nir: add some swizzle helpers
[mesa.git] / src / compiler / nir / nir.h
1 /*
2 * Copyright © 2014 Connor Abbott
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Connor Abbott (cwabbott0@gmail.com)
25 *
26 */
27
28 #ifndef NIR_H
29 #define NIR_H
30
31 #include "util/hash_table.h"
32 #include "compiler/glsl/list.h"
33 #include "GL/gl.h" /* GLenum */
34 #include "util/list.h"
35 #include "util/ralloc.h"
36 #include "util/set.h"
37 #include "util/bitscan.h"
38 #include "util/bitset.h"
39 #include "util/macros.h"
40 #include "util/format/u_format.h"
41 #include "compiler/nir_types.h"
42 #include "compiler/shader_enums.h"
43 #include "compiler/shader_info.h"
44 #include <stdio.h>
45
46 #ifndef NDEBUG
47 #include "util/debug.h"
48 #endif /* NDEBUG */
49
50 #include "nir_opcodes.h"
51
52 #if defined(_WIN32) && !defined(snprintf)
53 #define snprintf _snprintf
54 #endif
55
56 #ifdef __cplusplus
57 extern "C" {
58 #endif
59
60 #define NIR_FALSE 0u
61 #define NIR_TRUE (~0u)
62 #define NIR_MAX_VEC_COMPONENTS 16
63 #define NIR_MAX_MATRIX_COLUMNS 4
64 #define NIR_STREAM_PACKED (1 << 8)
65 typedef uint16_t nir_component_mask_t;
66
67 static inline bool
68 nir_num_components_valid(unsigned num_components)
69 {
70 return (num_components >= 1 &&
71 num_components <= 4) ||
72 num_components == 8 ||
73 num_components == 16;
74 }
75
76 /** Defines a cast function
77 *
78 * This macro defines a cast function from in_type to out_type where
79 * out_type is some structure type that contains a field of type out_type.
80 *
81 * Note that you have to be a bit careful as the generated cast function
82 * destroys constness.
83 */
84 #define NIR_DEFINE_CAST(name, in_type, out_type, field, \
85 type_field, type_value) \
86 static inline out_type * \
87 name(const in_type *parent) \
88 { \
89 assert(parent && parent->type_field == type_value); \
90 return exec_node_data(out_type, parent, field); \
91 }
92
93 struct nir_function;
94 struct nir_shader;
95 struct nir_instr;
96 struct nir_builder;
97
98
99 /**
100 * Description of built-in state associated with a uniform
101 *
102 * \sa nir_variable::state_slots
103 */
104 typedef struct {
105 gl_state_index16 tokens[STATE_LENGTH];
106 uint16_t swizzle;
107 } nir_state_slot;
108
109 typedef enum {
110 nir_var_shader_in = (1 << 0),
111 nir_var_shader_out = (1 << 1),
112 nir_var_shader_temp = (1 << 2),
113 nir_var_function_temp = (1 << 3),
114 nir_var_uniform = (1 << 4),
115 nir_var_mem_ubo = (1 << 5),
116 nir_var_system_value = (1 << 6),
117 nir_var_mem_ssbo = (1 << 7),
118 nir_var_mem_shared = (1 << 8),
119 nir_var_mem_global = (1 << 9),
120 nir_var_mem_push_const = (1 << 10), /* not actually used for variables */
121 nir_num_variable_modes = 11,
122 nir_var_all = (1 << nir_num_variable_modes) - 1,
123 } nir_variable_mode;
124
125 /**
126 * Rounding modes.
127 */
128 typedef enum {
129 nir_rounding_mode_undef = 0,
130 nir_rounding_mode_rtne = 1, /* round to nearest even */
131 nir_rounding_mode_ru = 2, /* round up */
132 nir_rounding_mode_rd = 3, /* round down */
133 nir_rounding_mode_rtz = 4, /* round towards zero */
134 } nir_rounding_mode;
135
136 typedef union {
137 bool b;
138 float f32;
139 double f64;
140 int8_t i8;
141 uint8_t u8;
142 int16_t i16;
143 uint16_t u16;
144 int32_t i32;
145 uint32_t u32;
146 int64_t i64;
147 uint64_t u64;
148 } nir_const_value;
149
150 #define nir_const_value_to_array(arr, c, components, m) \
151 { \
152 for (unsigned i = 0; i < components; ++i) \
153 arr[i] = c[i].m; \
154 } while (false)
155
156 static inline nir_const_value
157 nir_const_value_for_raw_uint(uint64_t x, unsigned bit_size)
158 {
159 nir_const_value v;
160 memset(&v, 0, sizeof(v));
161
162 switch (bit_size) {
163 case 1: v.b = x; break;
164 case 8: v.u8 = x; break;
165 case 16: v.u16 = x; break;
166 case 32: v.u32 = x; break;
167 case 64: v.u64 = x; break;
168 default:
169 unreachable("Invalid bit size");
170 }
171
172 return v;
173 }
174
175 static inline nir_const_value
176 nir_const_value_for_int(int64_t i, unsigned bit_size)
177 {
178 nir_const_value v;
179 memset(&v, 0, sizeof(v));
180
181 assert(bit_size <= 64);
182 if (bit_size < 64) {
183 assert(i >= (-(1ll << (bit_size - 1))));
184 assert(i < (1ll << (bit_size - 1)));
185 }
186
187 return nir_const_value_for_raw_uint(i, bit_size);
188 }
189
190 static inline nir_const_value
191 nir_const_value_for_uint(uint64_t u, unsigned bit_size)
192 {
193 nir_const_value v;
194 memset(&v, 0, sizeof(v));
195
196 assert(bit_size <= 64);
197 if (bit_size < 64)
198 assert(u < (1ull << bit_size));
199
200 return nir_const_value_for_raw_uint(u, bit_size);
201 }
202
203 static inline nir_const_value
204 nir_const_value_for_bool(bool b, unsigned bit_size)
205 {
206 /* Booleans use a 0/-1 convention */
207 return nir_const_value_for_int(-(int)b, bit_size);
208 }
209
210 /* This one isn't inline because it requires half-float conversion */
211 nir_const_value nir_const_value_for_float(double b, unsigned bit_size);
212
213 static inline int64_t
214 nir_const_value_as_int(nir_const_value value, unsigned bit_size)
215 {
216 switch (bit_size) {
217 /* int1_t uses 0/-1 convention */
218 case 1: return -(int)value.b;
219 case 8: return value.i8;
220 case 16: return value.i16;
221 case 32: return value.i32;
222 case 64: return value.i64;
223 default:
224 unreachable("Invalid bit size");
225 }
226 }
227
228 static inline uint64_t
229 nir_const_value_as_uint(nir_const_value value, unsigned bit_size)
230 {
231 switch (bit_size) {
232 case 1: return value.b;
233 case 8: return value.u8;
234 case 16: return value.u16;
235 case 32: return value.u32;
236 case 64: return value.u64;
237 default:
238 unreachable("Invalid bit size");
239 }
240 }
241
242 static inline bool
243 nir_const_value_as_bool(nir_const_value value, unsigned bit_size)
244 {
245 int64_t i = nir_const_value_as_int(value, bit_size);
246
247 /* Booleans of any size use 0/-1 convention */
248 assert(i == 0 || i == -1);
249
250 return i;
251 }
252
253 /* This one isn't inline because it requires half-float conversion */
254 double nir_const_value_as_float(nir_const_value value, unsigned bit_size);
255
256 typedef struct nir_constant {
257 /**
258 * Value of the constant.
259 *
260 * The field used to back the values supplied by the constant is determined
261 * by the type associated with the \c nir_variable. Constants may be
262 * scalars, vectors, or matrices.
263 */
264 nir_const_value values[NIR_MAX_VEC_COMPONENTS];
265
266 /* we could get this from the var->type but makes clone *much* easier to
267 * not have to care about the type.
268 */
269 unsigned num_elements;
270
271 /* Array elements / Structure Fields */
272 struct nir_constant **elements;
273 } nir_constant;
274
275 /**
276 * \brief Layout qualifiers for gl_FragDepth.
277 *
278 * The AMD/ARB_conservative_depth extensions allow gl_FragDepth to be redeclared
279 * with a layout qualifier.
280 */
281 typedef enum {
282 nir_depth_layout_none, /**< No depth layout is specified. */
283 nir_depth_layout_any,
284 nir_depth_layout_greater,
285 nir_depth_layout_less,
286 nir_depth_layout_unchanged
287 } nir_depth_layout;
288
289 /**
290 * Enum keeping track of how a variable was declared.
291 */
292 typedef enum {
293 /**
294 * Normal declaration.
295 */
296 nir_var_declared_normally = 0,
297
298 /**
299 * Variable is implicitly generated by the compiler and should not be
300 * visible via the API.
301 */
302 nir_var_hidden,
303 } nir_var_declaration_type;
304
305 /**
306 * Either a uniform, global variable, shader input, or shader output. Based on
307 * ir_variable - it should be easy to translate between the two.
308 */
309
310 typedef struct nir_variable {
311 struct exec_node node;
312
313 /**
314 * Declared type of the variable
315 */
316 const struct glsl_type *type;
317
318 /**
319 * Declared name of the variable
320 */
321 char *name;
322
323 struct nir_variable_data {
324 /**
325 * Storage class of the variable.
326 *
327 * \sa nir_variable_mode
328 */
329 nir_variable_mode mode:11;
330
331 /**
332 * Is the variable read-only?
333 *
334 * This is set for variables declared as \c const, shader inputs,
335 * and uniforms.
336 */
337 unsigned read_only:1;
338 unsigned centroid:1;
339 unsigned sample:1;
340 unsigned patch:1;
341 unsigned invariant:1;
342
343 /**
344 * Precision qualifier.
345 *
346 * In desktop GLSL we do not care about precision qualifiers at all, in
347 * fact, the spec says that precision qualifiers are ignored.
348 *
349 * To make things easy, we make it so that this field is always
350 * GLSL_PRECISION_NONE on desktop shaders. This way all the variables
351 * have the same precision value and the checks we add in the compiler
352 * for this field will never break a desktop shader compile.
353 */
354 unsigned precision:2;
355
356 /**
357 * Can this variable be coalesced with another?
358 *
359 * This is set by nir_lower_io_to_temporaries to say that any
360 * copies involving this variable should stay put. Propagating it can
361 * duplicate the resulting load/store, which is not wanted, and may
362 * result in a load/store of the variable with an indirect offset which
363 * the backend may not be able to handle.
364 */
365 unsigned cannot_coalesce:1;
366
367 /**
368 * When separate shader programs are enabled, only input/outputs between
369 * the stages of a multi-stage separate program can be safely removed
370 * from the shader interface. Other input/outputs must remains active.
371 *
372 * This is also used to make sure xfb varyings that are unused by the
373 * fragment shader are not removed.
374 */
375 unsigned always_active_io:1;
376
377 /**
378 * Interpolation mode for shader inputs / outputs
379 *
380 * \sa glsl_interp_mode
381 */
382 unsigned interpolation:3;
383
384 /**
385 * If non-zero, then this variable may be packed along with other variables
386 * into a single varying slot, so this offset should be applied when
387 * accessing components. For example, an offset of 1 means that the x
388 * component of this variable is actually stored in component y of the
389 * location specified by \c location.
390 */
391 unsigned location_frac:2;
392
393 /**
394 * If true, this variable represents an array of scalars that should
395 * be tightly packed. In other words, consecutive array elements
396 * should be stored one component apart, rather than one slot apart.
397 */
398 unsigned compact:1;
399
400 /**
401 * Whether this is a fragment shader output implicitly initialized with
402 * the previous contents of the specified render target at the
403 * framebuffer location corresponding to this shader invocation.
404 */
405 unsigned fb_fetch_output:1;
406
407 /**
408 * Non-zero if this variable is considered bindless as defined by
409 * ARB_bindless_texture.
410 */
411 unsigned bindless:1;
412
413 /**
414 * Was an explicit binding set in the shader?
415 */
416 unsigned explicit_binding:1;
417
418 /**
419 * Was the location explicitly set in the shader?
420 *
421 * If the location is explicitly set in the shader, it \b cannot be changed
422 * by the linker or by the API (e.g., calls to \c glBindAttribLocation have
423 * no effect).
424 */
425 unsigned explicit_location:1;
426
427 /**
428 * Was a transfer feedback buffer set in the shader?
429 */
430 unsigned explicit_xfb_buffer:1;
431
432 /**
433 * Was a transfer feedback stride set in the shader?
434 */
435 unsigned explicit_xfb_stride:1;
436
437 /**
438 * Was an explicit offset set in the shader?
439 */
440 unsigned explicit_offset:1;
441
442 /**
443 * Non-zero if this variable was created by lowering a named interface
444 * block.
445 */
446 unsigned from_named_ifc_block:1;
447
448 /**
449 * How the variable was declared. See nir_var_declaration_type.
450 *
451 * This is used to detect variables generated by the compiler, so should
452 * not be visible via the API.
453 */
454 unsigned how_declared:2;
455
456 /**
457 * \brief Layout qualifier for gl_FragDepth.
458 *
459 * This is not equal to \c ir_depth_layout_none if and only if this
460 * variable is \c gl_FragDepth and a layout qualifier is specified.
461 */
462 nir_depth_layout depth_layout:3;
463
464 /**
465 * Vertex stream output identifier.
466 *
467 * For packed outputs, NIR_STREAM_PACKED is set and bits [2*i+1,2*i]
468 * indicate the stream of the i-th component.
469 */
470 unsigned stream:9;
471
472 /**
473 * Access flags for memory variables (SSBO/global), image uniforms, and
474 * bindless images in uniforms/inputs/outputs.
475 */
476 enum gl_access_qualifier access:8;
477
478 /**
479 * Descriptor set binding for sampler or UBO.
480 */
481 unsigned descriptor_set:5;
482
483 /**
484 * output index for dual source blending.
485 */
486 unsigned index;
487
488 /**
489 * Initial binding point for a sampler or UBO.
490 *
491 * For array types, this represents the binding point for the first element.
492 */
493 unsigned binding;
494
495 /**
496 * Storage location of the base of this variable
497 *
498 * The precise meaning of this field depends on the nature of the variable.
499 *
500 * - Vertex shader input: one of the values from \c gl_vert_attrib.
501 * - Vertex shader output: one of the values from \c gl_varying_slot.
502 * - Geometry shader input: one of the values from \c gl_varying_slot.
503 * - Geometry shader output: one of the values from \c gl_varying_slot.
504 * - Fragment shader input: one of the values from \c gl_varying_slot.
505 * - Fragment shader output: one of the values from \c gl_frag_result.
506 * - Uniforms: Per-stage uniform slot number for default uniform block.
507 * - Uniforms: Index within the uniform block definition for UBO members.
508 * - Non-UBO Uniforms: uniform slot number.
509 * - Other: This field is not currently used.
510 *
511 * If the variable is a uniform, shader input, or shader output, and the
512 * slot has not been assigned, the value will be -1.
513 */
514 int location;
515
516 /**
517 * The actual location of the variable in the IR. Only valid for inputs,
518 * outputs, and uniforms (including samplers and images).
519 */
520 unsigned driver_location;
521
522 /**
523 * Location an atomic counter or transform feedback is stored at.
524 */
525 unsigned offset;
526
527 union {
528 struct {
529 /** Image internal format if specified explicitly, otherwise PIPE_FORMAT_NONE. */
530 enum pipe_format format;
531 } image;
532
533 struct {
534 /**
535 * Transform feedback buffer.
536 */
537 uint16_t buffer:2;
538
539 /**
540 * Transform feedback stride.
541 */
542 uint16_t stride;
543 } xfb;
544 };
545 } data;
546
547 /**
548 * Identifier for this variable generated by nir_index_vars() that is unique
549 * among other variables in the same exec_list.
550 */
551 unsigned index;
552
553 /* Number of nir_variable_data members */
554 uint16_t num_members;
555
556 /**
557 * Built-in state that backs this uniform
558 *
559 * Once set at variable creation, \c state_slots must remain invariant.
560 * This is because, ideally, this array would be shared by all clones of
561 * this variable in the IR tree. In other words, we'd really like for it
562 * to be a fly-weight.
563 *
564 * If the variable is not a uniform, \c num_state_slots will be zero and
565 * \c state_slots will be \c NULL.
566 */
567 /*@{*/
568 uint16_t num_state_slots; /**< Number of state slots used */
569 nir_state_slot *state_slots; /**< State descriptors. */
570 /*@}*/
571
572 /**
573 * Constant expression assigned in the initializer of the variable
574 *
575 * This field should only be used temporarily by creators of NIR shaders
576 * and then lower_constant_initializers can be used to get rid of them.
577 * Most of the rest of NIR ignores this field or asserts that it's NULL.
578 */
579 nir_constant *constant_initializer;
580
581 /**
582 * Global variable assigned in the initializer of the variable
583 * This field should only be used temporarily by creators of NIR shaders
584 * and then lower_constant_initializers can be used to get rid of them.
585 * Most of the rest of NIR ignores this field or asserts that it's NULL.
586 */
587 struct nir_variable *pointer_initializer;
588
589 /**
590 * For variables that are in an interface block or are an instance of an
591 * interface block, this is the \c GLSL_TYPE_INTERFACE type for that block.
592 *
593 * \sa ir_variable::location
594 */
595 const struct glsl_type *interface_type;
596
597 /**
598 * Description of per-member data for per-member struct variables
599 *
600 * This is used for variables which are actually an amalgamation of
601 * multiple entities such as a struct of built-in values or a struct of
602 * inputs each with their own layout specifier. This is only allowed on
603 * variables with a struct or array of array of struct type.
604 */
605 struct nir_variable_data *members;
606 } nir_variable;
607
608 #define nir_foreach_variable(var, var_list) \
609 foreach_list_typed(nir_variable, var, node, var_list)
610
611 #define nir_foreach_variable_safe(var, var_list) \
612 foreach_list_typed_safe(nir_variable, var, node, var_list)
613
614 static inline bool
615 nir_variable_is_global(const nir_variable *var)
616 {
617 return var->data.mode != nir_var_function_temp;
618 }
619
620 typedef struct nir_register {
621 struct exec_node node;
622
623 unsigned num_components; /** < number of vector components */
624 unsigned num_array_elems; /** < size of array (0 for no array) */
625
626 /* The bit-size of each channel; must be one of 8, 16, 32, or 64 */
627 uint8_t bit_size;
628
629 /** generic register index. */
630 unsigned index;
631
632 /** only for debug purposes, can be NULL */
633 const char *name;
634
635 /** set of nir_srcs where this register is used (read from) */
636 struct list_head uses;
637
638 /** set of nir_dests where this register is defined (written to) */
639 struct list_head defs;
640
641 /** set of nir_ifs where this register is used as a condition */
642 struct list_head if_uses;
643 } nir_register;
644
645 #define nir_foreach_register(reg, reg_list) \
646 foreach_list_typed(nir_register, reg, node, reg_list)
647 #define nir_foreach_register_safe(reg, reg_list) \
648 foreach_list_typed_safe(nir_register, reg, node, reg_list)
649
650 typedef enum PACKED {
651 nir_instr_type_alu,
652 nir_instr_type_deref,
653 nir_instr_type_call,
654 nir_instr_type_tex,
655 nir_instr_type_intrinsic,
656 nir_instr_type_load_const,
657 nir_instr_type_jump,
658 nir_instr_type_ssa_undef,
659 nir_instr_type_phi,
660 nir_instr_type_parallel_copy,
661 } nir_instr_type;
662
663 typedef struct nir_instr {
664 struct exec_node node;
665 struct nir_block *block;
666 nir_instr_type type;
667
668 /* A temporary for optimization and analysis passes to use for storing
669 * flags. For instance, DCE uses this to store the "dead/live" info.
670 */
671 uint8_t pass_flags;
672
673 /** generic instruction index. */
674 unsigned index;
675 } nir_instr;
676
677 static inline nir_instr *
678 nir_instr_next(nir_instr *instr)
679 {
680 struct exec_node *next = exec_node_get_next(&instr->node);
681 if (exec_node_is_tail_sentinel(next))
682 return NULL;
683 else
684 return exec_node_data(nir_instr, next, node);
685 }
686
687 static inline nir_instr *
688 nir_instr_prev(nir_instr *instr)
689 {
690 struct exec_node *prev = exec_node_get_prev(&instr->node);
691 if (exec_node_is_head_sentinel(prev))
692 return NULL;
693 else
694 return exec_node_data(nir_instr, prev, node);
695 }
696
697 static inline bool
698 nir_instr_is_first(const nir_instr *instr)
699 {
700 return exec_node_is_head_sentinel(exec_node_get_prev_const(&instr->node));
701 }
702
703 static inline bool
704 nir_instr_is_last(const nir_instr *instr)
705 {
706 return exec_node_is_tail_sentinel(exec_node_get_next_const(&instr->node));
707 }
708
709 typedef struct nir_ssa_def {
710 /** for debugging only, can be NULL */
711 const char* name;
712
713 /** generic SSA definition index. */
714 unsigned index;
715
716 /** Index into the live_in and live_out bitfields */
717 unsigned live_index;
718
719 /** Instruction which produces this SSA value. */
720 nir_instr *parent_instr;
721
722 /** set of nir_instrs where this register is used (read from) */
723 struct list_head uses;
724
725 /** set of nir_ifs where this register is used as a condition */
726 struct list_head if_uses;
727
728 uint8_t num_components;
729
730 /* The bit-size of each channel; must be one of 8, 16, 32, or 64 */
731 uint8_t bit_size;
732 } nir_ssa_def;
733
734 struct nir_src;
735
736 typedef struct {
737 nir_register *reg;
738 struct nir_src *indirect; /** < NULL for no indirect offset */
739 unsigned base_offset;
740
741 /* TODO use-def chain goes here */
742 } nir_reg_src;
743
744 typedef struct {
745 nir_instr *parent_instr;
746 struct list_head def_link;
747
748 nir_register *reg;
749 struct nir_src *indirect; /** < NULL for no indirect offset */
750 unsigned base_offset;
751
752 /* TODO def-use chain goes here */
753 } nir_reg_dest;
754
755 struct nir_if;
756
757 typedef struct nir_src {
758 union {
759 /** Instruction that consumes this value as a source. */
760 nir_instr *parent_instr;
761 struct nir_if *parent_if;
762 };
763
764 struct list_head use_link;
765
766 union {
767 nir_reg_src reg;
768 nir_ssa_def *ssa;
769 };
770
771 bool is_ssa;
772 } nir_src;
773
774 static inline nir_src
775 nir_src_init(void)
776 {
777 nir_src src = { { NULL } };
778 return src;
779 }
780
781 #define NIR_SRC_INIT nir_src_init()
782
783 #define nir_foreach_use(src, reg_or_ssa_def) \
784 list_for_each_entry(nir_src, src, &(reg_or_ssa_def)->uses, use_link)
785
786 #define nir_foreach_use_safe(src, reg_or_ssa_def) \
787 list_for_each_entry_safe(nir_src, src, &(reg_or_ssa_def)->uses, use_link)
788
789 #define nir_foreach_if_use(src, reg_or_ssa_def) \
790 list_for_each_entry(nir_src, src, &(reg_or_ssa_def)->if_uses, use_link)
791
792 #define nir_foreach_if_use_safe(src, reg_or_ssa_def) \
793 list_for_each_entry_safe(nir_src, src, &(reg_or_ssa_def)->if_uses, use_link)
794
795 typedef struct {
796 union {
797 nir_reg_dest reg;
798 nir_ssa_def ssa;
799 };
800
801 bool is_ssa;
802 } nir_dest;
803
804 static inline nir_dest
805 nir_dest_init(void)
806 {
807 nir_dest dest = { { { NULL } } };
808 return dest;
809 }
810
811 #define NIR_DEST_INIT nir_dest_init()
812
813 #define nir_foreach_def(dest, reg) \
814 list_for_each_entry(nir_dest, dest, &(reg)->defs, reg.def_link)
815
816 #define nir_foreach_def_safe(dest, reg) \
817 list_for_each_entry_safe(nir_dest, dest, &(reg)->defs, reg.def_link)
818
819 static inline nir_src
820 nir_src_for_ssa(nir_ssa_def *def)
821 {
822 nir_src src = NIR_SRC_INIT;
823
824 src.is_ssa = true;
825 src.ssa = def;
826
827 return src;
828 }
829
830 static inline nir_src
831 nir_src_for_reg(nir_register *reg)
832 {
833 nir_src src = NIR_SRC_INIT;
834
835 src.is_ssa = false;
836 src.reg.reg = reg;
837 src.reg.indirect = NULL;
838 src.reg.base_offset = 0;
839
840 return src;
841 }
842
843 static inline nir_dest
844 nir_dest_for_reg(nir_register *reg)
845 {
846 nir_dest dest = NIR_DEST_INIT;
847
848 dest.reg.reg = reg;
849
850 return dest;
851 }
852
853 static inline unsigned
854 nir_src_bit_size(nir_src src)
855 {
856 return src.is_ssa ? src.ssa->bit_size : src.reg.reg->bit_size;
857 }
858
859 static inline unsigned
860 nir_src_num_components(nir_src src)
861 {
862 return src.is_ssa ? src.ssa->num_components : src.reg.reg->num_components;
863 }
864
865 static inline bool
866 nir_src_is_const(nir_src src)
867 {
868 return src.is_ssa &&
869 src.ssa->parent_instr->type == nir_instr_type_load_const;
870 }
871
872 static inline unsigned
873 nir_dest_bit_size(nir_dest dest)
874 {
875 return dest.is_ssa ? dest.ssa.bit_size : dest.reg.reg->bit_size;
876 }
877
878 static inline unsigned
879 nir_dest_num_components(nir_dest dest)
880 {
881 return dest.is_ssa ? dest.ssa.num_components : dest.reg.reg->num_components;
882 }
883
884 /* Are all components the same, ie. .xxxx */
885 static inline bool
886 nir_is_same_comp_swizzle(uint8_t *swiz, unsigned nr_comp)
887 {
888 for (unsigned i = 1; i < nr_comp; i++)
889 if (swiz[i] != swiz[0])
890 return false;
891 return true;
892 }
893
894 /* Are all components sequential, ie. .yzw */
895 static inline bool
896 nir_is_sequential_comp_swizzle(uint8_t *swiz, unsigned nr_comp)
897 {
898 for (unsigned i = 1; i < nr_comp; i++)
899 if (swiz[i] != (swiz[0] + i))
900 return false;
901 return true;
902 }
903
904 void nir_src_copy(nir_src *dest, const nir_src *src, void *instr_or_if);
905 void nir_dest_copy(nir_dest *dest, const nir_dest *src, nir_instr *instr);
906
907 typedef struct {
908 nir_src src;
909
910 /**
911 * \name input modifiers
912 */
913 /*@{*/
914 /**
915 * For inputs interpreted as floating point, flips the sign bit. For
916 * inputs interpreted as integers, performs the two's complement negation.
917 */
918 bool negate;
919
920 /**
921 * Clears the sign bit for floating point values, and computes the integer
922 * absolute value for integers. Note that the negate modifier acts after
923 * the absolute value modifier, therefore if both are set then all inputs
924 * will become negative.
925 */
926 bool abs;
927 /*@}*/
928
929 /**
930 * For each input component, says which component of the register it is
931 * chosen from. Note that which elements of the swizzle are used and which
932 * are ignored are based on the write mask for most opcodes - for example,
933 * a statement like "foo.xzw = bar.zyx" would have a writemask of 1101b and
934 * a swizzle of {2, x, 1, 0} where x means "don't care."
935 */
936 uint8_t swizzle[NIR_MAX_VEC_COMPONENTS];
937 } nir_alu_src;
938
939 typedef struct {
940 nir_dest dest;
941
942 /**
943 * \name saturate output modifier
944 *
945 * Only valid for opcodes that output floating-point numbers. Clamps the
946 * output to between 0.0 and 1.0 inclusive.
947 */
948
949 bool saturate;
950
951 unsigned write_mask : NIR_MAX_VEC_COMPONENTS; /* ignored if dest.is_ssa is true */
952 } nir_alu_dest;
953
954 /** NIR sized and unsized types
955 *
956 * The values in this enum are carefully chosen so that the sized type is
957 * just the unsized type OR the number of bits.
958 */
959 typedef enum {
960 nir_type_invalid = 0, /* Not a valid type */
961 nir_type_int = 2,
962 nir_type_uint = 4,
963 nir_type_bool = 6,
964 nir_type_float = 128,
965 nir_type_bool1 = 1 | nir_type_bool,
966 nir_type_bool8 = 8 | nir_type_bool,
967 nir_type_bool16 = 16 | nir_type_bool,
968 nir_type_bool32 = 32 | nir_type_bool,
969 nir_type_int1 = 1 | nir_type_int,
970 nir_type_int8 = 8 | nir_type_int,
971 nir_type_int16 = 16 | nir_type_int,
972 nir_type_int32 = 32 | nir_type_int,
973 nir_type_int64 = 64 | nir_type_int,
974 nir_type_uint1 = 1 | nir_type_uint,
975 nir_type_uint8 = 8 | nir_type_uint,
976 nir_type_uint16 = 16 | nir_type_uint,
977 nir_type_uint32 = 32 | nir_type_uint,
978 nir_type_uint64 = 64 | nir_type_uint,
979 nir_type_float16 = 16 | nir_type_float,
980 nir_type_float32 = 32 | nir_type_float,
981 nir_type_float64 = 64 | nir_type_float,
982 } nir_alu_type;
983
984 #define NIR_ALU_TYPE_SIZE_MASK 0x79
985 #define NIR_ALU_TYPE_BASE_TYPE_MASK 0x86
986
987 static inline unsigned
988 nir_alu_type_get_type_size(nir_alu_type type)
989 {
990 return type & NIR_ALU_TYPE_SIZE_MASK;
991 }
992
993 static inline unsigned
994 nir_alu_type_get_base_type(nir_alu_type type)
995 {
996 return type & NIR_ALU_TYPE_BASE_TYPE_MASK;
997 }
998
999 static inline nir_alu_type
1000 nir_get_nir_type_for_glsl_base_type(enum glsl_base_type base_type)
1001 {
1002 switch (base_type) {
1003 case GLSL_TYPE_BOOL:
1004 return nir_type_bool1;
1005 break;
1006 case GLSL_TYPE_UINT:
1007 return nir_type_uint32;
1008 break;
1009 case GLSL_TYPE_INT:
1010 return nir_type_int32;
1011 break;
1012 case GLSL_TYPE_UINT16:
1013 return nir_type_uint16;
1014 break;
1015 case GLSL_TYPE_INT16:
1016 return nir_type_int16;
1017 break;
1018 case GLSL_TYPE_UINT8:
1019 return nir_type_uint8;
1020 case GLSL_TYPE_INT8:
1021 return nir_type_int8;
1022 case GLSL_TYPE_UINT64:
1023 return nir_type_uint64;
1024 break;
1025 case GLSL_TYPE_INT64:
1026 return nir_type_int64;
1027 break;
1028 case GLSL_TYPE_FLOAT:
1029 return nir_type_float32;
1030 break;
1031 case GLSL_TYPE_FLOAT16:
1032 return nir_type_float16;
1033 break;
1034 case GLSL_TYPE_DOUBLE:
1035 return nir_type_float64;
1036 break;
1037
1038 case GLSL_TYPE_SAMPLER:
1039 case GLSL_TYPE_IMAGE:
1040 case GLSL_TYPE_ATOMIC_UINT:
1041 case GLSL_TYPE_STRUCT:
1042 case GLSL_TYPE_INTERFACE:
1043 case GLSL_TYPE_ARRAY:
1044 case GLSL_TYPE_VOID:
1045 case GLSL_TYPE_SUBROUTINE:
1046 case GLSL_TYPE_FUNCTION:
1047 case GLSL_TYPE_ERROR:
1048 return nir_type_invalid;
1049 }
1050
1051 unreachable("unknown type");
1052 }
1053
1054 static inline nir_alu_type
1055 nir_get_nir_type_for_glsl_type(const struct glsl_type *type)
1056 {
1057 return nir_get_nir_type_for_glsl_base_type(glsl_get_base_type(type));
1058 }
1059
1060 nir_op nir_type_conversion_op(nir_alu_type src, nir_alu_type dst,
1061 nir_rounding_mode rnd);
1062
1063 static inline nir_op
1064 nir_op_vec(unsigned components)
1065 {
1066 switch (components) {
1067 case 1: return nir_op_mov;
1068 case 2: return nir_op_vec2;
1069 case 3: return nir_op_vec3;
1070 case 4: return nir_op_vec4;
1071 case 8: return nir_op_vec8;
1072 case 16: return nir_op_vec16;
1073 default: unreachable("bad component count");
1074 }
1075 }
1076
1077 static inline bool
1078 nir_op_is_vec(nir_op op)
1079 {
1080 switch (op) {
1081 case nir_op_mov:
1082 case nir_op_vec2:
1083 case nir_op_vec3:
1084 case nir_op_vec4:
1085 case nir_op_vec8:
1086 case nir_op_vec16:
1087 return true;
1088 default:
1089 return false;
1090 }
1091 }
1092
1093 static inline bool
1094 nir_is_float_control_signed_zero_inf_nan_preserve(unsigned execution_mode, unsigned bit_size)
1095 {
1096 return (16 == bit_size && execution_mode & FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP16) ||
1097 (32 == bit_size && execution_mode & FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP32) ||
1098 (64 == bit_size && execution_mode & FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP64);
1099 }
1100
1101 static inline bool
1102 nir_is_denorm_flush_to_zero(unsigned execution_mode, unsigned bit_size)
1103 {
1104 return (16 == bit_size && execution_mode & FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP16) ||
1105 (32 == bit_size && execution_mode & FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP32) ||
1106 (64 == bit_size && execution_mode & FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP64);
1107 }
1108
1109 static inline bool
1110 nir_is_denorm_preserve(unsigned execution_mode, unsigned bit_size)
1111 {
1112 return (16 == bit_size && execution_mode & FLOAT_CONTROLS_DENORM_PRESERVE_FP16) ||
1113 (32 == bit_size && execution_mode & FLOAT_CONTROLS_DENORM_PRESERVE_FP32) ||
1114 (64 == bit_size && execution_mode & FLOAT_CONTROLS_DENORM_PRESERVE_FP64);
1115 }
1116
1117 static inline bool
1118 nir_is_rounding_mode_rtne(unsigned execution_mode, unsigned bit_size)
1119 {
1120 return (16 == bit_size && execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP16) ||
1121 (32 == bit_size && execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP32) ||
1122 (64 == bit_size && execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP64);
1123 }
1124
1125 static inline bool
1126 nir_is_rounding_mode_rtz(unsigned execution_mode, unsigned bit_size)
1127 {
1128 return (16 == bit_size && execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP16) ||
1129 (32 == bit_size && execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP32) ||
1130 (64 == bit_size && execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP64);
1131 }
1132
1133 static inline bool
1134 nir_has_any_rounding_mode_rtz(unsigned execution_mode)
1135 {
1136 return (execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP16) ||
1137 (execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP32) ||
1138 (execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP64);
1139 }
1140
1141 static inline bool
1142 nir_has_any_rounding_mode_rtne(unsigned execution_mode)
1143 {
1144 return (execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP16) ||
1145 (execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP32) ||
1146 (execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP64);
1147 }
1148
1149 static inline nir_rounding_mode
1150 nir_get_rounding_mode_from_float_controls(unsigned execution_mode,
1151 nir_alu_type type)
1152 {
1153 if (nir_alu_type_get_base_type(type) != nir_type_float)
1154 return nir_rounding_mode_undef;
1155
1156 unsigned bit_size = nir_alu_type_get_type_size(type);
1157
1158 if (nir_is_rounding_mode_rtz(execution_mode, bit_size))
1159 return nir_rounding_mode_rtz;
1160 if (nir_is_rounding_mode_rtne(execution_mode, bit_size))
1161 return nir_rounding_mode_rtne;
1162 return nir_rounding_mode_undef;
1163 }
1164
1165 static inline bool
1166 nir_has_any_rounding_mode_enabled(unsigned execution_mode)
1167 {
1168 bool result =
1169 nir_has_any_rounding_mode_rtne(execution_mode) ||
1170 nir_has_any_rounding_mode_rtz(execution_mode);
1171 return result;
1172 }
1173
1174 typedef enum {
1175 /**
1176 * Operation where the first two sources are commutative.
1177 *
1178 * For 2-source operations, this just mathematical commutativity. Some
1179 * 3-source operations, like ffma, are only commutative in the first two
1180 * sources.
1181 */
1182 NIR_OP_IS_2SRC_COMMUTATIVE = (1 << 0),
1183 NIR_OP_IS_ASSOCIATIVE = (1 << 1),
1184 } nir_op_algebraic_property;
1185
1186 typedef struct {
1187 const char *name;
1188
1189 unsigned num_inputs;
1190
1191 /**
1192 * The number of components in the output
1193 *
1194 * If non-zero, this is the size of the output and input sizes are
1195 * explicitly given; swizzle and writemask are still in effect, but if
1196 * the output component is masked out, then the input component may
1197 * still be in use.
1198 *
1199 * If zero, the opcode acts in the standard, per-component manner; the
1200 * operation is performed on each component (except the ones that are
1201 * masked out) with the input being taken from the input swizzle for
1202 * that component.
1203 *
1204 * The size of some of the inputs may be given (i.e. non-zero) even
1205 * though output_size is zero; in that case, the inputs with a zero
1206 * size act per-component, while the inputs with non-zero size don't.
1207 */
1208 unsigned output_size;
1209
1210 /**
1211 * The type of vector that the instruction outputs. Note that the
1212 * staurate modifier is only allowed on outputs with the float type.
1213 */
1214
1215 nir_alu_type output_type;
1216
1217 /**
1218 * The number of components in each input
1219 */
1220 unsigned input_sizes[NIR_MAX_VEC_COMPONENTS];
1221
1222 /**
1223 * The type of vector that each input takes. Note that negate and
1224 * absolute value are only allowed on inputs with int or float type and
1225 * behave differently on the two.
1226 */
1227 nir_alu_type input_types[NIR_MAX_VEC_COMPONENTS];
1228
1229 nir_op_algebraic_property algebraic_properties;
1230
1231 /* Whether this represents a numeric conversion opcode */
1232 bool is_conversion;
1233 } nir_op_info;
1234
1235 extern const nir_op_info nir_op_infos[nir_num_opcodes];
1236
1237 typedef struct nir_alu_instr {
1238 nir_instr instr;
1239 nir_op op;
1240
1241 /** Indicates that this ALU instruction generates an exact value
1242 *
1243 * This is kind of a mixture of GLSL "precise" and "invariant" and not
1244 * really equivalent to either. This indicates that the value generated by
1245 * this operation is high-precision and any code transformations that touch
1246 * it must ensure that the resulting value is bit-for-bit identical to the
1247 * original.
1248 */
1249 bool exact:1;
1250
1251 /**
1252 * Indicates that this instruction do not cause wrapping to occur, in the
1253 * form of overflow or underflow.
1254 */
1255 bool no_signed_wrap:1;
1256 bool no_unsigned_wrap:1;
1257
1258 nir_alu_dest dest;
1259 nir_alu_src src[];
1260 } nir_alu_instr;
1261
1262 void nir_alu_src_copy(nir_alu_src *dest, const nir_alu_src *src,
1263 nir_alu_instr *instr);
1264 void nir_alu_dest_copy(nir_alu_dest *dest, const nir_alu_dest *src,
1265 nir_alu_instr *instr);
1266
1267 /* is this source channel used? */
1268 static inline bool
1269 nir_alu_instr_channel_used(const nir_alu_instr *instr, unsigned src,
1270 unsigned channel)
1271 {
1272 if (nir_op_infos[instr->op].input_sizes[src] > 0)
1273 return channel < nir_op_infos[instr->op].input_sizes[src];
1274
1275 return (instr->dest.write_mask >> channel) & 1;
1276 }
1277
1278 static inline nir_component_mask_t
1279 nir_alu_instr_src_read_mask(const nir_alu_instr *instr, unsigned src)
1280 {
1281 nir_component_mask_t read_mask = 0;
1282 for (unsigned c = 0; c < NIR_MAX_VEC_COMPONENTS; c++) {
1283 if (!nir_alu_instr_channel_used(instr, src, c))
1284 continue;
1285
1286 read_mask |= (1 << instr->src[src].swizzle[c]);
1287 }
1288 return read_mask;
1289 }
1290
1291 /**
1292 * Get the number of channels used for a source
1293 */
1294 static inline unsigned
1295 nir_ssa_alu_instr_src_components(const nir_alu_instr *instr, unsigned src)
1296 {
1297 if (nir_op_infos[instr->op].input_sizes[src] > 0)
1298 return nir_op_infos[instr->op].input_sizes[src];
1299
1300 return nir_dest_num_components(instr->dest.dest);
1301 }
1302
1303 static inline bool
1304 nir_alu_instr_is_comparison(const nir_alu_instr *instr)
1305 {
1306 switch (instr->op) {
1307 case nir_op_flt:
1308 case nir_op_fge:
1309 case nir_op_feq:
1310 case nir_op_fne:
1311 case nir_op_ilt:
1312 case nir_op_ult:
1313 case nir_op_ige:
1314 case nir_op_uge:
1315 case nir_op_ieq:
1316 case nir_op_ine:
1317 case nir_op_i2b1:
1318 case nir_op_f2b1:
1319 case nir_op_inot:
1320 return true;
1321 default:
1322 return false;
1323 }
1324 }
1325
1326 bool nir_const_value_negative_equal(nir_const_value c1, nir_const_value c2,
1327 nir_alu_type full_type);
1328
1329 bool nir_alu_srcs_equal(const nir_alu_instr *alu1, const nir_alu_instr *alu2,
1330 unsigned src1, unsigned src2);
1331
1332 bool nir_alu_srcs_negative_equal(const nir_alu_instr *alu1,
1333 const nir_alu_instr *alu2,
1334 unsigned src1, unsigned src2);
1335
1336 typedef enum {
1337 nir_deref_type_var,
1338 nir_deref_type_array,
1339 nir_deref_type_array_wildcard,
1340 nir_deref_type_ptr_as_array,
1341 nir_deref_type_struct,
1342 nir_deref_type_cast,
1343 } nir_deref_type;
1344
1345 typedef struct {
1346 nir_instr instr;
1347
1348 /** The type of this deref instruction */
1349 nir_deref_type deref_type;
1350
1351 /** The mode of the underlying variable */
1352 nir_variable_mode mode;
1353
1354 /** The dereferenced type of the resulting pointer value */
1355 const struct glsl_type *type;
1356
1357 union {
1358 /** Variable being dereferenced if deref_type is a deref_var */
1359 nir_variable *var;
1360
1361 /** Parent deref if deref_type is not deref_var */
1362 nir_src parent;
1363 };
1364
1365 /** Additional deref parameters */
1366 union {
1367 struct {
1368 nir_src index;
1369 } arr;
1370
1371 struct {
1372 unsigned index;
1373 } strct;
1374
1375 struct {
1376 unsigned ptr_stride;
1377 } cast;
1378 };
1379
1380 /** Destination to store the resulting "pointer" */
1381 nir_dest dest;
1382 } nir_deref_instr;
1383
1384 static inline nir_deref_instr *nir_src_as_deref(nir_src src);
1385
1386 static inline nir_deref_instr *
1387 nir_deref_instr_parent(const nir_deref_instr *instr)
1388 {
1389 if (instr->deref_type == nir_deref_type_var)
1390 return NULL;
1391 else
1392 return nir_src_as_deref(instr->parent);
1393 }
1394
1395 static inline nir_variable *
1396 nir_deref_instr_get_variable(const nir_deref_instr *instr)
1397 {
1398 while (instr->deref_type != nir_deref_type_var) {
1399 if (instr->deref_type == nir_deref_type_cast)
1400 return NULL;
1401
1402 instr = nir_deref_instr_parent(instr);
1403 }
1404
1405 return instr->var;
1406 }
1407
1408 bool nir_deref_instr_has_indirect(nir_deref_instr *instr);
1409 bool nir_deref_instr_is_known_out_of_bounds(nir_deref_instr *instr);
1410 bool nir_deref_instr_has_complex_use(nir_deref_instr *instr);
1411
1412 bool nir_deref_instr_remove_if_unused(nir_deref_instr *instr);
1413
1414 unsigned nir_deref_instr_ptr_as_array_stride(nir_deref_instr *instr);
1415
1416 typedef struct {
1417 nir_instr instr;
1418
1419 struct nir_function *callee;
1420
1421 unsigned num_params;
1422 nir_src params[];
1423 } nir_call_instr;
1424
1425 #include "nir_intrinsics.h"
1426
1427 #define NIR_INTRINSIC_MAX_CONST_INDEX 4
1428
1429 /** Represents an intrinsic
1430 *
1431 * An intrinsic is an instruction type for handling things that are
1432 * more-or-less regular operations but don't just consume and produce SSA
1433 * values like ALU operations do. Intrinsics are not for things that have
1434 * special semantic meaning such as phi nodes and parallel copies.
1435 * Examples of intrinsics include variable load/store operations, system
1436 * value loads, and the like. Even though texturing more-or-less falls
1437 * under this category, texturing is its own instruction type because
1438 * trying to represent texturing with intrinsics would lead to a
1439 * combinatorial explosion of intrinsic opcodes.
1440 *
1441 * By having a single instruction type for handling a lot of different
1442 * cases, optimization passes can look for intrinsics and, for the most
1443 * part, completely ignore them. Each intrinsic type also has a few
1444 * possible flags that govern whether or not they can be reordered or
1445 * eliminated. That way passes like dead code elimination can still work
1446 * on intrisics without understanding the meaning of each.
1447 *
1448 * Each intrinsic has some number of constant indices, some number of
1449 * variables, and some number of sources. What these sources, variables,
1450 * and indices mean depends on the intrinsic and is documented with the
1451 * intrinsic declaration in nir_intrinsics.h. Intrinsics and texture
1452 * instructions are the only types of instruction that can operate on
1453 * variables.
1454 */
1455 typedef struct {
1456 nir_instr instr;
1457
1458 nir_intrinsic_op intrinsic;
1459
1460 nir_dest dest;
1461
1462 /** number of components if this is a vectorized intrinsic
1463 *
1464 * Similarly to ALU operations, some intrinsics are vectorized.
1465 * An intrinsic is vectorized if nir_intrinsic_infos.dest_components == 0.
1466 * For vectorized intrinsics, the num_components field specifies the
1467 * number of destination components and the number of source components
1468 * for all sources with nir_intrinsic_infos.src_components[i] == 0.
1469 */
1470 uint8_t num_components;
1471
1472 int const_index[NIR_INTRINSIC_MAX_CONST_INDEX];
1473
1474 nir_src src[];
1475 } nir_intrinsic_instr;
1476
1477 static inline nir_variable *
1478 nir_intrinsic_get_var(nir_intrinsic_instr *intrin, unsigned i)
1479 {
1480 return nir_deref_instr_get_variable(nir_src_as_deref(intrin->src[i]));
1481 }
1482
1483 typedef enum {
1484 /* Memory ordering. */
1485 NIR_MEMORY_ACQUIRE = 1 << 0,
1486 NIR_MEMORY_RELEASE = 1 << 1,
1487 NIR_MEMORY_ACQ_REL = NIR_MEMORY_ACQUIRE | NIR_MEMORY_RELEASE,
1488
1489 /* Memory visibility operations. */
1490 NIR_MEMORY_MAKE_AVAILABLE = 1 << 2,
1491 NIR_MEMORY_MAKE_VISIBLE = 1 << 3,
1492 } nir_memory_semantics;
1493
1494 typedef enum {
1495 NIR_SCOPE_INVOCATION,
1496 NIR_SCOPE_SUBGROUP,
1497 NIR_SCOPE_WORKGROUP,
1498 NIR_SCOPE_QUEUE_FAMILY,
1499 NIR_SCOPE_DEVICE,
1500 } nir_scope;
1501
1502 /**
1503 * \name NIR intrinsics semantic flags
1504 *
1505 * information about what the compiler can do with the intrinsics.
1506 *
1507 * \sa nir_intrinsic_info::flags
1508 */
1509 typedef enum {
1510 /**
1511 * whether the intrinsic can be safely eliminated if none of its output
1512 * value is not being used.
1513 */
1514 NIR_INTRINSIC_CAN_ELIMINATE = (1 << 0),
1515
1516 /**
1517 * Whether the intrinsic can be reordered with respect to any other
1518 * intrinsic, i.e. whether the only reordering dependencies of the
1519 * intrinsic are due to the register reads/writes.
1520 */
1521 NIR_INTRINSIC_CAN_REORDER = (1 << 1),
1522 } nir_intrinsic_semantic_flag;
1523
1524 /**
1525 * \name NIR intrinsics const-index flag
1526 *
1527 * Indicates the usage of a const_index slot.
1528 *
1529 * \sa nir_intrinsic_info::index_map
1530 */
1531 typedef enum {
1532 /**
1533 * Generally instructions that take a offset src argument, can encode
1534 * a constant 'base' value which is added to the offset.
1535 */
1536 NIR_INTRINSIC_BASE = 1,
1537
1538 /**
1539 * For store instructions, a writemask for the store.
1540 */
1541 NIR_INTRINSIC_WRMASK,
1542
1543 /**
1544 * The stream-id for GS emit_vertex/end_primitive intrinsics.
1545 */
1546 NIR_INTRINSIC_STREAM_ID,
1547
1548 /**
1549 * The clip-plane id for load_user_clip_plane intrinsic.
1550 */
1551 NIR_INTRINSIC_UCP_ID,
1552
1553 /**
1554 * The amount of data, starting from BASE, that this instruction may
1555 * access. This is used to provide bounds if the offset is not constant.
1556 */
1557 NIR_INTRINSIC_RANGE,
1558
1559 /**
1560 * The Vulkan descriptor set for vulkan_resource_index intrinsic.
1561 */
1562 NIR_INTRINSIC_DESC_SET,
1563
1564 /**
1565 * The Vulkan descriptor set binding for vulkan_resource_index intrinsic.
1566 */
1567 NIR_INTRINSIC_BINDING,
1568
1569 /**
1570 * Component offset.
1571 */
1572 NIR_INTRINSIC_COMPONENT,
1573
1574 /**
1575 * Interpolation mode (only meaningful for FS inputs).
1576 */
1577 NIR_INTRINSIC_INTERP_MODE,
1578
1579 /**
1580 * A binary nir_op to use when performing a reduction or scan operation
1581 */
1582 NIR_INTRINSIC_REDUCTION_OP,
1583
1584 /**
1585 * Cluster size for reduction operations
1586 */
1587 NIR_INTRINSIC_CLUSTER_SIZE,
1588
1589 /**
1590 * Parameter index for a load_param intrinsic
1591 */
1592 NIR_INTRINSIC_PARAM_IDX,
1593
1594 /**
1595 * Image dimensionality for image intrinsics
1596 *
1597 * One of GLSL_SAMPLER_DIM_*
1598 */
1599 NIR_INTRINSIC_IMAGE_DIM,
1600
1601 /**
1602 * Non-zero if we are accessing an array image
1603 */
1604 NIR_INTRINSIC_IMAGE_ARRAY,
1605
1606 /**
1607 * Image format for image intrinsics
1608 */
1609 NIR_INTRINSIC_FORMAT,
1610
1611 /**
1612 * Access qualifiers for image and memory access intrinsics
1613 */
1614 NIR_INTRINSIC_ACCESS,
1615
1616 /**
1617 * Alignment for offsets and addresses
1618 *
1619 * These two parameters, specify an alignment in terms of a multiplier and
1620 * an offset. The offset or address parameter X of the intrinsic is
1621 * guaranteed to satisfy the following:
1622 *
1623 * (X - align_offset) % align_mul == 0
1624 */
1625 NIR_INTRINSIC_ALIGN_MUL,
1626 NIR_INTRINSIC_ALIGN_OFFSET,
1627
1628 /**
1629 * The Vulkan descriptor type for a vulkan_resource_[re]index intrinsic.
1630 */
1631 NIR_INTRINSIC_DESC_TYPE,
1632
1633 /**
1634 * The nir_alu_type of a uniform/input/output
1635 */
1636 NIR_INTRINSIC_TYPE,
1637
1638 /**
1639 * The swizzle mask for the instructions
1640 * SwizzleInvocationsAMD and SwizzleInvocationsMaskedAMD
1641 */
1642 NIR_INTRINSIC_SWIZZLE_MASK,
1643
1644 /* Separate source/dest access flags for copies */
1645 NIR_INTRINSIC_SRC_ACCESS,
1646 NIR_INTRINSIC_DST_ACCESS,
1647
1648 /* Driver location for nir_load_patch_location_ir3 */
1649 NIR_INTRINSIC_DRIVER_LOCATION,
1650
1651 /**
1652 * Mask of nir_memory_semantics, includes ordering and visibility.
1653 */
1654 NIR_INTRINSIC_MEMORY_SEMANTICS,
1655
1656 /**
1657 * Mask of nir_variable_modes affected by the memory operation.
1658 */
1659 NIR_INTRINSIC_MEMORY_MODES,
1660
1661 /**
1662 * Value of nir_scope.
1663 */
1664 NIR_INTRINSIC_MEMORY_SCOPE,
1665
1666 NIR_INTRINSIC_NUM_INDEX_FLAGS,
1667
1668 } nir_intrinsic_index_flag;
1669
1670 #define NIR_INTRINSIC_MAX_INPUTS 5
1671
1672 typedef struct {
1673 const char *name;
1674
1675 unsigned num_srcs; /** < number of register/SSA inputs */
1676
1677 /** number of components of each input register
1678 *
1679 * If this value is 0, the number of components is given by the
1680 * num_components field of nir_intrinsic_instr. If this value is -1, the
1681 * intrinsic consumes however many components are provided and it is not
1682 * validated at all.
1683 */
1684 int src_components[NIR_INTRINSIC_MAX_INPUTS];
1685
1686 bool has_dest;
1687
1688 /** number of components of the output register
1689 *
1690 * If this value is 0, the number of components is given by the
1691 * num_components field of nir_intrinsic_instr.
1692 */
1693 unsigned dest_components;
1694
1695 /** bitfield of legal bit sizes */
1696 unsigned dest_bit_sizes;
1697
1698 /** the number of constant indices used by the intrinsic */
1699 unsigned num_indices;
1700
1701 /** indicates the usage of intr->const_index[n] */
1702 unsigned index_map[NIR_INTRINSIC_NUM_INDEX_FLAGS];
1703
1704 /** semantic flags for calls to this intrinsic */
1705 nir_intrinsic_semantic_flag flags;
1706 } nir_intrinsic_info;
1707
1708 extern const nir_intrinsic_info nir_intrinsic_infos[nir_num_intrinsics];
1709
1710 static inline unsigned
1711 nir_intrinsic_src_components(nir_intrinsic_instr *intr, unsigned srcn)
1712 {
1713 const nir_intrinsic_info *info = &nir_intrinsic_infos[intr->intrinsic];
1714 assert(srcn < info->num_srcs);
1715 if (info->src_components[srcn] > 0)
1716 return info->src_components[srcn];
1717 else if (info->src_components[srcn] == 0)
1718 return intr->num_components;
1719 else
1720 return nir_src_num_components(intr->src[srcn]);
1721 }
1722
1723 static inline unsigned
1724 nir_intrinsic_dest_components(nir_intrinsic_instr *intr)
1725 {
1726 const nir_intrinsic_info *info = &nir_intrinsic_infos[intr->intrinsic];
1727 if (!info->has_dest)
1728 return 0;
1729 else if (info->dest_components)
1730 return info->dest_components;
1731 else
1732 return intr->num_components;
1733 }
1734
1735 #define INTRINSIC_IDX_ACCESSORS(name, flag, type) \
1736 static inline type \
1737 nir_intrinsic_##name(const nir_intrinsic_instr *instr) \
1738 { \
1739 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic]; \
1740 assert(info->index_map[NIR_INTRINSIC_##flag] > 0); \
1741 return (type)instr->const_index[info->index_map[NIR_INTRINSIC_##flag] - 1]; \
1742 } \
1743 static inline void \
1744 nir_intrinsic_set_##name(nir_intrinsic_instr *instr, type val) \
1745 { \
1746 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic]; \
1747 assert(info->index_map[NIR_INTRINSIC_##flag] > 0); \
1748 instr->const_index[info->index_map[NIR_INTRINSIC_##flag] - 1] = val; \
1749 }
1750
1751 INTRINSIC_IDX_ACCESSORS(write_mask, WRMASK, unsigned)
1752 INTRINSIC_IDX_ACCESSORS(base, BASE, int)
1753 INTRINSIC_IDX_ACCESSORS(stream_id, STREAM_ID, unsigned)
1754 INTRINSIC_IDX_ACCESSORS(ucp_id, UCP_ID, unsigned)
1755 INTRINSIC_IDX_ACCESSORS(range, RANGE, unsigned)
1756 INTRINSIC_IDX_ACCESSORS(desc_set, DESC_SET, unsigned)
1757 INTRINSIC_IDX_ACCESSORS(binding, BINDING, unsigned)
1758 INTRINSIC_IDX_ACCESSORS(component, COMPONENT, unsigned)
1759 INTRINSIC_IDX_ACCESSORS(interp_mode, INTERP_MODE, unsigned)
1760 INTRINSIC_IDX_ACCESSORS(reduction_op, REDUCTION_OP, unsigned)
1761 INTRINSIC_IDX_ACCESSORS(cluster_size, CLUSTER_SIZE, unsigned)
1762 INTRINSIC_IDX_ACCESSORS(param_idx, PARAM_IDX, unsigned)
1763 INTRINSIC_IDX_ACCESSORS(image_dim, IMAGE_DIM, enum glsl_sampler_dim)
1764 INTRINSIC_IDX_ACCESSORS(image_array, IMAGE_ARRAY, bool)
1765 INTRINSIC_IDX_ACCESSORS(access, ACCESS, enum gl_access_qualifier)
1766 INTRINSIC_IDX_ACCESSORS(src_access, SRC_ACCESS, enum gl_access_qualifier)
1767 INTRINSIC_IDX_ACCESSORS(dst_access, DST_ACCESS, enum gl_access_qualifier)
1768 INTRINSIC_IDX_ACCESSORS(format, FORMAT, enum pipe_format)
1769 INTRINSIC_IDX_ACCESSORS(align_mul, ALIGN_MUL, unsigned)
1770 INTRINSIC_IDX_ACCESSORS(align_offset, ALIGN_OFFSET, unsigned)
1771 INTRINSIC_IDX_ACCESSORS(desc_type, DESC_TYPE, unsigned)
1772 INTRINSIC_IDX_ACCESSORS(type, TYPE, nir_alu_type)
1773 INTRINSIC_IDX_ACCESSORS(swizzle_mask, SWIZZLE_MASK, unsigned)
1774 INTRINSIC_IDX_ACCESSORS(driver_location, DRIVER_LOCATION, unsigned)
1775 INTRINSIC_IDX_ACCESSORS(memory_semantics, MEMORY_SEMANTICS, nir_memory_semantics)
1776 INTRINSIC_IDX_ACCESSORS(memory_modes, MEMORY_MODES, nir_variable_mode)
1777 INTRINSIC_IDX_ACCESSORS(memory_scope, MEMORY_SCOPE, nir_scope)
1778
1779 static inline void
1780 nir_intrinsic_set_align(nir_intrinsic_instr *intrin,
1781 unsigned align_mul, unsigned align_offset)
1782 {
1783 assert(util_is_power_of_two_nonzero(align_mul));
1784 assert(align_offset < align_mul);
1785 nir_intrinsic_set_align_mul(intrin, align_mul);
1786 nir_intrinsic_set_align_offset(intrin, align_offset);
1787 }
1788
1789 /** Returns a simple alignment for a load/store intrinsic offset
1790 *
1791 * Instead of the full mul+offset alignment scheme provided by the ALIGN_MUL
1792 * and ALIGN_OFFSET parameters, this helper takes both into account and
1793 * provides a single simple alignment parameter. The offset X is guaranteed
1794 * to satisfy X % align == 0.
1795 */
1796 static inline unsigned
1797 nir_intrinsic_align(const nir_intrinsic_instr *intrin)
1798 {
1799 const unsigned align_mul = nir_intrinsic_align_mul(intrin);
1800 const unsigned align_offset = nir_intrinsic_align_offset(intrin);
1801 assert(align_offset < align_mul);
1802 return align_offset ? 1 << (ffs(align_offset) - 1) : align_mul;
1803 }
1804
1805 unsigned
1806 nir_image_intrinsic_coord_components(const nir_intrinsic_instr *instr);
1807
1808 /* Converts a image_deref_* intrinsic into a image_* one */
1809 void nir_rewrite_image_intrinsic(nir_intrinsic_instr *instr,
1810 nir_ssa_def *handle, bool bindless);
1811
1812 /* Determine if an intrinsic can be arbitrarily reordered and eliminated. */
1813 static inline bool
1814 nir_intrinsic_can_reorder(nir_intrinsic_instr *instr)
1815 {
1816 if (instr->intrinsic == nir_intrinsic_load_deref ||
1817 instr->intrinsic == nir_intrinsic_load_ssbo ||
1818 instr->intrinsic == nir_intrinsic_bindless_image_load ||
1819 instr->intrinsic == nir_intrinsic_image_deref_load ||
1820 instr->intrinsic == nir_intrinsic_image_load) {
1821 return nir_intrinsic_access(instr) & ACCESS_CAN_REORDER;
1822 } else {
1823 const nir_intrinsic_info *info =
1824 &nir_intrinsic_infos[instr->intrinsic];
1825 return (info->flags & NIR_INTRINSIC_CAN_ELIMINATE) &&
1826 (info->flags & NIR_INTRINSIC_CAN_REORDER);
1827 }
1828 }
1829
1830 /**
1831 * \group texture information
1832 *
1833 * This gives semantic information about textures which is useful to the
1834 * frontend, the backend, and lowering passes, but not the optimizer.
1835 */
1836
1837 typedef enum {
1838 nir_tex_src_coord,
1839 nir_tex_src_projector,
1840 nir_tex_src_comparator, /* shadow comparator */
1841 nir_tex_src_offset,
1842 nir_tex_src_bias,
1843 nir_tex_src_lod,
1844 nir_tex_src_min_lod,
1845 nir_tex_src_ms_index, /* MSAA sample index */
1846 nir_tex_src_ms_mcs, /* MSAA compression value */
1847 nir_tex_src_ddx,
1848 nir_tex_src_ddy,
1849 nir_tex_src_texture_deref, /* < deref pointing to the texture */
1850 nir_tex_src_sampler_deref, /* < deref pointing to the sampler */
1851 nir_tex_src_texture_offset, /* < dynamically uniform indirect offset */
1852 nir_tex_src_sampler_offset, /* < dynamically uniform indirect offset */
1853 nir_tex_src_texture_handle, /* < bindless texture handle */
1854 nir_tex_src_sampler_handle, /* < bindless sampler handle */
1855 nir_tex_src_plane, /* < selects plane for planar textures */
1856 nir_num_tex_src_types
1857 } nir_tex_src_type;
1858
1859 typedef struct {
1860 nir_src src;
1861 nir_tex_src_type src_type;
1862 } nir_tex_src;
1863
1864 typedef enum {
1865 nir_texop_tex, /**< Regular texture look-up */
1866 nir_texop_txb, /**< Texture look-up with LOD bias */
1867 nir_texop_txl, /**< Texture look-up with explicit LOD */
1868 nir_texop_txd, /**< Texture look-up with partial derivatives */
1869 nir_texop_txf, /**< Texel fetch with explicit LOD */
1870 nir_texop_txf_ms, /**< Multisample texture fetch */
1871 nir_texop_txf_ms_fb, /**< Multisample texture fetch from framebuffer */
1872 nir_texop_txf_ms_mcs, /**< Multisample compression value fetch */
1873 nir_texop_txs, /**< Texture size */
1874 nir_texop_lod, /**< Texture lod query */
1875 nir_texop_tg4, /**< Texture gather */
1876 nir_texop_query_levels, /**< Texture levels query */
1877 nir_texop_texture_samples, /**< Texture samples query */
1878 nir_texop_samples_identical, /**< Query whether all samples are definitely
1879 * identical.
1880 */
1881 nir_texop_tex_prefetch, /**< Regular texture look-up, eligible for pre-dispatch */
1882 nir_texop_fragment_fetch, /**< Multisample fragment color texture fetch */
1883 nir_texop_fragment_mask_fetch,/**< Multisample fragment mask texture fetch */
1884 } nir_texop;
1885
1886 typedef struct {
1887 nir_instr instr;
1888
1889 enum glsl_sampler_dim sampler_dim;
1890 nir_alu_type dest_type;
1891
1892 nir_texop op;
1893 nir_dest dest;
1894 nir_tex_src *src;
1895 unsigned num_srcs, coord_components;
1896 bool is_array, is_shadow;
1897
1898 /**
1899 * If is_shadow is true, whether this is the old-style shadow that outputs 4
1900 * components or the new-style shadow that outputs 1 component.
1901 */
1902 bool is_new_style_shadow;
1903
1904 /* gather component selector */
1905 unsigned component : 2;
1906
1907 /* gather offsets */
1908 int8_t tg4_offsets[4][2];
1909
1910 /* True if the texture index or handle is not dynamically uniform */
1911 bool texture_non_uniform;
1912
1913 /* True if the sampler index or handle is not dynamically uniform */
1914 bool sampler_non_uniform;
1915
1916 /** The texture index
1917 *
1918 * If this texture instruction has a nir_tex_src_texture_offset source,
1919 * then the texture index is given by texture_index + texture_offset.
1920 */
1921 unsigned texture_index;
1922
1923 /** The sampler index
1924 *
1925 * The following operations do not require a sampler and, as such, this
1926 * field should be ignored:
1927 * - nir_texop_txf
1928 * - nir_texop_txf_ms
1929 * - nir_texop_txs
1930 * - nir_texop_lod
1931 * - nir_texop_query_levels
1932 * - nir_texop_texture_samples
1933 * - nir_texop_samples_identical
1934 *
1935 * If this texture instruction has a nir_tex_src_sampler_offset source,
1936 * then the sampler index is given by sampler_index + sampler_offset.
1937 */
1938 unsigned sampler_index;
1939 } nir_tex_instr;
1940
1941 static inline unsigned
1942 nir_tex_instr_dest_size(const nir_tex_instr *instr)
1943 {
1944 switch (instr->op) {
1945 case nir_texop_txs: {
1946 unsigned ret;
1947 switch (instr->sampler_dim) {
1948 case GLSL_SAMPLER_DIM_1D:
1949 case GLSL_SAMPLER_DIM_BUF:
1950 ret = 1;
1951 break;
1952 case GLSL_SAMPLER_DIM_2D:
1953 case GLSL_SAMPLER_DIM_CUBE:
1954 case GLSL_SAMPLER_DIM_MS:
1955 case GLSL_SAMPLER_DIM_RECT:
1956 case GLSL_SAMPLER_DIM_EXTERNAL:
1957 case GLSL_SAMPLER_DIM_SUBPASS:
1958 ret = 2;
1959 break;
1960 case GLSL_SAMPLER_DIM_3D:
1961 ret = 3;
1962 break;
1963 default:
1964 unreachable("not reached");
1965 }
1966 if (instr->is_array)
1967 ret++;
1968 return ret;
1969 }
1970
1971 case nir_texop_lod:
1972 return 2;
1973
1974 case nir_texop_texture_samples:
1975 case nir_texop_query_levels:
1976 case nir_texop_samples_identical:
1977 case nir_texop_fragment_mask_fetch:
1978 return 1;
1979
1980 default:
1981 if (instr->is_shadow && instr->is_new_style_shadow)
1982 return 1;
1983
1984 return 4;
1985 }
1986 }
1987
1988 /* Returns true if this texture operation queries something about the texture
1989 * rather than actually sampling it.
1990 */
1991 static inline bool
1992 nir_tex_instr_is_query(const nir_tex_instr *instr)
1993 {
1994 switch (instr->op) {
1995 case nir_texop_txs:
1996 case nir_texop_lod:
1997 case nir_texop_texture_samples:
1998 case nir_texop_query_levels:
1999 case nir_texop_txf_ms_mcs:
2000 return true;
2001 case nir_texop_tex:
2002 case nir_texop_txb:
2003 case nir_texop_txl:
2004 case nir_texop_txd:
2005 case nir_texop_txf:
2006 case nir_texop_txf_ms:
2007 case nir_texop_txf_ms_fb:
2008 case nir_texop_tg4:
2009 return false;
2010 default:
2011 unreachable("Invalid texture opcode");
2012 }
2013 }
2014
2015 static inline bool
2016 nir_tex_instr_has_implicit_derivative(const nir_tex_instr *instr)
2017 {
2018 switch (instr->op) {
2019 case nir_texop_tex:
2020 case nir_texop_txb:
2021 case nir_texop_lod:
2022 return true;
2023 default:
2024 return false;
2025 }
2026 }
2027
2028 static inline nir_alu_type
2029 nir_tex_instr_src_type(const nir_tex_instr *instr, unsigned src)
2030 {
2031 switch (instr->src[src].src_type) {
2032 case nir_tex_src_coord:
2033 switch (instr->op) {
2034 case nir_texop_txf:
2035 case nir_texop_txf_ms:
2036 case nir_texop_txf_ms_fb:
2037 case nir_texop_txf_ms_mcs:
2038 case nir_texop_samples_identical:
2039 return nir_type_int;
2040
2041 default:
2042 return nir_type_float;
2043 }
2044
2045 case nir_tex_src_lod:
2046 switch (instr->op) {
2047 case nir_texop_txs:
2048 case nir_texop_txf:
2049 return nir_type_int;
2050
2051 default:
2052 return nir_type_float;
2053 }
2054
2055 case nir_tex_src_projector:
2056 case nir_tex_src_comparator:
2057 case nir_tex_src_bias:
2058 case nir_tex_src_min_lod:
2059 case nir_tex_src_ddx:
2060 case nir_tex_src_ddy:
2061 return nir_type_float;
2062
2063 case nir_tex_src_offset:
2064 case nir_tex_src_ms_index:
2065 case nir_tex_src_plane:
2066 return nir_type_int;
2067
2068 case nir_tex_src_ms_mcs:
2069 case nir_tex_src_texture_deref:
2070 case nir_tex_src_sampler_deref:
2071 case nir_tex_src_texture_offset:
2072 case nir_tex_src_sampler_offset:
2073 case nir_tex_src_texture_handle:
2074 case nir_tex_src_sampler_handle:
2075 return nir_type_uint;
2076
2077 case nir_num_tex_src_types:
2078 unreachable("nir_num_tex_src_types is not a valid source type");
2079 }
2080
2081 unreachable("Invalid texture source type");
2082 }
2083
2084 static inline unsigned
2085 nir_tex_instr_src_size(const nir_tex_instr *instr, unsigned src)
2086 {
2087 if (instr->src[src].src_type == nir_tex_src_coord)
2088 return instr->coord_components;
2089
2090 /* The MCS value is expected to be a vec4 returned by a txf_ms_mcs */
2091 if (instr->src[src].src_type == nir_tex_src_ms_mcs)
2092 return 4;
2093
2094 if (instr->src[src].src_type == nir_tex_src_ddx ||
2095 instr->src[src].src_type == nir_tex_src_ddy) {
2096 if (instr->is_array)
2097 return instr->coord_components - 1;
2098 else
2099 return instr->coord_components;
2100 }
2101
2102 /* Usual APIs don't allow cube + offset, but we allow it, with 2 coords for
2103 * the offset, since a cube maps to a single face.
2104 */
2105 if (instr->src[src].src_type == nir_tex_src_offset) {
2106 if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE)
2107 return 2;
2108 else if (instr->is_array)
2109 return instr->coord_components - 1;
2110 else
2111 return instr->coord_components;
2112 }
2113
2114 return 1;
2115 }
2116
2117 static inline int
2118 nir_tex_instr_src_index(const nir_tex_instr *instr, nir_tex_src_type type)
2119 {
2120 for (unsigned i = 0; i < instr->num_srcs; i++)
2121 if (instr->src[i].src_type == type)
2122 return (int) i;
2123
2124 return -1;
2125 }
2126
2127 void nir_tex_instr_add_src(nir_tex_instr *tex,
2128 nir_tex_src_type src_type,
2129 nir_src src);
2130
2131 void nir_tex_instr_remove_src(nir_tex_instr *tex, unsigned src_idx);
2132
2133 bool nir_tex_instr_has_explicit_tg4_offsets(nir_tex_instr *tex);
2134
2135 typedef struct {
2136 nir_instr instr;
2137
2138 nir_ssa_def def;
2139
2140 nir_const_value value[];
2141 } nir_load_const_instr;
2142
2143 typedef enum {
2144 nir_jump_return,
2145 nir_jump_break,
2146 nir_jump_continue,
2147 } nir_jump_type;
2148
2149 typedef struct {
2150 nir_instr instr;
2151 nir_jump_type type;
2152 } nir_jump_instr;
2153
2154 /* creates a new SSA variable in an undefined state */
2155
2156 typedef struct {
2157 nir_instr instr;
2158 nir_ssa_def def;
2159 } nir_ssa_undef_instr;
2160
2161 typedef struct {
2162 struct exec_node node;
2163
2164 /* The predecessor block corresponding to this source */
2165 struct nir_block *pred;
2166
2167 nir_src src;
2168 } nir_phi_src;
2169
2170 #define nir_foreach_phi_src(phi_src, phi) \
2171 foreach_list_typed(nir_phi_src, phi_src, node, &(phi)->srcs)
2172 #define nir_foreach_phi_src_safe(phi_src, phi) \
2173 foreach_list_typed_safe(nir_phi_src, phi_src, node, &(phi)->srcs)
2174
2175 typedef struct {
2176 nir_instr instr;
2177
2178 struct exec_list srcs; /** < list of nir_phi_src */
2179
2180 nir_dest dest;
2181 } nir_phi_instr;
2182
2183 typedef struct {
2184 struct exec_node node;
2185 nir_src src;
2186 nir_dest dest;
2187 } nir_parallel_copy_entry;
2188
2189 #define nir_foreach_parallel_copy_entry(entry, pcopy) \
2190 foreach_list_typed(nir_parallel_copy_entry, entry, node, &(pcopy)->entries)
2191
2192 typedef struct {
2193 nir_instr instr;
2194
2195 /* A list of nir_parallel_copy_entrys. The sources of all of the
2196 * entries are copied to the corresponding destinations "in parallel".
2197 * In other words, if we have two entries: a -> b and b -> a, the values
2198 * get swapped.
2199 */
2200 struct exec_list entries;
2201 } nir_parallel_copy_instr;
2202
2203 NIR_DEFINE_CAST(nir_instr_as_alu, nir_instr, nir_alu_instr, instr,
2204 type, nir_instr_type_alu)
2205 NIR_DEFINE_CAST(nir_instr_as_deref, nir_instr, nir_deref_instr, instr,
2206 type, nir_instr_type_deref)
2207 NIR_DEFINE_CAST(nir_instr_as_call, nir_instr, nir_call_instr, instr,
2208 type, nir_instr_type_call)
2209 NIR_DEFINE_CAST(nir_instr_as_jump, nir_instr, nir_jump_instr, instr,
2210 type, nir_instr_type_jump)
2211 NIR_DEFINE_CAST(nir_instr_as_tex, nir_instr, nir_tex_instr, instr,
2212 type, nir_instr_type_tex)
2213 NIR_DEFINE_CAST(nir_instr_as_intrinsic, nir_instr, nir_intrinsic_instr, instr,
2214 type, nir_instr_type_intrinsic)
2215 NIR_DEFINE_CAST(nir_instr_as_load_const, nir_instr, nir_load_const_instr, instr,
2216 type, nir_instr_type_load_const)
2217 NIR_DEFINE_CAST(nir_instr_as_ssa_undef, nir_instr, nir_ssa_undef_instr, instr,
2218 type, nir_instr_type_ssa_undef)
2219 NIR_DEFINE_CAST(nir_instr_as_phi, nir_instr, nir_phi_instr, instr,
2220 type, nir_instr_type_phi)
2221 NIR_DEFINE_CAST(nir_instr_as_parallel_copy, nir_instr,
2222 nir_parallel_copy_instr, instr,
2223 type, nir_instr_type_parallel_copy)
2224
2225
2226 #define NIR_DEFINE_SRC_AS_CONST(type, suffix) \
2227 static inline type \
2228 nir_src_comp_as_##suffix(nir_src src, unsigned comp) \
2229 { \
2230 assert(nir_src_is_const(src)); \
2231 nir_load_const_instr *load = \
2232 nir_instr_as_load_const(src.ssa->parent_instr); \
2233 assert(comp < load->def.num_components); \
2234 return nir_const_value_as_##suffix(load->value[comp], \
2235 load->def.bit_size); \
2236 } \
2237 \
2238 static inline type \
2239 nir_src_as_##suffix(nir_src src) \
2240 { \
2241 assert(nir_src_num_components(src) == 1); \
2242 return nir_src_comp_as_##suffix(src, 0); \
2243 }
2244
2245 NIR_DEFINE_SRC_AS_CONST(int64_t, int)
2246 NIR_DEFINE_SRC_AS_CONST(uint64_t, uint)
2247 NIR_DEFINE_SRC_AS_CONST(bool, bool)
2248 NIR_DEFINE_SRC_AS_CONST(double, float)
2249
2250 #undef NIR_DEFINE_SRC_AS_CONST
2251
2252
2253 typedef struct {
2254 nir_ssa_def *def;
2255 unsigned comp;
2256 } nir_ssa_scalar;
2257
2258 static inline bool
2259 nir_ssa_scalar_is_const(nir_ssa_scalar s)
2260 {
2261 return s.def->parent_instr->type == nir_instr_type_load_const;
2262 }
2263
2264 static inline nir_const_value
2265 nir_ssa_scalar_as_const_value(nir_ssa_scalar s)
2266 {
2267 assert(s.comp < s.def->num_components);
2268 nir_load_const_instr *load = nir_instr_as_load_const(s.def->parent_instr);
2269 return load->value[s.comp];
2270 }
2271
2272 #define NIR_DEFINE_SCALAR_AS_CONST(type, suffix) \
2273 static inline type \
2274 nir_ssa_scalar_as_##suffix(nir_ssa_scalar s) \
2275 { \
2276 return nir_const_value_as_##suffix( \
2277 nir_ssa_scalar_as_const_value(s), s.def->bit_size); \
2278 }
2279
2280 NIR_DEFINE_SCALAR_AS_CONST(int64_t, int)
2281 NIR_DEFINE_SCALAR_AS_CONST(uint64_t, uint)
2282 NIR_DEFINE_SCALAR_AS_CONST(bool, bool)
2283 NIR_DEFINE_SCALAR_AS_CONST(double, float)
2284
2285 #undef NIR_DEFINE_SCALAR_AS_CONST
2286
2287 static inline bool
2288 nir_ssa_scalar_is_alu(nir_ssa_scalar s)
2289 {
2290 return s.def->parent_instr->type == nir_instr_type_alu;
2291 }
2292
2293 static inline nir_op
2294 nir_ssa_scalar_alu_op(nir_ssa_scalar s)
2295 {
2296 return nir_instr_as_alu(s.def->parent_instr)->op;
2297 }
2298
2299 static inline nir_ssa_scalar
2300 nir_ssa_scalar_chase_alu_src(nir_ssa_scalar s, unsigned alu_src_idx)
2301 {
2302 nir_ssa_scalar out = { NULL, 0 };
2303
2304 nir_alu_instr *alu = nir_instr_as_alu(s.def->parent_instr);
2305 assert(alu_src_idx < nir_op_infos[alu->op].num_inputs);
2306
2307 /* Our component must be written */
2308 assert(s.comp < s.def->num_components);
2309 assert(alu->dest.write_mask & (1u << s.comp));
2310
2311 assert(alu->src[alu_src_idx].src.is_ssa);
2312 out.def = alu->src[alu_src_idx].src.ssa;
2313
2314 if (nir_op_infos[alu->op].input_sizes[alu_src_idx] == 0) {
2315 /* The ALU src is unsized so the source component follows the
2316 * destination component.
2317 */
2318 out.comp = alu->src[alu_src_idx].swizzle[s.comp];
2319 } else {
2320 /* This is a sized source so all source components work together to
2321 * produce all the destination components. Since we need to return a
2322 * scalar, this only works if the source is a scalar.
2323 */
2324 assert(nir_op_infos[alu->op].input_sizes[alu_src_idx] == 1);
2325 out.comp = alu->src[alu_src_idx].swizzle[0];
2326 }
2327 assert(out.comp < out.def->num_components);
2328
2329 return out;
2330 }
2331
2332
2333 /*
2334 * Control flow
2335 *
2336 * Control flow consists of a tree of control flow nodes, which include
2337 * if-statements and loops. The leaves of the tree are basic blocks, lists of
2338 * instructions that always run start-to-finish. Each basic block also keeps
2339 * track of its successors (blocks which may run immediately after the current
2340 * block) and predecessors (blocks which could have run immediately before the
2341 * current block). Each function also has a start block and an end block which
2342 * all return statements point to (which is always empty). Together, all the
2343 * blocks with their predecessors and successors make up the control flow
2344 * graph (CFG) of the function. There are helpers that modify the tree of
2345 * control flow nodes while modifying the CFG appropriately; these should be
2346 * used instead of modifying the tree directly.
2347 */
2348
2349 typedef enum {
2350 nir_cf_node_block,
2351 nir_cf_node_if,
2352 nir_cf_node_loop,
2353 nir_cf_node_function
2354 } nir_cf_node_type;
2355
2356 typedef struct nir_cf_node {
2357 struct exec_node node;
2358 nir_cf_node_type type;
2359 struct nir_cf_node *parent;
2360 } nir_cf_node;
2361
2362 typedef struct nir_block {
2363 nir_cf_node cf_node;
2364
2365 struct exec_list instr_list; /** < list of nir_instr */
2366
2367 /** generic block index; generated by nir_index_blocks */
2368 unsigned index;
2369
2370 /*
2371 * Each block can only have up to 2 successors, so we put them in a simple
2372 * array - no need for anything more complicated.
2373 */
2374 struct nir_block *successors[2];
2375
2376 /* Set of nir_block predecessors in the CFG */
2377 struct set *predecessors;
2378
2379 /*
2380 * this node's immediate dominator in the dominance tree - set to NULL for
2381 * the start block.
2382 */
2383 struct nir_block *imm_dom;
2384
2385 /* This node's children in the dominance tree */
2386 unsigned num_dom_children;
2387 struct nir_block **dom_children;
2388
2389 /* Set of nir_blocks on the dominance frontier of this block */
2390 struct set *dom_frontier;
2391
2392 /*
2393 * These two indices have the property that dom_{pre,post}_index for each
2394 * child of this block in the dominance tree will always be between
2395 * dom_pre_index and dom_post_index for this block, which makes testing if
2396 * a given block is dominated by another block an O(1) operation.
2397 */
2398 unsigned dom_pre_index, dom_post_index;
2399
2400 /* live in and out for this block; used for liveness analysis */
2401 BITSET_WORD *live_in;
2402 BITSET_WORD *live_out;
2403 } nir_block;
2404
2405 static inline nir_instr *
2406 nir_block_first_instr(nir_block *block)
2407 {
2408 struct exec_node *head = exec_list_get_head(&block->instr_list);
2409 return exec_node_data(nir_instr, head, node);
2410 }
2411
2412 static inline nir_instr *
2413 nir_block_last_instr(nir_block *block)
2414 {
2415 struct exec_node *tail = exec_list_get_tail(&block->instr_list);
2416 return exec_node_data(nir_instr, tail, node);
2417 }
2418
2419 static inline bool
2420 nir_block_ends_in_jump(nir_block *block)
2421 {
2422 return !exec_list_is_empty(&block->instr_list) &&
2423 nir_block_last_instr(block)->type == nir_instr_type_jump;
2424 }
2425
2426 #define nir_foreach_instr(instr, block) \
2427 foreach_list_typed(nir_instr, instr, node, &(block)->instr_list)
2428 #define nir_foreach_instr_reverse(instr, block) \
2429 foreach_list_typed_reverse(nir_instr, instr, node, &(block)->instr_list)
2430 #define nir_foreach_instr_safe(instr, block) \
2431 foreach_list_typed_safe(nir_instr, instr, node, &(block)->instr_list)
2432 #define nir_foreach_instr_reverse_safe(instr, block) \
2433 foreach_list_typed_reverse_safe(nir_instr, instr, node, &(block)->instr_list)
2434
2435 typedef enum {
2436 nir_selection_control_none = 0x0,
2437 nir_selection_control_flatten = 0x1,
2438 nir_selection_control_dont_flatten = 0x2,
2439 } nir_selection_control;
2440
2441 typedef struct nir_if {
2442 nir_cf_node cf_node;
2443 nir_src condition;
2444 nir_selection_control control;
2445
2446 struct exec_list then_list; /** < list of nir_cf_node */
2447 struct exec_list else_list; /** < list of nir_cf_node */
2448 } nir_if;
2449
2450 typedef struct {
2451 nir_if *nif;
2452
2453 /** Instruction that generates nif::condition. */
2454 nir_instr *conditional_instr;
2455
2456 /** Block within ::nif that has the break instruction. */
2457 nir_block *break_block;
2458
2459 /** Last block for the then- or else-path that does not contain the break. */
2460 nir_block *continue_from_block;
2461
2462 /** True when ::break_block is in the else-path of ::nif. */
2463 bool continue_from_then;
2464 bool induction_rhs;
2465
2466 /* This is true if the terminators exact trip count is unknown. For
2467 * example:
2468 *
2469 * for (int i = 0; i < imin(x, 4); i++)
2470 * ...
2471 *
2472 * Here loop analysis would have set a max_trip_count of 4 however we dont
2473 * know for sure that this is the exact trip count.
2474 */
2475 bool exact_trip_count_unknown;
2476
2477 struct list_head loop_terminator_link;
2478 } nir_loop_terminator;
2479
2480 typedef struct {
2481 /* Estimated cost (in number of instructions) of the loop */
2482 unsigned instr_cost;
2483
2484 /* Guessed trip count based on array indexing */
2485 unsigned guessed_trip_count;
2486
2487 /* Maximum number of times the loop is run (if known) */
2488 unsigned max_trip_count;
2489
2490 /* Do we know the exact number of times the loop will be run */
2491 bool exact_trip_count_known;
2492
2493 /* Unroll the loop regardless of its size */
2494 bool force_unroll;
2495
2496 /* Does the loop contain complex loop terminators, continues or other
2497 * complex behaviours? If this is true we can't rely on
2498 * loop_terminator_list to be complete or accurate.
2499 */
2500 bool complex_loop;
2501
2502 nir_loop_terminator *limiting_terminator;
2503
2504 /* A list of loop_terminators terminating this loop. */
2505 struct list_head loop_terminator_list;
2506 } nir_loop_info;
2507
2508 typedef enum {
2509 nir_loop_control_none = 0x0,
2510 nir_loop_control_unroll = 0x1,
2511 nir_loop_control_dont_unroll = 0x2,
2512 } nir_loop_control;
2513
2514 typedef struct {
2515 nir_cf_node cf_node;
2516
2517 struct exec_list body; /** < list of nir_cf_node */
2518
2519 nir_loop_info *info;
2520 nir_loop_control control;
2521 bool partially_unrolled;
2522 } nir_loop;
2523
2524 /**
2525 * Various bits of metadata that can may be created or required by
2526 * optimization and analysis passes
2527 */
2528 typedef enum {
2529 nir_metadata_none = 0x0,
2530 nir_metadata_block_index = 0x1,
2531 nir_metadata_dominance = 0x2,
2532 nir_metadata_live_ssa_defs = 0x4,
2533 nir_metadata_not_properly_reset = 0x8,
2534 nir_metadata_loop_analysis = 0x10,
2535 } nir_metadata;
2536
2537 typedef struct {
2538 nir_cf_node cf_node;
2539
2540 /** pointer to the function of which this is an implementation */
2541 struct nir_function *function;
2542
2543 struct exec_list body; /** < list of nir_cf_node */
2544
2545 nir_block *end_block;
2546
2547 /** list for all local variables in the function */
2548 struct exec_list locals;
2549
2550 /** list of local registers in the function */
2551 struct exec_list registers;
2552
2553 /** next available local register index */
2554 unsigned reg_alloc;
2555
2556 /** next available SSA value index */
2557 unsigned ssa_alloc;
2558
2559 /* total number of basic blocks, only valid when block_index_dirty = false */
2560 unsigned num_blocks;
2561
2562 nir_metadata valid_metadata;
2563 } nir_function_impl;
2564
2565 ATTRIBUTE_RETURNS_NONNULL static inline nir_block *
2566 nir_start_block(nir_function_impl *impl)
2567 {
2568 return (nir_block *) impl->body.head_sentinel.next;
2569 }
2570
2571 ATTRIBUTE_RETURNS_NONNULL static inline nir_block *
2572 nir_impl_last_block(nir_function_impl *impl)
2573 {
2574 return (nir_block *) impl->body.tail_sentinel.prev;
2575 }
2576
2577 static inline nir_cf_node *
2578 nir_cf_node_next(nir_cf_node *node)
2579 {
2580 struct exec_node *next = exec_node_get_next(&node->node);
2581 if (exec_node_is_tail_sentinel(next))
2582 return NULL;
2583 else
2584 return exec_node_data(nir_cf_node, next, node);
2585 }
2586
2587 static inline nir_cf_node *
2588 nir_cf_node_prev(nir_cf_node *node)
2589 {
2590 struct exec_node *prev = exec_node_get_prev(&node->node);
2591 if (exec_node_is_head_sentinel(prev))
2592 return NULL;
2593 else
2594 return exec_node_data(nir_cf_node, prev, node);
2595 }
2596
2597 static inline bool
2598 nir_cf_node_is_first(const nir_cf_node *node)
2599 {
2600 return exec_node_is_head_sentinel(node->node.prev);
2601 }
2602
2603 static inline bool
2604 nir_cf_node_is_last(const nir_cf_node *node)
2605 {
2606 return exec_node_is_tail_sentinel(node->node.next);
2607 }
2608
2609 NIR_DEFINE_CAST(nir_cf_node_as_block, nir_cf_node, nir_block, cf_node,
2610 type, nir_cf_node_block)
2611 NIR_DEFINE_CAST(nir_cf_node_as_if, nir_cf_node, nir_if, cf_node,
2612 type, nir_cf_node_if)
2613 NIR_DEFINE_CAST(nir_cf_node_as_loop, nir_cf_node, nir_loop, cf_node,
2614 type, nir_cf_node_loop)
2615 NIR_DEFINE_CAST(nir_cf_node_as_function, nir_cf_node,
2616 nir_function_impl, cf_node, type, nir_cf_node_function)
2617
2618 static inline nir_block *
2619 nir_if_first_then_block(nir_if *if_stmt)
2620 {
2621 struct exec_node *head = exec_list_get_head(&if_stmt->then_list);
2622 return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
2623 }
2624
2625 static inline nir_block *
2626 nir_if_last_then_block(nir_if *if_stmt)
2627 {
2628 struct exec_node *tail = exec_list_get_tail(&if_stmt->then_list);
2629 return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
2630 }
2631
2632 static inline nir_block *
2633 nir_if_first_else_block(nir_if *if_stmt)
2634 {
2635 struct exec_node *head = exec_list_get_head(&if_stmt->else_list);
2636 return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
2637 }
2638
2639 static inline nir_block *
2640 nir_if_last_else_block(nir_if *if_stmt)
2641 {
2642 struct exec_node *tail = exec_list_get_tail(&if_stmt->else_list);
2643 return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
2644 }
2645
2646 static inline nir_block *
2647 nir_loop_first_block(nir_loop *loop)
2648 {
2649 struct exec_node *head = exec_list_get_head(&loop->body);
2650 return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
2651 }
2652
2653 static inline nir_block *
2654 nir_loop_last_block(nir_loop *loop)
2655 {
2656 struct exec_node *tail = exec_list_get_tail(&loop->body);
2657 return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
2658 }
2659
2660 /**
2661 * Return true if this list of cf_nodes contains a single empty block.
2662 */
2663 static inline bool
2664 nir_cf_list_is_empty_block(struct exec_list *cf_list)
2665 {
2666 if (exec_list_is_singular(cf_list)) {
2667 struct exec_node *head = exec_list_get_head(cf_list);
2668 nir_block *block =
2669 nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
2670 return exec_list_is_empty(&block->instr_list);
2671 }
2672 return false;
2673 }
2674
2675 typedef struct {
2676 uint8_t num_components;
2677 uint8_t bit_size;
2678 } nir_parameter;
2679
2680 typedef struct nir_function {
2681 struct exec_node node;
2682
2683 const char *name;
2684 struct nir_shader *shader;
2685
2686 unsigned num_params;
2687 nir_parameter *params;
2688
2689 /** The implementation of this function.
2690 *
2691 * If the function is only declared and not implemented, this is NULL.
2692 */
2693 nir_function_impl *impl;
2694
2695 bool is_entrypoint;
2696 } nir_function;
2697
2698 typedef enum {
2699 nir_lower_imul64 = (1 << 0),
2700 nir_lower_isign64 = (1 << 1),
2701 /** Lower all int64 modulus and division opcodes */
2702 nir_lower_divmod64 = (1 << 2),
2703 /** Lower all 64-bit umul_high and imul_high opcodes */
2704 nir_lower_imul_high64 = (1 << 3),
2705 nir_lower_mov64 = (1 << 4),
2706 nir_lower_icmp64 = (1 << 5),
2707 nir_lower_iadd64 = (1 << 6),
2708 nir_lower_iabs64 = (1 << 7),
2709 nir_lower_ineg64 = (1 << 8),
2710 nir_lower_logic64 = (1 << 9),
2711 nir_lower_minmax64 = (1 << 10),
2712 nir_lower_shift64 = (1 << 11),
2713 nir_lower_imul_2x32_64 = (1 << 12),
2714 nir_lower_extract64 = (1 << 13),
2715 nir_lower_ufind_msb64 = (1 << 14),
2716 } nir_lower_int64_options;
2717
2718 typedef enum {
2719 nir_lower_drcp = (1 << 0),
2720 nir_lower_dsqrt = (1 << 1),
2721 nir_lower_drsq = (1 << 2),
2722 nir_lower_dtrunc = (1 << 3),
2723 nir_lower_dfloor = (1 << 4),
2724 nir_lower_dceil = (1 << 5),
2725 nir_lower_dfract = (1 << 6),
2726 nir_lower_dround_even = (1 << 7),
2727 nir_lower_dmod = (1 << 8),
2728 nir_lower_dsub = (1 << 9),
2729 nir_lower_ddiv = (1 << 10),
2730 nir_lower_fp64_full_software = (1 << 11),
2731 } nir_lower_doubles_options;
2732
2733 typedef enum {
2734 nir_divergence_single_prim_per_subgroup = (1 << 0),
2735 nir_divergence_single_patch_per_tcs_subgroup = (1 << 1),
2736 nir_divergence_single_patch_per_tes_subgroup = (1 << 2),
2737 nir_divergence_view_index_uniform = (1 << 3),
2738 } nir_divergence_options;
2739
2740 typedef struct nir_shader_compiler_options {
2741 bool lower_fdiv;
2742 bool lower_ffma;
2743 bool fuse_ffma;
2744 bool lower_flrp16;
2745 bool lower_flrp32;
2746 /** Lowers flrp when it does not support doubles */
2747 bool lower_flrp64;
2748 bool lower_fpow;
2749 bool lower_fsat;
2750 bool lower_fsqrt;
2751 bool lower_sincos;
2752 bool lower_fmod;
2753 /** Lowers ibitfield_extract/ubitfield_extract to ibfe/ubfe. */
2754 bool lower_bitfield_extract;
2755 /** Lowers ibitfield_extract/ubitfield_extract to compares, shifts. */
2756 bool lower_bitfield_extract_to_shifts;
2757 /** Lowers bitfield_insert to bfi/bfm */
2758 bool lower_bitfield_insert;
2759 /** Lowers bitfield_insert to compares, and shifts. */
2760 bool lower_bitfield_insert_to_shifts;
2761 /** Lowers bitfield_insert to bfm/bitfield_select. */
2762 bool lower_bitfield_insert_to_bitfield_select;
2763 /** Lowers bitfield_reverse to shifts. */
2764 bool lower_bitfield_reverse;
2765 /** Lowers bit_count to shifts. */
2766 bool lower_bit_count;
2767 /** Lowers ifind_msb to compare and ufind_msb */
2768 bool lower_ifind_msb;
2769 /** Lowers find_lsb to ufind_msb and logic ops */
2770 bool lower_find_lsb;
2771 bool lower_uadd_carry;
2772 bool lower_usub_borrow;
2773 /** Lowers imul_high/umul_high to 16-bit multiplies and carry operations. */
2774 bool lower_mul_high;
2775 /** lowers fneg and ineg to fsub and isub. */
2776 bool lower_negate;
2777 /** lowers fsub and isub to fadd+fneg and iadd+ineg. */
2778 bool lower_sub;
2779
2780 /* lower {slt,sge,seq,sne} to {flt,fge,feq,fne} + b2f: */
2781 bool lower_scmp;
2782
2783 /* lower fall_equalN/fany_nequalN (ex:fany_nequal4 to sne+fdot4+fsat) */
2784 bool lower_vector_cmp;
2785
2786 /** enables rules to lower idiv by power-of-two: */
2787 bool lower_idiv;
2788
2789 /** enable rules to avoid bit ops */
2790 bool lower_bitops;
2791
2792 /** enables rules to lower isign to imin+imax */
2793 bool lower_isign;
2794
2795 /** enables rules to lower fsign to fsub and flt */
2796 bool lower_fsign;
2797
2798 /* lower fdph to fdot4 */
2799 bool lower_fdph;
2800
2801 /** lower fdot to fmul and fsum/fadd. */
2802 bool lower_fdot;
2803
2804 /* Does the native fdot instruction replicate its result for four
2805 * components? If so, then opt_algebraic_late will turn all fdotN
2806 * instructions into fdot_replicatedN instructions.
2807 */
2808 bool fdot_replicates;
2809
2810 /** lowers ffloor to fsub+ffract: */
2811 bool lower_ffloor;
2812
2813 /** lowers ffract to fsub+ffloor: */
2814 bool lower_ffract;
2815
2816 /** lowers fceil to fneg+ffloor+fneg: */
2817 bool lower_fceil;
2818
2819 bool lower_ftrunc;
2820
2821 bool lower_ldexp;
2822
2823 bool lower_pack_half_2x16;
2824 bool lower_pack_half_2x16_split;
2825 bool lower_pack_unorm_2x16;
2826 bool lower_pack_snorm_2x16;
2827 bool lower_pack_unorm_4x8;
2828 bool lower_pack_snorm_4x8;
2829 bool lower_unpack_half_2x16;
2830 bool lower_unpack_half_2x16_split;
2831 bool lower_unpack_unorm_2x16;
2832 bool lower_unpack_snorm_2x16;
2833 bool lower_unpack_unorm_4x8;
2834 bool lower_unpack_snorm_4x8;
2835
2836 bool lower_extract_byte;
2837 bool lower_extract_word;
2838
2839 bool lower_all_io_to_temps;
2840 bool lower_all_io_to_elements;
2841
2842 /* Indicates that the driver only has zero-based vertex id */
2843 bool vertex_id_zero_based;
2844
2845 /**
2846 * If enabled, gl_BaseVertex will be lowered as:
2847 * is_indexed_draw (~0/0) & firstvertex
2848 */
2849 bool lower_base_vertex;
2850
2851 /**
2852 * If enabled, gl_HelperInvocation will be lowered as:
2853 *
2854 * !((1 << sample_id) & sample_mask_in))
2855 *
2856 * This depends on some possibly hw implementation details, which may
2857 * not be true for all hw. In particular that the FS is only executed
2858 * for covered samples or for helper invocations. So, do not blindly
2859 * enable this option.
2860 *
2861 * Note: See also issue #22 in ARB_shader_image_load_store
2862 */
2863 bool lower_helper_invocation;
2864
2865 /**
2866 * Convert gl_SampleMaskIn to gl_HelperInvocation as follows:
2867 *
2868 * gl_SampleMaskIn == 0 ---> gl_HelperInvocation
2869 * gl_SampleMaskIn != 0 ---> !gl_HelperInvocation
2870 */
2871 bool optimize_sample_mask_in;
2872
2873 bool lower_cs_local_index_from_id;
2874 bool lower_cs_local_id_from_index;
2875
2876 bool lower_device_index_to_zero;
2877
2878 /* Set if nir_lower_wpos_ytransform() should also invert gl_PointCoord. */
2879 bool lower_wpos_pntc;
2880
2881 /**
2882 * Set if nir_op_[iu]hadd and nir_op_[iu]rhadd instructions should be
2883 * lowered to simple arithmetic.
2884 *
2885 * If this flag is set, the lowering will be applied to all bit-sizes of
2886 * these instructions.
2887 *
2888 * \sa ::lower_hadd64
2889 */
2890 bool lower_hadd;
2891
2892 /**
2893 * Set if only 64-bit nir_op_[iu]hadd and nir_op_[iu]rhadd instructions
2894 * should be lowered to simple arithmetic.
2895 *
2896 * If this flag is set, the lowering will be applied to only 64-bit
2897 * versions of these instructions.
2898 *
2899 * \sa ::lower_hadd
2900 */
2901 bool lower_hadd64;
2902
2903 /**
2904 * Set if nir_op_add_sat and nir_op_usub_sat should be lowered to simple
2905 * arithmetic.
2906 *
2907 * If this flag is set, the lowering will be applied to all bit-sizes of
2908 * these instructions.
2909 *
2910 * \sa ::lower_usub_sat64
2911 */
2912 bool lower_add_sat;
2913
2914 /**
2915 * Set if only 64-bit nir_op_usub_sat should be lowered to simple
2916 * arithmetic.
2917 *
2918 * \sa ::lower_add_sat
2919 */
2920 bool lower_usub_sat64;
2921
2922 /**
2923 * Should IO be re-vectorized? Some scalar ISAs still operate on vec4's
2924 * for IO purposes and would prefer loads/stores be vectorized.
2925 */
2926 bool vectorize_io;
2927 bool lower_to_scalar;
2928
2929 /**
2930 * Should the linker unify inputs_read/outputs_written between adjacent
2931 * shader stages which are linked into a single program?
2932 */
2933 bool unify_interfaces;
2934
2935 /**
2936 * Should nir_lower_io() create load_interpolated_input intrinsics?
2937 *
2938 * If not, it generates regular load_input intrinsics and interpolation
2939 * information must be inferred from the list of input nir_variables.
2940 */
2941 bool use_interpolated_input_intrinsics;
2942
2943 /* Lowers when 32x32->64 bit multiplication is not supported */
2944 bool lower_mul_2x32_64;
2945
2946 /* Lowers when rotate instruction is not supported */
2947 bool lower_rotate;
2948
2949 /**
2950 * Backend supports imul24, and would like to use it (when possible)
2951 * for address/offset calculation. If true, driver should call
2952 * nir_lower_amul(). (If not set, amul will automatically be lowered
2953 * to imul.)
2954 */
2955 bool has_imul24;
2956
2957 /* Whether to generate only scoped_memory_barrier intrinsics instead of the
2958 * set of memory barrier intrinsics based on GLSL.
2959 */
2960 bool use_scoped_memory_barrier;
2961
2962 /**
2963 * Is this the Intel vec4 backend?
2964 *
2965 * Used to inhibit algebraic optimizations that are known to be harmful on
2966 * the Intel vec4 backend. This is generally applicable to any
2967 * optimization that might cause more immediate values to be used in
2968 * 3-source (e.g., ffma and flrp) instructions.
2969 */
2970 bool intel_vec4;
2971
2972 unsigned max_unroll_iterations;
2973
2974 nir_lower_int64_options lower_int64_options;
2975 nir_lower_doubles_options lower_doubles_options;
2976 } nir_shader_compiler_options;
2977
2978 typedef struct nir_shader {
2979 /** list of uniforms (nir_variable) */
2980 struct exec_list uniforms;
2981
2982 /** list of inputs (nir_variable) */
2983 struct exec_list inputs;
2984
2985 /** list of outputs (nir_variable) */
2986 struct exec_list outputs;
2987
2988 /** list of shared compute variables (nir_variable) */
2989 struct exec_list shared;
2990
2991 /** Set of driver-specific options for the shader.
2992 *
2993 * The memory for the options is expected to be kept in a single static
2994 * copy by the driver.
2995 */
2996 const struct nir_shader_compiler_options *options;
2997
2998 /** Various bits of compile-time information about a given shader */
2999 struct shader_info info;
3000
3001 /** list of global variables in the shader (nir_variable) */
3002 struct exec_list globals;
3003
3004 /** list of system value variables in the shader (nir_variable) */
3005 struct exec_list system_values;
3006
3007 struct exec_list functions; /** < list of nir_function */
3008
3009 /**
3010 * the highest index a load_input_*, load_uniform_*, etc. intrinsic can
3011 * access plus one
3012 */
3013 unsigned num_inputs, num_uniforms, num_outputs, num_shared;
3014
3015 /** Size in bytes of required scratch space */
3016 unsigned scratch_size;
3017
3018 /** Constant data associated with this shader.
3019 *
3020 * Constant data is loaded through load_constant intrinsics. See also
3021 * nir_opt_large_constants.
3022 */
3023 void *constant_data;
3024 unsigned constant_data_size;
3025 } nir_shader;
3026
3027 #define nir_foreach_function(func, shader) \
3028 foreach_list_typed(nir_function, func, node, &(shader)->functions)
3029
3030 static inline nir_function_impl *
3031 nir_shader_get_entrypoint(nir_shader *shader)
3032 {
3033 nir_function *func = NULL;
3034
3035 nir_foreach_function(function, shader) {
3036 assert(func == NULL);
3037 if (function->is_entrypoint) {
3038 func = function;
3039 #ifndef NDEBUG
3040 break;
3041 #endif
3042 }
3043 }
3044
3045 if (!func)
3046 return NULL;
3047
3048 assert(func->num_params == 0);
3049 assert(func->impl);
3050 return func->impl;
3051 }
3052
3053 nir_shader *nir_shader_create(void *mem_ctx,
3054 gl_shader_stage stage,
3055 const nir_shader_compiler_options *options,
3056 shader_info *si);
3057
3058 nir_register *nir_local_reg_create(nir_function_impl *impl);
3059
3060 void nir_reg_remove(nir_register *reg);
3061
3062 /** Adds a variable to the appropriate list in nir_shader */
3063 void nir_shader_add_variable(nir_shader *shader, nir_variable *var);
3064
3065 static inline void
3066 nir_function_impl_add_variable(nir_function_impl *impl, nir_variable *var)
3067 {
3068 assert(var->data.mode == nir_var_function_temp);
3069 exec_list_push_tail(&impl->locals, &var->node);
3070 }
3071
3072 /** creates a variable, sets a few defaults, and adds it to the list */
3073 nir_variable *nir_variable_create(nir_shader *shader,
3074 nir_variable_mode mode,
3075 const struct glsl_type *type,
3076 const char *name);
3077 /** creates a local variable and adds it to the list */
3078 nir_variable *nir_local_variable_create(nir_function_impl *impl,
3079 const struct glsl_type *type,
3080 const char *name);
3081
3082 /** creates a function and adds it to the shader's list of functions */
3083 nir_function *nir_function_create(nir_shader *shader, const char *name);
3084
3085 nir_function_impl *nir_function_impl_create(nir_function *func);
3086 /** creates a function_impl that isn't tied to any particular function */
3087 nir_function_impl *nir_function_impl_create_bare(nir_shader *shader);
3088
3089 nir_block *nir_block_create(nir_shader *shader);
3090 nir_if *nir_if_create(nir_shader *shader);
3091 nir_loop *nir_loop_create(nir_shader *shader);
3092
3093 nir_function_impl *nir_cf_node_get_function(nir_cf_node *node);
3094
3095 /** requests that the given pieces of metadata be generated */
3096 void nir_metadata_require(nir_function_impl *impl, nir_metadata required, ...);
3097 /** dirties all but the preserved metadata */
3098 void nir_metadata_preserve(nir_function_impl *impl, nir_metadata preserved);
3099
3100 /** creates an instruction with default swizzle/writemask/etc. with NULL registers */
3101 nir_alu_instr *nir_alu_instr_create(nir_shader *shader, nir_op op);
3102
3103 nir_deref_instr *nir_deref_instr_create(nir_shader *shader,
3104 nir_deref_type deref_type);
3105
3106 nir_jump_instr *nir_jump_instr_create(nir_shader *shader, nir_jump_type type);
3107
3108 nir_load_const_instr *nir_load_const_instr_create(nir_shader *shader,
3109 unsigned num_components,
3110 unsigned bit_size);
3111
3112 nir_intrinsic_instr *nir_intrinsic_instr_create(nir_shader *shader,
3113 nir_intrinsic_op op);
3114
3115 nir_call_instr *nir_call_instr_create(nir_shader *shader,
3116 nir_function *callee);
3117
3118 nir_tex_instr *nir_tex_instr_create(nir_shader *shader, unsigned num_srcs);
3119
3120 nir_phi_instr *nir_phi_instr_create(nir_shader *shader);
3121
3122 nir_parallel_copy_instr *nir_parallel_copy_instr_create(nir_shader *shader);
3123
3124 nir_ssa_undef_instr *nir_ssa_undef_instr_create(nir_shader *shader,
3125 unsigned num_components,
3126 unsigned bit_size);
3127
3128 nir_const_value nir_alu_binop_identity(nir_op binop, unsigned bit_size);
3129
3130 /**
3131 * NIR Cursors and Instruction Insertion API
3132 * @{
3133 *
3134 * A tiny struct representing a point to insert/extract instructions or
3135 * control flow nodes. Helps reduce the combinatorial explosion of possible
3136 * points to insert/extract.
3137 *
3138 * \sa nir_control_flow.h
3139 */
3140 typedef enum {
3141 nir_cursor_before_block,
3142 nir_cursor_after_block,
3143 nir_cursor_before_instr,
3144 nir_cursor_after_instr,
3145 } nir_cursor_option;
3146
3147 typedef struct {
3148 nir_cursor_option option;
3149 union {
3150 nir_block *block;
3151 nir_instr *instr;
3152 };
3153 } nir_cursor;
3154
3155 static inline nir_block *
3156 nir_cursor_current_block(nir_cursor cursor)
3157 {
3158 if (cursor.option == nir_cursor_before_instr ||
3159 cursor.option == nir_cursor_after_instr) {
3160 return cursor.instr->block;
3161 } else {
3162 return cursor.block;
3163 }
3164 }
3165
3166 bool nir_cursors_equal(nir_cursor a, nir_cursor b);
3167
3168 static inline nir_cursor
3169 nir_before_block(nir_block *block)
3170 {
3171 nir_cursor cursor;
3172 cursor.option = nir_cursor_before_block;
3173 cursor.block = block;
3174 return cursor;
3175 }
3176
3177 static inline nir_cursor
3178 nir_after_block(nir_block *block)
3179 {
3180 nir_cursor cursor;
3181 cursor.option = nir_cursor_after_block;
3182 cursor.block = block;
3183 return cursor;
3184 }
3185
3186 static inline nir_cursor
3187 nir_before_instr(nir_instr *instr)
3188 {
3189 nir_cursor cursor;
3190 cursor.option = nir_cursor_before_instr;
3191 cursor.instr = instr;
3192 return cursor;
3193 }
3194
3195 static inline nir_cursor
3196 nir_after_instr(nir_instr *instr)
3197 {
3198 nir_cursor cursor;
3199 cursor.option = nir_cursor_after_instr;
3200 cursor.instr = instr;
3201 return cursor;
3202 }
3203
3204 static inline nir_cursor
3205 nir_after_block_before_jump(nir_block *block)
3206 {
3207 nir_instr *last_instr = nir_block_last_instr(block);
3208 if (last_instr && last_instr->type == nir_instr_type_jump) {
3209 return nir_before_instr(last_instr);
3210 } else {
3211 return nir_after_block(block);
3212 }
3213 }
3214
3215 static inline nir_cursor
3216 nir_before_src(nir_src *src, bool is_if_condition)
3217 {
3218 if (is_if_condition) {
3219 nir_block *prev_block =
3220 nir_cf_node_as_block(nir_cf_node_prev(&src->parent_if->cf_node));
3221 assert(!nir_block_ends_in_jump(prev_block));
3222 return nir_after_block(prev_block);
3223 } else if (src->parent_instr->type == nir_instr_type_phi) {
3224 #ifndef NDEBUG
3225 nir_phi_instr *cond_phi = nir_instr_as_phi(src->parent_instr);
3226 bool found = false;
3227 nir_foreach_phi_src(phi_src, cond_phi) {
3228 if (phi_src->src.ssa == src->ssa) {
3229 found = true;
3230 break;
3231 }
3232 }
3233 assert(found);
3234 #endif
3235 /* The LIST_ENTRY macro is a generic container-of macro, it just happens
3236 * to have a more specific name.
3237 */
3238 nir_phi_src *phi_src = LIST_ENTRY(nir_phi_src, src, src);
3239 return nir_after_block_before_jump(phi_src->pred);
3240 } else {
3241 return nir_before_instr(src->parent_instr);
3242 }
3243 }
3244
3245 static inline nir_cursor
3246 nir_before_cf_node(nir_cf_node *node)
3247 {
3248 if (node->type == nir_cf_node_block)
3249 return nir_before_block(nir_cf_node_as_block(node));
3250
3251 return nir_after_block(nir_cf_node_as_block(nir_cf_node_prev(node)));
3252 }
3253
3254 static inline nir_cursor
3255 nir_after_cf_node(nir_cf_node *node)
3256 {
3257 if (node->type == nir_cf_node_block)
3258 return nir_after_block(nir_cf_node_as_block(node));
3259
3260 return nir_before_block(nir_cf_node_as_block(nir_cf_node_next(node)));
3261 }
3262
3263 static inline nir_cursor
3264 nir_after_phis(nir_block *block)
3265 {
3266 nir_foreach_instr(instr, block) {
3267 if (instr->type != nir_instr_type_phi)
3268 return nir_before_instr(instr);
3269 }
3270 return nir_after_block(block);
3271 }
3272
3273 static inline nir_cursor
3274 nir_after_cf_node_and_phis(nir_cf_node *node)
3275 {
3276 if (node->type == nir_cf_node_block)
3277 return nir_after_block(nir_cf_node_as_block(node));
3278
3279 nir_block *block = nir_cf_node_as_block(nir_cf_node_next(node));
3280
3281 return nir_after_phis(block);
3282 }
3283
3284 static inline nir_cursor
3285 nir_before_cf_list(struct exec_list *cf_list)
3286 {
3287 nir_cf_node *first_node = exec_node_data(nir_cf_node,
3288 exec_list_get_head(cf_list), node);
3289 return nir_before_cf_node(first_node);
3290 }
3291
3292 static inline nir_cursor
3293 nir_after_cf_list(struct exec_list *cf_list)
3294 {
3295 nir_cf_node *last_node = exec_node_data(nir_cf_node,
3296 exec_list_get_tail(cf_list), node);
3297 return nir_after_cf_node(last_node);
3298 }
3299
3300 /**
3301 * Insert a NIR instruction at the given cursor.
3302 *
3303 * Note: This does not update the cursor.
3304 */
3305 void nir_instr_insert(nir_cursor cursor, nir_instr *instr);
3306
3307 static inline void
3308 nir_instr_insert_before(nir_instr *instr, nir_instr *before)
3309 {
3310 nir_instr_insert(nir_before_instr(instr), before);
3311 }
3312
3313 static inline void
3314 nir_instr_insert_after(nir_instr *instr, nir_instr *after)
3315 {
3316 nir_instr_insert(nir_after_instr(instr), after);
3317 }
3318
3319 static inline void
3320 nir_instr_insert_before_block(nir_block *block, nir_instr *before)
3321 {
3322 nir_instr_insert(nir_before_block(block), before);
3323 }
3324
3325 static inline void
3326 nir_instr_insert_after_block(nir_block *block, nir_instr *after)
3327 {
3328 nir_instr_insert(nir_after_block(block), after);
3329 }
3330
3331 static inline void
3332 nir_instr_insert_before_cf(nir_cf_node *node, nir_instr *before)
3333 {
3334 nir_instr_insert(nir_before_cf_node(node), before);
3335 }
3336
3337 static inline void
3338 nir_instr_insert_after_cf(nir_cf_node *node, nir_instr *after)
3339 {
3340 nir_instr_insert(nir_after_cf_node(node), after);
3341 }
3342
3343 static inline void
3344 nir_instr_insert_before_cf_list(struct exec_list *list, nir_instr *before)
3345 {
3346 nir_instr_insert(nir_before_cf_list(list), before);
3347 }
3348
3349 static inline void
3350 nir_instr_insert_after_cf_list(struct exec_list *list, nir_instr *after)
3351 {
3352 nir_instr_insert(nir_after_cf_list(list), after);
3353 }
3354
3355 void nir_instr_remove_v(nir_instr *instr);
3356
3357 static inline nir_cursor
3358 nir_instr_remove(nir_instr *instr)
3359 {
3360 nir_cursor cursor;
3361 nir_instr *prev = nir_instr_prev(instr);
3362 if (prev) {
3363 cursor = nir_after_instr(prev);
3364 } else {
3365 cursor = nir_before_block(instr->block);
3366 }
3367 nir_instr_remove_v(instr);
3368 return cursor;
3369 }
3370
3371 /** @} */
3372
3373 nir_ssa_def *nir_instr_ssa_def(nir_instr *instr);
3374
3375 typedef bool (*nir_foreach_ssa_def_cb)(nir_ssa_def *def, void *state);
3376 typedef bool (*nir_foreach_dest_cb)(nir_dest *dest, void *state);
3377 typedef bool (*nir_foreach_src_cb)(nir_src *src, void *state);
3378 bool nir_foreach_ssa_def(nir_instr *instr, nir_foreach_ssa_def_cb cb,
3379 void *state);
3380 bool nir_foreach_dest(nir_instr *instr, nir_foreach_dest_cb cb, void *state);
3381 bool nir_foreach_src(nir_instr *instr, nir_foreach_src_cb cb, void *state);
3382
3383 nir_const_value *nir_src_as_const_value(nir_src src);
3384
3385 #define NIR_SRC_AS_(name, c_type, type_enum, cast_macro) \
3386 static inline c_type * \
3387 nir_src_as_ ## name (nir_src src) \
3388 { \
3389 return src.is_ssa && src.ssa->parent_instr->type == type_enum \
3390 ? cast_macro(src.ssa->parent_instr) : NULL; \
3391 }
3392
3393 NIR_SRC_AS_(alu_instr, nir_alu_instr, nir_instr_type_alu, nir_instr_as_alu)
3394 NIR_SRC_AS_(intrinsic, nir_intrinsic_instr,
3395 nir_instr_type_intrinsic, nir_instr_as_intrinsic)
3396 NIR_SRC_AS_(deref, nir_deref_instr, nir_instr_type_deref, nir_instr_as_deref)
3397
3398 bool nir_src_is_dynamically_uniform(nir_src src);
3399 bool nir_srcs_equal(nir_src src1, nir_src src2);
3400 bool nir_instrs_equal(const nir_instr *instr1, const nir_instr *instr2);
3401 void nir_instr_rewrite_src(nir_instr *instr, nir_src *src, nir_src new_src);
3402 void nir_instr_move_src(nir_instr *dest_instr, nir_src *dest, nir_src *src);
3403 void nir_if_rewrite_condition(nir_if *if_stmt, nir_src new_src);
3404 void nir_instr_rewrite_dest(nir_instr *instr, nir_dest *dest,
3405 nir_dest new_dest);
3406
3407 void nir_ssa_dest_init(nir_instr *instr, nir_dest *dest,
3408 unsigned num_components, unsigned bit_size,
3409 const char *name);
3410 void nir_ssa_def_init(nir_instr *instr, nir_ssa_def *def,
3411 unsigned num_components, unsigned bit_size,
3412 const char *name);
3413 static inline void
3414 nir_ssa_dest_init_for_type(nir_instr *instr, nir_dest *dest,
3415 const struct glsl_type *type,
3416 const char *name)
3417 {
3418 assert(glsl_type_is_vector_or_scalar(type));
3419 nir_ssa_dest_init(instr, dest, glsl_get_components(type),
3420 glsl_get_bit_size(type), name);
3421 }
3422 void nir_ssa_def_rewrite_uses(nir_ssa_def *def, nir_src new_src);
3423 void nir_ssa_def_rewrite_uses_after(nir_ssa_def *def, nir_src new_src,
3424 nir_instr *after_me);
3425
3426 nir_component_mask_t nir_ssa_def_components_read(const nir_ssa_def *def);
3427
3428 /*
3429 * finds the next basic block in source-code order, returns NULL if there is
3430 * none
3431 */
3432
3433 nir_block *nir_block_cf_tree_next(nir_block *block);
3434
3435 /* Performs the opposite of nir_block_cf_tree_next() */
3436
3437 nir_block *nir_block_cf_tree_prev(nir_block *block);
3438
3439 /* Gets the first block in a CF node in source-code order */
3440
3441 nir_block *nir_cf_node_cf_tree_first(nir_cf_node *node);
3442
3443 /* Gets the last block in a CF node in source-code order */
3444
3445 nir_block *nir_cf_node_cf_tree_last(nir_cf_node *node);
3446
3447 /* Gets the next block after a CF node in source-code order */
3448
3449 nir_block *nir_cf_node_cf_tree_next(nir_cf_node *node);
3450
3451 /* Macros for loops that visit blocks in source-code order */
3452
3453 #define nir_foreach_block(block, impl) \
3454 for (nir_block *block = nir_start_block(impl); block != NULL; \
3455 block = nir_block_cf_tree_next(block))
3456
3457 #define nir_foreach_block_safe(block, impl) \
3458 for (nir_block *block = nir_start_block(impl), \
3459 *next = nir_block_cf_tree_next(block); \
3460 block != NULL; \
3461 block = next, next = nir_block_cf_tree_next(block))
3462
3463 #define nir_foreach_block_reverse(block, impl) \
3464 for (nir_block *block = nir_impl_last_block(impl); block != NULL; \
3465 block = nir_block_cf_tree_prev(block))
3466
3467 #define nir_foreach_block_reverse_safe(block, impl) \
3468 for (nir_block *block = nir_impl_last_block(impl), \
3469 *prev = nir_block_cf_tree_prev(block); \
3470 block != NULL; \
3471 block = prev, prev = nir_block_cf_tree_prev(block))
3472
3473 #define nir_foreach_block_in_cf_node(block, node) \
3474 for (nir_block *block = nir_cf_node_cf_tree_first(node); \
3475 block != nir_cf_node_cf_tree_next(node); \
3476 block = nir_block_cf_tree_next(block))
3477
3478 /* If the following CF node is an if, this function returns that if.
3479 * Otherwise, it returns NULL.
3480 */
3481 nir_if *nir_block_get_following_if(nir_block *block);
3482
3483 nir_loop *nir_block_get_following_loop(nir_block *block);
3484
3485 void nir_index_local_regs(nir_function_impl *impl);
3486 void nir_index_ssa_defs(nir_function_impl *impl);
3487 unsigned nir_index_instrs(nir_function_impl *impl);
3488
3489 void nir_index_blocks(nir_function_impl *impl);
3490
3491 void nir_index_vars(nir_shader *shader, nir_function_impl *impl, nir_variable_mode modes);
3492
3493 void nir_print_shader(nir_shader *shader, FILE *fp);
3494 void nir_print_shader_annotated(nir_shader *shader, FILE *fp, struct hash_table *errors);
3495 void nir_print_instr(const nir_instr *instr, FILE *fp);
3496 void nir_print_deref(const nir_deref_instr *deref, FILE *fp);
3497
3498 /** Shallow clone of a single ALU instruction. */
3499 nir_alu_instr *nir_alu_instr_clone(nir_shader *s, const nir_alu_instr *orig);
3500
3501 nir_shader *nir_shader_clone(void *mem_ctx, const nir_shader *s);
3502 nir_function_impl *nir_function_impl_clone(nir_shader *shader,
3503 const nir_function_impl *fi);
3504 nir_constant *nir_constant_clone(const nir_constant *c, nir_variable *var);
3505 nir_variable *nir_variable_clone(const nir_variable *c, nir_shader *shader);
3506
3507 void nir_shader_replace(nir_shader *dest, nir_shader *src);
3508
3509 void nir_shader_serialize_deserialize(nir_shader *s);
3510
3511 #ifndef NDEBUG
3512 void nir_validate_shader(nir_shader *shader, const char *when);
3513 void nir_metadata_set_validation_flag(nir_shader *shader);
3514 void nir_metadata_check_validation_flag(nir_shader *shader);
3515
3516 static inline bool
3517 should_skip_nir(const char *name)
3518 {
3519 static const char *list = NULL;
3520 if (!list) {
3521 /* Comma separated list of names to skip. */
3522 list = getenv("NIR_SKIP");
3523 if (!list)
3524 list = "";
3525 }
3526
3527 if (!list[0])
3528 return false;
3529
3530 return comma_separated_list_contains(list, name);
3531 }
3532
3533 static inline bool
3534 should_clone_nir(void)
3535 {
3536 static int should_clone = -1;
3537 if (should_clone < 0)
3538 should_clone = env_var_as_boolean("NIR_TEST_CLONE", false);
3539
3540 return should_clone;
3541 }
3542
3543 static inline bool
3544 should_serialize_deserialize_nir(void)
3545 {
3546 static int test_serialize = -1;
3547 if (test_serialize < 0)
3548 test_serialize = env_var_as_boolean("NIR_TEST_SERIALIZE", false);
3549
3550 return test_serialize;
3551 }
3552
3553 static inline bool
3554 should_print_nir(void)
3555 {
3556 static int should_print = -1;
3557 if (should_print < 0)
3558 should_print = env_var_as_boolean("NIR_PRINT", false);
3559
3560 return should_print;
3561 }
3562 #else
3563 static inline void nir_validate_shader(nir_shader *shader, const char *when) { (void) shader; (void)when; }
3564 static inline void nir_metadata_set_validation_flag(nir_shader *shader) { (void) shader; }
3565 static inline void nir_metadata_check_validation_flag(nir_shader *shader) { (void) shader; }
3566 static inline bool should_skip_nir(UNUSED const char *pass_name) { return false; }
3567 static inline bool should_clone_nir(void) { return false; }
3568 static inline bool should_serialize_deserialize_nir(void) { return false; }
3569 static inline bool should_print_nir(void) { return false; }
3570 #endif /* NDEBUG */
3571
3572 #define _PASS(pass, nir, do_pass) do { \
3573 if (should_skip_nir(#pass)) { \
3574 printf("skipping %s\n", #pass); \
3575 break; \
3576 } \
3577 do_pass \
3578 nir_validate_shader(nir, "after " #pass); \
3579 if (should_clone_nir()) { \
3580 nir_shader *clone = nir_shader_clone(ralloc_parent(nir), nir); \
3581 nir_shader_replace(nir, clone); \
3582 } \
3583 if (should_serialize_deserialize_nir()) { \
3584 nir_shader_serialize_deserialize(nir); \
3585 } \
3586 } while (0)
3587
3588 #define NIR_PASS(progress, nir, pass, ...) _PASS(pass, nir, \
3589 nir_metadata_set_validation_flag(nir); \
3590 if (should_print_nir()) \
3591 printf("%s\n", #pass); \
3592 if (pass(nir, ##__VA_ARGS__)) { \
3593 progress = true; \
3594 if (should_print_nir()) \
3595 nir_print_shader(nir, stdout); \
3596 nir_metadata_check_validation_flag(nir); \
3597 } \
3598 )
3599
3600 #define NIR_PASS_V(nir, pass, ...) _PASS(pass, nir, \
3601 if (should_print_nir()) \
3602 printf("%s\n", #pass); \
3603 pass(nir, ##__VA_ARGS__); \
3604 if (should_print_nir()) \
3605 nir_print_shader(nir, stdout); \
3606 )
3607
3608 #define NIR_SKIP(name) should_skip_nir(#name)
3609
3610 /** An instruction filtering callback
3611 *
3612 * Returns true if the instruction should be processed and false otherwise.
3613 */
3614 typedef bool (*nir_instr_filter_cb)(const nir_instr *, const void *);
3615
3616 /** A simple instruction lowering callback
3617 *
3618 * Many instruction lowering passes can be written as a simple function which
3619 * takes an instruction as its input and returns a sequence of instructions
3620 * that implement the consumed instruction. This function type represents
3621 * such a lowering function. When called, a function with this prototype
3622 * should either return NULL indicating that no lowering needs to be done or
3623 * emit a sequence of instructions using the provided builder (whose cursor
3624 * will already be placed after the instruction to be lowered) and return the
3625 * resulting nir_ssa_def.
3626 */
3627 typedef nir_ssa_def *(*nir_lower_instr_cb)(struct nir_builder *,
3628 nir_instr *, void *);
3629
3630 /**
3631 * Special return value for nir_lower_instr_cb when some progress occurred
3632 * (like changing an input to the instr) that didn't result in a replacement
3633 * SSA def being generated.
3634 */
3635 #define NIR_LOWER_INSTR_PROGRESS ((nir_ssa_def *)(uintptr_t)1)
3636
3637 /** Iterate over all the instructions in a nir_function_impl and lower them
3638 * using the provided callbacks
3639 *
3640 * This function implements the guts of a standard lowering pass for you. It
3641 * iterates over all of the instructions in a nir_function_impl and calls the
3642 * filter callback on each one. If the filter callback returns true, it then
3643 * calls the lowering call back on the instruction. (Splitting it this way
3644 * allows us to avoid some save/restore work for instructions we know won't be
3645 * lowered.) If the instruction is dead after the lowering is complete, it
3646 * will be removed. If new instructions are added, the lowering callback will
3647 * also be called on them in case multiple lowerings are required.
3648 *
3649 * The metadata for the nir_function_impl will also be updated. If any blocks
3650 * are added (they cannot be removed), dominance and block indices will be
3651 * invalidated.
3652 */
3653 bool nir_function_impl_lower_instructions(nir_function_impl *impl,
3654 nir_instr_filter_cb filter,
3655 nir_lower_instr_cb lower,
3656 void *cb_data);
3657 bool nir_shader_lower_instructions(nir_shader *shader,
3658 nir_instr_filter_cb filter,
3659 nir_lower_instr_cb lower,
3660 void *cb_data);
3661
3662 void nir_calc_dominance_impl(nir_function_impl *impl);
3663 void nir_calc_dominance(nir_shader *shader);
3664
3665 nir_block *nir_dominance_lca(nir_block *b1, nir_block *b2);
3666 bool nir_block_dominates(nir_block *parent, nir_block *child);
3667 bool nir_block_is_unreachable(nir_block *block);
3668
3669 void nir_dump_dom_tree_impl(nir_function_impl *impl, FILE *fp);
3670 void nir_dump_dom_tree(nir_shader *shader, FILE *fp);
3671
3672 void nir_dump_dom_frontier_impl(nir_function_impl *impl, FILE *fp);
3673 void nir_dump_dom_frontier(nir_shader *shader, FILE *fp);
3674
3675 void nir_dump_cfg_impl(nir_function_impl *impl, FILE *fp);
3676 void nir_dump_cfg(nir_shader *shader, FILE *fp);
3677
3678 int nir_gs_count_vertices(const nir_shader *shader);
3679
3680 bool nir_shrink_vec_array_vars(nir_shader *shader, nir_variable_mode modes);
3681 bool nir_split_array_vars(nir_shader *shader, nir_variable_mode modes);
3682 bool nir_split_var_copies(nir_shader *shader);
3683 bool nir_split_per_member_structs(nir_shader *shader);
3684 bool nir_split_struct_vars(nir_shader *shader, nir_variable_mode modes);
3685
3686 bool nir_lower_returns_impl(nir_function_impl *impl);
3687 bool nir_lower_returns(nir_shader *shader);
3688
3689 void nir_inline_function_impl(struct nir_builder *b,
3690 const nir_function_impl *impl,
3691 nir_ssa_def **params);
3692 bool nir_inline_functions(nir_shader *shader);
3693
3694 bool nir_propagate_invariant(nir_shader *shader);
3695
3696 void nir_lower_var_copy_instr(nir_intrinsic_instr *copy, nir_shader *shader);
3697 void nir_lower_deref_copy_instr(struct nir_builder *b,
3698 nir_intrinsic_instr *copy);
3699 bool nir_lower_var_copies(nir_shader *shader);
3700
3701 void nir_fixup_deref_modes(nir_shader *shader);
3702
3703 bool nir_lower_global_vars_to_local(nir_shader *shader);
3704
3705 typedef enum {
3706 nir_lower_direct_array_deref_of_vec_load = (1 << 0),
3707 nir_lower_indirect_array_deref_of_vec_load = (1 << 1),
3708 nir_lower_direct_array_deref_of_vec_store = (1 << 2),
3709 nir_lower_indirect_array_deref_of_vec_store = (1 << 3),
3710 } nir_lower_array_deref_of_vec_options;
3711
3712 bool nir_lower_array_deref_of_vec(nir_shader *shader, nir_variable_mode modes,
3713 nir_lower_array_deref_of_vec_options options);
3714
3715 bool nir_lower_indirect_derefs(nir_shader *shader, nir_variable_mode modes);
3716
3717 bool nir_lower_locals_to_regs(nir_shader *shader);
3718
3719 void nir_lower_io_to_temporaries(nir_shader *shader,
3720 nir_function_impl *entrypoint,
3721 bool outputs, bool inputs);
3722
3723 bool nir_lower_vars_to_scratch(nir_shader *shader,
3724 nir_variable_mode modes,
3725 int size_threshold,
3726 glsl_type_size_align_func size_align);
3727
3728 void nir_lower_clip_halfz(nir_shader *shader);
3729
3730 void nir_shader_gather_info(nir_shader *shader, nir_function_impl *entrypoint);
3731
3732 void nir_gather_ssa_types(nir_function_impl *impl,
3733 BITSET_WORD *float_types,
3734 BITSET_WORD *int_types);
3735
3736 void nir_assign_var_locations(struct exec_list *var_list, unsigned *size,
3737 int (*type_size)(const struct glsl_type *, bool));
3738
3739 /* Some helpers to do very simple linking */
3740 bool nir_remove_unused_varyings(nir_shader *producer, nir_shader *consumer);
3741 bool nir_remove_unused_io_vars(nir_shader *shader, struct exec_list *var_list,
3742 uint64_t *used_by_other_stage,
3743 uint64_t *used_by_other_stage_patches);
3744 void nir_compact_varyings(nir_shader *producer, nir_shader *consumer,
3745 bool default_to_smooth_interp);
3746 void nir_link_xfb_varyings(nir_shader *producer, nir_shader *consumer);
3747 bool nir_link_opt_varyings(nir_shader *producer, nir_shader *consumer);
3748
3749 bool nir_lower_amul(nir_shader *shader,
3750 int (*type_size)(const struct glsl_type *, bool));
3751
3752 void nir_assign_io_var_locations(struct exec_list *var_list,
3753 unsigned *size,
3754 gl_shader_stage stage);
3755
3756 typedef enum {
3757 /* If set, this causes all 64-bit IO operations to be lowered on-the-fly
3758 * to 32-bit operations. This is only valid for nir_var_shader_in/out
3759 * modes.
3760 */
3761 nir_lower_io_lower_64bit_to_32 = (1 << 0),
3762
3763 /* If set, this forces all non-flat fragment shader inputs to be
3764 * interpolated as if with the "sample" qualifier. This requires
3765 * nir_shader_compiler_options::use_interpolated_input_intrinsics.
3766 */
3767 nir_lower_io_force_sample_interpolation = (1 << 1),
3768 } nir_lower_io_options;
3769 bool nir_lower_io(nir_shader *shader,
3770 nir_variable_mode modes,
3771 int (*type_size)(const struct glsl_type *, bool),
3772 nir_lower_io_options);
3773
3774 bool nir_io_add_const_offset_to_base(nir_shader *nir, nir_variable_mode mode);
3775
3776 bool
3777 nir_lower_vars_to_explicit_types(nir_shader *shader,
3778 nir_variable_mode modes,
3779 glsl_type_size_align_func type_info);
3780
3781 typedef enum {
3782 /**
3783 * An address format which is a simple 32-bit global GPU address.
3784 */
3785 nir_address_format_32bit_global,
3786
3787 /**
3788 * An address format which is a simple 64-bit global GPU address.
3789 */
3790 nir_address_format_64bit_global,
3791
3792 /**
3793 * An address format which is a bounds-checked 64-bit global GPU address.
3794 *
3795 * The address is comprised as a 32-bit vec4 where .xy are a uint64_t base
3796 * address stored with the low bits in .x and high bits in .y, .z is a
3797 * size, and .w is an offset. When the final I/O operation is lowered, .w
3798 * is checked against .z and the operation is predicated on the result.
3799 */
3800 nir_address_format_64bit_bounded_global,
3801
3802 /**
3803 * An address format which is comprised of a vec2 where the first
3804 * component is a buffer index and the second is an offset.
3805 */
3806 nir_address_format_32bit_index_offset,
3807
3808 /**
3809 * An address format which is a simple 32-bit offset.
3810 */
3811 nir_address_format_32bit_offset,
3812
3813 /**
3814 * An address format representing a purely logical addressing model. In
3815 * this model, all deref chains must be complete from the dereference
3816 * operation to the variable. Cast derefs are not allowed. These
3817 * addresses will be 32-bit scalars but the format is immaterial because
3818 * you can always chase the chain.
3819 */
3820 nir_address_format_logical,
3821 } nir_address_format;
3822
3823 static inline unsigned
3824 nir_address_format_bit_size(nir_address_format addr_format)
3825 {
3826 switch (addr_format) {
3827 case nir_address_format_32bit_global: return 32;
3828 case nir_address_format_64bit_global: return 64;
3829 case nir_address_format_64bit_bounded_global: return 32;
3830 case nir_address_format_32bit_index_offset: return 32;
3831 case nir_address_format_32bit_offset: return 32;
3832 case nir_address_format_logical: return 32;
3833 }
3834 unreachable("Invalid address format");
3835 }
3836
3837 static inline unsigned
3838 nir_address_format_num_components(nir_address_format addr_format)
3839 {
3840 switch (addr_format) {
3841 case nir_address_format_32bit_global: return 1;
3842 case nir_address_format_64bit_global: return 1;
3843 case nir_address_format_64bit_bounded_global: return 4;
3844 case nir_address_format_32bit_index_offset: return 2;
3845 case nir_address_format_32bit_offset: return 1;
3846 case nir_address_format_logical: return 1;
3847 }
3848 unreachable("Invalid address format");
3849 }
3850
3851 static inline const struct glsl_type *
3852 nir_address_format_to_glsl_type(nir_address_format addr_format)
3853 {
3854 unsigned bit_size = nir_address_format_bit_size(addr_format);
3855 assert(bit_size == 32 || bit_size == 64);
3856 return glsl_vector_type(bit_size == 32 ? GLSL_TYPE_UINT : GLSL_TYPE_UINT64,
3857 nir_address_format_num_components(addr_format));
3858 }
3859
3860 const nir_const_value *nir_address_format_null_value(nir_address_format addr_format);
3861
3862 nir_ssa_def *nir_build_addr_ieq(struct nir_builder *b, nir_ssa_def *addr0, nir_ssa_def *addr1,
3863 nir_address_format addr_format);
3864
3865 nir_ssa_def *nir_build_addr_isub(struct nir_builder *b, nir_ssa_def *addr0, nir_ssa_def *addr1,
3866 nir_address_format addr_format);
3867
3868 nir_ssa_def * nir_explicit_io_address_from_deref(struct nir_builder *b,
3869 nir_deref_instr *deref,
3870 nir_ssa_def *base_addr,
3871 nir_address_format addr_format);
3872 void nir_lower_explicit_io_instr(struct nir_builder *b,
3873 nir_intrinsic_instr *io_instr,
3874 nir_ssa_def *addr,
3875 nir_address_format addr_format);
3876
3877 bool nir_lower_explicit_io(nir_shader *shader,
3878 nir_variable_mode modes,
3879 nir_address_format);
3880
3881 nir_src *nir_get_io_offset_src(nir_intrinsic_instr *instr);
3882 nir_src *nir_get_io_vertex_index_src(nir_intrinsic_instr *instr);
3883
3884 bool nir_is_per_vertex_io(const nir_variable *var, gl_shader_stage stage);
3885
3886 bool nir_lower_regs_to_ssa_impl(nir_function_impl *impl);
3887 bool nir_lower_regs_to_ssa(nir_shader *shader);
3888 bool nir_lower_vars_to_ssa(nir_shader *shader);
3889
3890 bool nir_remove_dead_derefs(nir_shader *shader);
3891 bool nir_remove_dead_derefs_impl(nir_function_impl *impl);
3892 bool nir_remove_dead_variables(nir_shader *shader, nir_variable_mode modes);
3893 bool nir_lower_variable_initializers(nir_shader *shader,
3894 nir_variable_mode modes);
3895
3896 bool nir_move_vec_src_uses_to_dest(nir_shader *shader);
3897 bool nir_lower_vec_to_movs(nir_shader *shader);
3898 void nir_lower_alpha_test(nir_shader *shader, enum compare_func func,
3899 bool alpha_to_one,
3900 const gl_state_index16 *alpha_ref_state_tokens);
3901 bool nir_lower_alu(nir_shader *shader);
3902
3903 bool nir_lower_flrp(nir_shader *shader, unsigned lowering_mask,
3904 bool always_precise, bool have_ffma);
3905
3906 bool nir_lower_alu_to_scalar(nir_shader *shader, nir_instr_filter_cb cb, const void *data);
3907 bool nir_lower_bool_to_bitsize(nir_shader *shader);
3908 bool nir_lower_bool_to_float(nir_shader *shader);
3909 bool nir_lower_bool_to_int32(nir_shader *shader);
3910 bool nir_lower_int_to_float(nir_shader *shader);
3911 bool nir_lower_load_const_to_scalar(nir_shader *shader);
3912 bool nir_lower_read_invocation_to_scalar(nir_shader *shader);
3913 bool nir_lower_phis_to_scalar(nir_shader *shader);
3914 void nir_lower_io_arrays_to_elements(nir_shader *producer, nir_shader *consumer);
3915 void nir_lower_io_arrays_to_elements_no_indirects(nir_shader *shader,
3916 bool outputs_only);
3917 void nir_lower_io_to_scalar(nir_shader *shader, nir_variable_mode mask);
3918 void nir_lower_io_to_scalar_early(nir_shader *shader, nir_variable_mode mask);
3919 bool nir_lower_io_to_vector(nir_shader *shader, nir_variable_mode mask);
3920
3921 void nir_lower_fragcoord_wtrans(nir_shader *shader);
3922 void nir_lower_viewport_transform(nir_shader *shader);
3923 bool nir_lower_uniforms_to_ubo(nir_shader *shader, int multiplier);
3924
3925 typedef struct nir_lower_subgroups_options {
3926 uint8_t subgroup_size;
3927 uint8_t ballot_bit_size;
3928 bool lower_to_scalar:1;
3929 bool lower_vote_trivial:1;
3930 bool lower_vote_eq_to_ballot:1;
3931 bool lower_subgroup_masks:1;
3932 bool lower_shuffle:1;
3933 bool lower_shuffle_to_32bit:1;
3934 bool lower_quad:1;
3935 bool lower_quad_broadcast_dynamic:1;
3936 bool lower_quad_broadcast_dynamic_to_const:1;
3937 } nir_lower_subgroups_options;
3938
3939 bool nir_lower_subgroups(nir_shader *shader,
3940 const nir_lower_subgroups_options *options);
3941
3942 bool nir_lower_system_values(nir_shader *shader);
3943
3944 enum PACKED nir_lower_tex_packing {
3945 nir_lower_tex_packing_none = 0,
3946 /* The sampler returns up to 2 32-bit words of half floats or 16-bit signed
3947 * or unsigned ints based on the sampler type
3948 */
3949 nir_lower_tex_packing_16,
3950 /* The sampler returns 1 32-bit word of 4x8 unorm */
3951 nir_lower_tex_packing_8,
3952 };
3953
3954 typedef struct nir_lower_tex_options {
3955 /**
3956 * bitmask of (1 << GLSL_SAMPLER_DIM_x) to control for which
3957 * sampler types a texture projector is lowered.
3958 */
3959 unsigned lower_txp;
3960
3961 /**
3962 * If true, lower away nir_tex_src_offset for all texelfetch instructions.
3963 */
3964 bool lower_txf_offset;
3965
3966 /**
3967 * If true, lower away nir_tex_src_offset for all rect textures.
3968 */
3969 bool lower_rect_offset;
3970
3971 /**
3972 * If true, lower rect textures to 2D, using txs to fetch the
3973 * texture dimensions and dividing the texture coords by the
3974 * texture dims to normalize.
3975 */
3976 bool lower_rect;
3977
3978 /**
3979 * If true, convert yuv to rgb.
3980 */
3981 unsigned lower_y_uv_external;
3982 unsigned lower_y_u_v_external;
3983 unsigned lower_yx_xuxv_external;
3984 unsigned lower_xy_uxvx_external;
3985 unsigned lower_ayuv_external;
3986 unsigned lower_xyuv_external;
3987
3988 /**
3989 * To emulate certain texture wrap modes, this can be used
3990 * to saturate the specified tex coord to [0.0, 1.0]. The
3991 * bits are according to sampler #, ie. if, for example:
3992 *
3993 * (conf->saturate_s & (1 << n))
3994 *
3995 * is true, then the s coord for sampler n is saturated.
3996 *
3997 * Note that clamping must happen *after* projector lowering
3998 * so any projected texture sample instruction with a clamped
3999 * coordinate gets automatically lowered, regardless of the
4000 * 'lower_txp' setting.
4001 */
4002 unsigned saturate_s;
4003 unsigned saturate_t;
4004 unsigned saturate_r;
4005
4006 /* Bitmask of textures that need swizzling.
4007 *
4008 * If (swizzle_result & (1 << texture_index)), then the swizzle in
4009 * swizzles[texture_index] is applied to the result of the texturing
4010 * operation.
4011 */
4012 unsigned swizzle_result;
4013
4014 /* A swizzle for each texture. Values 0-3 represent x, y, z, or w swizzles
4015 * while 4 and 5 represent 0 and 1 respectively.
4016 */
4017 uint8_t swizzles[32][4];
4018
4019 /* Can be used to scale sampled values in range required by the format. */
4020 float scale_factors[32];
4021
4022 /**
4023 * Bitmap of textures that need srgb to linear conversion. If
4024 * (lower_srgb & (1 << texture_index)) then the rgb (xyz) components
4025 * of the texture are lowered to linear.
4026 */
4027 unsigned lower_srgb;
4028
4029 /**
4030 * If true, lower nir_texop_tex on shaders that doesn't support implicit
4031 * LODs to nir_texop_txl.
4032 */
4033 bool lower_tex_without_implicit_lod;
4034
4035 /**
4036 * If true, lower nir_texop_txd on cube maps with nir_texop_txl.
4037 */
4038 bool lower_txd_cube_map;
4039
4040 /**
4041 * If true, lower nir_texop_txd on 3D surfaces with nir_texop_txl.
4042 */
4043 bool lower_txd_3d;
4044
4045 /**
4046 * If true, lower nir_texop_txd on shadow samplers (except cube maps)
4047 * with nir_texop_txl. Notice that cube map shadow samplers are lowered
4048 * with lower_txd_cube_map.
4049 */
4050 bool lower_txd_shadow;
4051
4052 /**
4053 * If true, lower nir_texop_txd on all samplers to a nir_texop_txl.
4054 * Implies lower_txd_cube_map and lower_txd_shadow.
4055 */
4056 bool lower_txd;
4057
4058 /**
4059 * If true, lower nir_texop_txb that try to use shadow compare and min_lod
4060 * at the same time to a nir_texop_lod, some math, and nir_texop_tex.
4061 */
4062 bool lower_txb_shadow_clamp;
4063
4064 /**
4065 * If true, lower nir_texop_txd on shadow samplers when it uses min_lod
4066 * with nir_texop_txl. This includes cube maps.
4067 */
4068 bool lower_txd_shadow_clamp;
4069
4070 /**
4071 * If true, lower nir_texop_txd on when it uses both offset and min_lod
4072 * with nir_texop_txl. This includes cube maps.
4073 */
4074 bool lower_txd_offset_clamp;
4075
4076 /**
4077 * If true, lower nir_texop_txd with min_lod to a nir_texop_txl if the
4078 * sampler is bindless.
4079 */
4080 bool lower_txd_clamp_bindless_sampler;
4081
4082 /**
4083 * If true, lower nir_texop_txd with min_lod to a nir_texop_txl if the
4084 * sampler index is not statically determinable to be less than 16.
4085 */
4086 bool lower_txd_clamp_if_sampler_index_not_lt_16;
4087
4088 /**
4089 * If true, lower nir_texop_txs with a non-0-lod into nir_texop_txs with
4090 * 0-lod followed by a nir_ishr.
4091 */
4092 bool lower_txs_lod;
4093
4094 /**
4095 * If true, apply a .bagr swizzle on tg4 results to handle Broadcom's
4096 * mixed-up tg4 locations.
4097 */
4098 bool lower_tg4_broadcom_swizzle;
4099
4100 /**
4101 * If true, lowers tg4 with 4 constant offsets to 4 tg4 calls
4102 */
4103 bool lower_tg4_offsets;
4104
4105 enum nir_lower_tex_packing lower_tex_packing[32];
4106 } nir_lower_tex_options;
4107
4108 bool nir_lower_tex(nir_shader *shader,
4109 const nir_lower_tex_options *options);
4110
4111 enum nir_lower_non_uniform_access_type {
4112 nir_lower_non_uniform_ubo_access = (1 << 0),
4113 nir_lower_non_uniform_ssbo_access = (1 << 1),
4114 nir_lower_non_uniform_texture_access = (1 << 2),
4115 nir_lower_non_uniform_image_access = (1 << 3),
4116 };
4117
4118 bool nir_lower_non_uniform_access(nir_shader *shader,
4119 enum nir_lower_non_uniform_access_type);
4120
4121 enum nir_lower_idiv_path {
4122 /* This path is based on NV50LegalizeSSA::handleDIV(). It is the faster of
4123 * the two but it is not exact in some cases (for example, 1091317713u /
4124 * 1034u gives 5209173 instead of 1055432) */
4125 nir_lower_idiv_fast,
4126 /* This path is based on AMDGPUTargetLowering::LowerUDIVREM() and
4127 * AMDGPUTargetLowering::LowerSDIVREM(). It requires more instructions than
4128 * the nv50 path and many of them are integer multiplications, so it is
4129 * probably slower. It should always return the correct result, though. */
4130 nir_lower_idiv_precise,
4131 };
4132
4133 bool nir_lower_idiv(nir_shader *shader, enum nir_lower_idiv_path path);
4134
4135 bool nir_lower_input_attachments(nir_shader *shader, bool use_fragcoord_sysval);
4136
4137 bool nir_lower_clip_vs(nir_shader *shader, unsigned ucp_enables,
4138 bool use_vars,
4139 bool use_clipdist_array,
4140 const gl_state_index16 clipplane_state_tokens[][STATE_LENGTH]);
4141 bool nir_lower_clip_gs(nir_shader *shader, unsigned ucp_enables,
4142 bool use_clipdist_array,
4143 const gl_state_index16 clipplane_state_tokens[][STATE_LENGTH]);
4144 bool nir_lower_clip_fs(nir_shader *shader, unsigned ucp_enables,
4145 bool use_clipdist_array);
4146 bool nir_lower_clip_cull_distance_arrays(nir_shader *nir);
4147
4148 void nir_lower_point_size_mov(nir_shader *shader,
4149 const gl_state_index16 *pointsize_state_tokens);
4150
4151 bool nir_lower_frexp(nir_shader *nir);
4152
4153 void nir_lower_two_sided_color(nir_shader *shader);
4154
4155 bool nir_lower_clamp_color_outputs(nir_shader *shader);
4156
4157 bool nir_lower_flatshade(nir_shader *shader);
4158
4159 void nir_lower_passthrough_edgeflags(nir_shader *shader);
4160 bool nir_lower_patch_vertices(nir_shader *nir, unsigned static_count,
4161 const gl_state_index16 *uniform_state_tokens);
4162
4163 typedef struct nir_lower_wpos_ytransform_options {
4164 gl_state_index16 state_tokens[STATE_LENGTH];
4165 bool fs_coord_origin_upper_left :1;
4166 bool fs_coord_origin_lower_left :1;
4167 bool fs_coord_pixel_center_integer :1;
4168 bool fs_coord_pixel_center_half_integer :1;
4169 } nir_lower_wpos_ytransform_options;
4170
4171 bool nir_lower_wpos_ytransform(nir_shader *shader,
4172 const nir_lower_wpos_ytransform_options *options);
4173 bool nir_lower_wpos_center(nir_shader *shader, const bool for_sample_shading);
4174
4175 bool nir_lower_fb_read(nir_shader *shader);
4176
4177 typedef struct nir_lower_drawpixels_options {
4178 gl_state_index16 texcoord_state_tokens[STATE_LENGTH];
4179 gl_state_index16 scale_state_tokens[STATE_LENGTH];
4180 gl_state_index16 bias_state_tokens[STATE_LENGTH];
4181 unsigned drawpix_sampler;
4182 unsigned pixelmap_sampler;
4183 bool pixel_maps :1;
4184 bool scale_and_bias :1;
4185 } nir_lower_drawpixels_options;
4186
4187 void nir_lower_drawpixels(nir_shader *shader,
4188 const nir_lower_drawpixels_options *options);
4189
4190 typedef struct nir_lower_bitmap_options {
4191 unsigned sampler;
4192 bool swizzle_xxxx;
4193 } nir_lower_bitmap_options;
4194
4195 void nir_lower_bitmap(nir_shader *shader, const nir_lower_bitmap_options *options);
4196
4197 bool nir_lower_atomics_to_ssbo(nir_shader *shader);
4198
4199 typedef enum {
4200 nir_lower_int_source_mods = 1 << 0,
4201 nir_lower_float_source_mods = 1 << 1,
4202 nir_lower_triop_abs = 1 << 2,
4203 nir_lower_all_source_mods = (1 << 3) - 1
4204 } nir_lower_to_source_mods_flags;
4205
4206
4207 bool nir_lower_to_source_mods(nir_shader *shader, nir_lower_to_source_mods_flags options);
4208
4209 bool nir_lower_gs_intrinsics(nir_shader *shader, bool per_stream);
4210
4211 typedef unsigned (*nir_lower_bit_size_callback)(const nir_alu_instr *, void *);
4212
4213 bool nir_lower_bit_size(nir_shader *shader,
4214 nir_lower_bit_size_callback callback,
4215 void *callback_data);
4216
4217 nir_lower_int64_options nir_lower_int64_op_to_options_mask(nir_op opcode);
4218 bool nir_lower_int64(nir_shader *shader, nir_lower_int64_options options);
4219
4220 nir_lower_doubles_options nir_lower_doubles_op_to_options_mask(nir_op opcode);
4221 bool nir_lower_doubles(nir_shader *shader, const nir_shader *softfp64,
4222 nir_lower_doubles_options options);
4223 bool nir_lower_pack(nir_shader *shader);
4224
4225 bool nir_lower_point_size(nir_shader *shader, float min, float max);
4226
4227 typedef enum {
4228 nir_lower_interpolation_at_sample = (1 << 1),
4229 nir_lower_interpolation_at_offset = (1 << 2),
4230 nir_lower_interpolation_centroid = (1 << 3),
4231 nir_lower_interpolation_pixel = (1 << 4),
4232 nir_lower_interpolation_sample = (1 << 5),
4233 } nir_lower_interpolation_options;
4234
4235 bool nir_lower_interpolation(nir_shader *shader,
4236 nir_lower_interpolation_options options);
4237
4238 bool nir_lower_discard_to_demote(nir_shader *shader);
4239
4240 bool nir_normalize_cubemap_coords(nir_shader *shader);
4241
4242 void nir_live_ssa_defs_impl(nir_function_impl *impl);
4243
4244 void nir_loop_analyze_impl(nir_function_impl *impl,
4245 nir_variable_mode indirect_mask);
4246
4247 bool nir_ssa_defs_interfere(nir_ssa_def *a, nir_ssa_def *b);
4248
4249 bool nir_repair_ssa_impl(nir_function_impl *impl);
4250 bool nir_repair_ssa(nir_shader *shader);
4251
4252 void nir_convert_loop_to_lcssa(nir_loop *loop);
4253 bool nir_convert_to_lcssa(nir_shader *shader, bool skip_invariants, bool skip_bool_invariants);
4254 bool* nir_divergence_analysis(nir_shader *shader, nir_divergence_options options);
4255
4256 /* If phi_webs_only is true, only convert SSA values involved in phi nodes to
4257 * registers. If false, convert all values (even those not involved in a phi
4258 * node) to registers.
4259 */
4260 bool nir_convert_from_ssa(nir_shader *shader, bool phi_webs_only);
4261
4262 bool nir_lower_phis_to_regs_block(nir_block *block);
4263 bool nir_lower_ssa_defs_to_regs_block(nir_block *block);
4264 bool nir_rematerialize_derefs_in_use_blocks_impl(nir_function_impl *impl);
4265
4266 bool nir_lower_samplers(nir_shader *shader);
4267 bool nir_lower_ssbo(nir_shader *shader);
4268
4269 /* This is here for unit tests. */
4270 bool nir_opt_comparison_pre_impl(nir_function_impl *impl);
4271
4272 bool nir_opt_comparison_pre(nir_shader *shader);
4273
4274 bool nir_opt_access(nir_shader *shader);
4275 bool nir_opt_algebraic(nir_shader *shader);
4276 bool nir_opt_algebraic_before_ffma(nir_shader *shader);
4277 bool nir_opt_algebraic_late(nir_shader *shader);
4278 bool nir_opt_algebraic_distribute_src_mods(nir_shader *shader);
4279 bool nir_opt_constant_folding(nir_shader *shader);
4280
4281 /* Try to combine a and b into a. Return true if combination was possible,
4282 * which will result in b being removed by the pass. Return false if
4283 * combination wasn't possible.
4284 */
4285 typedef bool (*nir_combine_memory_barrier_cb)(
4286 nir_intrinsic_instr *a, nir_intrinsic_instr *b, void *data);
4287
4288 bool nir_opt_combine_memory_barriers(nir_shader *shader,
4289 nir_combine_memory_barrier_cb combine_cb,
4290 void *data);
4291
4292 bool nir_opt_combine_stores(nir_shader *shader, nir_variable_mode modes);
4293
4294 bool nir_copy_prop(nir_shader *shader);
4295
4296 bool nir_opt_copy_prop_vars(nir_shader *shader);
4297
4298 bool nir_opt_cse(nir_shader *shader);
4299
4300 bool nir_opt_dce(nir_shader *shader);
4301
4302 bool nir_opt_dead_cf(nir_shader *shader);
4303
4304 bool nir_opt_dead_write_vars(nir_shader *shader);
4305
4306 bool nir_opt_deref_impl(nir_function_impl *impl);
4307 bool nir_opt_deref(nir_shader *shader);
4308
4309 bool nir_opt_find_array_copies(nir_shader *shader);
4310
4311 bool nir_opt_gcm(nir_shader *shader, bool value_number);
4312
4313 bool nir_opt_idiv_const(nir_shader *shader, unsigned min_bit_size);
4314
4315 bool nir_opt_if(nir_shader *shader, bool aggressive_last_continue);
4316
4317 bool nir_opt_intrinsics(nir_shader *shader);
4318
4319 bool nir_opt_large_constants(nir_shader *shader,
4320 glsl_type_size_align_func size_align,
4321 unsigned threshold);
4322
4323 bool nir_opt_loop_unroll(nir_shader *shader, nir_variable_mode indirect_mask);
4324
4325 typedef enum {
4326 nir_move_const_undef = (1 << 0),
4327 nir_move_load_ubo = (1 << 1),
4328 nir_move_load_input = (1 << 2),
4329 nir_move_comparisons = (1 << 3),
4330 nir_move_copies = (1 << 4),
4331 } nir_move_options;
4332
4333 bool nir_can_move_instr(nir_instr *instr, nir_move_options options);
4334
4335 bool nir_opt_sink(nir_shader *shader, nir_move_options options);
4336
4337 bool nir_opt_move(nir_shader *shader, nir_move_options options);
4338
4339 bool nir_opt_peephole_select(nir_shader *shader, unsigned limit,
4340 bool indirect_load_ok, bool expensive_alu_ok);
4341
4342 bool nir_opt_rematerialize_compares(nir_shader *shader);
4343
4344 bool nir_opt_remove_phis(nir_shader *shader);
4345 bool nir_opt_remove_phis_block(nir_block *block);
4346
4347 bool nir_opt_shrink_load(nir_shader *shader);
4348
4349 bool nir_opt_trivial_continues(nir_shader *shader);
4350
4351 bool nir_opt_undef(nir_shader *shader);
4352
4353 bool nir_opt_vectorize(nir_shader *shader);
4354
4355 bool nir_opt_conditional_discard(nir_shader *shader);
4356
4357 typedef bool (*nir_should_vectorize_mem_func)(unsigned align, unsigned bit_size,
4358 unsigned num_components, unsigned high_offset,
4359 nir_intrinsic_instr *low, nir_intrinsic_instr *high);
4360
4361 bool nir_opt_load_store_vectorize(nir_shader *shader, nir_variable_mode modes,
4362 nir_should_vectorize_mem_func callback);
4363
4364 void nir_schedule(nir_shader *shader, int threshold);
4365
4366 void nir_strip(nir_shader *shader);
4367
4368 void nir_sweep(nir_shader *shader);
4369
4370 void nir_remap_dual_slot_attributes(nir_shader *shader,
4371 uint64_t *dual_slot_inputs);
4372 uint64_t nir_get_single_slot_attribs_mask(uint64_t attribs, uint64_t dual_slot);
4373
4374 nir_intrinsic_op nir_intrinsic_from_system_value(gl_system_value val);
4375 gl_system_value nir_system_value_from_intrinsic(nir_intrinsic_op intrin);
4376
4377 static inline bool
4378 nir_variable_is_in_ubo(const nir_variable *var)
4379 {
4380 return (var->data.mode == nir_var_mem_ubo &&
4381 var->interface_type != NULL);
4382 }
4383
4384 static inline bool
4385 nir_variable_is_in_ssbo(const nir_variable *var)
4386 {
4387 return (var->data.mode == nir_var_mem_ssbo &&
4388 var->interface_type != NULL);
4389 }
4390
4391 static inline bool
4392 nir_variable_is_in_block(const nir_variable *var)
4393 {
4394 return nir_variable_is_in_ubo(var) || nir_variable_is_in_ssbo(var);
4395 }
4396
4397 #ifdef __cplusplus
4398 } /* extern "C" */
4399 #endif
4400
4401 #endif /* NIR_H */