nir/spirv: tg4 requires a sampler
[mesa.git] / src / compiler / nir / nir.h
1 /*
2 * Copyright © 2014 Connor Abbott
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Connor Abbott (cwabbott0@gmail.com)
25 *
26 */
27
28 #ifndef NIR_H
29 #define NIR_H
30
31 #include "util/hash_table.h"
32 #include "compiler/glsl/list.h"
33 #include "GL/gl.h" /* GLenum */
34 #include "util/list.h"
35 #include "util/ralloc.h"
36 #include "util/set.h"
37 #include "util/bitset.h"
38 #include "util/macros.h"
39 #include "compiler/nir_types.h"
40 #include "compiler/shader_enums.h"
41 #include "compiler/shader_info.h"
42 #include <stdio.h>
43
44 #ifdef DEBUG
45 #include "util/debug.h"
46 #endif /* DEBUG */
47
48 #include "nir_opcodes.h"
49
50 #if defined(_WIN32) && !defined(snprintf)
51 #define snprintf _snprintf
52 #endif
53
54 #ifdef __cplusplus
55 extern "C" {
56 #endif
57
58 struct gl_program;
59 struct gl_shader_program;
60
61 #define NIR_FALSE 0u
62 #define NIR_TRUE (~0u)
63
64 /** Defines a cast function
65 *
66 * This macro defines a cast function from in_type to out_type where
67 * out_type is some structure type that contains a field of type out_type.
68 *
69 * Note that you have to be a bit careful as the generated cast function
70 * destroys constness.
71 */
72 #define NIR_DEFINE_CAST(name, in_type, out_type, field, \
73 type_field, type_value) \
74 static inline out_type * \
75 name(const in_type *parent) \
76 { \
77 assert(parent && parent->type_field == type_value); \
78 return exec_node_data(out_type, parent, field); \
79 }
80
81 struct nir_function;
82 struct nir_shader;
83 struct nir_instr;
84
85
86 /**
87 * Description of built-in state associated with a uniform
88 *
89 * \sa nir_variable::state_slots
90 */
91 typedef struct {
92 int tokens[5];
93 int swizzle;
94 } nir_state_slot;
95
96 typedef enum {
97 nir_var_shader_in = (1 << 0),
98 nir_var_shader_out = (1 << 1),
99 nir_var_global = (1 << 2),
100 nir_var_local = (1 << 3),
101 nir_var_uniform = (1 << 4),
102 nir_var_shader_storage = (1 << 5),
103 nir_var_system_value = (1 << 6),
104 nir_var_param = (1 << 7),
105 nir_var_shared = (1 << 8),
106 nir_var_all = ~0,
107 } nir_variable_mode;
108
109
110 typedef union {
111 float f32[4];
112 double f64[4];
113 int8_t i8[4];
114 uint8_t u8[4];
115 int16_t i16[4];
116 uint16_t u16[4];
117 int32_t i32[4];
118 uint32_t u32[4];
119 int64_t i64[4];
120 uint64_t u64[4];
121 } nir_const_value;
122
123 typedef struct nir_constant {
124 /**
125 * Value of the constant.
126 *
127 * The field used to back the values supplied by the constant is determined
128 * by the type associated with the \c nir_variable. Constants may be
129 * scalars, vectors, or matrices.
130 */
131 nir_const_value values[4];
132
133 /* we could get this from the var->type but makes clone *much* easier to
134 * not have to care about the type.
135 */
136 unsigned num_elements;
137
138 /* Array elements / Structure Fields */
139 struct nir_constant **elements;
140 } nir_constant;
141
142 /**
143 * \brief Layout qualifiers for gl_FragDepth.
144 *
145 * The AMD/ARB_conservative_depth extensions allow gl_FragDepth to be redeclared
146 * with a layout qualifier.
147 */
148 typedef enum {
149 nir_depth_layout_none, /**< No depth layout is specified. */
150 nir_depth_layout_any,
151 nir_depth_layout_greater,
152 nir_depth_layout_less,
153 nir_depth_layout_unchanged
154 } nir_depth_layout;
155
156 /**
157 * Either a uniform, global variable, shader input, or shader output. Based on
158 * ir_variable - it should be easy to translate between the two.
159 */
160
161 typedef struct nir_variable {
162 struct exec_node node;
163
164 /**
165 * Declared type of the variable
166 */
167 const struct glsl_type *type;
168
169 /**
170 * Declared name of the variable
171 */
172 char *name;
173
174 struct nir_variable_data {
175 /**
176 * Storage class of the variable.
177 *
178 * \sa nir_variable_mode
179 */
180 nir_variable_mode mode;
181
182 /**
183 * Is the variable read-only?
184 *
185 * This is set for variables declared as \c const, shader inputs,
186 * and uniforms.
187 */
188 unsigned read_only:1;
189 unsigned centroid:1;
190 unsigned sample:1;
191 unsigned patch:1;
192 unsigned invariant:1;
193
194 /**
195 * When separate shader programs are enabled, only input/outputs between
196 * the stages of a multi-stage separate program can be safely removed
197 * from the shader interface. Other input/outputs must remains active.
198 *
199 * This is also used to make sure xfb varyings that are unused by the
200 * fragment shader are not removed.
201 */
202 unsigned always_active_io:1;
203
204 /**
205 * Interpolation mode for shader inputs / outputs
206 *
207 * \sa glsl_interp_mode
208 */
209 unsigned interpolation:2;
210
211 /**
212 * \name ARB_fragment_coord_conventions
213 * @{
214 */
215 unsigned origin_upper_left:1;
216 unsigned pixel_center_integer:1;
217 /*@}*/
218
219 /**
220 * If non-zero, then this variable may be packed along with other variables
221 * into a single varying slot, so this offset should be applied when
222 * accessing components. For example, an offset of 1 means that the x
223 * component of this variable is actually stored in component y of the
224 * location specified by \c location.
225 */
226 unsigned location_frac:2;
227
228 /**
229 * If true, this variable represents an array of scalars that should
230 * be tightly packed. In other words, consecutive array elements
231 * should be stored one component apart, rather than one slot apart.
232 */
233 unsigned compact:1;
234
235 /**
236 * Whether this is a fragment shader output implicitly initialized with
237 * the previous contents of the specified render target at the
238 * framebuffer location corresponding to this shader invocation.
239 */
240 unsigned fb_fetch_output:1;
241
242 /**
243 * \brief Layout qualifier for gl_FragDepth.
244 *
245 * This is not equal to \c ir_depth_layout_none if and only if this
246 * variable is \c gl_FragDepth and a layout qualifier is specified.
247 */
248 nir_depth_layout depth_layout;
249
250 /**
251 * Storage location of the base of this variable
252 *
253 * The precise meaning of this field depends on the nature of the variable.
254 *
255 * - Vertex shader input: one of the values from \c gl_vert_attrib.
256 * - Vertex shader output: one of the values from \c gl_varying_slot.
257 * - Geometry shader input: one of the values from \c gl_varying_slot.
258 * - Geometry shader output: one of the values from \c gl_varying_slot.
259 * - Fragment shader input: one of the values from \c gl_varying_slot.
260 * - Fragment shader output: one of the values from \c gl_frag_result.
261 * - Uniforms: Per-stage uniform slot number for default uniform block.
262 * - Uniforms: Index within the uniform block definition for UBO members.
263 * - Non-UBO Uniforms: uniform slot number.
264 * - Other: This field is not currently used.
265 *
266 * If the variable is a uniform, shader input, or shader output, and the
267 * slot has not been assigned, the value will be -1.
268 */
269 int location;
270
271 /**
272 * The actual location of the variable in the IR. Only valid for inputs
273 * and outputs.
274 */
275 unsigned int driver_location;
276
277 /**
278 * Vertex stream output identifier.
279 *
280 * For packed outputs, bit 31 is set and bits [2*i+1,2*i] indicate the
281 * stream of the i-th component.
282 */
283 unsigned stream;
284
285 /**
286 * output index for dual source blending.
287 */
288 int index;
289
290 /**
291 * Descriptor set binding for sampler or UBO.
292 */
293 int descriptor_set;
294
295 /**
296 * Initial binding point for a sampler or UBO.
297 *
298 * For array types, this represents the binding point for the first element.
299 */
300 int binding;
301
302 /**
303 * Location an atomic counter is stored at.
304 */
305 unsigned offset;
306
307 /**
308 * ARB_shader_image_load_store qualifiers.
309 */
310 struct {
311 bool read_only; /**< "readonly" qualifier. */
312 bool write_only; /**< "writeonly" qualifier. */
313 bool coherent;
314 bool _volatile;
315 bool restrict_flag;
316
317 /** Image internal format if specified explicitly, otherwise GL_NONE. */
318 GLenum format;
319 } image;
320 } data;
321
322 /**
323 * Built-in state that backs this uniform
324 *
325 * Once set at variable creation, \c state_slots must remain invariant.
326 * This is because, ideally, this array would be shared by all clones of
327 * this variable in the IR tree. In other words, we'd really like for it
328 * to be a fly-weight.
329 *
330 * If the variable is not a uniform, \c num_state_slots will be zero and
331 * \c state_slots will be \c NULL.
332 */
333 /*@{*/
334 unsigned num_state_slots; /**< Number of state slots used */
335 nir_state_slot *state_slots; /**< State descriptors. */
336 /*@}*/
337
338 /**
339 * Constant expression assigned in the initializer of the variable
340 *
341 * This field should only be used temporarily by creators of NIR shaders
342 * and then lower_constant_initializers can be used to get rid of them.
343 * Most of the rest of NIR ignores this field or asserts that it's NULL.
344 */
345 nir_constant *constant_initializer;
346
347 /**
348 * For variables that are in an interface block or are an instance of an
349 * interface block, this is the \c GLSL_TYPE_INTERFACE type for that block.
350 *
351 * \sa ir_variable::location
352 */
353 const struct glsl_type *interface_type;
354 } nir_variable;
355
356 #define nir_foreach_variable(var, var_list) \
357 foreach_list_typed(nir_variable, var, node, var_list)
358
359 #define nir_foreach_variable_safe(var, var_list) \
360 foreach_list_typed_safe(nir_variable, var, node, var_list)
361
362 static inline bool
363 nir_variable_is_global(const nir_variable *var)
364 {
365 return var->data.mode != nir_var_local && var->data.mode != nir_var_param;
366 }
367
368 typedef struct nir_register {
369 struct exec_node node;
370
371 unsigned num_components; /** < number of vector components */
372 unsigned num_array_elems; /** < size of array (0 for no array) */
373
374 /* The bit-size of each channel; must be one of 8, 16, 32, or 64 */
375 uint8_t bit_size;
376
377 /** generic register index. */
378 unsigned index;
379
380 /** only for debug purposes, can be NULL */
381 const char *name;
382
383 /** whether this register is local (per-function) or global (per-shader) */
384 bool is_global;
385
386 /**
387 * If this flag is set to true, then accessing channels >= num_components
388 * is well-defined, and simply spills over to the next array element. This
389 * is useful for backends that can do per-component accessing, in
390 * particular scalar backends. By setting this flag and making
391 * num_components equal to 1, structures can be packed tightly into
392 * registers and then registers can be accessed per-component to get to
393 * each structure member, even if it crosses vec4 boundaries.
394 */
395 bool is_packed;
396
397 /** set of nir_srcs where this register is used (read from) */
398 struct list_head uses;
399
400 /** set of nir_dests where this register is defined (written to) */
401 struct list_head defs;
402
403 /** set of nir_ifs where this register is used as a condition */
404 struct list_head if_uses;
405 } nir_register;
406
407 #define nir_foreach_register(reg, reg_list) \
408 foreach_list_typed(nir_register, reg, node, reg_list)
409 #define nir_foreach_register_safe(reg, reg_list) \
410 foreach_list_typed_safe(nir_register, reg, node, reg_list)
411
412 typedef enum {
413 nir_instr_type_alu,
414 nir_instr_type_call,
415 nir_instr_type_tex,
416 nir_instr_type_intrinsic,
417 nir_instr_type_load_const,
418 nir_instr_type_jump,
419 nir_instr_type_ssa_undef,
420 nir_instr_type_phi,
421 nir_instr_type_parallel_copy,
422 } nir_instr_type;
423
424 typedef struct nir_instr {
425 struct exec_node node;
426 nir_instr_type type;
427 struct nir_block *block;
428
429 /** generic instruction index. */
430 unsigned index;
431
432 /* A temporary for optimization and analysis passes to use for storing
433 * flags. For instance, DCE uses this to store the "dead/live" info.
434 */
435 uint8_t pass_flags;
436 } nir_instr;
437
438 static inline nir_instr *
439 nir_instr_next(nir_instr *instr)
440 {
441 struct exec_node *next = exec_node_get_next(&instr->node);
442 if (exec_node_is_tail_sentinel(next))
443 return NULL;
444 else
445 return exec_node_data(nir_instr, next, node);
446 }
447
448 static inline nir_instr *
449 nir_instr_prev(nir_instr *instr)
450 {
451 struct exec_node *prev = exec_node_get_prev(&instr->node);
452 if (exec_node_is_head_sentinel(prev))
453 return NULL;
454 else
455 return exec_node_data(nir_instr, prev, node);
456 }
457
458 static inline bool
459 nir_instr_is_first(const nir_instr *instr)
460 {
461 return exec_node_is_head_sentinel(exec_node_get_prev_const(&instr->node));
462 }
463
464 static inline bool
465 nir_instr_is_last(const nir_instr *instr)
466 {
467 return exec_node_is_tail_sentinel(exec_node_get_next_const(&instr->node));
468 }
469
470 typedef struct nir_ssa_def {
471 /** for debugging only, can be NULL */
472 const char* name;
473
474 /** generic SSA definition index. */
475 unsigned index;
476
477 /** Index into the live_in and live_out bitfields */
478 unsigned live_index;
479
480 nir_instr *parent_instr;
481
482 /** set of nir_instrs where this register is used (read from) */
483 struct list_head uses;
484
485 /** set of nir_ifs where this register is used as a condition */
486 struct list_head if_uses;
487
488 uint8_t num_components;
489
490 /* The bit-size of each channel; must be one of 8, 16, 32, or 64 */
491 uint8_t bit_size;
492 } nir_ssa_def;
493
494 struct nir_src;
495
496 typedef struct {
497 nir_register *reg;
498 struct nir_src *indirect; /** < NULL for no indirect offset */
499 unsigned base_offset;
500
501 /* TODO use-def chain goes here */
502 } nir_reg_src;
503
504 typedef struct {
505 nir_instr *parent_instr;
506 struct list_head def_link;
507
508 nir_register *reg;
509 struct nir_src *indirect; /** < NULL for no indirect offset */
510 unsigned base_offset;
511
512 /* TODO def-use chain goes here */
513 } nir_reg_dest;
514
515 struct nir_if;
516
517 typedef struct nir_src {
518 union {
519 nir_instr *parent_instr;
520 struct nir_if *parent_if;
521 };
522
523 struct list_head use_link;
524
525 union {
526 nir_reg_src reg;
527 nir_ssa_def *ssa;
528 };
529
530 bool is_ssa;
531 } nir_src;
532
533 static inline nir_src
534 nir_src_init(void)
535 {
536 nir_src src = { { NULL } };
537 return src;
538 }
539
540 #define NIR_SRC_INIT nir_src_init()
541
542 #define nir_foreach_use(src, reg_or_ssa_def) \
543 list_for_each_entry(nir_src, src, &(reg_or_ssa_def)->uses, use_link)
544
545 #define nir_foreach_use_safe(src, reg_or_ssa_def) \
546 list_for_each_entry_safe(nir_src, src, &(reg_or_ssa_def)->uses, use_link)
547
548 #define nir_foreach_if_use(src, reg_or_ssa_def) \
549 list_for_each_entry(nir_src, src, &(reg_or_ssa_def)->if_uses, use_link)
550
551 #define nir_foreach_if_use_safe(src, reg_or_ssa_def) \
552 list_for_each_entry_safe(nir_src, src, &(reg_or_ssa_def)->if_uses, use_link)
553
554 typedef struct {
555 union {
556 nir_reg_dest reg;
557 nir_ssa_def ssa;
558 };
559
560 bool is_ssa;
561 } nir_dest;
562
563 static inline nir_dest
564 nir_dest_init(void)
565 {
566 nir_dest dest = { { { NULL } } };
567 return dest;
568 }
569
570 #define NIR_DEST_INIT nir_dest_init()
571
572 #define nir_foreach_def(dest, reg) \
573 list_for_each_entry(nir_dest, dest, &(reg)->defs, reg.def_link)
574
575 #define nir_foreach_def_safe(dest, reg) \
576 list_for_each_entry_safe(nir_dest, dest, &(reg)->defs, reg.def_link)
577
578 static inline nir_src
579 nir_src_for_ssa(nir_ssa_def *def)
580 {
581 nir_src src = NIR_SRC_INIT;
582
583 src.is_ssa = true;
584 src.ssa = def;
585
586 return src;
587 }
588
589 static inline nir_src
590 nir_src_for_reg(nir_register *reg)
591 {
592 nir_src src = NIR_SRC_INIT;
593
594 src.is_ssa = false;
595 src.reg.reg = reg;
596 src.reg.indirect = NULL;
597 src.reg.base_offset = 0;
598
599 return src;
600 }
601
602 static inline nir_dest
603 nir_dest_for_reg(nir_register *reg)
604 {
605 nir_dest dest = NIR_DEST_INIT;
606
607 dest.reg.reg = reg;
608
609 return dest;
610 }
611
612 static inline unsigned
613 nir_src_bit_size(nir_src src)
614 {
615 return src.is_ssa ? src.ssa->bit_size : src.reg.reg->bit_size;
616 }
617
618 static inline unsigned
619 nir_dest_bit_size(nir_dest dest)
620 {
621 return dest.is_ssa ? dest.ssa.bit_size : dest.reg.reg->bit_size;
622 }
623
624 void nir_src_copy(nir_src *dest, const nir_src *src, void *instr_or_if);
625 void nir_dest_copy(nir_dest *dest, const nir_dest *src, nir_instr *instr);
626
627 typedef struct {
628 nir_src src;
629
630 /**
631 * \name input modifiers
632 */
633 /*@{*/
634 /**
635 * For inputs interpreted as floating point, flips the sign bit. For
636 * inputs interpreted as integers, performs the two's complement negation.
637 */
638 bool negate;
639
640 /**
641 * Clears the sign bit for floating point values, and computes the integer
642 * absolute value for integers. Note that the negate modifier acts after
643 * the absolute value modifier, therefore if both are set then all inputs
644 * will become negative.
645 */
646 bool abs;
647 /*@}*/
648
649 /**
650 * For each input component, says which component of the register it is
651 * chosen from. Note that which elements of the swizzle are used and which
652 * are ignored are based on the write mask for most opcodes - for example,
653 * a statement like "foo.xzw = bar.zyx" would have a writemask of 1101b and
654 * a swizzle of {2, x, 1, 0} where x means "don't care."
655 */
656 uint8_t swizzle[4];
657 } nir_alu_src;
658
659 typedef struct {
660 nir_dest dest;
661
662 /**
663 * \name saturate output modifier
664 *
665 * Only valid for opcodes that output floating-point numbers. Clamps the
666 * output to between 0.0 and 1.0 inclusive.
667 */
668
669 bool saturate;
670
671 unsigned write_mask : 4; /* ignored if dest.is_ssa is true */
672 } nir_alu_dest;
673
674 typedef enum {
675 nir_type_invalid = 0, /* Not a valid type */
676 nir_type_float,
677 nir_type_int,
678 nir_type_uint,
679 nir_type_bool,
680 nir_type_bool32 = 32 | nir_type_bool,
681 nir_type_int8 = 8 | nir_type_int,
682 nir_type_int16 = 16 | nir_type_int,
683 nir_type_int32 = 32 | nir_type_int,
684 nir_type_int64 = 64 | nir_type_int,
685 nir_type_uint8 = 8 | nir_type_uint,
686 nir_type_uint16 = 16 | nir_type_uint,
687 nir_type_uint32 = 32 | nir_type_uint,
688 nir_type_uint64 = 64 | nir_type_uint,
689 nir_type_float16 = 16 | nir_type_float,
690 nir_type_float32 = 32 | nir_type_float,
691 nir_type_float64 = 64 | nir_type_float,
692 } nir_alu_type;
693
694 #define NIR_ALU_TYPE_SIZE_MASK 0xfffffff8
695 #define NIR_ALU_TYPE_BASE_TYPE_MASK 0x00000007
696
697 static inline unsigned
698 nir_alu_type_get_type_size(nir_alu_type type)
699 {
700 return type & NIR_ALU_TYPE_SIZE_MASK;
701 }
702
703 static inline unsigned
704 nir_alu_type_get_base_type(nir_alu_type type)
705 {
706 return type & NIR_ALU_TYPE_BASE_TYPE_MASK;
707 }
708
709 static inline nir_alu_type
710 nir_get_nir_type_for_glsl_base_type(enum glsl_base_type base_type)
711 {
712 switch (base_type) {
713 case GLSL_TYPE_BOOL:
714 return nir_type_bool32;
715 break;
716 case GLSL_TYPE_UINT:
717 return nir_type_uint32;
718 break;
719 case GLSL_TYPE_INT:
720 return nir_type_int32;
721 break;
722 case GLSL_TYPE_UINT64:
723 return nir_type_uint64;
724 break;
725 case GLSL_TYPE_INT64:
726 return nir_type_int64;
727 break;
728 case GLSL_TYPE_FLOAT:
729 return nir_type_float32;
730 break;
731 case GLSL_TYPE_DOUBLE:
732 return nir_type_float64;
733 break;
734 default:
735 unreachable("unknown type");
736 }
737 }
738
739 static inline nir_alu_type
740 nir_get_nir_type_for_glsl_type(const struct glsl_type *type)
741 {
742 return nir_get_nir_type_for_glsl_base_type(glsl_get_base_type(type));
743 }
744
745 nir_op nir_type_conversion_op(nir_alu_type src, nir_alu_type dst);
746
747 typedef enum {
748 NIR_OP_IS_COMMUTATIVE = (1 << 0),
749 NIR_OP_IS_ASSOCIATIVE = (1 << 1),
750 } nir_op_algebraic_property;
751
752 typedef struct {
753 const char *name;
754
755 unsigned num_inputs;
756
757 /**
758 * The number of components in the output
759 *
760 * If non-zero, this is the size of the output and input sizes are
761 * explicitly given; swizzle and writemask are still in effect, but if
762 * the output component is masked out, then the input component may
763 * still be in use.
764 *
765 * If zero, the opcode acts in the standard, per-component manner; the
766 * operation is performed on each component (except the ones that are
767 * masked out) with the input being taken from the input swizzle for
768 * that component.
769 *
770 * The size of some of the inputs may be given (i.e. non-zero) even
771 * though output_size is zero; in that case, the inputs with a zero
772 * size act per-component, while the inputs with non-zero size don't.
773 */
774 unsigned output_size;
775
776 /**
777 * The type of vector that the instruction outputs. Note that the
778 * staurate modifier is only allowed on outputs with the float type.
779 */
780
781 nir_alu_type output_type;
782
783 /**
784 * The number of components in each input
785 */
786 unsigned input_sizes[4];
787
788 /**
789 * The type of vector that each input takes. Note that negate and
790 * absolute value are only allowed on inputs with int or float type and
791 * behave differently on the two.
792 */
793 nir_alu_type input_types[4];
794
795 nir_op_algebraic_property algebraic_properties;
796 } nir_op_info;
797
798 extern const nir_op_info nir_op_infos[nir_num_opcodes];
799
800 typedef struct nir_alu_instr {
801 nir_instr instr;
802 nir_op op;
803
804 /** Indicates that this ALU instruction generates an exact value
805 *
806 * This is kind of a mixture of GLSL "precise" and "invariant" and not
807 * really equivalent to either. This indicates that the value generated by
808 * this operation is high-precision and any code transformations that touch
809 * it must ensure that the resulting value is bit-for-bit identical to the
810 * original.
811 */
812 bool exact;
813
814 nir_alu_dest dest;
815 nir_alu_src src[];
816 } nir_alu_instr;
817
818 void nir_alu_src_copy(nir_alu_src *dest, const nir_alu_src *src,
819 nir_alu_instr *instr);
820 void nir_alu_dest_copy(nir_alu_dest *dest, const nir_alu_dest *src,
821 nir_alu_instr *instr);
822
823 /* is this source channel used? */
824 static inline bool
825 nir_alu_instr_channel_used(const nir_alu_instr *instr, unsigned src,
826 unsigned channel)
827 {
828 if (nir_op_infos[instr->op].input_sizes[src] > 0)
829 return channel < nir_op_infos[instr->op].input_sizes[src];
830
831 return (instr->dest.write_mask >> channel) & 1;
832 }
833
834 /*
835 * For instructions whose destinations are SSA, get the number of channels
836 * used for a source
837 */
838 static inline unsigned
839 nir_ssa_alu_instr_src_components(const nir_alu_instr *instr, unsigned src)
840 {
841 assert(instr->dest.dest.is_ssa);
842
843 if (nir_op_infos[instr->op].input_sizes[src] > 0)
844 return nir_op_infos[instr->op].input_sizes[src];
845
846 return instr->dest.dest.ssa.num_components;
847 }
848
849 bool nir_alu_srcs_equal(const nir_alu_instr *alu1, const nir_alu_instr *alu2,
850 unsigned src1, unsigned src2);
851
852 typedef enum {
853 nir_deref_type_var,
854 nir_deref_type_array,
855 nir_deref_type_struct
856 } nir_deref_type;
857
858 typedef struct nir_deref {
859 nir_deref_type deref_type;
860 struct nir_deref *child;
861 const struct glsl_type *type;
862 } nir_deref;
863
864 typedef struct {
865 nir_deref deref;
866
867 nir_variable *var;
868 } nir_deref_var;
869
870 /* This enum describes how the array is referenced. If the deref is
871 * direct then the base_offset is used. If the deref is indirect then
872 * offset is given by base_offset + indirect. If the deref is a wildcard
873 * then the deref refers to all of the elements of the array at the same
874 * time. Wildcard dereferences are only ever allowed in copy_var
875 * intrinsics and the source and destination derefs must have matching
876 * wildcards.
877 */
878 typedef enum {
879 nir_deref_array_type_direct,
880 nir_deref_array_type_indirect,
881 nir_deref_array_type_wildcard,
882 } nir_deref_array_type;
883
884 typedef struct {
885 nir_deref deref;
886
887 nir_deref_array_type deref_array_type;
888 unsigned base_offset;
889 nir_src indirect;
890 } nir_deref_array;
891
892 typedef struct {
893 nir_deref deref;
894
895 unsigned index;
896 } nir_deref_struct;
897
898 NIR_DEFINE_CAST(nir_deref_as_var, nir_deref, nir_deref_var, deref,
899 deref_type, nir_deref_type_var)
900 NIR_DEFINE_CAST(nir_deref_as_array, nir_deref, nir_deref_array, deref,
901 deref_type, nir_deref_type_array)
902 NIR_DEFINE_CAST(nir_deref_as_struct, nir_deref, nir_deref_struct, deref,
903 deref_type, nir_deref_type_struct)
904
905 /* Returns the last deref in the chain. */
906 static inline nir_deref *
907 nir_deref_tail(nir_deref *deref)
908 {
909 while (deref->child)
910 deref = deref->child;
911 return deref;
912 }
913
914 typedef struct {
915 nir_instr instr;
916
917 unsigned num_params;
918 nir_deref_var **params;
919 nir_deref_var *return_deref;
920
921 struct nir_function *callee;
922 } nir_call_instr;
923
924 #define INTRINSIC(name, num_srcs, src_components, has_dest, dest_components, \
925 num_variables, num_indices, idx0, idx1, idx2, flags) \
926 nir_intrinsic_##name,
927
928 #define LAST_INTRINSIC(name) nir_last_intrinsic = nir_intrinsic_##name,
929
930 typedef enum {
931 #include "nir_intrinsics.h"
932 nir_num_intrinsics = nir_last_intrinsic + 1
933 } nir_intrinsic_op;
934
935 #define NIR_INTRINSIC_MAX_CONST_INDEX 3
936
937 /** Represents an intrinsic
938 *
939 * An intrinsic is an instruction type for handling things that are
940 * more-or-less regular operations but don't just consume and produce SSA
941 * values like ALU operations do. Intrinsics are not for things that have
942 * special semantic meaning such as phi nodes and parallel copies.
943 * Examples of intrinsics include variable load/store operations, system
944 * value loads, and the like. Even though texturing more-or-less falls
945 * under this category, texturing is its own instruction type because
946 * trying to represent texturing with intrinsics would lead to a
947 * combinatorial explosion of intrinsic opcodes.
948 *
949 * By having a single instruction type for handling a lot of different
950 * cases, optimization passes can look for intrinsics and, for the most
951 * part, completely ignore them. Each intrinsic type also has a few
952 * possible flags that govern whether or not they can be reordered or
953 * eliminated. That way passes like dead code elimination can still work
954 * on intrisics without understanding the meaning of each.
955 *
956 * Each intrinsic has some number of constant indices, some number of
957 * variables, and some number of sources. What these sources, variables,
958 * and indices mean depends on the intrinsic and is documented with the
959 * intrinsic declaration in nir_intrinsics.h. Intrinsics and texture
960 * instructions are the only types of instruction that can operate on
961 * variables.
962 */
963 typedef struct {
964 nir_instr instr;
965
966 nir_intrinsic_op intrinsic;
967
968 nir_dest dest;
969
970 /** number of components if this is a vectorized intrinsic
971 *
972 * Similarly to ALU operations, some intrinsics are vectorized.
973 * An intrinsic is vectorized if nir_intrinsic_infos.dest_components == 0.
974 * For vectorized intrinsics, the num_components field specifies the
975 * number of destination components and the number of source components
976 * for all sources with nir_intrinsic_infos.src_components[i] == 0.
977 */
978 uint8_t num_components;
979
980 int const_index[NIR_INTRINSIC_MAX_CONST_INDEX];
981
982 nir_deref_var *variables[2];
983
984 nir_src src[];
985 } nir_intrinsic_instr;
986
987 /**
988 * \name NIR intrinsics semantic flags
989 *
990 * information about what the compiler can do with the intrinsics.
991 *
992 * \sa nir_intrinsic_info::flags
993 */
994 typedef enum {
995 /**
996 * whether the intrinsic can be safely eliminated if none of its output
997 * value is not being used.
998 */
999 NIR_INTRINSIC_CAN_ELIMINATE = (1 << 0),
1000
1001 /**
1002 * Whether the intrinsic can be reordered with respect to any other
1003 * intrinsic, i.e. whether the only reordering dependencies of the
1004 * intrinsic are due to the register reads/writes.
1005 */
1006 NIR_INTRINSIC_CAN_REORDER = (1 << 1),
1007 } nir_intrinsic_semantic_flag;
1008
1009 /**
1010 * \name NIR intrinsics const-index flag
1011 *
1012 * Indicates the usage of a const_index slot.
1013 *
1014 * \sa nir_intrinsic_info::index_map
1015 */
1016 typedef enum {
1017 /**
1018 * Generally instructions that take a offset src argument, can encode
1019 * a constant 'base' value which is added to the offset.
1020 */
1021 NIR_INTRINSIC_BASE = 1,
1022
1023 /**
1024 * For store instructions, a writemask for the store.
1025 */
1026 NIR_INTRINSIC_WRMASK = 2,
1027
1028 /**
1029 * The stream-id for GS emit_vertex/end_primitive intrinsics.
1030 */
1031 NIR_INTRINSIC_STREAM_ID = 3,
1032
1033 /**
1034 * The clip-plane id for load_user_clip_plane intrinsic.
1035 */
1036 NIR_INTRINSIC_UCP_ID = 4,
1037
1038 /**
1039 * The amount of data, starting from BASE, that this instruction may
1040 * access. This is used to provide bounds if the offset is not constant.
1041 */
1042 NIR_INTRINSIC_RANGE = 5,
1043
1044 /**
1045 * The Vulkan descriptor set for vulkan_resource_index intrinsic.
1046 */
1047 NIR_INTRINSIC_DESC_SET = 6,
1048
1049 /**
1050 * The Vulkan descriptor set binding for vulkan_resource_index intrinsic.
1051 */
1052 NIR_INTRINSIC_BINDING = 7,
1053
1054 /**
1055 * Component offset.
1056 */
1057 NIR_INTRINSIC_COMPONENT = 8,
1058
1059 /**
1060 * Interpolation mode (only meaningful for FS inputs).
1061 */
1062 NIR_INTRINSIC_INTERP_MODE = 9,
1063
1064 NIR_INTRINSIC_NUM_INDEX_FLAGS,
1065
1066 } nir_intrinsic_index_flag;
1067
1068 #define NIR_INTRINSIC_MAX_INPUTS 4
1069
1070 typedef struct {
1071 const char *name;
1072
1073 unsigned num_srcs; /** < number of register/SSA inputs */
1074
1075 /** number of components of each input register
1076 *
1077 * If this value is 0, the number of components is given by the
1078 * num_components field of nir_intrinsic_instr.
1079 */
1080 unsigned src_components[NIR_INTRINSIC_MAX_INPUTS];
1081
1082 bool has_dest;
1083
1084 /** number of components of the output register
1085 *
1086 * If this value is 0, the number of components is given by the
1087 * num_components field of nir_intrinsic_instr.
1088 */
1089 unsigned dest_components;
1090
1091 /** the number of inputs/outputs that are variables */
1092 unsigned num_variables;
1093
1094 /** the number of constant indices used by the intrinsic */
1095 unsigned num_indices;
1096
1097 /** indicates the usage of intr->const_index[n] */
1098 unsigned index_map[NIR_INTRINSIC_NUM_INDEX_FLAGS];
1099
1100 /** semantic flags for calls to this intrinsic */
1101 nir_intrinsic_semantic_flag flags;
1102 } nir_intrinsic_info;
1103
1104 extern const nir_intrinsic_info nir_intrinsic_infos[nir_num_intrinsics];
1105
1106
1107 #define INTRINSIC_IDX_ACCESSORS(name, flag, type) \
1108 static inline type \
1109 nir_intrinsic_##name(const nir_intrinsic_instr *instr) \
1110 { \
1111 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic]; \
1112 assert(info->index_map[NIR_INTRINSIC_##flag] > 0); \
1113 return instr->const_index[info->index_map[NIR_INTRINSIC_##flag] - 1]; \
1114 } \
1115 static inline void \
1116 nir_intrinsic_set_##name(nir_intrinsic_instr *instr, type val) \
1117 { \
1118 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic]; \
1119 assert(info->index_map[NIR_INTRINSIC_##flag] > 0); \
1120 instr->const_index[info->index_map[NIR_INTRINSIC_##flag] - 1] = val; \
1121 }
1122
1123 INTRINSIC_IDX_ACCESSORS(write_mask, WRMASK, unsigned)
1124 INTRINSIC_IDX_ACCESSORS(base, BASE, int)
1125 INTRINSIC_IDX_ACCESSORS(stream_id, STREAM_ID, unsigned)
1126 INTRINSIC_IDX_ACCESSORS(ucp_id, UCP_ID, unsigned)
1127 INTRINSIC_IDX_ACCESSORS(range, RANGE, unsigned)
1128 INTRINSIC_IDX_ACCESSORS(desc_set, DESC_SET, unsigned)
1129 INTRINSIC_IDX_ACCESSORS(binding, BINDING, unsigned)
1130 INTRINSIC_IDX_ACCESSORS(component, COMPONENT, unsigned)
1131 INTRINSIC_IDX_ACCESSORS(interp_mode, INTERP_MODE, unsigned)
1132
1133 /**
1134 * \group texture information
1135 *
1136 * This gives semantic information about textures which is useful to the
1137 * frontend, the backend, and lowering passes, but not the optimizer.
1138 */
1139
1140 typedef enum {
1141 nir_tex_src_coord,
1142 nir_tex_src_projector,
1143 nir_tex_src_comparator, /* shadow comparator */
1144 nir_tex_src_offset,
1145 nir_tex_src_bias,
1146 nir_tex_src_lod,
1147 nir_tex_src_ms_index, /* MSAA sample index */
1148 nir_tex_src_ms_mcs, /* MSAA compression value */
1149 nir_tex_src_ddx,
1150 nir_tex_src_ddy,
1151 nir_tex_src_texture_offset, /* < dynamically uniform indirect offset */
1152 nir_tex_src_sampler_offset, /* < dynamically uniform indirect offset */
1153 nir_tex_src_plane, /* < selects plane for planar textures */
1154 nir_num_tex_src_types
1155 } nir_tex_src_type;
1156
1157 typedef struct {
1158 nir_src src;
1159 nir_tex_src_type src_type;
1160 } nir_tex_src;
1161
1162 typedef enum {
1163 nir_texop_tex, /**< Regular texture look-up */
1164 nir_texop_txb, /**< Texture look-up with LOD bias */
1165 nir_texop_txl, /**< Texture look-up with explicit LOD */
1166 nir_texop_txd, /**< Texture look-up with partial derivatives */
1167 nir_texop_txf, /**< Texel fetch with explicit LOD */
1168 nir_texop_txf_ms, /**< Multisample texture fetch */
1169 nir_texop_txf_ms_mcs, /**< Multisample compression value fetch */
1170 nir_texop_txs, /**< Texture size */
1171 nir_texop_lod, /**< Texture lod query */
1172 nir_texop_tg4, /**< Texture gather */
1173 nir_texop_query_levels, /**< Texture levels query */
1174 nir_texop_texture_samples, /**< Texture samples query */
1175 nir_texop_samples_identical, /**< Query whether all samples are definitely
1176 * identical.
1177 */
1178 } nir_texop;
1179
1180 typedef struct {
1181 nir_instr instr;
1182
1183 enum glsl_sampler_dim sampler_dim;
1184 nir_alu_type dest_type;
1185
1186 nir_texop op;
1187 nir_dest dest;
1188 nir_tex_src *src;
1189 unsigned num_srcs, coord_components;
1190 bool is_array, is_shadow;
1191
1192 /**
1193 * If is_shadow is true, whether this is the old-style shadow that outputs 4
1194 * components or the new-style shadow that outputs 1 component.
1195 */
1196 bool is_new_style_shadow;
1197
1198 /* gather component selector */
1199 unsigned component : 2;
1200
1201 /** The texture index
1202 *
1203 * If this texture instruction has a nir_tex_src_texture_offset source,
1204 * then the texture index is given by texture_index + texture_offset.
1205 */
1206 unsigned texture_index;
1207
1208 /** The size of the texture array or 0 if it's not an array */
1209 unsigned texture_array_size;
1210
1211 /** The texture deref
1212 *
1213 * If this is null, use texture_index instead.
1214 */
1215 nir_deref_var *texture;
1216
1217 /** The sampler index
1218 *
1219 * The following operations do not require a sampler and, as such, this
1220 * field should be ignored:
1221 * - nir_texop_txf
1222 * - nir_texop_txf_ms
1223 * - nir_texop_txs
1224 * - nir_texop_lod
1225 * - nir_texop_query_levels
1226 * - nir_texop_texture_samples
1227 * - nir_texop_samples_identical
1228 *
1229 * If this texture instruction has a nir_tex_src_sampler_offset source,
1230 * then the sampler index is given by sampler_index + sampler_offset.
1231 */
1232 unsigned sampler_index;
1233
1234 /** The sampler deref
1235 *
1236 * If this is null, use sampler_index instead.
1237 */
1238 nir_deref_var *sampler;
1239 } nir_tex_instr;
1240
1241 static inline unsigned
1242 nir_tex_instr_dest_size(const nir_tex_instr *instr)
1243 {
1244 switch (instr->op) {
1245 case nir_texop_txs: {
1246 unsigned ret;
1247 switch (instr->sampler_dim) {
1248 case GLSL_SAMPLER_DIM_1D:
1249 case GLSL_SAMPLER_DIM_BUF:
1250 ret = 1;
1251 break;
1252 case GLSL_SAMPLER_DIM_2D:
1253 case GLSL_SAMPLER_DIM_CUBE:
1254 case GLSL_SAMPLER_DIM_MS:
1255 case GLSL_SAMPLER_DIM_RECT:
1256 case GLSL_SAMPLER_DIM_EXTERNAL:
1257 case GLSL_SAMPLER_DIM_SUBPASS:
1258 ret = 2;
1259 break;
1260 case GLSL_SAMPLER_DIM_3D:
1261 ret = 3;
1262 break;
1263 default:
1264 unreachable("not reached");
1265 }
1266 if (instr->is_array)
1267 ret++;
1268 return ret;
1269 }
1270
1271 case nir_texop_lod:
1272 return 2;
1273
1274 case nir_texop_texture_samples:
1275 case nir_texop_query_levels:
1276 case nir_texop_samples_identical:
1277 return 1;
1278
1279 default:
1280 if (instr->is_shadow && instr->is_new_style_shadow)
1281 return 1;
1282
1283 return 4;
1284 }
1285 }
1286
1287 /* Returns true if this texture operation queries something about the texture
1288 * rather than actually sampling it.
1289 */
1290 static inline bool
1291 nir_tex_instr_is_query(const nir_tex_instr *instr)
1292 {
1293 switch (instr->op) {
1294 case nir_texop_txs:
1295 case nir_texop_lod:
1296 case nir_texop_texture_samples:
1297 case nir_texop_query_levels:
1298 case nir_texop_txf_ms_mcs:
1299 return true;
1300 case nir_texop_tex:
1301 case nir_texop_txb:
1302 case nir_texop_txl:
1303 case nir_texop_txd:
1304 case nir_texop_txf:
1305 case nir_texop_txf_ms:
1306 case nir_texop_tg4:
1307 return false;
1308 default:
1309 unreachable("Invalid texture opcode");
1310 }
1311 }
1312
1313 static inline nir_alu_type
1314 nir_tex_instr_src_type(const nir_tex_instr *instr, unsigned src)
1315 {
1316 switch (instr->src[src].src_type) {
1317 case nir_tex_src_coord:
1318 switch (instr->op) {
1319 case nir_texop_txf:
1320 case nir_texop_txf_ms:
1321 case nir_texop_txf_ms_mcs:
1322 case nir_texop_samples_identical:
1323 return nir_type_int;
1324
1325 default:
1326 return nir_type_float;
1327 }
1328
1329 case nir_tex_src_lod:
1330 switch (instr->op) {
1331 case nir_texop_txs:
1332 case nir_texop_txf:
1333 return nir_type_int;
1334
1335 default:
1336 return nir_type_float;
1337 }
1338
1339 case nir_tex_src_projector:
1340 case nir_tex_src_comparator:
1341 case nir_tex_src_bias:
1342 case nir_tex_src_ddx:
1343 case nir_tex_src_ddy:
1344 return nir_type_float;
1345
1346 case nir_tex_src_offset:
1347 case nir_tex_src_ms_index:
1348 case nir_tex_src_texture_offset:
1349 case nir_tex_src_sampler_offset:
1350 return nir_type_int;
1351
1352 default:
1353 unreachable("Invalid texture source type");
1354 }
1355 }
1356
1357 static inline unsigned
1358 nir_tex_instr_src_size(const nir_tex_instr *instr, unsigned src)
1359 {
1360 if (instr->src[src].src_type == nir_tex_src_coord)
1361 return instr->coord_components;
1362
1363 /* The MCS value is expected to be a vec4 returned by a txf_ms_mcs */
1364 if (instr->src[src].src_type == nir_tex_src_ms_mcs)
1365 return 4;
1366
1367 if (instr->src[src].src_type == nir_tex_src_offset ||
1368 instr->src[src].src_type == nir_tex_src_ddx ||
1369 instr->src[src].src_type == nir_tex_src_ddy) {
1370 if (instr->is_array)
1371 return instr->coord_components - 1;
1372 else
1373 return instr->coord_components;
1374 }
1375
1376 return 1;
1377 }
1378
1379 static inline int
1380 nir_tex_instr_src_index(const nir_tex_instr *instr, nir_tex_src_type type)
1381 {
1382 for (unsigned i = 0; i < instr->num_srcs; i++)
1383 if (instr->src[i].src_type == type)
1384 return (int) i;
1385
1386 return -1;
1387 }
1388
1389 void nir_tex_instr_add_src(nir_tex_instr *tex,
1390 nir_tex_src_type src_type,
1391 nir_src src);
1392
1393 void nir_tex_instr_remove_src(nir_tex_instr *tex, unsigned src_idx);
1394
1395 typedef struct {
1396 nir_instr instr;
1397
1398 nir_const_value value;
1399
1400 nir_ssa_def def;
1401 } nir_load_const_instr;
1402
1403 typedef enum {
1404 nir_jump_return,
1405 nir_jump_break,
1406 nir_jump_continue,
1407 } nir_jump_type;
1408
1409 typedef struct {
1410 nir_instr instr;
1411 nir_jump_type type;
1412 } nir_jump_instr;
1413
1414 /* creates a new SSA variable in an undefined state */
1415
1416 typedef struct {
1417 nir_instr instr;
1418 nir_ssa_def def;
1419 } nir_ssa_undef_instr;
1420
1421 typedef struct {
1422 struct exec_node node;
1423
1424 /* The predecessor block corresponding to this source */
1425 struct nir_block *pred;
1426
1427 nir_src src;
1428 } nir_phi_src;
1429
1430 #define nir_foreach_phi_src(phi_src, phi) \
1431 foreach_list_typed(nir_phi_src, phi_src, node, &(phi)->srcs)
1432 #define nir_foreach_phi_src_safe(phi_src, phi) \
1433 foreach_list_typed_safe(nir_phi_src, phi_src, node, &(phi)->srcs)
1434
1435 typedef struct {
1436 nir_instr instr;
1437
1438 struct exec_list srcs; /** < list of nir_phi_src */
1439
1440 nir_dest dest;
1441 } nir_phi_instr;
1442
1443 typedef struct {
1444 struct exec_node node;
1445 nir_src src;
1446 nir_dest dest;
1447 } nir_parallel_copy_entry;
1448
1449 #define nir_foreach_parallel_copy_entry(entry, pcopy) \
1450 foreach_list_typed(nir_parallel_copy_entry, entry, node, &(pcopy)->entries)
1451
1452 typedef struct {
1453 nir_instr instr;
1454
1455 /* A list of nir_parallel_copy_entrys. The sources of all of the
1456 * entries are copied to the corresponding destinations "in parallel".
1457 * In other words, if we have two entries: a -> b and b -> a, the values
1458 * get swapped.
1459 */
1460 struct exec_list entries;
1461 } nir_parallel_copy_instr;
1462
1463 NIR_DEFINE_CAST(nir_instr_as_alu, nir_instr, nir_alu_instr, instr,
1464 type, nir_instr_type_alu)
1465 NIR_DEFINE_CAST(nir_instr_as_call, nir_instr, nir_call_instr, instr,
1466 type, nir_instr_type_call)
1467 NIR_DEFINE_CAST(nir_instr_as_jump, nir_instr, nir_jump_instr, instr,
1468 type, nir_instr_type_jump)
1469 NIR_DEFINE_CAST(nir_instr_as_tex, nir_instr, nir_tex_instr, instr,
1470 type, nir_instr_type_tex)
1471 NIR_DEFINE_CAST(nir_instr_as_intrinsic, nir_instr, nir_intrinsic_instr, instr,
1472 type, nir_instr_type_intrinsic)
1473 NIR_DEFINE_CAST(nir_instr_as_load_const, nir_instr, nir_load_const_instr, instr,
1474 type, nir_instr_type_load_const)
1475 NIR_DEFINE_CAST(nir_instr_as_ssa_undef, nir_instr, nir_ssa_undef_instr, instr,
1476 type, nir_instr_type_ssa_undef)
1477 NIR_DEFINE_CAST(nir_instr_as_phi, nir_instr, nir_phi_instr, instr,
1478 type, nir_instr_type_phi)
1479 NIR_DEFINE_CAST(nir_instr_as_parallel_copy, nir_instr,
1480 nir_parallel_copy_instr, instr,
1481 type, nir_instr_type_parallel_copy)
1482
1483 /*
1484 * Control flow
1485 *
1486 * Control flow consists of a tree of control flow nodes, which include
1487 * if-statements and loops. The leaves of the tree are basic blocks, lists of
1488 * instructions that always run start-to-finish. Each basic block also keeps
1489 * track of its successors (blocks which may run immediately after the current
1490 * block) and predecessors (blocks which could have run immediately before the
1491 * current block). Each function also has a start block and an end block which
1492 * all return statements point to (which is always empty). Together, all the
1493 * blocks with their predecessors and successors make up the control flow
1494 * graph (CFG) of the function. There are helpers that modify the tree of
1495 * control flow nodes while modifying the CFG appropriately; these should be
1496 * used instead of modifying the tree directly.
1497 */
1498
1499 typedef enum {
1500 nir_cf_node_block,
1501 nir_cf_node_if,
1502 nir_cf_node_loop,
1503 nir_cf_node_function
1504 } nir_cf_node_type;
1505
1506 typedef struct nir_cf_node {
1507 struct exec_node node;
1508 nir_cf_node_type type;
1509 struct nir_cf_node *parent;
1510 } nir_cf_node;
1511
1512 typedef struct nir_block {
1513 nir_cf_node cf_node;
1514
1515 struct exec_list instr_list; /** < list of nir_instr */
1516
1517 /** generic block index; generated by nir_index_blocks */
1518 unsigned index;
1519
1520 /*
1521 * Each block can only have up to 2 successors, so we put them in a simple
1522 * array - no need for anything more complicated.
1523 */
1524 struct nir_block *successors[2];
1525
1526 /* Set of nir_block predecessors in the CFG */
1527 struct set *predecessors;
1528
1529 /*
1530 * this node's immediate dominator in the dominance tree - set to NULL for
1531 * the start block.
1532 */
1533 struct nir_block *imm_dom;
1534
1535 /* This node's children in the dominance tree */
1536 unsigned num_dom_children;
1537 struct nir_block **dom_children;
1538
1539 /* Set of nir_blocks on the dominance frontier of this block */
1540 struct set *dom_frontier;
1541
1542 /*
1543 * These two indices have the property that dom_{pre,post}_index for each
1544 * child of this block in the dominance tree will always be between
1545 * dom_pre_index and dom_post_index for this block, which makes testing if
1546 * a given block is dominated by another block an O(1) operation.
1547 */
1548 unsigned dom_pre_index, dom_post_index;
1549
1550 /* live in and out for this block; used for liveness analysis */
1551 BITSET_WORD *live_in;
1552 BITSET_WORD *live_out;
1553 } nir_block;
1554
1555 static inline nir_instr *
1556 nir_block_first_instr(nir_block *block)
1557 {
1558 struct exec_node *head = exec_list_get_head(&block->instr_list);
1559 return exec_node_data(nir_instr, head, node);
1560 }
1561
1562 static inline nir_instr *
1563 nir_block_last_instr(nir_block *block)
1564 {
1565 struct exec_node *tail = exec_list_get_tail(&block->instr_list);
1566 return exec_node_data(nir_instr, tail, node);
1567 }
1568
1569 #define nir_foreach_instr(instr, block) \
1570 foreach_list_typed(nir_instr, instr, node, &(block)->instr_list)
1571 #define nir_foreach_instr_reverse(instr, block) \
1572 foreach_list_typed_reverse(nir_instr, instr, node, &(block)->instr_list)
1573 #define nir_foreach_instr_safe(instr, block) \
1574 foreach_list_typed_safe(nir_instr, instr, node, &(block)->instr_list)
1575 #define nir_foreach_instr_reverse_safe(instr, block) \
1576 foreach_list_typed_reverse_safe(nir_instr, instr, node, &(block)->instr_list)
1577
1578 typedef struct nir_if {
1579 nir_cf_node cf_node;
1580 nir_src condition;
1581
1582 struct exec_list then_list; /** < list of nir_cf_node */
1583 struct exec_list else_list; /** < list of nir_cf_node */
1584 } nir_if;
1585
1586 typedef struct {
1587 nir_if *nif;
1588
1589 nir_instr *conditional_instr;
1590
1591 nir_block *break_block;
1592 nir_block *continue_from_block;
1593
1594 bool continue_from_then;
1595
1596 struct list_head loop_terminator_link;
1597 } nir_loop_terminator;
1598
1599 typedef struct {
1600 /* Number of instructions in the loop */
1601 unsigned num_instructions;
1602
1603 /* How many times the loop is run (if known) */
1604 unsigned trip_count;
1605 bool is_trip_count_known;
1606
1607 /* Unroll the loop regardless of its size */
1608 bool force_unroll;
1609
1610 nir_loop_terminator *limiting_terminator;
1611
1612 /* A list of loop_terminators terminating this loop. */
1613 struct list_head loop_terminator_list;
1614 } nir_loop_info;
1615
1616 typedef struct {
1617 nir_cf_node cf_node;
1618
1619 struct exec_list body; /** < list of nir_cf_node */
1620
1621 nir_loop_info *info;
1622 } nir_loop;
1623
1624 /**
1625 * Various bits of metadata that can may be created or required by
1626 * optimization and analysis passes
1627 */
1628 typedef enum {
1629 nir_metadata_none = 0x0,
1630 nir_metadata_block_index = 0x1,
1631 nir_metadata_dominance = 0x2,
1632 nir_metadata_live_ssa_defs = 0x4,
1633 nir_metadata_not_properly_reset = 0x8,
1634 nir_metadata_loop_analysis = 0x10,
1635 } nir_metadata;
1636
1637 typedef struct {
1638 nir_cf_node cf_node;
1639
1640 /** pointer to the function of which this is an implementation */
1641 struct nir_function *function;
1642
1643 struct exec_list body; /** < list of nir_cf_node */
1644
1645 nir_block *end_block;
1646
1647 /** list for all local variables in the function */
1648 struct exec_list locals;
1649
1650 /** array of variables used as parameters */
1651 unsigned num_params;
1652 nir_variable **params;
1653
1654 /** variable used to hold the result of the function */
1655 nir_variable *return_var;
1656
1657 /** list of local registers in the function */
1658 struct exec_list registers;
1659
1660 /** next available local register index */
1661 unsigned reg_alloc;
1662
1663 /** next available SSA value index */
1664 unsigned ssa_alloc;
1665
1666 /* total number of basic blocks, only valid when block_index_dirty = false */
1667 unsigned num_blocks;
1668
1669 nir_metadata valid_metadata;
1670 } nir_function_impl;
1671
1672 ATTRIBUTE_RETURNS_NONNULL static inline nir_block *
1673 nir_start_block(nir_function_impl *impl)
1674 {
1675 return (nir_block *) impl->body.head_sentinel.next;
1676 }
1677
1678 ATTRIBUTE_RETURNS_NONNULL static inline nir_block *
1679 nir_impl_last_block(nir_function_impl *impl)
1680 {
1681 return (nir_block *) impl->body.tail_sentinel.prev;
1682 }
1683
1684 static inline nir_cf_node *
1685 nir_cf_node_next(nir_cf_node *node)
1686 {
1687 struct exec_node *next = exec_node_get_next(&node->node);
1688 if (exec_node_is_tail_sentinel(next))
1689 return NULL;
1690 else
1691 return exec_node_data(nir_cf_node, next, node);
1692 }
1693
1694 static inline nir_cf_node *
1695 nir_cf_node_prev(nir_cf_node *node)
1696 {
1697 struct exec_node *prev = exec_node_get_prev(&node->node);
1698 if (exec_node_is_head_sentinel(prev))
1699 return NULL;
1700 else
1701 return exec_node_data(nir_cf_node, prev, node);
1702 }
1703
1704 static inline bool
1705 nir_cf_node_is_first(const nir_cf_node *node)
1706 {
1707 return exec_node_is_head_sentinel(node->node.prev);
1708 }
1709
1710 static inline bool
1711 nir_cf_node_is_last(const nir_cf_node *node)
1712 {
1713 return exec_node_is_tail_sentinel(node->node.next);
1714 }
1715
1716 NIR_DEFINE_CAST(nir_cf_node_as_block, nir_cf_node, nir_block, cf_node,
1717 type, nir_cf_node_block)
1718 NIR_DEFINE_CAST(nir_cf_node_as_if, nir_cf_node, nir_if, cf_node,
1719 type, nir_cf_node_if)
1720 NIR_DEFINE_CAST(nir_cf_node_as_loop, nir_cf_node, nir_loop, cf_node,
1721 type, nir_cf_node_loop)
1722 NIR_DEFINE_CAST(nir_cf_node_as_function, nir_cf_node,
1723 nir_function_impl, cf_node, type, nir_cf_node_function)
1724
1725 static inline nir_block *
1726 nir_if_first_then_block(nir_if *if_stmt)
1727 {
1728 struct exec_node *head = exec_list_get_head(&if_stmt->then_list);
1729 return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
1730 }
1731
1732 static inline nir_block *
1733 nir_if_last_then_block(nir_if *if_stmt)
1734 {
1735 struct exec_node *tail = exec_list_get_tail(&if_stmt->then_list);
1736 return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
1737 }
1738
1739 static inline nir_block *
1740 nir_if_first_else_block(nir_if *if_stmt)
1741 {
1742 struct exec_node *head = exec_list_get_head(&if_stmt->else_list);
1743 return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
1744 }
1745
1746 static inline nir_block *
1747 nir_if_last_else_block(nir_if *if_stmt)
1748 {
1749 struct exec_node *tail = exec_list_get_tail(&if_stmt->else_list);
1750 return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
1751 }
1752
1753 static inline nir_block *
1754 nir_loop_first_block(nir_loop *loop)
1755 {
1756 struct exec_node *head = exec_list_get_head(&loop->body);
1757 return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
1758 }
1759
1760 static inline nir_block *
1761 nir_loop_last_block(nir_loop *loop)
1762 {
1763 struct exec_node *tail = exec_list_get_tail(&loop->body);
1764 return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
1765 }
1766
1767 typedef enum {
1768 nir_parameter_in,
1769 nir_parameter_out,
1770 nir_parameter_inout,
1771 } nir_parameter_type;
1772
1773 typedef struct {
1774 nir_parameter_type param_type;
1775 const struct glsl_type *type;
1776 } nir_parameter;
1777
1778 typedef struct nir_function {
1779 struct exec_node node;
1780
1781 const char *name;
1782 struct nir_shader *shader;
1783
1784 unsigned num_params;
1785 nir_parameter *params;
1786 const struct glsl_type *return_type;
1787
1788 /** The implementation of this function.
1789 *
1790 * If the function is only declared and not implemented, this is NULL.
1791 */
1792 nir_function_impl *impl;
1793 } nir_function;
1794
1795 typedef struct nir_shader_compiler_options {
1796 bool lower_fdiv;
1797 bool lower_ffma;
1798 bool fuse_ffma;
1799 bool lower_flrp32;
1800 /** Lowers flrp when it does not support doubles */
1801 bool lower_flrp64;
1802 bool lower_fpow;
1803 bool lower_fsat;
1804 bool lower_fsqrt;
1805 bool lower_fmod32;
1806 bool lower_fmod64;
1807 bool lower_bitfield_extract;
1808 bool lower_bitfield_insert;
1809 bool lower_uadd_carry;
1810 bool lower_usub_borrow;
1811 /** lowers fneg and ineg to fsub and isub. */
1812 bool lower_negate;
1813 /** lowers fsub and isub to fadd+fneg and iadd+ineg. */
1814 bool lower_sub;
1815
1816 /* lower {slt,sge,seq,sne} to {flt,fge,feq,fne} + b2f: */
1817 bool lower_scmp;
1818
1819 /** enables rules to lower idiv by power-of-two: */
1820 bool lower_idiv;
1821
1822 /* Does the native fdot instruction replicate its result for four
1823 * components? If so, then opt_algebraic_late will turn all fdotN
1824 * instructions into fdot_replicatedN instructions.
1825 */
1826 bool fdot_replicates;
1827
1828 /** lowers ffract to fsub+ffloor: */
1829 bool lower_ffract;
1830
1831 bool lower_pack_half_2x16;
1832 bool lower_pack_unorm_2x16;
1833 bool lower_pack_snorm_2x16;
1834 bool lower_pack_unorm_4x8;
1835 bool lower_pack_snorm_4x8;
1836 bool lower_unpack_half_2x16;
1837 bool lower_unpack_unorm_2x16;
1838 bool lower_unpack_snorm_2x16;
1839 bool lower_unpack_unorm_4x8;
1840 bool lower_unpack_snorm_4x8;
1841
1842 bool lower_extract_byte;
1843 bool lower_extract_word;
1844
1845 /**
1846 * Does the driver support real 32-bit integers? (Otherwise, integers
1847 * are simulated by floats.)
1848 */
1849 bool native_integers;
1850
1851 /* Indicates that the driver only has zero-based vertex id */
1852 bool vertex_id_zero_based;
1853
1854 bool lower_cs_local_index_from_id;
1855
1856 /**
1857 * Should nir_lower_io() create load_interpolated_input intrinsics?
1858 *
1859 * If not, it generates regular load_input intrinsics and interpolation
1860 * information must be inferred from the list of input nir_variables.
1861 */
1862 bool use_interpolated_input_intrinsics;
1863
1864 unsigned max_unroll_iterations;
1865 } nir_shader_compiler_options;
1866
1867 typedef struct nir_shader {
1868 /** list of uniforms (nir_variable) */
1869 struct exec_list uniforms;
1870
1871 /** list of inputs (nir_variable) */
1872 struct exec_list inputs;
1873
1874 /** list of outputs (nir_variable) */
1875 struct exec_list outputs;
1876
1877 /** list of shared compute variables (nir_variable) */
1878 struct exec_list shared;
1879
1880 /** Set of driver-specific options for the shader.
1881 *
1882 * The memory for the options is expected to be kept in a single static
1883 * copy by the driver.
1884 */
1885 const struct nir_shader_compiler_options *options;
1886
1887 /** Various bits of compile-time information about a given shader */
1888 struct shader_info info;
1889
1890 /** list of global variables in the shader (nir_variable) */
1891 struct exec_list globals;
1892
1893 /** list of system value variables in the shader (nir_variable) */
1894 struct exec_list system_values;
1895
1896 struct exec_list functions; /** < list of nir_function */
1897
1898 /** list of global register in the shader */
1899 struct exec_list registers;
1900
1901 /** next available global register index */
1902 unsigned reg_alloc;
1903
1904 /**
1905 * the highest index a load_input_*, load_uniform_*, etc. intrinsic can
1906 * access plus one
1907 */
1908 unsigned num_inputs, num_uniforms, num_outputs, num_shared;
1909 } nir_shader;
1910
1911 static inline nir_function_impl *
1912 nir_shader_get_entrypoint(nir_shader *shader)
1913 {
1914 assert(exec_list_length(&shader->functions) == 1);
1915 struct exec_node *func_node = exec_list_get_head(&shader->functions);
1916 nir_function *func = exec_node_data(nir_function, func_node, node);
1917 assert(func->return_type == glsl_void_type());
1918 assert(func->num_params == 0);
1919 assert(func->impl);
1920 return func->impl;
1921 }
1922
1923 #define nir_foreach_function(func, shader) \
1924 foreach_list_typed(nir_function, func, node, &(shader)->functions)
1925
1926 nir_shader *nir_shader_create(void *mem_ctx,
1927 gl_shader_stage stage,
1928 const nir_shader_compiler_options *options,
1929 shader_info *si);
1930
1931 /** creates a register, including assigning it an index and adding it to the list */
1932 nir_register *nir_global_reg_create(nir_shader *shader);
1933
1934 nir_register *nir_local_reg_create(nir_function_impl *impl);
1935
1936 void nir_reg_remove(nir_register *reg);
1937
1938 /** Adds a variable to the appropriate list in nir_shader */
1939 void nir_shader_add_variable(nir_shader *shader, nir_variable *var);
1940
1941 static inline void
1942 nir_function_impl_add_variable(nir_function_impl *impl, nir_variable *var)
1943 {
1944 assert(var->data.mode == nir_var_local);
1945 exec_list_push_tail(&impl->locals, &var->node);
1946 }
1947
1948 /** creates a variable, sets a few defaults, and adds it to the list */
1949 nir_variable *nir_variable_create(nir_shader *shader,
1950 nir_variable_mode mode,
1951 const struct glsl_type *type,
1952 const char *name);
1953 /** creates a local variable and adds it to the list */
1954 nir_variable *nir_local_variable_create(nir_function_impl *impl,
1955 const struct glsl_type *type,
1956 const char *name);
1957
1958 /** creates a function and adds it to the shader's list of functions */
1959 nir_function *nir_function_create(nir_shader *shader, const char *name);
1960
1961 nir_function_impl *nir_function_impl_create(nir_function *func);
1962 /** creates a function_impl that isn't tied to any particular function */
1963 nir_function_impl *nir_function_impl_create_bare(nir_shader *shader);
1964
1965 nir_block *nir_block_create(nir_shader *shader);
1966 nir_if *nir_if_create(nir_shader *shader);
1967 nir_loop *nir_loop_create(nir_shader *shader);
1968
1969 nir_function_impl *nir_cf_node_get_function(nir_cf_node *node);
1970
1971 /** requests that the given pieces of metadata be generated */
1972 void nir_metadata_require(nir_function_impl *impl, nir_metadata required, ...);
1973 /** dirties all but the preserved metadata */
1974 void nir_metadata_preserve(nir_function_impl *impl, nir_metadata preserved);
1975
1976 /** creates an instruction with default swizzle/writemask/etc. with NULL registers */
1977 nir_alu_instr *nir_alu_instr_create(nir_shader *shader, nir_op op);
1978
1979 nir_jump_instr *nir_jump_instr_create(nir_shader *shader, nir_jump_type type);
1980
1981 nir_load_const_instr *nir_load_const_instr_create(nir_shader *shader,
1982 unsigned num_components,
1983 unsigned bit_size);
1984
1985 nir_intrinsic_instr *nir_intrinsic_instr_create(nir_shader *shader,
1986 nir_intrinsic_op op);
1987
1988 nir_call_instr *nir_call_instr_create(nir_shader *shader,
1989 nir_function *callee);
1990
1991 nir_tex_instr *nir_tex_instr_create(nir_shader *shader, unsigned num_srcs);
1992
1993 nir_phi_instr *nir_phi_instr_create(nir_shader *shader);
1994
1995 nir_parallel_copy_instr *nir_parallel_copy_instr_create(nir_shader *shader);
1996
1997 nir_ssa_undef_instr *nir_ssa_undef_instr_create(nir_shader *shader,
1998 unsigned num_components,
1999 unsigned bit_size);
2000
2001 nir_deref_var *nir_deref_var_create(void *mem_ctx, nir_variable *var);
2002 nir_deref_array *nir_deref_array_create(void *mem_ctx);
2003 nir_deref_struct *nir_deref_struct_create(void *mem_ctx, unsigned field_index);
2004
2005 typedef bool (*nir_deref_foreach_leaf_cb)(nir_deref_var *deref, void *state);
2006 bool nir_deref_foreach_leaf(nir_deref_var *deref,
2007 nir_deref_foreach_leaf_cb cb, void *state);
2008
2009 nir_load_const_instr *
2010 nir_deref_get_const_initializer_load(nir_shader *shader, nir_deref_var *deref);
2011
2012 /**
2013 * NIR Cursors and Instruction Insertion API
2014 * @{
2015 *
2016 * A tiny struct representing a point to insert/extract instructions or
2017 * control flow nodes. Helps reduce the combinatorial explosion of possible
2018 * points to insert/extract.
2019 *
2020 * \sa nir_control_flow.h
2021 */
2022 typedef enum {
2023 nir_cursor_before_block,
2024 nir_cursor_after_block,
2025 nir_cursor_before_instr,
2026 nir_cursor_after_instr,
2027 } nir_cursor_option;
2028
2029 typedef struct {
2030 nir_cursor_option option;
2031 union {
2032 nir_block *block;
2033 nir_instr *instr;
2034 };
2035 } nir_cursor;
2036
2037 static inline nir_block *
2038 nir_cursor_current_block(nir_cursor cursor)
2039 {
2040 if (cursor.option == nir_cursor_before_instr ||
2041 cursor.option == nir_cursor_after_instr) {
2042 return cursor.instr->block;
2043 } else {
2044 return cursor.block;
2045 }
2046 }
2047
2048 bool nir_cursors_equal(nir_cursor a, nir_cursor b);
2049
2050 static inline nir_cursor
2051 nir_before_block(nir_block *block)
2052 {
2053 nir_cursor cursor;
2054 cursor.option = nir_cursor_before_block;
2055 cursor.block = block;
2056 return cursor;
2057 }
2058
2059 static inline nir_cursor
2060 nir_after_block(nir_block *block)
2061 {
2062 nir_cursor cursor;
2063 cursor.option = nir_cursor_after_block;
2064 cursor.block = block;
2065 return cursor;
2066 }
2067
2068 static inline nir_cursor
2069 nir_before_instr(nir_instr *instr)
2070 {
2071 nir_cursor cursor;
2072 cursor.option = nir_cursor_before_instr;
2073 cursor.instr = instr;
2074 return cursor;
2075 }
2076
2077 static inline nir_cursor
2078 nir_after_instr(nir_instr *instr)
2079 {
2080 nir_cursor cursor;
2081 cursor.option = nir_cursor_after_instr;
2082 cursor.instr = instr;
2083 return cursor;
2084 }
2085
2086 static inline nir_cursor
2087 nir_after_block_before_jump(nir_block *block)
2088 {
2089 nir_instr *last_instr = nir_block_last_instr(block);
2090 if (last_instr && last_instr->type == nir_instr_type_jump) {
2091 return nir_before_instr(last_instr);
2092 } else {
2093 return nir_after_block(block);
2094 }
2095 }
2096
2097 static inline nir_cursor
2098 nir_before_cf_node(nir_cf_node *node)
2099 {
2100 if (node->type == nir_cf_node_block)
2101 return nir_before_block(nir_cf_node_as_block(node));
2102
2103 return nir_after_block(nir_cf_node_as_block(nir_cf_node_prev(node)));
2104 }
2105
2106 static inline nir_cursor
2107 nir_after_cf_node(nir_cf_node *node)
2108 {
2109 if (node->type == nir_cf_node_block)
2110 return nir_after_block(nir_cf_node_as_block(node));
2111
2112 return nir_before_block(nir_cf_node_as_block(nir_cf_node_next(node)));
2113 }
2114
2115 static inline nir_cursor
2116 nir_after_phis(nir_block *block)
2117 {
2118 nir_foreach_instr(instr, block) {
2119 if (instr->type != nir_instr_type_phi)
2120 return nir_before_instr(instr);
2121 }
2122 return nir_after_block(block);
2123 }
2124
2125 static inline nir_cursor
2126 nir_after_cf_node_and_phis(nir_cf_node *node)
2127 {
2128 if (node->type == nir_cf_node_block)
2129 return nir_after_block(nir_cf_node_as_block(node));
2130
2131 nir_block *block = nir_cf_node_as_block(nir_cf_node_next(node));
2132
2133 return nir_after_phis(block);
2134 }
2135
2136 static inline nir_cursor
2137 nir_before_cf_list(struct exec_list *cf_list)
2138 {
2139 nir_cf_node *first_node = exec_node_data(nir_cf_node,
2140 exec_list_get_head(cf_list), node);
2141 return nir_before_cf_node(first_node);
2142 }
2143
2144 static inline nir_cursor
2145 nir_after_cf_list(struct exec_list *cf_list)
2146 {
2147 nir_cf_node *last_node = exec_node_data(nir_cf_node,
2148 exec_list_get_tail(cf_list), node);
2149 return nir_after_cf_node(last_node);
2150 }
2151
2152 /**
2153 * Insert a NIR instruction at the given cursor.
2154 *
2155 * Note: This does not update the cursor.
2156 */
2157 void nir_instr_insert(nir_cursor cursor, nir_instr *instr);
2158
2159 static inline void
2160 nir_instr_insert_before(nir_instr *instr, nir_instr *before)
2161 {
2162 nir_instr_insert(nir_before_instr(instr), before);
2163 }
2164
2165 static inline void
2166 nir_instr_insert_after(nir_instr *instr, nir_instr *after)
2167 {
2168 nir_instr_insert(nir_after_instr(instr), after);
2169 }
2170
2171 static inline void
2172 nir_instr_insert_before_block(nir_block *block, nir_instr *before)
2173 {
2174 nir_instr_insert(nir_before_block(block), before);
2175 }
2176
2177 static inline void
2178 nir_instr_insert_after_block(nir_block *block, nir_instr *after)
2179 {
2180 nir_instr_insert(nir_after_block(block), after);
2181 }
2182
2183 static inline void
2184 nir_instr_insert_before_cf(nir_cf_node *node, nir_instr *before)
2185 {
2186 nir_instr_insert(nir_before_cf_node(node), before);
2187 }
2188
2189 static inline void
2190 nir_instr_insert_after_cf(nir_cf_node *node, nir_instr *after)
2191 {
2192 nir_instr_insert(nir_after_cf_node(node), after);
2193 }
2194
2195 static inline void
2196 nir_instr_insert_before_cf_list(struct exec_list *list, nir_instr *before)
2197 {
2198 nir_instr_insert(nir_before_cf_list(list), before);
2199 }
2200
2201 static inline void
2202 nir_instr_insert_after_cf_list(struct exec_list *list, nir_instr *after)
2203 {
2204 nir_instr_insert(nir_after_cf_list(list), after);
2205 }
2206
2207 void nir_instr_remove(nir_instr *instr);
2208
2209 /** @} */
2210
2211 typedef bool (*nir_foreach_ssa_def_cb)(nir_ssa_def *def, void *state);
2212 typedef bool (*nir_foreach_dest_cb)(nir_dest *dest, void *state);
2213 typedef bool (*nir_foreach_src_cb)(nir_src *src, void *state);
2214 bool nir_foreach_ssa_def(nir_instr *instr, nir_foreach_ssa_def_cb cb,
2215 void *state);
2216 bool nir_foreach_dest(nir_instr *instr, nir_foreach_dest_cb cb, void *state);
2217 bool nir_foreach_src(nir_instr *instr, nir_foreach_src_cb cb, void *state);
2218
2219 nir_const_value *nir_src_as_const_value(nir_src src);
2220 bool nir_src_is_dynamically_uniform(nir_src src);
2221 bool nir_srcs_equal(nir_src src1, nir_src src2);
2222 void nir_instr_rewrite_src(nir_instr *instr, nir_src *src, nir_src new_src);
2223 void nir_instr_move_src(nir_instr *dest_instr, nir_src *dest, nir_src *src);
2224 void nir_if_rewrite_condition(nir_if *if_stmt, nir_src new_src);
2225 void nir_instr_rewrite_dest(nir_instr *instr, nir_dest *dest,
2226 nir_dest new_dest);
2227 void nir_instr_rewrite_deref(nir_instr *instr, nir_deref_var **deref,
2228 nir_deref_var *new_deref);
2229
2230 void nir_ssa_dest_init(nir_instr *instr, nir_dest *dest,
2231 unsigned num_components, unsigned bit_size,
2232 const char *name);
2233 void nir_ssa_def_init(nir_instr *instr, nir_ssa_def *def,
2234 unsigned num_components, unsigned bit_size,
2235 const char *name);
2236 static inline void
2237 nir_ssa_dest_init_for_type(nir_instr *instr, nir_dest *dest,
2238 const struct glsl_type *type,
2239 const char *name)
2240 {
2241 assert(glsl_type_is_vector_or_scalar(type));
2242 nir_ssa_dest_init(instr, dest, glsl_get_components(type),
2243 glsl_get_bit_size(type), name);
2244 }
2245 void nir_ssa_def_rewrite_uses(nir_ssa_def *def, nir_src new_src);
2246 void nir_ssa_def_rewrite_uses_after(nir_ssa_def *def, nir_src new_src,
2247 nir_instr *after_me);
2248
2249 uint8_t nir_ssa_def_components_read(nir_ssa_def *def);
2250
2251 /*
2252 * finds the next basic block in source-code order, returns NULL if there is
2253 * none
2254 */
2255
2256 nir_block *nir_block_cf_tree_next(nir_block *block);
2257
2258 /* Performs the opposite of nir_block_cf_tree_next() */
2259
2260 nir_block *nir_block_cf_tree_prev(nir_block *block);
2261
2262 /* Gets the first block in a CF node in source-code order */
2263
2264 nir_block *nir_cf_node_cf_tree_first(nir_cf_node *node);
2265
2266 /* Gets the last block in a CF node in source-code order */
2267
2268 nir_block *nir_cf_node_cf_tree_last(nir_cf_node *node);
2269
2270 /* Gets the next block after a CF node in source-code order */
2271
2272 nir_block *nir_cf_node_cf_tree_next(nir_cf_node *node);
2273
2274 /* Macros for loops that visit blocks in source-code order */
2275
2276 #define nir_foreach_block(block, impl) \
2277 for (nir_block *block = nir_start_block(impl); block != NULL; \
2278 block = nir_block_cf_tree_next(block))
2279
2280 #define nir_foreach_block_safe(block, impl) \
2281 for (nir_block *block = nir_start_block(impl), \
2282 *next = nir_block_cf_tree_next(block); \
2283 block != NULL; \
2284 block = next, next = nir_block_cf_tree_next(block))
2285
2286 #define nir_foreach_block_reverse(block, impl) \
2287 for (nir_block *block = nir_impl_last_block(impl); block != NULL; \
2288 block = nir_block_cf_tree_prev(block))
2289
2290 #define nir_foreach_block_reverse_safe(block, impl) \
2291 for (nir_block *block = nir_impl_last_block(impl), \
2292 *prev = nir_block_cf_tree_prev(block); \
2293 block != NULL; \
2294 block = prev, prev = nir_block_cf_tree_prev(block))
2295
2296 #define nir_foreach_block_in_cf_node(block, node) \
2297 for (nir_block *block = nir_cf_node_cf_tree_first(node); \
2298 block != nir_cf_node_cf_tree_next(node); \
2299 block = nir_block_cf_tree_next(block))
2300
2301 /* If the following CF node is an if, this function returns that if.
2302 * Otherwise, it returns NULL.
2303 */
2304 nir_if *nir_block_get_following_if(nir_block *block);
2305
2306 nir_loop *nir_block_get_following_loop(nir_block *block);
2307
2308 void nir_index_local_regs(nir_function_impl *impl);
2309 void nir_index_global_regs(nir_shader *shader);
2310 void nir_index_ssa_defs(nir_function_impl *impl);
2311 unsigned nir_index_instrs(nir_function_impl *impl);
2312
2313 void nir_index_blocks(nir_function_impl *impl);
2314
2315 void nir_print_shader(nir_shader *shader, FILE *fp);
2316 void nir_print_shader_annotated(nir_shader *shader, FILE *fp, struct hash_table *errors);
2317 void nir_print_instr(const nir_instr *instr, FILE *fp);
2318
2319 nir_shader *nir_shader_clone(void *mem_ctx, const nir_shader *s);
2320 nir_function_impl *nir_function_impl_clone(const nir_function_impl *fi);
2321 nir_constant *nir_constant_clone(const nir_constant *c, nir_variable *var);
2322 nir_variable *nir_variable_clone(const nir_variable *c, nir_shader *shader);
2323 nir_deref *nir_deref_clone(const nir_deref *deref, void *mem_ctx);
2324 nir_deref_var *nir_deref_var_clone(const nir_deref_var *deref, void *mem_ctx);
2325
2326 nir_shader *nir_shader_serialize_deserialize(void *mem_ctx, nir_shader *s);
2327
2328 #ifdef DEBUG
2329 void nir_validate_shader(nir_shader *shader);
2330 void nir_metadata_set_validation_flag(nir_shader *shader);
2331 void nir_metadata_check_validation_flag(nir_shader *shader);
2332
2333 static inline bool
2334 should_clone_nir(void)
2335 {
2336 static int should_clone = -1;
2337 if (should_clone < 0)
2338 should_clone = env_var_as_boolean("NIR_TEST_CLONE", false);
2339
2340 return should_clone;
2341 }
2342
2343 static inline bool
2344 should_serialize_deserialize_nir(void)
2345 {
2346 static int test_serialize = -1;
2347 if (test_serialize < 0)
2348 test_serialize = env_var_as_boolean("NIR_TEST_SERIALIZE", false);
2349
2350 return test_serialize;
2351 }
2352
2353 static inline bool
2354 should_print_nir(void)
2355 {
2356 static int should_print = -1;
2357 if (should_print < 0)
2358 should_print = env_var_as_boolean("NIR_PRINT", false);
2359
2360 return should_print;
2361 }
2362 #else
2363 static inline void nir_validate_shader(nir_shader *shader) { (void) shader; }
2364 static inline void nir_metadata_set_validation_flag(nir_shader *shader) { (void) shader; }
2365 static inline void nir_metadata_check_validation_flag(nir_shader *shader) { (void) shader; }
2366 static inline bool should_clone_nir(void) { return false; }
2367 static inline bool should_serialize_deserialize_nir(void) { return false; }
2368 static inline bool should_print_nir(void) { return false; }
2369 #endif /* DEBUG */
2370
2371 #define _PASS(nir, do_pass) do { \
2372 do_pass \
2373 nir_validate_shader(nir); \
2374 if (should_clone_nir()) { \
2375 nir_shader *clone = nir_shader_clone(ralloc_parent(nir), nir); \
2376 ralloc_free(nir); \
2377 nir = clone; \
2378 } \
2379 if (should_serialize_deserialize_nir()) { \
2380 void *mem_ctx = ralloc_parent(nir); \
2381 nir = nir_shader_serialize_deserialize(mem_ctx, nir); \
2382 } \
2383 } while (0)
2384
2385 #define NIR_PASS(progress, nir, pass, ...) _PASS(nir, \
2386 nir_metadata_set_validation_flag(nir); \
2387 if (should_print_nir()) \
2388 printf("%s\n", #pass); \
2389 if (pass(nir, ##__VA_ARGS__)) { \
2390 progress = true; \
2391 if (should_print_nir()) \
2392 nir_print_shader(nir, stdout); \
2393 nir_metadata_check_validation_flag(nir); \
2394 } \
2395 )
2396
2397 #define NIR_PASS_V(nir, pass, ...) _PASS(nir, \
2398 if (should_print_nir()) \
2399 printf("%s\n", #pass); \
2400 pass(nir, ##__VA_ARGS__); \
2401 if (should_print_nir()) \
2402 nir_print_shader(nir, stdout); \
2403 )
2404
2405 void nir_calc_dominance_impl(nir_function_impl *impl);
2406 void nir_calc_dominance(nir_shader *shader);
2407
2408 nir_block *nir_dominance_lca(nir_block *b1, nir_block *b2);
2409 bool nir_block_dominates(nir_block *parent, nir_block *child);
2410
2411 void nir_dump_dom_tree_impl(nir_function_impl *impl, FILE *fp);
2412 void nir_dump_dom_tree(nir_shader *shader, FILE *fp);
2413
2414 void nir_dump_dom_frontier_impl(nir_function_impl *impl, FILE *fp);
2415 void nir_dump_dom_frontier(nir_shader *shader, FILE *fp);
2416
2417 void nir_dump_cfg_impl(nir_function_impl *impl, FILE *fp);
2418 void nir_dump_cfg(nir_shader *shader, FILE *fp);
2419
2420 int nir_gs_count_vertices(const nir_shader *shader);
2421
2422 bool nir_split_var_copies(nir_shader *shader);
2423
2424 bool nir_lower_returns_impl(nir_function_impl *impl);
2425 bool nir_lower_returns(nir_shader *shader);
2426
2427 bool nir_inline_functions(nir_shader *shader);
2428
2429 bool nir_propagate_invariant(nir_shader *shader);
2430
2431 void nir_lower_var_copy_instr(nir_intrinsic_instr *copy, nir_shader *shader);
2432 bool nir_lower_var_copies(nir_shader *shader);
2433
2434 bool nir_lower_global_vars_to_local(nir_shader *shader);
2435
2436 bool nir_lower_indirect_derefs(nir_shader *shader, nir_variable_mode modes);
2437
2438 bool nir_lower_locals_to_regs(nir_shader *shader);
2439
2440 void nir_lower_io_to_temporaries(nir_shader *shader,
2441 nir_function_impl *entrypoint,
2442 bool outputs, bool inputs);
2443
2444 void nir_shader_gather_info(nir_shader *shader, nir_function_impl *entrypoint);
2445
2446 void nir_assign_var_locations(struct exec_list *var_list, unsigned *size,
2447 int (*type_size)(const struct glsl_type *));
2448
2449 /* Some helpers to do very simple linking */
2450 bool nir_remove_unused_varyings(nir_shader *producer, nir_shader *consumer);
2451
2452 typedef enum {
2453 /* If set, this forces all non-flat fragment shader inputs to be
2454 * interpolated as if with the "sample" qualifier. This requires
2455 * nir_shader_compiler_options::use_interpolated_input_intrinsics.
2456 */
2457 nir_lower_io_force_sample_interpolation = (1 << 1),
2458 } nir_lower_io_options;
2459 bool nir_lower_io(nir_shader *shader,
2460 nir_variable_mode modes,
2461 int (*type_size)(const struct glsl_type *),
2462 nir_lower_io_options);
2463 nir_src *nir_get_io_offset_src(nir_intrinsic_instr *instr);
2464 nir_src *nir_get_io_vertex_index_src(nir_intrinsic_instr *instr);
2465
2466 bool nir_is_per_vertex_io(const nir_variable *var, gl_shader_stage stage);
2467
2468 void nir_lower_io_types(nir_shader *shader);
2469 bool nir_lower_regs_to_ssa_impl(nir_function_impl *impl);
2470 bool nir_lower_regs_to_ssa(nir_shader *shader);
2471 bool nir_lower_vars_to_ssa(nir_shader *shader);
2472
2473 bool nir_remove_dead_variables(nir_shader *shader, nir_variable_mode modes);
2474 bool nir_lower_constant_initializers(nir_shader *shader,
2475 nir_variable_mode modes);
2476
2477 bool nir_move_vec_src_uses_to_dest(nir_shader *shader);
2478 bool nir_lower_vec_to_movs(nir_shader *shader);
2479 void nir_lower_alpha_test(nir_shader *shader, enum compare_func func,
2480 bool alpha_to_one);
2481 bool nir_lower_alu_to_scalar(nir_shader *shader);
2482 bool nir_lower_load_const_to_scalar(nir_shader *shader);
2483 bool nir_lower_read_invocation_to_scalar(nir_shader *shader);
2484 bool nir_lower_phis_to_scalar(nir_shader *shader);
2485 void nir_lower_io_to_scalar(nir_shader *shader, nir_variable_mode mask);
2486 void nir_lower_io_to_scalar_early(nir_shader *shader, nir_variable_mode mask);
2487
2488 bool nir_lower_samplers(nir_shader *shader,
2489 const struct gl_shader_program *shader_program);
2490 bool nir_lower_samplers_as_deref(nir_shader *shader,
2491 const struct gl_shader_program *shader_program);
2492
2493 typedef struct nir_lower_subgroups_options {
2494 uint8_t subgroup_size;
2495 uint8_t ballot_bit_size;
2496 bool lower_to_scalar:1;
2497 bool lower_vote_trivial:1;
2498 bool lower_subgroup_masks:1;
2499 } nir_lower_subgroups_options;
2500
2501 bool nir_lower_subgroups(nir_shader *shader,
2502 const nir_lower_subgroups_options *options);
2503
2504 bool nir_lower_system_values(nir_shader *shader);
2505
2506 typedef struct nir_lower_tex_options {
2507 /**
2508 * bitmask of (1 << GLSL_SAMPLER_DIM_x) to control for which
2509 * sampler types a texture projector is lowered.
2510 */
2511 unsigned lower_txp;
2512
2513 /**
2514 * If true, lower away nir_tex_src_offset for all texelfetch instructions.
2515 */
2516 bool lower_txf_offset;
2517
2518 /**
2519 * If true, lower away nir_tex_src_offset for all rect textures.
2520 */
2521 bool lower_rect_offset;
2522
2523 /**
2524 * If true, lower rect textures to 2D, using txs to fetch the
2525 * texture dimensions and dividing the texture coords by the
2526 * texture dims to normalize.
2527 */
2528 bool lower_rect;
2529
2530 /**
2531 * If true, convert yuv to rgb.
2532 */
2533 unsigned lower_y_uv_external;
2534 unsigned lower_y_u_v_external;
2535 unsigned lower_yx_xuxv_external;
2536 unsigned lower_xy_uxvx_external;
2537
2538 /**
2539 * To emulate certain texture wrap modes, this can be used
2540 * to saturate the specified tex coord to [0.0, 1.0]. The
2541 * bits are according to sampler #, ie. if, for example:
2542 *
2543 * (conf->saturate_s & (1 << n))
2544 *
2545 * is true, then the s coord for sampler n is saturated.
2546 *
2547 * Note that clamping must happen *after* projector lowering
2548 * so any projected texture sample instruction with a clamped
2549 * coordinate gets automatically lowered, regardless of the
2550 * 'lower_txp' setting.
2551 */
2552 unsigned saturate_s;
2553 unsigned saturate_t;
2554 unsigned saturate_r;
2555
2556 /* Bitmask of textures that need swizzling.
2557 *
2558 * If (swizzle_result & (1 << texture_index)), then the swizzle in
2559 * swizzles[texture_index] is applied to the result of the texturing
2560 * operation.
2561 */
2562 unsigned swizzle_result;
2563
2564 /* A swizzle for each texture. Values 0-3 represent x, y, z, or w swizzles
2565 * while 4 and 5 represent 0 and 1 respectively.
2566 */
2567 uint8_t swizzles[32][4];
2568
2569 /**
2570 * Bitmap of textures that need srgb to linear conversion. If
2571 * (lower_srgb & (1 << texture_index)) then the rgb (xyz) components
2572 * of the texture are lowered to linear.
2573 */
2574 unsigned lower_srgb;
2575
2576 /**
2577 * If true, lower nir_texop_txd on cube maps with nir_texop_txl.
2578 */
2579 bool lower_txd_cube_map;
2580
2581 /**
2582 * If true, lower nir_texop_txd on shadow samplers (except cube maps)
2583 * with nir_texop_txl. Notice that cube map shadow samplers are lowered
2584 * with lower_txd_cube_map.
2585 */
2586 bool lower_txd_shadow;
2587 } nir_lower_tex_options;
2588
2589 bool nir_lower_tex(nir_shader *shader,
2590 const nir_lower_tex_options *options);
2591
2592 bool nir_lower_idiv(nir_shader *shader);
2593
2594 bool nir_lower_clip_vs(nir_shader *shader, unsigned ucp_enables);
2595 bool nir_lower_clip_fs(nir_shader *shader, unsigned ucp_enables);
2596 bool nir_lower_clip_cull_distance_arrays(nir_shader *nir);
2597
2598 void nir_lower_two_sided_color(nir_shader *shader);
2599
2600 bool nir_lower_clamp_color_outputs(nir_shader *shader);
2601
2602 void nir_lower_passthrough_edgeflags(nir_shader *shader);
2603 void nir_lower_tes_patch_vertices(nir_shader *tes, unsigned patch_vertices);
2604
2605 typedef struct nir_lower_wpos_ytransform_options {
2606 int state_tokens[5];
2607 bool fs_coord_origin_upper_left :1;
2608 bool fs_coord_origin_lower_left :1;
2609 bool fs_coord_pixel_center_integer :1;
2610 bool fs_coord_pixel_center_half_integer :1;
2611 } nir_lower_wpos_ytransform_options;
2612
2613 bool nir_lower_wpos_ytransform(nir_shader *shader,
2614 const nir_lower_wpos_ytransform_options *options);
2615 bool nir_lower_wpos_center(nir_shader *shader, const bool for_sample_shading);
2616
2617 typedef struct nir_lower_drawpixels_options {
2618 int texcoord_state_tokens[5];
2619 int scale_state_tokens[5];
2620 int bias_state_tokens[5];
2621 unsigned drawpix_sampler;
2622 unsigned pixelmap_sampler;
2623 bool pixel_maps :1;
2624 bool scale_and_bias :1;
2625 } nir_lower_drawpixels_options;
2626
2627 void nir_lower_drawpixels(nir_shader *shader,
2628 const nir_lower_drawpixels_options *options);
2629
2630 typedef struct nir_lower_bitmap_options {
2631 unsigned sampler;
2632 bool swizzle_xxxx;
2633 } nir_lower_bitmap_options;
2634
2635 void nir_lower_bitmap(nir_shader *shader, const nir_lower_bitmap_options *options);
2636
2637 bool nir_lower_atomics(nir_shader *shader,
2638 const struct gl_shader_program *shader_program);
2639 bool nir_lower_atomics_to_ssbo(nir_shader *shader, unsigned ssbo_offset);
2640 bool nir_lower_uniforms_to_ubo(nir_shader *shader);
2641 bool nir_lower_to_source_mods(nir_shader *shader);
2642
2643 bool nir_lower_gs_intrinsics(nir_shader *shader);
2644
2645 typedef enum {
2646 nir_lower_imul64 = (1 << 0),
2647 nir_lower_isign64 = (1 << 1),
2648 /** Lower all int64 modulus and division opcodes */
2649 nir_lower_divmod64 = (1 << 2),
2650 } nir_lower_int64_options;
2651
2652 bool nir_lower_int64(nir_shader *shader, nir_lower_int64_options options);
2653
2654 typedef enum {
2655 nir_lower_drcp = (1 << 0),
2656 nir_lower_dsqrt = (1 << 1),
2657 nir_lower_drsq = (1 << 2),
2658 nir_lower_dtrunc = (1 << 3),
2659 nir_lower_dfloor = (1 << 4),
2660 nir_lower_dceil = (1 << 5),
2661 nir_lower_dfract = (1 << 6),
2662 nir_lower_dround_even = (1 << 7),
2663 nir_lower_dmod = (1 << 8)
2664 } nir_lower_doubles_options;
2665
2666 bool nir_lower_doubles(nir_shader *shader, nir_lower_doubles_options options);
2667 bool nir_lower_64bit_pack(nir_shader *shader);
2668
2669 bool nir_normalize_cubemap_coords(nir_shader *shader);
2670
2671 void nir_live_ssa_defs_impl(nir_function_impl *impl);
2672
2673 void nir_loop_analyze_impl(nir_function_impl *impl,
2674 nir_variable_mode indirect_mask);
2675
2676 bool nir_ssa_defs_interfere(nir_ssa_def *a, nir_ssa_def *b);
2677
2678 bool nir_repair_ssa_impl(nir_function_impl *impl);
2679 bool nir_repair_ssa(nir_shader *shader);
2680
2681 void nir_convert_loop_to_lcssa(nir_loop *loop);
2682
2683 /* If phi_webs_only is true, only convert SSA values involved in phi nodes to
2684 * registers. If false, convert all values (even those not involved in a phi
2685 * node) to registers.
2686 */
2687 bool nir_convert_from_ssa(nir_shader *shader, bool phi_webs_only);
2688
2689 bool nir_lower_phis_to_regs_block(nir_block *block);
2690 bool nir_lower_ssa_defs_to_regs_block(nir_block *block);
2691
2692 bool nir_opt_algebraic(nir_shader *shader);
2693 bool nir_opt_algebraic_before_ffma(nir_shader *shader);
2694 bool nir_opt_algebraic_late(nir_shader *shader);
2695 bool nir_opt_constant_folding(nir_shader *shader);
2696
2697 bool nir_opt_global_to_local(nir_shader *shader);
2698
2699 bool nir_copy_prop(nir_shader *shader);
2700
2701 bool nir_opt_copy_prop_vars(nir_shader *shader);
2702
2703 bool nir_opt_cse(nir_shader *shader);
2704
2705 bool nir_opt_dce(nir_shader *shader);
2706
2707 bool nir_opt_dead_cf(nir_shader *shader);
2708
2709 bool nir_opt_gcm(nir_shader *shader, bool value_number);
2710
2711 bool nir_opt_if(nir_shader *shader);
2712
2713 bool nir_opt_intrinsics(nir_shader *shader);
2714
2715 bool nir_opt_loop_unroll(nir_shader *shader, nir_variable_mode indirect_mask);
2716
2717 bool nir_opt_move_comparisons(nir_shader *shader);
2718
2719 bool nir_opt_peephole_select(nir_shader *shader, unsigned limit);
2720
2721 bool nir_opt_remove_phis(nir_shader *shader);
2722
2723 bool nir_opt_trivial_continues(nir_shader *shader);
2724
2725 bool nir_opt_undef(nir_shader *shader);
2726
2727 bool nir_opt_conditional_discard(nir_shader *shader);
2728
2729 void nir_sweep(nir_shader *shader);
2730
2731 nir_intrinsic_op nir_intrinsic_from_system_value(gl_system_value val);
2732 gl_system_value nir_system_value_from_intrinsic(nir_intrinsic_op intrin);
2733
2734 #ifdef __cplusplus
2735 } /* extern "C" */
2736 #endif
2737
2738 #endif /* NIR_H */