lower_non_uniform_ssbo_access = (1 << 1),
3417 nir_lower_non_uniform_texture_access = (1 << 2),
3418 nir_lower_non_uniform_image_access = (1 << 3),
3419 };
3420
3421 bool nir_lower_non_uniform_access(nir_shader *shader,
3422 enum nir_lower_non_uniform_access_type);
3423
3424 bool nir_lower_idiv(nir_shader *shader);
3425
3426 bool nir_lower_clip_vs(nir_shader *shader, unsigned ucp_enables, bool use_vars);
3427 bool nir_lower_clip_fs(nir_shader *shader, unsigned ucp_enables);
3428 bool nir_lower_clip_cull_distance_arrays(nir_shader *nir);
3429
3430 bool nir_lower_frexp(nir_shader *nir);
3431
3432 void nir_lower_two_sided_color(nir_shader *shader);
3433
3434 bool nir_lower_clamp_color_outputs(nir_shader *shader);
3435
3436 void nir_lower_passthrough_edgeflags(nir_shader *shader);
3437 bool nir_lower_patch_vertices(nir_shader *nir, unsigned static_count,
3438 const gl_state_index16 *uniform_state_tokens);
3439
3440 typedef struct nir_lower_wpos_ytransform_options {
3441 gl_state_index16 state_tokens[STATE_LENGTH];
3442 bool fs_coord_origin_upper_left :1;
3443 bool fs_coord_origin_lower_left :1;
3444 bool fs_coord_pixel_center_integer :1;
3445 bool fs_coord_pixel_center_half_integer :1;
3446 } nir_lower_wpos_ytransform_options;
3447
3448 bool nir_lower_wpos_ytransform(nir_shader *shader,
3449 const nir_lower_wpos_ytransform_options *options);
3450 bool nir_lower_wpos_center(nir_shader *shader, const bool for_sample_shading);
3451
3452 bool nir_lower_fb_read(nir_shader *shader);
3453
3454 typedef struct nir_lower_drawpixels_options {
3455 gl_state_index16 texcoord_state_tokens[STATE_LENGTH];
3456 gl_state_index16 scale_state_tokens[STATE_LENGTH];
3457 gl_state_index16 bias_state_tokens[STATE_LENGTH];
3458 unsigned drawpix_sampler;
3459 unsigned pixelmap_sampler;
3460 bool pixel_maps :1;
3461 bool scale_and_bias :1;
3462 } nir_lower_drawpixels_options;
3463
3464 void nir_lower_drawpixels(nir_shader *shader,
3465 const nir_lower_drawpixels_options *options);
3466
3467 typedef struct nir_lower_bitmap_options {
3468 unsigned sampler;
3469 bool swizzle_xxxx;
3470 } nir_lower_bitmap_options;
3471
3472 void nir_lower_bitmap(nir_shader *shader, const nir_lower_bitmap_options *options);
3473
3474 bool nir_lower_atomics_to_ssbo(nir_shader *shader, unsigned ssbo_offset);
3475
3476 typedef enum {
3477 nir_lower_int_source_mods = 1 << 0,
3478 nir_lower_float_source_mods = 1 << 1,
3479 nir_lower_triop_abs = 1 << 2,
3480 nir_lower_all_source_mods = (1 << 3) - 1
3481 } nir_lower_to_source_mods_flags;
3482
3483
3484 bool nir_lower_to_source_mods(nir_shader *shader, nir_lower_to_source_mods_flags options);
3485
3486 bool nir_lower_gs_intrinsics(nir_shader *shader);
3487
3488 typedef unsigned (*nir_lower_bit_size_callback)(const nir_alu_instr *, void *);
3489
3490 bool nir_lower_bit_size(nir_shader *shader,
3491 nir_lower_bit_size_callback callback,
3492 void *callback_data);
3493
3494 nir_lower_int64_options nir_lower_int64_op_to_options_mask(nir_op opcode);
3495 bool nir_lower_int64(nir_shader *shader, nir_lower_int64_options options);
3496
3497 nir_lower_doubles_options nir_lower_doubles_op_to_options_mask(nir_op opcode);
3498 bool nir_lower_doubles(nir_shader *shader, const nir_shader *softfp64,
3499 nir_lower_doubles_options options);
3500 bool nir_lower_pack(nir_shader *shader);
3501
3502 bool nir_normalize_cubemap_coords(nir_shader *shader);
3503
3504 void nir_live_ssa_defs_impl(nir_function_impl *impl);
3505
3506 void nir_loop_analyze_impl(nir_function_impl *impl,
3507 nir_variable_mode indirect_mask);
3508
3509 bool nir_ssa_defs_interfere(nir_ssa_def *a, nir_ssa_def *b);
3510
3511 bool nir_repair_ssa_impl(nir_function_impl *impl);
3512 bool nir_repair_ssa(nir_shader *shader);
3513
3514 void nir_convert_loop_to_lcssa(nir_loop *loop);
3515
3516 /* If phi_webs_only is true, only convert SSA values involved in phi nodes to
3517 * registers. If false, convert all values (even those not involved in a phi
3518 * node) to registers.
3519 */
3520 bool nir_convert_from_ssa(nir_shader *shader, bool phi_webs_only);
3521
3522 bool nir_lower_phis_to_regs_block(nir_block *block);
3523 bool nir_lower_ssa_defs_to_regs_block(nir_block *block);
3524 bool nir_rematerialize_derefs_in_use_blocks_impl(nir_function_impl *impl);
3525
3526 bool nir_opt_comparison_pre(nir_shader *shader);
3527
3528 bool nir_opt_algebraic(nir_shader *shader);
3529 bool nir_opt_algebraic_before_ffma(nir_shader *shader);
3530 bool nir_opt_algebraic_late(nir_shader *shader);
3531 bool nir_opt_constant_folding(nir_shader *shader);
3532
3533 bool nir_opt_combine_stores(nir_shader *shader, nir_variable_mode modes);
3534
3535 bool nir_copy_prop(nir_shader *shader);
3536
3537 bool nir_opt_copy_prop_vars(nir_shader *shader);
3538
3539 bool nir_opt_cse(nir_shader *shader);
3540
3541 bool nir_opt_dce(nir_shader *shader);
3542
3543 bool nir_opt_dead_cf(nir_shader *shader);
3544
3545 bool nir_opt_dead_write_vars(nir_shader *shader);
3546
3547 bool nir_opt_deref_impl(nir_function_impl *impl);
3548 bool nir_opt_deref(nir_shader *shader);
3549
3550 bool nir_opt_find_array_copies(nir_shader *shader);
3551
3552 bool nir_opt_gcm(nir_shader *shader, bool value_number);
3553
3554 bool nir_opt_idiv_const(nir_shader *shader, unsigned min_bit_size);
3555
3556 bool nir_opt_if(nir_shader *shader, bool aggressive_last_continue);
3557
3558 bool nir_opt_intrinsics(nir_shader *shader);
3559
3560 bool nir_opt_large_constants(nir_shader *shader,
3561 glsl_type_size_align_func size_align,
3562 unsigned threshold);
3563
3564 bool nir_opt_loop_unroll(nir_shader *shader, nir_variable_mode indirect_mask);
3565
3566 bool nir_opt_move_comparisons(nir_shader *shader);
3567
3568 bool nir_opt_move_load_ubo(nir_shader *shader);
3569
3570 bool nir_opt_peephole_select(nir_shader *shader, unsigned limit,
3571 bool indirect_load_ok, bool expensive_alu_ok);
3572
3573 bool nir_opt_remove_phis(nir_shader *shader);
3574
3575 bool nir_opt_shrink_load(nir_shader *shader);
3576
3577 bool nir_opt_trivial_continues(nir_shader *shader);
3578
3579 bool nir_opt_undef(nir_shader *shader);
3580
3581 bool nir_opt_conditional_discard(nir_shader *shader);
3582
3583 void nir_strip(nir_shader *shader);
3584
3585 void nir_sweep(nir_shader *shader);
3586
3587 void nir_remap_dual_slot_attributes(nir_shader *shader,
3588 uint64_t *dual_slot_inputs);
3589 uint64_t nir_get_single_slot_attribs_mask(uint64_t attribs, uint64_t dual_slot);
3590
3591 nir_intrinsic_op nir_intrinsic_from_system_value(gl_system_value val);
3592 gl_system_value nir_system_value_from_intrinsic(nir_intrinsic_op intrin);
3593
3594 bool nir_lower_sincos(nir_shader *shader);
3595
3596 #ifdef __cplusplus
3597 } /* extern "C" */
3598 #endif
3599
3600 #endif /* NIR_H */